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ABSTRACT 

We present an investigation of the static and dynamic behavior of the nonlinear von-Karman plates 

when actuated by the nonlinear electrostatic forces. The investigation is based on a reduced order 

model developed using the Galerkin method, which rely on modeshapes and in-plane shape functions 

extracted using a finite element method. In this study, a fully clamped microplate is considered. We 

investigate the static behavior and the effect of different non-dimensional design parameters. The static 

results are validated by comparison with the results calculated by a finite element model. The forced-

vibration response of the plate is then investigated when the plate is excited by a harmonic AC load 

superimposed to a DC load. The dynamic behavior is examined near the primary and secondary 

(superharmonic and subharmonic) resonances. The microplate shows a strong hardening behavior due 

to the cubic nonlinearity of mid-plane stretching. However, the behavior switches to softening as the DC 

load is increased. Finally, near-square plates are studied to understand the effect of geometric 

imperfections of microplates.   

Keywords: electrically actuated microplates, static analysis, dynamics of microplates, diaphragm 

vibration, large amplitude vibrations, nonlinear dynamics 

1. Introduction 

Micro-Electro Mechanical Systems (MEMS) commonly use electrically actuated flexible micro-structures, 

such as microbeams and microplates [1, 2]. Examples include pressure, mass and gas sensors, 

micropumps, microjets, micromirror, and microphones [3-9]. Modeling accurately the mechanical 

behavior of such structures under the applied electric force is required to predict the response prior to 

the experimental testing and actual use of the device. Accurate models can guide the design engineer 

through the design process; reducing the design time on one hand and on the other hand can help to 

improve the existing devices. It is common to study the mechanical behavior of MEMS using linear 

theory [2]; which is applicable only for small deflections. Since in MEMS, structures often undergo large 

deflection, linear theory becomes inaccurate. Common modeling approaches include lumped mass 

models and Finite Element Method (FEM) [5, 10-12]. Lumped mass models give rough estimate of the 



response only. FEM based software tools are accurate but computationally expensive, especially when it 

comes to study the nonlinear dynamic behavior. Differential quadrature method (DQM) have been 

utilized to solve the governing differential equations [13-15]. On the other hand Reduced Order Models 

(ROM) based on the Galerkin approach have got popularity during the last decades because of their 

accuracy and low computational cost [16-20]. They have the capability to reveal the effect of different 

design parameters very conveniently. 

In this paper, we present an analytical ROM to study the mechanical behavior of fully clamped 

microplate based MEMS devices. The model is based on the von-Karman type governing equations of 

thin plates and is accurate for MEMS devices undergoing geometrically nonlinear large deflections.  

A common way to model the plate structures in MEMS devices is using the linear plate theory or 

classical plate theory (CPT) [6, 21, 22], which is correct when out of plane deflection is small. But in cases 

when the transverse deflection is comparable to the thickness of the plate, which is very common in 

MEMS, a strong geometric nonlinearity is present due to mid-plane stretching making the predications 

of linear theories erroneous.  

Machauf et al. [6] studied the characteristics of an electrostatically actuated micropump. They 

considered the small deflection of a pump diaphragm and used CPT to model the mechanical motion. 

They applied a sinusoidal voltage across the working fluid and studied the flow rate against different 

design parameters. W.F. Faris et al [9] presented a model for micropump based on electrostatically 

actyuated annular members. The model predicts the deflection accurately for any voltage upto the pull-

in voltage. Chao and co-workers [21] used the linear plate theory to model the fully clamped thin plate 

under electrostatic pressure. They employed a reduced order model to develop an analytical expression 

for the pull in voltage of the flexible thin plate in the applications of microphone and switches. For 

experimental validation, they designed and fabricated MEMS microphones and found generally good 

agreement among the theoretical and experimental results. Nayfeh and Younis [22] used the linear plate 

theory to model the squeeze film damping in microplates. A compressible Reynolds’s equation was used 

to model the squeeze film damping effects. A combination of perturbation and FEM was used to solve 

for structural modeshapes, the pressure distribution, the natural frequencies, and the quality factors. 

Theoretically calculated quality factors were found in good agreement with the experimental data.  

Ng et al. [5] performed dynamic analysis of microplates under electrostatic forces. They used the 

boundary element method (BEM) to solve the quasi 3D Laplace equation for the electric potential to 

calculate the charge density and the corresponding electric force. They modeled the plate using the first 

order shear deformation theory (FSDT) and employed FEM to discretize the governing equations. 

Newton’s iteration method was used to solve the discretized equations. They compared the results 

obtained from the FSDT to the results from the linear plate theory and found qualitatively different 

results. Mukherjee et al. [23] and Telukunta et al. [12] used a fully Lagrangian approach to analyze the 

coupled electro-mechanical field of microplate based MEMS. They employed FEM for the analysis of 

mechanical deformations in the plate and the BEM to obtain the electric field exterior to the plate.  



Vogl and Nayfeh [18] presented an analytical ROM for fully clamped electrostatically actuated circular 

plates. The model accounted for the geometric nonlinearity and residual stresses. The governing 

equations of motion were discretized using the Galerkin approach. The axisymmetric natural 

frequencies of the plate were determined. Ahmad and Pratap [24] investigated the static response of a 

clamped circular plate under electrostatic load using the Galerkin method. Bertarelli et al. [25] 

investigated a circular diaphragm micropump under electric actuation using a one degree-of-freedom 

analytical model and a finite element model. They analyzed the behavior of the micropump under quasi 

static and dynamic electric loading. Mohammadi et al. [15] investigated the pull-in instability of 

electrostatically actuated circular microplates. They used the strain gradient elasticity theory to account 

for the size effects. A generalized differential quadrature method (GDQ) was used to solve the governing 

differential equations. 

Zhao et al. [17] presented a ROM model for electrostatically actuated rectangular microplates. The 

model accounted for the nonlinearities due to electric force and mid-plane stretching through the von 

Karman strains. The Hierarchical Finite Element Method (HFEM) was used to obtain linear undamped 

mode shapes, which are used in the Galerkin procedure to get a reduced order model. The model was 

used to calculate the deflection under an applied DC voltage and to study the pull in voltage. Natural 

frequencies and mode shapes were calculated around the deflected position.   Younis and Nayfeh [26] 

simulated the squeeze film damping of electrically actuated microplates based on the linearized von-

Karman plate equations . They used a combination of a perturbation technique and FEM to study the 

structural mode shapes, the pressure distribution, the natural frequencies, and the quality factors as the 

DC voltage and air pressure are varied. In addition,  some researchers have modeled the thin 

microstructures as membranes [27, 28] 

Zand and Ahmadian [10, 29] investigated the pull-in and vibrational behavior of single and multilayer 

microplates under electric actuation and squeeze film damping. They used coupled FEM to solve the 

system of equations. Porfiri [30] investigated the small vibrations of a parallel array of identical 

microplates deflected under electric loading. They showed that the vibrational properties can be tuned 

by properly selecting the DC voltage across the adjacent microplates.  

Fu and Zhang [31] investigated the active control of the nonlinear static and dynamic responses of 

piezoelectric viscoelastic microplates actuated electrically. They employed the nonlinear von Karman 

equations of the plate and used the Galerkin method to reduce the equation. Jia et al. [13] investigated 

the pull-in instability of electrostatically actuated micro-swtiches including the axial residual stresses. 

They used Euler–Bernoulli beam theory along with von_Karman type kinematics to formulate the 

problem and used differential quadrature method to solve the governing equations. Karimzade et al. 

[32] studied the nonlinear pull-in instability of a fully clamped microplate with movable base. They 

solved the governing equation using the extended Kantorovich method and the Galerkin approximation 

technique. Srinivas [33] investigated the static and dynamic pull-in of simply supported microplates 

using a closed form solution and compared the results with those of a Galerkin approximation.  

In recent years, the modified couple stress theory has attracted several researchers for nonlinear 

analysis of micro structures [34-37]. Gholipour et al. [35] investigated the in-plane and out of plane size 



dependent nonlinear dynamics of microplates resting on elastic foundation. Farokhi and Ghayesh [35] 

investigated the dynamic behavior of geometrically imperfect microplates. 

 

Despite the aforementioned works on the mechanical behavior of microplates; most of the works have 

been mainly focused on the static and linear vibration behavior of microplates. Almost no work has been 

presented about the nonlinear behavior of microplates when actuated by large electrostatic loading or 

when undergoing large motion. Understanding such behaviors is fundamental to the development of 

the next generation microplates-based MEMS devices.   

The objective of this paper is to investigate the nonlinear forced vibration behavior of electrically 

actuated fully clamped microplates. Towards this, we develop a reduced order model based on the von 

Karman equations of the plate, in which all three equations of the plate motion are discretized using the 

Galerkin method. For validation purpose, we compare the static results computed by the reduced order 

model with the results calculated using the FEM software COMSOL [38]. Further the reduced order 

model is employed to investigate the dynamic behavior of the plates under large vibration amplitude.  

  

 

Figure 1: A schematic diagram of an electrically actuated fully clamped microplate. 

2. Problem Formulation 

We consider a fully clamped rectangular microplate (Figure 1) and adopt the von-Karman equations of 

motion [39, 40]. We ignore the in-plane inertia since the in-plane natural frequencies are much higher 

than the transverse natural frequencies. Hence, the in-plane inertia has negligible effect on the 

transverse motion. Dropping the in plane inertia terms, the governing equations of the plate motion can 

be written as  

        
2 2 2 2 2 2

2 2 2 2

1 1 1 1
1 1 1 1 0

2 2 2 2

u v u w w w w w w

x x y y x x y x y x y
           

         
          

  (1) 



        
2 2 2 2 2 2

2 2 2 2

1 1 1 1
1 1 1 1 0

2 2 2 2

v u v w w w w w w

y x y x y y x x y y x
           

         
          

  (2) 

 

       
 

 

 

22 2 22 2 2 2 2

4

22 2 2

2 2 2 2 2

2 2 2

2

2

2 2

1  1     1    
2

12       2     

1

1

2

1

x y yyx x

V th w w w w w
w N N N

E t E h t x x y yE h d w

u w w v w w u v w

x x y y x y y x x y

w w

x x

c

h Eh

 



  

 

        
              

             
                        

      



 
2

2 2 2 2

2 2 2 2

1
1

2

w w w w w w w

y y x y x y x y
  

        
    

 

  
               

  (3) 

where ,u v and w are the displacements along the ,x y and z direction, respectively, 4 is the bi-harmonic 

operator
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,  is the mass density per unit area, c is the damping coefficient, 

and and E are Poisson’s ratio and modulus of elasticity, respectively. The first term on the right side 
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is the applied electric pressure in the transverse direction while ijN is the applied 
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For convenience, we introduce the non-dimensional variables (denoted by hats); 
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Substituting equation (4) into equations (1)-(3) and dropping the hats for convenience we get the 

following equations: 
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The parameters appearing in equations (5)-(7) are 
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3. Reduced Order Model   

To develop the reduced order model for the governing equations (5)-(7), we assume the solution for the 

transverse and in-plane displacements as follows 

                                                                 
1

( ) ( , )
n

i

i
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where ( , )i x y are the transversal undamped linear modeshapes of the plate and ( )iq t  are the unknown 

time dependent coefficients, ( , )u x y and ( , )v x y  are the shape functions for the in-plane 

displacements u and v , while ( )uq t  and ( )vq t  are the corresponding time dependent unknown 

coefficients. 

Since the linear eigenvalue problem governing the transversal undamped linear modeshapes of the fully 

clamped plate cannot be solved analytically, we resort to the finite element method for this purpose.  

We use the commercial software COMSOL [38] to obtain the modeshapes of the plate. The in-plane 

displacement shape functions are also obtained by FEM while the plate is deflected by a uniform 

transverse pressure. A mesh convergence test is run to choose a suitable mesh. Results of the mesh 

convergence test and the modeshapes of the plate along with the in-plane displacement shape 

functions are given in the appendix.  

To treat the electric force term we multiply equation (7) by  2
1 w so that electric force term is 

represented exactly [16, 39]. Substituting equations (9)-(11) into equations (5)-(7), multiplying equation 

(5) and (6) by ( , )u x y and ( , )v x y , respectively, and equation (7) by ( , )i x y , and integrating over the 

plate domain, we get a system of differential algebraic equations (DAEs) for the time dependent 

coefficients. Equations (5) and (6) generate algebraic equations while equation (7) results in ordinary 

differential equations (ODEs). The resulting system of DAEs is solved for the unknown time dependent 

coefficients ( )iq t , ( )uq t and ( )vq t .  Toward this, we solve equations (5) and (6) for ( )uq t   and ( )vq t  in 

terms of ( )iq t  and then substitute the results into equation (7). This equation is then integrated in time 



using Runge Kutta.  These coefficients are substituted back into equations (9)-(11) to get the 

displacements w , u  and v . 

4. Static Analysis 

To calculate the static deflection of the microplate under a DC load, we drop the time derivatives in the 

reduced order model and the time dependent unknown coefficients ( )iq t , ( )uq t and ( )vq t are replaced by 

constant coefficients iq , uq and vq . This results in a system of nonlinear algebraic equations, which is 

numerically solved for iq , uq  and vq . Then equation (9) is used to find the transversal deflection. 

     

Figure 2: Convergence of the static response with the number of transverse modes retained in the reduced order model. 

Variation of the maximum non-dimensional deflection  max
,

2 2
a bW  with the electrostatic voltage parameter

2

2 dcV when 

1  and 1
1  .  

First we study convergence of the static results with the number of transverse modes, ( , )i x y  retained 

in the reduced order model when 1  and 1
1  . 

Figure 2 shows the stable solution, the non-dimensional deflection max
W at the center of plate against 

various values of
2

2 dcV . We note that the static results converge by retaining at least four transverse 

modes in the model. One can note that the deflection curve is limited by the pull-in instability, where 

the slope of the curve approaches infinity.   

Figure 3 shows the maximum non-dimensional deflection max
W against

2

2 dcV  for various values of the 

aspect ratio    with fixed value of 1
1  . By increasing , the maximum deflection almost remains 

constant, but the voltage instability threshold (pull-in) decreases and saturates near
2

2
75dcV   as the 

aspect ratio approaches . 



 

 

Figure 3: Variation of the maximum non-dimensional deflection  max
,

2 2
a bW  of the microplate with the electrostatic 

voltage parameter
2

2 dcV until pull-in for various values of aspect ratio when 1
1  . 

 

Figure 4: Variation of the non-dimensional deflection  max
,

2 2
a bW of the microplate with the electrostatic voltage 

parameter
2

2 dcV until pull-in for various values of 1
 when 1  . 

Figure 4 shows the variation of max
W with 

2

2 dcV  until pull-in occurs for various values of 1
 while 1   

(square plate). We notice that the maximum non-dimensional deflection max
W  as well as the voltage 

parameter
2

2 dcV are reduced for 1
1  , while for 1

1   both quantities increase and max
W  seems to 

stabilize near 0.7 at 1
3  . 

5. Model Validation 



We validate the reduced order model by comparing its results with the results obtained by FEM 

software COMSOL [38] for different aspect ratios  . Figure 5 shows the maximum deflection max
W at the 

center of the microplate calculated by both models. We use rectangular microplates of four different 

aspect ratios of 1  , 1.1  , 1.2  , and 1.5  . Dimensional specifications of the electrically 

actuated microplates are given in Table 1, while material properties are; 153GPaE  and 0.23  . 

Results are shown for various values of dcV , until the pull in instability, for 1.5  . It shows excellent 

agreement among the results calculated by the ROM model and the FEM model. 

 

Figure 5: Comparison of the maximum deflection  max
,

2 2
a bW  of the microplate, calculated by the reduced order with the 

results obtained from FEM for various values of applied DC load dcV until the pull-in instability, for a rectangular microplate of 

aspect ratio 1.5  . 

Table 1: Dimensional specifications of electrically actuated microplates used in the model validation. 

Aspect ratio 

b
a

   

Length 

 a m  

Width 

 b m  

Plate thickness

 h m  

Capacitor gap

 d m  

1 300 300 2 2 

1.1 300 330 2 2 

1.2 300 360 2 2 

1.5 300 450 2 2 

 

6. Dynamic Analysis 

In this section we investigate the dynamic response of the square microplate at primary, super-

harmonic of order three and sub-harmonic of order two, resonances of the fundamental mode.  We 

analyze the dynamics of the microplate by generating frequency response curves. The Runge Kutta 



method is used to perform long time numerical integration to solve the system of DAEs. The stable 

steady solution is captured after making sure that the transient response is no longer contributing to the 

response. Figure 6 shows the time history of the dynamic response of the microplate when actuated at a 

DC voltage 3VdcV  and an AC voltage 0.1VacV   and 35.1 . Figure 6a depicts the diminishing 

transient response, while Figure 6b shows the stable steady response. We use steady-state responses 

similar to Figure 6b to construct the frequency response curves. 

  

       (a)                                                                                (b) 

Figure 6: Time history response of the microplate. (a) Transient response. (b) Steady state response. 

 

6.1 Primary Resonance 

To investigate the dynamic response at primary resonance, we fix 1   , 1
1  , 2

1  and assume that 

the in-plane external forces are zero i.e. 0xx xy yyN N N  . With the above parameters the static 

pull-in voltage for the microplate is near 14 Volts. We investigate the nonlinear dynamic behavior of the 

microplate near primary resonance at a DC voltage superimposed to a small harmonic acV  i.e.

(t) ( t)dc acV V V Sin   . Figure 7 shows the nonlinear response of the microplate when actuated at 

3VdcV  for various values of acV while the quality factor is fixed at 250Q   near primary resonance, 

which for the linear plate is near 36. Our choice of a constant value of Q means that we assumed 

negligible effect of squeeze-film damping, which reasonable assumption is assuming that the microplate 

is placed inside a vacuum chamber and is operated at reduced pressure.  Otherwise, squeeze-film 

damping can have strong effect on the dynamics of microplates and needs to be modeled using 

Reynolds equation and a structural-fluidic model [24, 26].  

Figure 7 shows the maximum non-dimensional deflection max
W  at the center of the microplate against 

the non-dimensional frequency. The microplate exhibits strong hardening effect due to the cubic 

nonlinearity, which comes into play due to mid-plane stretching. The hysteresis in the curves is captured 

by performing forward and backward frequency sweeps. Nonlinear resonance peaks occur near

36.15  for 0.1VacV  while it is at 36.6 for 0.3VacV  and 36.9 for 0.5VacV  . Further we 
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notice that there exist multiple stable solutions over some range of frequency and amplitude jumps 

from higher to lower or lower to higher values depending on the type of frequency sweep.  

 

     

Figure 7: Maximum non-dimensional deflection  max
,

2 2
a bW  of the microplate against the actuating frequency  when 

actuated at 3VdcV  and various values of acV  while quality factor 250Q  ; ( F )  Forward frequency sweep, ( B ) Backward 

frequency sweep.    

Figure 8 shows the frequency response curves of the microplate when actuated at 7VdcV   for various 

values of acV with a quality factor 250Q  . An overlap of stable solutions exists when actuated at 

0.2VacV  contrary to the responses at 0.4VacV  and 0.6VacV  , respectively. A gap between the two 

stable solutions starts to emerge in the case of 0.4VacV   by the forward and backward frequency 

sweeps. This gap might indicate that the microplate becomes unstable at that actuating voltage and 

pulls on the stationary electrode. This kind of instability is called dynamic pull-in instability, which 

usually occurs at a lower DC load superimposed to a small harmonic load [39-42]. Another possibility 

exists, especially in the case of  0.4VacV  , that this gap is created due to the numerical divergence of 

the time integration scheme, due to its inability to find suitable initial conditions that lead to a stable 

periodic orbit. In other words, this might indicate highly fractal behavior, which usually gets stronger as 

the system approaches the dynamic pull-in regime [41]. To confirm if this divergence is due to fractal 

behavior or due to pull-in exactly, one should resort to other numerical techniques to find periodic 

motions, such as shooting and finite difference methods as well as basin of attraction analysis [39, 42].  

The response on the other hand for the case of 0.6VacV  is most likely an indication of a pull-in band, 

since as reported in [42], further increase in acV  widens the pull-in band gap between the stable 

solutions and makes the upper stable branches terminated at lower values [42]. 

 



   

Figure 8:  Maximum non-dimensional deflection  max
,

2 2
a bW  of the microplate against the actuating frequency  when 

actuated at 7VdcV  and various values of acV  while quality factor 250Q  .    

6.2 Secondary Resonances  

Due to the cubic nonlinearity from mid-plane stretching and quadratic nonlinearity of the electrostatic 

force, the plate is expected to exhibit several secondary resonances [39, 43]. These include super 

harmonic resonances near one-third and one-half the fundamental natural frequency as well as 

subharmonic resonances near twice and three times the fundamental natural frequency. As case 

studies, in this paper, we investigate the dynamic response of the microplate near the super-harmonic 

resonance of order three and then near the subharmonic resonance of order half.  

A.  Super-harmonic Resonance at 1

3


 

We use the same parameters of Section 6.1. The generated frequency response curves reveal some 

interesting phenomena in this case. First, Figure 9 shows the response at 9VdcV  for various values of

acV . The response at 2.1VacV  shows a clear hardening behavior. Now increasing the AC voltage to

2.3VacV  and 2.4VacV  , the microplate becomes unstable and jumps to another stable state with 

higher amplitude of vibration near max
0.77W  . This behavior is contrary to the one near primary 

resonance where the microplate jumps onto the stationary electrode as dynamic pull-in. This can be due 

to the fact that the response is in the verge of shifting from hardening to softening effect. This is 

clarified in Figure 10, which shows the frequency response at 10VdcV  for various acV . Figure 9 and 

Figure 10 depict the transition from hardening to softening behavior.  This is expected with the increase 

of the DC voltage, which tends to change the effective nonlinearity of the system. Essentially, the 

effective nonlinearity is dominated by the mid-plane stretching (positive cubic in nature) for low value of 



DC voltage, and thus the plate exhibits hardening behavior. On the other hand, the electrostatic 

nonlinearities (quadratic in nature) dominate the overall nonlinearities leading to softening behavior at 

higher values of DC voltage [39, 44]. This observed behavior is expected also for the primary resonance 

case.  

Next, we investigate the amplitude jumps in Figure 9 by plotting phase portraits of the response near 

terminal points of the lower and upper stable branches. Figure 11 and 12 show the periodic orbits of the 

stable branches at 2.3VacV  and 2.4VacV  , respectively. Figure 11 shows that the orbit size increases 

as the actuation frequency increases until the maximum value of deflection amplitude max
0.6W   is 

reached near the terminal point of the lower stable branch at 11.176 . Beyond this point, we note 

that the plate jumps to a higher amplitude of vibration, max
0.8W   at 11.178 . The plate jumps back 

to a lower amplitude of vibration, max
0.27W  at 11.194 . A similar response is depicted in Figure 12 

for a higher AC load. 

 

Figure 9: Frequency response curves near super-harmonic resonance, 1

3


 of the fundamental natural frequency. Maximum 

non-dimensional deflection  max
,

2 2
a bW  of the microplate against the actuating frequency  when actuated at

9VdcV  and various values of acV  while quality factor 250Q  .    



 

Figure 10: Frequency response curves near super-harmonic resonance, 1

3


 of the fundamental natural frequency. Maximum 

non-dimensional deflection  max
,

2 2
a bW  of the microplate against the actuating frequency  when actuated at

10VdcV  and various values of acV  while quality factor 250Q  . 

 

 

   

Figure 11: Phase portraits for the lower and upper stable branches of the Figure 9 for 2.3VacV   ; (a) 11.12 , (b) 

11.176   , (c) 11.178   , (d) 11.194 .   
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Figure 12: Phase portraits for the lower and upper stable branches of the Figure 6 for 2.4VacV   ; (a) 11.12 , (b) 

11.138   , (c) 11.14   , (d) 11.204 .   

B. Sub-harmonic Resonance at 1
2  

In this section we investigate the dynamic response of the plate near sub-harmonic resonance of order 

one half. Figure 13a shows, as expected, a hardening response. This hardening behavior shifts to 

softening behavior by further increasing the DC voltage. During this transition, Figure 13b,  an upper 

discrete dynamical solution is created of relatively large amplitude (near 
max

W =0.8), similar to the 

observed behavior in Figure 9. Figure 13c shows softening behavior at a higher value of DC voltage. The 

upper stable branch in the case of softening behavior stays high with significantly large amplitude as 

compared with lower branches for a considerably large band of actuation frequency.   
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                                                                    (a) 9VdcV   and 0.5VacV  .                                  

 

                   (b) 10VdcV   and 0.5VacV  .                                             (c) 11VdcV   and 0.5VacV  . 

Figure 13: Frequency response curves near sub-harmonic resonance near 
1

2 . Maximum non-dimensional deflection 

 max
,

2 2
a bW  of the microplate against the actuating frequency   for a quality factor 250Q  .    

 

6.3. Dynamic Behavior of Imperfect Square Plates 

Next, we investigate the dynamic behavior of imperfect square plates near the second symmetric-

symmetric mode, which corresponds to symmetric-symmetric degenerate modes of square plates [45-

48]. By imperfect square microplate we mean that is close to 1. Such an imperfection comes practically 

when fabricating a square plate, which then due to unavoidable fabrication imperfections, will come as 

a near square plate.  We actuate the microplate at small DC and AC voltages. Non-dimensional 

parameters remain the same as in subsection 6.1 except , which we change slightly to introduce the 

imperfection. A square microplate exhibits degenerate mode due to the symmetrical geometry. Figure 

14a shows the response of a perfect square plate i.e. 1  while Figure 14b-14d shows the responses 

when is slightly varied ( 0.999  , 0.995  and 0.99  ). It is shown that slightly varying the value of



 breaks the geometrical symmetry and hence the degenerate modes become distinct modes of 

vibration at distinct frequencies. As a consequence two corresponding resonances appear very close to 

each other. These neighboring resonances are of interest, for instance, for mass sensing MEMS 

applications. It is noticed that for very small imperfections the amplitude of the new resonance is very 

small. By further increasing the imperfection, the amplitudes of both resonances become the same but 

are smaller than the one with the ideal square plate. This is because we are reducing width of plate ( b ) 

while keeping the length ( a ) constant, to get imperfections, which in return causes higher stiffness of 

the microplate and hence lower the amplitude of vibration. 

      

                                                        (a)                                                                                         (b) 

 

                                                    (c)                                                                                          (d) 

Figure 14: Dynamic behavior of an imperfect square plate near the second symmetric-symmetric mode of vibration when 

actuated at 1VdcV  , 0.3VacV  with a quality factor 1000Q  .   

6. Conclusions 

In this article we developed a reduced order model for the investigation of the static as well as the 

dynamic behavior of electrically actuated rectangular microplates. First convergence of the static results 

with the number of modeshapes retained in the ROM has been studied. We found that four modes are 

sufficient for convergence. We investigated the effect of different non-dimensional parameters on the 



static behavior. Increasing the plate aspect ratio  decreases the voltage parameter at pull-in while 

increasing the gap to thickness ratio 1
  increases the voltage parameter. The dynamic behavior of the 

microplate has been investigated near primary and super-harmonic resonances using long time 

numerical integration. We captured the stable solutions using forward and backward frequency sweeps. 

The microplate actuated near primary resonance shows a strong hardening behavior due to the cubic 

nonlinearity, which comes into play due to mid-plane stretching. Increasing acV  further widens the gap 

between the two stable solutions captured by forward and backward frequency sweeps and pull-in 

instability occurs at a lower vibration amplitude. Interesting phenomena are revealed when the 

microplate is actuated at 1

3


 super-harmonic.  We found when increasing the applied DC load that there 

is a transition from hardening behavior to softening behavior. We also investigated the response of 

imperfect square microplates at the second symmetric-symmetric mode. Breaking the geometrical 

symmetry by slightly varying the value of results in distinct neighboring resonances, which can be 

employed for developing mass sensing MEMS devices.   

7. Appendix: Modeshapes and in-plane shape functions 

The COMSOL Multiphysics FEM software [38] has been used for the extraction of modeshapes and the 

in-plane displacement shape functions used in the reduced order model. Towards this, we first 

performed a mesh convergence test. The FEM model consists of a square plate of side length 100 m and 

thickness of 2 m . Figure 15 shows the convergence of the first natural frequency with increasing the 

number of elements. We conclude from the figure that using a mapped mesh with 50 elements along 

each side of the square microplate is a reasonable compromise between accuracy and computational 

effort, since further increase of accuracy comes at much higher computational cost. 

 

Figure 15: Mesh convergence study; convergence of the first natural frequency with increasing the number of elements. 

 

In Figure 16 we show the in-plane shape functions u and v along with the corresponding contour plots. 

These shape functions are extracted using the FEM software COMSOL [38]. A square microplate is 



deflected by applying a uniform transverse pressure. Them the in-plane displacements  ,u x y and

 ,v x y  are extracted when the deflection at the center of the plate is nearly equal to half the thickness 

of the microplate. We normalize these displacements to use as shape functions u and v  for the 

development of the reduced order model.  

           

           

Figure 16: In-plane displacement shape functions, (A) u  plot,  (B) u contour plot, (C) v  plot, and  (D)  v contour plot. 

The eigenvalue problem of the linear undamped square microplate was solved using the FEM. The first 

six non-dimensional frequencies,
2

a
D

  , of the symmetric-symmetric modeshapes are provided in 

Table 2. Figure 17 shows the first six symmetric-symmetric modeshapes used in our model along with 

corresponding contour plots. 

Table 2: Frequency parameter
2

a
D

   for first six symmetric-symmetric modeshapes of a square microplate calculated 

using the FEM software COMSOL. 

Mode number ( i  ) Non-dimensional frequency parameter  

2
a

D

   

1
  35.89 

A 

 B 

C 
D 



2
  130.98 

3
  216.54 

4
  302.87 

5
  383.58 

6
  545.7 
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Figure 17: The first six symmetric-symmetric modeshapes of a square microplate (A,C,E,G,I,K) and corresponding contour plots 

(B,D,F,H,J,L) obtained by an FEM model.  
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