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SUMMARY

The 1,5-anhydropentitol compouﬁds (namely, l;5-anh&droxylitol, 1 ,5~anhydro-
ribitol, .and 1,5-anhydro-D- and L-arabinitol).are a logical class ofgcomppﬁnds_,
with which to begin a.systgmatic analysis of carbohydrate vibrational spectrg.
These compouhds form a model system that isAstructurallM\similar to the pentoses,
although simpler because they lack a hydréxyl group at. the él position of the.
ring. The vibrational speétra of these compounds are quite complex, complicatéd
by extensive vibrational coupling. As a result, a completg.interpretatidn of the

vibrational épectra can be accomplished only by detailed normal -coordinate

. analyses.

The lasér Raman-aﬁa infrared épéctré of the éryst;lliﬁe l,SQanhydfopentitol
compounds were measured in the region from 4000 to lSdlém._l'(wéﬁe number ). (The
infrared spectra were only recorded down to 300 cm.fl)‘ Thé.sdiid sfafé spectra
were assigned and interpreted with tﬁe aid of detailed normal coordinate calcula-
tions, performed for each compound in.the class. In. the normal coordinate
énalyses, a series of computer pfograms were empioyed to construct and solve the
vibrational secular equation by the Wilsdn:ggbmethod. Aﬁ iteratiyé nonlinear
least squares technique .based on the Flétche;—Powell method was adapted to refine
an initial éet of. force constant parameters.f&r eaéh;of the l,S—anhydropentitol
models simultaneously; whereby, the differegce between the calculated aﬁd experi-

mental frequencies were minimized. The result was an overall average error of

6.2 cm. *

The comparative differences in band location (i.e., frequency) between the
1,5-anhydropentitol spectra are demonstrated to be primarily the result of a
kinetic energy effect (Q_matrik)'rather‘than a potential. energy effect (E_matrix)

~

. 4
and are related to.the hydroxyl group orientation,'i;e.sAaxial or equatorial.




~2-

" The Raman épectra-of the ‘water and dimethyl sulfoxide-dg solutions of the
1,5-anhydropentitol compounds were’obéerved to be very similar upon exclusion
of the;solvent bands. This observation suggests that.the type of solvent,
amphiprotic versus aprotic, has little affect on the vibrational spectra of.
. these saccharide model compounds. The solution spectra were noted to correlate
quite favorably with the crystalline spectra; however, the bands were greatly
broadened in the solution spectra. Sevefal additional bands were observed in
the solution spectra for 1,5-anhydroribitol and 1,5-anhydro-L-arabinitol that
were not evident in the crystalline spectra. Conformational free energy calcu-
lations and normal coordinate computations support the argument that these bands
qr;gingte from g'significant portion of the molecﬁléé that exist in fhe alternate

chair conformation in solution.

The infrared and-Raman'spectra#of’cfystalline 1,5-anhydro-DL-arabinitol were
recorded. The l,5—anhydro—DL-arabini£ol éﬁectra were not identical to the spegtra
of the D and L isomers. Several specﬁral bands appeared to be shifted in
frequency, and the relative intensitieé of a number of bands were not the same.
The hydrogen bonding and crystal geometry are suspected of differing in the two
systems; however, the influence of these factors upon the spectra was not in-

vestigated.

In addition‘to providing important viﬁfationallinformationrébouf a class of
compounds previocusly unstudied, the investiéation of the 1,5-anhydropentitol
spectra has also made available the necéésary data to .assist in the spectral
interpretation of: other carbohydrate compounds. The normal coordinate compu-
tations'for these compounds have -generated a force field which:should simplify

the mathematical analyses of the monosaccharides, especially the pentoses.
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INTRODUCTION®

Thé sacchar;des arevg bro;d!class of nafurally occurrlng compounds-coﬁpased
of such groups as thé pentoses (xylose, rlbose,'arabinose) hexoses Lglucose;
mannose, galactose), o;lgomers (lactose, fructose, sucrqse) and polysaccharldes
(glycogen, pectin). Derivatives (glucos&miﬁé) and‘substituted-pqusaccharldes

(mucopolysaccharides) are:'also members of this group. .

The saccharides aré important elements in biolqgicgi systems; They fofm
the subunits of more complex moiecular systems such as the.glycoprétein; andl
glycolipids (1-3), are important étfuctural'coﬁponent$ in a variéfy of_living
tissges, and are involved iﬁ a number of eoﬁpleg métabolic pathways (EJE). In-
addition; saccharides enter in£o a nuﬁberléf important biqlagicai mephanisms,

and they are constituents of some of the clinically important antibiotics (6).

The saccharides, eépecially the ﬁolymers Qf anhydroglugose,-are also the
basic réw material for several indus£riés; .For example, the étarch industry
utilizes the afl,h-linked'polyher (0, ﬁhile the cotton textiles and paper .
industries depend updn cellulése; thg B-1,4-1linked polymer, as the b%sic raw
meterial (8,9). The rayon, cellophane, suéar,‘and fermentation industries are

further examples of areas of technology where saccharides are important.

Recently, polysaccharides have been determined as important elements in
pollution abatement problems. The dewatering of sludges from municipal sewage
treatment systems appears to be influenced by their waste cellulose fiber content

and by the hydration properties of the capsular pélysaccharides of microorganisms.

The Introduction, Backéround, and Thesis Objectives sections are based on an
- unpublished review by Dr. Rajai Atalla, The Institute of Paper Chemistry,
Appleton, Wisconsin.
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In view of the widespread importance of the saccharides, it is evident that
an expansion of our basic understanding of these compounds through physical
chemical ihveétigations will result in poﬁenfiél applicéfions in biocheﬁiétfy,

medicine, industrial techndlogy, and environmental ﬁrdtecﬁion programs.

To date, physical chemical investigations;of the saccharides have employéd
optical rotation (10), x-ray crystallography (11,12), and nuclear magnetic.
resonance spectrometry (13,1l4) as important sources of information. Vibrational
spectfoscopy, primﬁriiy infrared épectrdécéﬁy; has also béen used éxtéhsively in
the iﬁfestigatisﬁ of saccharidés; howevef: its use has beeh almost entireiy as an
analytical £ool, based oﬁ the‘group freqﬁénéy approach;' In recent years, the
potential of vibrational séeéﬁroséop& as a physical chemical tool has been gréatly
expanded due'té the increasiﬁg évailabilit& 5f laser Ramanlspecfréﬁetérs and the
developmeﬁf of éompuéer methods for normal'éoordinate calculations. Laser Raman
spectrometers provide complementary spectral information to infrared absorption
meeasurements, and the computational meth@ds allow the investigation of the:vibra-
tional dynamics of large molecules. . Thereforg, it now appears certain that detailed
vibrational analyses.of the spectra of well~chosen saccharides can add significantly
to the fund. of basic information deveioped utilizing other. physical:chemical

techniques.
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BACKGROUND

The vibrational spectra of the saccharides, their derivatives, and related
compounds-ha&é been studied by many workers in this area of chemistry. Al-""
though some progress has been made in the interpretation of fhésé-sﬁeCffa, the

full potentialjof:vibrational spectroscopy utilizing modern techniques has not

been attained.

Coblentz (;2) appgars'to have beéh the firsﬁ person to éritically examine
the infrared spectra of’the saccharides. He studied D-fructose and D—glﬁéose in
the region from 3200 em. ! to 833 cm:._.1 The series was expanded by ﬁégers‘and
Williems (16) to include D- and L-arabinoée; D-galactose, and D-manhosg{‘ The
spectra of several other simple sugars were éxémined by other workers (&1).
Howeféf, the work of Kuhn (18) represents the first effort to correlate the spectra
with structure. His work was followed by a series of significan£ contributions‘
published by a number of groups throughout the decade of fhé 1950's.. Whistler and
House Qég)'were the first workers.td empioy infrared spectra to differenﬁiate be-
tween sugar anomers. A significant series of publications followed by a group>of
workers at The University of Birminghem (20-22). The'spectrai'region from 670 cm. !
to 1000 em.”! was investigated for many'monOSaccharides énd their derivatives.
They observed that the SPecffal features in this region could be'cofrelatéd with
structure, particularly at the Cl position. They found, however, that the finger-

print region was too complex for systematization.

Tipson and Isbell and their coworkers (23-29), at the National Bureau of
Standards, investigated the infrared sbeétra of a'sﬁbstantial number of mono-
saccharides and their derivatives. In one of the more unusual applicatidns of

infrared spectral meééuremehté ih this field, fhey measured the equilibrium
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compositions of aqueous solutions of monosaccharides (o~ and B-anomer distribution
and presence of the furanose form after mutarotatlon had taken place) by‘measuring
the spectra of lyophlllzed samples of the solutlons (28) They also attempted to

make some band assignments in the fingerprint region.

A significant contributiont® the study of polysaccharide ‘spectra has beén -
made by Marchessault and Liarg and their eoworkers (30-35). They have recorded
the speetre of a number of eellulosee, x&lans; end’chipin. _ They utilized pe;erized
infrareé‘absorption measurements on oriented samp;es as an. aid to.gssigpinglsome of
the bends. Zhbankov and his coworkers (36) have also made important contributions
in thie‘arear_ They_haye measured the specfrg of a large number of saccharides,
especially celluloses frpmua”varieﬁy of natural sources. In a more reeenp_publi_
eetioq_ﬁzlj, they‘havenreported low temperature stud;ee of the infrared spectra of

various monosaccharides.

Michell and coworkers (38-41) have also substantially contributed to the

study'of the bolysaccharides'end have recorded SPectra at low temperature (Eg,&é).

While the low temperature studies of Zhbankov and Michell have .con- ..
centrated on the OH stretching bands, Katon and coworkers (4k,45) have more re-
cently demonstrated that low temperatures may also improve resolution in other

regions of the}spectra,

In the work cited so far, the utilization of infrared spectroscopy has been
based on the group frequency approach Which_haerbeen successful in many areas of
organic chemistry, as well'summerized“by Bellemy (ﬁéekl)‘A In this approach,
model systems are very important and the area of saccharide chemistry is no
exception. The Blrmlngham school based thelr dlscu551on of pyranose spectra on

an assignment of the spectrum of tetrahydropyran by Burket and Badger (h8)
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The assignment of tetrahydropyran was qonfined_to the region above 7QO_pm}flhin ‘

the»spectrum_and consequently, did not include the ripg‘bending yibrapioqs? )
Much of the later discusgion of‘pypénpse gpeq#rg,is_a}sovbgsgdygg thighgsgignmgntf
In later wofk, the workers at Qhe University‘qf Birgingham éxpanded:the fundrqf
basic information on relévant.model cémpounds py invegtiggtipg‘the spectraAof '
tetrahydropyran-2-o0l, -3-ol, —h;ol? and also tétrahydro—2{hydroxymethylpyraq:(&2).
The‘aséignment'of.these speqtrg yepe_also based on Burket and Bagger’s a;signment
of tetrahydropyran, whiéh, in turn, was based on analogy with ﬁhe-speptrum of ,
' cyclohexane. A normal qoordin&te aqaiysis éf cyclohexane had been-repqpﬁqubyl

Beckett, et al. (50).

A more detailed review of the aﬁﬁiicatioﬁ of vibrational spectroscopy to
saceharide chemistry is provided by Spedding (2}).’4A reéént'feview by Tipson (52)
is even more exhaustive in iﬁs discussion of grbup'frequencies. "In summary, it
is sufficient fo state that most bf'the sﬁecf}al investigatiohs of “saccharides in
the past have been confiﬁed to the region above T00 cm.-l, and have been oriented

primarily toward analytical application.

-:Howevér,‘since most of this work sn'éaédharides, theif derivativesglaﬁd re-
 lated compounas has been undertéken, i,e., since the period of the 1950's and

early 1960's, thére has been substantial proéress in the‘ﬁethodology of vibrational
spectroscépy which has made possiblé more riéorous analysés of the spectra of
complexz'ﬁolecules{- Iﬁ'particulaf,vthe work-of Schachfschneidéf éﬁd Snyder oﬁ the
hydrocéfbohsitégréé) and of‘Sn&derﬁand Z;fﬁi'on‘the ethers (éé)s have established

the possibility of systematic analyses of'fhe'spectra of groups of related

The term complex is used in this context to indicate the presence of numerous
atomic groups in large mclecules. For saccharide compounds, this includes
atomic groups such as CH, CC, OH, and COC where the last group 51gn1f1es the
ether linkage in the pyranose ring.
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compounds with the aid of normal coordinate computations.. Their work has -
established the necessary computatioﬁal meéhods for 'a mathematical ansalysis of’
molecular vibrations snd demonstrated the applicability of these methods to’
large molecules. Snyder and’Zerbi included the normal coordinate analysis of =
the vibrations of tetrahydropyran in ‘their study of the ether spectra. -(As
stated earlier, tetrahydropyran is the basis for éeveral interpretations of
saccharide spectra.) ‘More réééntly, Pickett and Strauss (57) have adapted the
methods of Schachtschneider and Snyder in a study of the bending vibrations of
cyclohexane and related oxanes, including ﬁétrahydrdpyran; The normal coordinate
analyses of tetrahydropyran, tetrahydropyran-k-ol, -4-Cl, and -4L-F are reportedly
in progress at The Royal Holloway College in England (58). Tetrahydropyran-k-ol
provides en improved model compound rglatifelto tetrahydropyrén forvmany of the
saccharides, particularlydthe pentoses and simple sugars. This‘results from the
additioﬁAof & hydroxyl group to.£he pyranose ring, which is an important element

of:saccharide molecules.

The availébility of more comprehensive data on vibrational ffequencies has
been essential in the detailed vibrational studies of the saccharides in the past.
The ;ecent improvements in infrared instruﬁentationfand the increasing availability
of laser excited Raman spectrometers have made the necessary data obtainable.
Furthermore, developments in compute? sy;tegs and computational methods have made
possible the mgthematiqal vibrational qnalyées of large, complex_molecules. In
view of this jrogress, both in computationg;'teqhnology ;nd instrumental capa-
bilities, there is néw_a basis for a new effort at more compreheﬁsive analyses

of the saccharide spectra.



-9-
THESIS OBJECTIVES

With respect to what has been outlined in the previous section regarding
current knowledge of the vibrational spectra of the saccharides and related
model compounds, the next loglcal effort should be a detailed vibrational study
of a model system in more close approx1matlon to the saccharldes than tetrahydro—_

pyran. The l,S-anhydropentitol (l,S—AP) compounds provide such a model system.

<«

The compounds in‘thislclass'are>1,5-anhydroxylifol (l?S-AX),,l,S-aqhydro;i
ribitol (1,5-AR), 1,5—anhydro—L;arabinitbl (1,5-ALA), and 1,5-~anhydro-D-arabinitol
(1,5-ADA). These compounds are represented ln Fig. 1. The 1,5-AP compounds con-
stitute a particularly important model system for several reasons. ‘First, they
differ from the pentoses onlylin the absence of the hydroxyl group at Ccl. There-
fore, they approximate the pentoses more closely than the related model compounds
previously studied. Second, the equivalence of Cl and C5 increases the symmetry
of 1,5-AX and 1,5-AR, relative to the pentoses, from C; to gs; This alloﬁs the
magnitude of the vibrational problem to be reduced by symmep;& considerations.
This is particularly valuable in exploring effects associated with axial or‘
equatorial orientation of theAhyerxyl éroup at C3.—-Third, the compounds as a
group have meltlng p01nts which are low enough to permlt measurement of‘the L
spectra of the melts. Thus, it is possible . .to dlstlngulsh moleculer bends from
spectral features associated with the solld state. The monosaccharides, 1s’con—
'trast, generally undergo decomposition before melting. FOUrth,-the absence of the
hydroxyl group at Cl eliminates the prdblems associated with mutarefation in
solution. Thus, it is possible to investigate the spectra of aqueous solutions,
without the complication of having two or more species present, as is the situatlon
with the monosaccharides. The additional information provided by the solution

spectra assists in the assignment of the solid state spectral bands.
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In application of vibrational spectroécopy to physical qhemical invéstigations,
as distinguished from analyticél investigations, it is neéessar& to begin with com-
prehensive assignmeﬁté éflthe spéc£ral-5ands in the spectra of thé compounds of
interest. Therefore, the major objective of this thesis is to achieve the assign-
ment and interpretation of .the vibrational spectra of the i,S—AP'compounds based .
on comparisons of the infrared and Raman spectra, as well as on normal coordinate’
analyses of the molecular vibrations. In this endeavér, an attempt is made tov
apply the computational methods of Schgqhtséhneider and Snyder (53-56) to the

analyses of the more complex 1,5-AP molecules.
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EXPERIMENTAL
PREPARATION OF THE i,S-ANHYDBOPENTITOL COMPOUNDS

The 1,5-AP compounds are not available commercially and were prepared as

V part of this investigation. The syntheses of 1,5-AR, 1,5-ALA, and 1,5-ADA from
their parent sugar compounds were based on the paper by Gray and Barker (22) and
the unpublished laboratory procedures by Schroeder (ég);’ The fourth compound in .
this class, 1,5~AX, had been'previously>prepared in sufficient quantity by Dr.

Paul Seib, formerly of the Institute staff.

PREPARATION OF 1,5-ANHYDRO-D- AND L-ARABINITOL

Tetra-O-acetyl-D-arabinopyranose
The procedure for the acetylation of D-arabinose was adapted from a method.

described in Schroeder's laboratory procedures (60).

Acetic anhydride (200 ml.) was added to a 600-ml. beaker equipped with a
thermometer and an overhead stirrer. Anhydrous sodium acetate (13.5 g.) and then
D-arabinose (30 g.) were added to the beaker with continucus stirring. The mixture
was heated to TO-T5°C. on a hot plate. At this point the external heat was re-
moved. The temperature of the mixture continued to rise as a result of the heat
being produced by the exothermic reaction. The reaction temperature was controlled
between 90-100°C. by increasing the rate of stirring and placing the beaker in a
pan of chopped ice when necessary. The sodium acetate and D-arabinose went into
solution in the acetic anhydride at approximately 90°C. The temperature was main-
tained between 90-100°C. for 15 minutes, appiying external heat when reéuisite.

The solution was then slowly cooled to room temperature. Upon cooling, the

reaction mixture solidified. The solidified mixture was transferred, a small
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" portion at a time,; to a beaker containing rapidly stirred ice and water (YOO_ml.d
causing the acetylated arabinose to precipitate. Upon completion of the_transfer,'
the contents of the beaker_were‘etirred for an additional two hours with ice
being added when needed. Chloroform (350 ml.) was next added to the mixture and -
the stirring continued for an-additional minute. The entire water-chloroform .
mixture was transferred to a‘separatory funnel (2 liter) and:the:chloroform layer
drawn off. Additional chloroform (lSQ ml.) was added to -the separatory funnel
containing the water layer; the mixture shaken for a minute; and upon settling,
the chloroform layer drawn off. The chloroform extraction solutions were com-
bined. The chloroform solution was next transferred to a separatory funnel (1
liter) and washed with saturated sodium bicarbonate solution (2 xv250 ml.) and
distilled water (3 x 250 ml.). The wasHed chloroforﬁ solution ﬁas'dried over -
calc1um chloride and concentrated in zgggg_to a thlck 51rup All attempts to
crystalllze tetra-O-acetyl—D—arablnopyranose from the 51rup, using various

solvents, were unsuccessful.

2,3 h—Trl-O-acetyl-D—arablnopyranosyl Bromlde

The bromination procedure to be descrlbed was also adapted from a method in

Schroeder's laboratory procedures (ég);

The,tetraegfacetyl—D—arabinopyraﬁose sirup (25 g.) was dissolved:in 1,2-
dichloroethane (60 ml.) and hydrogen bromide in glacial acetic'acid (20 ml., L43%)
added. The reaction was. allowed to progress at room- temperature for 45 minutes
with occasional stirring.of the soiution and-then the reaction stopped by the
additional of chloroform (150 ml..). The diluted solution was poured into s
separatory fumnel (500 ml.), washed with ice water (3 x 225 ml.), and dried over
calcium chloride. The dried chloroform solution_pas~concentrated iE.XéSEQ to

. N - s . < B i l N
the point at which 2,3,h-tri—gfacetyl—D—arabinopyranosyl.bromide began to
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cﬁystallize; ‘The sirup was immediately dissolved in anhydrous diethyl ether.

(50 ﬁl.)«and petroleum ether (b.p. 30-60°C.) added until crystallization was =
initiated. The mother liquor was put into a refrigerator overnight‘to allow - .
for”fufther crystallization. 'The.triacetyl—D—arabinosyl’brdmide:crystals,were
then filtered from the mother liquor, washed with a small amount of diethyl

ether, presséd with dental dam, .and dried in a vacuum desiccator for:'ten minutes.
A yield of 13.4 g. was recérded.: The melting point of the triacetylarabinosyl..
bromide ér&stals-was“notsméasured-due»toftﬁeir instability. (The crystals:were. .
found t& decompose-rapidly in -air, giving off hydrogen bromide vapors within .a

few minutes after exposure to the air.) e D C . » W

2,3, h-Trl-O—acetyl—l S-anhydro-D—arablnltol

The procedure to be descrlbed for the reductlve dehélogenatlon was adapted.{
for the most part from Gray and Barker (59) w1th modlflcatlons in the choice of |
catalyst and bromine scévenger. | A | h

The crystalline 2,3 h-trl—O-acetyl-D—arablnopyranosyl bromlde (13.4 g.) was
dlssolved in absolute ethyl acetate (160 ml ). Palladlum catalyst on charé;al
(L g., 10%) and trlethylamlne (9 ml.) were added to the solutlona. The reaction
mixture was transferred to a teflon-coated Parr bomb reactor. A magnetlc stlrrlng
bar was addedi the bomb was sealed; hydrogen gas was introduced into:the bomb to a
pressure -of 50 p.s.i.g.; and the bomb was placed on a magnetic stirring motor.

The reaction mixture was stirred for 48 hﬁuis, Thin-layer chromatography was. . .
employed to establish when the reaction hadvreéched completion. The reaction

mixture was then filtered: through Celite to remove the catalyst.. The Celite bed,.

Gray- and Barker suggest using a- platinum’ on charcoal catalyst; however, the
palladium catalyst was found to result in higher yields for the 1,5-AP
compounds. Triethylamine was found to be an efféctiveibromine. scavenger with
less tendency to produce side products.
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was washed ﬁith chloroforn.z AdditionalAchloroform was added to the filtrate
until a total chloroform addition of 150 ml. was attained. :The chloroform-ethyl
acetate solution was transferred to a‘separatory funnel (1 1iter). The solution
was washed with 0.5N hydrochloric acid solution (2 x 200 ml ), saturated sodiun =
bicarbonate solution (2 x 200 ml. ), and dlStllled water (2 x 200 ml ) The
washed solution was treated with silver nitrate in acetone (7 ml., 3%) to "strip"
bromine from any unreacted triacet&larabinosyl bromide as suggested by Brandon
Qél). A turbid suspen51on of silver bromide formed immediately‘ The mixture was
dried over calcium chloride. The suspended.material was then removed-by filtra-
tion through Celite. The solution was concentrated to a sirup in zaggg, and all

attempts to crystallize 2 23 h-tri—o-acetyl 1,5- anhydro—D-arabinltol from the

sirup were unsuccessful.
0

l,S—Anhydro—D—arabinitol

The deacetylation procedure was adapted from a method in the unpublished

procedures by Schroeder L60)

‘The 2,3,4-tri-O-acetyl-1, S—anhydro—D—arabinitol sirup-(9;5 é.) was dissolved
in absolute methanol (100:ml.) in a.- stoppered flask. Sodium methoxide in methanol
'(O 5N) was added in 0.5-ml. increments until the methanol solution was basic to
phenolphthalein solution. In this case, 1.0 ml. of sodium methoxide solution was
required. The deacetylation was monitored by thin-layer chromatography using
silica gelAG and diisopropyl ether as the developing solvent The deacetylatlon
was observed to be almost 81multaneous‘w1th the sodium methox1de solution addition.
The methanol solution was deionized by adding Amberlite IR—l2O (1.5 g.), a cation
exchange resin, stirring, end testing for neutrality with litmus naper. The‘

resin was removed by filtering the sclution through Celite. The l,S—ADA solution
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was then concentrated to a sirup in vacuo. 'The reaction scheme for the synthesis

of '1,5-ADA. is diagrammed in Fig.. 2.

Purification of the lJS-Anhydro—D—arabinitol Sirup

The most probable source of 1mpur1ty in the 1, S—ADA preparatlon was suspected
to be the parent sugar. A reduc1ng sugar can be removed by alkallne hydroly51s
followed by 1on—exchange chromatography Alkallne hydroly51s of a redu01ng sugar
results in the formatlon of metasaccharlnlc acids. ‘These-acids are then'removed
by passing the solutlon through a column contalnlng an anlon exchange resin and a

cation exchange resin, to remove sodium ions.

The 1,5-ADA sirup (5 g.) was dissolved in distilled water (25 ml.) and treated
with 0.5N sodium hydroxide solution (10 ml.). The solution was refluxed over a
steam bath for two hours with the basicity being determined with pH paper at 30-
minute intervals. The pH of the solutlon remalned above 12 throughout the
hydrol&sis: ﬁpon cooling to room temperature the hydroly31s solutlon was passed
through s column packed with Amberlite MB-3 mixed bed ion exchange resin (50 ml.)
folloued by distilled water (150 ml.). The deionized solution was decolorized with
activated charcoal, filtered through Celite, and concentrated to a sirup in vacuo

at 50°C.

ngstalllzatlon of 1 —Anhydro-D—arabinitol

The purlfled 1, S-ADA sirup was dlssolved in an absolute ethanol—ethyl acetate
mlxture (50:50, v./v. ) (20 ml.) and crystalllzatlon 1n1t1ated by refrlgeratlon.
Two recrystalllzatlons of thls materlal from ethanol-ethyl acetate resulted in
1.8 g. of crystalllne product The meltlng p01nt of the 1 S—ADA product was
determlned to be 96~ 97°C whlch is 1n agreement w1th the literature value of

96-97°C. reported by Fletcher and Hudson (62) The purlfled materlal dlsplayed
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an optical rotation of -96.5° (c, 1.133) in distilled water, the literature value

being -98.6° (c, 0.8928) (62). An elemental enalysis was performed on the 1,5-ADA
material by Micro-Tech Laboratories, Inc., Skokie, Illinois.. The calculated per-

centages for C, H, and O based on the formula CsHioO4 are Y. 77, 7.52, and 47.71%,
respectively.. The cor?esponding percentages experimentally determined for the

1,5-ADA product were ﬁh;67, T7.66, and UT.47%, respectively. - -

!
[

1,5-Anhydro-L-arabinitol

The compoﬁnd 1,5-ALA was synthesized fromvits parentfsugaf, L-arabinose, in
an analogous manner to the preparation of 1,5-ADA. The:product material was also
subjected to the puyificatioﬁ steps described for the 1,5-ADA preparation. A
yield of 2.8 g. of crystalline product was obtained after crystailization Tollowed
by two recrystallizatioqs,frqﬁ“absolute ethanol-eth&i acetate (50:50, v./v.).

The meltiné‘point of tﬂe material was determined to be 97°C. which agrees with the
litefature value of 95~96°C. reported by Rice and Inatome (63). The optical
rotation of the 1,5-ALA solution in distilled water was measured to be +97.1°

(e, 1.129)1§s compared with the literature value of +101° (c, 1.8) (63). 4n
elemental analysis was also performed by Micro~Tech on the 1,5-ALA product. The

C, H, and O percentages were determined to be 44.91, 7.46, and 47.72%, respectively.
The corresponding percentages based on the formula CsHjoOy were LL.T7T7, 7.52, and

47.71%, respectively, as for 1,5-ADA.
PREPARATION OF 1,5-ANHYDRORIBITOL

Tetra-O-benzoyl-D-ribopyranose

Gray and Barker (22) state in their paper that triacetylribopyranosyl
bromide is quite unstable, and :the acetylated products are difficult to isolate.

They suggest ﬁsing benzéylated rather than acetylated intermediates in the
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reaction scheme. Thus, in the preparation of 1,5-AR from D-ribose, the reaction -
scheme employed to prepare l,S—ALA:and 1,;5-ADA was-followed, with the exception
that. the intermediate compounds were benzoylated rather than acetylated deriva-

tives. The benzoylation procedure was adapted from a method by Jeanloz, et al.

(64).

D-Ribose (28 g.) was added to a beaker containing a chilled mixture (-10°C.)
of pyridine (120 ml ); benzoyl chloride (115 nl. ) and 1, 2—d1chloroethane (230 ml.).
The beaker was placed in an ice bath the mixture stirred for 45 minutes at 0 C.,
and upon completion of the stirrlng, the beaker and contents were set in a refrig-
erator for 2L hours. After thls period in the refrlgerator, the beaker was removed
and allowedvto ﬁarm to room temperature overnight.' The reaction mixture was then.
poured slowly into'aﬁbeaker containing rapidly stirred ice and water.. The stirring
‘ was continued for one-half hour with ice being added wvhen necessary ” Chloroform .
LSOO ml. ) was next added to the ice-water mixture and the stirring maintalned for
approximately one minute. The contents of the beaker were then transferred to a
separatory funnel (2 liters) the chloroform layer drawn off, and the aqueous
layer back extracted with additional chloroform (200 ml, ) The chloroform ex-.
tracts were combined and washed w1th QE_sulfuric acid solution (1 2‘200 ml.),
ly_sulfuric acid solution (2 x 200 ml.), saturated sodium bicarbonate solution
(2 x 200 m1.), distilled water (2 x 200 ini.), 1N sodium hydroxide solution
(1 x 200‘ml.), 0.5N sodium hydroxide solution (2'x 200 m1.), a".nd‘distilled water
(3 x éOO:mli). The‘chloroform solution was driedAOVer calcium,chloride; filtered

through activated charcoal on Celite, and concentrated ig_vacuo-to a thick sirup.

The. procedure for the next steps in the synthesis scheme leading to .2,3,4- ..
tri-O-benzoyl-l,5-anhydroribitol, namely, bromination and reductive dehalogena-..

tion, follows the preparation of l,S—AhA and 1,5-ADA.
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1,5-Anhydroribitol

The debenzoylation .of 2,3,h—tri—grbenzoyl—l,5—anhydroribitol was accom= ..o .. -
plished in an analogous procedure to the deacetylation of the acetyl derivatives ..
of 1,5-ALA and 1,5-ADA, i.e., by the addition of sodium methoxide in methanol
to a methanol solution of the benzoyl derivative of 1,5~AR. However, the rate
of debenzoylatlon was con81derably slower than the deacetylatlons. The process
required two hours to reach completlon at elevated temperatures near the b0111ng
p01nt of methanol. The product was next carrled through the purlflcatlon steps

dlscussed earller for 1 S—ADA Purlfled 1 S-AR was crystalllzed from absolute

ethanol-ethyl acetate (50: 50 V. /v ) followed by two recrystalllzatlons. A yleld

-

of 3 L g. of crystalllne product was obtalned A meltlng p01nt of l28°C was

determlned for this materlal Jeanloz, et al (6h) have reported a meltlng p01nt
of l28-l29°C for l S—AR | A solution of 1 S-AR 1n dlstllled water was determined
to have an optlcal rotation of 0° (c, 1. lhh), as it should slnce the compound hasv
symmetry, and is 1n agreement wlth the llterature (6&) \An elemental analys1s of
the product determlned the percentages of C, H and 0 to be 4h, 68 7 h8 and o

L7, 6h%, respectlvely. These values are to be compared w1th the calculated values

of Lk, 77 7.52, and, h7 71% for csnlook.
PREPARATION OF 1 ,5-ANHYDROXYLITOL

As stated earlier, 1 S—AXAwas prepared by Dr. Paul Seib formerly of the
Instltute staff employlng the procedure of Gray and Barker (59) The meltlng
point of the crystalllne product was determlned to be ll7°C whlch is comparable
to the accepted literature value of 116—117°C (65) The optlcal rotatlon for a
solution of 1,5-AX in distilled water was detérmined to be 0° (c, 1.100), which
is expected since the compound has symmetry, and is also‘in<agreement with-the

literature (65). An elemental analysis was:performed by Micro-Tech for the
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1,5-AX preparation. The percentages of C, H, and O wére determined tofbe‘hh.73,

7.53, and 47.70%, respectively. These values are to be compared with the calcu-

lated values of 4L.77, 7.52, and UT.71% for CsHjoOy.

The melting points, optical rotation data, ahd elemental analyses for the

four 1,5-AP preparations are summarized in-Table i.

. TABLE I.

SUMMARY OF PHYSICAL AND CHEMICAL DATA FOR THE
1,5~ANHYDROPENTITOLS :

. M.p., °C. , [a]és - o o o
Observed Reported Observed Reported  %C | ZH . %0 %
W7 T2, LTS 100,00
1,5-AX ©117 116-117b1 0.0 0.0° - L4.73  T7.53 'Vu7.7o 99.96
1,5-AR S128 - 128-129°. 0.0 0.0° L4468 7.h8: k7.64 - 99.80
1,5-ALA 97 95968 497.1 - s101.0%  bho1  7.46  L7.72  100.09
1,5-ADA  96-97 96-97°  -96.5 -~ -98.6% LL.6T T.66 LT.L7T  99.80

a

Calculated C, H. and O percentages based on the formula-CsHloOq.
b . .

Fletcher, H. G., Jr., and Hudson, C. S. (65).
®Jeanloz, R., et al. (64).

dRice, F. A. H., and Inatome; M. (63).
®Fletcher, H. G., Jr., and Hudson, C. S. (62).

DEUTERATION OF THE 1,5-ANHYDROPENTITOL PREPARATIONS

The hydroxyl group protons for the 1,5-AP preparations were exchanged for

deuterium by crystallizing the compounds from monodeuteroéthanol.
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Approximately 300 mg. of the 1,5-AP material was dissolved in a minimum
amount of hot monodeutefoethanol-(99%, 0.5 ml:)- in & 10-ml. Erlenmeyer flask.
The solution was then cooled in an ice bath.. If :crystallization did not occur - -
upon cooling, approximately 0.5 ml. of cold ethyl acetate was added to the
solution. Iﬁ most cases, érystaliizé%idn was initiaﬁéd ﬁy écratchihg thé'bottom
of the flask with a glass stirring rod. In the bfher cases; érysfgliizatioﬁ tdok
place within a few hours after the mother liquor was refrigerated. The deuterated
crystals were separated by filtration,.washed with a small amount of cold ethyl
acetate, and dried in a vacuum desiéﬁafor. 4The‘above procedure was then repeated

two or more times. The degree of deuteration was not rigorously established.

‘The melting points of the deuterated 1,5-AP compounds were determined to be
115, 128, and 96.5°C. for 1,5-AX, 1,5-AR, and 1,5-ALA, respectively.. These melting
points are quite close to the values determined for the undeuterated mother -

compounds as seen from Table II.

TABLE IT

MELTING POINTS FOR THE DEUTERATED AND UNDEUTERATED
1,5-ANHYDROPENTITOL COMPOUNDS '

M.p., °C. .
Undeuterated . Deuterated -
1,5-Anhydroxylitol SN A ' 115
1,5-Anhydroribitol ' 128 128
1,5-Anhydro-L-arabinitol 9T 96,5

1,5-Anhydro-DL-arabinitol Th 73
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PREPARATION OF 1,5-ANHYDRO-DL~ARABINITOL .

The compound 1,5-anhydro-DL-arabinitol (1,5-ADLA) was prepared by initiating
crystallization from an ethanol sblutibn of éjracemic mixture of the D and L

isomers.

Equal amounts of l,S—anhydfo—L- and D-arabinitol (100 mg.) were weighed out
into a 10-ml. Erlenmeyer flask. The mixture was dissolved in a minimum of hot
absolute ethanol (0.3 ml.). The resﬁltinélsolution was next co&ied'in'an ice bath,
cold ethyl acetate added (0.3 ml.), and‘the mother liquor refrigerated overnight.
The.crystalline prodgct waé separatedAﬁy filtrafion, washed with a smali amount of
cgld ethyl'acetate, aﬁd dﬁiéd in a vacuum desicéator. After two recr&stallizations,
the melting point of the crystalline ﬁaterial remainéd éonétént a£-7h°c;' Thisv
value is noted to be substantially lower. than the melting point measured for

either of the D or-L isomers (96-97°C.) as listed in Table II.

The l,S—ADLAAproduct was>later deuterated by thé method described in the last
sectipn. The déuteration procedure was repeated fhree times, the degree of
deuteratioh was not rigorously established, and theAmelting.point was déterminea
.to be 73°C., whiéh is comparable to the ﬁhdeuterated méteriéi (see Table II).

NUCLEAR MAGNETIC RESONANCE MEASUREMENTS OF THE
1,5-ANHYDROPENTITOL - COMPOUNDS

The nuclear magnetic resonance (NMR) spectra for the l;S?AP compounds in
solution in heavy water (D20) and dimethyl sulfoxide-ds (DMSO-dg) were measured
to provide conformational information which might be used to aid the interpreta-

tion of the solution vibrational spectra.

The NMR spectra were measured on a Varian A-60A analytical NMR spectrometer.
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The infrared spectra of the crystalline 1,5-AP compounds were also recorded
in two sample arrangement5: 1) as a potassium bromide pellet (KBr pellet) and
2) as a'splitlmull“.

MEASUREMENT OF THE INFRARED AND RAMAN SPECTRA OF THE DEUTERATED
1, 5-ANHYDROPENTITOL COMPOUNDS IN THE CRYSTALLINE STATE
. The vibrational spectra of the deuterated 1,5-AP compounds were measured

to provide additional information that might assist in the assignment of the

solid state 1,5-AP spectral bands; primarily the COH bending vibrations.

The preparation of the deuterated 1,5-AP compounds has already been dis-
cussed in an earlier section. The Raman spectra of the deuterated compounds
were measured for the crystalline samples in capillary tubes. The infrared spectra

were recorded for the potassium bromide pellets.

The pellet prefaration sometimes resulted in a significant decrgase in the
degree of deuteration. This apparentlymgéé fhe result of the hygroscofid nature
of.pofassium broﬁide aha’the generation'of new crystal s#rfaces by grinding. Two
samfle preparation methods were observed to minimize protonation. The first
aiternative'follows.as & minor m@dification of the pellet preﬁaratidn.: Thét is,
the deuterated sample is added to the ﬁotassium bromide base and the two
materials ground and mixed together with an agatg mortar and pestle; rathér than
the usual practice of grinding the sample fifst and then adding'the potassium .
bromide. The second alternative is td prepare the sample as‘Fluorblube'and Nujol
mulis, since neither of thesg materialsuarg hygroscopic. The first méthod was

employed for the deuterated 1,5-AP samples.

11y .
. The spectral region from 3600 to 1300 cm. was recorded employing a -Fluorolube

mull while the region from 1300 to 600 em.” ! was recorded with a Nujol mull.
Sodium chloride windows were used in both cases.

-1
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MEASUREMENT OF THE RAMAN SPECTRA OF THE 1 ,5-ANHYDROPENTITOL SOLUTIONS

The 1,5-AP aqueous solution spectra were measured to providg additional -
spectral information that might aid in-the assignment of the solid state
spectral bands. A comparison of the solid state and solution spectra proVideé
a means of distinguishing molecular bands from spectral features associated
with the solid state. In addition, the effect of the dissolution of the 1,5-AP
compounds upon the vibrational spectra can be investigateda Further, the”1}5+AE"‘-
DMS0O-dg solution sfectra were recorded. A éomparison of‘the 1,5-AP water and
DMSO—dsAsoluﬁion spectra will also permit the investigation of the effect of the

type of solvent (amphiprotiq versus aprotic) on the vibrational spectra.

The Raman spectra were measuréd for the l,S—AP solutions in water and in
DMSO-dg. The spectra were recorded with'tﬁe samples in each of two sample
arrangements, i.e., in a capillary tubé‘aéd in an intermediate size quartz cell.
The concentration of the DMSO-de solutions was gpproximately 30% by weight (mass),
and the concentration of the aqueous sqlutioﬁs was approgimately 25%. For com-
parison, the Raman speqtra of the concentraied splutions or éirups were recorded.
The sirups resulted from concentrating the 25% solutions through slow evaporation

of water at room temperature.
ATTEMPT TO MEASURE THE RAMAN SPECTRUM OF THE;l,S-ANHYDROXYLITOL MELT

The measurement of the Ramag spectra of‘the 1,5-AP melts would permit the
examination.of the vibrational spectra of these compounds in the fluid state
without the presence of a solvent. A compafison of these spectra with the solid
state spectra would provide a means of distinguishing molecular bands from

spectral features associated with the solid state.
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An attempt was initiated to record the Raman spectrum of the 1,5-AX melt
with the assistance of a Harney—ﬁiller vﬁfiébie temperafure cells._ A capillary
'fube was packed with the crystelline sample.and'inserted into tbe.véyiable tempér—
ature cell. .The cell was heated and ité femperature controlled by}passing hot
nitrogen gas through it. The cell temperature was increased until the sample
melted (117°C.) and then maintained sliéhtiy above the melting point. The Raman
spectrum was then recorded. Fluorescenée from the glass cell walis résulted in
‘an inteﬁse background. .ﬁﬁring tﬁe-spectfal scan, the fluorescence level'began'to
increase, e&entually maéking the Raman sbécfrum. The increase in the ievel of
flﬁoréscence was traced to sample or samplg impurity decompositidh: The mélt-waé
observed fo darkeﬁ in colof during the scaﬁ. 'In addition, the melting point of
the sample aftef.it had cooled aﬁd crystéliized vas determined to be a few degrees
Iower than the initial value. Howevér; the’l?EfAP compounds are considered to bé
quite stable to oxidation. This implies that tbe fluorescence proﬁlém‘ﬁéy be
derived from the decomposition of impurifiés present‘in the sample: The presence
of only aAsmall amount of flﬁorescent maeterial will result in a high level §f
fluofé;cence which may mask the Raman sﬁectrum.' In addiﬁion, spurious 5ands and
excessive backgroﬁnd noise generéféd by continﬁal formation of tiny gaé bubbies
in the meit added to the destruction of the speétrum. The result was a compietély

unusable vibrational spectrun.

No attempt was made to measure the melt spectra of 1,5-AR and 1,5-ALA.

5
A.brief description and a diagram of this Raman spectrometer attachment can be
found on page 76 in Tobin (67).
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DEPOLARTZATION RATIO MEASUREMENTS FOR 1,5-ANHYDROXYLITOL
AND 1 ,5-ANHYDRORIBITOL SOLUTIONS
The depolarization ratids were measured for 1,5-AX and 1,5-AR in solution-
in water and also DMSO-dg. -Such measurements provide additional data which

assist the band assignment in the 1,5-AP solid state spectra.

Discussions of the.tneory of depolarizatlon ratios and the instrumental
technique of their measurement can be found in almost any text treatlng Raman
spectroscopy, for example (66~ 69) The varlous 1nstrumental arrangements for
measurlng depolarlzatlon ratlos have been discussed and evaluated for accuracy
by Allemand (70). He suggests that the polarlaatlon of the exc1t1ng beam be
kept constant and that the analyzer be placed after the sample as the experlmental
arrangement prov1d1ng the most accurate depolarlzatlon ratios. He further states
that in cases where it is impracticable to measure the 1nstrument‘functlons, the
use of the scrambler eases the experlmentalldlfflcultles at relatlvely llttle
cost in accuracy of the depolarization ratlo determlnatlons. In thls sample
arrangement the spectrum of the sample in a“fluld state, such as in solution,
1s‘recorded with the plane of polarlzatlon of the analyzer set parallel to the
plane of polarization or the incident beam. The spectrum is then-measured with
all instrument conditions the same except that the plane of polarization of the
analyzer is rotated by 90°, so that it is-now perpendicular to the plane of
polarization of the incident beam. The scrambler is in place after the analyzer
and before the entrance slit in both cases. The depolarization ratio of a parti-
cular band is then calculated by dividing the intensity of the band, which is
proportional to the band height for symmetric band shapes, in the spectrum where
the analyzer is in the perpendicular position by the intengity of the same band

in the spectrum with the analyzer in the parallel position. In this experimental
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arrangement, vibrations that are not totally symmetric have a théoreticaludepolari+
zation ratio of 0.75, while totally symmetric vibrations have a ratio less :'than

0.75.

Both 1,5-AX and l,S-Aﬁ belong to thé gs.moleculaf foinﬁlérbup. They possess.
a plane of symmetry whicﬁ bisects the ring ;;d passes through the ring oxygen
and thifd carbon atom. The-vibrational bands for these compounds are then ex-
pected to belong to either the symmetric (A') or antisymmetric (A") symmetry .
" species which embédy the gs point group. The.depolarization ratio calcuiations-
are seen to aid in the ass;énment of spectral bands. ‘The spectral bands belonging
to the totally symmetric species shoﬁld have depolarization ratios less than 0.75,
while bands of the antisymmetric species should have ratios equal to 0.75. The
calculated spectral bands resulting from the normal coordinate calculations may be
classified mathematicaily as belonging to either the symmetric or antiéymmetric
species, The assigned experimental bandé should be of tﬁe same syﬁmetry speciés;

In the case of 1,5-ALA, the molecule contains no eiements of symmetry; therefore,

all vibrational bands would be expected to have depolarizatibn rétios less than 0.75.

Depolarization ratios were calculated fof 1l,5-AX and 1,5-AR solutions in.. .
wvater and in DMSO-dg. The experimental arrangement discussed above involving a
fixed plane of polarization for the incident beam, a polarization analyzer after
the sample, and a polarization égrambler was employed in all cases. The calculated
values for a number of‘bands'are questionable, however, because the bands are over-
lapped with neighboring bands. It is virtually impossible to determine the band
intensity 6f an overlapped band éxcept by some approximation technique. The peak
height is no longer strictly proportional to tﬁe band intensity, and the measured

ratios are no longer accurate. Unfortunately, the solution spectra of 1,5-AX and
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1,5-AR possess 'a number of overlapped bands. (The reader may wish to examine .
the solution spectra in the next section.)
MEASUREMENT OF THE INFRARED AND RAMAN SPECTRA OF 1,5-ANHYDRO-
DL~ARABINITOL AND THE DEUTERATED DERIVATIVE

The Raman and infrared spectra of 1,5-ADLA were measured to investigate
the differences, if any, that exist between the 1,5-ADLA vibrational spectra -
and the spectra of the D and L iscmers. The hydrogen bonding and.crystal
structure are suspected of differing between 1,;5-ADLA, 1,5-ALA, and 1,5-ADA. .

The procedures: employed 'in the préparation of 1,5-ADLA from a racemic mixture

of the D and .L isomers and 'in. the subsequent deuteration of this material have-

been described in earlier sections.

The infrared spectrum was recorded for the deuterated material in a mull
pressed between sodium chloride windows. The spectral region frbm 3600—1300

em.” ! was measured for the Fluorolube mull, and the region from 1300-600 cm.~

1
was recorded for the Nujol mull., The mulls were employed because an exéessive
decrease in the degree of deuteration resulted from the preparation of KBr
pellets, This situation was encountered and discussed earlier in relation to
the infrared spectra of deuterated 1,5~-AP compounds; however, the decrease in

- the degree of deuteration was much more pronounced with the deuterated 1,5-ADLA

compound. .
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EXPERIMENTAL RESULTS

NUCLEAR MAGNETIC RESONANCE SPECTRA OF THE
1,5-ANHYDROPENTITOL COMPOUNDS

The NMR spectra of the 1,5-AP compounds in solution in D,0 are included
in.Fig. 3-5 in Vhich sodium 2,2—dimethyl;Z—silapentane—5—sulfonate.(DSS) is
the internal standard. The NMR spectra of the 1,5-AP compounds in solution in
.DMSO—de are included in Fig. 6-8a in which tetramethylsilane (TMS) is the internal
standard. The NMR spectrum of the DMSO-ds solution of 1,5-ALA to which é drop of
D20 has been added and the solution exposed to HCL vapor is presented for com~
parison in Fig. 8b. | |

INFRARED AND RAMAN SPECTRA OF THE 1,5-ANHYDROPENTITOL
COMPOUNDS IN THE CRYSTALLINE STATE

The Raman spectrum of 1,5-AX (pellét) is shown in Fig. 9. The corre-
sponding infrared spectrum (KBr pellet) is diéplayed in Fig. 10. 'In Table III,
the measured frequenciés (cm;—l) of the bands'in the 1,5-AX infrared and Raman
spectra, exhibited in Fig. 9 and 10, are listed as well as their relative inten-
sities®. The Raman spectrum (pellet) and the infrared spectrum (KBr pellet) of
1,5-AR are reproduced in Fig. 1l and lé, respectively. The oﬁserved freduencies
and relative intensities of the bands appearing in these spectra are tabulated
in Table IV. The Raman spectrum (pellet) of 1,5-ALA is included in Fig. 13.
The complementary infrared spectrum (KBr pellet) follows in Fig. 1k. .The'
frequencies and.relative intensities for these spectra are tabulated in Tablelv;

The Raman and infrared spectra of 1,5-ADA are identical to those of the L isomer,

. .
The relative intensity of a spectral band is determined by computing the ratio
of the peak heights from the background of that particular band to that of the
most intense band in the spectrum.
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Figure 3.

solvent
———— ' peak
L ! : A : 1 1 1 J7
8.0 4.0 3.0 2.0
PPM (3)

The NMR Spectrum of 1,5-AX in D,0 with DSS as an Internal Standard
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5.0 4.0 3.0 2.0
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Figure 4. The NMR Spectrum of 1,5-AR in D20 with DSS as an Internal Standard
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Figure 5. The NMR Spectrum of 1,5-ALA in D,0 with DSS as an Internal Standard
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| | 1 1 1 | 1 J
5.0 4.0 30 20
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Figure 6. The NMR Spectrum of 1,5-AX in DMSO-dg with TMS as an Internal Standard
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Figure 7. The NMR Spectrum of 1,5-AR in DMSO-dg¢ with TMS as an Internal Standard
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solvent
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L | - | | | 1 | I
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Figure 8a. The NMR Spectrum of 1,5-ALA in DMSO-dg with TMS as an Internal Standard
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"~ Figure 8b. The NMR Spectrum of 1,5-ALA in DMSO-de with TMS as an
~ Internal Standard After Adding a Drop of D0
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TABLE III

THE TABULATED FREQUENCIES FOR THE RAMAN AND INFRARED
SPECTRA OF CRYSTALLINE 1,5-ANHYDROXYLITOL

Av, a Relative v, b Relative Av, a Relative v, b Relative
R, cm. ' Intensity IR, cm. ! Intensity R, cm. ! Intensity IR, cm. ! Intensity
3383 4 3387 85 - 1143 30 1145 b7
3343 L 3350 87 1120 L6 1125 63
3290 I 3300 82 1100° 17 1100° 73
2985 Ls - 2990 17 1092 38 1095 89
2970 45 2973 ’ 10 1056 14 1060 - 100
. 2941 - 22 1052° 73
2928 29 - 2933 25 © 1017 31 1018 84
2896° o - 933 43 936 - 83
2885 46 2900 30 ' 928° - 17
2871 39 2873 30 905° 11 ookt 26
1472 15 - 1h70 28 896 50 : 899 32
1459 19 1464 25 635 5 637 - T 29
1439 6 1hk0 et - 565 23
ikat 7 shh 100 542 . 27
. 1402° 25 533° ko 533° 18
1397°¢ 29 455 12 456 21
1385 T 1391 36 : 437 50 - Lho 17
1370 1k 1372 - 31 418 26 k2o, 12.
1349 6 1356 37 369 5 366° 9
1340 10 1340 . .15 315 10 317¢ 3
1320 33 1321 2L 299 . 8 295 3
1306 7 280 1k 285 L
1296 - 11 1301 15 23k 2 :
1285 13 1279 2L 225 1
1268 T 1267°¢ 20 220 1
© 1235 . . 35 21L 2
1199 26 1198 39 202 2
. 1168 .15
®Raman spectrometer : bInfrared spectrometer ®Shoulder.
operating conditions: , operating conditions: '
Sample arr.: pellet Sample arr.: KBr pellet
Laser wavelength: 5145 A, 81it program: 1000 x 1
Laser power: 780 mw. : Gain: L.6 :
Slit width: 250 um. Atten. speed: 1100
Slit height: 2 mm. Scan time: 1 x 32
Scan: 50 cm. '/min. Suppression: 6
DC: 0.1 x 10°% : Scale expansion: 1X

RT: 1 sec. i . Source current: O0.75
PM voltage: 1900 :

PM temp.: =20°C,

Spike filter used
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TABLE IV N

THE TABULATED FREQUENCIES FOR THE RAMAN AND INFRARED
SPECTRA OF CRYSTALLINE 1,5-ANHYDRORIBITOL

Av, a Relative v, bt Relative v, a Relative -~ v, b Relative

R, cm. ' Intensity IR, cm.”! 1Intensity R, cm.”! Intensity IR, cm.”! Intensity
3406 13 3409 100 . 1077°¢ 63
3350 ly 3345 92 1073° 17 1070° 12
3250 3 3279 90 1045 10 10L5 89
2997 L7 3000 23 1040 11
2972 63 2970 45 1005 25 ~ 1000 L2
2943 92 2916C L9 993 27 989 66
2932 48 293hC W7 : 963 8
: 2929 4l 925 Th 928 71
2918 32 916° T 916° 11

2875 56 2880 L 878 57 . 879 67
1468 13 1466 53 . 873° 47
1458 35 832 . 22
i 1435 . 52 : 776 10
119 5 683 - 19
1403 9 1hooc 38 669 7 668 - - 23
1385 5 1388c 21 - 64T 6 649 13

1365 29 581 . 100 582 - . 30
1350 7 1354 36 lig® 25 451° 5
1315 23 1310 19 37 . . 55 433 RN
1281 5 1290 30 406 2 ko6 2
1265 36 1264 6 396 1
1244° 5 1245° ‘ 23 g §§§c‘ ;

1226 22 345 21 342 1k
1202 7 1202 18 319 - 4

1167 39 306 3 305 18
1156 16 1156 33 271 3
112k 29 1126 50 238 ly
110k i - 1103 - T5 208 1

1093~ 1 169 3
1082 57 1083 69

®Raman spectrometer PM- voltage: 1900 Scan time: 1 x 32

operating conditions: PM temp.: ~20°C. Suppression: 6
Sample arr.: pellet Spike. filter used Scale expansion: 1X
Laser wavelength: 5145 A. b Source current: 0.75
Laser power: T80 mw. Infrared spectrometer
Slit width: 160 um. operating conditions: ®Shoulder.

Slit height: 5 mm, - .Sample arr.: KBr pellet
Scan: 50 cm. '/min. S1it program: 1000 x 1
DC: 0.1 x 10~ ¢ : Gain: L4.6

RT: 1 sec. ' Atten. speed: 1100



45—

O3 TUTqRIB~T-0IpAUY-G ¢ T SUTTTRIsAI) JO Wnijoads uewey UL €T 9aMILY -

WD YIBNNNT IAVM
008 000!

1 1




“h6-

TO3TUTqBIB~T~0IpAqUY-C ‘ T suTTT®3sAI) Jo wmxjoedg pexexJul SYL ‘HT IMILL

0092 0082 000¢




_l[.'?'_

TABLE V

THE TABULATED FREQUENCIES FOR THE RAMAN AND INFRARED
SPECTRA OF CRYSTALLINE 1,5-ANHYDRO-L-ARABINITOL

Av, a Relative v, b Relative Av, a Relative V, b Relative
R, cm.”! . Intensity. IR, cm.”'' 1Intensity R, cm. ' _ Intensity IR, cm.”!  Intensity
3425 - 6 3428 . 100 1136 7 . 11hsC .38
3385 93 . 1112 - 17 1112° 66
3310 3 3320 94 . 110k ST 1103 85
2983 60 - 2985 4o 1092 . 12 1093 - 90
2973 39 2976, 45 1067 21 107 99
2932°% 19 2932° .31 1057 21 . 1056 . .79
2925%" 37 1005 25 1008 88
2916 Ly 2917 .. L2 ©9L8 10 9kt 19
2879 15 2879 31 C926 R C.927 37
2860 26 - 2863 55 876 2 880 - 55
1467 - 13 1463 L1 - 837 100 840 T0
1h5h 19 1k60® 37 758 1k 755 50
14h6¢ 6 1lke 22 633 23 . 636 26
ko 12 ibo .. 28 . - 5h6 L1 546 25
1381° 3 1379° 42 483 16 483 19
1369 3 1371 - L6 430 AR - Lo6 27
1343 : 3 1349 42 408 11 1408 Rt
1325° 4 1329 50 . 4o6® = 10 S
1313 46 ' ' ' 383 19
1302 18 13000 .~ ko 311¢ 1 375° 1k
1281 16 1279 .23 31L T 306° 2
1269° 1262° . 29 . 296° 2 296¢ 5
1248° 7 ko 256 2
1233 8 1233 57 233 2
1216 8 1217 53 197 L
1150 1k 1151 60 176 2
®Raman spectrometer bInfrared spectrometer A ®Shoulder.
operating conditions: 4 operating conditions: :
Sample arr.: pellet Sample arr.: KBr pellet
¢ Laser wavelength: 5145 A, : S1it program:' 1000 x 1
Laser power: T80 mw. Gain: 4.6 .
S1lit width: 130 um. - Atten. speed: 1100
Slit height: 5 mm. - . Scan time: 1 x 32
Scan: 50 cm. ' /min. - -+ ‘Suppression: 6
pDC: 0.1 x 107° Scale expansion: 1X

RT: 1 sec. ' S ‘Source current: 0.8 .
PM voltage: 1900 ' ‘

PM temp.: -20°C.

Spike filter used
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as one might expect. Therefore, to refrain from repetition the 1,5-ADA spectra
are not included.
INFRARED AND RAMAN SPECTRA OF THE DEUTERATED 1,5-ANHYDRO-
PENTITOL COMPOUNDS IN THE CRYSTALLINE STATE
The Raman and infrared spectra of crystalline deuterated 1,5-AX, 1,5-AR,

and 1,5-ALA follow in Fig. 15-20, respectively. The frequeqéies and relative

intensities of these spectra are tabulated in Tables VI-VIII.
RAMAN SPECTRA OF THE 1 ,5-ANHYDROPENTITOL SOLUTIONS

The Raman spectra of the 1,5-AP sirups are reproduced in Fig. 21-23. The
Raman spectras of the DMSO-dg solutions are not included because the spectré, ex-
cluding solvent bands, are almost identical with the aqueous solution spectra.
However, the frequencies and relative intensities for the DMSO-ds solﬁtion spectra
are tabulated along with the corresponding valués for the aqueous solution spectra
in'Tables IX-XI. The solution spectra of 1,5-ALA and 1,5-ADA are identical and
for this reason only the Reman spectrum of thehﬁ isomer is included.

DEPOLARIZATION RATIOS FOR 1,5-ANHYDROXYLITOL
AND 1,5-ANHYDRORIBITOL IN AQUEOUS SOLUTION

The calculated depolarization.ratios for the vibrational bands of 1,5-AX
and 1,5-AR are listed in Tables XII and XIII, ;eSPectively, with the questionable .
values resulting from overlapped bands desigﬁated by footnote c. The 6H

1

stretching bands in the region 3400-3200 cm.”! are not included because they are

too weak and broad to measure depolarization ratios. The CH stretching bands in

1

the region 3000-2850 cm. = are also oﬁitted since they overlap extensively in the

solution spectra making measurement of depolarization ratios impossibie.
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TABLE VI

TABULATED FREQUENCIES FOR THE RAMAN AND INFRARED
SPECTRA OF DEUTERATED 1 ,5-ANHYDROXYLITOL

Av, =a Relative v, b’ Relative Av, :a Relative v, b Relative
R, em.”! ' Intensity IR, .cm.”!  Intensity R, cm. '  Intensity IR, cm. ' Intensity
2989 - 66 2983 : 29 ©o1122 30. 1121 - 56
2974 67 . 2069 2l - , 1116° L5
, 2935 - 35 . 1102% 22 : .
2931 Lo 2927 . 37 1093 4o 1093 91
- 2896° 36 289l 46 . - 1086 73
2883 100 1078° . :
. 2874C 68 . 2869 Lo 1068° 5k
2508°. 13 - 2509 - .51 1059 - 6 11057 100
2488 15 2k90 56 1021 1k 1025°% 59
2ks2 15 2453 51 . S o 1016 78
TN 19 W67 - 38 - - 990° .19
‘1460 26 1460 2h - outt 9 © oln® 3
. ' 1h56°. 20 936 25 933 - 68
1439 4 1438 .20 929 = 23 - '929° - L5
1k27 5 , , : 906° 12 - 900° 25
. 1ho2¢ 12 - 1400% - 22 899 17 897 © 26
1394 b 13965 © 24 870° 8 "
' 1390° 29 861 C12
1381 17 1385. 30 633 T 632 29
1373 13 1369 26 . - 562 12
: 1356 2h 543 79 539 28-
134k 19 _ S 532% L8 S
1340 20 1342° .16 li55° 18 . b5z 15
1320 22 1318 19 435 30 435 18
1300 T 1298 1k k20 25 Lis5 17
1287 10 . 366 L 360 11
1273 9 1273 17 . . 316 1
, . 1233 24 306 10 - 304 .2
1203 - 28 - 289° 12 293 - 5
1193°¢ 9 1196 34 . 279 18 28k 5
1189° - 2l 256 1
1157° 23 235 1
11h7 37 1150 39 206 3
: 11k2 46 200 3
aRaman spectrometer bInfra.red spectrometer ®Shoulder.
- operating conditions: operating conditions: . '
Sample arr.: cap. tube . Sample arr.: KBr pellet
Laser wavelength: 5145 A, Slit program: 1000 x-1
Laser power: 800 mw. ‘Gain: L.6 ‘
Slit width: 250 um. Atten. speed: 1100
51it height: 2 mm. - - Scan time: 1 x 32
Scan speed: 50 cm. '/min. Suppression: 6 , .
DC: 0.03 x 10 ° - Scale éxpansion: 1-5X

RT: 3 sec. . Source current: 0.8
PM voltage: 1900 . :
PM temp.: =20°C.
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TABLE VII

TABULATED FREQUENCIES FOR THE RAMAN AND INFRARED
SPECTRA OF DEUTERATED 1,5-ANHYDRORIBITOL

4v, a Relative v,

R, em.” ! Intensity IR, cm. !
2999 48 2996
2975 66 2967

2956
29&5c 100 29h2c
2935 55 2931c

2925
2919 33
2879 66 2876
2533 23 2528
2401 8 2L87
2437 9 2LL0o
1h67 15

1463
1457 33

1437
1hot 2 1430
1k20 2
1koo 5 1396
1382 9 1380

1361°
135k 13 1350
1347 12 1345
1333 .25 1326

"1319° 10 :
1307
1289 8 1290

-1272 33
o 1263

1248°¢

1225

© 1215 5 1214
"1209° L .

1200
1166 16 1161°¢
1158° 15 1154
1143 7
1124° 15 112k
1114 25 1109°

aRaman spectrometer
operating conditions:
Semple arr.: cap,tube
Laser wavelength: 5il5 A.
Laser power: 800 mw.
Slit width: 250 um.
81lit height: 2 mm.
Scan speed: 50 em. !/min.
DC: 10 x 107 °?
RT: 3 sec.
PM voltage: 1900
PM temp.: -20°C.

v

b Relative av,
Intensity R, cm. 1

a Relative v, _
-~ Intensity IR, cm. 1

b Relative
_ Intensity

8h
77
90
72
46
100
71
49 .
70
39

37
25
80
71
49
16
27
22
23 -
12

35
12

16
22
23

8
23

31
22

27 1102c
60 1093
32 1085 51 1082
6Y 1078°%
57 1069°
yr - 1046 1k 1045
1023 14 1029 .
60 1005 1k 999
81 988 23 986c
58 ‘ 972
58 _ 9622
931
58 920 28 925
. - 877 18 877
48 826 19 831
L9 776
682
Lo - 669 9 . 668
25 ’ 663
33’ 646 2 6u8°
4o 628 5
ho 577 62 215
22 473
465° 11
22 4148° 18 451
36 438 42 L33
L21
70 406 8 -
23 395
32 343 29 339
36 318 9 .
306 7 30L
22 = 283
L6 265 2
58 237 5
202 3
54 165 8
73
bInfrared Spectrometer ®Shoulder.
operating conditions:
Sample arr.: KBr pellet
S1lit program: 1000 x 1
Gain: L.6
Atten. speed: 1100
Scan time: 1 x 32
Suppression: 6
‘Scale expansion: 1X
Source current: 0.8



TABULATED FREQUENCIES FOR THE RAMAN AND INFRARED
SPECTRA OF -DEUTERATED 1,5-ANHYDRO-L-ARABINITOL

Av, a Relative

R, em. ! Intensity IR, cm.~

2985
2975c
2935
2919 -
2883
2862
2538
2465
1470

1456
1bLys
1L10
1393°

1373c‘
1327
1304

1284

1271¢

1239

1220
1161°
1151
1141°€
1114

®Raman spectrometer
operating conditions:

Sample arr.:

Laser wavelength:

Laser power:
S1lit width:
S1lit height:

Scan speed: 50 cm.
DC: . 0,03 x 10°°
RT: 3 sec. o
PM voltage: 1900

PM temp.:

35 2981
23 - 2971
10 2931° .
34 2911
8 - 2876
16 2858
1L 2539
9 2464
27
1460
36 1456°
9 1437
22 1404
9
- 1376°
5 1371
8 1327 -
L5 1310 -
1297
30 . 1280
13 o
i 1259°
1248
16
: 1229
15 1215 -
13 1159
18 1147
13 e
30 1110
cap, tube
S51ks5 A.
800 mw.
250 um.
2 mm.
~1/min.

-20°cC.

V,

- -57-

TABLE VIII.

b Relat
Inten

63

1

62

T k2
61
L6

69

Tl

€

13

58
Bl
58

6h
65
6l
62
63
53

58
58

71
69
66
7>

: 8

ive Ay, a Relative

sity R, cm. ?

1109°
109k
1068
1059,
1017
1008

958
92
921°¢

900°
878

839
809
759
634
ShT.
1488

t3l
07
371°
314
300°
257
232
198
175

Intensity IR, cm. !

29
27
31
30
26

ho

.13

1

20
15

00
2k
23

48

bInfrared épectrometer~
operating conditions:

Atten. speed:

Semple arr.: KBr pellet
Slit program: 1000 x 1

Gain: LuL.6

1100

Scan time: 1 x 32

Suppression: 6

26

30

26

18

10
2

Scale expansion: 1X

Source current:

0.8

' Vv, b Relative

" ‘Intensity
1102° 95 |
1091 98
1069 100
1053 91
1005 22

995 T

9L3 36

- 923 62

E-

96" 9

.

[* 2 _

837 79

803 L7

750 Th

631 39

. 5ho 23

180 20

Loy 25

ho2 25

372 13
®Shoulder.



-58-

TOFTTAXOIPAYUY-G ST JO UOT4NTOS 19381 o3 JO WNI309dS wewsy oYL ‘T2 oIS

(cWO - Y3EWNNN  3AVM

008 — ﬂOOqu 002l 8]0 4




TOITYTIOIPAYUY-G T JO UOTINTOS JIo3BR Y3 JO umaydads uswey oyl °gg oIndif

(PWO HIGNNN  3ATM
008 000l 002!

009 00v|

4 1

I 1 I

1 1 T

}

-59-




{01 TUTqEXe=T~0IpAYUY~G¢ T JO UOTINTOS I9IER ona Jo unagoedg wewsy syl ‘€2 2IMILL

it '"WIAWNNN  3ATM

. On_uw . 008 0001 _ 002!

1 1 1 l

-60~




~-61-

TABLE IX'

- TABULATED FREQUENCIES FOR THE RAMAN SPECTRA OF THE WATER -
AND DMSO-dg -SOLUTIONS OF 1,5-ANHYDROXYLITOL

Av, a - Relative : Av, b ; Relative
H,0, em.- ' - Intensity . . DMSO-dg, cm. * : Intensity
2985 o3k 2972 3L
2912° 27 - 2908°¢ 23
2875 45 2861 ‘ Ly
1469° 12 : 1470° , 11
1h62 19 o . 1kéo 16

. 1k39 N
1410, E
1395
1385 10 1380 6
13682 6 13702 4
1340 6 1337 N
1325, 16 1319c 10
1313 9 1312 6
. . 1296° L
1285 5 A
1232 2 1227 2
1202 6 o : 1196 ' 6
1140° 20 , 1142° : 15
1123 28 1123 20
1098° 21 - 1101° 19
1092 26 1097 21
1062 T ~ solvent band’ ‘
1023 8 : solvent band ’ »
9Ll ' 17 9146c N 17
' 913 3
896 32 : 899 20
812 N 812 9
630 5 . solvent band
535 100 536 100
11i56c - 9 : 357“ g
37 . 22 - 39 1
416 2L 413 : : 20
376 3 solvent band
290 | . -5 ) solvent band

S Reman spectrometer

operating conditions:
Sample arr.: quartz cell
Laser wavelength: 5145 A.
Laser power: 800 mw.
Slit width: 250 um. -
Slit height: 10 mm.
Scan speed: 50 em.” !/min.

DC:- 0.03 x 107 ° Laser power: 800 mw.
RT: 0.3 sec. - 8lit width: 250 um.
Neutral density filter used =~ Slit height: 10 mm.
‘1 o : Scan speed: 50 cm. '/
. Rarian -spectrometer . min,

operating conditions: DC: 10 x 107°

Semple arr.: quartz cell RT: 3 sec.

Laser wavelength: 5145 A, Neutral density filter

cShoulder.
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TABLE X

TABULATED FREQUENCIES FOR THE RAMAN SPECTRA OF THE WATER
AND DMS50~d¢ SOLUTIONS OF 1,5~-ANHYDRORIBITOL - -

by, a Relative Av, b Relative
H20, cm. ! Intensity DMSO-dg, cm. Intensity
2983 82 2969 ok
2928 92 2913 88
2885 67 2869 98
1472 19 1463¢ 30
1461 _ Ly - 1hkse 55
1L52° 32 . 1446° 28
1408 9 :
1329 29 . 1321 39
1291 ko - 1286 38
1270° 30 1258 ko
1229 10 1225 : 15
1206 5 : 1200 15
1160 15 1158 26
1121 37 : : 1124 55
1090 60 , 1091 B
1054 50 solvent band
1048°¢ 20 solvent band
997 3k solvent band
967 10 solvent band
93k 39 937 84
884 100 L 881 - 96
869° b7 869° L5
837 31 solvent band
795 40 . 792° 60
692 85 688 100
648 17 solvent band
584 8h4 - : STT7 : ‘ 99
456 bl 451 55
43k 78 431 99
358 13 solvent band
293 5 _ solvent band
175 3
8Raman spectrometer bRaman spectirometer Neutral density
operating conditions: operating conditions: filter used
Semple arr.: cap. tube Sample arr.: quartz cell bShoulder .
Laser wavelength: 51L5 A. Laser wavelength: 5145 A,
Laser power: = 950 mw. Laser power: 800 mw.
Slit widthy 250 pm. Slit width: 250 um.
S1it height: 2 mm. - Slit height: 10 mm.
Scan speed: 50 em. !/min. Scan speed: 50 em. !/min. -
DC: 0.3 .x.107° DC: 10 x 10 °
RT: - l.sec. . . RT: 3 sec.
PM voltage: 1900 PM voltage: 1900

PM temp.: -20°C. PM temp.: =-20°C.
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TABLE XTI

TABULATED FREQUENCIES FOR THE RAMAN SPECTRA OF THE WATER.
AND DMSO-d SOLUTIONS OF 1,5-ANHYDRO-L-ARABINITOL . -

JI\VI a Relative - : hv, b Relative
H,0, cm. ! Intensity  DMSO-dg, cm. ! Intensity
2979 : 56 S 2968 . 55
2916 65 , 2902 52
2872 50 : 2863 . Lo
1468 : 20 4 1463 - 13
1h52 23 1Lhe 16
1388 9 ' , 1375 6
1303° 2 1308° 17
1296 27 1292 20
1229 12 1225 " 10
1153 . 16 1156 = 12
1120 2k ' 1121 22
1095 22 , _ 1110 22
1072 25 - solvent band
1060° 19 - solvent band
1013 51 solvent band
ok9 26 - ok T 39
926 15 925 11
883 5 ' 881 3
865 : 6 867 5
8Lo 100 _ 83h 100
754 2k : solvent band
v 22 . The® 38
640 , 58 solvent band
Skl 38 539 T 22
532° 21 522 19
510° - 8
48T b6 . 183 L 26
465¢ 12 - LeLS. - 6
425 22 L20 13
LoT7 19 Log 12
301 8 solvent band ’
270 3 solvent band
165 6
®Raman spectrometer PM voltage: 1900 Slit height: 10 mm.
operating conditions: PM temp.: -20°C. Scan speed: 50 em. 1/
Sample arr.: cap. tube Neutral density filter min,
Laser wavelength: 51h5 A. DC: 10 x 10 °
Laser power: 950 mw. Raman spectrometer RT: 3 sec.
Slit width: 130 um. operating conditions: ~ PM voltage: 1900
Slit height: 5 mm. Sample arr.: quartz cell PM temp.: -20°C.
Scan speed: 50 em.” !/min. Laser wavelength: 5145 A. Neutral density
DC: 0.1 x 107° Laser power: 800 mw. filter
RT: 1 sec. Slit width: 250 um. cShoulder.
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TABLE XIT

MEASURED DEPOLARIZATION RATIOS FOR WATER AND DIMETHYL
SULFOXIDE-d¢ SOLUTIONS OF 1,5-ANHYDROXYLITOL

. Av, cm.”} 0%, Hz0 . p%, DMSO-dg B Symmetry®
1&69: 0.59 - . 0.59 Al
1u6oe 0.65 0.7L4 Al
1385 0.64 .0.69 Al
1325° 0.67 0.7h : A'
1285° 0.63 0.72 A'
1232°% 0.46 solvent® A'
1202 0.68 : 0.7k A
1140¢ 0.67 4 0.72 Al
1123° 0.62 . 0.61 Al
1092° 0.21 0.29 Al
1062° .0.19 " solvent A'
1023 0.70 solvent ’ A
oh2 0.25 0.25 A
896 0.16 ' 0.19 ' A’
812 0.00 0.00 A'
630 0.L44 solveng Al
535 0.08 N.D. i

. k56 N.D. 0.75 o A"
437° 0.71  0.75 A"
416° 0.4k 0.45 A
369° 0.29 N.D. A A

ap Designates the depolafizationAratio.

X (symmetric symm. species).
A" (antisymmetric species).

®Indicates that ratio could not be measured because of solvent
band masking. '

dN.D. = not determined.

“Measured depolarization ratioc is questionable because band is
overlapped with neighboring bands.



-65-

TABLE XIII

MEASURED DEPOLARIZATION RATIOS FOR WATER AND DIMETHYL

Av, em.

1&713
1h61d
13297
1201
1270

12293
1160d
11219
1090

1054°

10482
997
967
934
884

837
795
692
648
584

4563
434
358

1

SULFOXIDE-dg SOLUTIONS OF 1,5-ANHYDRORIBITOL

a
p R H20-

0.55
0.56
0.73
0.61
0.71

0.68
0.25
0.78
0.46
0.64

0.72
0.67
0.50
0.07
0.14

0.23
0.00
0.06
0.1k
0.06

0.56
0,16
0.40

- p%, DMSO-ds

<29 .
N3
.58
.60
.58

o OO0 O0O0

0.60
0.28
0.80
0.56

c
solvent

. solvent
solvent
solvent

0.13
0.13

solvent
0.00
0.15

solvent
0.06

0.60
0.09
solvent

ap Designates the depolarization ratio.

By (symmetric species).

A" (antisymmetric species).

¥,

Symmetryb

A
Al
Al
Al
A'

Al
Al
A”
Al
Al

A'
A’
A'
AI
A'

A'
Al
Al
A'
Al

Al
A'
Al

cIndicates that the ratio could not be determined because the
solvent band(s) masked the solute bands.

dMeasured depolarization ratio is guestionable because band is
overlapped with neighboring bands.
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INFRARED AND RAMAN SPECTRA OF 1,5-ANHYDRO-DL-ARABINITOL
AND DEUTERATED 1 ,5-ANHYDRO-DL-ARABINITOL
The Raman (pellet) and infrared (KBr pellet) spectra of 1,5-ADLA appear in
Fig. 24 and 25, respectively. The measured freéequencies and their relative in-

tensities are tabulated in Table XIV.

The Raman spectrum of deuterated 1,5-ADLA (pellet) is included in Fig. 26.
The infrared spectrum of deuterated 1,5-ADLA is exhibited in Fig. 27, and the

frequencies and relative intensities are tabulated in Table XV.
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TABLE XIV

TABULATED FREQUENCIES FOR THE RAMAN AND INFRARED
SPECTRA OF 1,5-ANHYDRO-DL-ARABINITOL

bv, a Relative v, b Relative Av, a Relative V, b Relative
R, cm.”! Intensity IR, cm.” ! Intensity R, cm.”! Intensity IR, cm. ' Intensity
: : 3400 8 1097 22 1096° 98
3324 1 3317 8L 1093 100
321k -6 3223 79 ‘ 1085 - 25
3000 75 2994° - 11 1079° 13 1077¢ 95
2989 65 - - 2983 32 ' 1074 97
2966 21 2960 29 1064 9 1059 87
2951 54 2945 30 1012 59 1009 8L
2929 5 2925 27 - 951 12 950 19
2890° .23 2889 o3 _ oLyC 16
2887 25 2881 34 923 2 916 18
2852 65 28L45 53 880 ' 6 877 65
27187 1 : . 835° 59
1469 21 . 1keé3 68 8ho 100 832 6l
1450 28 1h52 68 756 - 17 : 752 69
1443° T 1hh1 53 750° 11 .
. . 1437 53 - - 678 1k
1423 8 635° 39
. 1416 ks 629 50 627 43
1396 .9 1398° - 37 550 38 546 26
1381° 5 1379 39 493 - 5T 486 2k
1373 32 482° 20
1359 . 6 1354 32 LLs 26 437 ok
1340 5 1338 39 429 16 L2 8
1312 19 - 1310° 3k © Lot L 402 10
o 1304 L8 383 -3
1287 ¢ v 19 1283 5T 375 1 369 19
1271 15 1270 k2 - 338¢ o3
1243 T 12L0 40 - 326° 4
1235 8 1237 L1 313 9
1224 9 1227 L5 304 5
1154 25 ~ 1151, 60 o291 9
1127 17 1125° 148 283 3
li21 60 T 269 8
1113 1L ' : 231 6
1102° 8l 197 3
' 185 3
a'Ra.ma,n spectrometer RT: 1 sec. : Slit progrém: 1000 x 1
operating conditions: Zero suppression: 10 7 Gain: 4.6
- Sample arr.: pellet - - PM voltage: 1900 " Atten. speed: 1100
Laser wavelength: - 5145 A. PM temp.: -20°C. Scan time: 10 x 8
Laser power: 900 mw. Spike filter used Suppression: 6

Slit width: 250 um.

S1it height: 2 mm._

Scan speed: 50 cm. !/min.
DC: 0.1 x 10 °

Scale expansion: 1X

b
Infrared spectrometer Source current: 0.8

operating conditions: e
Sample arr.: KBr pellet Shoulder.
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av, _
R, cm.

2999
2988
2965
2950

2929
2894
2885
2875
2850

d

280k
2458
2ko8

1468
1hsod
ik

141k

14014

1377%
1370

1358
1342
1331

13084
1301

1286d

1275%

1237

12249

116hd
1156
111

1

-T2~

TABLE XV

TABULATED FREQUENCIES FOR THE RAMAN AND INFRARED
SPECTRA OF DEUTERATED 1 ,5-ANHYDRO-DL-ARABINTIOL

& Relative v,

Intensity IR, cm.

100
86
29
85

6
20
Lo
16
87

N
13
27

W7
38
9
19
6

21
35

8

i0

15

28
L7
L6
13

20

2
31
20
1l

®Raman spectrometer

2970
2956
2943
2927
2891

2845

2460
2405
2356
1k62
1h55d
1hhod
1h3h

125

1405
1398
1395

1375
1370
1358¢
13k
1329

1303
1283

1257
1235
1216
1162
1153

operating conditions:
Sample arr.:
Laser power:
Slit height:
Rest of data same as

in Table XIV,

pellet
970 mw.
5 mm.

Intensity IR, cm. !

b Relative Av, a Relative
1 Intemsity R, em. !
1137 10
1118 42
27 1102d 57
79 1083 12
31
Th 1069 7
50
: 1036d 16
1013 2h.
67 1004 Lo
98 980d 3
100 950 11
83 939 30
24 917d 24
21 912d 20
24 895 16
26 875 15
24
30
38 833 Lo
29 814 78
- 753 8
733 15
61 631 58
60 542 38
61 491 67
39 435 b1
L La1 35
hozd 24
5l 389 2
4o 37ha h
- 329 9
39 309 18
35 287 12
66 ‘ 263 11
52 227 11
. 17 195 L
181 5

bInfra.red spectrometer

operating conditions: -
Sample arr.: NuJol and
Fluorolube mulls
Rest of data same as in
Table XIV,

Vs

1130
1097

10753
1068,
1052
1032

1005

9992

olik
916
8983
880
871
8663

8LlL
835

TS
633

b Relative
Intensity

6k
89
95
100
76
60
90
65
25
L3
45
59
54
48

€6
56

60
29

®The regions above and below
this point correspond to
different spectra, so
relative intensities are

d

different.
Shoulder.
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NORMAL COORDINATE ANALYSES

The-vibrational spectrs of the Ssccﬁafides and their defivafives areJQuite‘
complex in that several of the.bands arise from the coupllﬁg of tso or mors
atomic group-v1bratlons in the molscule. It would be almost 1f not entlrely,'
impossible to adequately 1nterpret these spectra by the tradltlonal group |
frequency approach. Normal coordinate calculations, supplemented with group
frequency data, provide a means to interpret and understand the vibrational

spectra.

Although tsese mathematical methods nay nst be>considered rigorously quanti-
tatlve, the qualltatlve results should prov1de an extremely valuable tool to the
vibrational spectroscopist and physical chemlst. With thls tool, vibrational
spectroscopy ma& play a‘more imborfant role in future»phy31cal chemical research

in the area of carbohydrates and also other complex molecules.

Therefore, an important aspest of this dissertation is thsAdemsnstration that
the mathematical methods used by Schachtschneider and Snyder (é&) and Snyder and
Zerbi Lzé)? to facilitate the interpretation of the vibrational spect?a of the n-
paraffins and aliphatic ethers, @ay be successfully exfended to lsrger and more

complex molecules, such as the 1,5-anhydropentitol compounds.
- THEORY

In attempting to account for the observed infrared and Raman spectra of feal
molecules, a certain simplified model for sﬁch molecules is adopted, and then the
spectra which this model would eghibis are ca}culatsd} The msdel is specifiedAto
consist bf partisles'held togethef by dertsih forces,; The particles represent
the stoms of sﬁe molscule and,are'£o béutrested as if_sll the mass were concen—

trated at a peoint. The definition of the model gesﬁetry is usually based on the
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bond lengths and angles for the real moiecule. This .information m;y be obtained
from x-ray 'and neutron diffraction studies. An important part of the model
specification is that the model obeys the laws of quaﬁtum mechanics. The Born-
Oppenheimer approximation, as cited by Paulihg and Wilson (71), is made which

permits the separation of the problems of electronic and nuclear motion.

The forces between the particles-ﬁa& be crudely thought of as weightless
springs which only approximately obey ﬁooke's law and which hold the "atoms" in
the neighborhood of certain configurations relative to one another. This picture
of the forces as‘springs is useful for visﬁalization, but is not sufficiently
-generél for all cases. The search for a potential function which involves a small
number of parameters and which ﬁt the same time permits good agreement with ex-
periment is far from ended and poses the iargest barrier in a normal coordinate

analysis.,

The mathematical treatment of the &ibfational dynamics of the model is
initiated by setting up the classical mechanical expressions for the kinetic and
potential energies in terms of the coordinates of the "atoms." These expressions
in conjunction with the steady state'Schrodinger equation are used to write the
quantum mechanical wave equatioﬁ for the model. If the kinetic energy is expressed
in suitable coordinates, the wave eqﬁatidn for the model can be approximately
.separated into three equations, one for translation, one for rotation, and one for

vibration’®8.

7 .
This fact is proved in a number of texts treating vibrational dynamics, for
,example, Wilson, et al. (68).

The proper coordinates are the three cartesian coordinates for the center of mass
of the model; the three Eulerian angles for a rotating system of cartesian coor-
dinates, the axes of which coincide with the principal axes of inertia for the
undistorted model; and a set of coordinates giving the displacements of the
particles from their equilibrium positions.
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If for example, the cartesian displacement of the N "atoms" are chosen or a
set of 3N equlvalent coordinates, there will be six coordlnates too many which
descrlbe the translatlonal and rotatlonal mot;oh of the molecule.J The six ceh—
ditions relating these coordinates assure thet the vibrations do not'eaﬁee'hohien
of the center of mass and that the ceordinate,system rotates with the model. The
resulting vibrational wave equation is a partial differential equation in 3@
variables. This eeuation cannot be selved“in most’cases. By tranéforming to a
new set of coordinates called normal coordinates, the partial differential wave
equation may be separated’into 3§ total differential equations .in one variable,
which are usually solvable. The condition for the existence of the transformation

to normal coordinates is called the vibrational secular equation. The solution of

this equation is the heart of a normal coordinate ahalysis.
KINETIC AND POTENTIAL ENERGY IN CLASSICAL MECHANICS

The potential energy of the model-; .V, may be expressed as a Taylor series in

the 3N generalized displacement coordinates, 9., as shown in Equation (1).

3N 3N b
v = av o+ 2) @V/3q, 1o 4 * SY - (3%v/3q, aq )a;a, + *** higher terms
' i=1 i,j=1 J
3N 3N
=2V + 22 fq; * Y f..q.q, + e hlgher terms. (1)
rORPR B Bk Rl
i=1 193—1

If the energy is chosen to be zero at the equilibrium configuration, then

Yo = 0., Furthermore, when all the g.'s are zero, the atoms are at their equilib-
rium positions so that the energy must be a minimum for q, = 0, i = 1,2,3,;"3§.

Therefore,9

This treatment ignores the fact that the coordinates, a;, are not all independent.
For redundant coordinates, the energy should be minimiz®&d with respect to an
undetermined multiplier giving rise to one additional force constant for each
redundancy. This point is discussed by Crawford and Overend (Zg).
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(BV/qu)o =

H
It
(@]

(2)

for i = 1,2,°°°, 3N. For small amplitudes of vibration, the higher order terms
can be neglected and

3N
v =}
i,4=1

fiquqg (3)

=ij

—— —

where the fij's are constants, called force constants, given by f,, = (BZY/Bgf)gi).
In matrix notation, 2V = q' gg, where g is a column matrix of the g,'s, and f is a
x = e = =i =

19 with elements f.,. (The prime symbol shall denote the matrix

_.13

symmetric matrix

transpose throughout this manuscript.)

The kinetic energy of the model is given by

3N L ] L ]
ar = ) t..9.4q, (4)
=

where the tij's are the kinetic energy coefficients and the ai's are the velocities

in generalized coordinates!!. This expression may be written in matrix notation

as 2T = é'ti. In general, the coefficients, t,., may be functions of the coor-
~ RRR ~1iJ

dinates, ;- The proper procedure in that event is to expand them as a power

series in the coordinates.

o} 3N k
tig T byt kzl gttt (5)

For infinitesimal vibrations, all but the first term, £9 , are neglected. Thus,

-1iJ

in the approximation of small vibrations, the kinetic and potential .energies are

homogeneous quadratic - forms in the velocities and coordinates, respectively.

10

1 This is easily verified by referring to Equation (3).

The generallzed coordinates do not 1nvolve time expllc1tly.
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The Lagrangian function, L, may then be written as
. . 3N
= - =1
L=T-V=% ] (ts;
: i,J=1: .

o e

Lagrange's equations of motion are defined in the following equation

d(aL/aéJ.)/dt - (a:L/a'qj) <o T (5w

where j = 1;2,3,**++,3N. " Substitution of Equation (5a) into'Equation (5b) results

in the following expression for the equations of motion
3N .e * .
Dot a0 | (5¢)

where Q = 1,2,3-°-',3§. This expression is a form of the vibratiénal seculaf
equation. These equations of»motion are satisfied by an oscillatory solution

not only for one frequency, but for a set of Bg frequencies, Therefore, the
complete solution of these équations in&olves é supeffosition of oscillations

with all the allowed frequencies. The solutions of the secular equatibn are often’
designated as>the frequenciés of free vibration or as resonant frequencies. Un-'
less the rgsonant frequencies are commensu?able, 43 will never repeat its initial
value. Hence, the coordinates q. are not, in general, the separation coordinates
of the problem, each. of which,is_;imply periodic. .Such a set of periodic coordi-

°

nates is obtained by a point transformation from the gi's to a new set of coor-

dinates called normal coordinates,'gi.

VIBRATIONAL WAVE EQUATION

From a quantum mechanical viewpoint, the classical kinetic and potential
energy expressions may be used in conjunction with the steady state Schrodinger

equation to derive the gquantum mechéniéal wave equafion for the model. By-the
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proper choice of coordinates (see footnote page TL4), we can approximately
separate the vibrational wave equation from the translational and rotational
wave equations. The result is a partial differential equation in 3@ variables.
In most cases, this equation is too comPlex to solve. However, by trans-
forming to normal coordinsates, 91’ where the kinetic and potential energy
expressions contain no cross terms, the'wave ¢quation for vibrational motion

is immediately separable into 3N one-dimensional equations. The wave function,

Wv, mey be written as a product of wave functions

¥, = valau e (R2) v (ag) (6)

where‘the wave equations for wk are
2 2 242 2 =
(B, /AQ.) + (8n°/n*) (B - % A Q ), = 0 (7)

for k = 1,2,3,°**,3N. These are also the wave equations for the one-dimensional
‘harmonic oscillators. The vibrational enerquof the state described by the wave

function (6) is the sum of the energies E,_ belonging to the various wk(gk) of (7).

3N
E = B . (8)
kzl k

The solutions of these equations are the well-known Hermite polynomials QZL)

k

— —

and the energy levels are given by (Zk + %)hyk where v, is the vibrational

quantum number and vk is the classical frequency of the oscillator given by

—

1
. 2
vy = (Ak) /em . : (9)
VIBRATIONAL SECULAR EQUATION IN MATRIX NOTATION

The vibrational wave equation can be separated into a series of total

differential equations by determining the transformation, L to normal

i3’
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coordinates, gj’ in which all the cross terms in the kinetic and potential energy

expressions are eliminated. In matrix notation, the normal coordinate trans-
formation, L.., is sought which simultaneocusly dlagonallzes the klnetlc energy

matrix, t, [see Equation (4)] and the potential energy matrlx f [see Equatlon
~

(3)]. The transformation matrix, L, is .defined as
S

J
or in matrix notation where Q is defined as a column matrix of the Qi'sh
=2 2
a=19 . (10)
As a consequence of the conditicon of L, we have
-~/
= .' L] =~ l' v L) = .' L4
=319 QLR - VB (11)
or -explicitly
er =} @ - . . (11a)
i .
and
2V = q'fq = Q'(L'fL)Q = Q'AQ (12)
~ A Ao A I A MNA/
or explicitly
= 2
av = ) AQE A ~(12a)

where E is the identity matrix and  is a diagonal eigenvalﬁe matrix. From
~

Equations (11) and (12) we have the conditions

L3 (13)

b
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and

(N ' ' Coso (b))

~S

L'fL =
~ NS

v

Equation (13) is -then solved for Lf,
.- S

L'=L %7, (15)

~ -~

Substituting this expression for L' into Equation (1L4) results in the following
~

expression,

Livism=4 . (16)

Multiplying on the left by';awe have

£7i1rL = LA (aT7)

~ Ao rvnd

or

t7fL ~ LA =0, (18)

P Py

Consider a single column of the L matrix denoted by Ek and denote the correspond-

ing eigenvalue by Ak. (The A 's are the elements ofl&.) Equation (18) can now

be rewritten in the form

- _
(£t - >\K§:,)Lk =0 (19)

~

for k¥ = 1,2,3,***, 3N which is a form of the vibrational secular egquation. For

this equation to have a nontrivial solution, that is, Lk # 0, the determinant

of the coefficient matrix must be zero (73). Thus,

det(t °f - A E) = O (20)
where det || indicates the determinant. The solution of this determinantal

equation results in the determination of the frequency parameters, A for the

ks
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mathematical model. The.freqﬁency parameters are related .to the calculated -

frequencies; by the relationship, A, = Lr2v 2. Substitution of the calcu-

'S k K

lated frequency parameters, Ak’ into the vibrational secular»equafion (19)
results in sets of homogeneous linear equations, one for each column of %;'from-

which the Ek's may be determined. (The Ek

's contain the information regarding

the "atomic" vibrational motion of the model for each frequency, vk.) Stated

another way, the transformation which diagonalizes the product t7ir is'sought,
. . : _ o o

resulting in a diagonal matrix, A, of the A
_ ~ k

L' E)L = A . (21)

~/ A A

which is obtained by multiplying Equation (17) on the left by L~'. With this
form of the secular equation, the inverse kinetic energy matrix, Efl, must be
Vad

computed.
INTERNAL COORDINATES

As previously stated, the choicé of 3§ generalized diéblacement‘éoordinates,
q, leads to a vibra£ional seéular equétion of degree 3@ ﬁhich hés six zero roots
~ .
corresponding to the translations and rotations. It 1s desirable to choose a set
of coordinates which descriﬁe the internal configuration of the molecule only,
that is, which satisfy the conditions that the center of mass remains fixed and
assure that there is no rotation of ité‘coordinate system, and satisfy the
conditions set down by Eckart (74) and Sayvetz (75). A set of coordinates

satisfying these conditions are known as internal coordinates.

A convenient set of internal coordinates has been defined by Wilson (76)
and Decius (77). The internal coordinates in this set are bond stretching,
valence angle bendiﬁg, out-of—plane:bending; and torsion. This particular set

of internal coordinates is useful because tHe potential energy in terms of
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these coordinates is chemically meaningful. Decius (lg) has shown that this set.
. of four types of internal coordinates is sufficient to describe the most general.
vibrational displacement of any molecule. Further, he has given a prescription .
for defining a kinematically complete set of valence coordinates for both cyclic

and acyclic molecules.

1

In some cases, it is advantageous to choose more than 3@76 internal valence
coordinates, either to make use of symmetry or to put thé force constants on an
equivalent basis, thereby overdefining the problem and introducing redundant
coordinates. For example, only five of the six HCH angles in methane are inde-
pendent. However, if we leave one of the angles out, the force constants lose
their simple chemical meaning, and it is not possible to use symmetry to factor

the secular equafion.
VIBRATIONAL SECULAR EQUATION IN INTERNAL COORDINATES

For internal cocordinates, R, it is easier to compute the inverse kinetic
e
energy matrix; thus, the kinetic and potential energies are usually written

in the form

- nia—l
2L = R'¢TR, (22)
and
= R!
2L = B'ER. | (23)
which is obtained when t = G ', £ = F, and ¢ = R in Equations (3) and (L).
~ ~ o~ A~ A .
The vibrational secular equation is seen to be

GFL = IA (24)

Nrsas ~ N
from Equation (17). We then seek the transformation, L, from normal coordinates,
. . . - =3 =

Q, to internal coordinates, R,
—~ ~



R =1Q o S ST e o (25)

by solving the determinantal equation.. . e
det (GF - AE) = 0 . (26)
The bulk of the normal coordinate computations to be described in this fextl

is concerned with the solution of this determinantal equation (26) and the

vibrational secular eqﬁation (ak).
COMPUTATIONS

In this secfion, the computational methods employed in the nbrmal'éoofdinate
analyses of the 1,5-AP compounds will be presented. The data generated in the

computatiohs can be found in the appropriate appéndices.
DEFINITION QF MODEL GEOMETRY

The positions of the "atoms" in the model are usually defined from the bond
length and bond éngle data for the real molecule. This information can be ob-
tained from x-ray.or neutron diffraction studies.' If these aata are not available,

the model geometry must be approximated.

Molecular Structure of the 1,5-Anhydropentitol Compounds

Unfortunately, x-ray crystallographic data are not available to date for the
1,5-AP compounds. The geometry of these compounds must be inferred from structure
data available for . similar compounds,‘sdch as the pentoses. However, small
differences in bond lengths and ang;es,(in this case, deviations of the order of
magnitude of a few hundredths of an angstfoﬁ in the bond lengths and a few |
degrees in the bond angles) should not affect theA;esultslsignificantly because.
such deviations from the real structure are’overshadqwed by other approximations .

incorporated into the mathematical methods. Snyder and Zerbi (56) were able to
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perform a successful normal coordinate analysis for tetrahydropyran assuming
tetrahedral bond angles and equivalent CC, CH, and CO bond lengths for their

model.

Conformation

The first matter to consider when defining the model geometry for the
1,5-AP compounds is the molecular conformation. In his review of crystal
structure data for simple carbohydrates and their derivatives, Strahs ng) staies
that all of the crystalline pyranose-type compounds, thus far examined, adopt a
chair conformation. In fact, a boat conformation has not yet been found for
crystalline monocyclic compounds of sﬁgars. Thus, it seems regsonable to assume
that all of the 1,5-AP compounds adopt the chair conformation in the crystalline
statef There are, however, two possible chair conformations for each structure.
In solution there is an equilibrium existing between these two conformations.
The position of the equilibrium is determined by the difference between the free
energies of the components. When the components differ only in geométric con-
figuration, the differences in free energy are due to steric factors, namely, to
the energies of interaction between nonbonded atoms. In a comparatively rigid
system, like that of the six-membered pyranocse ring, the interactioﬁ energies
can be evaluated and totaled. The compafison of .these .interaction energles have
led to usually accurate predictions‘of the most stable conformer and the pre-
dominant conformer in solution. Eliel has provided a guide (12)_for the calcu-
lation of the conformational free energies. More recently,-Angyal (80) has
reported a set of interaction energies derived specifically for pyrancse com-
pounds. The details of the conformationéi‘analysis method can be found in
Eliel, et al. (81). ' The conformational free energies have been evaluated in this

thesis iunvestigation for each of the chair conformers of the 1,5-AP models by
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employing the interaction energy values derived by Angyal Q§Q). The results of
this evaluation are listed in Table XVI. These conformational free energy
calculations suggest that the 1,5-AP compoupds most probably exist in the chair

conformations drawn in Fig. 28 in the crystalline state.

TABLE XVI

CALCULATED CONFORMATIONAL FREE ENERGIES (gébnf;'kcal./mole)

FOR THE 1,5-ANHYDROPENTITOL MODELS -

Econf Difference Ratioa
1,5-A%X - 2.h0, 0.70° 170 ' 95:5
a-a-8 e-e-e
1,5-AR 2.20 1.60° - 0.60 - Th:26
: a-e-a e-a—-e .
1,5-ALA 1.70 - 1.15° ©0.55 . 72:28

a—-a—-e e—e-g

& The proportion of each conformer existing in solution at equilibrium for

" the Angyal analysis is calculated from the expression G? - Gg = RT1la(N;/N2),
relating the difference in conformational free energy To the natural Iogarithm
of the ratio of the mole fractions, for T = 298,16°K or 25°C.

bThe conformation is identified by designating the orientation of the hydroxyl
group on C2, C3, and ClU, respectively. An & denotes an axial hydroxyl group
and an e denotes .an equatorial hydroxyl group.

cThis‘is the most stéble'donformer of the pair.

Bond Angles and Bond Lengths

As stated earlier, crystal structure data from X-ray énd neuﬁron diffraction
studies werenot available.for the 1,5-AP compounds at the time of this investi-
gation. One méthod of specifying the model geometry apprgximatiné.a 1,5-AP
molecule is to adapt as much of the available crystal structure daté és possible
_from a relﬁted compound which in this case would be one of thé'penﬁoses. However,

an equally valid approximation is to assume a tetrahedral model geometry. In
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this model, all bond angles arevassumed:té be tetrahedral (109°28") except the
COC. angle (112°27') and the tor;iqnal.CQihedral) angles are set equal ;o_6p°,
Further, all common bond typesrare assigned an equivalent bond_;gngthf In
specifying the geometry for the ;,S—Af ﬁ&dels,.the coc bond angle:and the corre- .
sponding CO bond length were adapted from the data resulting from an electron
diffraction study of p-dioxane reportéd by Davis and Hassel (82). The remaining
common bond lengths were estimated by averaging the éppropriéte érysfal structure
data reported for a-D-glucose (83), B-D-glucose (84), B-DL-arabinose (85), B-
lyxose (86), a-xylose (87), and methyl o-D-mannopyranoside (88). The estimated
values for the bond lengths and COC bond angle are tabulated in Table XVII. One
should note that the only structural difference existing between the three!?

1,5-AP models is the orientation of the hydroxyl groups, i.e., axial versus

equatorial.

Calculation of Cartesian Coordinates for the Model Atoms

The cartesian coordinates of the "atoms" in 1,5-AP models were computed
from the bond lengths and bond angles specified in Table XVII by the computer
program CART written by J. H. Schachtschneider (89). The atoms in the models

were numbered in the manner depicted'in Fig. 28.

The computational method employed in CART is discussed in Appendix I.
The data input to CART and the resulting cartesian coordinates for the 1,5-AP
models are also included in this appendix. A program written by Cole and

Adamson (90) called PAMOLE which draws a three-dimensional stereographic

12 I . o _ . o .
The compounds 1,5-ALA and 1,5-ADA are mirror images of one another and ex-
hibit identical vibrational spectra. . Therefore, only one of these compounds
(1,5-ALA) need be included in the normal coordinate calculations.
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projection of a "ball and stick" representation of the model from the calculated
cartesian coordinates may be uéed to check the cartesian coordinate calculations
for errors. Drawings generated by PAMOLE for the 1,5-AP models based on the

cartesian coordinates calculate& by CART are included in Appendix I also.

TABLE XVII

BOND LENGTHS SPECIFIED FOR THE 1,5-ANHYDROPENTITOL MODELS®

Bond Length Av. Value, A, Bond Angle Assigned Value

co(z)® 1.423 coc 112.45°
cc 1.523 |

cu'® , 1.096

CH 1.093

co 1.415

OH 0.970

&The bond angles were assumed to be tetrahedral (109°28') and the dihedral
angles set equal to 60°.

b(r) Designates the pyranose ring oxygen atom.

®The CH' refers to the Cl and C5 atoms of the ring.

The FORTRAN listing, flow diagram, and program instructions for CART and

the program instructions for PAMOLE may be found in Appendix V.

TRANSFORMATTON TO INTERNAL COORDINATES AND CALCULATION OF THE
INVERSE KINETIC ENERGY MATRIX. (G MATRIX)

Internal Coordinates

The vibrational problem is toc be set up by the Wilson GF method ( g_)
X
This method requires that the vibrational displacements be expressed in internal
valence coordinates, R, which satisfy the Eckart (74)-Sayvetz (75) conditionms,
- ~s

thereby separating the vibrational problem from translation and rotation. A
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convenient set of internal valence coordinates has been defined by Wilson Qlé)’{,
and Decius (77). Decius has shown that a set of four types of internal valence . -
coordinates, namely, bond stretching, valence angle bending, out-of-plane wag-
ging, and torsion, is sufficient to déscribé the most general vibrational dis-
placement of any molecule. He has also given a prescription for defining a

kinematically complete set for both cyclic and acyclic molecules.

Definition of Internal Coordinates for the l,S-Anhydfopentitol Models

According to the prescribtion-set down‘By Decius; there will be one bond

stretching coordinate for each bond in the molecule. That is,
n =b5d : A (27)

where b is the number of bonds in the molecule and Er is the ﬁumbér of bond

stretching internal coordinates. For the 1,5-AP models, there are 19 bonds

i.e., n, = b = 19. The minimum number of yalénée angle Eending internal coor-

dinates, n,, is expressed as

=
“n¢=j+b-3a+a1 4 ' ' (28)
where a is the number of atoms_in the molecule, and a; is the number of terminal

bonds (the number of atoms bonded to only one other atom). For the 1,5-AP

1]

models, a = 19 and a1 = 10; thus, 95 = 76 - 5T .+ 10 = 29. The number of torsional
internal coordinates, n_s corresponds to the number of nonterminal bonds which is

determined from the expression

n =b - a; . . . (29)

Therefore, nT =19 - 10 ='9: ‘The result is a total of 5T iﬁﬁernal coordinates.

The minimum number of internal coordinates required to completely describe the
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vibrational motion of the 1,5-AP models is equal to the number of vibrational

degrees of freedom, f, where

L)
]

3a - 6. (30)

For the 1,5-AP models, f = 3(19) - 6 51 degrees of freedom; so the set of

|1}

internal coordinates derived from the Decius prescription is noted to contain

six additional or redundant coordinates. These redundancies are due to the cyclic
nature of the molecule and cannot be removed. There afe six bond angles about
each of the five carbon atoms in the ring. In the 29 valence angle bending coor-
dinates specified above, only five of these angles have been included in each case
because the sixth angle is not independent. To include this sixth angle would
generaté a locally redundant coordinate. Héwever, to make use of symmetry and to
put the force conspants on an equi&alenf basis, the five reduﬁdant coordinates
must be included, one for each carbon atom of the ring. This means that there are

now 34 angle bending coordinates.

In summary, a total of 62 internal valence coordinates have been generated
to describe the vibrational motion of the 1,5-AP models; namely, 19 bond stretching
coordinates, 34 valence angle bending coordinates, and 9 torsional coordinates.
Of these 62 coordinates, 11 are redundant. Five of these redundancies are local
and removable, while the remaining six redundancies result from the cyclic nature

of the molecule and are not removable.

The 62 internal coordinates for 1,5-AX are listed in Table XVIII. The in-
ternal coordinates for 1,5-AR and 1,5-ALA involve the same atoms, except for a
few of the torsional coordinates, and are numbered in a similar manner as those

for 1,5-AX.
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. TABLE XVIII .

'DESCRIPTION OF THE 62 INTERNAL COORDINATES. ... .. . .. ..
FOR 1,5-ANHYDROXYLITOL

Bond Stretch

1. Cl0 6. C50 . 11. 02H2 16. chkol
2, clce 7. C1H' , 12. C3H3 17. OlHL
3. Cac3 8. CiH" ‘ 13. €303 18. C5H!
L, c3ch 9. C2H2 14, 03H3 19. CS5H"
5. ches 10. (202 15. ChHh
“Valence Angle Bend
20, H'Cl10 29. cC1c2C3 38. cLc303 47. H'Csch
21. H"C10 30. Ha2c2c3 : 39. $H3C303 k8. H"C5Ch
22, (€2Cl0 31. - C3c202 - - - kLo, c3chkak : Lo, cheso
23. H'Clc2 32. H2c202 . 41. -c3ckob 50. H'C50
2k, H"ClC2 33. C2C3H3 42, cLokHY _ 51. H"C50
25. H'ClH" -3k, cac303 © k3. c3ckes 7 52.. H'C5H"
26. ClC2H2 "~ 35. (303H3 Ly, Ccs5chHY 53. (€10C5
27. Clc202 36. ca2c3ck - ks, -csckok . )
28. C202H2 37. ChC3H3 L6. Hichoh
Torsiona
54. C3CLCSH') b 56. H'Clcecs b 58. HLchoLHL
H4CLCSH" § P H"C1C2H2 L 59. H3C303H3
olkckcso b 0C1Cc202 b . 60. H2C202H2
55. H3C3CLHY 57. H2C2C3H3 61. H'Cs50C1
03c3chc%3 C1C2C303 : 62. H'Cl0C5

cac3chol 02c2c3ch:

®The torsional coordinates were defined for those atoms in the trans position
about ‘each bond.

b'I‘he torsional coordinates in this group are summed together Cllnear comblnatlon)
to avoid the introduction of further redundancies. - .
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Inverse Kinetic Energy Matrix €2>Matrix)

The expression for the kinetie energy_ip cartesian displacement coordinates
may be written from Equation (11) by replacing q with X and ;}with M in the
. ~ ~ =

expression on the left-hand side where M is defined to be a mass matrix. That is,
a4

2T = X'MX. (30a)

~ ~n

The transformation, B, from éartesian displacement coordinates, X, to internal
coordinates, R, may be computed from the set of internal coordinates specified
s

in the last section.

R =B , (30)

X= BB, | (31a)

The kinetic energy in internal coordinates may be written by substituting

Equation (31a) into Equation (30a).

2r = (BT'R)'M(BT'R) = R'(B™")'MB'R. - (32)

~ A ~N A AL ~. ~
If we define G ! = [(B7!)'MB™'], the expression defining the inverse kinetic
A ~ ~R
energy matrix, G, follows directly

G = BM 'B' (33)

and the kinetic energy is of the simple fbrm_2__=

R'G™IR.
X AR

Computation of the gMatrix

The gbmatrix elements wefe computed for the 1,5-AP models by the computerv
program GMAT which is based on Wilson's "S vector" technique (éﬁ). In the
calculation of the gymatrix, tﬁe cartesianlcqordinates compu£ed by CART for the-
Matoms" in the’maaelé wereAtfansfprmed.ihto inferna1 coofdinatés4(see Table‘XVIII

for a description of the internal coordinates for 1,5-AX).
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The computational method employed in GMAT is discussed in Appendix II.
The internal coordinate . definitions for the 1,5-AP models "and the resulting

G matrices are also listed in this appendix.
~

Symmetry Coordinates

Upon tfanéforming from iﬁternal coofdinates to symmetry coordinates, the‘gy
matrix factors into a number of smaller bloéks, one for each symmetry species
(irreducible représentation) ;f the molecular point gfoﬁpr The symmetry coor-
dinates are constructed from linear combinafions of the intéﬁnalvcoordinates by
a method based on the molecular pbint group character table. The construction
of symmetry coordinates %ill not be discussed here, but the interested reader
may wish to refer to one of £he many texts that treat fhis topic; for example

(68,92,93).

The compounds i;S—AX and 1,5-AR possess a plane of symmetry and, therefore,
belong to the gs ﬁoint group. The symmetry coordinatés for these two models
wvere developed ;ith the relastionships derived by Wilsop Qég) and are defined
in Table XIX. The internal coordinate numbers specified in the table refer to
the coordinates defined in Tables XXXVII ana XXXVIII ih Appendix II. The gs
point group has two symmetry species (irreducible representations), symmetr;;,

A', and antisymmetric, A". The symmetry coordinates in Table XIX are classi-

fied into their respective symmetry species.

Factoring the G Matrix
~/

In GMAT, to transform from internal coordinates, R, to syﬁmetry coor-
. . _ = .

dinates, S, an orthogonal transformation matrix, U, must be included with the
~ ~

input data, since

%UR . (3k4)
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TABLE XIX

DEFINITION OF SYMMETRY COORDINATES FOR 1,5-ANHYDROXYLITOL
AND 1,5-ANHYDRORIBITOL

Sym. Coord.® Comb. In. Coord.b Sym. Coord.® Comb. In. Coord.b
(51 = 1+ 6 32 = 55 - 57
82 = 2 + 5 S 833 = 58 - 60
83 = 3 + b S3k = 61 - é2
sk = 7 + 18 . (835 = 1 - 6
85 = 8 + 19 s36 = 2 - 5
sé = 9 + 15 837 = 3 - b4
ST = 10 + 16 s38 = T - 18
s8 = 11 + 17 S 39 = .8 ~ 19
89 = 12 sho = 9 - 15
810 = 13 ghi = 10 - 16.
s11 = 14 . sh2 = 11 - 17
§l2. = 20 + 50 g3 = 20 - 50
S13 = 21 + 51 , sk = 212 - 51
sik = 22 + L9 ‘ - Jsks = 22 - 59
815 = 23 + U7 ghé = 23 -~ U7
816 = 24 + .48 si7 = 24 - 48

A'{S17T = 25 + 52 sh8 = 25 - 52
S18 = 26 + L S Jskg = 26 - kk
S19 .= 27 + 45 A"‘<SSO = 27 - U5
820 = 28 + L2 851 = 28 - k2
821 = 29 + L3 o 852 = 29 - U3
§22 = 30 + Lo 8§53 = 30 - 4o
s23 = 31 + k1 : issh = 31 - k1.
g2k = 32 + 46 855 = 32 - L6
s25 = 33 + 37 : 856 = 33 - 37
s26 = 34 + 38 s57 = 34 - 38
seT = 35 | S 58 = 54 - 56
828 = 36 - ' 859 = 55 + 57
829 = 39 : S60 = 58 + 60
830 = 53 861 = 59
831 = 54 ~ 56 C , @ﬁe = 61l + 62

a'Norma.l1zat10n of the symmetry coordinates requires that each coordinate
be multipled by l//~" except for the symmetry coordinates 89, 510, S11,
s27, 828, $29, S30, and S61 where the factor is unity. The normalization
1s accompllshed by GMAT. ’

The 1nternal coordinate numbers are deflned in Tables XXXVII and XXXVIII
in Appendix II.
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The U matrices are identical for 1,5-AX and 1,5-AR and are simply a matrix
A~ ' '
representation of Table XIX. The elements of U, included with the input data, . .-
A !

need not be normalized, since normalization is accomplished in the program.

The G matrix in the new coordinate”system,
~

{02

, is given by Equation (35),

G = UGU'. : S - (35)

‘Computatlon of the Factored G Matrices for the
5—Anhydropent1tol Models

In the case of 1,5-AX énd 1,5=AR, the transformation from internal'coordi-
nates to symmetry coordinates reduces the{%ymatrix from 62 x 62 to two smaller
matrices, 34 x 34 and 28 x 28, which belong to the irreducible representations
A' and A",’respectiveiy.f Listings of the factored g_matfices are not ihcluded-

. ~
in this manuscript because of space limitations.

SELECTION OF A FORCE FIELD FOR THE
1,5-ANHYDROPENTITOL MODELS

Before the vibrational secular equation_can be solved, an explicit form must
be given to the force constant matrix, that is, the‘g;matrii-in Eqﬁation (26). |
Unlike'the'g;matrix, the‘£>matrii is nOt:easily derivable from experimental dafa,
and certainly ﬁot from nonspectroscopic data. The only convenient Source of
information is the &ibrational spectrum itself. For anything larger than a
diatomic molecule, this is insufficient, except in rare cases, to allow the
determination of the field, even in‘the quaaratic approximation. This indeter-
minacy in the force field of molecules is one of the most vexing problems in
spectroscopy today. Since the force field can only be determined from the
spectrum itself, one might question the feasibility of solving the vibrational

secular equation. The following comments are offered as support for the

procedure to be adopted. First, it is well known that the cheémical &and
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thermodynamic properties of bonds with similar environments are very much the
same. It is reasonable, therefore, té expect that the forces resisting defor-
mation of these bonds will be similar; The same is true for bond angles. This
implies that the force constants should be transferable between similar molecules
or bhetween similar groupings in different molecules. As a result, the force
constants derived from simple systems can be employed to construct the figld of
more complex systems. Second, errors in a force field, which reproduces’fo an
acceptable accuracy the vibrational frequencies of a grouping in one molecule,
will be relatively unimportant in frequeﬁcy calculations in related systems
cohtaining the grouping, provided that both the assumed field and true field
place the bulk of potential energy within the common grouping in both situations.
This is because most of the vibrational motion is within the common grouping,

so that the model form varies little in the different systems. Third, further
improvements in the field of complicated systems can only arise from perturbation
treatment of existing calculations, in which efforts are made to miniﬁize dis-

crepancies between actual and calculated‘obsérvatibns.

The use of internal coordinates as a basis for potential field expressions
has been justified in an earlier section. A general quadratic field will have

the form

oV = E § finiRJ (36)

where Bi and Bj are internal coordinates and £ij are the appropriate force

—-— ——

constants

£,, = @ZV/BRiBR (37)

ij j)o ’

For a diatomic molecule, only one quadratic. force constant can be defined and

no problem exists to its evaluation. For a polyatomic molecule, the number of
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quadratic force constants greatly exceeds the number of vibrational frequencies. .

Although other .sources of' information exist about the vibrational modes and -

force constants; this information . has-still not allowed a unique quadratic force

field to be established for any molecule with more than five atoms.

Approximations within the gquadratic approximation itself are clearly.un;
avoidable, and many have been tried. As might be expected, no -single approxi-
mation emerges triumphant-in all cases, but .experience has shown that some

types of fields have reasonable validity in certain structural .situationms. .

Therefore, the selection of an appropriate force field for the.normal coordinate

analyses of the 1,5-AP compounds is an important aspect of this investigation.
Many of the major force field approximations. are described in a text by Steele
Qg&). Several of these approximations are bBriefly discussed below, and are

evaluated for use.in the normal coordinate computations of the 1,5-AP compounds. .

l. The Valence Force Field (VFF)

..This approximation treats the potential energy as arising from stretching
of chemical bonds and deformation of bond angles. The potential energy ex-
pression, Equation (36), only involves.the diagonal elements in the force
constant matrix, with the other elements being set equal to zero, that is,

ov = Z £ ,RY . (38)
i . . -
Although the VFF force field has only a few force constant parameters and
can be easily interpreted in a chemical sense, it is‘too simplified to ade-

quately describe the vibrational dynamics of the 1,5~AP compounds.
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2.  The General Quadratic Force Field (GQFF)

In this approximation, all possible fij terms are included. . As has
already been pointed out, this approximation usually introduces more parameters

than can be determined with the available data, and therefore, in its complete

form, it is indeterminate.

Since the GQFF is rarely derivabie, many fields intermediate between the
VFF and GQFF have been used. In the vast majority of force field studies, the
GQFF has been simplified by arbitrarily fixing many interaction terms to zero
and minimizing other interaction eleméﬁés af their lowest possible values.
Even though the assumptions have usually been made with some physicai regsoning,
such as that potential interactions between nonconjugated bonds with no common
nucleus may be expected to be very sméll, the arbitrary character of. the
assumptions has rendered comparative studies of the different fields extremely

difficult.

A small number of clearly defined~fie143‘have been used and their validity
explored. The two fields which have evoked theimost interest are Mills' Hybrid
Orbital Force Field (HOFF) (95) and the older and controversial Urey Bradley
Forée Field (UBFF) (96). Also of considerable interest, though it has been
little used except by its original expopent, is Linnett's Orbital Valency Force

Field (OVFF) (97).

A. OVFF

This approximation seeks to éxpléiﬁ differences in the deformation force
constants, as derived from different ;yﬁméffy-ciaéées in the valence force
approximation, in terms of electronic rehybridization phenomena. However, even

this modification of the VFF is far too simplified to be successful in the
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mathematical treatment of the 1;5-AP compounds. - On the other hand, the OVFF.. |
may be useful as a basis for logically introducing interaction constants con-
necting :angular deformations about a central nucleus in other types of force.. -

fields.

B. HOFF

This force field is founded on the idea that interaction force constants
are related to electronic charge movements, accompanying the nuclear distortions.
The HOFF appears to be a reasonable approximation; however, it has only been used

in conjunction with relatively small molecules. .

C. UBFF

The ba51c Urey Bradley fleld treats the force field as arlslng from the VFF
supplemented by forces between nonbonded nuclei. In the genersal case the
llnear potentlal energy terms for the 1nterbond angles eand the bonds are llnearly
related by geometric factors to the nonbonded interaction terms. The direct
consequence of this is that the independent parameters in the field reduce to
those of the VFF plus the quadratic and the linear nonpondedAinteraction terms{v
If a redundancy relationship exlsts among the set of 1nternal coordinates, Rj’

the condition for a potential minimum now takes the form
3V/3R; + k; = 0 (39)

where kj is usually known as the intramolecular tension and is an additdonal
parameter in the force field. The UBFF 1n its simplest form is completely in-
adequate for the normal coordinate analyses of the 1,5~AP compounds. In order

to improve the performance, additional quadratic valence-type interaction terms

must be introduced, but this detracts from the original simplicity of the model.
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Iﬁ addition, the UBFF elements are difficult to perceive;in a chemical sense.
Also,~for the. 1,5-AP models, this type of force field contains a large number
of nonzero elements which exceeds the limit of the computer program (based on
the storage capacity of the computer facility) which solves the vibrational

secular equation.

D. Inverse Force Constants

Inverse force constants are thé élements of the reciprocal force constant
matrix, ;:1, sometimes referred to as the compliance matrix,‘g; Several ad-
vantages of such fields exist, the main advantage arises from the independence of

a given element, fzs, to the definitions of coordinates k,1l # i,g. Since the

—

potential energy must be invariant to ;coordinate transformations, it follows that

the inverse force constant elements, f;;, transform as Bi‘and Bj (for gijBig' to

d

be invariant). This requires that if a new set of internal coordinates is chosen

leaving & given coordinate, R, , unaltered, then fiﬁ will be identical in the two

systems. This ihvariance means that the transference of inverse force constants
may be done with less concern for the compatibility of cocordinate systems assumed

in the two molecular models. The inverse force matrix and its advantages are

described in more detail by Decius (98).

The concept of inverse force constants is attractive because the elements ‘

of the compliance matrix are unique, which is not the case for the F matrix
~

elements. However, the secular determinant, analogous to Equation (26), is now

det (F' - 271 g) =0 (40)

lav4

for the case in which there are redundant internal coordinates, since gfl cannot
be determined. This means that new computer programs and computational methods

must be developed Lo construct and solve this new secular determinant.
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Furthermore, a least squares perturbation technique must be developed .to .refine
the compliance parameters to minimize the differences existing between the
calQPlated and observed frequencies. In addition, it is very difficult to
secure the necessary initial compliance parameter data from the literature
because workers in vibrational spectroscopy have been slow to adopt the inverse
F matrix méthod. For these reasons primarily, the ;;1 method was not selected

~N/

for the investigation of the 1,5-AP vibrational spectra.

E.- Simplified Valendé Quadfatic Force Field (SVQFF)

The force field finally-seleafed for this'study shall ﬁe reférred to as a
"Simplified Vaience Quadfafic'Fofce Field" (SVQFF) throughout the remainder of
this.text. This emfirical force“fiela is an extension df‘the fields developed
by Schachtschneiderjand Snyder (54), Snyderiand Zerbi (ié),uPickett and Strauss
(57), and Vaska (99) in their normal c;ordihate calculations. The SVQFF is
derived from thevGQFF by éssigﬁiﬂg negligibie interactioq force constants a zero
value and grouping similar force conétants>by‘assigning one comméﬁ numerical
vaiue. Suchvassumptions'greéfly'reduce the number of independent force constant
parameters necessary to describe the force field of iarge, complex'moleculgs.
One should note that these force,constént assignments are not completélyl

arbitrary, but are based on past experimental data and, experience.

For small molecules, éspecially thése'with.a highforder of symmetry, the
diagonél éﬁd many of the interaétion force constaﬁts can bé defermined from the
vibrational‘séectrum. Assuming the Qaiidify of:force constant transferability,
manydﬁ“fhese force constants aré eméioyed in.thé norﬁél coordinate calculations
for slightly larger,‘moré complex mélecﬁies to deterﬁine édditioﬁal fofée
constant vélues;’otherwisé'indetermiﬁagle; from the speétfél dafa; When the

diagonal and interaction force constants corresponding to particular atomic
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groupings are compared for & series of‘related compounds, it is often observed
that the numerical values are very close to one another if the chemical environ-
ments of the atomic groupings are similar, i.e., the force constants are indeed
transferable. This fact is especially true for the diagonal force coanstants.

Such comparisons also permit one to deéermine which force constants may be
equated and which may be set equal to iero without significantly sltering the
calculeted frequenciés. Thus, one assembles the SVQFF from small to more compli-
cated molecules, building on previous data. The result, although quite empirical,
is a generally descriptive force field that satisfactorily predicts the observed
vibrational freguencies and corresponding vibrational motion of the molecule.
Generally, the number of independent force constant parameters required to specify
adequately the SVQFF for large, complei molecules is approximately equal to the
number of vibrational degrees of freedom.' In addition, Schachtschneider and
Snyder (2&) have developed a method whereby the same set of force constant param-
eters may be refined for several similar molecules simultaneously. This greatiy
increases the ratio of experimental data points (measured spectral band frequen-

cies) to variables (force constant parameters).

Schachtschneider and Snyder (23322) have developed a SVQFF to describe the
vibrational dynémics of & number of n-paraffins and saturated hydrocarbons.
Snyder and Zerbi (56) started with this force field and from it developed a de-
scriptive SVQFF for tetrahydropyran and the'aliphatic ethers. Vasko (22) has
demonstrated the generality and applic;biiity of the SVQFF- He employed the
SVQFF developed by Snyder and Zerbi for the aliphatic ethers and tetrahydropyran
in the normal coordinate analysis of a-D-glucose and estimated the values of the
new diagonal force constants'resulting ffom the addition of hydroxyl groﬁps to
the pyrancse ring However, he neglected the new 1nteract10n terms introduced

by the hydroxyl groups, for the most part, and did not attempt to refine the
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force field to minimize the difﬁerencesxbetwéen the cﬁ;cglated and obseryed.
frequencies: (Furthermore, xhefvg;igity of the results of the mormal coor- . ..
dinate analysis of a-D-glucose aléo sufférs from the fact that Vasko did not
aséign all fhe observed infrared and Ramaﬁ spectral bands, only those in agree-
‘ment with_the;célculations?) Yet5<undér“the-circumsﬁances, he.was able to

predict the experimental freguencies for a-D-glucose remarkably well.

Computafion of the F Matrix
-~/

For reasons of convenience, which will become apparent when the programs

4

that solve the secular equation are discussed, the F matrix is not ‘evaluated
directly. Réther;"the conéﬁréint ﬁétrix, Z} [%hich'is the traﬁsférmaﬁion.from~
: Fv
an independent set of,force_constaﬁt parameters.to the force field in Equation
(26)] is computed.. -The transformation, Z, is defined by the expression
N o
(b1)

Py T 1Z< Zi5x %k

where the @k are a set of independent force constants Cto be called’ force’

constant parameters in this text), and the»Fi‘j are the elements of the F matrix.
= : - =

The cbmputer program UBZM will construct the Z matrix for a UBFF or a SVQFF.

' a4
The‘compﬁter program UBZM is discussed in Appendix ITII. Alsc included in this
appendix are the tables of the Z matrices for the 1,5-AP models. A program

ot A

listing, ﬁser'instructions, and flow diagram for UBZM may be found: in Appendix V. -

Factoring the ,% Matrix

The ,Z_\_lmatrix and, therefore, the ’%Amatrix nay. be"fa‘ctore'd‘ into a number of. .-
smaller métricés~by'tfansforming from in£éfﬂél'codrdinates to: symmetry coordinates
in a mahnér'éiﬁilar fo"fhé:factoring of the gématrix-diséussédlearliér in this

text. Again, the number of smaller matrices is equal to the number of irreducible

representations in the molécular point' group chéracter table.
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146 (A') and 116 - (A") elements. The factored Z matrices are not included in

~

this text because of space: limitations.

. SVQFF Force Constant Parameters.for. the 1 S-Anhydropentltol Models

The, force constant parameters speclfled in the Z matrices are the elements
which comprise the 1,5-AP SVQFF discussed earlier. The initial values for many
of these parameters .were taken from the papers by Snyder and Zerbi (56) and .
Vasko 699).‘ A total of 56 parameters (actually, only 55 parameters because one
of the parameters is a dummy) were requlred to spec1fy the F matrlces for the
1,5-AP models. The constraint matrlces,;é,‘are presented in Tables XLIII, XLIV,
and XLV in Appendix‘IiI. The force constant parameters are listed in Table XX
along with the initial wvalues, values after nonlinear least squares refinement,

'
ks

" and the standard errors.

SOLUTION OF THE VIBRATIONAL SECULAR EQUATION AND LEAST
SQUARES REFINEMENT OF THE FORCE CONSTANTS

Solution of the Secular Equation by the Method of Successive ..
Orthogonallzatlon of GF Followed by Jacobi Dlagonallzatlon

The F and G matrices for the 1,5-AP models have now been computed The
next step-is to solve the vibrational secular determinantal equation (26).
There aredseveral methods which are applicabie to computers for solving the
secular equation [for example, see Wilson, et al. Qég)].‘ The method adopted for
all such'computer programs employed in this investigation:is‘that of successive

orthogonalization of the product GF followed by Jacobi diagonalization.
AR

T

In this method, the transformation to a new set of coordinates in which G

[d

is a unit matrix is computed

5= AGA! = (G(m l)) (46)

A(
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TABLE XX

SVQFF FORCE CONSTANT PARAMETERS FOR THE
1,5-ANHYDROPENTITOL MODELS

Atoms .Comnion

Céordinates to Interacting Initial ' Final Error-
Group Involved Coordinates Value, @i Value, @i 0(@1)
Stretch

C-0-C - C=0 | . 5.090°°%  5.067  0.0T1
C-OH C-0 ‘ 5,090° 5,103  0.073
H-C-0-C C-H L.626° 4,597  0.045
H-C-OH - C-H - 4.688° 4.589  0.062
c-C c~C L.261° L.247  0.071
0-H 0-H : 6.4u0c 6.283  0.03k

Stretch-~-Stretch

0.1201°°¢  0.107  0.075

C—C~0-C ¢-C,Cc-0 c
C-C-OH €=C,C=0 c
C=C=C C-C,C=C c
C=0-C C-0,C-0 0 0.288¢ 0.324  0.072
H-C~0-C C-0,C-H c 0.000° 0.016  0.071
H-C-OH C=0,C-H c
C-C(H)-0-C ¢-C,C-H c 0.000°% -0.027  0.07L
- ¢=C(H)-0H C-C,C~H c
H-C (H)-0-C C-H,C-H c ~0.0L6° -0.010  0.03k4
c-0-H  C-0,0-H 0 0.000° 0.005  0.0T1
Bend
H-C-0-C <HCO 0.901%*T  0.926  0.066
C-C-0-C  <cCo | 1.182° 1.169  0.071
C-C (H)-0-C <HCC | 0.752° 0.792  0.066
H-C(H)-0-C <HCH - o.m€ 0.452  0.062
c-C(H)-0H <HCC 0.718° 0.725  0.06h4
C~C-OH <cco 1.182° 1.180  0.071
C-0-H <COH ~ 0.760% 0.73% 0.069
C-C-C <cee _ ‘ 1.071°¢ 1.056  0.071
H-C-OH <HCO ' 0.961° 0.963  0.067
c-o-c ~  <coc 1.313° 1.318  0.07L

See end of table for footnote.
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TABLE XX (Continued)

SVQFF FORCE CONSTANT PARAMETERS FOR THE“':
1,5-ANHYDROPENTITOL MODELS .

_ : »Atoms Common a
Force Constant . .+ Coordinates +to Interacting : Initial Final . Error -
Parameter No. - Group - - Involved . Coordinates Value,;éff'Value, ¢i" Q(Qi)

Stretch-Bend

23 - H-C-0-C . C=0,<HCO - co. . 0.387°°8. 0.388  0.072

' H-C-OH - d-d ,<:HCO co - - . o,

24 S C=C-0-C - C-04CCO - co.- . -~ . 0.618%.. . - 0.66k 0.070

C-C-OH . C-0,LCCO co

25 N Dummy parameter, not.specified in %,matriceS» :

26 o C=0=C. . C=0,4C0C co 0.483° . 0.487  0.071
27 C-C-0-C C-C,LCCO cc 0.403° 0.381  0.07h
| " C-C-OH C-C ,£CCO ' cc .

28 Cc-C(H)-0-C C-C L HCC cc .- . 0.478% . o0.k81 0.06L

C-C(H)-OH  C-CLHCC - cc .
29 c-C-C C-CLCCC™ - cc - oaare 0.485  0.071
30 H-C-0-C c-n,(ﬁco' ' CH © 0.000° -0.167 0.063
H-C(H)-0-C  C-H,HCH ' CH - a )
C-C(H)-0OH C—H,{I&CC o CH -
. C-C(H)-OH  C-H,LHCO CH
31 C-0-H  C-0,ZC0H co  o0.3871% 0.357  0.070
32 C-0-H 0-H,<COH - OH . 0.000% -~ 0.006 0.071
Bend-Bend
33 C-C(H)-0-C  <HCO,<HCC CH 0.125%°F 0.135 0.0k2
C-C(H)-O0H <HCO.HCC . CH. . : o
3k C-C(H)-0-C < HCO,LCCO - co ' -0.031° -0.094 0.070
" c-c(H)-o-c  <CCO<HCC cc o
c-C(H)-0H <HCCCCO . cc
c-c(H)-c.  <HCCLCCC . cc
C-C-C-H  <HCC,CCC - cc
C-C(H)-0H <CCO,LKHCO . o

35 H-C(H)-0-C < HCO,<HCO Co -0.005° ~0.027 0.063

See end of table for footnote.
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TABLE XX (Continued)

SVQFF FORCE CONSTANT PARAMETERS FOR THE
1,5-ANHYDROPENTITOL MODELS

Atoms Common

Force Constant " Coordinates to Interacting Initial Final . Erroréx
Parameter No. Group Involved Coordinates Value, ¢i Value, ®i O(Qi)
Bend-Bend (Continued)
36 H-C(H)-C . <HCC,<HCC ce 0.105° 0.066 0.068
37 C-C(H)-C  <HCC,<HCC CH 0.012° -0.001  0.062
38 C=C(OH)-C < CCO <CCO co - -0.01° 0.052  0.071
c-c(oH)-c <cco,<cce cc
39 H-C-0-C <HC0,<CcoC (H)c-0(c) -0.112° -0.096 0.071
. . trans
4o H-C-0-C <HCOo g coc (H)Cc-0(C) 0.004° -0.037 0.072
gauche .
L1 C-C-0-C < CCO ,<COC (c)e-o(c) 0.011° -0.024 0.073
gauche
"HO-C-C-0-C. <CCOLCCo (0)c-c(o)
gauche
C-C-C-0-C <CCO & CCC (c)c-c(o)
gauche |
c-c-c-0H <cee,<eco (c)c-c(o)
gauche
HO-C-C-OH = <(CC0,<CCOo (0)c-c(o)
gauche
c-c-c-C  <CCC,<cce (c)c-c(c)
gauche
L2 HO-C-C~0-C < (C0,<CCOo (0)c-c(0) -0,011° -0.01k 0.072
trans '
c-c-0-C  <gCo,coc (c)c-o(c)
trans
HO-C-C-0H < CCO,<CCO (0)c-c(o)
trans
c-C-C-C  <.CCC<CCC (c)e-c(c)
trans
C-C-C-0H <(CCC L CCO (c)c-c(0)
' trans
43 H-C-C~0-C < CCO <HCC (1)c~-c(0) -0.113° -0.238 0.070
gauche
H-C-C-OH < CCO,<HCC (r)Cc~c(0)
gauche
Ly H~C-C~-0-C <(CCO,<HCC (H)C-C(0) 0.028° 0.037 0.071
trans ‘
H-C-C-OH < CCOKHCC (H)Cc-c(0)
trans

See end of table for footnote.
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TABLE XX (Continued)

SVQFF FORCE CONSTANT PARAMETERS FOR THE
1,5-ANHYDROPENTITOL MODELS

Atoms Common

Force Constant Coordinateé'“to Interacting‘ Initial Final Errora
Parameter No. Group Involved Coordinates Value, @i Value, @i G(Qi)
Bend-Bend (Continued) -

L5 H-C-0-H  <COH,<KHCO (H)o-C(H) 0.000° 0.000®  0.000

. D ‘gauche e
L6 H-C-C-H <HCC ,<CCH (Ha)c-c (H_b) " 0.004 -0.002 0.064
o gauche R .
L7 H-C-C-H  <HCC,KCCH (Ha)C—C(H.b) 7 0.1217 0.0k49 '0.071

. trenéf:’ E‘, . .
48 H-C-C-C <CCC,<CCH (c)c-c(H) 0.049 -0.0L4T 0.07Th4
trans

ho - H-C-C-C <cce ,<CCH (c)e-c(H) -0.052 -0.106 0.071

" gauche e
50 C-C-0-H  <CCO,<COH (c)c-o(H) 0.000 0.010 0.070
; B L ) gauche P o
51 H-C-0-H  <HOC,<OCH (H)o-C(H) 0.000° 0.016 0.070

: . trans .
Torsion
52 c-C c-C 0.024¢°8 0.027 0.0L7
53 C-OH c-0 0.026% 0.028  0.055
5 C-0-C - c-0 0.026° 0.012 0.073
Additional Bend-Bend

55  H-C(H)-0-C - <HCO LHCH "~ . CH 0.000% -0.026 0.036
56 H-C(H)-C  <HCC,<HCH CH 0.000° - 0.061

0.025

ac(@ ) is the standard error in ¢ estlmated from the standard error 1n the frequency

parameters and the H matrix in the nonlinear reflnement

The units for the force constants in this group are mdyn./A.

The initial force constant values were:taken.from Snyder and Zerbi (56).
dThe initial force constant values were taken from Vasko (99)

®The force constant was assigned an 1n1t1al value of zero because a value was not
reported in the literature.

The units for the force constants in this group are mdyn./A./(rad)?.

The units for the force constants in this group are mdyn./rad.
hThe force constant was not included in the refinement because it was not specified
in any of the constraint matrices since all the H-C-0O-H torsional coordinates were
assumed to be trans in the definition of the 1,5-anhydropentitol models.



-110-

where (-G-ﬁn_x—l)) is a diagonal matrix
NS

E = ((Ac,/(-m'l)-)-l’z%(m—l))%(m—l))-l’
N T R (b7)?2
and then applied to the ,_I;ma.trix. '
B= (g(m“l))l“*(g‘);P;ijlcg(fm‘l))l? : (48)

The new F matrix, H, is symmetric and may be diagonalized by the Jacobi method
—~ A~ ) .

as cited by Acton (100).

HW = WA (49)

~S ~N/

whereﬂ[; is a diagonal matrix of the eigenvalues, A. Although the transformation,
A, was first applied to G and then to F, the result is the same as applying the
~ ~ ~

transformation to the product GF which appears in Equation (26). That is,
Al :

(/™)) Pngrar (g1 )% = (gl )y Pponr (glm)) Teglmot)ys
(‘f‘,-l)'fﬁz' (_g(-m-l));é} = (',\G/(,m-l));é(f;-l)',gﬁ‘:l (,/C\}/(m_l))% = /I"I/ (50)

using Equation (47) and the fact that A is orthogonal. The details of the computa-
R ~ .

tional method follow.

The elements of %may be written as

k-z' m %Blkmk . ' (51)

13 1 ' ' 1) L
In th:.s equa.tlon (G('m l)) 2 js defined to be [((g(IE l))2] 1
~/
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which corresponds to the matrix expression for g;g iven in Equation (32), A row

N

1
vector, D , may be deflned with 3N elements, o éBlk’ and Equation (51) may then

be written as.

Gij = DiDs . | (52)

A new set of vectors, E;, are then defined as linear combinations of the Ei such

that the new vectors are mutually orthogonal, that is,
D,D! = 0 ‘ : (53)
for i # j. The G matrix in the new coordinates is diagonal, since
=7 dJ = .

G., =D.5

G,y = 55} . o (54)

The new vectors are obtained by the Schmidt orthogonalization procedure and are

defined by the equations

v}
-
]

allD;-
D2 = a22D2 + a21D1 (55)

' Da = a{sDa + a32D2 + a3iD;
vhere a,, = 1 for i = J and a,, = -D,D! (D D3 ) for i # J.

ii - = =ij —J—

R = AR | (56)

A, =a A . - ' (57)
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for i > J. The coefficients 8% may be computed by the following procedure.

First, Gx.G /G11 ‘is subtracted from each element of G except Gi1, and the
resultlng matrlx is designated as G(l) The matrix G(l) is symmetric and the

Tirst row vanishes, so the operation need only be carried out for the rows two

(1)

through N and for G , 1< ],

It will now be shown that
5,5, = 653) | (58)

and that

= ) |
Dsz = 23 | (59)

for Q > 2, By Equation (55), one may see that

= D, (D3 +‘32151) 5}D£

o
N
(=
N
I

(D2 + a21D1)D2 = Ga2 + 221G12 (60)

G22 - G12G12/G11 = Gg%) .

Similarly, we have

D2D! = (D2 + 821D1)D! = G,, - G12G,,/G11 = Ggl)- (61)
J J J J J
A similar process may be carried out on gﬁl), defining
() _ ;1) (l) (l) ot1)
G - G3 62
for i > 2 and J > i, and it can be shown that
53D} = af3’
and (63)
= (2)
D3D! = G|
3 j 3J.

for § > 3.
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Successive applications of this process will lead to a diagonal matrix,

G(g-l), whose elements arerggg), Gg%), ¢++, where GQO)

is the original G
= =~ =~

matrix. In general,

(k) _ (k1) (k=1), (k1) ., (1) |
Gij = Gij - Gki ij /G ) ' (6k)
for X = 1 to m-1 and 1 > l_:_;‘ J z__Z_L_ Since

5o = gH-l)

i ij

and ' : o B ' T (65)
D.D! Gﬁ'-l)
1l 1 11

a,, = - D,0!/(5,5,) = ¢-i-1)gti-1), - (66)
The cdrresponding F matrix transfofmation is given by
~
o= (a~1yipa=l : | o
E= (A7) FA. (67)

So, one needs to compute A '. From Equation (55), one may see that, since
= e

8.5 = l, the inverse transformation is

—l-
%
D, =D,
Dy = f& - azlfh | (68)
D3 .= 5} ~»a325} - a31D)
etec.

Therefore, the matrix A ! has the form
~ .
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[ : |
l 0 O 0 se e
G12/Gi11 1 0 0 ceeses |
' 1
G13/G1a Gga)/Gg%) 1 0 cecoas
= 2
’é 1= GJ.LO/GIJ. Gg%)/Gg]ﬁ) Gg%)/cg3) 1 seccee (69)
. . . .' l
T, ) —
The matrix gﬁg—l) is diagonal, but not a unit matrix. It is made a unit matrix
by normalizing the vectors E; to unity.
= 1]
E;, = D,/(D,D{)". (70)

This is equivalent to a coordinate transformation (G(E'l))_%; that is,
A =

_ elnm1) <t (me1) o (me1) ) -
E=(G )G T ()
The corresponding E:matrix transformation is
~/
= (me1) e lme1) e ~
B= (RGO (72)

The matrix H is symmetric and can be diagonalized by an orthogonal matrix W,
x =

that is.,

B = ¥k (73)

Therefore, the transformations which diagonalize the kinetic and potential

energy matrices are

Ol T V(S SOl R F ) (7%)

and wgm sy gty o (75)
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and | o= Aty R ¢ (3
ety i

If redundant coordinates are used, the same procedure applies. If, for

example, the ith coordinate is a member of a redundant set and the other members

of the set have lower numbers, the ith row of the Q‘E_l) matrix vanishes,
By Pavd
(i-1) _
Gii f 0 (78) ..
and G&}fl)'= 0 (79)

for J > 1. This would seem to lead to difficulties in computing

8y T ng_l)/Gﬁi—l) - . (80)
and Gij) = Gii) - Ggi‘l)e§§'l)/a§i‘l). | (81)

However, in the computer programs the G matrix is entered with an accuracy of

~
about six decimal places and one finds that

cH=1) 5 1g7s
i}

oG o | (82

n 10”8

and GF%—I)
11

and one can compute A"! even for redundant codrdinates. Actually, the ith row
bvd o -
of A gives the redundancy accurate to about-six significant figures.

The inverse normal coordinate transformation is defined by setting

(a1 g o - (83)

ii
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(m-1)

for G. =
~ii

< 0,00001. This is possible because the momenta, f&, corresponds

to a null coordinate, E&, and does not contribute to the kinetic or potential

energy. The matrices L and L™! are then rectangular and .

A7
-1, _
»IT, L= }53;\1-6
(84)
=1
L@ = By
but M *E
-1
and g& )5&] ¢A§‘

The matrix)% is diagonalized by the Jacobi method (100) to yield the eigenvalue
matrix,ﬁ&, and the transformation matrix, W. The transformation, L, from
~s . ~
internal coordinates to normel coordinates is then computed from the matrix W by
: ~

Equation (76).

Jacobi Diagonalization

Schachtschneider (89) considéfeé three methods of computing the eigenvalues
and eigenveétors of the real symmetric matrix,'g; by diagonalization; hamély,
the Jacobl method, the Givens method, and the Householder method. Although the
Jacobl method is considered to be inefficient and slower than the other two
methods, the eigenvectors resulting from this methodvhave been shown to be more
accurate (&Q&). Also, the Jacobi ﬁefhod is less subject to catastrophic errors
for degenerate and zero roots which are common in the vibrational problem. The

Jacobl method of matrix diagonalization is discussed in several texts, for

example, Schachtschneider (89), Greenstadt (102), and Froberg (103).

The Jacobi method is based on the following theorem. If H is symmetric,
=
there exists an orthogonal matrix, S, such that S'HS is a diagonal matrix
] A ~ AR

whose diagonal elements are the characteristic roots of H, that is, S'HS =l£.
. A AAS

3
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Jacobi proposed the algorithm which will actually construct the unitary -Siwhile-
diagonalizing H. He conceptualized A as describing an n-dimensional space and
: ~ . . -

derived the transformations which orthogonalize the axes. A series of plane

rotations is applied to H, the rotations have.the form

5137 | . o B

1
S — —
where 6 is a function of h.., h,,, and h,, of H. If
R T L P
85y = % Ten (2hyy/(hyy - by) ] | (86)

then it may be shown that the elements Eij reduce to ‘zero upon the application of

the transformation L1§£j}g$1§ij). ‘Repeateduapplication of this process takes

the form

(1) a8y, MG, )0l s,
(8150 e a8f5deme(;8;5) = AL (87)

It may be shown that’éj'in-Equation'(87) approximatele in the theorem. If we

let /_§_/= (’lgij)”.(ifsi_i)’ it cdn be.shown that

N TR IS LTSRN n o (88)
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Furthermore, S satisfies the orthogonality requirement as
Pad

S's,=E = 88} - (89)

and the columns of 8 turn out to be the eigenvectors, Wi’ corresponding to the

N

eigenvalues, Ai'

Force Conétant Refinement

The method of successive orthogénalization followed by diagonalization Jjust
discussed in the last sections provides the procedure for solving the following
problem: given the force constants and the‘gymatrix, find the vibrational
frequencies and normal coordinates. However, the problem posed in the normal
coordinate calculations in this investigation is: given the observed vibrational
frequencies and‘gymatrix, calculafe the force constants and normal coordinates.
The solution of this problem results in several difficﬁities. First, the number
of observed frequencies is almost always smaller than the number of force constants
in the general harmonic force field (GQFF). Second, the osserved frequencies are
anharmonic. Finally, the expansion and solution of the secular equation for the
force constants is an extremely difficuit procedure even with a digital computér.‘
The first two problems are fundamental and require additional data or some
approximations. The last difficulty is computational and can be overcome by using
an iterative method in which app?oximate force constants are refined to give the

"best" fit to the observed data.

For certain small molecules or molecules with a high degree of symmetry,
the first difficulty can be overcome by using frequencies fromisotopically sub-
stituted molecules, and by augmenting the freguency data with Coriolis

coefficients, centrifugal stretching constants, mean amplitudes of vibration, or
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vibrational intensities. In some cases, it .is also possible to measure or
estimate the anharmonic corrections to the observed frequencies. :For most.
molecules, however, the data are far shor£ of the number of force constants .. -
in the general harmonic force field, ana in ordér to proceed with the calcu-
lation of force constants, we must make'some approximations. That is, we must
assume that certéin forée coﬁstaﬁfé éan.be neélecfed; agéumé\some modéirsuch ’
as the UBFF, VFF, or SVQFF; and assume tﬂat the force constants can be trans-
ferred between related molecules.- It ié essential that the number of force
constants be restricted so that itlis léss fhan or eéual to the ﬁﬁﬁber of ob-

served data. In most cases, we iénore the anharmonicity problem.

Because of the computational-diffi;ultiés, it is desirable to have some
iterative procedure by which a set of approximate force constants. can be refined
to give the "best" fit to fhe observed frequencies. Following are tﬁe discussions
of fwo iterative réfinemént féchniques that were employea iﬁ this:iQQestigation;
one, a linear least squares perturbatioq method and tﬁe other, a nonlinear
least squares method. The linear least squares technique féiled to converge in

the normal coordinate analyées of the 1,5-AP compounds and was replaced by the

nonlinear technique in this investigation.

Linear Least Squares Réfinement Method
The linear least squares refinement technique is based on a method by King

(101). The relationship between the elgenvalues, Ai’ and the force constants,

Ejk’ is expanded in a Taylor series.

oA, = § (axi/aFJk)Aij + Y EIZ{ (Bzxi/BijaFlm)AijAFlm 4 oeee (90)
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Only the first'term in the expansion will be considered (i.e., linear refine-
ment). Suppose one is. given an initial Fo matrix, and one solves the secular
v

equation,

ko = debo - | (52)

Lo matrix, one can write

If one assumes L%-to be the ith column of the
= A 50

i_ ,o i :
GE L = KL . (92)

Let AF be a change in the F matrix, and let 1__4}— be the ith column of the new’_]‘:.?
~ =~

matrix. One can write

i_ i J
L —LO+ZGiJL° (93)
. J .
and the secular equation for the new E_matrix is
’ ~/
i 3y _ /40 iy 3
SE, + AEJ (L + § GijLo) = (] + (L, + § Giij) . (ok)
Expanding the above expression, one obtains
i i, ) 3
'EEOLO *,QQELO * g 6ijﬁ§oLo + § 6i GAEL
o.i i o J J
ALy + AL+ A7 ) 858y + &\ § 85Ty - (95)

J

Using Equation (92) and rearranging, one has

SAELi + § ai}gng = § Gij(x‘; - A;)Lg + AAiLi
+ My § 6ing . (96)
From the relation
Sobs = & (97)
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it follows that
Cahr= @ty s (e,

where (Egl)i is the ith row of L;l. Equation (96) is now multiplied on the left

= = ~=

-1 .
by (EQ_)i,to obtain

Criyiaerd 4 T iy, 3y = ,
(L)' AFL + Z aij(LO) AF(LC) = AA; + 8, 0. (99)
This equation is exact, but not very useful since the new coeff1c1ents 5 3 3 are
functions of ég; One may note, however, that if AF is small then the 6 j and

Aki are also small. If one neglects the terms 1nvolv1ng the products of two

small quantities, Equation (99) is'approximated by
iy oaperdy 2 o |
(L) "AE(L-) = 8A, . S .. (100)

The linear refinement method is only as good as thie approximation. Expanding

Equation (100), one obtains

ne

SIS Ll ety o)

which upon comparison with Equation (90) is seen to provide an approximation to
the first derivatives of the Taylor expensidn. This gives one a linear relation-:
between the force constants and.the’frequency parameters, A, which one can write

in matrix notation as

B=3% - o)
where KX is a column matrix of AA ZE is a column matrix of the elements AFij’
. — ,‘J . ——-
and J, the Jacoblan, is a rectangular matrlx of the products (L );i and
~ —
2£E')ji(—o)jk whlch approx1mate (ax /BF k). Thls relatlon forms the basis for the

iterative linear least squares procedure for refining a set of force constants
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to give the "best" fit to the observed frequencies. Suppose one is given an

approximate F matrix, F
~ ~0

, and the observed frequencies, A One solves the

obs’

secular equation

Fobo = Bolko » es)
and letting Aki.= Aiﬁobs - Xi,g in Equation (102) where;é_ls computed from the
L . One applies the least squares theory [for example, Draper and Smith (105)]
29 : =2
to calculate Equation (104) by multiplying Equation (102) on the left by J'P,
~ A~
where P is a weighting matrix (diagonal).
~
"PAY = Vl AR
JBAA = (3'PDAF . (1o04)
The solution of this equation is obtained by iaverting ({'E{) to give
AL N
AR = ' =11
E - el (205)

Now, if the number of frequencies is greaster than the number of F matrix elements,
e

the matrix J'PJ should be nonsingular, and one obtains the corrections, Zﬁ,
Py > ’ ~

vwhich will minimize, r'Pr, the sum of the weighted squares of the residuals,
= A
where r = Aobs - Acalc
-— A vy

. If the corfections, ZE, are fairly large, Equation (101)
= - ;

is approximate and the higher order térmé in the Taylor expansion are important.
One, therefore, uses the corrections to form a new g_= };‘9_ + A’Fvand repeats the
process. If the calculation is well behaved, zg;will decrease on each cycle.

The process is repeated until Zg;becomes very small. (See the following sectionv

on termination of the force constant refinement.)

As was mentioned earlier, in most cases, the number of data afe not
sufficient to determine all of the force constants in the GQFF, and it is

necessary to introduce some constréinfs;“ Even when the data exceed the number




=123~

of force constants, it is usually not possible to determine alli-of the force -
constants. - Mathematically, the determinant of J'PJ is zero or very: small-, and
~ n

the solution to Equatlon (105) 4s d11- deflned, .80 that. it becomes necessary. to

introduce some constraints. - This-is done by means of the constraint matrix, Z,

/\/
discussed . in an.earlier sectdion.:. The Z matrix is the transformation matrix
A
between the force constant parameters, @2,.and the F matrix. One has
. , ~
Fie = 5ZL zjklcbl | (106)

or in matrix notation

. E=128, S - (20m),

where ' Z is a rectangular matrlx of dlmen51on nxm (n is the number of force con-

stants in ¥ and m is the number of parameters in ¢) A/ls a column matrlx of
elements & , and F is a column matrlx of the elements F The elements of Z
k = -Jk’ ~

are determined by the force field model. Differentiating Equation (107), one
obtains

AF, = —/clj.- L - (108)

Z
W

One substitutes this expression into Equation (104) to obtain

‘.

— : _
AER = WE)He (109)
and multiplies on the left by Z' to obtain the "normal equations"'of linear
least squares theory.
2'JIPAX .= (2'I'PIZ)AE . - - - . (110)
~MAS NN N A AN A
Solving this equation for §§, one has
Ao = 1T “lovTipAL
8= ZIBRELEY - (111)
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The above expression is the one that is used to.compute the correctioas
to the force constant parameters which minimize the aifferences between the
calculated and observed frequencies. .Tﬁe>£;matrix is then updated by Equation
(108) to account for the perturbations in the force‘constant parameters, A@i.

Next, the secular equation (103) is solved with the corrected F matrix, and

. * s
the least squares corrections to the force constant parameters are computed
by Equation (111). The iterative process is continued until the condition for

termination is met.

The condition for termination of>the force constant refinement'is dis-
cussed in Appendix IV. The topics of evaluation of transferable force constants,
potential energy distribution, error énalysis, multiple solutions, multiple
regression analysis, noncénvergence, scaling, and damped least squares are also
discussed in Appendix IV in ponnection witﬁ:the least squares refineﬁent

technique.

Computer program for linear least squares. A computer program, FADJ, has

been written by J. H. Schachtschnelder (89) and modlfled for use in this investi-
gation which will solve the v1bratlonal secular determinant, refine the force
constant parameteré by the method of linear least squares, and will perform a
multiple regression analysis at the option of the user. A program listing, flow
diagram, and instructions for use of the program, FADJ, are provided in Appendix
V. In addition to the computations listéd above, FADJ will also calculate the
potential energy distribution in @i, the variance-covariance matrix, the corre-

lation matrix, and the frequency error distribution.
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Solution of the secular equation and linear least squares refinement for

the 1,5-anhydropentitol médels. FADJ was employed to solve the sédula¥ -eéquation -

and refine the initial set of force constants (see TablefXX)Jfor'the~l§5iAP
models. Unfortunately, the linear refinement technique embodied in FADJ failed
in all attempts to reflne the force constants. The force constant perturbatlons,
computed by Equation (lll), resulted in the differences between the calculated |
and observed frequenciles increasing upon each iteration, that is, the reflnement
diverged. The most prohable cause of the dlvergenCe‘was that the problem was
extremely ill-conditioned resulting from sereral of the force constants being

strongly correlated. This, in turn, had the effect of making the normal matrix,

(z'J'PJZ), nearly singular. Scaling and damped least squares were employed in
A W VA . ’

an attempt to force convergence of the refinement without success. The force
constants were refined successfully later in the investigation after the linear
least squares technique was abandoned for a -nonlinear method, which will be dis-

cussed next.

Nonlinear Least Squares Refinement Method
The nonlinear least squares refinement‘technique'to be described was eng-

gested by Gans (120) and is based on the method of Fletcher and Powell (121).

N

In the Fletcher-Powell method (FP), the normal matrix, (Z'J'PJZ)_I, is not

VX%

computed directly as in the linear Gauss-Newton-Raphson method (GNR) just dis-
cussed. Rather, the matrlx:is approximateéed on each iteration, beginning with a

unit matrix and becomlng a very good approx1matlon to (2'J'PJZ)” ! near the

AP Ao Ao
minimum. Thls approach av01ds the generatlon of errors that occur in the GNR

method upon inverting a nearly singular matrix resulting from highly correlated
force constants. In addition, the FP method considers the second-order deriv-

atives in the Taylor expansion of the eigenvalues, whereas the GNR technique
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terminates the series after the first term. The FP method has been reported .
(120) to converge to a minimum even though the initial set of force constants

may be a poor approximation.

To derive the expressions comprising the nonlinear refinement technique,
one again starts with an expansion of the eigenvalues in a Taylor'series, say

at the rth iteration.

r _ ry _ r,.r
ax; = (A, =) = Z (axi/apjk) AFS, + A
g : ‘ (112)
2 r r r LI )
PR YNC N FIF VAR OF) o+ e

J2
In the GNR method, one truncates the series.after the linear term (Gauss linear
approximation), excluding the second and higher order terms. Based on this

approximation and linear least squares theofy, one then derives the following

expression for the corrections to the force.constant parameters
)17 (g 2) ' BEXT (113)*

where the r indicates the rth iteration. In the method of least squares, one
attempts to minimize the difference between the calculated frequency parameters,

kg, and the experimental frequency parameters, Ai’ such that the parameter R,

in Equation (114), is a minimum.
.r - vz _ 5T r
R = lz{ PO = A = (BX)'BAY . (11k)

In the above expression, Pk are the elements of the weighting matrix, P, Now, if
- 7

the expression in Equation (114) is differentiated with respect to the force

constant parameters, @i, the result is

Tho _ A
é}z is defined to be a matrix of the elements AA%.
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[0}

= (aR/acb.i)r (aR/aFlm)r(aFlm/a.%,)r

(115)

B T r
-2 IZ{ PkAAk(a A/ Flm) 2

where g— is the 1ith element of the gradlent vector, g— Elm is an element of the

F matrix; and AAE-= (Ak - Ai). [The above result was obtained by employlng the
a’4 N = ==

chain rule for differentiation and the relation between f'andfg‘which appears in
/—7 .

Equation (107).] Equation (115) may be written in matrix notation as

r _ Ir ,—r ) . 4
g = 2(;5 Z) 'PAA Lo o {116)

—lm)zi When R is a

where fhe Jacebian ﬁatrix, g?; contains the eiemente (Bkk/af
minimum; the gradient veetor is zero. Frem Equaﬁion Cilgd, it is seen'that when
éf-is zero, either §}5'is zero; and the experiﬁéntal frequeneiee arelfitted
exactly, or (gfg; is singular, and the minimﬁm valﬁe ef 5;35 nofiand canﬁot be
zero. {In general, the counterpart of Equation (116) requires that [(Q;E)'ET
(JEZ)] is 51ngu1ar if A&— # 0, } If Equation (11k4) is dlfferentlated once agaln
with respect to ¢, ;» ome obtalns Equatlon (117) [agaln employlng the chain rule )
for differentiation and the relatlon expressed in Equation (107)].

r a2 ro. . r . r
Dij = (3 %R/5 d>i8<DJ.) 2 12{ Pk{(a)\k/acbi) @)\k/wj)

- B2 pede, TN} ‘ (117)

Applying the linear hypothesis, one has

H
ne

r RS &
Dy; = 2 12{ P LA /220 (A /00,)7)

2 § p {(387 /o8 )T(F_/30.)(3\ /A ) BF_ /o 6,0} (118)
k .

2 12: (Jrz)kiPk(JrZ)k(j



-128-

This expression is written in matrix form in Equation (119).

D = 2(,‘,1'5)'13(/51” ). (119)

~ N A A

By comparing Equations (116) and (119) with Equation (113), one notes that the

latter expression can be rewritten as

AT =‘_gg?)'lgr. _ (120)

"/

In the FP method, the second derivative terms in Equation (117) are rein-
troduced indirectly through Equation (120) in the following manner. A positive
definite matrix, g—, where ;{-\7 is to be distinguished from ;Hvin Equation (72), is
updated at each iteration from being, initially, a unit matrix to eventually
becoming & good approximation to Qg?ﬁ_lw The increment added to the force con-

stants, 4@;, is calculated for each iteration by the following expression,

6 = -Fg,. (121)

For linear problems, the FP and the GNR methods are ultimately identical be-
cause the linear hypothesis made in Equation (118) is valid. For nonlinear
problems, the FP method ultimately becomes identical with Newton's method for
nonlinear equations. The latter method converges slowly when not near the
minimum. The FP technique attempts to overcome this by setting E? =‘§’(unit
MA
matrix) and, therefore, &3t = —gl; that is; the first iteration follows the
~ ~ _
path of steepest descent. However, Gans (120) suggests that a more effective
choice might be H* = % {(J'2)'P(J'2)}"'. This choice for H! is not practical,
v >R R ~
however, in those problems where the force constants are highly correlated be-
cause then the matrix [(JZ)'P(JZ)] is singular or nearly singular and cannot be

R PP R '

inverted.
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To approach (Q;Q_l, a method of successive linear searches in,E}conjugete
s ~’

directions is used. At the (r+l)st iteration step, a linear. search 'is made.in

the direction h§-= jggga. By means of the linear search, the minimum of. R(r)( t) =
~ ~

Funcéé? + E;h;) is determlned, g1v1ng the argument 52?1 —/@? + t °h£-=j§£ + A&E,

A Y &

-r =

where é@i is now equal to tr°h—-and tr is an adjustable scalar. The argument

. + . .
of the minimum,lég-l, on the line through.ég-in the direction h;-ls determined
. =

r+l.

by the relation that the scalar product (g=— ,h;J = 0. Now, one has
. ‘ A ~

=3 o+ ) t.n for'j <m-l . . (122)
-~ -~ R
i=j
n J nl =i 1
and g =g’ + ) t.Hh for j < n-1 (123)
. ~ A - iv A~y :
’ i=j] . . , . .
and therefore,
" n . Jy a-l- =i i j _ - o\
e = 1w @), (224)
- . i=j+1 . .
For the generatlon of H—congugate dlrectlons one starts with h% = -gl and calcu—'
lates succe551ve dlrectlons 2?3 by means of h— = —ﬁgg—- Where H— is modified to
ad A~

ﬁ? l, so that h— is an elgenvector of the matrix E? H with elgenvalue 1 This

ensures that H— approaches (D—) ! as ®— approaches ® . . The ﬁﬁ-matrlx is
~min v _

modified on each 1teratlon by the follow1ng expression

E™=F + (DD /e (ag))
—ﬁr(dg)(dg) '/ (ag)'T Hlag)l - (125)

g= - gE = agE and (d<1>) =
- ~ . A

where (dg) ;gf = A3£ The refinement is
terminated after lA@—J become smaller than some arbltrary constant, set by the :

user, for one or more perturbations, also determined by the user. The linear

search technique mentioned above is as follows. PFor a given argument vector,




~130-

s

the function R(t) = Fun

a direction vector,

IF

s defining a direction through;g, a local minimum of

0

g@g + tr°h£) must be found. This means that a value,
=LA

t , must be determined for which B;J(Em) =A(B§/353%- = scalar product - .

= : = n

[g@ + t_*h),h] = 0. From R='(0) = [g(f),h) < 0] it is evident that a minimum
= L ® R = ===

B?{Em) < B?{d) should be found for positive values of t.

The calculation of the minimum is in three stages. The first estimates
the magnitude of tm’ the second determines an interval containing Em, and the

— —-—

third interpolates cubically the value of Em" [The interested reader can find

the details of the cubic interpolation scheme in the IBM manual (122).]

For éach new argument vector,:§, the secular equation must be solved %o
determine Ak’ 5;{§) must be evaluated by Eéuation (ll§), andléz-determined by
Equation (116). For each iteration, r, the process above may be repeated
several times in search of a local minimum. Therefore, the time to complete a
refinement is oftentimes longer with the FP.method as compared to the GNR
method because of the more numercus solutions of the éecﬁlar determinant re-
quired by the FP method. Thus, the computer time needed.to diagonalize the
transfomed;matrix, %, in Equation (‘73) becomes very important for large
molecules or for a series of molecules. The inefficiency of the Jacobi metﬁod
df diagénalizating a symmetric matrix has already been stated. However, at fhe
present, computer time must be sacrificed because the Jacobi method results in
more accurate eigenvalﬁes‘and is less subjéct to-errors due to redundancies in

the coordinates than the two leading possible replacement methods (Givens and

Householder methods) even though these methods are faster and more efficient.
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Termination of the force constant refinement. The force constant refine-

ment is terminated and said to have converged" 1f elther of the follow1ng two

«

conditions are satisfied. The first condltlon requlres that all the correctlons'“
to the force constants, 165.] for a particular perturbation be less than or
equal to an arbltrary constant supplled by the program user. The second con-
dition requlres that the ratlo of sdccess1ve welghted sums of>squares of the

residuals be greater than a tractlonal constant supplled by the dser (usually
very close to 1.0). The user may require that;thdS’condition;be;met seyeralz

times before actual termination:is initiated,.so as to.provide.a check -dgainst

premature termination. - - . - N . -

Error analy31s. The standard error in the force constant parameters, 0(® ),

may also be estlmated for the FP method. The reader may recall that the standard
error was computed from the diagonal elements of;the'normal matrix in the GNR

method, that is,

o(,) = {[5z) P(Jz].;}%ok S ! ‘(1”26)”

1 .
where OX = (ZAA]?_Iji/n)/2 is the standard error in A (n_is the number of nonzero

experimental frequencies entered in the refinement). In the previous section,

the following: expressions were derived. for linear problems.

ro_ oY (127) -
g, = -2U2) EAL |

o= L Vp(3Z)] T .

g o= el co )

For nonlinear problems, the above equations becomelapproximations. Thus, E?
may be used to compute the standard error in the force constant parameters,

since -
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Potential -energy distributiong cartesian displacement coordinates,;-and '.

mean square amplitudes. The potential energy distributions in terms of the .. .

force constant parameters,gé, and‘the internal-coqrdinates,}é; the cartesian
displacement coordinates; the transformationVmafrix,’%; from normal coordi-
nates to iﬁtérﬁél coofdinates{ and the mean square ampli£udes of vibration all
4id one in the-inferpretation'bf'thé'Qibrational”dynamiés'of the>moiecular

model in terms of the atomic'groﬁPIViBrations for each of the normal modes.

The %imatr;x“may be compﬁted by Equation ﬁ76):and’%:1'by Equation (77)
after the secular determinant:hgs been solvgd by the'mgphod_of-guccgssive prtho_
gonalization followed by diagonalization. The;g>matrix, which is the trans-
formation from cérfésian coordinates to intefnal éoordinates; is cbﬁputed By the

Wilson "S vector" technique discussed in the section on G matrix computation.

The transformation, T, from normal coordinates,. Q, to cartesian coordinates, X,
-t

P A
where
2= EEE . (133)
is then computed from the relation
= "1| _1'
T =M"BI(L) (13k)

where M ! is the inverse of the atomic mass matrix. The T matrix gives the
v -+

cartesian displacements for eaéh'aﬁom in the molecule for each normal mode. If,

for example, one gives the normal coordinate, gi,”a unit diéplaéemeﬁt,'thé

cartesian displacements are given by

(1) _ (1) ‘
A =L (135)
where TCE) is the ith column of the matrix T. Let X be the column matrix of
P - A =0

the equilibrium cartesian coordinates used to compute the B matrix; then the
-
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cartesian coordinates of the atoms for the molecule displaced by one unit of

. are
9

}fi) =% +,$}i)' | - T (136)
(1)

If one plots the points X and Xo’ one obtains a representation of the
= b

= (1)

molecule displaced in the normal mode Qi' The elements of T"=" taken three at
= v

a time, giving the x, ¥y, and 2z coordinates of an atom, ﬁay be considered to be
- i .
elements of a vector, a(i), with its origin at atom a. These vectors give the

direction of the straight-line motions of the n atoms vibrating in normal mode i,

and the lengths show the relative aﬁplitudes of vibration for each atom.

-The expression for the potential energy in terms of the normal coordinates

is given in the next equation.

av = ) 2Q2. (137)
i

One can see from this expression that Xi is the potential energy for a unit

displacement of normal mode gi' The following relation for Ai may be derived

from one of the conditions on the matrix L.

(

Z le iF jk (138)

The fractional contribution to Ai from the various F matrix elements, in terms
-~/

of the internal coordinates, is given by

2LJ Ly ij/x ‘ (139)

for i < j for the off-diagonal elements of F and by
= b

J JJ/A (140)

for the diagonal elements of F. The sum of these terms is seen to Be unity.
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In the harmonic osci;lator approximation, .the mean square. amplitude of

the normal mode inis given by , o s e

= (h/8w2_viv)‘Cotr:1(hvk/2kT). Co e (A

where vi is the vibrationalufrequency in sec.—l, é.ié Planck's constéﬁt, k is

Boltzmann's constant, and T is the abéoluﬁé'%emperature. Also, one has Q.Q, = 0

for i_# j. The mean square émplitude métrix for nérmal coofdinates is-défined as
5Q _ ' .
L= QQ ) ‘ : A - (1k2)
and 1s a diagonal matrix with elements

£} = ; - (wen? v, JCoth(hv,_ /2kT) (143)

The mean square amplitude matrices for other cocordinates, such as internal coor-

dinates or cartesian coordinates, can be obtained from the normal coordinate

transformations
B=18, - _: | ‘ )
and | ,)\(/ = 591/ | | .(1h5)
The matrices are defined as N ’
P By - ny (146)
and : A }g jég-‘;aﬁigu = TZ%& E S (1w

The diagonal elements of the‘gﬁmatrices are the mean square émplitﬁdes of vibra-
tion, and the off-diagonal elements are called the interaction‘meah>square ampli-

tudes. The mean amplitude of vibration for a given coordinate, iﬂ is the root
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mean square deviation of the coordinate and is given by the square root of the

appropriate diagonal element Of,é-

In this investigation, the computer program which calculates the mean
square amplitude matrix was modified to include the computation of what shall be
referred to in this text as the "squared amplitudes," in terms of the internal
coordinates, for each normal mode. The program already calculated.a similar
quantity for the”cartesian coordinates., Fof any particular normal mode, 91’
.the "squared amplitudes" for the displaced molecule in terms of internal a;a

cartesian coordinates are defined by the following equations.

Ri) _  (4)? 2.,
P =L (h/8m vi)cOtthvk/sz) (148)
X(i) _ (4)? 2
and zZ =T, (h/BW'vi)CothCth/2kT) | (149)
where L(&) and T(E) are the ith columns of the L and T matrices. A comparison
= = X =2 =

of the "squared amplitudes" for the various internal coordinates of any 91 gives

the relative magnitudes of the displacements of the coordinates from their

equilibrium positions for that particular normal mode.

Computer program to compute the potential energy distribution, cartesian

displacement coordinates, mean. square amplitudes, and "squared amplitudes." The

potential energy distribution in terms of internal coordinates, the cartesian
displacement coordinates, the mean squafe amplitude matrix, and the "squared
amplitudes" are all calculated by the computer program, EIGV, written by J. H.
Schachtschneider (Qg) and modified for use in this investigation. The Coriolis
coupling constants ﬁay also be computed witﬁ this program if desired [see
Schachtschn;idef (89) for a discussion of the computation]. At the option of
the user, the potential energy distribution and "squared amplitudes" are written

on tape. The computer progrem, SASORT, written by the author of this text,
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uses the tape as input, orders the numerical arrays in descending order, and
identifies each value using an internal coordinafe‘coding system. - The computer
program, NFAD, whico is an abbreviated-cersion of FADJ, writes the>ootential
energy distribution in terms of the force constants on tape. The computer program,
PESORT, also written by the author, then‘orders the data in descending order and
labels the elements of the arrays with the appropriate internal coordinate code.
The programs EIGV, SASORT, and PESORT afe listea in Appendix V{along with in-

structions for their use. A flow diagram accompanies the listing of EIGV.

Solution of the secular equation and nonlinear least sdpares refinement

of the force constants for the 1,5-anhydropentitol models. Using the QSCTables
~7

XL-XLII in Appendix II) andZE;(Tableé XLIIi-XLV in Appendix III) matricee pre-
viously described for the 1,5-AP models, the computer prograﬁaFLPO was eméloyed

to solve the secular equation by the'mefhod of .successive orthogonalization of

GF followed by Jacobi diagonalization to yield the eigenvalues, A, for the initial
v :

set of force constant parameters listed in Table XX. The caiculated freqﬁencies

were then computed from the eigenvaluee, X,-using the expression Ak = hﬂzvkz.
Theoretically, there should be 3&76 calculated frequencies for the_;ibratiocal
model where y_corresoonds to the number of "atoms." For the 1,5-AP modele,

there are 19 "atoms" and thus, 51 nonaero calculated fundamental frequencies.

The calculated frequencies for the tetrahedral 1,5-AP models, based on this
initial set of frequencies, are shown in Table XXI. The initial frequency
agreement of the calculated frequencles (Table XXI) wlth the crystalllne infrared
and Raman spectra (Tables III—V) is noted 'to be in the "ballpark" which supportsv
the valldlty of the initial force field. The experlmental frequen01es from both i
the Raman and infrared spectra of the crystalllne compounds were then correlated

with these calculated frequen01es w1th the Raman frequency belng the value

correlated if a choice between Raman and infrared existed. The correlation of
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TABLE XXI

CALCULATED FREQUENCIES FOR THE 1,5-ANHYDROPENTITOL
MODELS BASED ON THE INITIAL SET OF FORCE CONSTANTS
LISTED IN TABLE XXXII

AY Vv Vv
1,5-AX (em.™?) 1,5-AR (em.”!) 1,5-ALA (cm.”!)
3398 11k9 3398 11kl 3398 1139
3398 1139 3398 1119 3398 1132
3398 1113 3398 1119 . 3398 1106
2970 1086 2971 1040 2970 1078
2968 1059 2968 1039 2968 1071
2945 1023 2939 995 2943 989
2938 976 2937 989 2937 959
2932 o3 2937 ok8 293k 928
2863 905 2863 872 2862 885
2862 876 2862 871 2861 839
1463 638 - 1462 651 1463 723

- 1ks9 561 1459 632 1460 622
1h1s 521 1h12 588 1412 545
1405 L62 1405 L5y 1Lko1 L8L
1391 433 1397 Lh9 1375 435
1356 hol 1364 439 1373 409
1355 366 1340 362 1342 397
1330 327 1326 325 1331 315
1323 310 1316 293 1306 309
1316 299 1280 251 1301 260
1288 231 1273 231 1279 228
1256 223 1268 219 1263 227
1252 220 1256 215 1258 217
1234 196 : 1254 199 12k2 180
1213 131 1248 136 1220 131
1155 117k 1176

frequencies was based on band position and distribution. That is, bands in the
spectra were correlated with calculated bands having apéroximately the same
numerical frequency in wave numbers and)or wi£h calculated bands distributed in
e like manner £hropghout-én approximately eqﬁivalent region of the experimental
spectra. For an example of this last techniqué for band correlation, consider

the calculated baids 462, 433, and 421 cm.”! for 1,5-AX in Table XXI. These
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three bands are grouped together, locally."isolated" from. other bands on either
side. The closest band to 462 cm.”' is 521 cm.”?!, and the closest band to 421
em. ! is 366 cm.”! The Raman and infrared spectra are next éxamined.for .three .
bands in this region, essentially "isolated" from their neighbors. Examination
of the tabulated frequencies for the Raman ana infrared spectra of crystalline
1,5-AX in Table III reveals that there are three bands in this region, namely
455, 437, and 418 em.”! These experime;felvbends‘are'locally "igsolated" from
neighboring bands. The nearest band to.h55 em. ! is 533 cm._lJ and the nearest

=1

band to 418 cm.” ! appears at 369 cmy These three spectral bands are then

assigned to the calculated bands with frequenc1es h62 h33 and th cm.”! In
addltlon the information prov1ded by the water and DMSO de solution spectra,
deuterated 1,5-AP spectra, and depolarization ratic measurements assists in the

frequency assignments.

The 56 initial force .constant paremeters~(Table XX) were -then refined for.all .
three models simultaneously to minimize the,eifferences between the observed and.
calculated frequencies. The nonlinear-leaet squares technique based on the
Fletcher-Powell method, available in the coﬁputer program FLPO, was employed in
this refinement. Actually, only 54 of the listed 56 parameters were included
in the refinement. One of these paramefers ie a dummy and the other is a gauche
bend-bend interaction term ﬁhich does not‘efpear-in the E_ﬁatrices for the l;S—AP
compounds, but was included for completenese. Therefore, the refinement invelved
54 variables (force consfanf parameters inirhe SVQFF) and 1Lk data points (ex-
perimental frequencies for the three 1,5-AP compounds) to result in 90 statistical
degrees of freedom. The reflnement converged after 24 1teratlons (1 e., the | |
ratio of successive welghted sum of squares exceeded 0. 995 a total of twelve
tlmes). The final set of force constants resultlng from the reflnement 1s-llsted

in Table XX. The calculated frequencies and the assigned experimental frequencies
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for the final set of refined force constants are tabulated in Tables XXII-XXIV
for 1,5-AX, 1,5-AR, and 1,5-ALA, respectively. The corresponding average
errors (mean deviations) between the observed and calculated frequencies after
force constant refinement were 5.91, 7.60, and 5.16 cm. ' for 1,5-AX, 1,5-AR,
and 1,5-ALA, respectively, for an overall average error of 6.22 em.” ! (This
average error does not include the OH stretch bands because an attempt was not
made to improve the frequency "fit" in this region by allowing separate OH

stretch: force constant paresmeters for -the individual OH groups.)

The factored g:and g:matrices resulting from the transformation to symmetry
coordinates were employed along with the final set of force constant parameters
to calculate the freguencies belonging to each of the two irreducible repre-
sentations, A' and A", fﬁr the C_ point groué for 1,5~AX and 1,5-AR. The results
of the symmetry classification a;; listed in Tables XXII and XXIII and alsoc the
results of the depolarization ratio measureménts (see Tables XII and XIII). The
depolarization ratios proved to be valuable in several cases where the assign-
ment was questionable by providing additional data with which to evaluate the

assignment and permitted & check on the assignment in other cases.

EIGV was employed to compute the pofential energy distribution, L matrix,
internaii.coordinateb; "squared amplitudeé," and cartesian displacement coordi-
nates for each of the 1,5-AP models based on the final set of refined force
constant parameters. Thesé data provided the bhasis for classifying the vibra-
tional motion of each normal‘mode in terms of the vibrations of the substituent
atomic groﬁps for each of the 1,5-AP models. The potential energy distribution,
in terms of the internal coordinates, provides the relative contribution of '
each internsl coordinate to the molecular vibration for each normal mode. The

potential energy distributions are presented for 1,5-AX, 1,5-AR, and 1,5-ALA iﬁ




Expér.
Freq.,

cm.
Raman

3383

3343
3290
- 2985

2970

2928
2896,
2900

2885

2871»

172
1459

1439

1427

1385
1370
1349

1340

IR

3387
3350

3300
2990

2973 -

29&1

2933

2873

1&70_

146k

1kh40

_1391

1372

1356

1340
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TABLE XXIT

CALCULATED ANDVEXPERIMENTAL'FREQUENCIES'INCLUDING'
APPROXIMATE POTENTIAL -ENERGY DISTRIBUTIONS FOR® -
: CRYSTALLINE 1,5-ANHYDROXYLITOL

Calc.
Freg.,
cm.

3356 -
13356

3356

2982

- 2979 .
2946

2926
2911

2882

2880
1468

1460
1hk37

1410 -

1388

1363

1347

13k5

Sym.
Class.

Cale. - Exp.

A
o
A
A
A
X
o
"
n

A"
Al A

RN
Al

A"

A' A?

Kt

See end of table for footnotes.

Approx. PE Dist., .

- %a,b,c,d .

OH(99.9)
"0H(99.9)
OH(99.9) -
ACH(90) -

ACH(92)
CH(90)
cH(92)
. CH(96)
ACH(95)
ACH(9T)
HCOR(L49)HCH(LT)

'HCOR(50)HCH(48)

HCC(38)AHCC(21) -

HCOR(12)

AHCC (35)HCC(20)
HCOR(11)cOH(10)

Hcc(he)AHcc(23)
HCo(12)

Hee (41)AHCC(2T7)
HCOR(10)HCO(10)

HCO(:56)HCC(32)
AHCC(10)

HéC(?l)Hco(ll)

'Descfiptione’f

OH stretch (str.).
OH str.
OH‘str.

Aéymmetric (asym.)
methylene str.

Asym. methylene str.
Methine str.
Mééhine stf.
Methine str.

Symmetric - (sym.) methylene’
str.

Sym. methylene str.

Methylene wag(49) coupled
with methylene scissor{4T7)

Methylene wag(50) coupled
with methylene scissor(48)

Methine op bend(38) coupled
with methylene wag(33) .

Methylene wag(lt6) coupled
with methine op bend and
OH ip bend

Methine deformation (both
ip and op bend)(54) coupled
with methylene wag(28)

Methine deformation (both
ip and op bend)(51) coupled
with methylene wag(37)

Methine deformation (both
ip and op bend)(88) coupled
with methylene wag(l2)

Methine deformation (both
ip and op bend)(82)




Exper.
Freg;,

chi.
Raman

1320
1306

1296

1285
1268
1239
1199

1143

1120

1100

1092

IR

1321

1301

1279

1267

1235

1198

1145

1125

1100

1095
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TABLE XXII (Continued)

CALCULATED AND EXPERIMENTAL FREQUENCIES INCLUDING
APPROXIMATE POTENTIAL ENERGY DISTRIBUTIONS FOR

Calc.
Freq.,
em. t

1329

1298

1292

1272
1257
1207
1201
11k1
1131
1110
1096

1095

CRYSTALLINE 1,5-ANHYDROXYLITOL

Sym.

Clas
Calc.

A'

A"

A'

A"

Al

A"

Al

A'

S

Exp.

Al

A'

A'

Al

Al

Al

A'

See end of table for footnotes.

Approx. PE Dist.,

%a,b,c,d

HCO(59)HCC(19)
HCOR(19)COH(10)
AHCC(8)

Hco(38)Hcc(3é)
HCOR(:30)

HCOR(64)HCO(19)
AHCC(15)

HCOR(46)HCO(25)
Hcc(l?)AHccclh)

COH(56)HCC(16)
HCO (1L )HCOR(8)
AHCC(6)

COH(80)HCC(1T)

COH(T7T)HCO(11)
HCC(10)

co(L9)AHCC(18)
cc(15)HCOR(2)

COR(60)AHCC(19)
cc(19)co(1o)
HCOR(2)

co(8r)cc(16)

. cee(rs)

cc(b1)co(33)
COR(20)

co(28)AHCC(26)
cc(26)coH(18)
HCOR(2)

Descriptione’r

Methine deformation (both
ip and op bend)(78) coupled
with methylene twist(27)

Methine deformation (both
ip and op bend)(70) coupled
with methylene twist(33)

Methylene twist(T79) coupled
with methine ip bend(19)

Methylene twist(60) coupled
with methine deformation
(both ip and op bend)(k42)

OH ip bend(56) coupled with
methine deformation and CO
ip bend(30) and methylene
twist coupled with rock(1lh)

OH ip bend(80) coupled with
methine op bend(lT)

OH ip bend(7T) coupledAWith
methine deformation (both
ip and op bend)(21)

CO str.(L49) coupled with
methylene twist and rock
(20) and ring CC str.(15)

Asym. CORC str.(60) coupled
with methylene twist(21),
ring CC str.(19) and CO
str.(10)

CO str.(8l) coupled with
ring vibration

CO str.(33) coupled with
ring CC(41) and COR str.
(20)

CO str.(28) coupled with
methylene twist and rock-
(28), ring CC str.(26),
and OH ip bend(18)
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TABLE XXII (Continued)

CALCULATED AND EXPERIMENTAL FREQUENCIES INCLUDING
APPROXIMATE POTENTIAL ENERGY DISTRIBUTIONS ‘FOR

CRYSTALLINE 1 5—ANHYDROXYLITOL

See.end of table for footnotes.

Exper.
Freq., Calc. Sym. R T
cm.” ! Freq., Class. Approx.bPE glst"-' : o
Raman IR em. ! Calc. Exp. g2202C Description °®
1056 1060 10k9 - A" A' T co(lT)CC(3h) CO str.(47) coupled with
o C - AHCC(26) ring CC str.(34) and
- methylene twist and rock
| L (28)
1017 1018 . 1oik - A' A" cC(52)COR(3k) Ring CC(52) and COR(3L)
- ' R str.
950 A" cC(72)AHCC(30)  Primarily ring CC str.(72)
HCC(18) coupled with methylene
S twist and rock(38)
933 936 927 A A! COR(22)AHCC(19) Sym. ring str.(35) coupled
cc(13)ceo(1l) with methylene twist and
C0(9)CCOR(T) rock(25) and CO str.(9)
HCOR(6)COH(6) .
905 90k 901 A" cc(7o)cco(21) Asym. ring str.(70) coupled
AHCC(15)c0(12) with methylene twist and
rock(18) and CO str.(12)
896 899 882" A A" cC(61)COR(23) Sym. ring str.(6l) coupled
' : AHCC(20)Ccc0(19) with methylene twist and
HCC(19) rock(23), CO op bend(19),
_ and methine op bend (19).
635 637 655 Al Al CCOR(25)CORC(24) Sym. ‘ring bend
565 563 A" cco(60)Hcc(26) co op ‘bend(60) coupled with
) - methine op bend(26)
sk sh2 : : = - . SECIE o
538 537 533 Al Al cc(35)cco(ik) Ring CC str.(35) coupled
(av.) (av.) co(1k) with CO op bend(1l4) and
' - co str.(ak) o
455 456 Lé7 A" A" cco(k3)HCC(1L) CO op bend(l43) coupled with
cc(xy)~ methine op bend(1lk) and
. N ' - , ring CCC bend (11)
437  4Lko k29 A" A" cce(29)cco(2k) Asym. ring bend
- ‘ CCOR(23) - :
418 420 420 Al A Ccc(37)CORc(2h) Sym. riﬁg’bend
S S cco(19)




Exper.

Freq.,

cm.—l
Raman IR

369 . 366

315 317

299 295

280 285

234

225

220

202

Average error = 5.91 cm.
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TABLE XXII (Continued)

CALCULATED AND EXPERIMENTAL FREQUENCIES INCLUDING
APPROXIMATE POTENTIAL ENERGY DISTRIBUTIONS FOR
CRYSTALLINE 1,5-ANHYDROXYLITOL

Calc. Sym. .
Freq., Class. Approz.bPE EISt" e.f
em. ! Calc. Exp. BT Description ?®
368 Al Al HCC(24k)cce(23) Sym. ring bend(L48) coupled
cco(15)CORC(13) with methine op bend(2L)
CCOR(12) and CO op bend(15)
318 Al CCo(66)HCC(18) CO op bend(66) coupled with
CCOR(lS)AHCC(l2) methine op bend(18), ring
CCOR bend(15), and methyl-
ene rock(1l5)
297 Al cco(k8)rcc(r2) CO op bend(48) coupled with
TCO(10)CCOR(9) ring twist(21), OH op bend
Hce(9)cee(8) (10), and methine op bend
) (9)
278 A" cco(102) ~ CO op bend
2h1 A" TCO(88) OH op bend
230 A" TCO(T73) OH op bend
228 Al TCO(81) OH op bend
200 A" TCC(52)CCOR(13) Ring twist coupled with CO
cco(x2)cec(10) op bend(12) and OH op bend
TCO(10) (10)
131 A TCCc(52)ccc(aT) Ring twist
cco(11)CoRrcC(8)

18

8Just the most significant contributions to the potential energy are listed. The
sum of the components of the potential energy distribution may total more than
100% due to the presence of negative contributions resulting from negative inter-
action force constants.

PpCe«+denotes the "anomeric" carbon atom (i.e., the carbon atom adjacent to the
ring oxygen atom). :

€.+.+0R denotes the ring oxygen atom.

d

TCC, TCO, and TCOR denote torsion about the CC, CO, and COR bonds, respectively.

eIn this column the molecular vibration for each normal mode is classified in
terms of the particular group vibrations accounting for most of the molecular
vibration. o i

fip denotes "in-plane" bending and op denotes "out-of-plane'" bending.

€The average error  (mean deviation) is computed from the difference between the
calculated and corresponding experimental frequencies, either infrared or Raman,
vhichever is closest, and excludes the OH stretching bands. The maximum deviation

in Table XXII is 26.8 cm.” ! and the minimum deviation in this table is -0.5 cm.

=1




Exper.
Freq.,
cm.—l
Raman IR
3406 3409
3350 3345
3250 3279
2997  3000.
2972 2970
2943 2945
2932 293L
2929
2918
2875 2880
1468 1466
1458
1419
1403  1hoo
1385 1388
1365
1350 135k
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TABLE XXIII

CALCULATED AND EXPERIMENTAL FREQUENCIES INCLUDING..
APPROXIMATE POTENTIAL ENERGY DISTRIBUTIONS. FOR
CRYSTALLINE 1,5-ANHYDRORIBITOL

Calc. Sym. s oL
Freg., Class. ApprowaPf EISt”, B o
em. ! Cale. Exp. - q2>0-C-0 Description *
3356 Al OH(99.9) OH stretch (str.)
3356 A" 0H(99.9) OH str.
3356 A 0H(99.9) - OH str.
2982 Al _ ACH(92) Asymmetric (asym.)
. methylene str.
2979 A" ACH(92) Asym. methylene str.
2931 ©  A! CH(94) Methine str.
2925 A" CH(92) . Methine str.
2921 . A' . CH(95) Methine str.
2882 Al ACH(96) Symmetric (sym.)
- methylene str.
2880 A" ACH(97) Sym. methylene str.
1468 'A' A'  HCOR(53)HCH(45) Methylene wag(53) coupled
_ S with methylene scissor(45)
1460 A" A HCOR(49)HCH(48) Methylene wag(49) coupled
' with methylene scissor(48)
1418 A" - AHCC(36)HCC(27)  Methylene wag(50) coupled
' HCOR(1L) with methine op bend(27)
112 A" AHCC(42)HCC(21)  Methylene wag(56) coupled
) : - HCOR(1k) with methine op bend(21)
1393 At HCC(51)HCO(18) Methine deformation
AHcC(9)co(T) (mostly op but some ip
_ ‘ bend) (69) ‘
1367 A" HCC(56)AHCC(1T7) Methine op bend(56) coupled
' S with methylene wag(lT)
13kl Al ' "HCO(59)HCC(29) Methine deformation
(mostly ip, but some op
bend)
- 1320. . A" - "HCO(68)HCC(25) Methine deformation
"HCOR(12) (mostly ip with some op

bend) coupled with
methylene twist(12)

See end of table for footnotes.




Exper.
Freg.,
cm. 1
Raman IR
1315 1310
1290
1281
1265 1264
1244 1245
1226
1202 1202
1156 1156
1124k 1126
1104 1103
1082 1@83
1043 1045
(av.)
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TABLE XXIII (Continued)

CALCULATED AND EXPERIMENTAL FREQUENCIES INCLUDING
APPROXIMATE POTENTIAL ENERGY DISTRIBUTIONS FOR

CRYSTALLINE 1,5-ANHYDRORIBITOL

Calc. Sym.
Freq., - Class.
cm. ! Calc. Exp.
1317 A' A
1295 Al Al
1289 A"
1265 A" A’
1255 A
1233 Al Al
1220 A"
1155 A' Al
1131 A" A"
1106 A"
1096 A’ Al
1042 A" Al

See end of table for footnotes.

Approx. PE Dist.,’

%a ,b N ,d

HCO(59)HCC(28)
HCOR(10)

HCOR(69)AHCC(20)
HCO(13)

HCC(45)HCOR(32)
AHCC(12)

HCC(39)HCOR(37)
HCO(16)AHCC (10)

COH(TT)cc(8)

COH(6L)AHCC(13)
Hce(12)Heo(9)

COH(69)HCC(13)
AHCC(11)HCO(T)

co(k2)aHcc(22)
cc(16), '

COR(56)aHCC(2T)
cc(11)

cc(s52)co(2s)
COR(22)

co(37)cc(a6)
HCO(16)COH(16)
AHCC(15)

CO(60)AHCC(23)
cc(12)

Descriptione’f

Methine deformation
(mostly ip with some op
bend) coupled with
methylene twist(10)

Methylene twist(89)
coupled with methine ip
bend (13)

Methine op bend(45) coupled
with methylene twist(l4lL)

Methine deformation

(mostly op with some ip
bend)(55) coupled with
methylene twist and rock(4T)

OH ip bend(77)

OH ip bend(6L4) coupled with
methylene twist and rock(17)

OH ip bend(69) coupled with
methylene twist and rock{il)

CO str.(L2) coupled with
methylene twist and rock(25)
and ring CC str.(16)

Asym. COR str.(56) coupled
with methylene twist(28)
and ring CC strf(ll)

Asym. ring str.(T4) coupled
with CO str.(25)

CO str.(37) coupled with
ring CC str.(26), methine
ip bend(16), OH ip bend(16),
and methylene twist and -
rock(16)

CO str.(60) coupled with
methylene twist and rock(26)
and ring CC str.(12)



Exper.

Freq.,

em. ! .

Raman IR

1005 1000
993 989
925 928
878 879
832
669 668
647 649
581 582
448 451
L37 533'
Loé 406
3h5' 3k2
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TABLE XXIII (Continued)

CALCULATED AND EXPERIMENTAL FREQUENCIES iNCLUDING
APPROXIMATE POTENTIAL ENERGY DISTRIBUTIONS FOR'
CRYSTALLINE 1,5-ANHYDRORIBITOL

See end of table for footnotes.

Calc. Sym. o .
Freq., Class. Approx.BPE ngtT"_ S e
cm. ! Calc. Exp. %af 3¢ Description ?
102k A " cC(L40)Cor(25) Sym. ring str.(65) coupled
' AHCC(21) with methylene twist and
: rock(25)
1010 A’ A' co(é2)aHcC(19) CO str.(62) coupled with
cc(1s) methylene twist and rock(21)
and ring CC str.(15)
981 A" " ¢cc(6é3)aHcc(22) Asym. ring str.(7L4) coupled
: " HCC(19)cco(15) with methylene twist and
COR(11) rock(27), methine op bend
(19), and CO op bend(15)
926 Al AY COR(k41)cc(25) Sym. COR str.(41l) coupled
_ceco(1T) with ring CC str.(25) and
- CO op bend(17)
876 Al Al cc(k5)co(16) Sym. ring str.(70) coupled
- CCOR{15)COR(10)  with CO str.(16)
. 850 A" cc(88)ancc(12) Asym. ring CC str.(88)
CCOR(10) coupled with methylene
rock(12)
676 Al Hcc(21)cco(18) ‘Methine op bend(21) coupled
cc(i8)cecec(1T) with CO op bend(18), ring
AHCC(13) vib.(35) 'and methylene
twist and rock(13)
6L A" A" cco(53)HCC(24) €O op bend(53) coupled
. . . cc(rs)aHCC(9) with methine op bend(24)
599 - A' A COR(25)cC(21) Sym. ring bend(66) coupled
~ Lo CCOR(20)co(11) with CO str.(11)"
1463 A' LAY CCOR(20)CCO(15) Ring bend(4k) coupled with
cce(aik)cc(1o) CO op bend(15)
L46 A" Al CCOR(29)ccc(25) Ring bend(54) coupled with
' : “cco(19) CO op bend(19) »
k13 A" CCO(88)AHCC(13) CO op bend(88) coupled with
HCC(1l) methylene rock(l7) and’
o . i . methine op bend (11).
342 A' T A! CCO(39)CCOR(28) €0 op bend(39)-coupled with
: ' COR(16)TCC(11) :

‘ring bend and twist:




~1L48-

TABLE XXIII (Continued)

CALCULATED AND EXPERIMENTAL FREQUENCIES INCLUDING
APPROXIMATE POTENTIAL ENERGY DISTRIBUTIONS FOR
CRYSTALLINE 1,5-ANHYDRORIBITOL

Exper. .
Freqg., Calc. Sym. .
em. ! Freg., Class. Approx.bPE ngt°’ o g
Raman IR cm. ! Calc. Exp. AR Description *®
319 308 A' - cco(To)cec(8) CO op bend(70) coupled
- CCOR(T)HCC(T) with ring bend and twist
TCC(T)
306 305 283 A" CCO(69)TCO(19) CO op bend(69) coupled
HCC(16) with OH op bend(19) and
methine op bend(16)
271 255 Al TCO(31)CCo(30) OH op bend(31l) coupled
: cee(21)Hec(13) with CO op bend, ring CCC
bend(21), and methine op
_ _ _ bend(13)
238 240 A" Tc0(89) OH op bend(89)
227 A" TCO(T7)CCco(15) OH op bend(77) coupled
4 with CO op bend(l5)
220 A' TCO(56)cco(18) OH op bend(56) coupled
cce(13) with CO op bend(18) and
_ ring CC bend(13)
208 : 202 A" TCC{56)CCOR(14) Ring twist coupled with CO
‘ cec(12)cco(a2) op bend(12)
(169)8 137 A Tcc(51)ccc(26)  Ring twist

CORC(10)cco(8)

Average error = T.60 cm. 10

aJus’c the most significant contributions to the potential energy are listed. The
sum of the components of the potential energy distribution may total more than
100% due to the presence of negative contributions resulting from negative inter-
action force constants.

AC+++denotes the "anomeric" carbon atom (i.e., the carbon atom adjacent to the
ring oxygen atom). . ‘

*++0OR denotes the ring oxygen atom.

TCC, TCO, and TCOR denote torsion about the CC, CO, and COR bonds, respectively.
In this column the molecular vibration for each normal mode is classified in
"terms of the particular group vibrations accounting for most of the molectlar
vibration. ‘ ' -

ip denotes "in-plane" bending and op denotes "out-of-plane" bending.

This band was not included in the force constant refinement.
hThe average error (mean deviation) is- computed from the difference between the
calculated and corresponding experimental frequencies, either infrared or Raman,
whichever is closest, and excludes the OH stretching bands and the band at 169 |,
em. ! denoted by foothnote g. In Table XXIII the maximum deviation is 36.5 cm. -
and the minimum deviation is 0.2 cm. !



Exper. Efeq.,

Ccli.

Raman

3425

3310

2983

2973

2932

2916

2879

2860

1467

1bsh

14190

1381

1369

1343

1325

IR

3k28

3385

3320

2985

2976 -

2932
2925
2017
2879

2863
;h63

1460

1410

1379

1371

1349

1329

See end of table for footnotes.
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TABLE XXIV

CALCULATED AND EXPERIMENTAL FREQUENCIES INCLUDING
APPROXIMATE POTENTIAL ENERGY DISTRIBUTIONS FOR.
CRYSTALLINE 1,5-ANHYDRO-L-ARABINITOL

Calc. Efeq.,

cm.

3356

3356 .
3356

2981

2978

2940
2926
2915
2882

2880

1469
1461
1k19

. 1395

1378

1372

1341

© 1326

Approx. PE Distr.,

%a,b,c.,d

OH($9.9)
0H(99.9)
0H(99.9)

. AqH(92)

ACH(95)
CH(92)
CH(96)
CH(96)
ACH(96)

ACH(9T)
HCOR(50)HCH(46)

HCOR(L48)HCH(L8)
AHCC(32)HCC(26)

HCOR(11)COH(8)
HCC(5k4)AHCC(21)

Hcc(s50)aHCC(1k)
'HCO(10)COH(8)"

HCC (4T )HCO(28)

- AHCC(17)

HCO({L5)HCC(35)
AHCC(11)

HCO(61)HCC(26)
HCOR(13)

'Déscript‘.ione?f
OH stretch (str.)
OH str.
OH str.

Asymmetric (asym.)
méthylene str.

Asym. methylene str.

. Methine str.

Methine str.

Methine str.

Symmetric (sym.)
methylene str.

Sym. methylene str.

Methylene wag(50) coupled
with methylene scissor(L6)

Methyleéne wag(48) coupled
with methylene scissor(48)

Methylene wag(h3) coupled
with methine op bend(26)

Methine op bend(54)
coupled with methylene
wag(21)

Methine op bend(50)

coupled with methylene
wag(18) '

Methine deformation (both
op and ip bend)(75)
coupled with methylene
wag(22)

Methine deformation (both
op and ip bend)(80)
coupled with methylene
wag(1h4)

Methine deformation
(mostly ip with some op
bend )(87) coupled with
methylene twist(18)
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TABLE XXIV (Continued)

CALCULATED AND EXPERIMENTAL FREQUENCIES INCLUDING
APPROXIMATE POTENTIAL ENERGY DISTRIBUTIONS FOR
CRYSTALLINE 1,5-ANHYDRO~L-ARABINITOL

Exper. EfeQ-s Approx. PE Distr.,

cm, Calc. Freq.,
Raman IR cm. ! %a,b,c,d
1309 1313 1313 HCOR(39)HC0(20)
AHCC(19)HCC(11)
1302 1300 130k HCOR(39)AHCC(22)
HCO(12)HCC(11)
1281 1279 1284, HCO(39)HCOR(30)
HCC(21)COoH(12)
AHCC(8)
1269 1262 1263 HCOR(L4h)AaHCC(21)
CoH(16)HCC(15)
1248 1251 COH(54)HCC(13)
HCOR(11)Hc0(10)
1233 1233 123k COH(5T7)HCC(15)
: HCO(12)
1216 1217 1199 COH(T7T)HCC(1k)
_ HCO(8)
1150 1151 1163 AHcC(25)¢c(21)C0(18)
: . HCC(a7)cod(11)cor(11)
HCO(8) :
1136 1145 1130 co(3k)AHCC(2))
COR(19)cc(1T) .
cee(9)
1108 1108 1108 co(73)cc(i2)
(av.) (av.) AHCC(8)cce(8)
1092 1093 1097 COR(41)cc(30)Cc0o(26)

See end of table for footnotes.

Descriptione’f'
Methylene twist and rock
(58) coupled with methine

deformation (both ip and
op bend)(31)

Methylene twist(61l) coupled
with methine deformation
(both ip and op bend)(23)

Methine deformation (both
ip and op bend)(60) coupled
with methylene twist(38)
and OH ip bend(12)

Methylene twist(65) coupled
with OH ip bend(16) and
methine op bend(1l5)

OH ip bend(Sh) coupled with
methine deformation (both
ip and op bend}(23) and
methylene twist and rock(1l5)

OH ip bend(57) coupled with
methine deformation (both
ip and op bend)(27)

OH ip bend(77) coupled with
methine deformation (both
ip and op bend)(22)

Methylene rock(3l) coupled
with ring str.(32), CO str.
(18), methine deformation
(25), and OH ip bend(ll)

Asym. ring str.(4t5) coupled
with methylene twist and
rock(27) and CO str.(3h4)

CO str.(73) coupled with
ring vib.(20) and methyl-
ene rock(9)

Asym. COR str.(l41) coupled

with ring CC str.(30) and
CO str.(26)
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_ TABLE XXIV (Continued)

CALCULATED AND EXPERIMENTAL FREQUENCIES INCLUDING
APPROXIMATE POTENTIAL ENERGY DISTRIBUTIONS FOR
CRYSTALLINE 1,5-ANHYDRO-L-ARABINITOL

Exper. Efeq-,, Approx. PE Distr.,

cIm. Calc. Freq.,
Reman IR _cm.f1 A g2 2PsC5d
1067  107h 1074 “ cc(35)co(27)
A AHcc(27)conH{10)
. Hce(10)
1057 1056 1061 cc(56)COR(28)
co(22)aHcC(11)
1005 1008 988 co(hh )AECC(19)
o L COR(13)C0(10)
948 9L7 N  9&1 ce(é1)cco(18)
, . A AHcc(14)ccor(12)
926 927 931 co{ko)aHCcC(26)
cc(26)Ccor(1k)
HCC(22)
876 . 880 _ - 873 cc(58)COR(23)
‘ ' Hcc(17)AHCC(16)
cco(11)
837 8Lko 851' cc(30)co(27)Ccor(21)
- cco(12)
758 155 743 CCOR(21)cc(16)co(al)
A ccol{10)corc(9)cce(T)
HCC(6)
633 636 637 . cco(25)cc(21)Hcc(12)
. "~ "CORC(11)CCOR(8)
5Lh6 5L6E 540 cco(34)ce(17)CCOR(LT)
483 483 o one7 _cco(Ao)ch13)ccc(11)v
430 426 Lb1 * cco(h6)HCC (2))
CORC(15)

See end of table for footnotes.

Descriptione’f

Asym. ring str.(35)
coupled with CO str.(27),
methylene twist and rock
(30), OH ip bend(10), and
methine op bend(10)

Sym. ring str.(84) coupled
with CO str.(22) and
methylene rock(1T7)

Asym. ring str.(57) coupled
with methylene twist and
rock(23) and CO str.(10)

Asym. ring str.(87) coupled
with methylene rock(22)

CO str.(40) coupled with
ring str.(40), methylene
twist and rock(27), and
methine op bend(12)

Sym. ring str.(8l) coupled
with methine op bend(17),

‘methylene twist and rock

(17), and CO op bend(1l)

Sym. ring str.(51) coupled
with CO str.(27) and CO op
bend (12)

Ring bend(53) coupled with
CO str.(l4) and methine op
bend(6) -

Ring bend(40) coupled with
CO op bend(25) and methine
op bend(12) -

- CO op bend(3k4) coupled with
. ring bend(3k4)

CO op bend(40) coupled with

ring bend(2L)

CO op bend(46) coupled with
methine op bend(24) and
CORC bend(15)
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TABLE XXIV (Continued)
CALCULATED AND EXPERIMENTAL FREQUENCIES INCLUDING

APPROXIMATE POTENTIAL ENERGY DISTRIBUTIONS FOR
CRYSTALLINE 1,5-ANHYDRO-L-ARABINITOL = '

Exper. §€GQ-, Approx. PE Distr.,

cm. Calc. Freq., b 4 ) e
Raman IR" cm. ? 4220C» Description ?
408 408 403 . cce(31)ceco(27) Ring bend(L48) coupled with
_ COR(10)CCOR(T) mething op bend(27)
383 380 cco(luk)cec(25) Ring bend and twist(51)
: CCOR(15)AHCC(11) coupled with CO op bend
Tcc(11) . (44) and methylene wag(ll)
31k ‘ 302 cco{38)Cccor(19) Ring bend and twist(L6)
: ~ : TCC{15)CORC(12) coupled with CO op bend
(38)
296 296 285 ccof1o2) CO op bend(102)
256 © 260 cco(38)Tco(26) CO op bend(38) coupled
Hce(16)cee(16) with OH op bend(26),
methine op bend(1l6), and
. . ring CCC bend(16)
233 - 237 TCO(90) OH op bend(90)
236 TCcOo(82) OH op bend(82)
222 TCO(62)cco(2k) OH op bend(62) coupled
) with CO op bend(2k)
176 185 TcC(49)CCOR(18) Ring twist(74) coupled
cco(ro)cec(T) with CO op bend(10)
132 TCC(50)ccc(28) Ring twist(78) coupled
cco(9) with CO op bend(9)
12

Average error = 5.16 cm.

&Just the most significant contributions to the potential energy are listed. The
sum of the components of the potential energy distribution may total more than
100% due to the presence of negative contributions resulting from negative inter-
action force constants.

bAC---denotes the "anomeric" carbon atom (i.e., the carbon atom adjacent to the
ring oxygen atom).

c'°°OR denctes the ring oxygen atom.
dTCC, TCO, and TCOR denote torsion about the CC, CO, and COR bonds, respectively.

eIn this column the molecular vibration for each mormal mode is classified in
terms of the particular group vibrations accounting for most of the molecular
- vibration. o .

1

fip denotes "in-plane" bending and op denotes i"out—oJ‘.‘-pla.ne" bending.

€The average error (mean deviation) is computed from the difference between the
calculated and corresponding experimental frequencies, either infrared or Raman,
whichever is closer, and excludes the OH stretching bands. In Table XXIV the
meximum deviation is -20.2 cm. ' and the minimum deviation is 0.3 cm. !
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Tables XXII, XXIII, and XXIV, respectively. This information is essentially the
heart of the interprefation of the vibrational spectfa. ‘The molecular vibrational
motion was then classified in terms o‘fl t.he particular atomic group-y:j.brations
meking the greatest contributions to the pdﬁential energy for each ffeqﬁeﬂéy or
normal mode from the data computed by the érogram EIGV. The results of‘this
classification appear in the lasf column‘in Tables XXII-XXIV. The definitions

of several of the atomic group vibration; listed in these tables are presented in

Fig. 29.
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DISCUSSION OF RESULTS
GENERAL COMMENTS CONCERNING THE NORMAL COORDINATE ANALYSES

In- general the normal coordlnate analyses of the le-AP models were a
success. The computer -methods - of J. H. Schachtschnelder (89) w1th appropr1ate
modification coupled with nonlinear least squares refinement of the force con-
stants appear to prov1de the ‘means for- successful analyses and 1nterpretat10n
of the vibrational spectra of large, complex molecules, at least of” the mono-
saccharides. The successful application of the nonlinear_least squares refine-
ment technique based on the Fletcher-?owell method has been the key to the
mathematlcal treatment of the molecular vibrations of the 1,5-AP compounds,
since the commonly used llnear reflnement technlque could not‘be made to converge

for these compounds.

The quality of the normal coordinate computations for the 1,5-AP compounds-

can be estimated from a number of observations.

l. The average error between the calculated and experimental frequencies
is noted to be ‘numerically small (6.22 cm. !). This observation
suggests ' that the 1,5-AP model geometry and the SVQFF are reasonable
approximations to the real molecule.

2. The same SVQFF was used in the calculation of frequencies for all
three models with the resulting average errors in the three cases
being numerically small and of the same order of magnitude (5.91,
7.60, and 5.16 em. ! for 1,5-AX, 1,5-AR, and 1,5-ALA, respectively).
This observation supports the valldlty of the force field employed
in the calculations. =~ -

3. 'The‘calculated'frequencies for the three models tend to reproduce the

distribution of bands in the 1,5-AP vibrational spectra. The agree-
ment between7calculated-andiexperimental band distribution is evident

TS
The reader is reminded that-in this text. the term.complex is-used to describe
those molecules with several different atomic groups.



-156-

in the bar graph representation of the 1,5-AP spectra shown in Fig. 30.
This observation is probably & more important indicator of the validity
of the normal coordinate caélculations than is the small average error
value. :

4. The analysis of the contributing group vibrations for the 1,5-AP
spectral bands, which is based on the potential energy distributions
in Tables XXII-XXIV, is in agreement with the group frequency corre-

- lation charts for those regions of the spectrum where the charts may be
applied. This analysis also agrees with Snyder and Zerbi's interpreta-
tion of the tetrahydropyran spectrum (56).

5. The elements of the final SVQFF matrix in this investigation are, in
general, numerically similar to Snyder and Zerbi's force field elements
with the differences occurring in the hundredths place.

Several of the "new" interaction force constants which result from the intro-
duction of hydroxyl groups to the tetrahydropyran ring are noted to have negligible
values. These constants are primarily bend-bend interactions, However, when all
the interaction force constants are compared with respect to magnitude, the CO
stretch-bend interaction force constants as a group are found to contain the most
significant members of any other group. The contribution of the CO stretch-bend

interactions to the 1,5-AP force field is a major difference between the force

fields of tetrahydropyran and the 1,5-AP compounds (models).

The standard erfors in the force constants resulting frqm ﬁhe nonlinear re-
finement (see Table XX) are observed ﬁo be larger, by a factor of about 2 to 10,
than the standard errors listed byASn&der and Zerbi (56) resulting from the linear
force constant refinement in the case of the aliphatic ethers. This may be s
direct consequence of the fact that the nonlinear refinement in the analyses of
the 1,5-AP compéunds was based on 90 statistical degrees of freedom, while the
linear refinement in the'analyses Qf the aliphatic ethers was based.on 171 degrees
of freedom. Another reason for the discrepancy may be that the force constant
refinement in the investigation of the 1,5-AP compounds was based on a nonlinear

least squares technique in which the estimation of standard error is not as
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straightforward as for the linear least sQuares technique employed by Snyder and
Zerbi. [The reader may wish to compare the method of estimating the standard
error in the linear refinement technique (Appendix IV) with the method for the

nonlinear technique (page 131).]

A plot of eigenvalues vs. perturbation number reveals that the final set of
eigenvalues for the 1,5-AP models were approached ésymptotically, for the most

part, in the nonlinear Fletcher-Powell refinement.

The average errors between the calculated and experimental frequencies are
5.91, 7.60, and 5.16 em.” ! fpr 1,5-AX, 1,5-AR, and 1,5-ALA, respectively, which
excludes the three OH stretching bands. Thé overall average error is 6.22 cm.”?
This agreemenﬁ is better than Snyder and Zerbi (56) obtained for tetrahydropyran
(average error 12.5 cm.” !) even though théy did not attempt to assign the CH
stretch region of the spectrum. In facf; the agreement is better than these
workers obtained for the entire series of aliphatic ethers (average error 10.4
em. 1), Thé»improved agreement betwéen caléulated-and experimental freqﬁencies
resulting from the normal coordinate analyses of the 1,5-AP compounds is
probably the result of including several additional interaction‘force constants

that were excluded by Snyder and Zerbi. A few of these force cohstants were

determined to have significant magnitude.

The close agreement between the calculated and experiﬁeﬁtal frequencies
for the 1,5-AP compounds, as indicated by the low overall average error, suggests
that the assumption of tetrahedial geometry for the models was reasonable. In- -
deed, the bond angles of the real molecules would not be e#pected to de&iate from
the ideal tetrahedral angle by mofe than a few degrees, Most of the averaged

bond lengths used in the models should not vary more than a few hundreths of an
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angstrom.from-those of- the real molecules. However, the frequency agreement

might have been even better had the exact molécular geometry been knowni' °

The frequencies weré calculated.fér the.l;S;AR medel with thé ldﬁéfr
portion of the ring, i.e., C2-C3-Ch, being madef"flatter."_ That is, the angle
of intersection between the planes passing through C2-C3-Ck and C1-C2, CL-C5 of
the ring was reduced incrementally in a number of calculations keeping.the force
field-constant. The average error was plotted vs. the CCCO(r) dihedral angle
(initially 60°) which is related to the angle of intersection of the ring
planes. The result was that the average errof decreased until the.dihédral angle
reéched 58° after which fheA;verage error began to increase as the dihedral
angle decreased. This observation suggestslthat the real molecule may be.
slightly "flatter" than the assumed 1,5-AR model by a few degrees in the CCCO(x)
dihedrai angle which may account for'the éomewhat higher average error for this

T

compound. This suggestion is partiallyjéﬁfpééted by the x-ray diffraction data
reported for methyl B—D—ribopyranoside'(igé) in which the lower portion of the
ring is obser?ed to be somewhat "flatter" by a few degrees in the CCCO(r) dihedral
anéle. ngever, a crystal strﬁcture stud& of 1,5-AR ﬁust be completed befofe

the validity of this suggestion based on normal coordinate calculations can be

established.

The potential energy distribution (Tables XXII=XXIV) was used to
characterize the calculated frequenciesf(therefore, the assigned frequencies -
also) as to the dominant group vibratibns; Tbe-potential energy contributions
of each internal coordinate comprisinga parficular~groupsvibration (see Fig. 29),
€.g., methylene "wag" which involves thé’inpernal coordinates <HCO(r) and LHCC, -
are summed to estimate the contribution of that atomic group vibration to the

potential energy of a calculated frequency. The characterization of each of the
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calculated frequencies in terms of atomic group vibrations appears in the last .
column of Tables XXII-XXIV. This information simplifies the correlation with

group frequency charts and interpretation of the 1,5-AP spectra.

Examination of the potential energy distributions for 1,5-AX, 1,5-AR, and
1,5-ALA in Tables XXII-XXIV reveals that the vibrational bands are highly coupled;
that is, more than one group vibration contributes significantly to.the molecular
vibration. This extensive vibrational coupling is the primary reason for the
failure of the traditional group frequency approach for interpreting complex .
vibrational spectra. A comparison of Tables XXII-XXIV shows that corresponding
calculated frequencies for each of the three 1,5-AP models exhibit essentially
equivalent potential energy distributions. Further -examination of Tables XXII
and XXIII, corresponding to 1,5-AX and i,S-AR, provides the observation that
several of the corresponding calculated frequencies for the two models that
differ by more than 10 cm.” ! involve internal coordinates of the OH group at

C3 in the potential energy distribution, as might be expected.

The assigned symmetry species for the calculated.frequencies for 1,5-AX
and 1,5—AR resulting from the solutions of the secular‘determinahts using the
factored‘gyandn%>matrices (factored by thé ihtroducti;n of symmeffy coordinates)
are in agreement, for the most part, with the symmetry species determined from
the depolarization ratio measurements. In most of the cases where there is a
conflict betﬁeen the two symmetry classifications, the depolarization ratio is
questionable because the spectral band is overlapped with another. In this
situation, an accurate depblarization r&tio cannot be determined. The only
exception to the above statementsiis provided by the 1,5-AR spectral band at

648 cm.”! The symmetry classification  from the depolarization ratio measurement:

is in conflict with the calculated symmetry classification from the normal
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coordinate computations. In this case, the band is not significantly over-
lapped with another. However, the band is quite weak which makes the depolari-
zation ratic measurement questionable. In general, the depolarization ratio

measurements agree with the calculated symmetry species.

The agreement between the experimental aﬁd calculate@ frequencies (i.e.,
average error) is approximeately the same for the i;S—AP models. In addition,
the force fields for the 1,5-AP models are identical, with the exception of one
or two numerically small interaction coﬁstaﬁfg. ATﬂerefofé; the differences in
the spectral band positions (frequencies) Between‘compounds (see Fig. 31 for a
comparison of the Raman spectra and also Fig. 32 for é comparative bar graph of
the Raman spectra for the l,S-AP‘cbmpounds), ﬁhichvtend to be reproduced by the
calculated frequencies (see Fig. 36);-ﬁust be the resulf of differences in the;%’
matrix, primarily. The‘g_matricgs contain 862 nonzerc elements each for the
1,5-AP models. There are l6Q elements that differ between;the;%Jnatrices of
1,5-AX and 1,5-AR and 150 elements tﬁat diffef between the‘g;matrices of 1,5-AX
and 1,5-ALA. These discrepancies are tﬁe result of the differences in the
orientation of the hydroxyl groups, that is;vaxial vs. equatorial, between models.
Since the bond angles and bond lengths remain the same, the orientation of the
hydroxyl groups is the dominant source of frequency differences between the
vibrational séectra of the 1,5-AP compounds. The frequency variations may then

be attributed primarily to a kinetic energy effect rather than a potential

energy effect.

The NMR spectra of the l,S-AP'compounds‘wefe measured in this investigation
in anticipation that-they would provide conformational information regarding the

1,5-AP solutions. Unfortunately, the NMR spectra of the 1,5-AP compounds in D,0
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and DMSO-de¢ do not offer much conformational information., The NMR spectra are
much too complex to analyze. The series of spectral bands in the region from
§ 4.2 to § 2,7 p.p.m. in the 1,5-AX and 1,5-ALA D,0 NMR spectra appears as a
much condensed set of bands in the region ffom § 4.0 to é 3.6 p.p.m. in the
1,5-AR D0 spectrum (see Fig. 3-~5). This may suggest rapid interconversion
between conformations for 1,5-AR. (The strong band at approximately & 4.6
p.p.m. is due to the OH impurity in the D;0.) The DMSO-dg NMR spectrum for
1,5-AR displays OH bands between & 4.0 and & 5.0 p.p.m. (see Fig. 7). That
these are OH bandstis demonstrated‘by the fact that these bands disappear when
D,0 is added to the system [for example, compare Fig. 8a with Fig. 8b]. In
summary, it is difficult to gain any evidence for the most stable conformer
existing in sblutibn for the 1,5-AP compoﬁﬁds from the NMR spectra because of
their complexity. ?However, later in tﬁis text it is shown that some conforma-

tional information is obtained from the Raman solution spectra.

The SVQfF developed in this investigation of the 1,5-AP compounds is
expected tozfrovidé a reagoggblé.initial'fof;e field for nﬁrmal coordinate
analyses of thé pentoses. This force field should result in the simplification
of the task of initially correlating the caléulated frequencies with the experi-
mental data. The additional interaction force constants which result from the
introduction of a Cl hydréxyl group in going from the 1,5-AP compounds to the
pentoses may be set equal to zero in the initial force field and evaluated

later in the force field refinement after the frequency correlation is accomplished.

The vibrational spectra of the 1,5-AP coﬁpounds (both crystalline and aqueous
solution) have been interpreted in this study based on'the normal coordinate
analyses. In addition to providing important spectral data for a class of

compounds previously unstudied, these interpretations should serve as a guide in
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the assignment of other carbohydrate spectra. . The previous interpre;atioﬁs‘of-4;;
carbohydrate spectra which were based onlthe normal -coordinate analysis of - - .
tetrahydropyran may be reevaluated with the results of this study,: -since the -
1,5-AP compounds provide a more.closely relateé~saccharide model compound than

does tetrahydropyran. -

The results of the spectra analyses for the l,S-AP compounds Will ﬁow be

discussed for each of the cbmpounds individually.

DISCUSSION OF THE INDIVIDUAL 1,5-ANHYDROPENTITOL - .
VIBRATIONAL SPECTRA

1,5-ANHYDROXYLITOL

Interpretation of the Solid State Spectra

In.genéral, the Raman and infrared spectra for 1,5-AX in the solid state
are complementary. Most of the spectral bands appear in both,spectré, which
should be .the case, since the fundamental bands for the 1,5-AP compounds are both
Raman and infrared active. . A .few additional bands appear in the infrared. These
bands are suspected to be overtone .or .combination bands. - It is a well-known fact
that combination and overtcocne bands are more likely to be observed in the infrared

spectrum than in the Raman spectrum.

The possibility of spectral aberra£i§ns in the infrared'séecfra of the l;S-AP
pellets which might resﬁit from intefaééién with the pétassium 5fomide was in-
vestigated. The infrared spectré of thezi,é-A? compoﬁnds ﬁeré récordéd as Nujoi
and Fluorolube mﬁlls. No spegtrai differénces were oﬁserved when thé mullAspéctra

and pellet spectra were compared.

‘The ‘interpretation of the crystalline:l,5-AX~vibrational spectra (infrared .

and Raman)>has essentially been accomplished by the normal coordinate analysis.
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The fesulting potential energy distributions and their characterization in terms
of atomic group vibrations (see Table XXII apd Fig. 29) are basically. the

spectral interpretation. Only a few comment;-concerning the interpretation-of

the 1,5-AX Spectra‘are required regarding those points not evident from the table.
-In the following discussions, the spectral bands will be referred to by their
frequencies in wave numbers (cm. '), The Raman freéuency will be reported first
.With the corresponding inffared frequenéy following in éarentheses. Any éx—
ceptions to this convention will be noted whén,they occur. (The reader may wish
to refer to the crystalline 1,5-AX spectra in;Fig._Q and 10 and the tabulated
frequencies in Table III for the discussion to follow. The comparative bar

graphs in Fig. 30 and 31 may also be helpful.)

There are three OH stretching bands observed in the solid state spectra at

3383(3387), 3343(3350), and 3290(3300) cm. ! However, the normel coordinate

computations predict three bands in this region of the same freguency, 3356 cm, !

The reason for this is that only one OH strétching force constant was used in the
force field, which is equivalent to saying that the three OH groups have identical
bond strengths. This assumption is invalid as the spectra demonstrate. 'One

might use three independent OH force constants to rectify this situation. Never-
theless, the final results would not indicate a great improvement in the average
error because the three OH stretching force constants would be averaged for the
three molecules, and thése bands Aiffer widely in frequency for each compound
becauée of the varying degrees of hydrogeﬁ ﬁonding. The OH stretchinghbands aré
independent of the>rest of theifibrational spectrum. Therefore, the OH stretching
force constants could be set equél to zeré'without affecting the normal coordinate
calculations. It is just as reasonable to employ only one force constanﬁ for OH
stretching to make the analysis‘coﬁplete, but to diéregard the coﬁtribution,of the

OH stretching bands to the average error. The differences between observed and
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calculated frequencies in this region of the spectrum are not indicative of the
frequency agreement for the rest of the vibrational spectrum, so .to -exclude these

bands from the average error cdémputation is-justifiable.

The mathematical analysis predicts seven CH stretéhing bands. - Oniy six -
bands arevséen in the ipdivi@ua; Raman aﬂd infrared spectra. However, when the
two spectra are.compared, one obsérves‘thét fhe seventh band appea?s at 29&1 cm. !
in the iﬂfrared épectrum and is not seen in the Raman spectrum;. Correspondingly,

the shoulder at 2896 cm. ! in the Raman spectrum is not observedrin the infrared

spectrum.

The spectral region from 1472(1470) cm.”! through 1340(1340) cm.” ! is charac-
terized primarily by'methylehe "wag" coupled with methine deformation.  An inter-
esting observation is fhat the bands at 1472(1470) ;ﬁ.-I and 1459(1L46k) cm.-'1 are
not pure methylene "scissoring" bands as might be expected, but are equally coupled
with methylene "wag" resulfing in a more gomplex.group viﬁrétion. Two bands ob-
served in the ihfrared, but‘not.Ramén sfeétrum af‘lhbé ana 1397 cm.-l; have‘nat
been assigﬂed to fundamentél vibrétioﬁs. These bands are weak“shouiders whiéh
the author éuspects might arise ffém a-éémbination of fﬁndameﬁtals, i.e., coﬁbi—
nation bands. Possible combinations which might result in each of‘these Eands are
presented in Table XXV to suggest that such bands are possible in this region of
the spectrum. Further support for the argument that these bands are combination

bands comes from the fact, stated above, that such bands'are more likely to appear

in the infrared than Raman spectrumn.

The next region, from 1320(1321) ecm.-! through 1285(1279) cm. !, is distin-
guished by primarily methylene "twist" coupled with methine deformation.

\
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"TABLE XXV~

. SUGGESTED COMBINATION BANDS. IN THE VIBRATIONAL SPECTRA
OF CRYSTALLINE 1,5-ANHYDROXYLITOL AND POSSIBLE
COMBINATIONS WHICH MIGHT RESULT IN SUCH BANDS

Suspected Combination Ba.nd,a : Possible Combination,b
cm.”} em. !
1402(IR) 2 x (1018) - (637) = 1399
1397 (IR) | . (1199) + (1095) - (899) = 1395
‘1168(13) | (1095) + (1018) - (936) = 1177
1052(IR) (1018) + (936) - (899) = 1055

928(1R) 2 x (1L060) - (1198) = 922

®IR desigﬁates that the band is observed in the infrared spectrum.

The numbers shown in parentheses are the fundamental band frequenciés
in wave numbers. C :

The spéctral bands at 1268(1267), 1239(1235), and li99(1198) cﬁ._l are
interpreted as primarily COH bending bands (OH in-plane bending). This infer—
pretation is supported by the fact that the corrééponding bands in the spectra
of deuterated 1,5-AX (see Fig. 15 and 16 aiong with Table VI) are reduced in

relative intensity.

A very weak infrared band appearing at 1168 cm.” ! is not assigned to a

fundamental vibration. The author suspects that this band is a combination
band. A possible combination which might result in a band in this region is

presented in Table XXV.

From 1143(1145) cm.” ! through 1120(1125) ecm.”!, the spectral bands are
attributed to CO(H) and CO(r) stretching vibrations, where (r) designates the
pyrancose ring oxygen atom. A calculated band in this region at 1131 em. ! is

not observed in either the Raman or infrared spectrum. However, it is possible
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that this band is present, but hidden because of the overlapping 'band tails of

the bands at 1143(1145) and 1120(1125) ecm. ?

The bands in the region from 1100(1100) cm. ! through 896(899) cm.” ! are
assigned to CO stretching vibrations‘aﬂd'ring stretching vibrations. coupled with .
methylene "twist" and "rack." A shoulder appears in-the infrared spectrum at
1052 cm.”! This band could be a combinatioﬁ band. A possible combination is
presented in Table XXV. Another shoulder, although much weaker, is noted in the
infrared at 928 em.” ! This baﬂd also does not -correlate with the set of calculated
frequencies. The author'suggests that this band is a combination band (see Table

XXV). The normal coordinate calculations predict a band at 950 cm. !

which is not
observed in either the Raman or infrared spectrum. Perhaps, the intensity of

this band is too weak for the‘baﬁd to be detected or the band may be masked by

the strong band at 933(936) cm.”!

The spectral regién frém 635(637) cm.-llthfough 315(317) em.”? is dominated
by ring vibrationé, bending, ;nd stre#chiﬁé, coupled.to a lesser éxtept wifh |
methine deformation q£ methyléné "fock." -In this region, a shoulder‘appears'at
533(533) cm._'1 iﬂ both the Ramaﬁ and'infrared épecfra>§hi§h dbesAnot éofrelate
with the calcﬁlated frequgnciés resuiting frog the mathematicai anéiysis. The
author suggests thatvthis bana is thé resulé of bandvsplitting, producing two
bands at 54u4(542) énd 533(533) cm.;l, causéd 5y vibrational -coupling within the
crystal lattice. Iﬁ pther wgrdé, the sélitting of a-fuﬁdamental vibrational band
into twolbands is the result of the crystalliné stafeAéf the compound. The position
of the unperturbed fundamental band might be estimated to appear at 538 cm.l_1 which
is the average of 544 and 533 cm. ' The solﬁtion spectra of 1,5-AX offer support
for this argument (see Fig. 21 and*Table-IX}: ‘A single band is observed ‘at ‘535

em.” ! in the water solution spectrum-and at 536 cm. ! in.the DMSO-dg. solution
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spectrum. Furthermore, an average value of 538 cm.” ! is in closer agreement with

the calculated frequency corresponding to the fundamental band which is 5335cm.714.

Potassium bromide absorbs strongly in the jnfrared region below SOQ.qm.-l,

! The

so the measured infrared spectrum is limited to the region above 300 cm.
Raman spectrum, on the other hand, can be recorded below 300 cm.-l, but below
150 cm. ! 'Rayleigh scatteringvand grating ghosts (with the Spex Raman spectrom-

eter equipped with an Argon ion laser employed in this investigation) mask the

spectral bands of crystalline compounds.

The spectral bands at 299(295) and 280(285) cm.” ! are assigned to CO(H)

deformation.

The weak Raman bands at 234, 225, and 220 cm. ! are assigned to CO(H) tor-
sional vibrétions (OH out-of-plane bending). The Raman spectrum of a magnesium

! with the wave-

oxide pellet displgys two weak, broad bands at 232 and 212 cm.
length of the laser beam at 5145 A. and the slit conditions éimilar to those
employed for the 1,5-AX pellet spectra. These bands are grating ghosts as demon-
strated By the‘fact that they shift inAfrequency when the wavelengths of the

laser beam islchanged to 4880 A. This.observation suggests that the bands at 23k
and 226 em.”! in the crystalline 1,5-AX Raﬁan spectrum may be the result of

grating éhosts. iTo investigate this possibility, the Raman spectrum of crystalline
1,5-AX was recorded with the wavelength of the laser beam set at 4LBBO A. The two

bands at 234 and 220 cm. ! remained unshifted which indicates that they are real

vibraticnal bands.

- The Raman band at 202,c:m.—1 is attributed to a ring twisting vibration. The
calculations predict & band at 131 cm. ! due to a ring twisting vibration, but

this band cannot be detected in the solid state Raman spectrum because of the
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Rayleigh scattering and grating ghosts. Although the grating ghosts did not

1

appear in the 1,5-AX solution spectrum, 'a band at approximately. 131 cm. ' could

PY P

not be detected. If such a band does exist in the vibrational'épectrﬁm, it is

probably extremely weak, too weak to be recorded in the solution spectrum.

" Solution Spectra of 1,5-Anhydroxylitol

The concentrated water solution (ﬁore than 25%) spectrum of 1,5-AX appears
in Fig. 21 and the frequencies for both the water and DMSO-d¢ solution spectra
are tabulated in Table IX. (The spectra of the more concentrated solutions were
observed to be quiﬁe similar to the less'éoncentrated solutions except that the
spectral bands were ﬁore intense in the fofﬁer speétra.) The solution épectra
provide a comparisdn of the vibrational dynamics of 1,5-AX iq solution with that
for the compound in;the solid state, fhé concentratedAwater soclution spectrum
may be used as a substitute for the meit speétrum which could not be recorded
in this investigation. In addition, tﬁe efféct ofléolvent type on the vibrational
spectrum can be estimated from a compéris;h 5f the sélution spectrum af"l,S—AX
in water, an amphiprotic solvent, with the solution spectrum of 1,5-AX in DMS0-dg,
an aprotic solvent.. Such an examination (see. Table IX) suggests that the solvent
type has very littie effect on the spéqtfﬁm,‘at least at concentrations greater
than 30% by weight, because the two spectra are almost identical. Furthermore,
the solvent itself does not appear to alter the sbectrum to any large extent,
since the solution spectral bands correlate well with the solid state spectral
bands. (The correlation of the solution spect;a with the solid state Raman
spectrum is presen£ed in Table XXVI.) Some Sf the solution spectral bands are
shifted in frequency or are broadened from the'corresponding bands appearing in
the solid stafe spectruﬁ, but these deviations;are'suggested to result from the

rotation of the molecules rather than from the interaction with the solvent.
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. TABLE XXVI

'CORRELATION OF THE 1,5-ANHYDROXYLITOL SOLUTION SPECTRA -
(WATER AND DMSO-dg) WITH THE SOLID STATE RAMAN SPECTRUM

Raman, cm.

2985
2970
- 2928
2896
2885
2871
1472
1459
iLk39
1427
1385
1370
- 13k9
1340
1320

1306
1296
1285
1268
1239
1199
1143
1120
1100
1092
1056
1017

933

905

896

635
5hL
- 533
455
L37
418
369.
315
299
280

=1

H20 Solution, cm. !

2985

2912

2875(broad)
- 1469
1462
. broad band
broad band
1385
1368
lost in background
lost in background
1325
1313
hidden in broad band
hidden in broad band
1285(broad)

. hidden in broad band

1232 .
1202
1140
1123
1098
1092
1062.
1023
9L
not visible
896
812(new)
630
535

456

437

416
broad band
. broad band

DMSO-de _
Solution, cm.

2972

2908

2861 (broad)
1470 '
1460
1439
broad band
1380
1370
lost in background
lost in background
1319
1312
hidden in broad band
hidden in broad band
broad bend

hidden in broad band

1227
1196
11h42
1123
1101
1097

. solvent band

solvent band
o9k6

not visible
899

812(new)

solvent band

536

457

k39

413
solvent band
solveht band
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In Table XXVI, one notes that a "new" spectral band appears. at 812-cm. !

in the solution spectra. This band does‘not'appear in the solid staté¢ispectra;and. is
not predicted by the mathematical analysis. This band is suspected to result from
& small proportion of the 1,5-AX molecules existing in the alternate cﬁaif cé;;
formation in solution. The conformational free energy calculgtions, iq Table X?I,
suggest that only about 5% of the molecules éxist in the alternate. conformation

in solution at equilibrium. Furthermore, based on other information tﬁis is a
reasonable region of the. spectrum to expect a band due to the alternate cbnformer..
The band af 812 cm. ! may be the most intense band in. the sﬁectrum of the alter-
nate conformer which would explain why it .is seen and no pthér "new" bands are
observed. Depolarization ratio measuréments for this band classify it as be-
longing to the symmetric symmetry species, A;, These bands are usua;ly more

intense in the Raman spectrum than the antisymmetric bands, A".

Spectra of Deuterated 1,5-Anhydroxylitol

The vibrational spectra of‘crystalline deuterated 1l,5-AX were measured for
the purpose éf providing additional information to assist the assignment .of the
1,5-AX solid state spectral bands, especially the assignment of the:COH defor-

mation bands.

In general, the.spectra of déuterated‘i,S—AX i; charactériied by £he appear-
ance of several (11) "new" bénds, £he décr§a§e-in>reiative inteﬁsify of several.
bands (10), and the increase in reiative‘inte#sit& of ;thef béndé (2).v {The
reader may wish toAcompare the spéctfé of«deutefated 1,5-AX, Fig. 15 and 16 and
summarized in Tabie VI, with the specf}a'fof 1,5-AX, Fig. 9_and 10 and summarized.
in Taﬁle iII.) The baﬁas that Qere reduced iﬁ rélative intensity ﬁefe found to

contain & significant contribution of COH bending. An examination of.the
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deuterated 1,5-AX spectra reveals that the compound was not completely deuter—

ated, i.e., 100%, after pellet preparation.
1,5-ANHYDRORIBITOL

Interpretation of the Solid State Bpectra

The interpretation of the 1,5-AR solid state spectra (Fig: 1l and 12 along
with Table IV) is again based uﬁon the pofential energy distributions expressed
in terms of the various group vibrations-(see Table XXIII and Fig. 29) which
result from the normal coordinate'compﬁtatiéns. In keeping with the discussion
of the 1,5~-AX vibrational spectrs, only‘those points of the interpretation re-
Quiring further comment will be presented. In the following discussion, the
frequency, in wave numbers, of the Raman band will.be given first f§llowed by
the corresponding frequency for the infrared band in parentheses, unless other=- .-

wvise indicsated.

The three OH stretching bands at 3406(3409), 3350(3345), and 3250(3279) cm. !
are assigned to thé three calculated bands of the same frequency, 3356 cm. ' As
stated 'in the discussion of the 1,5~AX spectra, this is a result of using only one
OH stretching force constant. These bands are not included in the computation of
~ the average error beéause they are notffepreéentative of the frequency agreement
for the restxof the spgctrum. An interésting observation is that the middle OH
stretching band which occurs at 3350(33&5) em.”! is at approximatély the ‘same
position as the middle OH stretchingban'd for 1,5-AX which :'is at 3343(3350) cm. !
The other two bands are spread further apért for l,S—AR; 3L06(3409) em.” ! for 1;5-
AR versus 3383(3387) cm, ! fof 1,5-AX and 3290(3é79) cm. ! Qersus 3290(3300) cm.”!
This observation suggests that there are differences in the hydrogen bondiﬁg in

the two crystalline compounds.
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Again, ‘one notes -that the calculations predict Seven CH stretching bands
and both the Raman and infrared spectra show only six bands each in this .region..
By comparing the Raman &and infrared spectra, the seventh band is observed.in the.
infrared spectrum at 2929 cm.” !, since it is an additional band to what is seen
in the Raman spectrum The Raman band at 2918 cm. } is not seen in the infrared,

so this accounts for the fact that only six bands appear 1n each’of the spectra.

The spectral region from 1468(1466) cm.”' through 1350(1354) cm.”! is
chgracterized by érimarily methyiene "wagging" vibrations coupied.with methylene
deformation. The bands at 1468(1466) and 1458 cm.”! are not pure ﬁethylene
"seissor" vibrations'as vas nétea for 1,5-AX, but are methyleﬁen"scissor" coupled

with methylene "wag," approximately equally mixed, to prodﬁce a complex methylene

! in the infrared spectrum is

vibration. The broad band appearing at lh35 cm.
suspected of originating from the overlap of two bands corresponding to the bands
at 1458 and 1419 cm.”! in the Raman spectrum. These individual bands do not

appear in the infrared spectrum.

! is not observed in either

The calculated band with a frequency of 1320 cm.
the Raman or infrared spectrum. It is possible that this band may be hidden in

the tail of the strong Raman band at 1315 cm. !

The region from 1315(1310) cm.flvthrough 1265(126M) em.” ! is described by

methine deformation coupled with methylene "twist.'"

The three bands at 1244k(1245), (1226), and 1202(1202) cm.” ! are assigned to
COH bending (OH in-plane bending). This assignment is supported by the fact that
the corresponding spectral bands in the deuterated 1,5-AR spectra are decreased

in relative intensity (see Fig. .17 and 18 along with Table VII).
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The spectral band at 1167 em. ! in the infrared does not correlate with the

calculated frequencies. This band may be a combination band. A possible combi- ..

nation which might result. in a band in this region is presented in Table XXVII.

TABLE XXVII

SUGGESTED COMBINATION BANDS IN THE VIBRATIONAL SPECTRA
OF CRYSTALLINE 1,5-ANHYDRORIBITOL AND POSSIBLE-
COMBINATIONS WHICH MIGHT RESULT IN SUCH BANDS

Suspected Combination Band,® . Possible Combination,’
cm.-l . A cm.—l

1167(1R) o (1045) + (1000) - (879) = 1166
1093(IR) 2 x (1045) - (1000) = 1090
1077(IR) é x (1103) - (1126) = 1080
107$(R)(IR) 2k (1000) ;'(928) = 107é
963(1R) 2 x (1045) - (1126) = 96k
916(R) (1R) (1045) + (879) - (1000) = 92k
873(1R) © (1045) + (928) - (1103) = 870
TT6(IR) , (1045) + (1000) - (1264) = 781
683(IR) 2 x (34k2) = 68L

(10Lk5) + (989) - (1354) = 680
396(R)(IR) - . (1400) - (1000) = Loo

21R designates that the band is observed in the infrared spectrum; while
R designates that the band is observed in the Raman spectrum

bThe numbers shown in parentheses are the fundamental band frequenc1es in
wave numbers.

The spectral region from 1156(1156) cm.” ! through (832) cm. ' is charac-
terized by CO.stretching and ring stretching vibrations coupled with methylene -
""twist" and "rock." There are two shoulders at 1093:and 1077.cm._1'in the

infrared which do not correlate with the calculated frequencies. These bands
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may be explained as combination bands Csée Table XXVII). The band at 1073(1070)
em.” ! in both the Raman and infrared speétra may alsc be attributed to a combi-
nation band (see Table XXVII). The Raman bands at 1045 and 1040 cm.” ! may
result from band splitting due to vibrationalncoupling within the crystal
iattice. Sﬁpport for this argumeht éomes fromlthe fact that thé calculatiohs
predict only 6ne band in £his regioh and that the infrared solid stéte, éolution,
and deuterated‘l,S-AR speétra display oniy one band in this gegion. In further

1

support, the average of-the two Raman band frequencies is 10&3 cm.”! which is in

1

close agreement with the calculated band in this region at 1042 cm.”! The normal

! which is not observed. in

‘coordinate calculations predict a band at lOéh'cm.-
the Raman.spectrum. However, a ﬁeak shoulder in the inffared spectruﬁ aﬁ 1018
em. ! might be assigned to the calculatediband; This assignment is quéstidnable
and was not made in the normal coordinate calculations. A weak band at 963
cm.” ! in the infrared spectrum, which is not evident in the 1,5-AR mull spectra,
is suspected of being a combination band (see Table XXVII). The weak shoulder at
916(916) cm.”! appears in both the Raman and infrared spectra, but does not.
correlate with the calculated frequencies for the 1,5-AR model. This band is
also suspected of being a combination band,(sée Table XXVII). In addition, the
three infrared bands occurring at 873, 776;>and 683 cm. ! are possibly combina-

tion bands with the exception that the last band might be an overtone band. (This

band is not evident in the mull spectra.)

From 669(668) cm.”! through 306(305) cm. ', the vibrational bands coﬁsist
of mostly ring bending or twisting vibrations coupled with methylene "rocking"
and "twisting" or CO deformation. The véry‘wggk band at 396(395) cm. ! which
is observed in both Raman and infrared-specfra:is suspected of being a combina-
tion band (Table XXVII), since it does not correlate with the calculated frequen-

1

cies. What appears to be a shoulder at 353 cm. ' in the infrared spectrum is
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interpreted to be an artifact of the infrared spectrometer resulting from a slit.

width change occurring in this region.

The Raman bands in the region from 396(305) em. ! fhrougﬁ 208‘cm._1.(the
infrared spectral bands in this région'béing ﬁasked by the absorption of potassiuﬁ
bromide) are assigned to COH torsional viﬁrations (oH oﬁf—of—plane bending) ex-~
cept the band'at 306(305) cm.”! which is a CO déformafion. The Raman bands at
238 and 208 cm. ! do noﬁ appeér to be gréﬁing ghosts because they remain un-
shifted when the waveleﬁgth of the laser‘beam is changed to MBSO A. Two calc;-
lated bands at 227 and‘220 em.” ! are not visible in the‘Ramgp speétrum; ﬁowéver;
since torsional vibrations are generally quité weak in integéity, it is possiﬁle

that they are not detected by the spectrometer.

The calculated bands at 202 and 137 ch_llare characterized by ring twisting.
vibrations. The spectral band at 208 em.” ! was assigned to the calculated
frequency 202 em.”! Because of the Rayleigh scattering and the grating ghosts in
the Raman spectrum of c¢rystalline 1,5-AR, the predicted band at 137 em.” ! could

! in the Raman spectrum

not be detected. However, a band is observed at 169 cm.”
of the solid and at 175 cm. ! in the solution spectrum. It is conceivable to

assign this band to the calculated frequency 137 cm.fl, bu£ such an assignment

was-not made for the normal coordinate calculations.

Solution Spectra of 1,5-Anhydroribitol

The solution spectra, both water and DMSO-dg (see Fig.‘22 and Table X),
correlate quite well with the solid state spectra for 1,5-AR (see Fig. 11 and 12
along with Table IV) as was noted for the 1,5-AX spectxa. The correlation be-~
tween the solution ahd solid state Raman spectra for 1;5—AR is presented -in
Table XXVIII. - An examination of this table indicates that several "new" bands

exist in the solution spectra. -These bands may resilt from the vibrational
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TABLE XXVIII

CORRELATION OF THE .l ,5-ANHYDRORIBITOL. SOLUTION SPECTRA -
(WATER AND DMSO-dg) WITH THE SOLID STATE RAMAN SPECTRUM

Raman, cm. ! H20 Solution, .¢ém. * DMsSO-dg Solution,“cm.flli

2997 o
2972 2983 2969
2943 . o . .
2932 2928 (broad) 2913(broad)
2918 o
2875 2885 2869
1468 iRyal 1463
1458 BRI 1456
1452 " 1hké
1k19 broad band broad band
1403 . broad band broad band
1385 broad band broad band
1350 broad band broad band .
1315 ' 1329 1321
1291(IR of solid) 1286(IR of solid)
1265 1270 1258
12kl . not visible : not ¥isible
1229(IR of solid) 1225(IR of solid)
1202 1206 - 1200 '
1156 1160 1158
1124 1121 . 112k .
1104 hidden in overlap hidden in overlap
1082 1090° - 1001.
1073 hidden in overlap hidden in overlap
1054 (new band) solvent band
1045 1048 solvent band
1040
1005 Q97 solvent band
993 :
967 (new band) solvent band
925 93k 937
916
878 88L 881
869(new band) 869(new band)
837(new band) . solvent band
795(new band) solvent band
692(new band) 688 (new band)
669 hidden by above band solvent band
6LT 648 solvent band
581 584 5TT
L48 456 451
437 - L3k 431
Loé hidden in overlap solvent band
396 hidden in overlap gsolvent band
345 358(broad) solvent band
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motion of & significant amount of the molecules ‘existing in the alternate con-
formation in solution (i.e.,-molecules in the alternative eonfofmatidn to the
more stable crystalline conferﬁatien).- The free energy calculatious for con-
formational differences reported in Table XVI imply that .approximately 26% of
'the molecules may exist in the alternate conformatlon at equilibrium in solution.
As discussed earller in this section, the NMR spectra ape too compllcated to
provide support for thls _argument. However,'normal coordinate calculations,

for which the ring of the 1,5-AR model is "inverted" to form the alternate chair
conformation, do provide semé support for the above argument. Solution of the
secular deteruinant for l,S;AR in the alternate conformation (i.e., a new:gb
matrix, Bubt with the eame‘géuatrix used in the calculations presented: in Table
XXIV) results in several calculated frequencies ﬁhicﬁ‘are significantly
"shifted" in frequency:ffom the corresponding calculated frequencies fer the
more stable conformer. These "shifted" frequencies are in fair agreement with
the "new" spectral bands eppearing in the solution spectra as may be Jjudged from
Table XXIX. The results of these calculatlons support the alternate eenformation
argument and support the valldlty of the normal coordlnate computations‘for the
1,5-AP compcunds. _CA complete listing of the calculated frequencies for both

conformations for each of the 1,5-AP models may be found in Appendix VI.)

TABLE XXIX

-CORRELATION BETWEEN THE CALCULATED BANDS FOR THE
ALTERNATE 1,5-ANHYDRORIBITOL CONFORMER AND THE
ﬁNEW" BANDS APPEARING IN THE. SOLUTION SPECTRA

- "New" Band - = Calculated Band,
H20, cm. ! o DMSO-dg, cm. ! o em.”t
1054 1059.
967 - . 963 .
869 o : 869 S 865 .
. 795 ' ‘ AR g 786

692 688
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Spectra of Deuterated 135—Anhydrqribitol,

The'spectra of cr&stalline deuterated -1,5-AR have provided additional in-

. formﬁtion which has assisted the assignment of spéctral bands in the crystalline
1,5-AR spectra, especially the COH deformation (OH in-plane bending) bands. A
comparison of Fig. 17 and 18 along with Table VII for deuterated 1,5-AR with

Fig. 11 and 12 accompanied by Table IV for l,SQAR reveal that several additional
bands appear upon deuteration (14), some bands were reduced in relative intensify
(16), and others increased in relative intensity (4). From Table XXIIi, it is
found that most of the banas reduced in infenéity involve.éOH vibratiéns. in
general, the correlation between the spectra of l,5—AR-and its deuterated analog
is quite good. Examination-of the infrared spectra of deuterated l,SQAR suggests
that the degree of deuteration is below 100%. However, the degree of deuteration
was undoubtedly reduced during sample preparation. Therefore, there is really

no information regarding the extent of deuteration after preparation of the

deuterated derivative.
1l,5-ANHYDRO-L-ARABINITOL

Interpretation of the Solid State Spectra

The 1,5-ALA solid state spectra have been presented in Fig. 13 and 1L with
the frequehcies tabulated in Table V. Since the spectra of the isomers 1,5-ALA
and 1,5-ADA are identical, the following comments concerning 1,5-ALA shall also

rertain to 1,5-ADA.

The interpretation of the solid state 1,5-ALA specﬁra is based on the
potential energy distributions in terms of the various atomic group vibrations
which are listed in Table XXIV., The definitions for several of the group vibra-
tions are given in Fig. 29. As for 1,5-AX and‘l,S—AR, only those comments con-

cerning the interpretation not immediately realized from Table XXIV shall be
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presented in this section. The same convention regarding the listing of
spectral band frequencies will be followed; that 1s, the frequency of the Raman
band, in wave numbers, will be given first followed by the corresponding in-

frared band frequency in parentheses.

Again, the three OH stretching bands at 3h25(3ﬁ28), (3385), and 3310(3320)
cm._A1 are matched by three calculaféa bands, all of the same fréquency, 3356 cm._l.
As before} the.OH.stnetchihg frequencies are not'included in the computaticn of>
the ave;age efror. An interésting observation is thaf these three bands afé
spread out over.an even wider spectral area than the corresponding bands for

1,5-AX and 1,5-AR. This suggests that there are differences in the hydrogen

bonding for the crystalline 1,5-AP compounds.

All seven of the CH stretching bands are observed in the infrared spectrum
of 1,0~-ALA. The only band not seen in -the Raman spectrum is the one occurring

at 2925 cm. !

The spectral region from 1L6T(1463) cm.”! through 1343(1349) cm.” ! is
characterized primarily by methylene "wag'" vibrations coupled with methine defor-
mation. The two bands at 1467(1463) and 1L54(1460) cm.”™* are again noted to be
equal mixtures of methylene "scissoring" and methylene "ﬁagging." 'The result
is a complex methylene vibratién. The weak shoulder appea?ing at 1L4L6(1kk2)
em.” ! in both the infrared and ﬁaman spectravdoes not correlaté with the calcu—.
lated frequencies. This band is suspected of being a combination band. A
possible combination resulting in a band in this region is suggested in Table

! which is

XXX. The normal coordinate calculations predict a band at 1395 cm.
not seen in the Raman or infrared spectrum. However, a band in this region is

almost evident as a shoulder to thé band at 1410 em.”! in the Raman spectrum. -.
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TABLE XXX .

SUGGESTED COMBINATION BANDS IN THE VIBRATIONAL SPECTRA
OF CRYSTALLINE 1,5~ANHYDRO-L-ARABINITOL AND POSSIBLE
COMBINATIONS WHICH MIGHT RESULT IN SUCH BANDS

Suspected Combination .'Band,a -Possible Combination,p
em.” ! cm. 1
1446(R) (IR) ’ (1281) + (1005) - (837) = 1LLg
4o6(R) | (1410) - (1005) = 405
= 375

371(R) (IR) ’ (1467) - (1092)

®TR (R) designates that the band is observed in the infrared (Raman)
spectrum. '

b'I‘he fundamental band frequencies, in wave numbers, appear in parentheses.

Prom 1325(1329) cm.”! through 1269(1262) cm.”!, the spectral bands are

described by methylene "twisting" vibrations coupléd with methine deformation.

The bands at (1248), 1233(1233), and 1216(1217) cm.” ! are assigned to COH
bending vibrations (OH in-plane bending). . The corresponding spectral bands in
the spectra of deuterated 1,5-ALA are only slightly reduced in relative in-
tensity or not reduced at all. However, examination of the deuterated 1,5-ALA
spectra (Fig. 19 and 20 along with Table VIII) suggests that the .degree of

deuteration was well below 100% which may account>for the above observation.

The region from 1150(1151) cm.” ! through 758(755) cm.”! is distinguished
by CO stretching vibrations and ring stretching vibrations coupled with
méthylene "twisting" and "rocking"-vibratidns. The two bands at 1112(1112).
and 1104(1103) cm. ! are suspected of resulting from the splitting of a funda-
mental band due to vibrational coupling within the crystalline lattice. The
calculations predict only one band in this region at i108 cm.” ! The argument

for band splitting is supported by the fact that only one band is noted in
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this region in the solution spectra. In addition, the average of these two
bands, 1108 cm.'l, agrees exactly with the frequency of the calculated band in

this region for the 1,5-ALA model.

The spectral region from 633(636) cm.”™' through 256 cm.”! is characterized
by primarily CO(H) deformation witp some ring vibrations. The Raman shoulder
band at 406 cm.”! and tﬁe shouldér bandvat 371(375) em.”? in Both the Raman
and infrared spectra ére suspected of being combination bands, since they do

not correlate with the calculated frequencies (see Table XXX).

The normal coordinate calculations predict three bands fésulting from OH
torsional vibrations (OH out-of-plane beﬁding) at 237, 236, and 222 cm. ' The
Raman band at 233 cm. ! may be assigned to either of the calculated bands at
237 or 236 cm. ! since it is impossible to e&aluﬁte the validity of one of the
assignments over the other. in fhé ﬁormal céordinate calculations, this band
was assigned to the calculated frequency 237 cm.”! The calculated band at 222
em.” ! is not observed in the Ramen spectrum of 1,5-ALA. However, torsional
vibrational bands are generally quite weak, and it is possible that such a band

may not be detected by the instrument.

There éfe two ring twistiﬁg bands_ﬁrediétéd by the computations at 185 ana
132 cﬁ.-l There are two Raman bands in this reéion in the Raman crystalline
l,S—ALA spectrum at 197 and 176 em.”! The assignment listed in Table XXIV,
which was assumed in the normal coordinate calculations, is based on the
assumption that the band at 197 em.”! is a grating ghost. Grating ghosts have
been observed in this region in several solid state spectra. Then the band at
176 cm. ! isAéorrelated with the calcuiafed'ﬁand 185 cm.” ! It is not possible
to detect a band in the region of 132 cm. ! because of the Rayleigh scattering

and grating ghosts. - Further, the band is probably too weak to be observed .in
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the solution spectra. In an alternate assignment, one might assﬁme that the

band at 197 cm.” ! is not a grating ghost and correlate this with the calculated
band at 185 cm.” ! The ob;erved.band at 1%6 c@.ii (165 cm.”? in éﬁé water solution
spectrum) might then be correlated with the calculated.ﬁand at 132 cm._l In the
case of 1,5-AR, a band was observed at 169 cm. ™! (175 cm.”! in the water solution
spectrum), and the suggestion was made thét this band might be correlated to a
calculated band at 137 cm. ! In this respect,'the above assignment is in agree-
ment with the assignment for 1,5-AR. However, the first assignment was favored

in the normal coordinate computations, based entirely on preference.

Solution Spectra of 1,5-Anhydro-L-arabinitol

The solutioﬂ spectra of 1,5-ALA, Both.watergand.DMSO—ds (see Fig. 23 and
Teble XI), agree quite well with the solid state'spegtra. Because of fhe
rotation of the molecules, scme of the soiution spectral bands appear -shifted
in ffequency and several of the bands are broadened. The water and DMSO-ds
solution spectral bands are correlated.With the solid étate spectral bands for
1,5-ALA in Table XXXI. (The reader should note the frequency agreement between

the water and the DMSO-dg solution spectra.)

The mosf noticeable feature of the solution spectra is the appearance of a
few "new" bands not observed in the solid stafe spectra. As with l,S—AR,
these "ﬁew" baﬂds are suggested to result from the presence of a significant
amount of the 1,5-ALA mblecules in the alternate conformation in solution. The
conformgtional free énergy calculations in Tabig XVI imply that approximately
28% of tﬁé moleéules will exist in fhe alfefnatg conformation in solution at
equilibrium.: The NMR spectra of 1,5-ALA in D0 (Fig. 5) and DMSO-dg (Fig. 8a)
cannot be used to support this argument because of the difficulty in interpreting

the complex spectra. However, the normal coordinate calculations do support this
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TABLE XXXI

CORRELATION OF THE 1,5-ANHYDRO-L~-ARABINITOL SOLUTION SPECTRA
(WATER AND DMSO-dg) WITH THE SOLID STATE RAMAN SPECTRUM

Raman, cm.

2983
2973
2932
2916
2879
2860
1467
145k
14k2
1410
1381
1369
1343
1325
1309
1302
1281
1233
1216
1150
1136
1112
1104
1092
1067
1057
1008
1005

948

926

876

837
758

633
546

430
408
31k

-1

H,0 Solution, cm. !

2979
2916

- 2872
1468
1452
- “glightly evident
broad band
broad band
broad band
broad band
broad band
1303
1296

1229 .

1153
hidden in overlap

1120

1095
1072
1060
1013

- 9kg
926
883
865({new band)
8Lo
754
T4l {(new band)
640

- 5Lk .
532(nevw band
425 :
Lo7

. .- DMSO-d¢ Solution, cm. *

2968
2902

2863
1463
1446
slightly evident
broad band
broad band
broad band
broad band
brocad band
1308
1292

1225

1156
hidden in overlap
1121

1110
solvent band
solvent band
solvent band
solvent band
9k9
925
881 »
867 (new band)
834
solvent band
TL2(new band)
solvent band
539
522(new band)
420 ;
409

solvent band
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argument as they 4id in the discussion of the l,SQAR solution spectra. ‘That is,
the frequencies were calculated for the 1,5-ALA model with the ring "inverted"
(i.e., in the alternate conformatiah) using‘thé:Same g;méﬁriglemployeQ_fér,thé
calculations reported in Tabie,XXIV. The solution of the secﬁlar determinant for
the "inverted" 1,5-ALA model resulted in a few calculated frequencigs which devi-
ated significantly from those calculated frequencies for the stable conformer.
These calculated frequencies were found to be in fair agreement with the "new"
spectral bands observed in the 1,5-ALA solution spectra. The results are tabu-
lated in Table XXXII. (The,complete'calculated frequency list for both conformers

appears in Appendix VI for each df the 1,5-AP models.)

TABLE XXXII

CORRELATION BETWEEN THE CALCULATED BANDS FOR THE
ALTERNATE 1,5-ANHYDRO-L-ARABINITOL CONFORMER AND
THE "NEW" BANDS APPEARING IN THE SOLUTION SPECTRA

"New" Band Calculdted Band,
‘H0, cm. ' | DMSO-d¢, cm. ! em. !
865 | . 867 831
e Th2 720
532 . 522 518

Spectfa of Deuterated 1,5-Anhydro-L-arabinitol

The deutefated 1,5-ALA spectra appear in Fig. 19 and 20 and the frequencies
are tabulated in Table VIII. Exaiination of‘these spectra reveals that the
degree of deuteration after pellet preparation is well below 100%. The spectra
of the déuterated_deriv;tive of 1,5-ALA is in close agreement with the 1,5-ALA
spectra. Some bands are observed to be shifted slightly in frequency and others
differ in relative intensity (15). In addition, several additional bands are

apparent in the deuterated 1,5~ALA spectra (5).
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1,5-ANHYDRO=DL-ARABINITOL

Comparison of the AJS-Anhydro-DL-arablnltol Spgctra
with that of the L Isomer

As a'matter of interest, the preparation of 1,5-ADLA, measurement of the
vibrational spectra, apd comparison of the spectra with that of the L isomer’
vere compieted*in this investigation. ‘To the suthor's knowledge, such.a com-
parison has not been made in the literature. The 1,5-ADLA spectra is found to
correlate fairly well with the 1,5-ALA spectra, but a number of the 1,5-ADLA
spectral bands are noted to bé shifted significantly in frequency from the
corresponding 1,5-ALA bands; and the relative intensity of several bands differ.
A correlation of the Raman 1,5-ADLA spectral bands with the Raman 1,5-ALA

spectral bands is presented in Table XXXTII.

Kim and Jeffrey Qéz) have notéd that the-étruc£ﬁre of theiunit cell of
B—DL-arablnose has a center of symmetry while that of the isomers does not. Per-
haps, the same is true for the 1 S—anhydroaldltol derlvatlveé. The geometry of
the unit cell may affect the resulting vibrational spectrum of a compound and,
thus, explain the differences observed in the 1,5-ADLA spectra from the 1,5-ALA
spectrum. In addition, the melting point of 1,5-ADLA is 23 degrees lower than
1, E—ALA (see Table II). Thus, the 1ntermolecular bondlng, which is prlmarlly
hydrogen bondlng, must differ for the two forms. The 1ntermolecula¥ bondlng‘may
very well affect the vibrational spectra and account for the diﬁferences between

‘the 1,5-ADLA and 1,5-ALA spectra.

' Thé'l,S;ADLA'spectra and also the déutera£ed 1l,5-ADLA specfra for complete-
ness (see Fig. 26 and 27 along with Table XV) have been presented in this thesis
as a stimulus for research into the-éspects of the effects of uﬂit cell geometry
and intermolecular bonding upon the vibrationai'spectra of:'saccharide and

saccharide-type compounds.



-189-

TABLE XXXIII
CORRELATION BETWEEN THE SOLID STATE RAMAN SPECTRA

OF 1,5~-ANHYDRO-DL-ARABINITOL AND -
1,5-ANHYDRO-L-ARABINITOL

1,5-ADLA, -cm.” ! 1,5-ALA, cm. ! 1,5-ADLA, em.” !  1,5-ALA, cm. !

3324 , 3425 . 1085 - 1092
3214 3310 1064 1067
3000 2983 _ - 1057
2989 , 2973 1012 1005
2066 . 2932 951 948
: 2951 923 : 926
2916 : . 880 876
2890 - , 8L0 837
2879 » 2887 o 756 : 758
2860 2852 © 750
1Lk69 1467 629 633
1450 ‘ lhsk 550 546
. . 1446 493 483
1423 4us5
1396 1410 Log . 430
1381 1381 : Lot 408
1359 1369 o - 406,
1340 1343 A 383
1325 375 371
1309 ) 338
1312 _ 1302 . 326
1287 1281 313 31k
1271 1269 291 296
1243 ’ 269
1235 © 1233 ' . 256
1224 ' 1216 231 - 233
115k . 1150 197 197
1127 o 1136 185 , 176
1113 1112 :

1097 . 110L
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CONCLUSIONS

The successfui ﬂormal coordinate énalyses'of the 1,5-AP comppunds has
demonstrated the feasibility of'exténding such calculations to large, complex
molecules. It now appears quite reasonable to attempt a complete normal coor-
dinate analysis for, at least, the monoséccharides and their derivatives. The
successful Qbéiication of these méthods toleven lérger molecules will depend
upon the ava;lability of a computer with‘the necessary core storage and computa-
tional speed: An important element in determining the success of the .normal
coordinate analyses was the introduction of the noglinear force field perturba-
tion technigue which is based on the Fletcher-Powell method (121). Such a
refinement method is very necessary for problems involving extensive vibrational
coupling as ig present in the case of large, compiex molecules such as the 1,5-

AP compounds and the monosaccharides.

The normal ccoordinate anal&ses have provided réasonable interprgtations of
the 1,5-AP solid state vibrational spectra. The mathematical methods employed
in these analyses are admittedly qualitaéive; ’However, it is the qualitative
aspects of the methods that make them so"véluable to the physical cheﬁist and
vibrational”;pectroscopist. Although the ﬁuﬁericél percentage contribution of‘;;
matrix elements to the potential energy distributién cannot be assumed rigorously
accurate, the numbers do indicate the relative contribution of each element to
the potential energy which is extremely valuable in interpreting the spectra;
The fact that such a close agreement was reached between the calculated and experi-
mental frgquencies for the three 1,5-AP compounds (average error of 6.2 cm.”!) and
that the interpretation agrees with the e&perimental vibrational information
available for similar compounds,ﬁinclﬁding the group frequency correlation charts,

add support to the results of the normal coordinate computations.
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The SVQFF derived in this investigation is specific for pyranose ring com-
pounds with hydroxyl groups. It should simplify the normal coordinate analyses
of the pentoses (which should be considered thé next logical set of compounds to
be analyzed in thé physiéal chemical iﬁvestigétiéh of the vibréfionél épéétra of
the saccharides) by feducing the difficﬁlty involved in the ihitiél correlatiént
of thé experimental and célculated frequencies. The spectrél interpretatioﬂ for
the 1,5-AP compounds‘should, b& itself, assist in‘the assignmentiof the
sacéharide spéctra. The assignment 6f theée specﬁra in theApdst has been ﬁased
on the normal coordinéﬁé analysisvof tetfahydropyran,‘buf fhe 1,5-AP cémpounds are

more closely related, structufélly, to the saccharides.

The assumption of tetrahedral geometry for the 1,5-AP models in this investi-
gation appears to be guite -reasonable and-pfovides acceptable results. This
approximation in the model geometry seems to be appropriate for those situations
where the exact geometry is not available from crystal structure data. However,

a better agreement (perhaps, 1-2 em.” ') between experimental and calculated
frequencies is eipecte& when the‘exact-molecular geometfy is used. The normal
coordinate cqmpufationsAsuggest that the lower portibn of the ring for the l,S—AR
compound is "flaiter" in the feal moleculeltﬂan in tﬁe tetrahedral approximation.
This variation between fhe real structure and the tetréhedral approximation is

suggested as the source of the'slightly larger avérage error for 1,5-AR.

The normal coordinate computations have further demonstrated that the main
source of the differences in the band positions between the 1,5-AP spectra 1is a
kinetic energy effect rather than a potential energy effect. Moré specifically,
the shifts in frequencies betweeﬁ spectra are a result of the variation in

orientation of the hydroxyl groups, i.e., axial versus equatorial, between 1,5-

AP compounds. Hoﬁever, no spectral differences could be detected which could be
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attributed to loss of symmetry in’'going from 1,5-AX and 1,5-AR to 1,5-ALA or-

1,5-ADA;

In general,.the solution spectra were gquite similar to the solid éfate
spectra, Qiﬁh éome sﬁifting of bands and considerabie band broadehiné. Baﬁa
broadening is & typical phenomenon of solution spectra resulting‘from rétation-
vibration coupling. There appears to be“little band splitting in ﬁﬁe'solid
state spectra since the sclution épectra correlate so well with the solid staté
ggectra. The type of solvent, i.e.? ampﬂiprotic versus aprotic, does not:éppeaf”
td%&ffggt the sélution vibrational speétra; since the spectra of ﬁhe 1,5-AP
sﬁlutiéns in water and DMSd—ds ére identical. Several additional bands were ob-
ggrved in the solution spectra of 1,5-AR and 1,5~-ALA. These bands are suspected
of resulting from a significant amount of each species existing in the alternate
conformatiéon in solution. Thisﬂaréument-is'supported by normal coordinate compu-

tations for the alternate conformers and conformational free energy calculations.

Thé vibrational spectira of 1,5-ADLA were presented iﬁ this text so that
they might ‘be compared with the corresponding spectra of l,S—ALA. Several dif-
ferenggg in the spectra of the two coméoupds were noted, both inAbaﬁd poéition.‘
and relgtive{intensity. The crystal_strﬁcture;and hydrogen bonding aré sus- “
peéted of differing in thg two compounds. An investigation of this-obséfvatién
'might result in the explanation of the effect of crystal structuré and hydrogenA

bonding on the solid state vibrational spectra.
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SUGGESTIONS FOR FUTURE WORK

This investigation immediately suggests three areas for future work in the
investigation of the saccharide vibrational spectre and normal coordinate

computations.

1. The most immediate extension of this work is the normal- coordinate
analyses of the pentoses. The SVQFF developed in this study should simplify
the computations for the pentoses. The norﬁal'coqrdinate computations for the
pentoses should then permit the SVQFF developed for the 1,5-AP compounds in this
study to be extended to include the Cl hydroxyl group interactions. This should
make the force field more specific for the monosaccharides. The pentoses would
provide an even better model system upon which to hase the interpretation of the

saccharide spectra.

At the time this dissertation is being written, the normal céordinate
analyses of the pentitcols is in progress at thé Institute. The study is being
conducted by Gary Watson and includes an investigation of the effect of confor-
mation on the vibrational spectrum. The fesults of this investigation should
complement the work done on the pyranose ring compounds and provide the basis

for future analyses of the vibrational spectra-of open-~chain polyalcohols.

2. The inverse F matrix technique should be investigated and compared with
A R

the conventional computational methods that were used in this investigation.

The uniqueness of the F '

elements is very attractive. In addition, the HOFF
= .

and OVFF should be examined for the possibility of generating additional force
field data from application of qQuantum mechanical principles. This would

reduce the totally empirical character of the present SVQFF used in this study.
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APPENDIX I

COMPUTEﬁ PROGRAﬁ FOR-THE CALCﬁLATION OF-CAﬁTESIAN.
: COORDINATES FOR THE ATOMS

A computer program, CART, writteh-by J. H. Schachtschneider (89) of
Shell Development Co., Emeryville, California, was employed to compute the
cartesian coordinates of the "atoms" (mass:points) for the 1,5-AP models,
The progrem was griginally wfittén for an IBM-TOLO compufér and coded in
FORTRAN IV. (All computer programs to be discussed in this dissertation are
coded in FORTRAN IV.) It was necessary to modify.this program for use on the
Institute's IBM-360/L4 computer. CART calculatés. the cartesian coordinates
of the atoms in a molecule from fhe bond distances and boﬁd anéles. If desired,

the program will also compute the moments of inertia.

In the first partlof the prog;am,Athe coordinates of each atom of the
molecule are calculated in a fixed coordinate syétem; O(§,z,g),‘from the bond
angles and bond lengths. -The atoms are numbered in the order in which they are
given in the data. (The atoﬁ numbering ;chéme used‘for the 1,5-AP ﬁodels is
specified in Fig. 28 in the main teit.) The first three atoms are used to define
the coordinate system, O(x,y,z). The origin is located at the first atom. The
positive x-axis poiﬁtsnin the directioﬁ of atom number tﬁo, an& thé friad 1-2-3
defines the X-y plane. For..each additional atom, a new coordinate system;
O'CE',X',E'), is used. The atom is iocated by the spherical ;oofdinates Bﬁ 8,
and ¢ in terms of its bond distances énd-bohd angles. O'(E',Z',§'5 is locatéd
by.giving the numbers of three previously defined atoms. The program calculates
the transformation,liﬁ from O'(E',g{,z') to‘O(E,Z,E);Adetermines fhe_caftesian.
coordinates 5},‘2', and z' from thé sphefical coordinates R, é, and ¢;”and
transforms x', y', and é' to x, y, and 2. At the user's option, the éentef of

mass and moments of inertia are computed by conventional methods.
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The input to CART includes a control card giving the number of atoms, the

number of isotopic molecules, and specifying if the moments of inertia are to

be computed. The following data are read in for each atom in the molecule:

l.

2‘

The atom number, NO. (The atoms are numbered consecutively.) .

The numbers of the atoms determining the coordinate system,:
O'NO(§',2',§'), used to locate atom NO.

a. NA: the pumber of atom A. (This atom determines the origin
of the coordinate system.)

b. NB: the number of atom B defining the positive x' directions:
running along the bond from A to B.

c. NC: the number of atom C which together with.atoms A and B
define the x' -y plane such that the p031t1ve half plane is on
the same side of the x'-axls as atom C.

The spherlcal coordinates of the atom N in the coordlnate system
O'No(x Y'ez').

a. R: the length of the bond from atom A to atom N.

b. ©: the angle between the x-axis and the bond between atom A and
N, i.e., angle NAB.

c. ¢: +the azimuthal angle between R and the X-y plane, i.e., the
dihedral angle between the plane C-B-A and the plane N-A-B.'®

RN
b o

d. WIL: the mass of atom N. (Masses need not be entered~1f the
moment of inertia is not desired.)’

Since the first three atoms define the coordinate system, O(§=X’E)= some of

these data are not required for these atoms. Thus, for atom number one, the

cartesian coordinstes are all zero by definition. TFor atom number two, the

x-coordinate is equal to R by definition, and only NA and R are needed. For

16

For a right-handed coordinate system the angle is defined as follows: Observe
the conflguratlon from the direction of atom C along the bond B-A or A-B de-
pending on whether C is bonded to B or A. ©Now rotate about B-A or A-B to move
atom C into the plane N-A-B. ‘A clockwise rotation is defined as positive.
However, if the angle of rotation is less than 90°, a clockwise rotation is
defined as negative. - :
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atom number three, the z-coordinate is zero and -only -NA, NB, R, and 6 are needed.

The Efcoordinéte of atom C is

Xy = X, x RACos B i (150)

where + is used if A = 1 and - is used if A =2, The y—cdordinate is
Yo = R Sin 8. - S ~ (151)

For each additional atom, the transformation matrix, T, from O'(§',z',5')
is determined and used to transform x',.y', and z' to x, y, and z. .The coordinates

for atom N in 0'(x',y',2z') are given by

' = R
Xy = R Cos 0 .
¥y = R Sin 6 Cos ¢ : (152)
zﬁ =R 8in 6 8in ¢
= ' 14N 1 '
and Xy =Xy + T Xyt Txy'yN + T2y (153)

The coordinates of the center of mass gx’ 91’ and gz are given by

' c, = (-1/M) gmixi
c, = (-1/M) g my, (154)
c, = (-1/m) Zmizi

1

where M = z . .
i -

The elements of the moment of inertia tensor are

SESENES -y + 0% ~ ss)

vhere ri is the distance from the.center of mass to atom i and
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rf= (g ¢ C )2y, 4 Cy)z + (z, +c)? ... (156).

Ly = L ayle ¥ Cly <)), (257)

The moment of inertia tensor is diagonalized to give the principal moments and the
transformation to principal coordinates. Provision has been made for reading in a
new set of masses for the calculation of the moments of inertia of isotropically

substituted molecules.

The calculated cartesian coordinates are punched onto cards in a form suit-

able for input to the G matrix program described later in this manuscript.

A listing of CART along with a flow diagram and instructions for use of the
program may be found in Appendix V.
COMPUTATION OF THE CARTESIAN COORDINATES FOR THE
1,5~-ANHYDROPENTITOL MODELS
The input data to CART for the 1,5-AX, l;S—AR, and 1,5-ALA models, based on
the gecmetry specified in an earlier section and summarized in Table XVII, are

presented in Tables XXXIV, XXXV, and XXXVI, respectively. In addition, each

table lists the cartesian coordinates computed in CART for eaé¢h model.
ERROR CHECKS IN SPECIFICATION OF MODEL GEOMETRY

The cartesian coordinates computed in CART may be examined for errors in
two ways. First, CART contains an atom distance check. The distances between
every "atom" of the model and every other "atom" are calculated. These dis-
tances may be inspected to see if they are reasonable, The second check is
provided by the computer program, PAMOLE, written by Cole and Adamson (gg),

which employs the Calcomp 110 Digital Plotter to draw "ball and stick"



TABLE XXXIV

COMPUTER PROGRAM INPUT AND CALCULATED CARTESIAN
COORDINATES FOR 1,5-ANHYDROXYLITOL-

- CARTESTAN COORDINATES : S
19 5-ANHYDROXYLITOL. =~ ALL BOND ANGLES ARE TETRAHEDRAL EXCEPT -FOR
THE C-0-C ANGLE. ONE BOND LENGTH VALUE EACH FOR CO,CC,CH,0H,AND CO(R).

1 o o o 0.0 0.0 0.0 15.994906
2 1 o0 o 1.422999 0.0 0.0 12.000000
3 1 2 o 14422999 112.449997 0.0 12.000000
4 2 1 3 1.523000 0.0 -60.000000 12.000000
s 3 1 2 1.523000 0.0 60.000000 12.000000
6 5 3 1 1.523000 0.0 ~61.103989 12.000000
7 2 1 4 1.096000 0.0 ~120.000000 1.007825
8 2 4 1 1.096000 0.0 -120.000000 1.007825
9 3 1 S5 1.096000 0.0 120.000000 1.007825
10 3 5 1 1.096000 0.0 120.000000 1.007825
11 5 3 6 1.092999 0.0 120.000000 1.007825
12 5 3 6  1.415000 0.0 -120.000000 15.994906
13 12 5 11 0.970000 0.0 180.000000 1.007825
14 6 4 5 1.092999 0.0 117.265396 = 1.007825
1. 6 S5 & 1.415000 0.0 117.265091  15.994906
16 15 6 14 0.970000 0.0 180.000000 1.007825
17 4 2 6 1.092999 0.0 + =120.000000 1.007825
18 4 2 6 1.415000 0.0 120.000000 15.994906
19 18 4 17 0.970000 0.0 180.000000. 1.007825

ATOM NO. X Y R 4 MASS

1 0.0 0.0 0.0 15.994906

2 1.422999 0.0 0.0 12.000000

3 -0.543409 1.315155 0.0 12.000000

4 1.930665 0.717949 1.2643524 12.000000

S -0.073737 2.058514  1.243524 12.000000

6 1.445708 2.161613 1.229767 12.000000

7 1.788332 -1.033318 0.000001 - 1.007825

8 1.788332 0.516660 -0.894880 1.007825

9 -1.637928 1.258201 0.000001 1.007825

10. ~0,205418 1.850101 ~-0.894880 1.007825

11 ~0.393934 1.514558 2.135842 1.007825

12 ~0.634535 3.357575 1.256446 15.994906

13 ~04350369. 3.840312 - 0.464541 1.007825

14 1.769657 2.645977 0.305053 1.007825

15 1.884583 2.817815 2.404078 15.994906

16 1.562932 - 2.336884 3.182631 1.007825

17 ' 1550211 0.214294 2.135842 1.007825

18 3.345430 0.695734 1.256446 15.994906

19 3.683066 1.142712 1.007825

- 0464539
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TABLE XXXV

COMPUTER PROGRAM INPUT AND CALCULATED CARTESIAN
COORDINATES I'OR 1,5-ANHYDRORIBITOL

CARTESTAN COORDINATES : . «
145-ANHYDRORIBITOL. ALL BOND ANGLES ARE TETRAHEDRAL EXCEPT FOR
THE C-0-C ANGLE. ONE BOND LENGTH VALUE EACH FOR CO,CCsCH,0OH,AND CO(R).

1 0 0 0 0.0 0.0 0.0 15.994906
, 2 1 0 0 1.422999 0.0 0.0 12.000000
3 1 2 0 1.422999 112.449997 0.0 12.000000
4 2 1 3 1.523000 0.0 -60.000000 12.000000
5 3 1 2 1.523000 0.0 60.000000 12.000000
6 5 3 1 1.523000 0.0 -61.103989 12.000000
7 2 | 4 1.096000 0.0 -120.000000 1.00782%
8 2 4 1 1.096000 0.0 -120.000000 1.007825
9 3 1 5 1.096000 0.0 120.000000 1.007825
10 3 5 1 1.096000 0.0 120.000000 1.007825
i1 . 5 3 6 1.092999 0.0 120.000000 1.007825
12 5 3 6 1.415000 0.0 ~120.000000 15.994906
13 12 5 11 0.970000 0.0 180,000000 1.007825
14 6 4 5 - 1092999 0.0 ~-117,265396 1.007825
15 6 5 4 1.415000 0.0 . ~-117.265198 195.994906
16 15 6 14 0.970000 0.0 180.,000000 1.007825
17 4 2 6 1.092999 0.0 ~120.000000 1.007825
18 4 2 6 1.415000 0.0 120.000000 15.994906
19 18 4 17 0.970000 0.0 180.000000 1.007825
ATOM NO. X Y 4 MASS

1 0.0 0.0 0.0 15.994906

2 1.422999 0.0 0.0 -12.000000

3 -0.543409 1.315155 0.0 12.000000

4 . 1930665 0.717949 1.243524 12.000000

5 -0.073737 2.058514 1.243524% 12.000000

6 1.445708 2.161613 1.229767 12.000000

7 1.788332 -1.033318 0.000001 1.007825

8 +1.788332 0.516660 -0.894880 1.007825

9 -1+637928 1.258201 0.000001 1.007825

10 ~0.205418 1.850101 -0.894880 1.007825

11 -0.393934 1.514558 2.135842 1.007825

12 ~0.634535 3.357575 1.256446 154994906

13 ~0.350369 3.840312 0.466541 1.007825

14 1.784715 2.668490 2.136847 1.007825

15 1.865091 2.188672 0.032629 15.994906

16 1.520784 2.288821 | —0.728482 1.007825

17 1.550211 0.214294 2.135842 1.007825

18 "3« 345430 0.695734 1.256444 15.994906

19 3.683066 - lel42712 0.464539 1.007825
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TABLE XXXVI

COMPUTER PROGRAM INPUT AND CAICULATED CARTESIAN
COORDINATES FOR 1;5=-ANHYDRO-L~ARABINITOL

CARTESIAN COORDINATES
195-ANHYDRO-L-ARABINITOL.
THE C-0-C ANGLE.

ALL BOND ANGLES ARE TETRAHEDRAL EXCEPT FOR
ONE BOND LENGTH VALUE EACH FOR COoCCoCHsOHoAND CO{(R).

1 o o0 o 0.0 0.0 0.0 15.994906
2 1 0 o 1.422999 0.0 0.0 12.000000
3.1 2 o 1.422999 112.449997 0.0 12.000000
4 2 1 3 1.523000 0.0 ~-60.000000 12.000000
5 3 1 2 1.523000 0.0 60.000000 12.000000
6 's 3 1 1.523000 0.0 -61.103989 .12.000000
7T 2 1 4 1.096000 0.0 -120.000000 1.007825
8 2 4 1 1.096000 0.0 -120.000000 1.007825
9 3 1 5 1.0%96000 0.0 120.000000 . 1.007825
10 3 5 1 1.096000 0.0 120.000000 1.007825
1L S 3 6 1.092999 0.0 120. 000000 1.007825
12 5 3 6 1.415000 0.0 -120.000000 15.994906
13 12 5 11 0.970000 0.0 180.000000 1.007825
14 6 4 5 1.092999 0.0 117.265396 1.007825
15 6 5 & 1.415000 0.0 117.265091  15.994906
16 15 6 14 0.970000 0.0 180.000000 1.007825
1T &4 2 6 1.092999 0.0 120.000000 1.007825
18 4 2 6 1.415000 0.0 ~120.000000 15.994906
19 18 4 17 0.970000 0.0 180.000000 1.007825
ATOM NO. X Y 2 MASS

1 0.0 0.0 0.0 15.994906

2 1.422999 0.0 0.0 12.000000

3 ~04543409 1.315155 0.0 12.000000

4 1.930665 0.717949 1.243524 12.000000

5 -0.073737 2.058514 1.243524 12.000000

6 1.445708 2.161613 1.229767 12.000000

4 1.788332 -1.033318 0.000001 1.007825

8 1.788332 0.516660 -0.894880 1.007825

9 ~-1.637928 1.258201 0.000001 1.007825

10 ~0.205418 1.850101 -0.894880 1.007825

11 -0.393934 1.514558 2.135842 1.007825

12 ~0.634535 3.357575 1.256446 15.994906

13 -0.350369 3.840312 0.464541 1.007825

14 1.769657 2.6459177 0.305053 1.007825

15 1.884583 2.817815 2.404078 15.994906

16 1.562932 2.336884 3.182631 1.007825

17 3.023482 0.700789 1. 253504 1.007825

18 1.438128 0.065916 2.398722 15.994906

19 0.468288 0.081146 2.389860 1.007825
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representations of the molecules from the cartesian coordinates of the atoms.
(The program instructions for PAMOLE are presented in Appendix V.) Examination
of these drawings based on the calculated cartesian coordinates may pinpoint any
errors existing in the set of coordinates. The "ball and stick" drawings of the
1,5-AP models generated by PAMOLE from the cartesian coordinates listedvin

Tables XXXIV, XXXV, and XXXVI appear in Fig. 33, 3L, and 35, respectively.
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APPENDIX II
COMPUTER PROGRAM FOR COMPUTING THE G MATRIX
e d

The B and G matrix elements are calculated by a computer program, GMAT,
Pa¥4 L d

written by J. H. Schachtschneider (89) and modified for use in this investiga-

tion. GMAT punches the G matrix and factored G matrix (optional) onto cards in
~ ~ .

a form suitable for input into the computer programs which solve the vibrational
secular equation that are discussed in the text. The listing, flow diagram, and

user instructions for GMAT are presented in Appendix V.

In GMAT, the B matrix elements are computed by Wilson's "S vector”
= -2

technique (68). If R, represents one of the 3N-6 internal coordinates and X

one of the 3N cartesian displacement coordinates, the relatioms sought will be
of the form
3N |
R, = 1 ByX; (158)
i=1
vhere t = 1,2,3,+*+,3N~6. Instead of using three cartesian coordinates to
describe the displacement of an atom, it is convenient to introduce a vector S;

for each'atom a whose components along the three axis directions are the cartesian

displadeﬁent coordinates X, , X, g; for that atom. Likewise, it is useful to

— . e

group the coefficients, B, ., for a given R, into sets of three, each set B

2t 3 ti°
§%i’ Bgi being associated with a given atom o. These quantities can be considered
N - - "
as components of a vector, Sto® asgsoclated with the atom 0 and with the internal
coordinate R,. Then, Equation (158) takes on the simple form
N .
— =N
R, = ] s, P (159)
t ool to "o

where the dot represents the scalar product of two vectors. The physical meaning

of the vector E;a is as follows: Let all atoms except atom O be in their
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. BN
equilibrium positions. The direction of St is the direction in which a given

displacement of atom o will produce the greatest increase of R . The magnitude,’

- .
IEtal’ is equal to the increase in Bt produced by unit displacement of the atom

in this most effective direction.

Six types of internsl coordinatés are recognized by the program, namely,
bond stretching, valence angle bending, torsion, out-of-plane wagging, perpendi-
cular pair of linear valence angle bendings, and linear valence angle bending.
The internal coordinates specified for‘the 1,5-AP models involve only the first
three types in the list; therefore, iny these internal Eoordinates will be dis-
cussed. The reader may wish to refer to Wilson (68) or Schachtschneider (89)

for a description of the other coordinate: types.

A "vector" describing the internal coordinate is made up of eight integers

—— c— ———— ct— c—

defining the internal coordinates.

Following are the "S vector" expressions for the bond stretching, valence
angle bending, and torsion internal coordinates. In these expressions, the unit

-
vectors along the bonds, eij’ are represented in cartesian coordinates as

2y = Ly = x0T+ by, - y)T + (2 = 20kl (260)

where rij is the distance between atoms 1 and j.
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1. Bond Stretching: A{ij

NCOD N1 N2 N3 N4 N5 N6
1 i

— Ty A
S, s
i , J

The "§ vectors" for atoms i and j are

- -
s, = -eij
- -
and s, = e,, .
. dJd 1J
2, Vsalence Angle Bend: r, o,
—ix.Jx Tijk

[o]
aijk # 180

The atom numbers ix and jx define a bond distahce, R(ix-jx), by which the

internal coordinate is weighted. The weighted bending force constants will

then have the same dimensions as the stretching force constants. If EE = Jx 0,

the angle is not weighted, that is, i, ix - 1.0. The "S vectors" for atoms
- s

i,j, and k are



- ( - ) . '
s; rlx,jx Cos ale 31 3k /r Sin o i
- . N ) .
S, = 3% Cos ale sk ejl / X Sin a k
. = _ + .
and sj Si_ Sy

3. Torsion: Eif’QEATEQEE

NCOD N1 N2

-T <T<T

The "S§ vectors" for atoms i,j,k, and 1 are

B, = -1, ( . X )/(r SinZa, .. )

i ix,jx " i] ijk

R ,
sj = rix,jx(rjk - rij Cos a. i3k )(e xe )/(r 5613 Sin aijk)

-r, .. Cos a . SinZa

ix,jx ,jkl( jk* kl)/('r,] jkl)

where X represents the vector product. .In many cases, it is convenient to use
the sum of several torsions to avoid the introduction of redundancies. A pro-
vision has been made in GMAT for defining a coordinate as the sum of several
forsions. (This provision is discussed in the user instructions for GMAT in

Appendix V.)
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The 62 internal coordinate "vector" descriptions for the 1,5-AP models are
listed in Tables XXXVII, XXXVIII, and XXXIX for 1,5-AX, 1,5-AR, and 1,5-~ALA,
respectively; The atom numBering scheme for these tables has been defined in
Fig. 28 in the text. The internal coordinate definitions, along with the
cartesjian coordinates of the atoms, embody:the input data to GMAT. The computer
program then calculates the/% a.nd/%matrices. The inverse kinetic energy
matrix is computed by the expression

- | 4
Gypo = izl (1/m,)B, B, ,, , (161)
where t,t' = 1,2,3,"-,3§;6. This relationship has been expressed in matrix
notation in Equation (32) in the text. Employing Equations (l58)‘and (159), we

may write Equation (160) in terms of the "S vector," that is,
o g 4 A
v = W S, S
et T b et e

(162)

vhere U, = l/ga, the reciprocal of the mass of atom a. GMAT uses Equation (162)
to compute the‘g;matrix. The various formulae resulting from the scalar product
of "8 vectors" in Equation (162) defining the‘§>matrix elements have been
assembled, condeﬁsed, and tabulated by Decius (11) and summarized by Wilson,

et al. (68).
CALCULATION OF THE G MATRICES FOR THE 1,5-ANHYDROPENTITOL MODELS

. The G matrices for the 1,5-AP models are listed in Tables XL, XLI, and XLII.
~J .
The corresponding B matrices have not been included in.this manuscript because
~

of space considerations. -
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TABLE XXXVII

INTERNAL COORDINATE DEFINITIONS FOR 1 o 5~-ANHYDROXYLITOL

u000000000000000000000000000000000000000000000000
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TABLE XXXVII (Continued)

MOOODOOOOOOOOQ&OOODOOOOA
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TABLE XXXVIII

INTERNAL COORDINATE DEFINITIONS FOR 1,5~ANHYDRORIBITOL
CODE

.ﬂOOOOOOOOOOOOOOOOOOO
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TABLE XXXVIII (Continued)

JX

IX

CODE I

NO.
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TABLE JOOXIX

INTERNAL COORDINATE DEFINITIONS FOR 1,5~ANHYDRO-L-ARABINITOL
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TABLE XXXIX (Continued)
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1

0.145758
-0.027752
0.061579
-0.051530
0.020297
0.166512
-0.027752
-0.055161
-0.071816
0.061677
-0.051517
-0.012218
0.166512
-0.027752
0.026625
-0.,051540
~-0.071816
0.053677
-0.052872
0.015012
-0.027752
-0.027752
0.053677
-0.071816
-0.055473
0.053506
0.024905
0.065967
-0.027752
0.024953
0.053506
-0.055473
‘0.055161
0.027581
~0.062938
-0.027752
0.024905
0.061579
0.071619
1.075350
0.053350
0.024905
-0.015117
~0.055161
-0.071619
0.027581
-0.0629138
0.024905
-0.055473
-0.055473
~0.045648
-0.020834
0.061678
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TABLE XL

G MATRIX FOR 1,5-ANHYDROXYLITOL
~s

ooooo‘oomam~4ﬂ~b~:o~o-o~o~mu:muammm4~&-b&&&&&wuuwwuwurvnpwmwwwo—pww

1

20
24
29
53

3
10
23
27
31
36
60

4
13
26
30
34
38
43
59
12
29
34
38
42
46
54
59
16
37
42
46
50
55
62
20
44
49
53

8
23
27
51

22

26
56

9
24
29
33
56
22
27

2

-0.027752
-0.071619
0.061579
0.024905
-0.040594
-0.027752
-0.027752
-0.071619
-0.055473
0.053506
0.024953
0.065968
~0.021099
-0.027752
0.061677
-0.071816
-0.055473
0.046975
0.025603
~0.070088
-0.027752
0.025603
0. 046975
-0.055473

0.027737

0.063645
-0.015012
0.070089
-0.027752
0.028654
0.027737
0.063645
0.063390
0.012218
-0.051688
~-0.040594
0.026625
-0.051539
-0.040594%
-0.027752
~0.051540
0.026625
0.001053
0.053350
~0.051530
0.015117
1.075350
-0.051530
0.051539
-0.051427
0.003613
-0.051530
-0.051540

Pt ’ )
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1

21
25
49
54

T
20
24
28
32
53
61

9
22

27 -

31

35

6

39.

54
60
13
30

35

39
43
47
56

5
18

38

43
47
51
57

6
21
45
50
55
20
24
29

8
23
21
57
10
26
30
34
57
23
28

~0.023868
-0.071619

0.071619

0.020297

-0.037288 -

-0.027752
0.063390

~0.071619-

0.027737
0.063645
0.027581
0.051688
‘00027752
0.024905
0.053506
-0.055473

0.030127

0.069130
-0.049077
-0.065967
~0.027752

0.027270

0.030127

0.069129
-0.051540

~-0.051530 -

0.049077
0.166512
-0.027752
~-0.051517
~-0.051539
-0.071619
0.063390
~-0.046618
0.145758
0.020297
-0.051530
“0.071619
0.047860
-0~055162
0.061579
-0.051530
1.075349
0.061579
0.024905
0.046807
-0.027752
-0.0515%40
~0.051540
0.027076
~0.006349
0.026625
-0.060751

1

\D'OGOQQDCDﬂdﬁl@@ﬁ'v‘om\ﬂ\a\.ﬂkﬂmm-‘“&###*##UWUUWUWNNNNNNNFFP#

7
22
26
50
57
8
21
25
29
33
55
62
10
23
28
32
36
40
55
4
15
31
36
40
44
48
57
6
19
40
44
48
52
58
18
22
47
51’
56
21
25
53
20
24
29
61
22
27
31
36
10
24
29

~0.027752
-0.051540
0.026625
~0.040594
-0.047860
-0.027752
0.063390
0.07T1619
-0.051540
0.028654
0.046618
0.062938
-0.027752
-0.051530
0.027737
0.063645
~0.052881
0.027270
0.015809
0.166512
-0.027752
-0.052872
‘00052881
“0.071816
0.061677
0.026625
-0.015809
-0.027752
-0.027752
0.061678
-0,071816
-~0.071619
0.071619
~0.065968
-0.027752
0.020297
0.061579
-0.,071619
0.037288
0.063390
-0.071619
-0.055161
0.063390
~0.051540
0.026625
~0.051688
0.02662%
0.053507
0.053507
0.026578
0.145758
0.024905
0.051539



TABLE XL (Continued)

0.061678 10 31 -0.051539 10 32 -0.071816 10 33 0.0227713
0.024440 10 36 -0.0%51531 10 S5 -0.000970 10 56 -0.018625
0.018567 11 11 1.054595 11 27 0.020823 11 28 -0.041645
0.020823 11 32 -0.041645 11 56 0.038254 11 57 -0.038254
1.075349 12 13 -0.033693 12 29 0.028654 12 30 -0.051427
0.022773 12 33 -0.051539 12 34 0.059128 12 35 -0.053805
0.047221 12 37 -0.,051539 12 138 0.059128 12 39 -0.053805
-0.051427 12 41 0.022773 12 43 0.028654 12 54 0.045438
0.003398 12 56 -0.045438 12 57 -0.0033%98 13 -13 0.145758
-0.020834 13 29 -0.051517 13 30 0.027076 13 31 0.024440
0.067737 13 34 -0.051%39 13 3% -0.060750 13 .36 0.047221
0.067736 13 38 -0.051539 13 39 -0.069656 13 40 0.027077
0.024440 13 43 -0.051517 13 54 -0.001614 13 55 -0.017515
0.001614 13 57 0.017515 14 14 1.054595 14 34 0.022617
-0.041645 14 38 0.022617 14 139 -0.041645 14 55 0.037090
-0.037090 15 15 1.075351 15 16 -0.027752 15 - 36 0.026578
-0.051427 15 38 0.027076 15 40 -0.051540 15 41 0.053507
=0.055473 15 a3 0.051539 15 44 -0.051540 15 45 0.053506
-0.055474 15 47 0.024905 15 . 48 -0.051530 15 49 0.026625
.-0.003613 15 55 0.006349 15 57 0.045648 16 16 0.145758
-0.020834 16 36 -0.051531 16 37 0.022773 16 38 0.024440
0.061678 16 41 -0.051539 16 42 -~0.060750 16 43 0.051539
0.061678 16 45 -0.051542 16 46 -0.071816 16 47 0.026625
0.024905 16 49 -0.051530 16 54 0.018625 16 55 -0.018567
0.000969 17 17 1.054595 17 4l 0.020823 17 42 -0.041645
0.020824 17 46 -~0.041645 17 5S4 -0.038254 17 55 0.038254
1.075351 18 19 -0.027752 18 43 -0.051530 18 44 .0.024905
0.026625 18 47 -0.051540 18 48 0.061579 18 49 0.053350
~-0.055162 18 51 0.063390 18 52 -0.071620 18 53 -0.055161
0.015117 18 55 -0.001053 19 19 1.075349 19 43 0.026625
=0.051530 " 19 45 0.024905 19 47 0.061579 19 48 -0.051540
0.053350 19 50 0.063390 19 51 -0.055162 19 52 -0.071619
0.027581 19 54 -0.015117 - 19 55 -0.046807 19 61 0.062938
0.051688 20 20 1.002793 20 21 0.003973 20 22. -0.009726
-0.432808 20 24 -0.140658 20 25 =-0.423575 20 26 -0.058979
0.034237 20 29 0.024742 20 49 -0.005894 20 50 0.011787
-0.005894 20 53 0.101564 20 54 0.010827 20 56 0.746442
0.057083 21 21 1.002789 21 22 -0.009726 21 23 -0.140658
-0.432807 21 25 -0.423573 21 26 0.022650 21 27 0.036074
~-0.058724 21 49 -0.020203 21 50 -0.005894 21 51 0.026097
-0.050782 21 54 -0.019590 21 56 -0.746438 21 57 0.008220
0.085718 .21 62 0.036697 22 22 0.169380 22 23 -0.006123
-0.006124 22 25 =-0.137681 22 26 -0.052312 22 27 0.097452
-0.007082 22 29 -0.046659 22 30 -0.057105 22 31 0.024312
0.034311 22 33 -0.022906 22 34 -0.004851 22 36 0.030295
0.026097 22 S50 -0.005894 22 S1 -0.020203 22 53 -0.048287
0.008763 22 55 -0.010499 22 56 0.012880 22 57 0.035081
-0.014800 22 61 -0.081044 22 62 -~0.031005 23 23 1.000262
0.005239 23 25 -0.425911 23 26 -0.050779 23 27 -0.052326
-0.025321 23 29 0.100359 23 30 0.036567 23 31 0.025394
-0.059214 23 33 -0.006076 23 34 0.011937 23 36 -0.006397
0.023116 23 55 -0.010474 23 56 0.004780 23 57 0.001956
0.030622 23 61 -0.062021 23 62 =-0.834169 24 24 1.000258
-0.425909 24 26 0.105065 24: 27 -0.048946 24 28 0.032403
-0.051854 24 30 0.020537 24 31 -0.049706 24 32 0.024904
0.028982 24 34 -0.007086 24 36 -0.023899 24 53 -0.061199
0.020972 24 56 -0.017660 24 57 -0.040584 24 60 -~0.015822
-0.009350 24 62 -0.011385 25 25 1.836644 25 26 0.034355
-0.066491 25 29 0.032136 25 53 0.035588 25 57 -0.061756
0.066696 25 62 0.839860 26 26 1.005274 26 27 -0.005808

T P VAP TN



0.023222
~0.435187
-0.025179
-0.842150
-0.050428
-0.010131
~-0.007042
~0.02293%
-0.051511

0.032859
~0.040672
~0.006033

0.033908

0.032221

1.005272
-0.053237
~0.052394
-0.024637

0.007961
-0.010132

0.093746
-0.004130
-0.001951

0.022933

0.034363

1.005272
~0.352559

0.040356

0.040848

0.17034)
-0.010148

0.023615
-0.008365
-0.051263

‘0.031276
-0.038469
-0,001011

0.093746

0.024266

0.030295

0.000565
~-0.014423

0.032859

0.027395
-0.040848
~-0.017028
-0.053237

0.034337
-0.007086
~0.049708

1.016509
-0.051394

1.005276
-0.436831

0.020537

0.020146

0.170341

~0.019365 .
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~0.008532
0.017992
~0.009504
0.023994
~0.016120
~0.049681
~0.044849
~0.011597
0.023222
~0.026403
0.042737
-0.118197
~0.044953
-0.024637
0.012041
0.017196
-0.005809
0.031276
0.025009
-0.020146
0.018315
0.040356
0.009105
~0.001409
1.008831
0.050166
~0.014423
-0.116795
-0.060013
0.007062
-0.054773
-0.018905

0.049708 -

0.030584
0.018646
-0.0252464
- 0.034611
-0.009213
~0.007047
0.034363
0.032242
-0.014829
~0.479265
-0.055832
-0.006076
-0.007062
-0.846827
-0.046255
0.027448
-0.004851
0.001731
0.025009
0.730806
-0.005808
~0.118916
-0.057105
~0.040940
-0.050428
-0.010132

26

30
34
56

-0.436830

0.034337

~0.014095
0.029216
-0.118916
0.027448
0.017391
~0.014120
~0.050428
-0.007047
0.1675013
~0.055832
-D.060013
~0.004975
~0.034803
~-0.012397
-0.435187
-0.050307
0.028768
0.040940
0.842150
~0.046255
0.028779
-0.004975
~0.006692
0.027395
0.752995

0.018646 .

~0.479267
0.012675
0.846825
‘0005239‘0
~-0.001731
~-0.054773
~0.006033
0.038468
~0.117627
~0.044953
~-0.006397
~0.000564
0.014829
0.104902
0.017992
0.028982
~-0.012675
0.170341

~-0.026403.

~0.058879
0.004747
0.030614
-0.058917
0.051394
0.023222
-0.435188
0.751590
-0.842151
-0.016120
0.025394

-0.118916
-0,057114
0.751018
0.170341
-0.019366
0.024266
-0.001279
1.223996
0.105922
0.034460
-0.008532
.0.096587
0.023615
0.029612
-0.003296
-0.015095
0.104902
0.019657
-0.004131
-0.751588
0.170341
~0,025244
-0.058917
0.008105
-0.035511
-0.058879
-0.749989
~0.001012
0.019658
-0.792841
0.017028
-0.116795
0.028779
-0.004747
1.223994
0.109763
-0.034611
0.161767
-0.050307
~0.057114
-0.023899
-0.032242
1.005272
~0.044776
-0.049681
~0.022906
0.792842
-0.018905
0.096587
0.011937
0.008365
-0.030584
0.033908
-0.730805
-0.008532
0.036567
-0.007961
~0.018315
~0.118916
~0.049706



41
41
42
42
42
43
43
43
43
44
44
44
44
45
45

45

46
46
47
47
47
48
48
48
49
49
49
50
50
51
51
52
53
54
54
55

- 55

56
56
57
58
61

0.024312
0.001951
-0.051511
-0.025321
-0.042737
-0.016120
~-0.046659
0.032221
0.034803
1.005275
0.105065
0.034355
0.009504
0.170341
. 0097452
-0.007042
0.022933
0.749991
-0.006124
0.023116
-0.030622
-0.006123
~0.061199
0.015822
-0.009726
-0.012881
0.014800
0.003973
-0.057083
~-0.050782

- =0.036697

0.061756
0.027912
2.9121717
-0.501667
2.027383
-0.559957
2.912174
0.011649
~04559960
2.273606
0.076993

41
41

42
42
43
43
43
43
44
44
44
44
45
45
45
45
46
46
47
47
47
48
48
48
49
49
49
50
50
51
51
52
53
54

54

55
55
56
56
57
59
62

54
58
44
48
57
46
50
54
59
45
49
53
58
46
50
54
61
48
57
50
54
61
50
54
61
51
55
61
52
56
54
62
61
55
55
59
56
60
57
62
60

.59

62
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0.001409
~0.022933
0.023222

0.032403

~-0.034460
~-0.118197
0.024742
0.003296
-0.017196
-0.005808
-0.052312
-0.025179
0.842152
-0.010131
0.034237
~-0.017391
0.014120
0.024903
-0.050166
-0.432808
-0.004780
0.834169
~-0.140658
0.017661

- 0.011385

-0.035081

0.031005
-0.423575
-0.010827

0.746439
~0.085718
~0.839861
-0.011106
~0.487531

0.032961

-0.003007

0.027703
-0.487529
-0.491836
~0.500007

2.339827

1.088884

41
41
42
42
43
43
43
43
43
44
44
44

44

45
45
45
45
46
47
47
47
47
48
48
48
49
49
49
50
51
51
52
52
53
54
54
55
55
56
57
57
60
-1

55
59
45
49
43
47
51
55
61
46
50
54
61
47
51
55
62
49
47
51
55
62
51
55
62
52
56
62
53
51
5%
52
62
56
56
61
57
61
59
57
61
60

0

0.006692

0.035511
-0.050425
-0.007082

0.167503

0.100359
-0.058724

0.001018

0.015095
-0.435186
-0.058979

0.014095

. ~0.029216

~0.052326
0.036074%
0.001279
0.011597
0.034311
1.000262
~0.140658
-0.001956
0.062021
~-0.432806
0.040584
0.009350
~0.137681
-0.008763
0.081044
0.101564
1.002789
~-0.008220
1.836649
~0.066696
~0,027912
-0.035927
-0.491836
-0.405595
~-0.026538
0.032962
2027379
2.273607
0.0

41

42
42
42
43
43
43
43
43
44
44
44
44
45
45
45
46
46
47

47 -

47
48

48

48
49
49
49
50
50
51
51
52
53
53
54
54
55
55
56
57
57

61

56
42
46
54
44
48
52
56
62
47
s1
55
62
48
52
57
46
54
48
52
57
48
52
57
49
53
57
50
54
52
56
53
53
57
57

62

58
62
60
58

62

61

1223993
0.105922°
0.040672
-0.008533
~0.051854
0.032136
-0.012041
0.012397
-0.050779
0.022650
-0.751021
-0.023994
~0.048946
-0.066491
0.044849
1.008832
~0.752998
. 0.005239
-0.425911
~0.010474
£.000258
-0.425910
-0.020972
0.169380
-0.048287
0.010499
1.002792
~0.746442
~0.423574
0.019590
0.035589
0.167539
0.011106
-0.003006
0.011649
~0.500009
-0.021795
-0.501668
0.027703
-0.026538
1.088884%
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23
51

22
26
30

57

12
24
29
33
37
41
56

16
33
37
41

45

49
58
15
36

45
49
53
61
19
43
- 48
52

22
26
56
21
25
53
62
23
28
32
55

26

TABLE XLI
g;MATRIX FOR 1,5-ANHYDRORIBITOL
0.145758 -0.027752 -0.023868 -0.027752
-0.027752 1 20 -0.071619 1 21 -0.071619 1 22 -0.051540
0.061579 1 24 0.061579 1 25 0.071619 1 26 0.026625
-0.051530 1 29 0.024905 1 49 0.020297. 1 50 -0.040594
0.0202917 1 53 -0.040594 1 54 -0.037288 1 57 -0:047860
0166512 2 3 -0.0277152 2 7 -0.027752 2 8 -0.,027752
~0.027752 2 10 -0.0277152 2 20 0.063390 2 21 0.063390
-0.055161 2 23 -0.071619 2 24 -0.0T71619 2 25 0.071619
-0.071816 2 27 -0.055473- 2 28 0.027737 2 29 -0.051540
0.061677 2 31 0.053506 2 32 0.063645 2 33 -0.051517
0.028654 2. 36 0.024953 2 53 0.027581 2 55 0.046618
-0.012218 2 60 0.065968 2 61 0.051688 2 62 0.062938
0.166512 3 4 -0.021099 3 9 -0.027752 3 10 =-0.027752
-0.027752 3 13 -0.027752 3 22 0.024905 3 23 -0.051530
0.026625 3 26 0.061677 3 27 0.053506 3 28 0.027737
-0.051540 3 30 -0.071816 3 31 -0.055473 3 32 0.063645
-0.071816 3 34 -0.055473 3 35 0.030127 3 36 -0.052881
0.053678 3 38 0.046975 3 39 0.069130 3 40 0.027270
-0.052872 3 43 0.025603 3 54 -0.049077 3 55 -0.015809
0.015012 3 59 0.070088 3 60 -0.065967 4 4 0.166512
-0.027752 4 12 -0.027752 4 13 -0.027752 4 15 -0.027752
-0.027752 4 29 0.025603 4 30 0.027270 4 31 -0.052872
0.053678 4 34 0.046975 4 35 0.030127 4 36 -0.052881
-0.071816 4 38 -0.055473 4 39 0.069129 4 40 -0.071816
-0.055473 4 42 0.027737 4 43 -0.051540 4 44 0.061677
0.053506 k@ 46 0.063645 4 41 -0.051530 4 48 0.026625
0.024905 4 54 -0.015012 4 56 0.049077 4 51 0.015810
0.065967 4 59 -0.070088 5 S 0.166512 5 6 -0.027752
-0.027752 5 16 -0.027752 S 18 -0.027752 5 19 -0.027752
0.024953 5 37 =-0.051517 5 38 0.028654 5 40 0.061678
0.053506 5 42 0.027737 5. 43 -0.051539 5 44 -0.071816
-0.055473 5 46 0.063645 S 471 -0.071619 5 48 -0.071619
-0.055161 5 50 0.063390 5 51 0.063390 5 52 0.071619
0.027581 5 55 0.012218 S5 57 -0.046618 5 58 -0.065968
~0.062938 5 62 -0.051688 6 6 0.145758 6 18 -0.027752
-0.027752 6 20 ~-0.040594 &6 21 0.020297 6 22 0.020297
0.024905 6 44 0.026625 6 45 -0.051530 6 47 0.061579
0.061579 6 49 ~0.051539 6 50 -0.071619 6 51 -0.071619
" 0.071619 6 53 -0.040594% & 55 0.047860 6 56 0.037288
1.075350 7 8 -0.027752 7 20 -0.055162 7 21 0.063390
0.053350 7 23 -0.051540 1 24 0.061579 7 25 -0.071619
0.024905 T 27 0.026625 7 29 -0.051530 T 53 -0.055161
-0.015117 T 57 0.001053 8 8 1.075349 8 20 0.063390
-0.055161 8 22 0.053350 8 23 0.061579 8 24 -0.051540
~0.0T1619 8 26 =~0.051530 8 27 0.024905 8 29 0.026625
0.027581 8 56 0.015117 8 57 0.046807° 8 61 ~0.051688
-0.062938 9 9 1.075350 9 10 -0.027752 9 22 0.026625
0.024905 9 24 -0.051530 9 26 -0.051540 9 27 0.053507
-0.055473 9 29 0.051539 9 30 -0.051540 9 131 0.053507
~0.055473 9 33 0.027076 9 34 -0.051427 9 36 0.026578
-0.045648 9 56 0.003613 9 57 -0.006349 10 0.145758
-0.020834 10 22 -0.051530 10 23 0.026625 24 0.024905
0.061678 10 27 =-0.051540 10 28 -0.060751 29 0.051539



0.061678
0.022773
0.018%567
0.020823
1.075351
0.024440
0.047221
0.027076
-0.003398
~0.020834
0.067737
0.067736
0.022773
-0.045438
-0.041645
0.037090
0.027076
~0.055473
~0.055474
~0.003613
-0.020834
0.061678
0.061678
0.024905
0.000969
0.020824
1.075351
0.026625
-0.055162
0.015117
-0.051530
0.053350
0.027581
0.051688
-0.432808
0.034237
0.057083
-0.432807
-0.058724
-0.050782
0.085718
-0.006124
-0.007082
0.034311
0.026097
0.008763
-0.014800
0.005239
-0.025321
-0.059214
0.023116
0.030622
-0.425909
-0.051854
-0.007086
0.020972
-0.0091350
-0.066491
0.066696
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3

29

-0.051539
~0.051531
1.054595
~0.041645
-0.033693
-0.051540
-0.051540
0.024441
0.001614
0.028654
-0.051539
~0.051539
0.028654
-0.017515
0.022617
1.075351
-0.051427
0.051539
0.024905
0.006349
~0.051531
-0.051539
-0.051542
-0.051530
1.054595
-0.041645
~0.027752
~0.051540
0.063390
-0.001053
0.024905
0.063390
-0.015117
1.002793
-0.140658
04024742

. 0.101564

1.002789
-0.423573
-0.020203
-0.019590

0.036697
-0.137681
~0.046659
-0.004851
~0.005894
~0.081044
-0.425911

0.100359

0.011937
-0.010474
-0.062021

0.105065%

0.020537

0.028982
-0.017660
~-0.011385

0.0321136

0.839860

32
55
27
56
29
34
38

36
57
25
53
26

~-0.071816
-0.000970
0.020823
0.038254
-0.051517
0.059128
0.059128
~-0.051517
0.003398
~0.051427
-0.060750
-0.069656
0.045438
1.054595
~0.041645
-0.027752
-0.051540

- =0.051540

0.045648
0.024440
-0.060750
~-0.071816
0.018625
0.020823
~0.038254%
-0.051530
0.061579
-0.071620
1.075349
0.061579
-0.055162
-0.046807
0.003973
-0.423575
-0.005894
0.010827
-0.009726
0.022650
-0.005894
-0.746438
0.169380
-0.052312
~0.057105
~-0.022906
-0.020203
0.012880
-0.031005
-0.050779
0.036567
~-0.006076
0.004780
~0.834169
-0.048946
~0.049706
-0.023899
-0.040584
1.836644
0.035588
1.005274

0.024440
~-0.018625
~-0.041645
-0.038254%

0.027076
-0,053805
-0.053806
-0.001614

0.145758"

0.022773

0.047221
~0.051427

0.017515

0.022617
~-0.037090

0.026578

0.053507

0.053506
- 04026625

0.145758

0.022773

0.051539

0.026625
-0.018567
-0.041645

0.038254

‘0024905

0.053350
-0.055161

0.026625
~0.051540

0.062938
-0.009726

—0.058979

0.011787
0.746442
-0.140658
0.036074
0.026097
0.008220
-0.006123
0.097452
0.024312
0.030295
~0.048287
0.035081
1.000262
-0.052326
0.025394
-0.006397
0.001956
1.000258
0.032403
0.024904
~0.061199
-0.015822
0.034355

. =0.061756

-0.005808



0.023222
~0.435187
-0.025179
~0.842150
~0.050428
-0.010131
~0.02293%
-0.051511
~0.026403
-0.040672
-0.016120

0.030852

0.023042

0.032221

0.009372

1.005272

0.101116

0.021894
-0.024637

0.019028
~0.010132

0.093746
-0.004130

0.003487

0.022933

0.034363

1.005276
-0.352561

0.038655
-0.004866

0.170341
-0.010148
~0.052250

0.020171
~0.051262
~0.004841

0.038469
-0.001012

0.093746

0.024266

0.03029%
-0.026336
-0.014422
~0.026403
-0.058879

0.004866

0.030614%

0.101116

0.017992

0.028982
-0.005182

1.016513
-0.057771

1.005276
~0.436831

0.020537

0.020146

0.170341
~04019365
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TABLE XLI (Continued)

-0.008532
0.034337
~-0.009504
0.023994
~0.016120
0.027448
-0.044849
-0.011597
0.023222
0.032859
0.042737
-0.118197
~-0.044953
~0. 024637
0.012041
-0.017196
-0.005809
-0.004841}
0.035649
-0.020146
-0.018315
~0.048055
0.038655
0.009105
-0.001409
1.008831
0.050166
~0.014423
-0.116795
0.021753
0.004744
-0.054773
-0.018905
0.005182
-0.030584
0.018646
-0. 026011
0.012963
-0.009213

-0.007047 -

0.034363
0.032242
-0.014829
0.100379
0.011937
-0.004744
0.846830

-0.043100

-0.049681
~-0.022906
-0.001731

0.035649
-0.730810
-0.005808
-0. 118916
-0.057105
-0.038135
-0.050428
-0.010132

30
34
56
62
30
34

-0.436830
0.017992
-0.,014095
0.029216
-0.118916
~0.049681
0.017391
-0.014120
~0.050428
~-0.007047
0.167503
0.100380
0.021753
-0.004975
-0.037436
-0.012397
-0.435187
-0.050307
0.028768
0.038135
0.842150
~0.043100
0.030356
~0.004975
~0.028150
-0.058879
0.752995
0.018646
~0.479268
0.060664
~0.,B846828
~0.009213
0.021894
0.001730
0.017028
-0.054773
0.030852
-0.038468
-0.044953

-—0.006397

0.026335
0.014829
~0.055230
0.034337
-0.007085
~0.060664
0.170341
0.032859
0.027395
-0.037503
-0.017028
-0.058691
0.057771
0.023222

-0.435188

0.751590
~0.016120
0.025394

~0.118916
-0.057114

" 0.751018

" 0.170341
~-0.019366
0.024266
-0.001279
1.223996
0.105922
0.034460
-0.008532
~0.053723
~0.052250
0.029612
-0.003296
-0.01509%
~0.05%230
-0.060409
~0.004131
~0.751588
0.170341
-0.058691
0.008105
0.035511
0.027395
0749989
-0.001012
~0.060409
0.792845
~0.030615
-0.116795
0.030356
0.037503
1.223991
0.109762
~0.,012963
0.161767
-0.050307
-0.057114
~-0.023899
~0.0322642
1.005275
~0.048055
0.027448
~0.004851
-0.792846
~-0.018905
~-0.053723
-0.,006076
-0.020171
0.030584
0.023042
0.730810
-0.008532
0.036567
-0.019028
0.018315
-0.118916
-0.049706



41
41
42
42
42
43
43
43
43
44
44
44
44
45
45

45

45
46
46
47
47
47
48
48
48
49
49
49
50
50
51
51
52
53
54
54
55
55
56
56
57
58
61

0.024312
-0.003487
-0.051511
~0.025321
-0.042737
~0.016120
-0.046659

0.032221

0.037436

1.005275

0.105065

0.034355

0.009504

0.170341

0.097452
~-0.007042
. 0.022933
-0.059214

0.749991
-0.006124

0.023116
-0.030622
-0.006123
-0.061199

0.015822
-0.009726
-0.012881

0.014800

0.003973
-0.057083
-0.050782
-0.036697

0.061756

0.027912

2.912177
~-0.501667

2.027388
-0.559958

2.912174

0.011649
-0.559963

2.273606

0.076993

41
41
42
42
42
43
43
43
43
44
44

44,

44
45
45
45
45
46
46
47
47

47

48
48
48
49
49
49

50 -

50
51
51
52
53
54
54
55
55
56
56
57
59
62
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0.001409

-0.022933
0.023222
0.032403

-0.034460
-0.118197
0.024742
0.003296
0.017196
~0.005808
~0.052312
-0.025179
0.842152
-0.010131
0.034237
~0.017391
0.014120
0.024903
~0.050166
~0.432808
-0.004780
0.834169
-0.140658
0.017661
0.011385
~0.009726
~0.035081
0.031005
-0.423575
-0.010827
0.746439
-0.085718
~0.839861
-0.011106
-0.467614
~0.032961
-0,008054
0.027703
-0.467611
~0.491836
~0.500007
2.339830
1.088884

41
41
42
42
43
43
43
43
43
44
44
44
44
45
45
45
45
46
47
47
47
47
48
48
48
49
49
49
50
51
51
52
52
53
54
54
55
55
56
57
57
60
-1

55
59
45
49
43
47
51
55
61
46
50
54
61
47
51
55
62
49
47
51
55
62
51
55

62

52

56

62
53
51

55

52
62
56
56
61
57
61
59
57
61
60

0

0.028149

-0.050425 -

-0.007082
0.167503

0.100359 .

-0.058724
-0.009372
0.015095
-0.435186
~0.058979
0.014095
-0.029216
-0.052326
0.036074
0.001279
0.011597
0.034311
1.000262
-0.140658
~-0.001956
0.062021
-0.432806
0.040584
0.009350
~0.137681
~-0.008763
0.081044
0.101564
1.002789
~-0.008220
1.836649
~0.066696
~0.027912
-0.035927
~0.491836
~0.405599
-0.026538
~0.032962
2.027386
-0.021795
2.273607
0.0

41
42
42
42
43
43
43
43
43
44
44
44
44
45
45
45
46
46
47
47

4T

48
48
48
49
49
49
50
50
51

51

52
53
53
54
54
55
55
56
57
57
61

56
42
46
54
44

52
56
62
47
51
55
62
48
52
57
46
54
48
52
57

48

52

49
53
57
50
54
52
56
53
53
57
57
62
58
62
60
58
62
61

~0.008105
1.223993
0.105922
0.040672
-0.008533
~-0.051854
0.032136
-0.012041
0.012397
-0.050779
0.022650
-0.751020
~-0.023994%
~0.048946
~0.066491
0.044849
1.008832
-0.752998
0.005239
-0.425911
0.010474
1.000258
-0.425910
-0.020972
0.169380
-0.048287
0.010499
1.002792
~0.746442
-0.423574
0.019590
0.035589
0.167539
0.011106
~-0.008054
0.011649
-0.500009
-0.501668
0.027703"
-0.026538
1.088884
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TABLE XLII
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0.145758
-0.027752
0.061579
~0.051530
0.020297
0.166512
-0.027752
-0.055161
-0.071816
0.061677
-0.012218
0.166512
~0.027752
0.026625
-0.051540
-0.071816
"0.053677
0.027270
0.015012
-0.027752
-0.027752
0.053677
-0.071816
0.053506
0.024905
~0.065967
-0.027752
0.024953
0.053506
-0.055473
-0.055161
0.027581
-0.062938
-0.027752
0.024905
0.061579
0.071619
- 1075350
0.053350
0.024905
~0.015117

~0.055161

~0.071619
0.027581
~0.062938
0.024305
~0.055473
~0.055473
~0.045648
_0o020834
0.061678

U

COVIO IV VIOOWOERNNNNOCOCOVMUVVUVVIVVEDDDLPLPPLPPUBNOUWBLBWRIRNNNNNNN P R0

1

2

20

24
29
53

3
10
23
27
31
36
60

4

13
26

30
34
38
43
59
12
29
34
38
42
46
54
59
16
37
42

46

50
55
62
20
44
49
53
. 8
23
21
57
22
26
56
9
24
29
33
56
22
27

~0.0271752
-0.071619

0.061579

0.024905
-0.040594
~0.,027752
-0.0277152
-0.071619 "
-0.055473

0.053506

0.02495%3
0.065968
“0.021099
-0.027752
0.061677
-0.071816
“0.055473
0.046975
0.025603
-0.070088
-0.027752
0.025603
0.046975

- =0.055473

0.027737
0.063645
0.015012
0.070089
-0.027752
0.028654
0.027737
0.063645
0.063390
-0,017805
-0.051688
~0.,040594
-0.051530
~0.051539
~0+ 040594
~-0.027752
~0.051540

0.026625 -

0.001053
0.053350
~0.051530
0.015117
1.075350
~-0.051530
0.051539
~0.051427
0.003613
~0.051530
‘00051540

- )
OO0 VOOV IO VBN NNPOCOCOCOOVVVVMUVMUVVEDIIIIIRIULULWWLWUWNNNNNNN e -

1

21
25
49
54

7
20
24
28
32
53
61

9
22
21
31
35

6

39

54
60
13
30
35
39
43
417
56

5
18

38

43
47
51
57

6
21
45
50
55
20
24
29

8
23
27
57
10
26
30
34
57
23
28

~0.023868

" =0.071619 "

0.071619
0.020297
-0.037288
-0.027752"
0.063390
-0.071619
0.027737
0.063645
0.027581
0.051688
-0.027752
0.024905
0.053506
-0.055473
0.030127
0.069130
-0.049077
-0.065967
~0.027752
0.027270
0.030127
0.069129

' -0.051540

-0.051530
0.049077
0.166512

-0.027752

-0.051517

-0.051539

-0.071619
0.063390

~0.046618
0.145758
0.020297
0.026625

-0.071619
0.047860

-0.055162
0.061579

-0.051530
1.075349
0.061579
0.024905
0.046807

~0.027752

~-0.051540
~0.051540
0.027076

-0.006349
0.026625

-0.060751

VOO LU NCTOOCTOVVVVVMUVNS PSSRSOV OVWWWWENNNNNNN e

l .

7

22

26
50
57

21
25
29
33

62
10
23
28
32
36
40
55

15
31
36
40
44
48
57

19
40
44
48
52
58
18
22
47
51
56
21
25
53
20
24
29
61

21
31
36
10
24
29

~-0.027752
~0.051540
0.026625
-0.040594
~0.047860
-0,027752
0.063390
0.071619
-0.051540
-0.028654
0.046618
0.062938
*00027752
-0.051530
0.027737
0.063645
~0.052881
-0.052872
0.015809

0.166512

-0.027752
-0.052872
~0.052881
-0.071816
0.061678
0.026625
-0.015809
~0.027752
-0.027752
0.061678
-0.071816
-0.071619
0.071619
0.065968
-0.027752
0.020297
0.061579
‘0.071619
0.037288
0.063390
~-0.071619
~0.055161
0.063390
-0.051540
0.026625
~0.051688
0.026625
0.053507
0.053507
0.026578
0.145758
0.024905
0.051539



0.061678
0.024440
0.018567
0.020823
1.075349
0.022773
0.047221
0.022773
0.003398
-0.020834
0.067737
0.067736

 0.027077

0.001614
-0.041645
~0.037090
‘0.022773
-0.055474
0.003613

-0.020834

0.061678
0.061678
-0.051530
0.045648
0.020823
1.075351
0.024905
~0.055162
0.015117
0.024905
0.053350
0.027581
0.051688
-0.432808
0.034237
-0.005894
0.057083
-0.432807
-0.058724
-0.050782
0.085718
-0.006124
-0.007082
0.034311
0.026097
0.008763
-0.014800
0.005239
-0.025321
-0.059214
0.023116
0.030622
-0.425909
-0.051854
0.028982
0.020972
-0.009350
-0.066491
0.066696
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TABLE XLII (Continued)

10 31
10 36
1 11
11 32
12 13
12 33
12 37
12 a1
12 56
13 29
13 34
13 38
13 43
13 57
14 38
15 15
15 38
15 43
15 47
15 55
16 36
16 41
16 45
16 49
17 17
17 46
18 19
18 47
i8 51
18 55
19 45
19 50
19 54
20 20
20 24
20 29
20 53
21 21
21 25
21 49
21 54
21 62
22 25
22 29
22 33
22 so0
22 S5
22 6l
23 25
23 29
23 33
23 55
23 61
26 26
26 30
24 34
24 S6
24 62
25 29
25 62

-0.051539
-0.051531

1.054595
~0.041645
-0.033693
-0.051539

-0.051539

~0.051427
-0.045438
-0.051517
-0.051539

~0.051539°

-0.051517
0.017515

0.022617.
1.075349.

0.024440
0.051539
0.026625
-0.003555
0.026578
-0.051539
-0.051540
0.026625
1.054594
-0.041645
~0.027752
~0.051540
0.063390

- -0.001053

-0.051530
0.063390

'O- 015[11 .
1.002793

-0.140658
0.024742
0.101564%
1.002789

-0.423573

-0.020203

-0.019590
0.036697

~0.137681

~04046659
~0.022906

-0.005894%

-0.010499

-0.081044

~0.425911
0.100359

~0.006076

-0.010474

-0.062021
0.105065
0.020537

-0.007086

~-0.017660
0.032136
0.839860

\-
Ay

32
55
27
56
29
34
38
43
57
30
35

-0.071816
-0.000970
0.020823
‘0.038254
0.028654
0.059128
0.059128
0.028654
-0.003398
0.027076
-0.060750
-0.069656
-0.001614
1.054595
-0.041645
~0.027752
-0.051540
~0.051540
0.024905
0.000969
-0.051427
-0.060750
-0.071816
-0.018625
0.020823
0.038254
-0.051530

0.061579

-0.071620
1.075349
0.061579

-0.055162

-0.046807
0.003973

-0.423575

~0.005894
0.010827

~0.009726
0.022650
~0.005894

-0.746438
0.169380

-0.052312

-0.004851

-0.020203
0.012880

-0.031005

~-0.050779
0.036567
0.011937
0.004780

~0.834169
~0.048946

—~0.049706

-0.023899

-0.040584
1.836644
0.035588
1.005274

0.022773
-0.018625
-0.041645
~-0.038254

-0.051427

~0.053805
-0.053805
0.045438
0.145758
0.024440
0.047221
0.024440
~0.017515
0.022617
0.037090
-0.051531
0.053507
0.053507
~-0.051530
0.145758
0.027076
0.051539
0.024905
0.021360
-0.041645
-0.038254
- 0.026625
0.053350
-0.055161
0.026625
-0.051540
-0.,071619
0.062938
~0.009726
~0.058979
0.011787
0.746442
-0.140658
0.036074
0.026097
0.008220
-0.006123
0.097452
0.024312
0.030295
0.035081
1.000262
-0.052326
0.025394
~0.006397
0.001956
1.000258
0.032403
0.024904
-0.061199
-0.015822
0.03435%
-0.061756
-0.005808




0.023222
-0.0251179
~0.842150
-0.050428
-0.,010131
-0.007042
~-0.051511

0.032859
~0.016120

-0.006033.

0.033908
0.032221
-0.001018
1.005272
-0.053237
-0.05239%
~0.024637
0.007961
~0.010132
0.093746
0.009105
-0.001951
0.022933
0.034363
1.005272
-0.352559
0.019658
0.040848
0.170341
-0.010148
0.023615
-0.008365
-0.051263
-0.025244

-0.038469

-0.001011
-0.048351
-0.049648
0.030295
0.000565
-0.014423
-0.004221
0.038319
0.017028
~0.048054
0.037025
-0.007086
~0.049708
1.016509
-0.051394

1.005276

-0.436831
~0.057419
-0.008105

0.170341
~0.019365
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TABLE XLII (Continued)

29
33
55
61
29
33
55
61

-0.008532
0.017992
~0.009504
0.023994
-0.016120
-0.049681
~0.044849
~-0.011597
0.023222
~-0.026403
0.042737
~0.044953
~-0.00497S
0.012041
0,017196
-0.,005809
0.031276
0.025009
~0.,020146
0.018315
~0. 044776
0.040356
-0.004130

- =0.001409

1.008831
0.050166
-0.014423
-0.116795
-0.060013
0.007062
~0.054773

.~0.018905

0. 049708
0.030584
0.018646
0.031276
0.034611
-0.009213
0.031986
0.022863
0.035617
0.014829
-0.479265
~0.05%5832
-0. 006076
-0.018687
-0.846827
-0.051244
0.024953
-0.004851
0.001731
~0.058917
0. 730806
-0.005808
-0.118916
0.022606
0.001879
-0,050428
-0.010132

30
34
56
62
30

-~

' ~0.436830

0.034337

—~0.014095

0.029216
~0.118916
0.027448
0.017391
-0.014120
-0.050428
~0.007047
0.167503
-0.055832
-0.060013
-0.024637
-0.034803
-0.012397
~0.435187
-0.050307
-0.004131
0.040940
0.842150
-0.046255
0.028779
~0.004975
-0.006692
0.027395
0.752995
0.018646
~0.479267
0.012675
0.846825
~0.009213
0.028779
-0.001730
-0.030615
-0.054773
-0.006033
0.038468
-0.117627
-0.0644953
-0.006397
-0.010688
0.014829
~0.046453
-0.057685
0.028982
-0.012675
0.1703¢61
~0.025086
-0.059267
-0.002220
-0.030615
0.025009
0.051394

0.023222

~0.435188
~0.751590
0.842152
~0.016120
0.027021

~0.118916
-0.057114
0.751018
0.170341
~-0.019366
0.024266
1.223996
0.105922
0.034460
-0.008532
0.096587
0.023615
0.029612
~0.,015095
0.104902
0.019657
0.028768
-0.751588
0.170341
~0.025244

-0.058917

0.008105

. -0.035511

-0.058879
~-0.749989
-0.001012

0.040356

- =0.792841

0.017028
~0.116795
~0.052394
-0.004747

1.223994

0.109763
~0.034611

0.161767

0.097539

0.022549
-0.023899
-0.032242

1.005272

0.101116

0.020535
-0.022906

0.792842
~0.018905

0.096587

0.011937

0.029265
-0.030584

0.033908
-0.730805
-0.008532

0.034813

. =0.007252

0.035511
-0.118916
0.022624



%1
41
42

42

42
43
43
43
43
44
44
44
44
45
45
45
45
46
46
47
47
47
48
48
48
49
49
49
50
50
51
51

52

53
54
54
55
55
56
56
57
58
61

.‘9

57
43
47
55
45
49
53
57
44
48
52
57
45
49
53
58
47
55
49
53
58
49
53
58

‘50

54
58
51
55
53
61

55
54

54
58
55
59
56
61

59
58

62

-0.049645
-0.037580
-0.051511
~-0.026180
0.039945
-0.016120
~0.046659
0.032221
0.034803
1.005276
-0.050779

0.055072
0.170341
-0.050352
-0.025179
-0.022933
-0.058961
~0.756398
-0.006124
0.023116
0.030622
-0.006123
-0.061199
-0.015822
~0.009726
-0.002777
~0.014800
0.003973
-0.057083
~0.050782
-0.036697
0.061756
0.027912
2.912177
~0.501668
2.029649
~0.559957
2.912174
0.011649
~0.559960
2.213607
0.076993

41
41
42
42
42
43
43
43
43
44
44

44.

44
45
45
45
45
46
46
47
47
47
48
48
48
49
49
49

50 -
50

51
51
52
53
54
54
55
55
56
56
57
59
62

54
58
44
48
57
46
50
54
59
45
49
53
58
46
50
54
61
48
57
50
54
61
50
54
61
51

61
52
56
54
62
61
55
55
59

56

60
57
62
60
59
62

~-235-

TABLE XLII {(Continued)

-0.001409
0.022933
0.023222

-0.005793

" =~0.012133

-0.118197
0.024742
-0.024583
-0.017196
-0.005808
0.101245
-0.007042
-0.842152
-0.010131
-0.058979
0.028034
-0.029216
0.036156
~0.056744
-0.432808
-0.025685
0.834169
-0.140658
0.028462
0.011385
-0.009726
-0.038449
0.031005
-0.423575
-0.010827
0.746439
-0.085718
-0.839861
-0.011106
-0.487909
0.032961
~0.003007
0.027703
~0.487529
-0.491836
~0.500007
2.339827
1.088884

41
41
42
42
43
43
43
43
43
44

44

44
44
45
45
45
45
46
47
47
47
47
48
48
48
49
49
49
50
51
51
52
52
53
54
54
55
55
56
57
57
60
-1

55
59
45
49
43
47
51
55
61
46
50

54

61
47
51
55
62
49
47
51
55
62
51
55
62
52
56
62
53
51

55 .
52

62
56
56
61
57
61
59
57
61

60 -

0

~0.021699
-0.018315
-0.050428
0.031973
0.167503
0.100359
-0.058724
0.028897
0.015095
-0.435187
0.034237
~0.003451
0.014120
-0.048946
0.022650

0.001563"

-0.023994
0.022805
1.000262

~0.140658
0.005013
0.062021

~0.432806
0.036984
0.009350

-0.137681

-0.008763
0.081044
0.101564
1.002789

~0.008220

1.836649

~-0.027912
~0.035927
-0.491836
-0.386683
-0.026538

0.032962

2.027379
-0.021795

2.273607 .

0.0

41
42
42
42
43
43
43
43
43
44
44
44
44
45
45
45
46
46
47

47

47
48
48
48
49
49
49
50
50
51
51
52
53
53
54
54
55
55
56
57
57
61

56
42
46
54
44
48
52
56
62

51
55
62
48
52
57
46
54
48
52
57
48
52
57
49
53
57
50
54
52
56
53
53
57
57
62
58
62
60
58
62

61

0.020146
1.223995
0.105922
-0.040672
-0.008%33
0.032136
-0.012041
0.012397
-0.054286
0.036074
0.754891
0.011597
0.101272
0.034355
0.002570
1.008832
0.752997
0.005239
~0.425911
0.010474
1.000258
-0.425910
-0.020972
0.169380
-0.,048287
0.010499
1.002792
~0.,746442
-0.423574
0.019590
0.035589
0.167539
0.011106
-0,009311
0.011649
-0.,503330
-0.,021795
-0.501668
-0.,027703
-0.026538
1.088884
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up of 1,326 elements (independent elements), which may be reduced to 682 ele-
ments for 1,5-AX and 1,5-AR by introducing symmetry coordinates. The SVQFF

for the 1,5-AP models is seen to be greatly reduced in size from the GQFF.




DDl OV DD D00 ININ N e

9
26
10
28
29

28
29

28
29

28
27
24

30
30
30
24

30
12
23

24

30
30
33
34
14
42
36
48
43
34
18
34
20
42
33
18
42
34
50
19
34

"-‘238-

TABLE XLIII

' Z MATRIX FOR 1,5-ANHYDROXYLITOL

-1.000000

1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000

VWOONCOANT VD DPIPUWWWNNN- -

2
20

2

9
2%

3
12
31

4
15
38

)
18
45

6
50

8

8

9
32
28
28
37
34
14
40
17
46
19
19
20
25
24
23
29
25
24
29
29

28

28
30
36
33
32
32
37
36
38
38

7

23

]
10
28

5
10
27

5
10
27

5
10
27

1
23
11

3

4
30
31
32
30
24

6
30
12
23
11

3
13
55

‘33

34
41
56
15
49
34
50
19
34
41
47
34
21
37
38
50
38

1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000

1.000000

1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000

1.000000

1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000

1.000000

1.000000
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6
21
3
10
26
4
13
33
5

16 -

40

6
i9
47
18
51
20
21
10
10
31
12

39

35
35
44
41
17
47
48
21

53

25
24
53
26
25
25
30
29
31
31
30
34
33
33
39
38
39
40

1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1. 000000
1.000000
1.000000
1.000000
1. 000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
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P e et s o pas gt s s gt ot R
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22

22
217

29
34
12
36
41
15
43
48
19
53
23
24
26
11
32
i3
13
38
15
46
42
42
50
51
22
21
53
26
23
27
26
26
32
31
32
33
31
36
34
34
34
39
36
41

1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000

'1.000000

1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000




36
37
38
39
40
41
42
43
44
44
45
47
47
48
49
50
52
56
60

- o o g o ' '
CVMWWNFEFOOONNOTWVWVNNSLPUWWNNN R -

43
40
39
39
44
43
45
45

44

48
47
47

52

52
53
53
52
56
60

53

23
29
10
30
36

13

37
43
16
44
49
49

25
25
30
27
11
33
14
39
16
16

41

47

34
21
37
38
50
38
17
47
43
15
56
56
41
39
16
52

53

26
10
28

28
29

28
29

28
27
24

30
30
30
24

30
12
23

1.000000
i.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000

1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000

‘TABLE

37 17
41 43
40 43
40 17
46 33
45 38
46 S1
47 48
45 34
49 43
48 43
48 36
48 15
49 14
50 13
51 13
53 22
57 52
61 54

37
37
38
40
40
41
42
43
44
44
45
47
48
49
50
51
53
57
61

Z MATRIX
S

2 1
20 23
2 5
9 10
24 28
3 5
12 10
31 27
4 5
15 10
38 27
5 5
18 10
45 27
6 1
50 23
8 11
8 3
9 4
32 30
28 31
.28 32
37 30
34 24
14 6
40 30
17 12

CEXNCOVVVMEDDWWWNNN--

XLIII (Continued)

1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000

TABLE XLIV

37
37
38
40
41
41
43
43
44
45
45
47
48
49
50
51
54
58

62

38
43
41
41
41
46
43
48
46
45
49
49
49
50
51
52
54
58
62

34
49
41
34
18
34
20
49
33
18
“2
34
34
34
35
55
52
53
54

1.000000
1.000000
1.000000
1.000000
1. 000000
1.000000
1.000000
1. 000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000

FOR 1,5-ANHYDRORIBITOL

1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000

' 1.000000

1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1. 000000
1.000000

QONOCOTVUVWVNPLPIIPWWUNNNI -

6
21
-3
10
26

4
13
33

16
40

6
19
47
18
51
20
21
10
10
31
12
39
35
35
44
41

8
23
7
7
28
7
7

28
5 .

7
7
28
. |
10
28
9
23
30

.30

9
2
24
4
30
31
32
30
24

1.000000
1.000000

1.000000

1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1. 000000

‘14000000

1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1. 000000
1.000000
1.000000

a7
38

38

40
41
42
43
43
44
45
46

48
49
50
51
55
59

g poe o s pud b o .
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39
38
43
43
42
42

46

49
47
46
46
50
51
51
52
53
55
59

22

22
27

29
34
12
36
41
15
43
48
19
53
23
24
26
11
32
13
13
38
15
46
42

33
is
42
34
50
19
34
41
46
34
21
33
33
34
55
40
52
53

24
10
27
27
10
29

27

10
29

10
29
28

26
30
30
30

23

24

30
31

1.000000
1.000000
i.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000

.1.000000

1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000

1.000000

1000000

1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000

1.000000




16
18
18
19
20
21
22
22

23
24
26
27
27
29
29
30
31
31
33
34
35
36
36
37
38
39
40
41
42
43
44
44
45
47
47
48
49
50
52
56

60

. 24

30
30
33
34
14
42
36
48

43

34
18
34
20
41
33
18
42
34
50
19
34
41
46
34
21
37
38

38
17
47
43
15
56
56

4l

39
16

- 52
- 53

1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000

16

18

19
20
20
21
22
22
23
24
24
26
27
28
29
29
30
31
32
33
34
35
36
37
37
38
40
40
41

43
44
44
45
47
48
49
50
51
53
57
61
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TABLE XLIV (Continued)

46

19
19
20
25
24
23
29
25
24

29

29
28
28
30
36
33
32
32
37
36
38
38
37
41
40
40
46
45
46
47
45
49

48

48
48
49
50
51
53
57
61

23
11

3
13
55
33
34
41
56
15
49
34
50
19
34
41
46
34
21
37
38
50
38
17
43
44
17

1.000000
1.000000
1. 000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000

1.000000

1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000

.1.000000
'1.000000

1.000000
1.000000
1.000000

1.000000

1.000000
1.000000
1.000000
1.000000

17
18
19
20
20
21
22

22

23
24
25
26
27
28
29
30

30

31
33
33
34
35
36
37
37
38
40

4]

41
43
43

46

45
45
47
48
49
S0
51
54

58
62

17

47
48
21
53
25
24
53
26
25
25
30
29
31
31
30
34
33
33
39
38
39
40
38
43
41
41
41
46
43
48
46
45
49
49

49
50

51
52
54
58
62

"6
30
30
35
39
55
34
41
46
56

37
38
50
3g
17
44
43
17
33
38
51
49
34
48
41
34
18
34
20
49

33
18

42
34
34
34
35
55
52
53
S4

1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000

1000000

1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1. 000000
1.000000

17

18
19
20
21
21
22
23
23

24

26
26

2T

28
29
30
30
31

33

34
34
36
36
37
38
38
40
41
42
43
43
44
45
46
47
48
49
50
51

55

59

42
50

51

22

21

53
26
23
27
26
26
32
31
32
33
31

36"

34

34
39
36
41
39
38
43
43
42
42
44
49
47
46
46
50
5L
51
52
53
55
59

32

30
34
13
40
43
15
43
47
17
33
38
51
48
34
49
61
34
18
34

20

42
33
18
41
34
50
i9
34
41
46
34
21
33
33
34
55
40
52
53

1. 000000
1.000000

1.'000000

1.000000
1.000000
1.000000
1.000000

'1.000000

1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.600000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000

1.000000
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1
8
53

23
29
10

30

36
13
37
43
16
44
49

49

25
25
30
21
11

14
39
16
16

18
52
52
23
22
22
27
24
29
27
27
27
32
29
34
32
31
36
36
35
35
37

1
9

26

10
28
29

28
29

28
29

28
27
24

30
30
30
24

30
i2
23

24

30
30
33
34
14
42
36
48
43
34
18
34
20
42
33
18
42
34
50
19

34

Z MATRIX T'OR

1.000000
1.000000
i.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000

1.000000

1.000000
1.000000

1.000000.

1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000

1.000000

'1.000000 -

1.000000
1.000000

1000000
1.000000
1.000000
1.000000
1.000000
1.000000
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2
20
2
9
24
3
12
31
4
15

38

5
18
45

(3
50

8

8

9
32
28
28
37
34
14
40
17
46
19
19
20

.25

24
23
29
25
24
29

29 !

28

28
30

36
33
32
32
37
36
38
38

7
23
5
10
28
5
10
27
5
10
27
5
10
27
1
23
11
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TABLE XLV
1 ,5=-ANHYDRO
1.000000 1
1.000000 1
1.000000 2
1.000000 2
1.000000 2
1.000000 3
1.000000 3
1.000000 3
1.000000 &
1.000000 &
1.000000 4
1.000000 S
1.000000 5
1.000000 S
1.000000 6
1.000000 6
1.000000 7
1.000000 8
1.000000 9
1.000000 10
1.000000 10
1.000000 12
1.000000 12
1.000000 13
1.000000 14
1.000000 15
1.000000 16
1.000000 17
1.000000 18
1.000000 19
1.000000 20
'1.000000 20
- 1.000000 21
1.000000 22
1.000000 22
1.000000 23
1.000000 24
1.000000 25
1.000000 26
1.000000 27
1.000000 28
1.000000 29
1.000000 30
1.000000 30
1.000000 31
1.000000 33
1.000000 33
1.000000 34
1.000000 35
1.000000 36

21
3
10
26
4
13

33

5
16
40

6
19
47
18

51

20
21
10
10
31
12
39
35
35
44
41
17
47
48
21
53
25
24
53
26
25
25
30
29
31
31
30
34
33
33
39
38
39
40

8
23

7

7
28

7

7
28

1

[
28

7
10
28

9
23
30
30

9

2
24

4
30
31
32
30
24

6
30
30
35
39
55
34
41
46
56
16
37
38
50
38
17
43
43
17
33
38
51
48

~L~ARABINITOL
6.

1.000000
1.000000
1. 000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
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7
22

22
217

29

34
12
36
41
15
43
48
19
53
23
24
26
11
32

.13

13
38
15
46
42
42
50

" 51

22
21
53
26
23
27
26
26
32
31
32
33
31
36
34
34
34
39

‘36

41

9
24
10
27
27
i0
29
27
10
29
27
10
29
28

26
30
30
30
12

23

24

30
31
32
30
30
34
i3
40
43
15
43
47
17
33
38
51
49
34
49
41
34
18
34
20
41

1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000

1.000000

1.000000
1.000000

1.000000 .
1.000000

1.000000

1.000000

1.000000

1.000000

1.000000
1.000000
1.000000
1.000000
i.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000




36
37
38
39
40
41
42
43
44
44
45

47.

47
48
49
50
52
56

. 60

43
40
39

39

44
43
45
45
44
48
47
47
52
52
53
53
52
56
60

41
46
34
21
a7
38
50
38

1r

46
43
15
56
56
41
39
16
52

53

1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000

37
37
38
40
40
41
42
43
44
44
45
47
48
49
50
51
53
57
61

37
41
40
40
46
45
46
47
45
49
48
48
48
49
50
51
53

61

17
44
43
17
33
38
51
48
34
44
44
36
15
14
13
13
22
52
54
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1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000

37
37
18
40
41
41
43
43
44
45
45
47
48
49
50
51
54
58
62

38
43
41
41
41
46
43
48
46
45
49
49
4“9
50
51
52
54
58
62

TABLE XLV {(Continued)

34
49
41
34
18
34
20
49
33
18
41
34
34
34
35
55
52
53
%

1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000

1.000000

1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000

37
38
38
40
41
42
43
43
44
45
46

48
49
50
51

55

59

39
38
43
43
42
42
44
49
47
46
46
50
51
51
52
53
55

59

33
18
42
34
50
19
34
41
46
34
21
33
33
34
55
40
52

1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
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APPENDIX IV
TERMINATION OF THE LINEAR LEAST SQUARES REFINEMENT

The criterion normally employed to judge when the force constant refine-
ment has "converged" is to examine the corrections to the force constant param-
eters, |A¢i|, after each iteration. When all the corrections are less than or
edual to ;; arbitrary constant (0.008 in FADJ), the refinement ié terminated

and said to have "converged."

The weighted sum of squares of the residuals computed for each iteration
is compared with the value computed for the previous iteration. If the
weighted sum of squares increases for two consecutive iterations, the refine-

ment is terminated and said to have "diverged."
EVALUATION OF TRANSFERABLE FORCE CONSTANTS

One method of introducing additional constraints is to assume that force
constants may be transferred between related molecules. That is, one wishes to
refine a set of force constants to givezthe best fit to a series of molecules.
Suppqse;§ is the set of force constants for a series of molecules. One can then

partition the perturbation equations and write them in the form

2\3(1) AJ’(1)AZJ(.1)
35(2) N(z) 2, (2)
T o= T B (163)
(a) A;Z;S;ZQS
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where &—('i'-) and ’%(-J"-)/_Z_V(é-) are the matrices for a single molecule or factored
block. The combined equations for a series ofv lafge molecules become: very
large and taxes the memory of even the largest digital compﬁter. However, it
follows from Equation (163) that the normal equations for the combined molecules
are given by the sum of the normal equations for the individual molecules, thus .
‘Z‘ [348)560)Jiplidgtd) | §[J(i>z<i>J,memzmm. (164)
=1 Y T~ S O e
This relation makes it possible to consider one molecule at a time in high-speed
storage and to use magnetic tape or disk tc collect the normal equa._ticnswhich
are then summed as they are read back into the computer. The @i's determined
from Equation (164) are by definition transferable among the moIequ.es used in

the refinement, and the "goodness of fit" is s measure of the degree of transfer-
g > 3

ability.
“BOTENTIAL ENERGY DISTRIBUTION IN TERMS OF THE FORCE CONSTANTS

~ The potential energy distribution among the elements of § for each normal

mode can be calculated as

P.E. = A71370. (165)

~alno

ERROR ANALYSIS

The theory of least squares can be applied to estimate the uncertainties in

the calculated force constants. The force constant moment mastrix is
= 2 1 =1
}YJCF) o“(z! %) (166)

where o? = (33) 'E(_ZXX)/_@_ and 4 is the number of degrees of freedom. The diagonal

elements of M(F) give the uncertainties in the calculated force constants, and
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the off-diagonal elements give the correlation between the errors in the force
constants. One must be cautious about attaching great significance to the un-
certainties for several reasons. First, if the number of degrees of freédomvis
small, the statistiéal analysis is in doubt. vSecond, the errors may not'Be
normally distributed due to anharmonicity. Fiﬁally, because the force constants
and frequency parametérs are assumed to be linearly related over the range of

errors considered.

However, -the analysis dces give some indidation of the consistency of the
data and of the sensitivity of the force constants to the data. For example,
if (2'J'PJZ) is nearly singular, certain force constants will have a large un-

~ W Rpn

certainty indicating that they are not sensitive to the data.
MULTIPLE SOLUTIONS

In meny problems, there are a number of distinct solutions to the force
field which will fit the data to within acceptable errors. The various solutions
represent alternate minima in the hypersurface of the quantity (@572;2) as a
function of the force constants,j@, and correspond to alternate assignments of the
vibrational frequencies. The various minims can be reached by starting the calcu-
lation with different initial’gzmatrices. Some of the minima are much higher than
others and can be eliminated because of the poorer fit to the data. In other
cases, a solution may be unacceptable because the force coanstants are physically

unreasonable. However, in some situations there will be no method of deciding

vhich is the best solution without having some additional data.
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MULTIPLE REGRESSION ANALYSIS

Suppose one has a force field defined by a constraint matrix, Z, for
N

which the determinant of (Z'J';JZ) is too small to obtain a convergent solutlon.
~ v A

One then wishes to adjust as many of the force constants in the setlgo as
poesible to obtain a.leaet squares fit between'the observed and calcuzeted
frequencies. One starts with a force field containing the most important force
constants. These constants are then refined by the perturbation technique,
while holding all other force constants fixed at zero. . One then enters a
maltiple regression analysis in which gll the possible interaction constants -
are added to the normal eguations, one at a time, in the order which gives the

greatest estimated improvement in the fit between the observed and calculated

A's, as measured by the variance of A, YA’
= (B)'p(@D). (167)

This procedure is continued until the estimatea standard error of the next

fo;ce constant to be added becomes lower than some preset level. A convenient
point to stop the regression is the point at which the standard error in A begins
to increase, that is, the decrease in the variance, YA’ due to the addition of
the next force constant does not compensate for- the decrease in 4, the number of

degrees of freedom. The standard error in XA is defined by
L _
= (V)\/d) . (168)

This corresponds to the point at which the next force constant to be added to the
force field will have an estimated standard error larger than the value of the
constant itself and indicates that the determlnant of (Z'J'PJZ) is becoming small.

~ o~ SRR

When the regression is completed, the perturbation cycle is once more entered,
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and the force field including those constants selected as significant by the
regression is refined. Because the process is iterative, JZ is & function of

Ve ”d

the force constants, and it may be desirable to again enter the regression after

refining the constants to obtain the modified JZ matrix. This process is based
~n/ - .

on least squares theory and is subject to three criticisms. First, the errors
in A may not be random due to anharmonicity. Second, if the number of degrees
of freedom is small, least squares does not apply. Third, if the §§£ are large,

the linear approximation is poor, and the variance estimates, YA’ will reflect

this error.

The method does, however, give one a systematic procedure for selecting a
subset of force constants that will give a well-behaved perturbation. In
addition, the final estimates of the standard errors in;§'will give some indi-

cation of the approximations involved in the regression.

In the stepwise regression, a force constant that may be significant at an
early stage may become insignificant after the addition of other-force constants.
The insignificant force constant is remoyed from the regression equation before

adding additional force constants.

The normal equations are a set of simultaneous linear algebraic equations

in é? and are solved by the Gaussian elimination method, that is,

= 508 ' | (169)

Y
A

where Y = (JZ)'PAX and S = (JZ)'P(JZ). For convenience, the normsl equations
S "R A~ ~ "R AN

are normalized to unity as follows:

Cyy = 8,/ 10850 %(s,)%) . (170)
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X, = I(s,.)? -
1= Yi/ ‘Sii) o] } - : - Q).

1 . . : — .
where o = [(BX)'P(BX)]1=3. The matrix C is the correlation matrix and C ! is the
-~ = v >~ . P

variance-covariance matrix. An F level (Ein) for entering a force constant and
an F level (Eout) for removing a force constant are entered with the inpﬁt data.
The C matrix at any stage iﬁ the regression is partially inverted, that is, the -

la%4

matrix can be partitioned into a matrix for the variables in the regression cor-

1

responding to end into a matrix for the variables not in the'regression cor-

9?
responding to C. The variance increase due to the deletion of a varilable, J,
= <

is estimated by
= (y"1y2/(p—1y : . o
vy= (x0) /(cjj) | (172)

» V . , satisfies

for variables in the regression, and if the minimum V, min

4

Voin a/o < F ot (173)

the variable corresponding to Vmin is removed. If no variable is to be removed,
the variance reduction due to the addition of the variables not in the regressioh

is estimated by

- 2
vi'- xi/ci‘i (17h)

end if the largest.zi, Ymax’ satisfies the condition

Voo a/lo - Vmax) > F, (175)

the variable corresponding to Ymax is added to the regression.

It must be emphasized that the regression is a statistical test and is

carried out at some intermediaste point in the force constant refinement.
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NONCONVERGENCE

The refinement procedure is not infallible as may be testified to by sé&eral
investigators who have reported difficuities, for example,'(égérllé). 'Theré are
two conditions which will lead to nonconvergént problems., First, if the initial
};Jnatrix is a poor approximation,'ég will be large and §§'will contain large
elements. In this case, the linear approximation given by Equation (101) in the
text will be poor. This will be true also if the normal coordinates are very
sensitive to certain force constants, causing the elements of‘g;to change
drestically on each cycle. This wiil lead to oscillations because the corrections
will tend to overshoot. This can be seen by examining Equation (99)jin the main
text., This difficulty can soﬁetimes be overcome by finding a better initial;;
ﬁafrix, or by selectively scaling down the large values in §§ in the first few
cycles of the refinement. In effect, one must guide the calculations into a
region where the linear approximation is valid. If the force field is not

adequate, that is, if an important interaction constant is missing, it may not be

possible to do this and the force field must be modified.

The second cause of nonconvergence is singularity or near-singularity in the
normal equations, that is, the determinant of the matrix (Z'J'PJZ) is very small

/VNN/VN

compared with the product of the diagonal terms,
tT! .
ﬁcz J PJZ)kk. , - {176)

In this case, the calculations will diverge rapidly or converge very slowly to
an ill-defined solution. This problem arises when the frequencies are nearly
independent of one or more force constants or if two or more force constants are

strongly correlated. In the first situation, one finds that [(&6) cLo)kl—jkl]
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k

is very small for all values of 1 and that any. reasonable value of Agj will
give an acceptable fit to the frequencies. 1In order to make the calculations

converge, this variable must be fixed and eliminated from the normal equations.

B =,££98" e R arT)

If two or more force constants are strongly correlated, one finds that the

{Z matrix will be linearly related. In order to

-
~ Al

corresponding columns of the
cure this cause of singularity, some of the constants of the related set must be
fixed or one must use some model to obtain a relation between the two that can be

used as a further constraint in the % matrix.
) . ~

In some situations, the difficulties caused by oscillation of successive
values of'ﬁi, slow convergence, singularity or near-singularity of the normal.. .
making the following modification in Equation (111) in the text. This equation
may be rewritten as Equation (178) where a and b are constants and E is a unit

~7

matrix.

-9:/6 = a(Z'g' :;J;Z,U +'Ab )_12"15' —x . : (,178)

n

The first term; &, is a scaling factor by thch all of the adjﬁsfﬁents are
multiplied. This factor was mentioned in the aﬁove paraéraph, and it ensufes
that §§ does not produce force constants which iie outside the range over which
the force constant-frequency relationships are approximately linearf This device
is particularly useful in the first few iﬁeratibns when ﬁéveréhooting" is most |
1ikeiy'to occur. This device has been employed-sﬁccessfully'By-; humber of

workers, for instance, Long and Gravenor (116).
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The seéond term,'éﬁvreprésents additions fé thg diagonal terms of the
normal matrix. Inclﬁsionlof this factor inrthelrefinement has been labeled
"damped~leaét squéres" b& workéré%in ihe—f;eld, among them, Schaéhféchﬁeidér
(§2). The use of this faétor in cbnvefgence:pfoblems ﬁas first suggestedjﬁy“ '

_4~Levenberé (;;1) and later, indepepdently,'by‘MgrQuardt (};§). MarQuafdt has
shown thgt if a lafge'enoughApositive.vélue~of h:is ﬁsed; cénvefgencenmuét occur.
However, in many fefinementnproblems con&efgénég readily odcurs»without the use

. of & and/or b, and in these cases, the“ratequ cénvérgence is'inhibited‘by b,

often quite sériously .

- Adams and Churchill (119) have offered methods by which the appropriate

values for a and b can be determined.

In summary, if the "damped least squares" procedure does not succeed, in
order to obtain a stable solution the indeterminant and strongly correlated
constants must be eliminated from the normal equations until the determinant

assumes an acceptable value. This is equivalent to éliminating rows and columns

The elimination procedure may-be carried out by trial and error by repeating
the perturbation calculation with various force constants constrained equal to
vzéro or a constant value until one obtéins a convergent solution that gives an
acceptable fit to the observed data and reasohable uncertainties on all the
force constants. This.is time consﬁming, so i£ is convenient to use the stepwise
multiple regression technique previously described to select the most significant

subset of force constants out of a set of possible constants.
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APPENDIX V

This appendix contains the user instruétions, fléy diggrams, and listinés
for the computer programs employed in the néfmal coora;$a£e analyses of the
1,5~anhydropentitol compounds. These’programg form a package of programs which
are available on tape from the Computef Centgr at The Institute éf Péper

Chemistry, Appleton, Wisconsin 54911 (Code No. IPCTHOOL).
CART

The computer program CART computes the cartesian coordinates of the atoms
in a molecule from the bond distances and bond angles. - If desired, the program
will also compute the center of mass, moments of inertia, principal moments of
inertia, and principal cartesian coordinates. As a check on the computation of
the cartesian coordinates, the distances between eacﬁ atom and everonther atom
are tabulated. The principal moments of inegtia ana the coordinéte traﬁsforma—
tion are oﬁtained by diagonalizing the moﬁent of inertia teﬁsor. This ié accom-
plished by the subroutine, HDIAG, which uses the Jacobi ﬁethod of diagonalization,
At the option of the user, the standard cartesian coordinates and/or the princi—
pal cartesian coordinates are punched‘onto‘cards in the proper format for use

in the programs GMAT and EIGV.

The program was written by J. H. Schachtschneider (ég) and meodified for
use in this thesis. CART is coded in FORTRAN IV. The program may be used with

the IBM 360/LlL RAX operating system.

A flow diagram of CART is given in Fig. 36 and the listing in Table XLVI.
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Figure 36. The Flow Diagram of CART
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TABLE XLVI
LISTING OF CART

CART SD~-4063

CARTESIAN COORDINATE PROGRAM ) _
SCHACHTSCHNE IDER 9715763 REVISED 4/15/764

MODIFIED FOR RAX BY L J PITINER 3/15/71

THIS PROGRAM COMPUTES THE CARTESIAN COORDINATES OF THE ATOMS N

A MOLECULE FROM THE BOND DISTANCES AND BOND ANGLES AND IF DESIRED

WILL CALCULATE THE PRINCIPAL MOMENTS OF INERTIA AND THE PRINCIPAL

CARTESIAN COORDINATES.

DIMENSION RECORD(36)4COR(5043)W(50),X(50,3),VBA{3),VCA{3),

1 RIJA(3),TRANS(3,3),PRC(3),CAR(S50,3) ,DNER{3,3),CM{3),TR(I,3),
2 RT(SO)Y e NRT{150)yNCD(150),DAT(150),D(50)+RRI3)E2113),E23(3),
3E13(3)

COMMON COR s X » CAR ¢+ NR + NCO ¢ DAY

COMMON D .

CON=,174532925E~-01

READ PROBLEM 1D CARD

READ{S,2)IND

FORMATL(I3)

IF(9+IND)900, 90,4900

IF(IND-999) 924901,92

CALL EXIY

READ PROBLEM CONTROL CARD

READ (5,4) INDNOAT4NISO,NOPT,1FPUN

FORMAT(13,314,12)

THE PROBLEM CONTROL CARD CONTAINS THE FOLLOWING INFORMATION
1.IND=-09 IDENTIFYING THE CONTROL CARD. PUNCHED IN COLUMNS 1-3.
2.NOAT, YTHE NUMBER OF ATOMS IN THE MOLECULE. LESS THAN 51.

PUNCHED IN COLUMNS 5-7.
3.N150, THE NUMBER OF ADDITIONAL I[SOYOPICALLY SUBSTITUTED
MOLECULES .« NISO=0 IF NO ISOTOPIC MOLECULES.
PUNCHED IN COLUMNS 9-11.
4.NOPT, PUNCH AND MOMENTY OF INERTIA OPTION CONVROL.
IF NOPT=-1 BOTH THE RAW CARTESIANS AND THE PRINCIPAL CARTESIANS
ARE PUNCHED ONTO CARDS.
IF NOPT=0 ONLY THE PRINCIPAL CARTESIANS ARE PUNCHED ONTG CARDS.
IF NOPT=1 THE PRINGCIPAL MOMENTS OF INERTIA ARE NOT EVALUATED
IF NOPT=1 THE PRINCIPAL MOMENTS OF INERTIA AND PRINCIPAL AXES
COORDINATES ARE NOT EVALUATED AND ONLY THE RAW CARTESIANS ARE
PUNCHED ONTO CARDS.
NOPT IS PUNCHED IN COLUMNS 14 AND 15
5.1FPUNy A 1 WILL CAUSE THE PRINCIPAL CARTESIAN COQRDINATES TO
BE PUNCHED ON CARDS. IFPUN PUNCHED IN COLUMN 17.

READ TWO PROBLEM INFORMATION CARDS.

READ (5,6){RECORD(1),1=1,36)

FORMAT I 18A4) :

INPUT DATA FOLLOWSy ONE CARD DEFINING EACH ATOM.

" ATOM DEFINITION CARDS CONTAIN

DATA COLUMNS
NO NUMBER OF ATOM DEFINED 1-3
NA NUMBERS OF ATOMS DEFINING : 4-6
NB ATOM NO 1-9

NC I.E. ATOMS A,8¢ AND C 10-12
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100
50

10

19

110

116

118

120

121
122

128
129

130
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TABLE XIVI (Continued)

R DISTANCE NO-NA 13-24 (F12.6)"
TE ANGLE NO-NA~NB 25-36 (F12.6)
PH DIHEDRAL ANGLE NO-NA-NB-NC 37-42 (F12.6)
WT MASS OF ATOM NO 49-60 (Fl2.6)

ATOM DEFINITION CARDS MUST BE IN ORDER OF NO=1+2,3, ETC. ~AND
NA,NB, AND NC MUST BE LESS THAN NO. -

IF TE=0.0 THE ANGLE WILL BE TAKEN TO BE TETRAHEDRAL.

NO=1 DEFINES THE ORIGIN

THE LINE NO=1 TO NO=2 DFINES THE +X AXIS.

ATOMS NO=1,NO=2,N0O=3 DEFINE THE XY PLANE

FOR A RIGHT HANDED COORDINATE SYSTEM DIHEDRAL ANGLES ARE DEFINED
BY VEIWING THE CONFIGURATION FROM THE NC DIRECTION ALONG NB-NA
AXIS OR THE NA-NB AXIS DEPENDING ON WHETHER ATOM C IS BONDED TO
TO ATOM B OR A. THE ANGLE IS DEFINED POSITIVE FOR A CLOCKWISE
ROTATION OF ATOM C INTO THE PLANE OF N-A-B.
JOKE=0 )
WRITE (6450)(RECORD(I)s1=1,36)
FORMAT(23H1 CARTESIAN COORDINATES /(1Xe18A4))
READ (5910)NOsNAJNB¢NCoRoTEJPH,NWT
FORMAT(41344F12.6)
WRITE (69 19)NO¢NAJNBoNC,RoTESPH,WT
FORMAT(2H 414,4F12.6)
WIND)=WT
COR(NOy1)=0.0
COR(NDy2)=0.0
COR(NO+3)=0.0" '
READ (5,10)NOsNAJNBoNC,RoTEyPHWT
WRITE (6519)NOyNAJNBsNCoRyTEPHeNT
COR{(NOy1)=R
COR(NO,2)=0.0
COR(NO,3)=0.0
WINO)=WT
READ (S¢l10JNOsNAJNBsNCyReTE9PHyWT
WRITE (6919)NDyNAJNByNCyRsTE9PHWT
WIND)=WT

IF(TE)120,118,120
CS=-0.33333333
$S= 0.94280907
GO TO 121
CS=COS(CON®*TE)
SS=SIN(CON*TE)

IF(NA-1)12891224128
COR(NOy1)=COR({NA41)+R%*CS
GO TO 129
COR(NO, 1)=COR(NA¢1)-R*CS
COR(NOy 2)=R%SS
COR(NO,3)=0.0

IF (NOAT-3) 92,161,130
DO 160 I=4,NOAT
READ (5, 10)NOyNAsNByNCoRyTE PHWT
WRITE (69 19)NOYNAGNByNCoyRyTE9PHWT
WINO)=WT



132

133

135

138

142

146

148

160
161
60000
60
164
62

165

1220

1224
1225

256~

TABLE XLVI (Continued)

IFITE) 133,132,133
CS=-0.33333333
$S= 0.94280907

GO T0 135
CS=COS{CON*TE)
SS=SIN(CON*TE)
05Q=0

DO 138 M=1,3

'VBA(M)=CORINB,yM)-COR(NA,M)

VCA{M)=CORI{NC+M)-COR(NA, M)
DSQ=DSQ4+VBA{M] %*&2

RAB=SQRT(DSQ)

SCALE=0.0

DO 142 M=1,3

TRANS(M,1)=VBA(M) 7 RAB

SCALE=SCALE+ TRANS{M,1)%VCA(M)

DSQ=0.0

DO 146 M=1,3
RJA(M)=VCA{M)-SCALE*TRANS(M,1)
DSQ=DSQ+RIA(M)%%2

RAJ=SQRT(DSQ)

DO 148 M=1,3

TRANS(M,2)=RJA(M) / RAJ
TRANS(193)=TRANS(Z24L)*TRANS(3,2)-TRANSI(3,01L)*TRANS(2,2)
TRANS (2,3 )=TRANS{3,1)%TRANS{1,2)~TRANS(1,1)%XTRANS(3,2)
TRANS{3,3)1=TRANS{1,1)%TRANS(242)~TRANS{2+1)*TRANS(1,2)
PRC{1)=R*(CS

PRC{2)=R%SS*COS{CON&PH)
PRC{3)=R*SS*SIN(CON%PH)

DD 160 M=1,3

CORINGsM)=COR(NA,M)

DO 160 K=1,3

COR(NO,M)}=COR(ND, M)+TRANS(M.K)*PRC(K)
WRITE(6,60000)

FORMAT(1HO,* *)

WRITE (6,60)

FORMAT(S55H0 ATOM NOD. X Y 1
DO 164 1=1,NDAT

WRITE (6962)1,(COR(I M) eM=1,3),NW(]1)
FORMAT(4X,13,43X,y3F12. 6'F13 6)

IFINOPT) 165412304165

PUNCH STANDARD CARTESIANS

NX=0

DO 1225 [=lvNOAT

DD 1225 M=1,3
IF(0.000005~ABS(COR(1,M)))1220,1220, 1224
NX= NX+1

NR(NX )=M

NCO(NX)=1

DAT(NX)=COR(I,M)

GO TO 1225

COR(I,M)= 0.0

CONTINUE

MASS)
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TABLE XLVI (Continued)

NX=NX+1

NR{NX)=-1

NCO(NX)=0.0 -

DAT(NX)=0.0

WRITE (T7,70) IND¢NOAT,NX, (RECORD(I),1=1,12)
WRITE (T.T2){NR(I),NCO(I),DAT{TI),I=1,NX)
WRITE (6968){RECORD(T),1I=1,36)

FORMAT(21H1 ATOM DISTANCE CHECK/{1X;18A4))

‘DO 1236 I=1,NDAT

DO 1234 J=1,NOAT -

DSQ=0.0

D0 1233 M=1,3

RR(M)=COR(JyM)-COR(I,M)
DSQ=DSQ+RR{M) «RR (M)

D{J)=SQRT{DSQ)

WRITE (6969)19(D(J)eJ=1¢NOAT)
FORMAT(5HOATOMI3/( TF10.6))
IF(NOPT)168,168492

FIND CENTER OF MASS

WT=0.0

DO 170 I=1,NOAT

WT=WT+W(T)

00 180 M=1,3

CM({M)=0.0

DO 179 I=1,NOAT
CMIM)=CM(M)+W(T)*COR(14M)

CM(M)=CM{M)/ WT

DO 185 I=1,NOAT

RT{I)=0.0

D0 185 M=1,3.

X{IsM)=COR(IyM)-CM(M)
RTEI)=RT{II+(X{I4M))*%2

DO 190 I=1,3

DO 190 J=1,3

ONER(1,J)=0.0

DO 190 K=1,NOAT

IF(1-J)189,187,189

DNER(I4J)=DNERI(I, J)*H(K)*(RT(K) X(K:X)*X(Koll)
GO 70 190

DNER(T9J)=DNER(I4J) —WIKI* X(KyI)*X(KeJ)
CONTINUE

WRITE (6980)(RECORD(I}I=1912)4WT4(CM(M),M=1,3)
FORMAT(27H1 MOMENT OF [INERTIA TENSOR. ¢ 12A4/13H0O TOTAL MASS=F12.69

116H,CENTER OF MASS=3F12.6)

DO 192 I1=1,3

WRITE (6982)(DNER(IyJ)oJ=1,3).

FDRMAT(1H03F12 6)

N=3

IEGEN=0 : ' .

FIND TRANSFORMATION TO PRINCIPAL AXES.

CALL HDIAG(DNERsNyIEGENy TRoNR)

WRITE (6984)(DNER({Iy1)eI=143)

FORMAT(20HO PRINCIPAL MOMENTS 3F12.6920H AND TRANSFORMATION.)
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_TABLE XLVI {Continued)

DO 202 I=1,3

WRITE (6¢B2){TR(14J)yd=1,3)

ROTATE TO PRINCIPAL AXES.

DO 210 I=1,NOAT

DO 210 J=1,3

CAR({1,J)=0.0

DO 210 K=1,3
CAR{I4J)=CARLTIyJ)*TRIK9JIEXLTHK)

WRITE {6486)(RECORDII)sI=1¢36) .
FORMAT(34HO PRINCIPAL CARTESIAN COORDINATES/(1X,1844))
WRITE (6,60)

00 215 1=]1,NOAY

HRITE (6462) T+ (CARIT M) M=],3),0{1)

NX=0

PUNCH PRINCIPAL CARTESIANS

IF{IFPUN) 240,240,220

DO 225 I=1,NDAT

DD 225 M=1,3

IF{0.000005~ABS{CAR(I,M)) 122142214224
NX=NX+1

NR{NX ) =M

NCO(NX)=1]

DATINX)=CAR{I,M)

GD TO 225

CAR{IM)=0.0

CONTINUE

NX=NX+1

NR{NX)==1

NCOINX)=0.0

DATINX)=0.0 .

WRITE (7,70) INDeNOAT,NX, {RECORDI(1)4I=1,12})"
FORMATI(I3,6H NOAT=13,4H NX=]4412A4)
WRITE (74720 (NRCI)JNCOLTI)4DAT(L)yI=1,NX)
FORMAT(213,F12. 6,213:F12.6'2l3vF12 69213,F12.6)

IFINIS0)92,92,242
READ MASS ID CARD FOR NISO GREATER THAN ZERD
-06 IN COLUMN 1-3 ALPHA~NUMERIC INFURMAT(ON ON REMAINDER

READ (5920) INDy (RECORD(1)sI=1,15)
FORMAT(13,15A4)
IF{64IND)92,243,92
READ ISOYOPIC MASSES NOAT DF THEM IN ORDER 1-NOAT {6F12.6)
READ (5422)(W{1)41=1,NDAT)
FORMAT (6F12.6)
GO TO 168
END
SUBROUTINE HDIAG (HoN,IEGEN,UsNR)
MIHDI3,FORTRANIV DIAGONALIZATION OF A REAL SYMMETRIC MATRIX BY
THE JACOB1 METHOD.
PROGRAMMED BY CORBATO AND M. MERWIN OF MIT
CALLING SEQUENCE FOR DIAGONALIZATION
CALL HDIAGU H, N, TEGEN, Us NR}
WHERE H IS THE ARRAY TO BE DIAGONALIZED.
N IS THE ORDER OF THE MATRIX, H.
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TABLE XLvI (Continued)

IEGEN MUST BE SET UNEQUAL TO ZERO IF ONLY EIGENVALUES ARE TO BE
CDMPUTED-

IEGEN MUST BE SET EQUAL TO ZERO IF EIGENVALUES AND EIGENVECTURS
ARE TO BE COMPUTED.

U 1S THE UNITARY MATRIX USED FOR FORMATION OF 'HE E[GENVECtORS.
NR IS THE NUMBER OF ROTATIONS.:

A DIMENSION STATEMENT MUST BE INSERTED IN THE SUBROUTINEo
DIMENSION H{N,N), U(NgN), XIN), 1Q(N)

COMPUTER MUST OPERATE IN FLOAVTING TRAP MODE

THE SUBROUTINE OPERATES ONLY ON THE ELEMENTS OF H THAT ARE TO THE
RIGHT OF THE MAIN DIAGONAL. THUS, ONLY A TRIANGULAR
SECTION NEED BE STORED IN THE ARRAY H.

DIMENSION H{3,3),U(3,3)9sX(3),1Q(3)

EQUIVALENCE (1T1,1P1IV),(JJ,JPLIV)

IF (IEGEN) 15451015

DO 14 I=1,4N

DO 14 J=1.N

IF(I-J)12,11,12

UlIsJ)d=1.0

GO TO 14

UlI,4)=0.0

CONTINUE

NR = 0 ‘

IF (N-1) 1000,1000,17

SCAN FOR LARGEST OFF DIAGONAL ELEMENT IN EACH ROW

X{I) CONTAINS LARGEST ELEMENT IN ITH ROW

IQ(1) HOLDS SECOND SUBSCRIPT DEFINING POS[T!ON OF ELEMENT
NMI1l=N-1

DO 30 I=1,NMI1

X{1) = 0.0

IPL1=1¢+¢1

DO 30 J=IPL14N

IF(X{I)-ABS{ H(1,4)3) 20120'30

X{1)=ABS(H{I,J)) :

IQ(I)=J

CONTINUE

SET INDICATOR FOR SHUT=OFF.RAP=2%%*-2T7 ,NR=NO.,OF ROTATIONS
RAP=.T745058059E-08 .

HDTEST=1.0E38 .

FIND MAXIMUM OF X(1I) S FOR PIVOT ELEMENT AND

TESYT FOR END OF PROBLEM

DO 70 I=1,NMI1

IF (I-1) 60460445

IF(XMAX-X{1)) 60,70,70

XMAX=X({1)

IPIvV=]

JPIV=IQ(1)

CONTINUE

IS MAX. X(1) EQUAL TO ZERO, IF LESS THAN HDTESTQREV[SE HDTEST
IF (XMAX) 1000,1000,80

IF(. HDTEST) 90,9085

IF (XMAX ~ HDTEST) 90,900,148

HDIMIN = ABS({ H (l,1) )

DO 110 [=2,N

IF (HDIMIN - ABS{ H (1,1))) 110,110,100
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TABLE XLVI (Contmued)

HOIMIN=ABS{HIl1, m

CONTINUE

HOTEST = HDIMIN%®RAP :
RETURN IF MAXHUT4JILESS THAN{(2%%-27)ABSF{HIK,K)-MIN)
IF (HDTEST—XMAX) 148+1000,1000

NR= NR¢1 ‘

COMPUTE TANGENT, SINE AND COSINEsH{Is1)eH(JeJ)
XDIF=HUIPIV,IPIVI-HUJPIV,JPLV)
X0=SIGN{2.0yXDIF)*H{IPIV.JPIV]
XS=XDIF*%2+4,0%H(IPIV,JPIV)%*2

TANG=X0 7/ (ABS(XDIF) 4+ SQRT(XS))
COSINE=1.0/SQRT{1,0¢TANG**2)

SINE=TANG*COSINE

HIT=H{IPIV,IPLV)

H{ILy J1)=COSINE®*28(HI1+TANG*(2.0%H(1 1+ JJ)+TANGSH(JIJeJI)))
H{JJy JII=COSINE*#28{H{JJe JJ)~ TANG*(Z.O*H(II.JJ! ~TANG*HII})
HUIPIV,JPIV)=0.0

PSEUDO RANK THE EIGENVALUES

ADJUST SINE AND COS FOR COMPUTATION OF H{IK) AND U(CIK)
IF ( HUIPIV,IPIV) - HUJPIV,JPIV)) 152,153,153
HTEMP = HUIPIV.IPIV)

HUIPIV,IPIV) = HUJPIV.JPLV)

HUJPIV,JPIV) =HTEMP

RECOMPUTE SINE AND COS

HYEMP = SIGN(1.0s -SINE} * COSINE

COSINE =ABS(SINE)

SINE =HTEMP

CONTINUE

INSPECT THE 1QS BETWEEN 1+1 AND N-l TO DETERMINE
WHETHER A NEW MAXIUM VALUE SHOULD BE COMPUTE SINCE
THE PRESENT 'MAXIMUM IS IN THE I OR J ROW.

00 350 I=1,NMI1

IF(1-1PIV1210,350,200

IF (I-JPIV) 210,350,210

IFCLIQUI)-IPIV) 230,240,230

IF(IQUIN-JPIV) 350,240,350

K=1Q(1)

HTEMP=H{1+K)

H{1,K}=0.0

IPLL=1¢1

Xt1) =0.0

SEARCH IN DEPLETED ROW FOR NEW MAXIMUM

DO 320 J=IPL1,N

IF ( XUI) -ABS( H(I.J)) ) 300,300,320

X{1) = ABS(H(I,J))

IQtiy=J

CONTINUE

HU1,K)=HTEMP

CONTINUE

Xx{ipiv) =0.0

X{JPIV) =0.0

CHANGE THE ORDER ELEMENTS OF H
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TABLE XLVI (Continued)

DO 530 I=1,N

IF {I-1IPIV) 370.530.420

HTEMP = H{I,IPIV)

H{1,IPIV)= COSINE*HTEMP + SINE*H{1,JPIV)

IF { X(1) - ABS{ HCI,IPIV)) )380,390,390
X(I) = ABS(H{I,IPIV))

1IQtI) = IPIV .
H{I,JPIV) = — SINE*HTEMP + COSINE*H(I,4P1V)
IF ( X{I) - ABSU H{1,J4PIV)) ) 400,530,530
X{I) = ABS{H{I,JPIV))

IQ(I) = JPIV

GO TO 530

IF({I-JPIV) 430,530,480

HTEMP = HUIPIV,1)

"HUIPIV,1) = COSINE*HTEMP + SINE*H(IQJPIV)

IF { X(IPIV) = ABSTHIIPIV,I1} ) 44044505450
X({IPIV) = ABS(HUIPIV,I))

1IQUIPIV) = 1

HUT,JPIV] = - SINE#HTEMP + COSINE®H(I,JPIV)
IF (X(I) = ABS{ H{I,JPIV)) ) 400,530,530
HTEMP = HUIPIV,I)

HUIPIV,1) = COSINE®HTEMP + SINE*H(JPIV.I)
IF ( X(IPIV) - ABS{ H(IPIV,I)) ) 490,500,500
X(IPIV) = ABS(H(IPIV,1))

IQUIPIV) = 1 -
HIJPIV,I) = - SINEXHTEMP + COSINE#H(JPIV,I)
IF { X(JPIV) = ABS{ .H(JPIVsI)) " 15104530530
X{JPIV) = ABS(H{JPIV,I))

IQUJPTIV) =1

CONTINUE

TEST FOR COMPUTATION OF EIGENVECTORS
IFLIEGEN) 40,540,40

DO 550 I=1,N

HTEMP=U(1,1P1V)
U(I'IPIV)-COSINE*HTEMP+SINE*U(I.JPIV)
UCT,JPIV)= ~SINE*HTEMP¢COSINE*U(I,4JPIV)

GO TD 40

RETURN

END
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INSTRUCTIONS FOR PROGRAM USE

With the RAX operating system, the program deck is preceded by an /ID

card and a /JOB GO card. The program deck is followed by the input data deck.

The following input data are required for each problem.

1.

Problem ID Card. The first card to be read is the problem ID card.
This card should contain a =09 in Columns 1-3 (FORMAT I3).

Problem Control Card. The next card is the problem control card con-
taining the following information.

.

bl

IND, which identifies the problem control card, must be a -09 and
punched in Columns 1-3 (FORMAT I3).

NOAT is the number of atoms in the molecule, currently limited to
50 or less, and punched in Columns 4-7 (FORMAT Ik).

NISO is the number of additional isotopically substituted molecules.
In this case, the geometry will be the same for the substituted
molecules; however, the masses of the isotopes will be different.
NISO is punched in Columns 8-11 (FORMAT I4). If there are to be no
isotopically substituted molecules to be included, a zero may be
punched in Column 11 or left blank.

NOPT is the punch and moment of inertia option control. If NOPT =
-1, both the standard and principal cartesian coordinates are com-
puted and punched on cards (the principal cartesian coordinates
will be punched on cards only for IFPUN = 1). If NOPT = O, both
the standard and the principsal cartesian coordinates are punched
on cards (i.e., if IFPUN = 1, otherwise neither the principal or
standard cartesian coordinates will be punched onto cards). If
NOPT = 1, only the standard gartesian coordinastes are computed,
and they are punched on cards.  NOPT is punched in Columns 1l4-15
(FORMAT I2).

IFPUN controls the card punching of the principal cartesian coor-
dinates. IFPUN must equal 1 for the cards to be punched. IFPUN
is punched in Column 17 (FORMAT I2).

Problem Information Cards. The next iwo cards are the problem informa-
tion cards. These cards contain any alphanumeric information about the
problem that the user may wish to include. The data may fill the first
72 c§lumns of each card with the first three columns left blank (FORMAT
18AL).

Warning: These cards may be left blank, but they must be included with
the input.
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Atom Definition Cards. The next set of cards contains the atom .

position information. There is.one card for each atom in the mole~

cule, 1.e., NOAT cards. The following data must appear on each card
(this information appeared earlier in the text).

a. NO, tpe number of the atom being defined, punched in Columns 1-3
TFORMAT I3).

b. NA, the number of atom A, punched in Columns L-6 (FORMAT I3).
c. NB, the number of atom B, punched in Columns 7-9 (FORMAT I3).
d. NC, the number of atom C, punched in Columns 10-12 (FORMAT 13).

e. R, the distance between atom NO and atom NA, i.e., the bond length
NO-NA, punched in Columns 13-2k (FORMAT F1Z.6).

f. TE, the angle between atoms NO, NA, and NB, i.e., the bond angle
NO-NA-NB, punched in Columns 25-36 (FORMAT F12.6).

Note: If TE is left blank or assigned a O, the angle is assumed
to be tetrahedral.

g. PH, the dihedral angle between atoms NO, NA, NB, and NC, punched
in Columns 37-48 (FORMAT F12.6).

Note: The sign convention given in the text must be followed.
The convention is reversed for angles less than 90 degrees.

h. WT is the mass of atom NO. This information is only required if
the center of mass is to be computed. WT is punched in Columns
49-60 (FORMAT F12.6).

- Warning: The atom definition cards muét be in the order of NO =

1,2,3,***, etc., and NA, NB, and NC must be less than NO.

Mass ID Card. If NISO is greater than zero, the mass ID card for each

isotopically substituted molecule must follow the atom definition cards.
The mass ID card contains a -06 in Columns 1-3 (FORMAT I3) and may con-
tain descriptive alphanumeric information in Columns 4-~63 (FORMAT 15AL).

Atom Mass Cards. -The masses of the atoms in the isotopically substituted
molecule follow the mass ID card in the order 1,2,3,*°**, NOAT with six
masses per card (FORMAT 6Fl1l2.6).

Data Termination Card. The last card in the input deck designates the
end of the input data. This card has a 999 punched in Columns 1-3
(FORMAT I3).

Note: If another problem is to be included, the problem ID card for the
next data deck is placed at this point instead of the data termination
card. This arrangement permits the stacking of problems.
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With the RAX system, the input deck is preceded with a /DATA card.and ended

with a /END card.
OUTPUT INFORMATION
At the option of the user, the following information will be printed out.

1. The atom definition gards.

2. The standard cartésian coérdinates.

3. The atom distance check.

4. The moment of inertia tensor and center of mass coordinates.

2. The principal moments and}the:transfo;matiqp from standard coordinates.

. The principal cartesian coordinates.

The following information may be punched onfo cards at the-request of the

program user.

1. The standard cartesian coordinates in the sequence NR,-Nco; and DAT,
four per card [FORMAT L4(I2,F12.6)].
a. NR designates the x, y, or'2z coordinate by a 1, 2, or 3, respectively
(FORMAT I2).

b. NCO is the atom number (FORMAT IZ2):. -

c. DAT is the numerical value for the X, ¥, or z coordinate. of atom
NCO. The row number following the last element is set equal to -1.

2, The principal cartesian coordinates with the same format as for the

standard cartesian coordinates [L(I2,F12.6)].
GMAT

ThHis program calcuiates the Wilson Esmgtfix (i.e., the vibrational,inverse

kinetic energy matrix) for polyatomic molecules. Input includes the cartesian
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coordinates and masses for the atoms in the molecule, the numbers of the atoms
defining a complete set of interﬁal valence coordinates, and the symmetry
transformation, if desired. The program computes thelgématrix (i.e., the.
tranéformatiop from cartesign coordinates to internal coordinates),é;matrix;
and factored g;matrix, if the transformation to symmetry coordinates is included.
At the option of the user, the program will éunch each of the above matrices on
cards in a format suifable for input to FADJ, FLPO, or EIGV. (Only thoselgéand
;élnatrix elements whose absolute value is greater than 0.00005 are considered

significant and retained by the. program.)

The program was written by J; H. Schachtschneider (§2) and modified for use
' in this thesis. GMAT is coded in FORTRAN IV and may be used with the IBM 360/Lk

RAX operating system.
A flow diagram of GMAT appears in Fig. 37 and the listing in Table XLVII.

INSTRUCTIONS FOR PROGRAM USE

If isotopically substituted molecules dre included in the computation, two
scratch tapes must be employed. With the RAX system, the program deck is preceded
by a. /ID and a /JOB GO card followed by two /FILE cards if scratch tapes are
required. The program deck is followed by the input data which is comprised of
the information below.

1l. Problem ID Card. The first card of the input deck is the problem ID

card. This card contains a -09 punched in Columns 1-3 (FORMAT I3).

2. Problem Control Card. The problem control card follows the problem ID
card.with the information given below.

a. IND, indicating the start of a problem. IND = -09 which is punched
in Columns 1-3 (FORMAT I3).

b. NOPROB, the problem number punched in Columns 4-9 (FORMAT I6).
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Figure 37. The Flow Diagram for GMAT



(g

kG laalakaiaiakaiaks

OO0 OOOOO

90 READ(S5,11)IND

TABLE XLVIT

LISTING OF GUIAT

GMAT SD-4064 . SCHACHTSCHNEIDER
CODED IN FORTRAN 1V REVISED 4/1/64

MODIFIED FOR RAX BY L J PITINER 3/22/71

G MATRIX EVALUATION PROGRAM FOR IBM-360/44%

PROGRAM USES TAPE 1 AND TAPE 2 FOR SCRATCH TAPES OUTPUT IS DIRECT
THIS PROGRAM EVALUATES G AND B MATRIX ELEMENTS FOR UP TO 100
INTERNAL COORDINATES FOR MOLECULES CONTAINING UP TO 25 ATOMS.
THE G MATRIX MAY BE SYMMETRIZED. :

G AND B ARE PUNCHED ONTO CARDS IN A FORM SUITABLE FOR INPUT

TO THE VIBRATIONAL SECULAR EQUATION PROGRAMS.

THE PROGRAM EVALUATES G AND B MATRIX ELEMENTS FOR S5 TYPES OF
INTERNAL COORDINATES,(1)BOND STRETCHING,{2)VALENCE ANGLE
- BENDING, (3)0UT OF PLANE HAGGING-IQ)TORSIDN.(5)LINEAR VALENCE
BENDING.

INPUT DATA ARE THE MASSES AND CARTESIAN COORDINATES ‘OF THE ATOMS
IN AN ARBITRARY REFERENCE FRAME, AND A U MATRIX IF DESIRED.
DIMENSION NR( 900),NC(.900),B8( 900),NRG{1900)4NCG(1900),DG(1900},
1 NRU{300),NCU(300),DU(300)¢X(3525) yWT(25)4H(100),BB(100)y .
2 GI{100)4yGU(100)¢NRSIL0L)oNCS(101)GS{101)¢NROW(4) 4 NCOL(4&),DAT(4),
3 NE(%)'NCOD(4)¢NI(4)'NJ(4)’NK(4)'NL(4)1NX(4)oNY(4).RECURD(36).
4 REC({18)4NB(20),U(100)+UG(100)4DAL100)
EQUIVALENCE(NRG(L)¢yX{1s1)),(NCG(1), NT(l))v(NRG(lOOlloNR(l))o
LINCG({L1001),NC(1)),(DGELO0L)4B(L))(BB(1),GU(L))

READ PROBLEM CDNTROL CARD

11 FORMAT(I3)
91 IF(9+IND)}92,94,92
92 1F(IND-999)90,93,90
93 CALL EXIT :
94 READ(5,12) INDyNOPROB,NOAT4NQyINTCoNISOyIFB+NCON
12 FORMAT(13,16.,614)
RECONVERT PROBLEM CONTROL CARD CONTAINING THE FOLLOWING INFDRMAT!O
1. IND=-09, INDICATING THE START OF A PROBLEM.IN COLUMNS 1-3,
2.NOPROB, THE PROBLEM NUMBER IN COLUMNS 4-9,.
3.NOAT, THE NUMBER OF ATOMS IN THE MOLECULE. COLUMNS 11-13,
4.NQy THE NUMBER OF INTERNAL COORDINATES. PUNCHED IN COLUMNS 15-1
5.INTC. COLUMNS 18-21. A 1 WILL CAUSE THE UNSYM. G MATRIX TO BE
PUNCHED ON CARDS. }
6.NISO=0 OR 1 FOR ADDITIONAL 1SOTOPIC MOLECULES. COLUMN 25.
7.1FB, B MATRIX OUTPUT OPTIONS. FOR IFB=1 B IS PUNCHED.
‘ FOR [IFB=0 B IS NOT PUNCHED. [FB IS PUNCHED IN COL. 29.
"84NCONy PRINTOUT SUPPRESSION OPTION. IF NCON = 0,NO SUPPRESSION
OCCURS. IF NCON = 1, THE PRINTER OUTPUT OF THE X-MATRIX,
B-MATRIXyUNSYMMET. G-MATRIX,U-MATRIX,AND CARD PUNCH OUTPUT
"OF THE SYMMET.G-MATRIX ARE SUPPRESSED. PUNCHED IN COL. 33.
INPUT DATA FOLLOWS PROBLEM CONTROL CARD IN THE ORDER
1.TWO PROBLEM INFORMATION CARDS. COLUMNS 1-3 BLANK
2.THE CARTESIAN COORDINATES
3. INTERNAL COORDINATE DEFINITIONS AND THE CARTESIAN COORDINATES
OF THE POINTS GIVING THE ORIENTATIONS OF THE LINEAR BENDING
.COORDINATES. ONE POINT FOR EACH LINEAR BEND AS DEFINED
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TABLE YLVII (Conti_nued )

5.1SOTOPE CONTROL CARD FOR ISOTOPE 1
6.MASSES FOR [SOTOPE 1
7.U MATRIX FOR ISOTOPE l.
8.SYMMETRY BLOCK INFORMATION FOR 1SOTOPE 1.
IF NISO=1 ITEMS 6,7, AND B ARE REPEATED FOR EACH ADDITIONAL
1SOTOPIC MOLECULE AS DESIRED. .
READ (5,14) {RECORDI1),1=1,36)
14 FORMAT(18A4%)
NA=3&NOAT ,
WRITE (6,50)NOPROB¢NOAT,NQy (RECORD(1)4%=1,36)
50 FORMAT(19HL G MATRIX PROBLEMI7, 7H. NOAT=14,164,22H INTERNAL COORD
LINATES./ (1X,18A4)) , :
IFINCONI97576,97576,43125
97576 WRITE(6,1551)
1551 FORMAT(10HO X-~MATRIX)
JOKER=0
READ X MATRIX, THE CARTESIAN COORDINATES OF THE ATOMS.
THE X MATRIX IS -PUNCHED IN 18 COLUMN FIELDS,4 PER CARD. THE
FIRST THREE COLUMNS GIVE THE ROW NUMBER IDENTIFYING THE
CARTESIAN AXES, COLUMNS 4-6 GIVE THE COLUMN NUMBER QF THE X
MATRIX,THE ATOM NUMBER,AND COLUMNS 7-18 GIVE THE ELEMENT WITH
THE DECIMAL POINT BETWEEN COLUMNS 12-13 OR PUNCHED.THE
ROW NUMBER FOLLOWING VHE LAST ELEMENT IS SET EQUAL TO -1.
3125 D0 .102 1I=1,3
DO 102 J=1,NDAT
102 X(1,J)=0.0
104 READ (5,161 (NROW(L)yNCOL (L) oDATIL) yL=144)
16 FORMAT(4{213,F12.6))
{F(NCON)53351,53351,62197
53351 WRITE(6,1221) (NROW(L),NCOLIL) 4DATIL) 4L=1,4)
1221 FORMAT{LH +4(213,F12.6))
62197 DO 110 L=1,4
IF(NROW(L))112,110,105
105 I=NROW(L)
J=NCOL{L)
X{1eJ)=DATIL)
110 CONTINUE
GO TO 104
112 IF{1+NROWIL)) 600,115,600
115 NOB=0
NOINT=0
1F(NCON)55773,55773,118
55773 WRIVE (6,51) _
51 FORMAT{34H1 [NTERNAL COORDINATE DEFINITIONS/42HO NO. CODE
) SN K LoIX 4x) :
READ INTERNAL COORDINATE VECTORS .
A VECTOR OF 8 NUMBERS NI4NCODyN1,N2,N3,N%,N5,N6 GIVING THE NO.
ASSINGED TO THE INTERNAL COORDINATE,NI, THE COOE IDENTFYING
THE TYPE OF COORDINATE,NCODs .AND THE NUMBERS OF THE ATOMS
DEFINING THE COORDINATE.
INTERNAL COORDINATES MUST BE DEFINED IN ORDER 1 TO NQ.
IF NI=0 THE DEFINED B ROW IS ADDED T0 JHE B ROW FOR THE PREVIOUS .

S
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TABLE XLVII (Continued)

COORDINATE. . .
TYPE CODE ."NL N2 N3 N4 N5 N6
STRETCHING 1 | S
BENDING 2 1 J K X JX
OUT PLANE WAG 3 1 J K L IX JX
TORSION - 4 . K - L X Jx _
LINEAR BEND 5 " NO2 1 J K Ix  Jx PAIR
LINEAR BEND 6 i J K IX Jx

IX AND JX GIVE ATOM NUMBERS DEFINING A DISTANCE BY WHICH
THE ANGULAR COORDINATES ARE WEIGHTED. IF IX AND JX ARE Z2ERO THE
ANGLES ARE NOT WEIGHTED.. : :

NOTE THAT FOR LINEAR BENDING TYPE 5 A PAIR OF COORDINATES ARE
DEFINED AND THAT N1=NO2 THE NUMBER OF THE BENDING COORDINATE
PERPENDICULAR TO NI. NO2 MUST BE NI+l.

THE INTERNAL COORDINATE VECTOR IS PUNCHED IN 24 COLUMN FIELDS,
3 COLUMNS FOR EACH OF THE 8 ELEMENTS IN THE ORDER NI,NCOD,N1
N2,N3,N4yN5,N6. THERE ARE 1 TO 3 FIELDS PER CARD
THE CARTESIAN COORDINATES OF POINT GIVING THE DIRECTION oF
THE LINEAR BENDING COORDINATE MUST FOLLOW THE CARD ON WHICH THE
COORDINATE IS DEFINED. FORMAT(3F12.6) GIVING XsYy AND 2
COORDINATE DEFINITION CARDS ARE FOLLOWED 8Y A CARD WITH -02
IN COLUMNS 1-3. _
118 READ (S¢18)(NE(L)¢NCOD(L) o NI (L) o NJAL) oNKEL) oNLIL) oNX(LIoNY(L)oL=1
1¢3) :
18 FORMAT({2413)
120 DO 180 L=1.3
IF(NE(L))182,122,124

122 TF(NCOD(L))1B0,180,125

124 NOINT=NOINT+1

125 IF(6-NCOD(L) 605,126,126

126 MX=NCODI(L)

N1=NI(L)
N2=NJ (L)
N3=NK (L)
© N4=NL (L)
NS=NXI(L)
N6=NY (L)
IF(NCON)11235,11235,61407
11235 WRITE (69453)INOINTyMXyNLyN2yN3sN&yN5eN6
53 FORMAT{1H 4215¢164515)
61407 GO TO(130,140+15091604170,172)¢MX
c STRETCHING SUBROUTINE
130 CALL BOST{(NRyNCyBsXyNRGyNRUyNCG+NCUsDG4DUy INDyNOPROByNOAT 4y NQ»
LINTCyNISOy IFByNOINToNO2yN19gN2yN3¢NGyN5+N6yMX ¢ JOKER,NOBsNA) -
GO TO 174
c BENDING SUBROUTINE
140 CALL BEND(NRyNCyB s XyNRGyNRUyNCG¢NCUDGyDU¢ IND¢NOPROB o NOAT ¢ NQ, -
LINTCoNISOs IFByNOINTo¢NO2yNL19gN2,N3¢N49N59N6yMXy JOKER,NOB,NA)
GO TO 174
c OUT OF PLANE WAGGING SUBROUTINE

150 CALL OPLA(NRyNCsByXyNRGyNRUyNCGyNCUsDG9DUy IND¢NOPROByNOAT 4 NQy
LINTCoNISO, IFByNOINToNO2sN1yN2yN3I N4 ¢NS5¢N69MX s JOKER,NOByNA)

GO TO L74

OO0 OOOOOOOOODO0OO
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VYORSION SUBROUTINE

160 CALL TORS{NRyNCyBsXyNRGyNRUyNCGINCU,DGyDUy INDyNOPROB,NDAT yNQy
LINTCoNISO,IFB,NOINT, NDZ.NI'N2cN3'N4.N5.N6.MX.JOKER.NOB.NA.MAP’
GO TO 174

170 NO2=NOINT+}
LINEAR BENDING SUBROUTINE
CALL LIBE(NRyNC,yByX¢NRGyNRU, NCG.NCU;DG.DU.lNDyNOPROBoNOAfoNQo
LINTCyNISOsIFBoNOINT NOZ2,NLyN2,N39N4 NS, NG'MX.JOKER.NOB.NA)
NOINT=NOINT+1

GO 1O 174
172 CaALL LIBE‘NR'NCQB'XQNRG'NRUQNCGQNCU'DG'DU'lND’NDPROB NOAT 4 NQ»y

LINTCyNISO,IFBoNOINT, N020N10N20N3'N4'NSgN6,Mx,JUKERQNUB'NA,
174 IF(JOKER) 180,180,605
180 CONTINUE
GO TOo 118
182 NIB=NOB+1
NR(NIB)=-5
NC(NIB)=0
B(NIB)=0.0
M=1
LL=1
DO 26541 L=1,NOINT
DO 36751 K=LL,NIB
IF(NR{K)-L)26119,36751,26119

36751 CONTINUE

26119 JJ=K~2

“Li=K
NN=K~-3
DO 55000 MM=1,NN
D0 50000 J=M,JJ)
IF(NC{J+1)-NC(J4))60000,50000,50000

60000 D=NC(J)

C=B11J)
NC(J)=NC(J+1)
B{JIi=BlJ+1)
NCtlJ+1)=D
8(J+1)=C

50000 CONTINUE
55000 CONTINUE

M=J+2

26541 CONTINUE

IF{NCON)87653,87653,23123

87653 WRITE(6,2314)

2314 FORMAT(10H1 B-~MATRIX)

23123 IF(1FB8)200,19500,19000

PUNCH B

19000 £F(NCON)190,190,200

190 WRITE (7+54) INDyNOBy (RECORD([)4[=1515)

54 FORMAT(I3,5H NOB=14,15A4) -

192 WRITE (7456) (NRIK)4NC(K),B(K)eK=1,NIB)

56 FORMAT( 213,F12.64213, FlZ 6'213'F12 6o2l3'F12 6)
WRITE 8

19500 IF{NCON)195,195,200
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382

226

~271-

TABLZ XLVII (Continued)
WRITE (6,55)NOB, (RECORD{I)s1=1415)

"FORMAT(6HO NOB=14,15A4%)

WRITE (645T)(NR(K), NC(K).B(K).K:l.Nla)
FORMAT(1H ,612164,F11.6))
IF(NISO)210,210,202
REWIND 1
WRITE(Ly111)INR(K)¢NCIK)¢B{K)oK=14NIB)
END FILE 1
FORMAT (2144F1ll.6)
READ ISOTOPE CONTROL CARD CONTAINING THE FOLLOWING INFORMATION
1. IN=-06 IDENTIFYING CARD IN COLUMNS 1-3.
2.1FU, U MATRIX READ OPTION CONTROL
IFU=0 IF U MATRIX IS NOT INCLUDED. G NOT SYMMETRIZED.
IFU=1 THE U MATRIX IS ENTERED.
IFU=-1 U IS NOT INCLUDED WITH INPUT AND G IS SYMMETRIZED
WITH U FROM PREVIOUS ISOTOPIC MOLECULE.
IFU PUNCHED IN COLUMN 5-6
3. NSBy THE NUMBER OF FACTORED BLOCKS + 1. COLUMNS T7-9.
4.NS o THE NUMBER OF SYMMETRY COORDINATES. COLUMNS 10-12.
NAME OF MOLECULE MAY BE PUNCHED ON REST OF CARD.
READ (5,20) INDy IFUsNSByNSe(REC(I)9I=1014)
FORMAT{413,14A4)
IF{IND+6)91,212,91
IF{NCON)57896,57896, 66888
WRITE(699559) IND,IFU¢NSB¢NS
FORMAT{LHOy *IND= '13,5Xs*IFU= *,13,5X,*'NSB= *,13,5Xe*'NS= *,13)
READ MASSES . SIX PER CARD IN ORDER 1 THROUGH NOAT.
FORMAT (6F12.6)
READ (5922)(WT(L)yL=1yNOAT)
FORMAT(6F12.6) '
IF(NCON)33543,33543,31457
WRITE (696T7) (REC({I)el=1414)y(WT(J)J=1,NOAT)
:gngnr(17nl UNSYMMETRIZED Gsl14A4/11H FOR MASSES/(9F12.6))
NT=1
NUB = 1
DO 216 L=1,NOAT
DO 216 M=1,3
K=3%(L-1)+M
W{K)=1.0 / WT(L)
BB8{K)=0.0
DO 218 I=1,NQ
G(1)=0.0 -
IF(NISO)ZZO-ZZO.219
REWIND 1 -
READI1,111) (NR(K).NC(K).B(K).K=1.Nlat
DO 250 K=1,NIB
IF(NR{K)-NT)382,240,382
DO 226 L=NUB,NOB
I=NR(L)
J=NC(L)
G(I)=G(I)+BBlJ)*W{J)*BI(L)
CONTINUE
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DO 232 1=NT,NQ

IFLABS(G(1))-0. 00005)232;2329229

NG=NG+1

NRGING)=NT

NCGING)=1

DGINGI=G(])

CONTINUE

IFINR(K)) 252,252,234

NT=NT+1

NUB=K

DD 238 I=NT,NQ

Gi1)=0.0

DO 239 I=1,NA

BB8{1)=0.0

GO 10 221}

JX=NC{K)

BB(JX)=BBLJIX}+B(K)

CONTINUE

NOG=NG+1

NRG{NOG)=~1

NCGI{NQOG)=0

DGINOG)=0.0

IF{IFU) 253,254,253

IFL1IFB)260,25801,25400

PUNCH G ) )

IF{INTC)25800,25800,25400

IFINCDON) 25492544260 :

HWRITE (7158)1ND:NG¢lREC(l)'1=l'14)

FORMAY{I3,5H NG=14,14A4) ‘

WRITE (T+S56)INRGILI¢NCGI{L)+DGIL)oL=1,NOG)

WRITE G

IF{NCON)Y258,258¢260 '

WRITE (6¢59INGLI{REC{T),1= 1014)

FORMAT(5HO NG=14,14A4)

WRITE(6,5TIINRGI{L)+NCGIL) sDG(L)yL=1,NOG)

IFLIFU)261,210,263

REWIND 2

READ(Z.333D(NRU(K).NCU(K)oDUiK’vKSIQNOU,

FORMAT{2]1%44F1l1.6)

GO TD 282

READ U MATRIX.
THE U MATRIX IS PUNCHED IN 18 COLUMN FIlELDS,1 TO 4 PER CARD
SIMILAR TO THE X MATRIX, THE ROW NO. FOLLOWING THE LAST ELEMENT
1S SET EQUAL TO -3. ZERO ELEMENTS NEED NOT BE ENTERED.

U MUST BE ENTERED IN ROH ORDER. NEED NOY BE NORMALIZED.

NOU=0

IX=1

DSQ=0.0

IFINCON)bH5653,656534264

WRITE(6,7557)

FORMAT(10H1 U-MATRIX)

READ (5916) (NROWIL) ¢NCOL (L) DATIL) ¢L=1¢%)

DO 274 L=1ly4
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IF{NROWIL))2T764274,4266
266 1F({NS—NROW{L))615,267,267
267 IFINROW(L)-JUX)615:2T70,268
268 DA(JX)=1.0 / SQRT(DSQ)
IX=JX¢1l
DSQ=0.0
GO TO 267
270 0SQ=DSQ +DAT{(L)%**2
NOU=NOU+1
NRU(NGQU)I=NROWI(L)
NCU(NOU)=NCOL (L)
DU(NOU)=DAT(L)
274 CONTINUE
GO TO 264
276 1F(3+NROWIL))615,277,615
277 DA(JUX)=1.0 /7 SQRT{DSQ)
IF(NS=-JX)61592784615
278 DO 279 1=1,NOU
J=NRUL 1)
279 DULI)=DALJ)*DU(I)
NOU=NOU+1
NRU(NDU)=-3
NCU{NQU)=0
DU(NCOU)=0.0
IF{NCON)81985,819859 36631
81985 WRITE(6,4884) (NRU{L) ¢NCU(L)DU(L) L=1,NOU)
4884 FORMAT{1H ,6(213,F12.6))
36631 IF(NISO)282,282,280
280 REWIND 2
WRITE(2,333)(NRUCTI)NCU(I),DU(TI),]I=1,NOU)}
END FILE 2
READ SYMMETRY BLOCK INFORMATION. NUMBERS OF FIRST ROW OF EACH
FACTORED BLOCK. LAST NUMBER IS NS+1. PUNCHED IN 24 THREE COLUMN
FIELDS. I.E. FORMAT({2413)
282 READ (5,18)(NB(I),I=1,NSB)
NU=NOU-1
JL=1
JX=2
NUT=1
NuUB=1
IX=1
290 HRITE (6,60)INDyJLJ(RECI(I), I=1,414)
IFINCON) 6598765987, 89981
65987 WRITE (T7o7L)INDeJLL(REC{I)oI=1,14)
o PUNCH SYM. G
60 FORMAT({1HO9s13412H SYM.G.BLOCKI3,14A4)
71 FORMAT({13,12H SYM.G.BLOCKI3¢14A4%)
89981 NT=NB(JX) : : e
NP=NB(JL)
NEL=0
300 DO 302 I=1,NQ
GU{ 1)=0.0
302 ULI1)=0.0 .

OO0
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303 DO 320 K=NUB,NOU
IF(NRU{K)=1X)306,315,306
306 DO 312 L=1,NG
1=NRG(L) .
J=NCG(L)
309 GUII)=GU{T)+U(J)*DGIL)
1F(1-4)310,312,310

310 GU(JI=GU{J)+U(1)*DG(L)

312 CONTINUE
75391 GO T0 322

315 JU=NCU(K)

320 ULJU)=DUIK)

322 NUB=K

DO 324 I=IXsNS

324 UGI1)=0.0

JAK=0
D0 335 L=NUT,NU
1F(JAK)332,330,332 |

330 IF(NRU(L)-1X)331,332,331

331 NWY=L

JAK = 1
332 [=NRUIL)
J=NCU(L)
335 UG(1)=UG( 1)+DU(L)%*GU(J)
NUT=NWY
D0 350 J=IX,NS
IF {0.00005-ABS{UGJ) ) ) 34253504350
342 IF(NT~J1343,343,344
343 WRITE (6972)1X,sJ
72 FORMAT(40H ERROR,ERROR,ERROR- G NOT FACTORING.ROWI4,TH COLUMNI4)
344 NEL=NEL+1
" IF(101-NEL)34500,34500,347
34500 IF(NCON)88979,345,68996
345 WRITE (7,56) INRS(T),NCS(I),6511),1=1,100)
68996 WRITE (6,57) (NRSU{I)4NCSII),GS(1),I=1,100)
88979 NEL=1
347 NRS(NEL)=IX-NP+1
NCSINEL)=J-NP+1
GS(NEL)=UG(J)

350 CONTINUE
IX=1x+1

 IF{NT-TX)354, 356,300

354 NEL=NEL+1
NRS (NEL)=~1
NCS(NEL)=0
GS{NEL1=0.0 |
IF(NCON135427,358,89765 - ‘.

358 WRITE (7,561 (NRS(T)oNCS(T) 9GS 1)y T=1sNEL]
89765 WRITE (6,57){NRS{T)yNCS(I)+sGSIT),I=1,NEL)
356427 JL=JL+1

IX=JX+1
360 IF(NSB-JX1210,290,290
600 WRITE (6,80)NOPROByLyNROW(L)+NCOL(L),DAT(L)
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80 FORMAT(24H X MATRIX ERROR PROBLEMI7,6H FIELDI3,6H READSZ[#.FIZ 6)
GO T0 210
605 WRITE (6.82)L.NE(L)'NCOD(L)'NIlL)oNJ(L):NK(L)oNL(L"' NX(L):NY(L’
1+ JOKER
82 FORMAT(33H INTERNAL COORDINATE ERROR.FIELDI3,6H READS814, 8H JOKE
IR =13) :
GO TO 210
615 WRITE (6984)NOPROB,LyNROWI(L),NCOL(L),DAT(L)
84 FORMAT(24H U MATRIX ERROR PROBLEMI7,6H FIELDI3,6H READS214,F12.6)
GO 10 210
END
SUBROUTINE BOST{NRyNC 48y XsNRGyNRUyNCGyNCU,DG4DUy INDy NOPROB ¢NOAT,
INQy INTCoNISO, IFBoNOINT4yNO2yNLyN29yN3IgN4G¢N5 s N6y MXy JOKERyNOBo NA)
THIS SUBROUTINE COMPUTES THE B MATRIX ELEMENTS FOR A BOND STRETCH
AS DEFINED BY WILSON. .
DIMENSION NR( 900)4NC( 900),B( 900)4NRG{1900),NCG{1900),DG(1900),
1 NRU(300)'NCU(300)vDUl300)pX(3oZSlv
2R1J(3)
100 [FIN6)130,101,130
101 IF(N5)130,1024130
102 IF(N4)130,103,130
103 IF(N3)130,104,130
104 IF(NOAT-N2)130,105,105
105 IF(NOAT-N1)130,1064106
106 I=N1
J=N2
01JsSQ=0.0
109 0O 112 M=1,3
RIJIM)=X(MyJ)I=X(Mo1)
112 DIJSQ=DIJSQ4+RIJ(MI*RIJIM)
114 DO 120 M=1,3
IF{ABS(RIJ(M))-0.00005)120,120,115
115 NOB=NOB+1
NR (NOB )=NOINT
NCINOB)=3%(I-1)4M
BINOB)=-RIJ(M) /SQRT(DIJSQ)
NOB=NOB+1 .
NR(NOB )=NOINT
NCINOB)=3%{J-1)+M
BINOBI= RIJIM) / SQRT(D[JSQ!
120 CONTINUE
GO TO 132
130 JOKER=1
132 RETURN
END : A
SUBROUTINE BEND(NR.NC;B' ¢NRG s NRU ¢NCG ¢NCU DGy DUy INDy NOPROByNOAT,
INQ INTCoNISOy IFByNOINTyNO29NLyN29N3yN49NSyN69MX9 JOKERoNOByNA)
THIS SUBROUTINE COMPUTES THE B MATRIX ELEMENTS OF A VALENCE
ANGLE BENDING COORDINATE AS DEFINED B8Y WILSON.
I AND K ARE THE NUMBERS OF THE END ATOMS.
J= THE NUMBER OF THE CENTRAL ATOM
DIMENSION NR( 900)4,NC{ 900),8( 900)4NRG{1900)¢NCG{1900),DG{13900),
1 NRU(300)¢NCU(300),DUL300)¢X(3,25),
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2RIT(314RIK(3) yRIXIX(3),EJTL3) 4EIKIB). -
100 IFINDAT-N6)150,101,101

101 TF(NDAT-N5)150,102,102

102 1F(N4)150,103,150

103 IF(NOAT-N3)150,104,104

104 IF{NOAT-N2)150,105,105

105 IFINDAT-N1)150,106,106

106 I=N1

107 J=N2

K=N3
IX=NS
~ JX=N6

o IFEIX)110,11001212

110 1x=1
Ix=1

112 DIISQ=0.0
DJIKSQ=0.0
0XSQ=0.0

115 DO 122 M=1,3
RITIMI=X My 1) =X(MyJ)
RIK(MI=X{MyK)=X(MyJ)
RIXJX{MI=X(My IX)=X 1My IX)
DJTSO=DIISQ+RITIMISRIT (M)
DIKSQ=DJIKSQ+RIK(M)ERIK (M)

122 DXSQ=DXSQERIXIX{M)ERIXIX(M)

123 DJI=SQRT{DJISQ)

DJK=SQRT(DJKSQ)
DX=SORT(DXSQ)
IF(DX)128,127,128

127 DX=1.0

128 DOTJ=0.0

129 DO 132 M=1,3
EJL(MI=RIT{M) /DI
EJK(M)=RJIK(M)/DJIK .

132 DOTJ=DOTJ+EJTIMISEIK(M)
[F(1.0-ABS(DOTJ))152,152,134

134 SINJ=SQRT(1.0-DOTJ*DOTJ)

136 DO 144 M=1,3
SMI=2(OX#*(DOTS*EST(MI-EJKIN) ) )/ (DJIT#SINJ)
IF(ABS(SM1)~0.00005)138,138,137

137 NOB=NGB3+1
NR (NOB)=NOINT
NCINOB)=3%(1-1)4M
BINOB)=SMI

138 SMK= (DX#(DOTJ*EJK(M)I-EJTI{M)))/ (DJIK*SINJ)
1F(ABS(SMK1-0.00005)1140,140,139

139 NOB=NOB+1
NR (NDB)=NOINT
NC(NDB)=38(K~1)+M
B {NODB ) =SMK

140 SUM=SMI+SMK |
IF(ABS(SUM)-0. 00005)144.144.142'

142 NOB=NDB+1
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144
150

152
154

100
101
102
103
104
105
Lo6

110

112

115
116

TABLE XLVIT (Continued)

NR({NOB )=NOTINT
NCI(NOB)=3%(J-1)¢M
B(NOB)=—SUM
CONTINUE

GO TO 154
-JOKER=1

GO TO 154

JOKER=2

RETURN

END

SUBROUTINE OPLA(NRyNC,ByX

PLANE WAGGING COORDINATE
I= THE END ATOM

J= THE APEX ATOM

K AND L = THE ANCHOR ATO

DIMENSION NR( 900} 4NC{ 900),B{ 900),yNRG(1900)yNCG{1900)9DG{1900)y
1 NRU{300),NCU(300),DUL300)9X(3+25), )
X(3),EJI{3),EJK(3),EJIL(3),C1(3),C2(3),

2RIT(3)4RIKI(3)4RILI3)RIXI
3C3(3)
IF{NOAT-N6)170,101,101
IF{NOAT-NS)170,102,102
IF{NOAT-N4)170,103,103
IF(NOAT-N3)1704104,104
[IF{NDAT-N2)170,105,105
IF(NOAT-N1)170,1064106
I=N1

J=N2

K=N3

L=N&4

IX=NS

JX=N6

IF(IX)110,110,112

IX=1

JX=1

DJ15SQ=0.0

DJKSQ=0.0

DJLSQ=0.0

DXSQ=0.0

00 124 M=1,3

RII(MI=XIM, [)-X(MeJ)
DJISQ=DJISQ+RJII{MIXRITI(M)
RIK(MI=X(MsK)=-XI{MyJ)
DJKSQ=DJKSQ+RIK{M)I*RIKIM)
RILIMI=XIMeL)=X(MpJ)
DJLSQ=DJLSQ+RJILI(MIZRJIL{M)
RIXIX{M)=X{MeJIX)=X(M,1IX)

124 DXSQ=DXSQ4RIXJIX(MI*RIXIX{
126 DJI=SQRT(DJISQ)

DJK=SQRT(DJKSQ)

- DJL=SQRT(DJILSQ)

DX=SQRT{DXSQ)
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yNRG yNRU¢NCG yNCU DG4 DUy IND9 NOPROB¢NOAT,
INQ, INTCoNISOy IFB NOINT,NO24N1,N2yN3 yN& N5y N6+ MXy JOKER¢NOB9NA)
THIS SUBROUTINE COMPUTES THE B MATRIX ELEMANTS FOR AN QUT OF

AS DEFINED BY WILSON.

MS.

M)
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TABLE XLVII (Continued)

© 130 IF(DX)132,131,132

131 OX=1.0

132 DO 136 M=1,3
EJTIMI=RIT(MI/DI]
EJK(M)=RJIK{M)/DJIK

136 EJLIMI=RILIM)/DIL

137 CLUL)=EJK(2)2EJL(3)-EIKIINREIL(2)
ClLU2)=EJK(3)%EJLIL)-EJK(L)*EIL(3)
CLI3)=EJK(L)*EJL(2)-EJK{2)%EILLL)
C211)=EJL(2V*EJT(3)-EJLI3)*EIT(2)
C2(2)=EJL(IV*EJT(LI-EJLUL)I*EJT(D)
C2{3)=EJLILI*EIT(2)-EJLI2)*EJT(D)
C3(1)=EJI(2)*EJK(3)1-EJI13)%EIK(2)
C3(2)=EJI13)*EIK(L)-EJI(LI*EIKI])

139 C3(3)=EJI({1)*EJK(2)-EJIL2)*EIK(])

140 DET=EBJI(L)*CLLL)+ESTL2)1%CL(2)+EITLI)2*CL(3)
D0T1=0.0

142 DO 143 M=1,3

1643 DOTI=DOTI+EJK(MI*EIL(M)

144 IF(1.0~ABS(DOTI))1729172.146 :

‘146 SINI=SQRT(1.0-DOTI*DOTI)

147 SINT=DET/SINI

148 IF(1.0-ABS{SINT))I1T74,4174,149

149 COST=SQRT(1.0-SINT#SINT)

150 TANT=SINT/COST

155 DO 168 M=1,3

- 157 SMI =((CLl{M)/(COSTSSINI ) )-({ TANT*EJIL (M}})/DJI
IF(ABS(SMI)~-0.00005)160,160,158

158 NOB=NOB+1
NR(NOB )=NOINT
NCINOB)=3%(]1~1)4+M
BINOB)=DX*SMI
COMP1 = SINI*SINI _

160 SMK={(C2IM)/{COSTHSINI))-((TANT*(EJK{M)-DOTI*EJL(M)) )I/COMP1))I/DIK
IF(ABS{SMK)-0.00005)163,163,161

161 NOB=NOB+1

© NRUNOBI=NOINT

NC(NOB)=3%(K-1)+M
B{NOB)=DX%*SMK

163 SML=((C3(M)/{COSTHSINI} )~ {TANT#(EJL(M)-DOTI#EJIK(M)))/COMPL) )/DIL
IF(ABS(SML)-0.00005)166,166+16%

164 NOB=NQOB+1
NR (NOB }=NOINT
NCINOBI=3*(L-1)+¢M
BINOB)I=DX*SML

166 SUM=SMI+SMKeSML
IF{ABS(SUM)-0.00005)168,168,167

167 NGOB=NOB+1
NR(NOB)=NOINT
NC(NOB)=3%(J-1)}+M
B{NDOB ) =~DX*SUM

168 CONTINUE

- 60 Y0 178
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TABLE XLVII (Continued)

170 JOKER=1
GO TO 178
172 JOKER=2
GO TO 178
174 JOKER=3
178 RETURN
END ' ,
SUBROUTINE TORS(NRyNC 4B ¢ X yNRG¢NRUsNCG ¢ NCUDG4DUy INDy NOPROBNOAT,
INQy INTCyNISOs IFByNOINT 4NO24NL 9sN2yN3 ¢N% ¢ NS o N6y MX ¢ JOKER » NOB y NA ¢ MAP )
THIS SUBROUTINE COMPUTES THE B MATRIX ELEMENTS FOR THE TORSION
AS DEFINED BY WILSION.
I AND L = THE END ATOMS . [ NEARER OBSERVER.
J AND K = THE CENTRAL ATOMS. J NEARER OBSERVER.
DIMENSION NR( 900),NC{ 300),8( 900),NRG{1900),NCG(1900),DG( 1900},
1 NRU(300),NCU(300),DU(300),X{3,25),
2RT1J(3)yRIK(3) ,RKLE3) yRIXIXII) ETI(3)oEIK(3)4EKLI3),CRL1(3),CR2(3)
100 IFI(NOAT-N6)180,101,101
101 IFINDAT-N6)180,102,102
102 IF{NDAT-N4)180,103,103
103 IF(NDAT-N3)180,104,104
104 IF(NDAT~N2)180,105,105
105 IF(NOAT-N1)180,106,106
106 1=N1
J=N2 A ,
K=N3 :
L=N&
IX=NS
JX=N6
IF{IX)110,110,112
110 1x=1
JX=1
112 D1J5Q=0.0
DJKSQ=0.0
DKLSQ=0.0
115 DXSQ=0.0
116 DO 124 M=1,3
RIJIMI=X(MyJ)=X{Mg1)
DIJSQ=DIJSQ+RIJ(M)*RIJ (M)
RIK(M)=X(MgK)=X(MyJ)
DJIKSQ=DJKSQ+RIK(MIERIK (M)
RKL(M)=X(MyL)=X{MyK)
DKL SQ=DKLSQ+RKL{M)ZRKL (M)
RIXJIXAMISX{MgIX)I=X{MyIX)
124 DXSQ=DXSQ+RIXJX(M)®RIXJIX{M)
126 DIJ=SQRT(DIJSQ)
DJK=SQRT(DJIKSQ)
DKL=SQRT(DKLSQ)
DX=SQRT(DXSQ)
130 IF(DX)132,131,132
131 DX=1.0
132 DO 136 M=1,3 .
EIJ(M)=RIJ(M)/DIJ




TABLE XLVII (Continued)

EJK(MI=RIK(M) /DIK
136 EKL(M)=RKL(M)/DKL
138 CRI(1I=EIJ(2)*EIK(3)~E1I(3)SEIK(2)
CRI(2)=ET1JI3)*EJKIL)-ENJ{ 1) *EIK(3)
CRL(3I=ELJ(LIXEJK(2)-ELI(2)$EIK(1)
CR211)=EJK(2)*EKLI3)~EJK(3)*EKL(2)
CR2{2)=EJK(3)#EKLI{1)-EJIK( 1) *EKL(3)
142 CR2(31=EJK(1)*EKL{2)~EJIK(2)*EKL (1)
143 DOTPJ=0.0 B
DOTPK=0.0
145 DO 147 M=1,3
DOTPJ=DOTPI~ETJI(M)*EIK (M)
147 DOTPK=DOTPK~EJK(M)*EKLIM)
148 {F(1.0-ABS(DOTPJ))182,182,149
149 IF(1.0-ABS(DOTPK))182,182,150
150 SINPJ=SQRT(1.0-DOTPJ*DOTPJ)
SINPK=SQRT{ 1.0~-DOTPK*DOTPK)
152 00 164 M=1,3
SMI==CR1{M)/{DIJ*SINPJISSINPJ)
. IF(ABS(SMI)~0.00005)156,156,154
154 NOB=NOB+1
NR (NOB)=NOINT
NC(NOB)=3%([-1)4M
B(NOB ) =DX*SMI
156 F1=(CRL{M)%(DJK-DIJ*DOTPI))/(DIK*DIJ*SINPI*SINPJ)
F2=(DOTPK$CR2{M) )/ (DJK*SINPK*SINPK)
SMJ=F1-F2
1F(ABS(SMJ)-0.000051158,158,157
157 NOB=NOB+1.
NR (NDB)=NOINT
NC(NOB)=3%(J-1)+M
BINDB )=DX%SMJ
158 SML= CR2(M)/{DKL*SINPK*SINPK)
IF(ABS(SML)-0.00005)160,1604159
159 NOB=NOB+1
NR {NOB)=NOINT
NC(NOB)=3%(L-1)14M
BINOB)=DX#SML
160 SUM=SMI+SMJ+SML
IF(ABS(SUM)=0.00005) 16441649162
162 NOB=NOB+1
NR (NOB ) =NOINT
NCUNOB)=3%{K~1)+M
B{NOB ) =-DX*SUM
164 CONTINUE
GO TO 186
180 JOKER=1
GO TO 186
182 JOKER=2
186 RETURN
. END
SUBROUTINE LIBE(NRyNCsBsXsNRG,NRUNCG,NCUsDG¢DUs IND,NOPROB,NOAT,
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TABLE XLvII (Continued)

INQy INTCyNISOy IFBoyNOINT¢NO2+N1 +N2¢N3yN4 NS osN6,MXy JOKERsNOByNA)
THIS SUBROUTINE COMPUTES THE B MATRIX ELEMENTS FOR A LINEAR BEND
OR FOR A PAIR OF PCRPENDICULAR LINEAR BENDS.

N1=NO2 THE NUMBER OF THE SECOND COORDINATE.
I AND K = THE END ATOMS.
J= THE CNTRAL ATOM. ,

A GIVES THC CARTESIAN COORDINATES OF A POINT IN SPACE, SUCH
THAY THE VECTOR FROM ATOM J TO POINT A IS PERPENDICULAR TQ
THE LINE [-J-K AND SERVES TO DRIENT THE COORDINATES IN SPACE.

DIMENSION NR{ 900),NC{ 900)+B( 900)¢NRG(1900) NCG(1900)¢DG{1900),

1 NRU(300)NCUL300),DU(300)4X(3425),

2A(3)¢RIT{3)yRIKII)IJRIXIXII) UNI3)SUNIT(3),UPI3),EJI(3),EIK(3)

JSTOP=0 ' '
IFINDAT-N6)160,101,101
IFINOAT~NS5)160,102,102
IF{NOAT-N4)160,103,103
IFINOAT-N3)160,104,104
IFI(NDAT-N2)160,105,105

READ (S5424)(A(1)e1I=1,3)

FORMAT(3F12.6)

TFI{N4)160,109,108
I=N2

J=N3

K=N4

JsToP=1

G0 70 110
I[=N1

J=N2

K=N3
IX=NS

JX=N6 ‘

IF(IX)111,111,112
IX=1

IX=1

DJ15Q=0.0

DJKSQ=0.0

0XSQ=0.0

DAJSQ=0.0

DO 124 M=1,3 ,

RIT(M)I=X{M, I )=~X(MeJ)

DJISQ=DJISQ+RII(M)XRII (M)

RIKIM)I=X(MaK)=X{ M,y J)

DJKSO=DJKSQ4RJIK{M)IE=RIK (M}

RIXIXIMI=X(MedX)=X{M,IX)

DXSQ=DXSQ+RIXIX(M)I®RIXIX(M)

UN(MI=A(M)-X{M,yJ)

DASSQ=DAJSQ+UN{M)I*UN(M)

DJI=SQRT(DJISQ)

DJK=SQRTI{DJIKSQ)

DX=SQRTIDXSQ)

DAJ=SQRT{(DAJSQ)

IF(OX)132,131,132

DX=1.0




132
134

140

142
143
146

147

149
150

151

158
160

162
164

-282-

TABLE ¥LVII (Continued)

DOTJI=0.0
DOTP=0.0
DO 140 M=1,3
EJI{M)I=RJI(M)/DJIX

EJK(M)=RJIK(M) /DIK -
UNIT(M)=UNIM) /DAY
DOTJ‘DOTJ*EJI(M)*EJK(H)
DOTP=DOTP+EJI(M)®UNIT(M)
TEST=1ABS{D0OTJ)-1.0)

{F10.0001~ ABS(TEST))1621142,142
IF{0.00005-ABS54{D0TP))16241434143
UP(1)=EJK(2)*UNITI(3)-EJK(3)%UNIT(2)
UP(2)=EJK(3)*UNIT(1)-EJK(1)*UNIT(3)
UP(3)=EJK(L1)*UNIT(2)-EJK(2)%UNIT(1)
DO 149 M=1,3
IF(ABS{UNIT(M))-0.00005)1494149,147
NOB=NOB+1

NR({NOB ) =NOINT

NC(NOB)I=3%([-1)¢M
B(NOB)=-DX*UNIT{M)/ DJI

NOB=NOB+1

NR(NOB )=NOINT

NC(NOB)=3%(K-1)+M
B(NDB)“-DX*UNIT(H)/ DJK

NOB=NOB8+1

NR (NOB )=NOINT

NC(NOB)=3%({J-1)¢M

BINOB)=DX*(1.0/ DJI +1.0/DJK)*UNIT{M}
CONTINUE

IFLJSTOP)I 16441649150

DO 158 M=1,3
IF(ABS(UP(M))-0.00005)158,158,151
NOB=NQB+1

NR(NQOB )=NO2
NC(NOB)=3%{I-1)+M
B{NOB)=-DX*UP(M)/ DJI -
NOB=NOB+1

NR{NOB)=NO2
NCINOB)=3%(K~-1)eM
B{(NOB)=-DX*UP{M) / DJK
NOB=NOB+1

NR(NOB)=NO2
NC(NOB)=3%(J-1)+M
B(NOB)=DX#(1.0/0J1 + 1.0/DJK)2UP(M)
CONTINUE

GO T0 lé64

JOKER=1

GO TO 164

JOKER=2

RETURN

END.
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¢. NOAT, the number of atoms in the molecule. NOAT punched in -
Columns 11-13 (FORMAT IbL).

Note: The maximum number of atoms permitted is 25.

d. NQ, the number of 1nternal coordinates, punched in Columns lh-lT
(FORMAT Ik).

e, INTC, must be a 1 for the unsymmetric g’matrix to be punched on
cards. INTC is punched in Column 21 (FORMAT I4).

f. NISO, the number of isotopically substltuted molecules punched in
Columns 22-25 (FORMAT Iu). .

g. IFB, may be 1, 0, or -l. IFB is the B matrix suppression option.
For IFB = -1, the B and G matrices ar® not printed or punched onto
cards. For IFB = fﬁ thé’h matrlx is printed, but not punched onto
cards if NCON = 0, and tHe printing and punching of the G matrix
depends on the valués of INTC and-NCON. For IFB = 1, th® B matrix
and G matrix are printed and punchéed onto cards for NCON <0.  IFB
is plached in Columns 26-29 (FORMAT Ih4).

h. NCON is the output suppression option. If NCON = 1, all output, both
printer and card punch, is suppressed, except the printout of the
symmetric G matrix. There is no suppression for NCON = 0. NCON is
punched in Column 33 (FORMAT Ih)

Problem Information Cards. The problem control card is followed by two
problem information cards. These cards may contain any desired alpha-
numeric information about the problem. The data can be punched in any
column of the card except 1-3, which should be left blank, through
Column 72 (FORMAT 18AlL).

Warning: These two cards must be included with the 1nput data even if
they are left blank.

Cartesian Coordinates. The next set of cards contain the cartesian
coordinates, standard or principal, obtained as output data from CART
[FORMAT 4(2I3,F12.6)]. The row number following the last element should
be -1. This should have been accomplished by CART already.

Internal Coordinate Definition Cards. The next set of cards defines the
internal coordinates. There are three internal coordinate "vectors"
describing the internal coordinates per card, Each internal ccordinate
"vector" is denoted by eight numbers: NI, NCOD, N1, N2, N3, Nk, N5, and
N6 NI gives the number assigned to the 1nternal coordinate, NCOD is the
code number identifying the type of internal coordinate, and N1, N2 N3,
N4, N5, and N6 are the numbers of the atoms defining the coordinate. A
description of the internal coordinate coding system was presented earlier
in this text which may also be found in Schachtschneider's manual (§2)
(FORMAT 24I3). . The internal coordinate definition cards are followed by
a card with -02 in Columns 1-3 which designates the end of the internal
coordinate information.

Warning: The internal coordinates must be defined in the order 1
through NQ.
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Note: If NI = 0, the defined B matrix row :is added to the B matrix
row for the previous coordlnate, i.e., the internal coordinate becomes
e linear sum of the two defined coordinates.

Isotope Control Card. There must be one of these cards for each
molecule in the problem. The followlng information is contained on
this card.

a. IN, identifies the isotope control card. IN = -06 which is punched
" in Columns 1-3 (FORMAT I3).

b. IFU, the U matrix read optlon control. (The U matrix is the trans-
formaetion from internal coordinates to symmet® coordinates.) IFU
may be a 1, 0, or -1. IFU = 0, the U matrix is not included with
the input and the G matrix is not sy@metrized. IFU = 1, the U

' matrix is entered and the G matrix is symmetrized. IFU = -1, *the U
matrix is not entered with the input, but the G matrix is symmetrlzed
‘with the U matrix from the previous 1sotop1calf& substltuted molecule.
IFU is puniched in Columns 4-6 (FORMAT I3).

c¢. NSB is the number of factored blocks or symmetry species plus 1
which is punched in Columns T7~9 LFORMAT I3).

d. NS is the number of symmetry coordlnates whlch is punched in Columns
10-12 (FORMAT I3).

Note: The rest of the isotope controi card through Column 68 may be
used for descriptive alphanuméri¢ information (FORMAT 1lAlb).

Warning: The isotope control card must be included with the input
data even though there may not be any 1sotop1cally substituted
molecules included in the problem.

Atomic Masses. The atomic masses, six per card, follow the isotope
control card. The masses must follow in the order 1 through NOAT.
(FORMAT 6F12.6).

U Matrix. If IFU =1, the U matrix must be included next.  The U matrix
T& punched in 18 column fields, 1 to 4 per card, in a manner similar to
the cartesian coordinates. The row number following the last element

is set equal to -3. [See Schachtschneider (89) for a description of the
U matrix.] The zero elements of the. U matrix need not be included and the
Patrix does not have to be normalizedt The row elements must be entered
in order [FORMAT 4(2I3,F12.6)]. :

Symmetry Block Information. If IFU l the U matrix is followed by a
symmetry block information card glVlng the nuﬁbers of the first row of
each factored block with the last number being NS + 1. ‘These numbers
are punched in 24 three column fields (FORMAT'2MI3) :

Data Termlnatlon“Card. The data are followed by a card denoting the
end of -the problem. This card consists of 999 punched in Columns 1-3,
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Note: If another problem is to be included with the input:data, the
problem ID card of the next set of data is placed at this point instead
of the data termination card.

'Warning: The B matrix is limited to 900 elements and the g_matrix to
1900 elements.™ ' 1 ~

Warning: If the‘gymatrix does not factor, a user error is signified.

With the RAX system the input deck is preceded by a /DATA card and ended

with a /END card.

OUTPUT INFORMATION

s

At the option of the program ﬁser, the following data will be printed out.

1. The cartesian coordinates (X matrix).
~
2. The internal coordinate definition "vectors."

3. The B matrix.

~7

-

4, The atomic masses.

5. The unsymmetrized G matrix.
”\

6. The normalized U matrix.

Va'd

7. The symmetrized G matrix.
e
The data below wiIl be punched on cards if desired by the user.

1. The B matrix in the format row, column, and numerical value [FORMAT
4(21%,F12.6)]. The row number following the last element is set
equal to -5.

2. The G matrix in the format row,'column, and numerical value [FORMAT
4(213,F12.6)]. The row following the last element is set equal to -1.

3. The symmetrized or factored G matrix [FORMAT L(2I3,F12.6)]. The row
number following the last el¥ment is set equal to -1.




-286-

- UBZM

This program is designed to evaluate thg transformétiéﬁ,'%f from force
constant space to ipternal coordinate space. The program is specifically de-
signed to calculate the SVQFF or UBFF which were descfibed earlier in:this
text. The use of the program to compute thelgamatrix for a Urey-Bradley force
field will not be discussed here, but the reader will find a detailed descrip-~
tion in Schachtschneider's manual (89). The employment of UBZM shall instead
be oriented toward the computation of a simplified valence quadratic force
field:- The input data to UBZM consists 6f a specification of the Z matrix in

"/
terms of the position of the F matrix elements by row and column number and the .
number of the corresponding force constant pdarameters. The program then pun;hes

the Z matrix on cards in a form suitable for use as input to ZSYM, FADJ, FLPO,
s )

and EIGV.

The program was written by J. H. Schachtschneider (89) and modified for use

in this thesis. The program may be run with the IBM 360/4L RAX operating system.

A flow diagram of UBZM is presented in Fig. 38 and 'a listing in Table XLVIII

[the UBFF subroutines are not included, see (89)].
INSTRUCTIONS FOR PROGRAM USE

The progrem deck must be preceded by a /ID and a /JOB GO card when the
program is run with the RAX operating system.
Warning: If this program is to be reqﬁired to compute the F matrix, the

arrey F(I,J) in the dimension statement must be changed to F(50,50) which
will permit the evaluation of‘g,up to 50 force constants,
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Figure 38, The Flow Diagram of UBZM
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TABLE XLVIIT

LISTING OF UBZM

UBZIM SD-4080 CODED IN FORTRAN [V FOR THE [BM-360/44 RAX
SCHACHTSCHNEIDER 9/1/60 REVISED 10/1/63

MODIFIED FOR RAX BY L J PITZNER 4/1/71

THIS PROGRAM EVALUATES THE TRANSFORMATION FROM UREY—BRADLEY

SPACE TO INTERNAL COORDINATE. SPACE FOR THREE TYPES OF
CONFIGURATIONS GIVEN THE CARTESIAN COORDINATES OF THE ATOMS.

THE CONFIGURATIONS ARE 1.GEMy2.TETRA,AND 3, CIS.

DIMENSION D( 57+57 )4NCL1( BOO),NC2{ 800),NFOL 800),DATINZ{ 800),
1X(3y 25)4NA{5)4KOOOFX{10) ¢yNFOR(T00) +NINT(7Q0)}4NLLTOO0),N2(T700),
2NROWX (4) 4NCOLX(4) oDATINX(4) ,RECORD(36),UBF({100)4RI3)4Fl 1y 1)

INTEGER PUNCH

EQUIVALENCE {(D{ 1)oNCL{1)),(Dl 810)4NC211))+(D(1620),NFO(1)]),
1{D{2430)DATINZ(1))

READ CONTROL CARD
- CONTROL CARD CONTAINS THE FOLLOWING INFORMATION

1. IND=~09, INDICATING THE START OF A PROBLEM. IN COLUMNS i-3.
2.NOPROB, THE PROBLEM NUMBER, COLUMNS 4-9.
3.NOAT, THE NUMBER OF ATOMS. IN COLUMNS 10-12. LESS THAN 25.
4.NCORy THE NUMBER OF [NTERNAL COURDINATES. IN COLUMNS 13-15.
5.NFy; THE NUMBER OF FORCE CONSTANTS.IF COLUMNS 16-18.
6. 1FF=141F THE VALUES OF THE FORCE CONSTANTS ARE INCLUDED WITH
THE INPUT, ,
IFF=0,1F NOT. PUNCHED IN COLUMN 20.
T«NOFFy, THE NUMBER OF NON UREY-BRADLEY CONSTANTS TO BE FILLED
INo IN COLUMNS 21-23
8. INFRA=1,y IF THE INTERMEDIATE GEM'TETRA.AND CIS MATRICES ARE
TO BE WRITTEN.
INFR=0 IF NOT.
PUNCHED IN COLUMN 25.

9.PUNCH =1, IF THE PUNCHING OF THE I-MATRIX IS TO BE SUPRESSED.

OTHERWISE PUNCH =0. IN COL. 27. ] :
10.NOXy IF NOX=1, THE X-MATRIX IS NOT READ IN AND THE ATOM

DISTANCE CHECK IS NOT COMPUTED. THIS OPTION APPLYS TO THE VFF

) ONLY. NOX IS PUNCHED IN COLUMN 29.

READ(S5,4) INDyNOPROB ¢yNOAT¢yNCOR,NF, IFF, NOFF, INFRA ¢ PUNCHy NOX

FORMAT(I3,064313,12413,12412412)

IF{IND#9)94,92,94

IF(IND=999)90,95,90

CALL EXIT

CONTINUE
INPUT DATA FOLLOWS CONTROL CARD IN THE ORDER
1.PROBLEM INFORMATION CARDS. 2 CARDS
2.THE X MATRIX, IF NOX =0.
3.THE NUMBERS OF THE DIAGONAL FORCE CONSTANTS.
4. NUMBERS FOR THE NON UB DFF DIAGONAL ELEMENTS.
5.CONFIGURATION VECTORS
6« THE VALUES OF THE FORCE CONSTANTS.
T-FOLLOW DATA WITH TWO BLANK CARDS.

READ PROBLEM INFDRMATION CARDS

READ (S5+6)(RECORD(I)oI=1,36)

FORMAT{18A4)
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TABLE XLVIIT (Continued)

102 WRITE (6,50)NOPROB, (RECORD{1) yI=1,36)
50 FORMAT(22HL Z MATRIX PROBLEM NO.I8/(12X,18A4))
READ X MATRIX
IF(NOX)8175,8175,130
8175 WRITE(6,3773)
3773 FORMAT(10HO X-MATRIX)
105 DO 107 I=1,3
DO 107 J=1,NOAT
107 X{(1,J)=0.0
110 READ (5,8) (NROWX(L)9sNCOLXIL) 4DATINX(L) yL=1,4)
© HWRITE(652772) (NROWX(L) ¢NCOLX{L) yDATINX(L) yL=1,4)
2772 FORMAT(LH ,4(213,F12.6))
. 8 FORMAT(4(213,F12.6))
112 DO 118 L=1,4
IF(NROWX(L))120,605,114
116 IFU3-NROWX(L))605,115,115 -
115 1F(NOAT-NCOLX(L))605,116,116
116 1=NROWX{(L)
J=NCOLX(L)
118 X{T4J)=DATINX(L)
GO TO 110
120 IF(1+NROWX(L))605,130,605
130 READ (5, 10) (NINT{J),NFOR(J)¢J=1,NCOR)
10 FORMAT(2413)
: WRITE(6,1771) ; o
1771 FORMAT(34HO DIAGONAL VALENCE FORCE CONSTANTS)
WRITE(647557) ININTUJ) yNFOR{J) o 3=1 ,NCOR)
7557 FORMAT{1H ,2613)
132 NZ=0
140 DO 145 K=1,NCOR -
IFINCOR-NINT(K)) 610,142,142
142 1F(NF- NFDR(K))610.143.143
143 NZ=NZ+l
NCL(NZ)=NINT(K)
NC2INZ)=NINT(K)
NFO(NZ)=NFOR(K)
145 DATINZ(NZ)=1.0
150 IF(NOFF)170,170,152
152 READ (5,10) (N1(1),N2(T)¢NFOR(I),I=1,NOFF)
WRITE(6,9339) _
9339 FORMAT(37HO VALENCE FORCE INTERACTION CONSTANTS)
WRITE(647557) (NLCI),N2(1),NFOR(I),I=1,NOFF)
160 DO 168 K=1,NOFF
IFINCOR-N2(K)) 610,162,162
162 IF(N2(K)~N1(K))610,163,163
163 IF(NF-NFOR(K))610,1644164
164 NZ=NZ+1
NCLU(NZ)=N1(K)
NC2(NZ)=N2(K)
NFO(NZ)=NFOR(K)
168 DATINZ(NZ)=1.0
170 JOKE=0
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TABLE ¥LvIII (Continued)

172 READ 15,L0)NOPT(NCOD, (NA(I), 1= loS)t(KOOOFX(JloJ=loIO)' (NFOR(

1K) eK=1,13}
WRITE (6.80)NCDD.N0PT0(NA(I) [=2145)

80 FORMAT{24HO SUBCONFIGURATION CODEI4.8H, 0PTION13/14H ATOM NUMBER

1S/71H S14)
WRITE (6981){(KOCOOFX(J)eJd=1,101)
81 FORMAT(29H [INTERNAL COORDINATE NUMBERS/1H 1014)
WRITE (6,82)(NFORIK)K=1,413)
82 FORMAT(25H FORCE CONSTANTY NUMBERS 71H 1314)
174 IF{NDPT)400,400,180
180 IF{(NCOD)615,615,181
181 IF(4-NCOD}615,182,4182
182 DO 184 I=1,+5
IFINA{I?)615,183,183
183 IFINOAT-NA(I))615,184.184
184 CONTINUE
186 DO 189 I=1.,10
IF(KOOOFX(1))615,188,188
188 IFINCOR-KOOOFX{1))615,189,189
189 CONTINUE
190 D0 193 I=1,13
lF(NFDR(I»)615a19Zo192
192 IF(NF~NFOR(I))6150193,4193
193 CONTINUE
200 MX=NCOD
GO TO (2100220,2309240) ¢MX .
210 CALL EVGEM (DyNC1,NC2y,NFODATINZ,XsNA,KOOOFXsNFOR, NDPT.INFRA.
INOPROB4 JOKEsNDAT ¢ NFgNZ)
IF{JOKE)1T2,172¢620 .
220 CALL ETETRA(D,NC1yNC2,NFOsDATINZsXyNAKOOOFXyNFORyNOPT,INFRA,
INOPROB JOKEsNOAT 4 NF¢NZ)
IF{JOKE)1T72,172,620
230 CALL EVCIS (DyNCLyNC2,NFODATINZ ¢ X9 NAKOOOFX,NFORNOPT, INFRA,
INOPROB ¢ JOKE,NOAT,NF,NZ)
IF {JOKE)172,172,620
240 CALL EVCISP(D NCL,NC2,NFO DATINZy XyNA, KODOFX.NFOR.NOPT.INFRA.
INGPROB JUKE ¢ NOAT ¢NFyNZ)
IF{JOKEY1T72+4172,620
400 WRITE (6453)INDyNOPROB,NZ
53 FORMAT(1HL1I3,17TH Z MATRIX PROBLEM!B.SH NZ=16)
IF(NOPT$63631.63631’11643
63631 NUM=]}
KK=1
11554 DO 96315 J=1,NZ
ITEM=NC1{J)
IF{ITEM-NUM)96315,88887,96315
88887 NFOR(KK)=ITEM
NINTIKK)I=NC2(J)
NI(KK)I=NFO(J)
KK=KK+1
96315 CONTINUE
NUM=NUM+1
IF{NUM-NCOR)11554,411554,12021
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TABLE XLVIII (Continued)

12021 DO 87635 I=1,N2
NC1(I)=NFOR(I)
NC2(T1)=NINT(I)
NFO(I)=N1(1)

- 87635 CONTINUE

11443 IF{PUNCH)B89735,89735,402,
89735 WRITE(7+5335)IND,NOPROB,NZ
5335 FORMAT({I3,17H Z MATRIX PROBLEMIS8,SH NZ=16) .- .
402 WRITE (6954)(NCLIT)oNC2(I)yNFOLI),DATINZ(I)yI= I'NZ) ,
54 FORMAT(1H 313,F9.693134F9.693134F9.6¢313,F9.693134F9.6,313,F9.6)
IF(PUNCH)63571,63571,420
63571 WRITE(7,2992) (NCI(I).NCZ(I)rNFD(I)nDATlNZ(l)Ql 14NZ)
2992 FORMAT{313,F9.6,313,F9. 6.3130F9 603[30F9 6)
420 IF(IFF)462,4624421 :
421 IFU150~-NCOR)4629422¢422
422 READ (5914)(UBF(I)y1=14NF)
14 FORMAT{6F12.6)
424 DO 426 1=1,NCOR
DO 426 J=1,NCOR
426 FllyJ)=0.0
428 DO 434 K=1,NZ
I=NC1(K)
J=NC2(K)
M=NFD(X)
434 F(leJ)=F(1, J)*DATINZ(K)*UBF(H’
NX=0
436 DO 444 1= I'NCOR
DO 444 J=1,NCOR
438 IF{0.0001~ ABS(F(!QJ’))439.439 444
439 NX=NX+1
NC2(NX)=1
NFO{NX)=J
DATINZINX)=F(144)
444 CONTINUE
NX=NX¢1
NC2Z2(NX}=-2
NFO(NX)=0
DATINZINX)=0.0
448 WRITE (64,57)INDyNOPROByNX
57 FORMAT{2H1l 13,17H F MATRIX PROBLEMI8,5H NO=16)
450 WRITE (6958)(NC2(I)oNFO(I)oDATINZ(I),I=1,NX)
58 FORMATI(2H 2139F12.6¢2139F12.69213,F12.69213,F12.6)
462 IFINDOX)BB462,88462,90
88462 DO 470 1=1,NOATY
DO 470 J=1,NOAT

DSQ=0.0
466 DO 468 M=1,3
R(M) 3X(MyJ)=X(My1)

468 DSQ=DSQ+R(M)*R(M)
470 D{I+J)=SQRT(DSQ)
471 WRITE (6460)NOPROB
60 FORMAT(28H1ATOM DISTANCE CHECK PROBLEMI8)
472 DO 474 1=14NOAT
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TABLE XLvIII {Continued)

474 WRITE (6962)1,(DU1sJ)9J=1,NOAT)
62 FORMAT{S5HOATOMI3/(10F12.6))
GO 70 90
605 WRITE (6, 70)INOPROB
70 FORMAT(24HO X MATRIX ERROR PROBLEMISB)
GO Y0 90
610 WRITE (6972)NOPROB ' ‘
72 FORMAT{38HODIAGONAL FORCE CONSTANT ERROR PROBLEMIS)
GO 10 90
615 WRITE (69 74)NOPROByNOPToNCOD,I
74 FORMAT(14HOERROR PROBLEM!G:SH NOPTI3,5H CODEI3,3H I=13)
GO TO 90
620 WRITE {6, 76)NOPROB, NDPToNCOD.JDKEleA(I) I=l.5)9(KOOOFX(JDoJ 1+10)
Ly (NFOR{K)pK=1413)
76 FORMAT(2BHOERROR IN SUBROUTINE PROBLEMIB,5H NUPTIB.SH CODEI3,5H JO
1KE13/72813)
60 TO 90
END
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The data deck follows the program deck with the following information.

l.

Problem Control Card. The problem control card is the first card in the
data deck. This card contains the information given below.

a. IND, indicates the start of a.problem. A -09 must be punched iﬁ
Columns 1-3 (FORMAT I3).

b. NOPROB is the problem number punched in Columns 4-9 (FORMAT I6).

c. NQAT, the number of atoms, punched in Coiumns 10-12 (FORMAT I3).

Note: The number of atoms must be less than or equal toc 25.

d. NCOR, the number of internal coordinates. NCOR is punched in
. Columns 13-15 (FORMAT I3).

e. NP, the number of force constants punched in Columns 16-18
(FORMAT I3). ‘

Note: The number of force constants must be 100 or less, except in
those cases where F 1s to be evaluated, then the number of force
constants must be'gb or less. (Force constant is used here to mean,
more specifically, force constant parameter.)

f. IFF, a 1 signifies that the force constants are included with the
- input and that the F matrix is to be evaluated. IFF is punched in
Column 20 or is lef¥ blank (FORMAT I2).

g. NOFF is the number of non~Urey-Bradley constants to be specified or
the number of SVQFF interaction constants. NOFF is punched in
Columns 21-23 (FORMAT I3).

h. INFRA, a 1 will cause the intermediate GEM, TETRA, and CIS matrices
(UBFF) to be written out. INFRA is punched in Column 25 or left
blank (FORMAT I2).

i. DPUNCH, a 1 will suppress the card punching of the Z matrix. PUNCH
is placed in Column 27 (FORMAT I2).

J. NOX, if NOX = 1, the cartesian coordinates are not read in, and the
atom distance check is not computed. NOX 1s punched in Column 29
(FORMAT 12).

Warning: This option is available for the SVQFF only; the cartesian
coordinates must be included for the UBFF.

Problem Information Cards. Two problem information cards follow the
problem controlcard. These cards contain any desired alphanumeric
information about the problem or may be left blank. The data may be
punched in any column through 72 but Columns 1- 3 should be left blank
(FORMAT 184aLk). -

Warning: The problem information cards must be included with the input
data, even if they are left blank.
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The Cartesian Coordinates. If NOX = O, the cartesian coordinates
must be included at this point in the data deck. The cards should
have been punched in proper format by CART, and the last row number
should be a -1 [FORMAT u4(2I3,Fl12.6)].

Diagonal Force Constants. The position of the element (row or column
number) and force constant parameter number of the diagonal elements
of the UBFF or SVQFF are punched on cards in 24 fields of three
columns each (FORMAT 2LI3).

Interaction Force Constants. The row, column, and force constant
parameter number for each of the off-diagonal elements of the SVQFF
or for eachnonJUrey~Bradley interaction constant (FORMAT 24I3).

Ivo Blank Cards. For the computation of a UBFF, the configuration
Tyectors" are placed at this point [see Schachtschneider (89) for
details] (FORMAT 24I3) followed by two blank cards. For a SVQFF one
only needs the two blank cards at this point in the data deck.

Force Constant Parameters. If IFF = 1, i.e., the F matrix is to be
evaluated, the force constant parameters are included in the data deck,
six constants per card (FORMAT 6F12.6).

Warning: In this case, the number of force constants must not exceed
50. Also, the dimension statement must be modified sco that one has
F(50,50). '

Data Termination Card. The data are followed by a card denoting the
end of the problem. This card must have a 999 punched in Columns 1-3
(FORMAT I3).

Note: 1If another problem is to be included in the data deck, it may be
placed at this point with the problem control card replacing the data
termination card which then goes to the end of the second problem.

the RAX operating system, the data deck is preceded by a /DATA card and

the deck ended with a /END card.

QUTPUT INFORMATION

The following data are printed out at the option of the user.

The cartesian coordinates, if included with the input.
The diagonal elements of the Z matrix.

The nondrey-Bradley interaction elements or the SVQFF off-diagonal
elements.
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4, The Urey-Bradley configuratioﬁ "vectors."

5. The intermediate GEM, TETRA, and CIS matriées.
6. The
T. The
8. The atom distance check, if the cartesian coordinates are included with

the input data. i

The Z matrix is punched on cards, if requested, in a form suitable for use
in ZSYM, FADJ, FLPO, and EIGV. The :data are arranged in the order of row,

column, force constant number, and numerical value of Z matrix element [FORMAT
2 _

(6.313,F9.6)].
ZSYM

This program symmetrizes the %;matrix by transforming the internal coordi-
nates to symmetry coordinates. Input to ZSYM includes the g’matrix elements and
the‘g;matrix (the transformation matrix from internal coordinates to symmetry
coordinétes). ZSYM can be used to factor the %}matrix for the UBFF, SVQFF, VFF,
and other constrained force fields. The resulting factored %;matfix is punched

onto cards in the proper format for input to FADJ, FLPO, and EIGV.

The program was written by J. H. Schachtschneider (89) and modified for use
in this investigation. The program may be used with the IBM 360/LL4 RAX operating

system.

A flow diagram for ZSYM .is presented in Fig. 39 and the program listing in

Table XLIX.
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1 Control Card

# 0
1 - i
>
>0 _ 20 | 1r(nsB-NSO) 'L_f
IF(IND + 9) IF(IND - 999) :
<0 {
{ =0 = Q
' Write and/or
Read Problem . Punch L‘JV
Information Call Exit Symm. 2
Cards
<0
' 0
' S Write Z on >
Read the 7z | R0 Tape 1 for e A ! 1F(wREC)
Matrix Elem. >100 ’
Rewind 1 ‘
IFREP<0Q ‘ g <0
. V I Read Z fro
Read the U ne m
Matrix Tape 1 up to F(vF - NO). |55
l 100 Elem. -
<0
L
Normalize | IF{NE) 1F(NsB-Nx) |29
the U Matrix <0
>0
4 < 0
! Read Z from = :
: Tape 1 for » >0
Write the
Normalized < > Elem, >100 IF(NT-NJ ) >
. 13K
U Matrix
ISK>0 ‘ > >0
1 t ]
. Y Rewind 1/ ,
Read U Matrix| Write 100 - 17 (101-NE)
(UZ—) fOI‘ . R <O
Polymers Z Elem. Tapel -
1
. Read Sym. Symmetrize
Normalize Uz / » Block Info. 7 Matrix
1 > > > J
Figure 39. The Flow Diagrem of ZSYM
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TABLE XLIX

LISTING OF ZSYM

ISYM SD-4082 7 SYMMETRIZE POLYMER OPTION : :

CODED IN FORTRAN 1V FOR THE 1B8M-360/44% SCHACHTSCHNEIDER
MODIFIED FOR RAX BY L J PITZINER 412771 '

THIS PROGRAM SYMMETRIZES A Z MATRIX. F MATRIX ELEMENTS IN
VALENCE FORCE SPACE ARE SPECIFIED BY AN ARRAY Z(I J1K) WHERE

I IS ROW NUMBER OF F MATRIX ELEMENT

J IS COLUMN NUMBER OF F MATRIX ELEMENT

K IS THE NUMBER OF AN INDEPENDENT FORCE CONSTANT

THE ELEMENT F(1,J) IS DEFINED AS Z(1,J,K)*VALUE OF FORCE CONSTANT
DIMENSION NR{1500)¢NC(1500),NF0(1500),0Z2(1500)yNRU( 1501},

1 NCU( 150),0U( 150)4NR1( 150),NC1{ 150),DULl( 150) ¢NRZ{2501),

2NCZ1250)9Z(250)4NBL(101),NRS(101)4NCS{101)4NFC(101)},FS(101),
3NB1(1500),DA(250),U(250),FU1250)4UF(250) 4RECORD(36)4NB{20),NRO{4),
4NCO(4)yNPL(4)4DAT(4)

EQUIVALENCE(DA(L) sU(L1)oUF(1)),y(NBL{L)sNRZ(L))(NBL{25104NCZ(1)),
1{NB1(502),2(11})) o
RECONVERT PROBLEM CONTROL CARD CONTAINING FOLLOWING INFORMATION
1. IND=-09 INDICATING THE START OF A PROBLEN IN COLUMNS 1-3.
2.NQy, THE NUMBER OF INTERNAL COORDINATES. LESS THAN 60l. PUNCHED
IN COLUMNS 4-7. '
3.NF, THE NUMBER OF FDRCE CONSTANTS IN COLUMNS 8-1l.
4.,NS, THE NUMBER OF SYMMETRY COORDINATES IN COLUMNS 12-15.
5«NSBy THE NUMBER OF FACTORED BLOCKS+l IN COLUMNS 16-19.
6. 1FSKy POLYMER CONTROL OPTION
IFSK=0y NORMAL MOLECULE READ ONE U MATRIX.
IFSK=1, POLYMER READ Ul AND U2.
IFSK PUNCHED IN COLUMN 23. '
7.1FREPy REPEAT OPTION CONVROL
FOR IFREP=1 ONLY NEW Z MATRIX IS READ AND U FROM PREVIOUS
PROBLEM IS USED TO SYMMETRIZE.
IF IFREP=0 NEW PROBLEM
PUNCHED IN COLUMN 27.
B.NST, STARTING INDEX FOR DO LOOP ON FORCE CONSTANTS FOR
IFREP=1, NST IS PUNCHED IN COLUMNS 28-31.
9.FPUN, CARD-PUNCH SUPPRESSION OPTION FOR THE SYMMET.Z~MATRIX.
IF FPUN =1 CARD-PUNCHING OF THE Z-MATRIX IS SUPPRESSED. IF FPUN
=0 THERE IS NO SUPPRESSION. PUNCHED IN COL. 35.
READ PROBLEM CONTROL CARD
READ ( S5,12)INDyNQyNF¢NS, NSB.IFSK,IFREP NST.FPUN
FORMAT(I3,814)
IF{IND+9)90492+94
INPUT DATA FOLLOWS IN ORDER
l.TWO PROBLEM INFORMATION CARDS.
2.7 MATRIX ELEMENTS
3.U MATRIX{U]l FOLLOWED BY U2 FOR IFSK=1)
4,SYMMETRY BLOCK INFORMATION
IF({IND-999)90,96, 90
CALL EXIT
CONTINUE
READ (5,14)(RECORD(I),1I=1,36)
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TABLE XLIX (Continued)

GO TO 141

145 DSQ=DSQ+DATIL)*%2
NOU=NOU+1
NRU{NOU)=NRO{L )

NCU{NOU)=NCO(L)
DU(NOU)=DAT(L)

150 CONTINUE
GO TO 130

152 IF({3+NRO(L))6059 154,605

156 DA(NX)= 1.0 /7 SQRT(DSQ)
IFINS~NX)605, 156, 605

156 WRITE(6,13352)NOU

13352 FORMAT{1H ,'NOU= ¢,14)

DO 158  I=1,NOU
J=NRU(I)

158 DULI)=DA(J)*DULT)
NOU=NOU+1
NRU(NOU)=-3
NCU{(NOU)=0
DU(NOU)=0.0
WRITE{6,75875) ,

75875 FORMAT{1HO, *NORMALIZED U-MATRIX®)
WRITE{6518) (NRUCI)4NCUAT)4DU{T)sI=1,NOU)
IF(1FSK)180,180,160

160 NU=0
NX=1

c READ U2 (SAME FORMAT AS U1)

162 READ (5,18) {NRO{(L)yNCO(L)oDAT(L)yL=1,4)
DO 174 L=1,4
IF(NRO(L))1T6,174,164

164 IF{NS=NRO(L))605,165,165

165 IF(NRO(L)~NX)605,168,166

166 NX=NX+¢1

, GO TO 165

168 NU=NU+1

. NR1U{NU)=NX
NC1{(NU)=NCO{L)
DUL(NU)=DAT{L)*DA(NX)

174 CONTINUE
GO TO 162

176 IF(34NRO(L))605,75812,605

75812 WRITE(6,37812)NU

37812 FORMAT(1H o°'NU = *,14)

GO TO 185

180 NU=NOU-1
DO 184 K=1,NU
NR1(K)= NRU(K)

NC1{K)=NCU(K)

184 DUL(K)=DU(K) V _
READ SYMMETRY BLOCK INFORMATION. ROW NUMBERS OF THE BEGINNING OF
EACH FACTORED BLOCK. LAST ELEMENT IS NS+¢l. PUNCHED IN 3 COLUMN
FIELDS 24 PER CARD. A .

(aN N gl




TABLE XLIX (Continued)

185 READ (5,20){NBCI)yI=14NSB)
20 FORMAT(2413)
NO=1
186 NI=0
DO 190 K=1,NOZ
lFlND*NFD(K))l90y183pl9O
188 NZ=NZ+1
NRZ(NZ)=NR(K)
NCZANZ)=NC(K)
Z(NZ)=DZ(K)
190 CONTINUE
WRITE(6+99853)N0,NZ
99853 FORMAT({LH o 'NO = t,14,4Xe"'NZ = %,14)
63521 IF(NZ}600,192,220
192 NO=NO+¢1
IFINO-NF) 18641864295
220 NL=1
NX=2
NUT=1
NUB=1
NJ=1
230 NP=NB{NL)
NT=NBINX)
236 00 238 1=1,NQ
FUL1)=0.0
238 U(I)=0.0
DO 250 K=NUByNOU
IF{ARU(K) - NJ)2401248|240
240 DO 246 tL=1,4NZ
I=NRZ (L)
J=NCZ {L)
FUCT)=FULI)+Z(L)*ULJ)
IFU11-0)24442464,244
244 FULI)I=FULJ)I+ZL)2ULT)
246 CONTINUE
GO T0 252
248 JU=NCU(K)
250 UtJU)=DULIK)
252 NUB=K
B8971 DO 254 I=NJ NS
254 UF{1)=0.0
tL =0
41411 DO 265 L=NUT,NU
TFLLL ) 262,262,264
262 IF(NRLIL)-NJ)6054264,4263
263 LL = 1
NWY=L
264 I=NR1{L)
J=NC1(L)
265 UF(I)=UF(I)+4DUL(L)*FU(J)
NUT=NWY ,
DO 280 J=NJ,NS
IF(0.00005-A8S(UF(J)))270,280,280



TABLE x11x (Continued)

270 IF{NT-J)2T1,271,272
271 WRITE (63T72)INJyJ ‘ o
72 FORMAT(40HO ERROR,ERROR,ERROR- Z NOT FACTORING.ROH[Q.?H CDLUMNIQ)
272 NE=NE+]
IF{101-NE)2T73,2734274
273 NRITE(I)(NBL(ll-NRS(l)pNCS(I)pNFC(I)pFS(l)gI=l 100)
NREC=NREC+1
NE=1
274 NRSINE)=NJ-NP+1
NCS(NE)=J-NP+1
NBL{NE ) =NL
NFC{NE)=NO
FSINE)=UF(J)
280 CONTINUE
NJ=NJ+]1.
IF{NT-NJ) 284,284,236
284 NL=NL+1
NX=NX+1
IFINSB-~NX)290,230,230
290 NO=NO+1
IF(NF-NO) 295, 1864186
295 IF{NREC)296,296,298
296 NDZI=0
G0 TO 321
298 WRITE(L){NBL(1)}, NRS(l)'NCS(I)oNFCll)'FS(l).l=quE)
300 END FILE 1
REWIND 1
302 DO 312 L=1,NREC
READ (I){NBL{I)oNRS(I)oyNCSUI)oNFCUI)oFS{I)sI=1,100)
DO 312 K=1,100
NZ=100%(L-1)+K
NBLI(NZ)=NBL(K)
NR{NZ)=NRS(K)
NC(NZ)=NCS(K)
NFO(NZ)=NFC(K)
312 DIINZ)=FS(K)
NOZ=NZ
315 IF{NE)330,330,320
320 READ (L1DINBLUT)oNRS(I)oNCSII)oNFCLI)FS(T),41=14NE)
321 DO 324 K=1,NE
NZ=NOZ 4K
NB1INZ)=NBL(K)
NRINZ }=NRS{K)
NC{NZ)=NCS(K)
NFO(NZ)=NFC(K)
324 DZINZ)=FS(K)
330 NSO=1
331 NT=0
NX=0
332 WRITE (6464) INDeNSOy (RECORD(I),4I=1,12)
IF(FPUN)BT551,87551,75571
87551 WRITE (T¢91L19)IND,NSO,(RECORD(I)y1=1,12)




64
9119
75571

336
337
52151
66
7131
37751

338

340
342

58888
63333
344

85851
16
1211
99887

600
56

605
58
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TABLE x1.1X (Continued)

FORMAT(1HO13,15H 2 MATRIX BLOCKI3,12A4) .
FORMAT(I3,15H 2 MATRIX BLOCKI3,12A4)

DO 340 1=1,NZ

IFINSO-NBL1(1))340,3364340

NX=NX+1

IF(101-NX1337,337,338

WRITE (6966) INRS(L)yNCSIL)4NFCIL)4FSIL)4L=1,100)
IF(FPUN)52151,52151,437751

WRITE (7o7131)INRS(L)4NCSIL)4NFCIL) sFS(L)sL=1,100)
FORMAT(1H 313,F9.6,313,F9.6+313,F9.64313,F9.6,313,F9.64313,F9.6)’
FORMAT(313,F9.64313,F9.6+313,F9.6,313,F9.6)
NT=NT+100

NX=1

NRS(NX)=NR{T)

NCS (NX)=NC{ )

NFC(NX)=NFO(1)

FSINX)=DZ(1)

CONTINUE

IFINX) 344,344,342

WRITE (6,66) (NRS(L)4NCS(L)4sNFCIL) 4FSIL) oL=1¢4NX)
IF(FPUN)58888,58888, 63333 ,

WRITE (7,7131)(NRS(L)sNCS(L),NFCIL) sFSIL)oL=1,NX)
NT=NT +NX '

WRITE (6,76)INT

IF(FPUN)85851,85851,99887

WRITE (7,1211)NT

FORMAT (1HO, 5H NOZ=14)

FORMAT{S5H NOZ=14)

NSO=NSO+1

IF{NSB-NS0) 90, 90,331

WRITE (6556)LyNRO(L) 4NCO(L)4NPT(L),DATIL)
FORMAT(23HO Z MATRIX ERROR FIELDI3,6H READS3[44F12.6)
GO TO 90

WRITE (6+58)LyNRO(L)4NCOtL),DATIL)

FORMAT(23HO U MATRIX ERROR FIELDI3,6H READS214,F12.6)
G0 TO 90

END
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INSTRUCTIONS FOR PROGRAM USE

ZSYM requires the use of a scratch tape. If the program is being used
with the RAX system, the program deck is preceded by /ID, /JOB GO,'and /FILE

cards.

The program deck is followed by the input data which consist:: of the

following information.

l. Problem Control Card. This is the first card of the data deck. The
following data are punched on each problem control card.

a. IND, indicates the start of a problem. IND must be set equal to
- =09 and is punched in Columns 1-3 (FORMAT I3).

b. NQ is the number of internal coordinates, punched in Columns 4-7
(FORMAT Ik).

¢. NF is the number of force constant parameters, punched in Columns
8-11 (FORMAT Ik).

d. NSB, denotes the number of factored blocks plus 1 and is punched
in Columns 16-19 (FORMAT IL).

e, IFSK is the polymer control option. For a normal molecule,
- IFSK 0 and only one U matrix is read in., For a polymer,
IFSK = 1 and two U matTices, Ui -and Uz, are read in. IFSK is
punched in Column 23 (FORMAT Ik). %

f. IFREP is the repeat option control. If a new problem is to be
started, IFREP = 0, and new Z and U matrices are read in. If
IFREP = 1, a new Z matrix. is~read 1n but the U matrix from the
previous problem Ts used for symmetrization. TFREP is punched in
Column 27 (FORMAT Ik).

g. NST is the starting index for the DO loop on force constants. This
constant must be entered when IFREP = 1, otherwise, NST = 0 or is
left blank. NST is punched in Columns 28-31 (FORMAT Ik).

h., FPUN is the card punch suppression option; If FPUN = 1, the
factored Z matrix is not punched on cards. FPUN is positicned in
Column 35 (FORMAT Ik4).
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2. Problem Information Cards. Two problem information cards follow the
control card. These cards contain whatever alphanumeric information
about the problem may be desired by the user. The information may be
punched in any of the columns through Column 72 except that Columns
1-3 should be left blank (FORMAT 18AL).

Warning: These cards must be included in the data deck even if they
are left blank. .

3. Z Matrix. The Z matrix, punched in the proper format by UBZM, follows
The problem infOrmation cards in the data deck. There are four Z
matrix elements per card; each element consists of row pumber, “Column
number, force constant parameter number, and numerical Z matrix element
[FORMAT 4(3I3,F9.6)]. The row number after the last elBment must be -2.

b, U Matrix. The U matrix follows with the form: row, column, and U
Fatrix element TFORMAT 4(2I3,F12.6)]. The row number after the 1%&st
element must be -3.

Note: The zero elements need not be included or the matrix normalized.

5. Y2 Matrix. If IFSK = 1, the second U matrix, U, must follow the first
U matrix. The format is the same foF the firs¥ matrix.

6. Symmetry Block Information Card. This card contains the row numbers of
the beginning of each factored block. The last element is NS + 1,
These data are punched in 3 column fields of which there are 2L per
card (FORMAT 24I3).

T. Data Termination Card. This card is placed at the end of the data deck
and is used to denote the end of the input data for the problem(s) to be
worked. The data termination card is marked by a 999 punched in Columns
1-3 (FORMAT I3).

Note: 1If anotherzproblem'is to be included with the input data, the
problem control card for the next problem is placed at this point in the
deck, and the data termination card is placed at the end of the second

problem. . .
Warning: Failure of the Z matrix to factor most often indicates a user
error. -~

With the RAX system, the data deck is preceded by a /DATA card and terminated

by a /END card.
OUTPUT -INFORMATION

The factored Z matrix is printed out and at the user's option, punched on
~/

cards in the proper format.
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FADJ

This program solves thglvibrational secular equation by the metho@ of
successive orthogonalization followed by diagonalization. The diégonalizétioh
is performed by the subroutine HDIAG which employs the Jacobi method. This
progrem will also refine an initial set of force constants to give a linear
weighted least squares '"fit" between the calculated and observed frequencies.
(This prograﬁ is based on the Gauss-Newton-Raphson method.) At the user's
option, a regression analysis is performed by the subroutine, REGRS, which may

aid in the selection of the proper force field.

This program was written by J. H. Schachtschneider (89) and modified for
this investigation. The program may be used with the IBM 360/LL 0S operating
systém. FADJ employs & phase overlay procedure for the subroutines and is

permanently stored on disk at the Institute.

A flow diagram of FADJ is given in Fig. 40 and 41. A listing of the JCL
cards for the stored version of FADJ are listed in Table L. These cards are to
be placed in front of the datae deck and replace the program deck which is stored

on disk in compiled form. A listing of FADJ appears in Table LI.
INSTRUCTIONS FOR PROGRAM USE

FADJ requires two scratch tapes or disks. (Two scratch disks have been
allotted for the stored version of FADJ.) The following data comprise the
input information. -

1. Problem ID Card. This card designates the start of a new problem.

This card must have a -09 punched in Columns 1-3 (FORMAT I3).

2. Problem Control Card.
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TABLE LI (Continued)

1.IND=~09, INDICATING THE START OF A PROBLEM IN COLUMNS 1-3,
2.NOPROBy, THE PROBLEM NUMBER. IN COLUMNS 4-9. - = '
3.NMOL, THE NUMBER OF MOLECULES,IN COLUMNS 10-12.
4.NFy THE NUMBER OF FORCE CONSTANTS IN COLUMNS 13-15.

_ LESS THAN T1
'S<NPMAX, THE MAXIMUM NUMBER OF PERTURBATIONS DESIRED.CDLUMNS

" 16-18. . (LESS THAN -20)
' 6.NCZ, THE NUMBER UF FORCE CONSTANTS TO BE HELD FlXEDoIN COLUMNS
.19-21. ~ (LESS THAN .7T1)

7.1FREP=1, 1F ONLY A NEW SET OF FI(I),AND NCF(I) ARE TO BE
READ IN. DE,P,WsUy2ZyAND G FROM PREVIOUS PROBLEM ARE USED.
IFREP=0y IF A NEW PROBLEM IS TO BE STARTED. }
IFREP=-1, FINAL FI(I) FROM PREVIOUS PROBLEM ARE USED AS INTIAL
FI(I)e NEW NCF(I) ARE READ. 2S FROM PREVIOUS PROBLEM MAY BE
RENUMBERED. PUNCHED [N COLUMNS 22-23. HA
8. IFER==3,~29=140y1 PUNCHED IN COLUMNS 24-25
FOR IFER=1 PER IS READ IN AND USED AS A FRACTIONAL ERROR
FOR IFER=0  PER= 0.005 USED AS A FRACTION
FOR [FER=-1 ESTIMATED ERRORS ARE READ IN FOR EACH OBS.FREQ.
' INPUT FOLLOWS 08S.FREQ.
FOR IFER=-2 ERROR IN ALL FREQ. ASSUMED TO BE PER CM-l-
FOR IFER=-3 PER=1.0 CM-1 FOR ALL 0BS. FREQ.
9.PER AN ERROR TO BE ASSUMED FOR ALL OBS.FREQ.
A FRACTION IF IFER=1 IN CM-1 IF IFER=-2 :
PUNCHED IN COLUMNS 26 TO 33 WITH DECIMAL BETWEEN COL.
27 AND 28 OR PUNCHED ‘
CONTINUE ‘
10. DMX, A FRACTIONAL FACTOR TO BE APPLIED TO THE FORCE .-
CONSTANT PERTURBATION ON EACH CYCLE { FOR DAMPING OSCILATION)
PUNCHED IN COLUMNS 34 TO 41 WITH THE DECTIMALBETWEEN COLUMNS -
37 AND 38 OR PUNCHED. "
11. IFREG PUNCHED IN COLUMNS 42 AND 43
IFREG=0 FOR NO REGRESSION
[FREG=~1 FOR REGRESSIONON CYCLE 4.
IFREG=1 FOR REGRESSION ON CYCLE 1 '
12.NDIAG, THE NUMBER OF FORCE CONSTANTS TO BE INCLUDED IN
ALL REGRESSIONS. PUNCHED IN COLUMNS 44 THROUGH 46.
13. INO, THE NUMBER OF FORCE CONSTANTS TO BE RENUMBERED.
PUNCHED IN COLUMNS 47-49.
14.NIP PUNCHED IN COLUMNS 50 THROUGH 52. .
SPACING BETWEEN REGRESSIONS EQUALS 3-NIP. 'NIP MAY BE NEGATIVE.
15.DAMP; DAMPING FACTOR FOR DAMPED LEAST SQUARES. FOR DAMP GREATER
THAN ZERO DAMP*MAX(S(I,I)) IS ADDED TO THE DIAGONAL TERMS OF
THE NORMAL EQUATIONS ON EACH PERTURBATION CYCLE. A VALUE OF
DAMP=0.001 WILL USUALLY CAUSE VERY ILL-CONDITIONED PROBLEMS TO
CONVERGE. DAMP IS PUNCHED- IN COLUMNS 53-58 WITH THE DECIMAL
BETWEEN COLUMNS 53 AND 54 OR PUNCHED.
16.RAP, THE CUT-OFF FACTOR FOR THE JACOBI DIAGONALIZATION.
THE JACOBI ROTATIONS ARE STOPPED WHEN MAX(H{I,J)) IS LESS
THAN RAP*MIN({H{I,I)). IF RAP IS NOT ENTERED IT IS TAKEN EQUAL
TO 0.5E-2. ON THE THE FINAL CYCLE RAP 1S SET EQUAL TO
0.5E-3 GIVING EIGENVALUES TO 6 SIGNIFICANT FIGURES AND EIGEN-




TARLE I (Continued)

VECTORS TO 3 OR & FIGURES.
RAP IS PUNCHED IN COLUMNS 59-63 WITH THE DECIMAL BETWEEN
COLUMNS 59 AND 60 OR PUNCHED.
CONTINUE
17.FRACy A FRACTIONAL FACTOR FOR DECREASING RAP ON EACH CYCLE.
AFTER EACH PERTURBATION RAP IS SET EQUAL TO FRAC*RAP.
IF FRAC IS NOT ENTERED IT 1S TAKEN EQUAL TO 0.9. A
FRAC IS PUNCHED IN COLUMNS 64-67 WITH THE DECIMAL BETWEEN
. COLUMNS 64 AND 65 OR PUNCHED. -
18.CUTOFy THE NUMBER OF PERTURBATIONS AFTER WHICH DMX SET = 0.0
PUNCHED IN COLUMNS 68-T72.
90 READ{(5,96001)IND
96001 FORMAT(13)
IF(9+IND)901,91,901
901 IF(IND-999)90,9020,90
9020 CALL EXIT

OO0 M e Nalal

91 READ ( S¢4) INDyNOPROBsNMOL¢NF ¢NPMAX¢NCZIFREP,IFER, PERC. DMX ¢ IFREG

Ly ND1AG, INOyNIP,DAMP,RAP,FRAC ¢CUTOF
4 FORMAT(13916941392129F8e69FBab912,13,13,134F6.54F5.49F4.3,15)
REWIND 1
REWIND 2
93 lF‘IFREP)BOO.BOZ,GOO
800 IF1JOK)90,801,90
801 IF(INO)B05,805,803
802 PER=PERC
803 00 804 1=1,70
804 NOM(1)=1
. 805 NP=0
" NX=1
ER=0,0
ERP=0.0
DO 806 I=1,50
NPN{1)=0
806 NPL(I)=0
NCZS=NCZ
NCYC=1
LIMIT=2%(NF-NCZ)
NOVAR=NF+1
NOVMI=NF
IF(RAP)807.,807,808
807 RAP=0.S5E-2
808 DO 810 I=1,NF
810 NFX(1)=0
IF(FRAC)811,811,812
811 FRAC=0.9
812 JOK=0
JET=0
. IF{IFREG)94,94,95
94 [FINPMAX) 9409429940
940 JOKER=0
GO TO 96
942 JUKER=1




95

96
6

8

OO0

90041

(aNaXeNal

9601
20
9602
61
90042

9603

9605
90002

9610

OO0
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TABLE LT {Coritinued)

GO TO 96

JOKER=-1 ' v S

READ PROBLEM INFORMATION CARDS. 3 CARDS CONTAINING INFORMATION
ABOUT THE PROBLEM. CARDS MUST BE INCLUDED EVEN IF BLANK.

READ (5+6){RECORD(I)s1=1,54)

FORMAT(18A4)

WRITE (6,8)NOPRDBNMOL yNF yNPMAXyNCZ o (RECORD(I},1=1,54)
FORMAT(13H1 PROBLEM NO.IBy6H NMOL=14,4H NF=14,TH NPMAX=14,5H NCZ I

14/012X,18A4))

READ PRINT-OUT OPTION CARD

A VALUE OF O FOR IXX CAUSES PRINT-OUT OF THE INFORMATION [XX
CONTROLS. .
A VALUE OF 1 FOR IXX WILL SUPRESS THE PRINT-OUT OF THE INFORMATION
CONTROLLED ‘BY IXXe

IXX IS OF FORMAT. Il1.

THE PRINTED INFORMATION CONTROLLED BY THE VARIOUS IXX- ARE DEFINED
BELOW .

IXX CONTROLS THE PRINT-OUT OF

1)« 101 THE Z MATRIX.

2). 102 THE EIGEN VALUES AND EIGENVECTORS.

. 3)e 103 THE . JX MATRIX.

4)e [04 THE POTENTIAL ENERGY MATRIX.
5). 105 THE CORRELATION MATRIX.
6)e 106  THE VARIANCE-COVARIANCE MATRIX.
7)e 107 THE ERROR DISTRIBUTION
8)e 108 A 1 CAUSES PRINT-0OUT OF FINAL SET OF FORCE CDNSTANTS.
9). 109 A 1 CAUSES BYPASS OF TEST FOR UNREASONABLE EIGENVALUES.
READ(5,90041)1019102,103,104,105,106,107,108,4109
FORMAT( 91I1)
IF(IFREP)9602,9601,9601
READ INTIAL FORCE CONSTANTS :

THE FORCE CONSTANTS ARE PUNCHED IN 12 COLUMN FIELDS 6. PER CARD
WITH THE DECIMAL BETWEEN CDLUMNS 6. AND. 7 OR PUNCHED. IN ORDER
1 THROUGH NF. o . S ’
READ (5+20)(FI(L), l=1 NF)
FORMAT(6F12.6)
WRITE (6 61)NP1(IpFl(I)oI=11NF)
FORMAT (23HO FORCE CONSTANTS AFTERI4,15H PERTURBATIONS. /(lthIZ 6))
IF(INDO)9610,9610,9603 :
READ FORCE CONSTANT RENUMBERING oo

NF1(1)=0LO NUMBER ' NF2(1)= NEW NUMBER

READ (5,7) (NFL(I)yNF2{1),1=1,INO)
FORMAT(2413)

DO 9605 I=1,INO

JX=NFL1(1)

NOM(JX)=NF2(1) - .
WRITE (649) (NFl(I)vNFZ(l)aI=l.INO)
FORMAT({14HO Z RENUMBERED / |I6.4H 10 13))
IFINCZ1961449614,9612. :
READ NUMBERS OF FORCE CONSTANTS TO BE HELD FIXED
THESE NUMBERS ARE USED. TO ELIMINATE. RUNS AND COLUMNS FROM
THE PERTURBATION MATRIX S. -
PUNCHED IN 3 COLUMN FIELDS 24 PER CARD. IF NCZ=0 ALL FORCE
CONSTANTS ARE ADJUSTED. ; .




~312-

TABLE LI (Continued)

9612 READ (Sy7) (NCF(L),L=1,NC2)
D0 9613 I=1,NCZ
JX=NCF(1)
9613 NFX(JX)=-1
9614 IFINDIAG)9615,9615,9620
9615 NDIAG=NF-NCZ
N10=0
DO 9617 I=1,NF
IFINFX(1))9617,9616,9617
9616 NIO=NID+1
NCON{N10) =1
9617 CONTINUE
| GO TO 9624
READ NUMBERS OF FORCE CONSTANTS TO BE FORCED INTO REGRESSION.
FORCE CONSTANTS IN THIS LIST ARE ENTERED INTO THE REGRESSION
EQUATION WITHOUT REGARD TO TESTS FOR SIGNIFICANCE
ON THE REGRESSION OPTION FORCE CONSTANTS IN THIS LIST
ARE ADJUSTED ON EACH CYCLE.
9620 READ (5,7) (NCON{I),1=1,NDIAG)
90003 WRITE (6513) (NCON(I)yI=1,NDIAG)
13 FORMAT(47HO FORCE CONSTANTS ALWAYS INCLUDED IN REGRESSIONI(ISI#))
9624 IF(NCZ)9630,9630,9625
9625 WRITE (6425) (NCF(L),L=1,NCZ)
25 FORMAT(39HO NUMBERS OF FORCE CONSTANTS HELD FIXED/{1514))
9630 NM=1
IF{ IFREP)470,99,470
99 SUM=0.0
NDT=0
PTOT=20.
SCALE=1.0
READ MOLECULE CONTROL CARD.CONTAINING THE FOLLOWING INFORMATION
1.IND=-06, IDENTFYING COTROL CARD. IN COLUMNS 1-3
2.NQs THE DIMENSION OF THE SECULAR EQUATION. COLUMNS 4-6.
3.NDD,THE NUMBER OF NON-ZERO EXPERIMENTAL FREQUENCIES. IN
COLUMNS 7-9.
4.NZL, THE NUMBER OF Z MATRIX ELEMENTS. IN COLUMNS 10-13.
S. IFU IN COLUMNS 14~15 IGNORED BY PROGRAM.
6.1FN=1 OR -2, IF WEIGHTING ELEMENTS ARE INCLUDED WITH THE INPUT
IFW=0,~1,0R-3, IFWEIGHTING ELEMENTS ARE NOT INCLUDED.COLS.16-17
"7.1SKZ=0, IF A NEW Z MATRIX IS TO BE READ IN FOR THE MOLEGULE.
ISKZ=1, IF THE 2 MATRIX FROM THE PREVIOUS MOLECULE IS TO BE
USED. E.G. ISOTOPIC MOLECULES . PUNCHED IN COLUMN 19.
100 READ (5,14)INDyNQyNDDyNZZyIFUsIFW,ISKZ
14 FORMAT(313,14,312)
IF( IND+6)900, 101,900
INPUT DATA FOR EACH MOLECULE FOLLOW THE MOLECULE CONTROL
CARD IN THE OROER o
1.MOLECULE INFURMATION CARD, 1 CARD CONTAINING THE NAME OF THE
MOLECULE OR BLANK. ~ (COLUMNS 1-3 MUST BE LEFT BLANK)
2.THE Z MATRIX

3.EXPERIMENTAL FREQUENCIES, NQ OF THEM FOR NDD GREATER THAN Z2ERO
IF NDD=0 NO FREQ. ARE ENTERED.
4.ESTIMATED ERRORS IN OBS.FREQ. FOR IFER=-1.

5.WEIGHTING ELEMENTS, IF IFW=1 OR -2

OO0

OO0

COoONOOONO0
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101

190
191
18

192
193

196
198
203
204
205

206

207

208
209
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TABLE LI (Continued)

6. THE G MATRIX.

READ MOLECULE INFORMATION CARD
READ (5,6) (REC(I)s1=1,418)

ND=0Q

[IF11SKZ2)190,190,203

READ Z MATRIX ,
T IS NOT STORED AS A MATRIX, BUT RATHER AS & ONE DIMENSIONAL
ARRAYS NR GIVING THE ROW NUMBER OF THE F MATRIX ELEMENT, NC
GIVING THE COLUMN NUMBER OF THE F MATRIX ELEMENT, NFOQ GIVING
THE NUMBER OF THE DISTINCT FORCE CONSTANY AND Z GIVING THE 2
MATRIX ELEMENT. NC MUST BE GREATER THAN OR EQUAL TO NR
ONLY NON-ZERO ELEMENTS ARE ENTERED. .
THE Z ELEMENTS ARE PUNCHED IN 18 COLUMN FIELDSy, 1 TO 4 PER CARD
COLUMNS 1-3 GIVE NR o COLUMNS 4-6 GIVE NC o COLUMNS 7-9 GIVE NFQ,
AND Z IS PUNCHED IN COLUMNS 10-18 WITH THE DECIMAL BETWEEN
COLUMNS 12 AND 13 OR PUNCHED.NROW=-2 AFTER LAST ELEMENT.
TOTAL NUMBER OF 2 MATRIX ELEMENTS MUST BE LESS THAN 651.
NOZ =0
READ (5,18) (NRDH(L)QNCOL(L)QNPU(L"DATIN(L)1L 1,4)
FORMAT(4(313,F9.6))
DO 196 L=1,4

IFINROWIL))198,196,192

IFINQ-NCOL(L))920,193,193
NOZ=NOZ+1
NR{NOZ)=NROW(L)
NC(NOZ)=NCOL(L)

IXX=NPOI(L)
NFO(NOZ )=NOM{ IXX)
ZINOZ)=DATINIL)
CONTINUE
GO 10 191

IF{NROW(L)+2)920,203,920

IF( 650-N0Z)920y2049204

IFI{NDD) 205,205,207
DO 206 I=1,NQ
DX{1)=0.0
Pl1)=0.0
GO TU 270

READ OBSERVED FREQUENCIES. IF NDD IS GREATER THAN ZERO.

PUNCHED IN 12 COLUMN FIELDS 6 PER CARD, DECIMAL BETWEEN COLUMNS

6 AND 7 OR PUNCHED. ENTERED IN DECREASING ORDER IN EACH FACTORED
BLOCK. IF THE FREQUENCIES ARE UNKNOWN OR UNCERTIAN, OR Z2ERO
(REDUNDANCIES) ENTER A ZERO,FOR DEGENERATE ROOTS ENTER ONE
FREQUENCY AND THE REST ZERO. ANY FREQUENCY MAY BE GIVEN ZERD
WEIGHT IN THE PERTURBATION BY ENTERING A ZERO INSTEAD OF THE
ACTUAL FREQUENCY. FREQUENCIES ARE ENTERED IN WAVENUMBERS.
A TOTAL OF NQ ENTRIES, ND OF THEM MUST BE NON-ZEROD.
READ (5,20) (DE(I)s1=1,NQ)
COMPUTE THE FREQUENCY PARAMETERS FROM THE FREQUENCIES
DO 209 I=1,NQ

IF(DE(]))209,209,208
NDO=ND+1
DX(1)=5.88852€E- T*DE([)*DE(!)
N1=0
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WEIGHT =E(1) /7 FREQ.PAR, FOR IFW=1
00 248 I=1,NQ
IF(DX(1))24742479242
N1=Nl+¢l
PLIV=E(NL) 7/ (DX{I))
PTOT=PTOT+P(I)
IF(P(1))248,248,246
N2=N2+¢1
GO TO 248
P{1)=0.0
CONTINUE
NDT=NDT#N2
GO TO 260

WEIGHT =1.0 FOR IFH=-1
D0 254 I=1,NQ :
IF(DX(1))253,253,251
PlI)=1.0
PTOT=PTOT+1.0
GO TO 254
P(I)=0.0
CONTINUE
NDT=NDT+ND
GO TO 260

WEIGHT= 1/ FREQ. PAR. FOR IFW=0
DO 259 I=1,NQ
IF(DX(1))258,4258,256
PlI)=1.0 /7 DOX(I)
PTOT=PTOT+P(1)
GO TO 259
P(I1)=0.0
CONTINUE
NOT=NDT+ND
N1=0
DO 266 I=1,NQ
IF(DX(1))2669266,262
Nl1=Nl+1
DCS=DC{(N1)%DC(N1)
SUM=SUMADX{T)*DX{I)=P(I)%DCS* (DCS+4.0%DC(NL)+4.0)
CONTINUE
IF(ND-N1)925, 270,925

‘WRITE (1)NQ,ND,NOZ

WRITE (1) (REC{I),1I=1,18)

WRITE (1) (NR{K) yNC(K)yNFO(K)oZ(K)K=1,NOZ)

READ G MATRIX

READ NON-ZERO G MATRIX ELEMENTS ,GlIsJ).

G ELEMENTS ENTERED IN 18 COLUMN FIELD 1 TO 4 PER CARD GIVING

COLUMNS ITEM
1-3 NROW=1 (ROW NO)
4-6 NCOL=J (COLUMN NO.) (I LESS THAN OR=J)
7-18 DATIN=G(I,J) (DECIMAL BETWEEN 12-13 OR PUNCHED)

NROW IS SET =-1 AFTER LAST G ELEMENT.

SINCE THE G MATRIX IS SYMMETRIC ONLY DIAGONAL ELEMENTS AND THE
ELEMENTS ABOVE THE DIAGONAL ARE ENTERED. THAT IS, COLUMN NO.
GREATER THAN OR EQUAL TO THE ROW NO.
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144
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148
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155
156
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160
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164
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DO 142 [=14NQ

DO 142 J=I+NQ

Gl1,J)=0.0

READ (5916) (NROW(L)4NCOL(L),DATIN(L) L=1,4)
FORMAT(4(213,F12.6))

D0 150 L=1,4

- IF(NROW(L))152,1504146

IF{NCOL{L)-NROW(L))910,147,147
IFINQ-NCOL(L))910,148,148
1=NROW(L)

J=NCOL (L)

G(I1,J)=DATIN(L)

CONTINUE

GO TO 144
IF{1+NROW(L))910,154,910
SCHMIDT ORTHOGONALIZATION OF G
STORE INVERSE TRANSFORMATION IN LOWER TRIANGLE OF G

NQ=1

NL=2

GD=1.0 /7G{NO,NO)

DO 156 J=NLsNQ

G{JyNOY=G(NO,J)I)%*GD
IFINL=-NQ)I158, 158,170

DO 160 I=NL,NQ

00 160 J=1,NQ

GlIod)=G{1,J)~(GING,1)2G(NO,J)*GD)

NO=NO+1

NL=NO+1

IF(GINDOyNO)-0,000001) 16491644155
IFINL-NQ) 1654165170

DO 166 J=NL+NQ

G(JeNO)I=GING»J)

GO 7O 16l

DO 175 I=1yNQ
IF(G(I,1)-0.00005)173,173,172

DG(I)=SQRT(G(1,41))

GO YO 174 :

DG(1)=0.0

G(IeI)=1.0

DO 175 J=1,NQ

GlJeI)=GlJ, 1)*DGI(])

DO 178 J=1,NQ B

WRITE (1) (G(I,J)s1=d,NQ)

WRITE (1) (DG(I)yI=1,NQ)

WRITE (1) (DX(I)e1I=1,4NQ)

WRITE (1) (P{1)yI=1,NQ)

NM=NM+}

IF(NMOL~- NM)ZBbulOOoIOO

END FILE 1.

REWIND 1

IF(NDT)287'2870288

JOKER=1 .

FREQ=NF

SCALE=1.0
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GO TO 470
288 FREQ=NDT
SCALE=FREQ/ PTOT
SUM=SCALE=*=SUM
470 CALL CYCLE
IF{2-J0K)90,901,90
900 WRITE (6,81)NOPROB,NM
81 FORMAT(40HO ERROR IN MOLECULE CONTROL CARD.PROBLEMIB4H.NM=13)
IF{NM~-1)902,902,903
902 JOK=1
G0 70 90
903 NMOL=NM-1
JOK=2
GO TO 286
910 WRITE (6985)NMyNOPROBs Ly NROW(L) ¢NCOLEL) 4DATIN(L)
85 FORMAT(25HO0 G MATRIX ERROR MOLECULEI3,8H PROBLEMIB,6H FIELDI3,6H R
1LEADSI4,14,F12.6)
JOK=1
) GO T0O 90
920 WRITE (6987)NMyNOPROBNOZ NROW(L) NCOL(L"NPO(L)tDATIN(L)
87 FORMAT(25H0 Z MATRIX ERROR MOLECULEI308H PROBLEMIB8.8H ELEMENT14,6}
1 READSI4,14,14,4F9.6)
JOK=1
GO TO 90
925 WRITE (6488)NM,NOPROB,N1
88 FORMAT(27HO EIGENVALUE ERROR MOLECULEI3,8H PROBLEM18Q4H ND I3
JOK=1
GO T0 90
END
SUBROUTINE CYCLE
DIMENSION St 84,84 )L,EIG(66466) ,NRt 650),NC{ 650) NFO( 650),
I 650)sBZ(664TL) 9G(66466) INDEXL 71)DX{T71)DE(TL),DG(T1),
NEXT TL)oFF( T1)oSI( TLIGECUTLYaY( T1),NFLL T1)oNF2( T1),00( 71),
COENC T1)oSIGMCO( T1)NOMt TL)SEX( TLYSPE( T1)eE( T71),DVI(T1),
DC( T1)4FI( 7T1)oNCONU T1)eNCFU 71)4NPLISO)4NPN(50)4RECORD{5%),
RECUL18)P{T1)NROW(4) NCOL(4)NPOL4)DATIN(4),SUMDD{20)
EQUIVALENCE (S,sEIG)o(St4365),NR)»(S{5020)+NC)(S(S56T5)+NFO0),
1 (S(6330)}42)y(BLeG)o(BZ{4360),yINDEXsDX)(BZ(4440),DE4DG),
2 (B2(4520)¢NF X FF, EC)o(BZ(4600)4YyNF1) 4 (SIGMCO,NOM),
3 (COENyNF2:DD) 4 (EXoPE)yLE,DV)
COMMON S¢BZySIGMCO)COENJEXoE9¢DCoFI yNCONyNCFoNPLoNPNyRECORDREC,
1Py SUMDDy NROWy NCOL ¢ NPOyDATINyNFoNCZyNCZSoyNDToyDET 9 JOKER S JOK 9 DMX
2 DEFRyFRoJETyNXoNPyNOINoNOSTEPsNOVARy NOVMI 4EFOUTL,EFIN,NCYC,
3NOPROByNOZ o NQeLIMIT,TOL,NDIAG¢NPMAX,IFREG,PROD,FREQ,yERPO,ERQ,DAMP,
4RAPFRACyTIME,PERyINOo IFREPyIFERyNIP,NMOL » INDySCALELER,ERP,PTOT,
5 NMegNMLyNDsNDOeSUMe101,1029103,1044105,106,107,108,109,CUTOF
INTEGER CUTOF
470 REWIND 1
REWIND 2
NM=1
NM1=0
480 READ (1) NQ,ND¢NOZ
READ (1) (REC{I1),sI=1,18)
READ (1) (NRIK)sNCIK)yNFOIK)sZ(K)K=1,NOZ)

B WN e
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IFLIFREP) 484,490,484

IF{INO)490,y 490,485

DO 488 K=1,NOZ

I=NFO(K)

NFOL(K)=NOMI T}

IF{JOKER) 300,300,492

RAP=0.5%E~-3 -

IF(101)300, 90005, 300

WRITE (6,8B0)NM,{RECIK)¢K=1,18),NQyND,NOZ
FORMAT(23H1 Z MATRIX FOR MOLECULEI4+3Xs18A4/16,12H COORDINATESI3,
125H EXPERIMENTAL FREQUENCIESI8,19H Z MATRIX ELEMENTS.)
WRITE (6+481) {(NRUIDSNC(I)sNFO(T)y2(1),1I=1,N02)"
FORMAT(4(14,213,F9.61))

DO 301 J=1+NQ

READ (1) (G(1,J),1I=2J4NQ)

- READ (1) (DGU1),I=1,NQ)

READ (1) (OX(I),1=1,NQ)

READ (1) (P(I)y1=14NQ)
"IF{ND)304,304,306

IF{JOKER) 468,468,306

COMPUTE TRANSFORMED F MATRIX AND STORE IN UPPER TRIANGLE OF Ge
DO 328 J=1.NQ

PLJI)=SCALE*P(J)

DO 308 I=1.NQ

DD(1)=0.0

DO 320 K=1,NOZ

IX=NR(K)

IF(IX~-J)320,312,312

JX=NC{K)

LX=NFO{K)
DDUIXI=DDUIXI+FIILX)*ZIK)ERGLIXe D)
IF{IX-J4X)318,320,318
UD(JX)=DD(JX)*F!ILX)*Z(K)*G(IXOJ’
CONTINUE

DO 324 K=J,NQ

DC(K)}=0,0

DO 324 L=K.NQ

DCUK)I=DCIK)+G{L+K)*DD(L)

DO 328 K=J,NQ

GlJdeK)=DCIK)

NR2=0

IEGEN=0

"DIAGONALIZE TRANSFORMED F MATRIX BY JACOBl METHOOD
CALL HDIAG(G.NQs IEGEN,EIG+NR2,RAP) :
COMPUTE EIGEN VECTORS

D0 330 1=1,NQ

DCLIN=GlL,I)

Gll,11=0G(])

DO 335 I=1,NQ

00 333 J=1,NQ

DD(J4)=0.0

DO 333 K=1,J

DOLJ)=DDUII+G (I KI2EIG(K, )

DD 335 J=1,NQ
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335 EIG(J,1)=DD(J)
c ORDER EIGENVALUES AND EIGENVECTORS
11=NQ-1
D0 340 J=1,11
LOW=J+1
DO 340 K=LOW,NQ |
IF(DC(J)-DCIK))337,340,340
337 TEM=DC(J)
DC(J)=DC(K)
DCIK)=TEM
D0 338 I=1,NQ
338 DD(1)=EIG(I,J)
DO 339 I=1,NQ
EIG(14J)=EIG(1,K)
339 EIGLI,K)=DOLI)
340 CONTINUE
C COMPUTE EIGENVALUE ERRORS
341 DO 350 I=1,NQ |
IF(DX{1))348,348,344
344 DD(I)=DX{[)-DC(I)
SUMDD {NX )=SUMDD(NX ) +DD( I Y+DD( 1) *P (1)
GO TO 350
348 DO(1)=0.0
350 CONTINUE
352 WRITE (6424)NM/NP,NR2,RAP,(DC(I)y1=1,NQ)
24 FORMAT(37HO EIGENVALUES AND ERRORS FOR MOLECULEI4,6H AFTERI3,15H P
1ERTURBATIONS <159 L1H ROTATIONS./6H RAP=E12.4/(1H 49F8.5))
WRITE (6,26)(DD(J)eJ=1,NQ)
26 FORMAT(8HO ERRORS/(1H ,9F8.5))
90007 IF(JOKER) 354,354,364
C TEST FOR UNREASONABLE EIGENVALUES
354 IF(109161712,61712,91919
61712 DO 359 J=1,NQ
IF(DC(J)+0.001)360,3550,3550
3550 IF(DC(J))3552,3552,355
3552 IF(P(J))355,355,360
355 IF(9.0-0C(J))360,360,356
356 IF(2.5-DC(J))357,357,358
357 IF(0.8-ABS(DD(J)))360,360,359
358 IF(0.4~ABS(DD(J)))360,360,359
359 CONTINUE
91919 CONTINUE
IF(JOK 1468, 400,400
360 JOK=-1 .
WRITE (6474)NM,NP
T4 FORMAT(26HO EIGENVALUES FOR MOLECULEI4,31H NOT REASONABLE ON PERTU
" LRBATIONI4)
| GO TO 468
c OUTPUT FOR FINAL CYCLE
364 ER0=0.0
ERP0=0.0
DO 368 [=1,NQ
DE(1)=SQRVT(DX(1)/5.88852E~7)
DV{ 1)=SQRTIDC(()/5.88852E~T)
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IF(DE(1))365¢365,366
EX{1)=0.0

GO0 TO 368
EX({L)I=DE(TI)-DV(L)
EC{I)=100.0%EX(I)}/DE(1)
IFIPL1))368,368,367
ERO=ERO+ABS{EX({I))
ERPO=ERPD+ABS(EC(I))
CONTINUE

ER=ER+ERQ
ERP=ERP+ERPO

ERO=ERO / FLOAT{ND)
ERPO=ERPD / FLOATI(ND)

90008 WRITE (6428)NMySCALE,(REC(I),1=1,18)

28

369
29

31

90009

3670
3672
3673

3674
3675
3680

370

90010

c

30

372
32

400

410

FORMAT(75H1 OBSERVED AND CALCULATED FREQUENCIES AND FREQUENCY PARA
IMETERS FOR MOLECULEI3/26H SCALE FACTOR FOR WEIGHTS=F10.6/12X,18A%)
WRITE (69291 (14DECT)yDVIT)4EX(I)ECII)y PLI)4DX(I),DCLI),I=14sNQ)
FORMAT(95H0  OBS.FREQ. CALC.FREQ. DIFFERENCE ' PERCENT ERROR
1 WEIGHT  OBS.FREQ.PAR. CALC.FREQ.PAR.  /6Xs6HICM=1),6Xs6H(CM-1
2) 9 X9 6H(CM=-1)/{T49yF9.194XyFBe1y 4X.F6.lg7X.F7.3.6X'F9 49Fl0e59F14.5

3))

WRITE (6,31) ERQ,ERPD

FORMAT(1THO AVERAGE ERRDR=F6.2,10H CM~1 ,OR F6.3,8H PERCENT)
DO 3680 1=1,50

K=51-1

TES=FLOAT(K)=0.5

DO 3680 J=14NQ

IF(DX(J))3680,3680,3670

IF(TES-ABS(EX(J)))3672,3680,3680

IFIEX(J))3673,3680,3674

NPN(K)=NPN(K)+1

GO TO 3675

NPL(K)=NPL(K)+1

EX(J)=0.0

CONTINUE

IF{102)400,90010,400

WRITE (6,30)NOPROBsNM,NP, (REC(I),[=1,18)
FORMAT(3THIEIGENVALUES AND EIGENVECTORS PROBLEMIB,9H MOLECULEI3,13
LH PERTURBATIONT4/12X,18A%4)

DO 372 J=1,NQ

WRITE (6¢32)JyDVIJ) s (EIG(T,J)1=1,NQ) | |
FORMAT ( LOHOFREQUENCY13,2H =F8.1,5H CM-1,20H EIGENVECTOR FOLLOWS/
1(1H 49F8.4)) ~

COMPUTE THE JZ MATRIX  ( CALLED BZ)

D0 421 K=1,NQ

D0 410 N=1,NF

BZ(KyN1=0.0

DO 420 L=1,NOZ

I=NR(L)

J=NC(L)

M=NFO(L)

IF(1-0)418,416,418




-321-

TABLE LI {(Continued).

416 BZIKyM)=BZ(K,MI+EIGII,K J*EIG(J,K )*Z(L)
GO TO 420
418 BZIK,MI=BZ(K,M)+2.0%EIGITI,K JSEIG(J,K ) *Z(L)
420 CONTINUE
421 CONTINUE
422 IF(JOKER)438,438,424
424 1F(103)90012,90011,90012
90011 WRITE (6,38)NP,NM,{REC(1),I=1,18)
38 FORMAT(28HL THE JZ MATRIX PERTURBATIONI4s9H MOLECULEI4/12Xs18A4)
DO 426 I=1,NQ
426 WRITE (6,41)1,0C(T)sDD(T)4P(I),y(BZ(Lsd)eJd=1¢NF) -
41 FORMAT(11HO FREQ.PAR.I342H =F12.6,7H ERROR=F12.6,8H WEIGHT=F12.6/(
1 9F8.4))
90012 IF(104)90014,90013,90014
90013 WRITE (6442) (REC(1),I=1,18)
42 FORMAT(31HlL POTENTIAL ENERGY DISTRIBUTION/3Xy18A4).
90014 DO 435 1=1,NQ
IF(DC(1)-0.0001)435,435,430
430 DO 432 J=14NF
432 PE(J)=(BZ(I,J)*FI(J))/ DCLI)
IF(104)435,90015,435
90015 WRITE (6445)14DVII)y(PE(J)yd= LoNF)
45 FORMAT(11HO FREQUENCYI3,2H =F6.195H CM-1/(1H ,9FB.4))
435 CONTINUE
c COMPUTE S
438 DO 442 I=1,NQ
PUTI)=SQRTIP(I))
BZ(1,NOVAR)=DD(I)
DO 442 J=1,NOVAR
442 BZ(14J)=P(1)%BZ{14J)
DO 458 I=1,NOVAR
DO 456 J=1,NOVAR
$11J)=0.0
DO 456 K=1,NQ
456 SI(J)=STLII+BZIK,1)*BZ(K,J)
458 WRITE (2) (SI(J)yJ=1,NOVAR)
463 NML=NM1+1 |
468 NM=NM+1
1F {NMOL-NM) 600,480,480
600 IF(JOK)601,602+602
601 JOK=1
JOKER=1
GO TO 470
602 CONTINUE
END FILE 2
REWIND 2
FR=NDT~NF+NG?2
D0 604 I=1,NOVAR
DO 604 J=1,NOVAR
604 S(14J)=0.0
NM=1
c READ AND SUM S MATRICES
608 DO 610 I=1,NOVAR
. READ (2) (SI(J)yJ=1,NOVAR)
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DO 610 J=1,NOVAR
610 SUI,J)=S(1,4)+SI(J)
NM=NM+1
IF(NM1-NM)612, 608,608
612 IFINP)613,613,620
613 DO 618 1=1,NF
LF(SUI,1116144614,618
614 IFINCZ)617,617,615
615 DO 616 J=1,NCZ
IF(I-NCF{J))61646184616
616 CONTINUE
617 NCZ=NCZ+1
NCZS=NCZ
NCFINCZ)=1
WRITE (6,101
1 FORMAT(L6HO FORCE CONSTANTI3,42H NOT A’ FUNCTION OF FREQ.+FIXED ON
1CYCLE 1.)
618 CONTINUE
DO 6185 I=1,NDIAG
. KX=NCON(I)
6185 NFXIKX)=1
1FINCZ)6189,6189,6186
6186 DO 6187 I=14NCZ
KX=NCF()
6187 NEX(KX)=~1
6189 DO 6192 1=1,NF
~ IF(NFX(1116192,6190,6192
6190 NCZS=NC2S+1
NCFINCZS) =1
6192 CONTINUE
620 PROD=1,0
IF(DAMP)6207,6207,6201
6201 IF({JOKER)6207,6202,6207
6202 SMAX=S(1,1)
DD 6205 I1=2,NF
IF(S(1,1)-SMAX)6205,6205, 6203
6203 SMAX=S(I1,1)
6205 CONTINUE
DB=DAMP#SMAX
WRITE (6,43) DAMP,DB
43 FORMAT(37HO DAMPED LEAST SQUARES.DAMPING FACTORFB.4,11H®S{1,1)MAX=
1F8.4)
GO TO 621
6207 DBa0,0
621 CONTINUE
DO 628 I=1,NOVAR
IF(S(1,1))622,622,623
622 EX{1)=1.0
GO TO 628
623 S(I,1)=S(1,1)+D8
EX(1)=SQRT(S(1,1))
628 CONTINUE
c COMPUTE CORRELATION MATRIX
00 630 I=1,NOVAR
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DO 630 J=1,NOVAR
SUI,d)=S(1,J)/ (EX{I)*EX(J))
630 S(Jy1)=S(1,J)
IF(JOKER) 631,634,631
631 IF(105)634,90016, 634
90016 WRITE (6,53)NP,(RECORD(I),1=1¢54)
53 FORMAT(29HL CORRELATION MATRIX ON CYCLEI3/(3x.18A4))
DD 632 I=1,NOVAR
632 WRITE (6440) I4(S(IsJ)yJ=1,NOVAR)
40 FORMAT(4HOROWI3/(1H 49FB8.4))
WRITE (6463) (EX{I),I=1,NF) o , , |
63 FORMAT(61HO SQUARE ROOTS OF THE DIAGONAL TERMS OF THE NORMAL EQUAT
1IONS./{1H ,9FB.4))
C ELIMINATE ROWS AND COLUMNS FROM CORRELATION MATRIX
634 IF{JOKER)635,636,636
635 NVO=NCZ
GO TO 637
636 NVD=NCZS
637 IF(NV0)642,642,638
638 DO 640 I=1,NVO
K=NCF (1)
DO 639 J=1,NOVAR
S(K,J1=0.0
639 S(J,K1=0.0
640 S(KsK)=1.0
642 DEFR=FREQ
c CALL REGRES TO SOLVE PERTUBATION EQUATIONS OR REGRESSION
CALL REGRES
NFA=NF-NCZS
DO 700 I=1,NDIAG
KX=INDEX(I)
PROD=PROD#EX{KX)#EX(KX)
700 FF{I)=FI(KX)
IF({JOKER)T02, 710,702
702 IF(106)710,90017,710
90017 WRITE (6952)DETsNFA,NDTs (RECORD(I)1=1,54)
52 FORMAT(43H1 VARTANCE-COVARIANCE MATRIX. DETERMINANT= E12.4/18,32H
1FORCE CONSTANTS ADJUSTED TO FITIS,13H FREQUENCIES./(3X,18A4))
DO 704 I=1,NOVAR -
704 WRITE (6940) 1,(S(I4J)9d=1,NOVAR)
710 CONTINUE . |
90018 WRITE (6,61)NP, DET,PROD,RAP, ( INDEX(T),FF(1),COENII),
1SIGMCO(I), I=1,NDIAG)
61 FORMAT(23H1 FORCE CONSTANTS AFTERI3,14H PERTURBATIONS /15H
1 DETERMINANT =E12.4,19H PRODUCT OF S(I,1)=£12.4/5H RAP=El4.4/
252H 1 FORCE CONSTANT(I)  DELTA(I) EST.DISPERS ION/
3(1494XyF12.69F1446sF16.6))
90019 IFINCZS)715,715,712
712 WRITE (6466) (NCF(1),1=1,NCZS)
66 FORMAT(28HO FORCE CONSTANTS HELD FIXED/{(2413))
715 IF(JOKER)718,718,780
718 DO 720 I=1,NDIAG
IF(2.0-ABS{COEN(1)))722,722,720
720 CONTINUE
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GO TO 735%
722 CMAX=ABS{COEN(I1))
MAX=1+1
LXx=1
DO 724 I=MAX,NDIAG
IF(CMAX~-ABS(COENIT)))T23,724,724
723 CMAX=ABSI{COENI(T)) - ‘
LX=1
724 CONTINUE
NFIX=INDEX{LX)
90021 WRITE (6, 7TINFIX,COEN(LX)SIGMCOU(LX) }
L7 FORMAT(16HO FORCE CONSTANTI3,13H FIXED.DELTA= F10.6¢8H SIGMCO=F10.
16)
90022 DO 726 I=14NCZS
JX=NCZS~1+1
LX=JX+1
726 NCFILX)=NCF{JX)
NCFU1)=NF1IX
NCZ=NCZ+]
NCZS=NCZS+1
NLC=0
DO 728 I=14NDIAG
IF(INDEXTI)~-NFIX)T27,728,727
727 NLC=NLC+1
NCON{NLC)=INDEX(I)
728 CONTINUE
NDIAG=NLC
SUMDD(NX)=0.0
{FINDIAG) 729,729,470
729 JOKER=1
NPMAX=1
GO TO 470
735 DO 736 I=1,NDIAG
IF(0.008-ABSICOEN{1)))738,738,736
736 CONTINUE
NPMAX=0
GO TO 751
738 IF(DMX) 750,742,739
739 DO 740 1=14NDIAG
740 COEN(1)=DMX*COEN(I) e
IF(curoF-NP)63152.63152.91516
63152 DMX=0.0
91516 GO TO 750 _
"T742 DO 746 1=14,NDIAG I
lF(h.O—ABSlCDhN(I)))7¢30744o744
743 COEN(1)=0.,7*COEN(I)
744 1F(0.5- ABS(CUEN(I)))?«S.?«&.?«b
745 CUEN{I')=0.8%COENI(I)
746 CONTINUE ,
750 IF(NPMAX) 758,751,751
751 DO 753 I=1,NDIAG
JX=INDEX( )
753 FLIJX)I=FI(JX)+COEN(I)
IFINP)T58,758,75%




154
756

157
51

758

762

765
770
171

780
800

801
802

810
815
55
816
60

99887
21121
817
62
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LF{SUMDD(NP )-SUMDDINX))T56,T756,758
JET=JET+1

IF{2-JET)T?57,757,758

WRITE (6,51)NOPROByNP

FORMAT(9HO PROBLEMI7,14H DIVERGING NP=13)

NPMAX=0

NP=NP ¢ 1

NX=NP+1

NCYC=NCYC+1
SUMDD(NX)=0.0
RAP=FRAC*RAP
IFINPMAX-NP)T62,762,765
JOKER=1

GO TO 470

IFLIFREG) 770,470,770
IF(NIP+3-NCYC)T71,470,470
JOKER=~]

GO TO 470
IFINCZ2S)802,802,800

DO 801 I=1,NCZS
K=NCF(1)

S{K,K)=0.0

E3=SQRT(SUMDD(NX) /DEFR)
E4=SQRT(SUM / DEFR)

DO 810 I=1,NF
VEM=ABS(S(I,1))
E(1)=E4*SQRTI(TEM)/ EX(I)
Y(I)=E3*SQRT(TEM)/ EX{I)
WRITE (6455)NOPROBy (RECORDI(T)yI=1¢54)

FORMAT{1H1,5X,8H PROBLEMIB/(12X,18A4))

WRITE (6960)NPolIoFI(TI)sY(I)sE(I)oI=1,NF)

FORMAT(44HO FORCE CONSTANTS AND ESTIMATED ERRORS AFTERI4¢15H PERTU
1RBATIONS.//4TH I FORCE

23X9FLl2.695X9F9.695X4FB.6))
90024 FR=DEFR

NAD=NF-NCZS
IFL108)817,9817,99887
WRITE(79211210(FLLI)s1=1yNF)
FORMAT(6F12.6)
WRITE (6962)SUMDD(NX)¢E3,SUM.E4H :
FORMAT(33HO * STANDARD ERROR ESTIMATED FROM/S54H SUMDD=SUM({ (LAMB
LDA(1)0BS.~-LAMBDA(I)CALC.)*%2)%P(1)=E13.6/4TH STANDARD ERROR IN
2LAMBDA = SQRT(SUMDD/ FR)=E13.6 //33H *% STANDARD ERROR ESTIMATED F

3ROM/39H
4MD/ FR)=EL13.6/37H

549H
649H
T45H
848H
946H

SUMD=SUMIDELTA

l.[FER=-3,DELTA
2. IFER=-24,DELTA

3.IFER=-1,DELTA"

4.IFER= 0,DELTA
OR 5.IFER= 1,DELTA

90026 IF({NDT)825,825+820
820 WRITE (6464) IFERyPERsNFyNADyNDToFR,y (SUMDD(I),4I=1,NX)
64 FORMAT(1OH IFER=13y 9H AND PER=FB8.4/ 16,17H FORCE CONSTANTS.I6

l9l6H ADJUSTED TO FITI6413H FREQUENCIES./ 2XsF5.1¢41H DEGREES OF FR

CONSTANT (1) ERROR * ERROR #*%/(14,

LAMBDA(T) ) *%2)*P{1)=E13.6/19H SQRT(SU

WHERE DELTA LAMBDA ESTIMATED FROM/

FREQ(I)=1.0 CM-1 FOR ALL [/
FREQ(TI)=PER CM-1 FOR ALL 1/
FREQUI) READ IN (CM-1)/
FREQ(I)=0.005%0BS.FREQ(I)/
FREQ(ID=PER*OBS.FREQ(I))
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2EEDOM. SUMDD FOR EACH CYCLE I(5El3 6))
90028 CON=FREQ
E5=ER/CON
E6=ERP/CON
90029 WRITE (6,65)E54E6 '
65 FORMAT{30HOAVERAGE ERROR IN FREQUENCIES=FT7.149H CM-1 OR FB8.4,9H PE
1RCENT.)
90030 NZER=NDT
DO 824 1=1,50
824 NZER=NZER-NPNIT)-NPLII)
90031 IF(107)26261926261,825
26261 WRITE (69,55)NOPROBy {RECORD(I)sI=1454) 7
WRITE (6982)NDToNMOL¢NZER (ToNPLEI)¢NPNII)91=1450)
82 FORMAT{24HO ERROR DISTRIBUTION FORIS5,13H FREQUENCIES.I4y11H MOLECU

ILES./ 20H 0.5 T0-0.5 CM-1 =[8/26H CM-1 PLUS MINUS/
20162110)) )
825 RETURN
END
/%
SUBROUTINE REGRES
MODIFICATION OF A PROGRAM FOR STEPWISE MULTIPLE
REGRESSION PROGRAMED BY M.A. EFROYMSON OF ESSO RESEARCH
THE SUBROUTINE 1S ALSO USED FOR MATRIX INVERSION AND FOR
SOLVING THE LINEAR EQUATION ON CYCLES NOT USING THE REGRESSION
TECHNIQUE

[sEsXaNaNel

DIMENSION S{ B4y84 )4EIG(66566) yNRI 650) 4NC{ 650) yNFO( 650),
1 2( 6501,B2(66471) ¢+G(66966)y INDEX( 71)4DX(71),DE(71),DGI71),
2 NFXU TL)oFF( T1) ST TL)4ECUTL), Y1 T1)4NFL(C T1)4NF2( T1),DD( 71},
3 COEN{ 71),SIGMCO( T71)4NOM({ 7L} EX¢ 71),PEC T1),EL T1),DV(TL),
4 DCL T1)oFI{ T1)oNCON{ 71),NCFL 71) 4NPL(50),NPN(50),RECORD(54) ¢
5 RECU18),P(71) NRON(4)oNCOL(4)4NPO(4) ,DATIN(&),SUMDD(20)
EQUIVALENCE (SsEIG),1S(4365)4NR), (5(5020)4NC)y(S(5675),NFO),
1 (S16330)+2Z)4(BZsG)y{BZ(4360) o INDEXsDX) s (BZ(4440)4DE,DG),
2 (BZ(4520),NFXsFFy  EC)y(BZ{4600) ¢YoNF1), (SIGMCO,NOM},
3 (COENyNF2,0D) ¢ (EXsPE ), (E,DV)
COMMON S¢BZsSIGMCOyCOENJEXoE¢DCoFIoNCONyNCFoNPLyNPNyRECORDZREC,
1P, SUMDD y NROWy NCOL yNPO oy DATIN,NF ¢ NCZyNC 2S s NDT 4 DET  JOKER ¢ JOK » DMX o
2 DEFR,FR,JET,NXoNPoNOIN,NOSTEP +NOVAR, NOVMI ,EFQUT ,EFIN,NCYC,
3NOPROB,NOZ,NQsLIMIT TOL,NDIAG yNPMAX, IFREG, PROD,FREQ, ERPO, ERQ,DAMP,
4RAPFRAC » TIME o PER o INOy IFREP IFERyNIP, NMOL » IND 4 SCALE, ERsERP,PTOT,
5 NMJNML,ND,NDD»SUMs101,1024103,1044105,106
DET=1.0 -
NOIN=0
DO 650 I=1,NF
650. NFX{1)=0
IF{JOKER) 6564699699
656 WRITE (6422)
22 FORMAT(35H1 CONSTANTS FORCED INTO REGRESSION.)
VAR=0.0
NOSTEP=-1 : :
IFSTEP=0 ' ,
TOL=0.001 ‘L ' :
NIN=O -
ASSIGN 1320 TO NUMBER



alaNeNe

-327-

TABLE LI (Continued)

ENTER FORCE CONSTANTS IN THE LIST NCON(1)eI=1,NDIAG INTO
THE REGRESSION EQUATIONS WITHOUY REGARD TO THE STATISTICAL
TESTS. THIS LIST SHOULD INCLUDE ALL DIAGONAL FORCE CUNSTANTS
PLUS ANY KNOWN LARGE INTERACTION CONSTANTS.
699 IX=1
ASSIGN 710 TO NO1
700 DEFR=DEFR-1.0
- JX=NCONLIX)
NFX{JX)=1
K=JX
GO TO 1400
710 NOIN=NOIN+1
INDEX({NOIN)=JX
IX=1IX+1
IF{NDIAG-IX)711,700,700
711 FLEVEL=0.0
SIGY=EXINOVAR)}*SQRT{S{NOVAR,NOVAR)/ DEFR)
DO 720 I=1,NOIN
KX=INDEX(I)
COEN(I)=S(KX,NOVAR)*EX{NOVAR)}/ EX(KX)
720 SIGMCU([)-(SIGY/EX(KX))*SQRT(S(KX KX))
1F({JOKER)T7214200,200
721 WRITE (6, TO)FLEVEL,SIGY, (INDEX(J).COEN(J) SIGMCD(J)'J 1,NOIN)
722 1FUIFREG) 730,723,730
723 EFIN=2.0
EFOUT=1.0
GO TO 731 : :
730 READ (5,20) EFIN,EFOUT .
20 FORMAT(2F12.6)
731 WRITE (6426) EFIN,EFOUT
26 FORMAT(36HO REGRESSION, F LEVEL FOR ENTERING =F10.6,23H F LEVEL FO
IR REMOVING =F10.6)
790 DEFR=DEFR+1.0"
799 ASSIGN 1000 TO NO1
‘ AO=1
NOMIN=0
NOMAX=0
NOENT=0
K=0
1000 NOSTEP=NOSTEP+1
IF(NOSTEP- LlMIT)lOOlc3001 3001
3001 WRITE (6,3005)
3005 FORMAT{36HOTOO MANY STEPS' PROBLEM TERMINATED )
JOKER=1 -
GO TO 1381
1001 IF{S(NOVAR,NOVAR))1002,1002,1010
1002 NSTPM1=NOSTEP-1
WRITE (69 1004)NSTPM]
1004 FORMAT(1HO37HY SQUARE NUN POSITIVE, TERMINATE STEP 1I5)
GO 70 1381
1010 SIGY=EX(NOVAR)*SQRT(S(NOVAR,NOVAR) /DEFR)
1015 DEFR=DEFR~AQ
1016 IF{DEFR) 1017,1017,1020
1017 WRITE (641019)NOSTEP




1019

1020
L030
1035
1040

1041
1043
1044

1046
1060
1080
1090
1100
1120
1130
1140

1150
904
906

1170
1180
1190
1160
1110
1210
1220
1050
1230

903

907

1240
65

1300
1310
1311
91
1312
1313
92
1314
70

1315
1320
1330
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FORMAT(LHO29H NO MORE DEGREES FREEDOM STEP l5)

GO TO 1381

VMIN=0,0

VMAX=0,0

NOIN=0

00 1050 1I=1,NOVMI

TFINFX(I))1041,1041,1080

IF(S(1,1))1046,1050,1060

WRITE (641044) 1 ,NOSTEP

FORMAT({IHOLOH SQUARE S—15917H NEGATIVE. SOLONG I5,6H STEPS)
GO TO 1381 '
IF{StI,1)+T0L)1043,1050,1050

IF{SUI,1)-TOL) 1050,1080,1080

YAR=S{I¢+NOVAR)I®XS{NOVAR:I)/ S(I,1}

{F(VAR)I1100,1050,1110

NOIN=NOIN+1

INDEX(NOIN)=I

COEN(NODIN)= S(IQNOVAR)‘EX(NOVAR'/EX(I’
SIGMCO(NDEIN)=(SIGY/ EX(1))* SQRTIS{I,1))
IFINFX{11)1150,115041050

IF(VMIN}116001170,904

WRITE (6+906)

FORMAT(24H ERROR,VMIN PLUS,SOLONG )

GO TO 900

VMIN=VAR

NOMIN=1

GO Y0 1050

LF(VAR-VMIN)1050,1050,1170

IF{VAR-VMAX)1050,1050,1210

VMAX=VAR

NOMAX=1

CONTINUE

IF{NIN)903,1240,1300

WRITE (6,907)

FORMAT(26H ERRORNOIN MINUS, SOLONG )

GO 10 900

WRITE (6465)S1GY

FORMAT{(39HO START REGRESSION.STANDARD ERROR OF Y=F12.6)
NIN=1

60 70 1350

IF(IFSTEP)900,41310,1320

IFINDENT) 131141311,1313

WRITE (6491)INOSTEP(K

FORMAT{9HOSTEP NO.I5/19H VARIABLE REMOVED 18)

GO TO 1314

WRITE (6492INOSTEP (K

FORMAT(IHOSTEP NO.IS/20H VARIABLE ENTERING 1I8)

WRITE (6, 70)FLEVEL,SIGY,{ INDEX{J)COEN(J),SIGMCO(J),J=1yNOIN)
FORMATI(12H F LEVEL =F12.6/24H STANDARD ERROR OF Y =Fl2.6747H
1 CONSTANT PERTURBATION STANDARD ERROR/ (178X F10.648X,F10

2.6))

GO TO NUMBER,(1320,1580)
FLEVEL=VMIN®DEFR/ S(NOVAR,NOVAR)
IF{EFOUT+FLEVEL)1350,1350,1340



1340
1345

1350

1360
1361
1370
1390
1391
1392
1395

1400
1420
1430
1450
1460
1440
1410

1470
1490
1500
1480
1510
1530
1540
1520
1550
1560
1380

75
1381
1570
1571
1580
1586

910
911
912
913

914

915
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K=NOMIN
NOENT=0

AO=~-1.0

GO TO 1391

FLEVEL=VMAX%DEFR/ {(S(NOVAR,NOVAR)-VMAX)
AD=1.0
IF{EFIN-FLEVEL)1370,1361,1380
IFI(EFIN)1380,1380,1370

K=NOMAX

NOENT=K

IF{K) 1392,1392,1400

WRITE (641395)

FORMAT(12H K=0. STEP 16,7H SOLONG)
60 TO 900

D0 1410 1=1,NOVAR

IF(I-K) 1430,1410,1430

DU 1440 J=1,NOVAR

IF(J-K) 146091440,1460
SU{Ied)=S{T1eJ)-(S{IK)ES(KeJ)/SIKeK))
CONTINUE

CONTINUE

DEV=S{KyK)*DET

DO 1480 I=1,NOVAR

IF(I-K) 150091480,1500

S{I4K)= =S(I4K)/S(KeK)

CONTINUE

DO 1520 J=1,NOVAR
IF(J-K)1540,152041540

S(KeJd)= S{KyJ)/S(KyK)

CONTINUE

S(KeK)= 140 / S{KeK)

GO TO NO1,(71041000)

WRITE (649 75)NOSTEP

FORMATY (10HOCOMPLETED 15,20H STEPS OF REGRESSION)
IF{IFSTEP)900,1580,1570

ASSIGN 1580 TO NUMBER

GO TO 1310

WRITE (691586)(LeS(LyL)yL=1,NOVAR)
FORMAT( 22HO DIAGONAL ELEMENTS//20H VAR.NO.
1F16.6))

NCZS=NCZ

IFINCZ)913,913,911

DO 912 I=1,NC2Z

K=NCF(I)

NFX{K)=-1

DO 914 I=1,NOIN

K=INDEX(])

NCON{ 1 )=K

NFX(K)=1

D0 916 I=1,NF
IFINFX(I))916,915,916

NCZS=NCZS+1

NCFINCZS)=1
IF(0.01-ABS(FI{I)))916,916,917

VALUE //(1H IT,
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917 FI(1)=0.0
916 CONTINUE
NCYC=0
JOKER=0
200 NDIAG=NOIN
201 RETURN
900 JOKER=1
60 TO 201
END
/7%
SUBROUTINE HDIAG(HsN, IEGEN,U¢NR4RAP)

Subroutine HDIAG has been presented earlier in Table XXXIV
and will not be repeated here because of space limitations.
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IND = -09 and indicates the start of a new problem. IND is punched
in Columns 1-3 (FORMAT I3). .

NOPROB is the problem numper;vpunched in Columns 49 (FORMAT 16).

NMOL, denotes the number of molecules included in the problem.
NMOL is punched in Columns 10-12 (FORMAT I3).

NF is the number of force constants, punched in Columns 13-15
(FORMAT I3).

Warning: NF must not exceed Tl.

NPMAX, represents the maximum number of perturbations desired in the
refinement. The refinement will terminate when the number of
iterations exceeds NPMAX, even though the refinement may not have
converged. NPMAX is punched in Columns 16-18 (FORMAT I3).

~ Note: If NPMAX is set equal to zero or left blahk, the force con-

stants will not be refined, and the frequencies will be -calculated
for the initial set of force constants.

NCZ, refers to the number of force constants to be held fixed.
These force constants are not perturbed by the refinement. NCZ is
punched in Columns 19-21 (FORMAT I3). :

- IFREP is the problem repeat option. If IFREP = 0, a new problem

is to be started. For IFREP = 1, only a new set of force constants
and identification of those constants to be held fixed need be
entered; the remaining data are taken from the previous problem.

If IFREP = -1, the final set of force constants from the previous
problem are used as the initial set in the new problem IFREP is
punched in Columns 22-23 (FORMAT I2).

IFER 1is the error control. -For IFER = 1, the fractional error, PER,
is read in. For IFER = 0, the fractional error, PER, is set equal

to 0.005. If IFER = .-1, the estimated errors for each of the observed
frequencies are read in.

Note: These errors must follow the observed frequencies. For IFER =
—2 the error in the observed frequencies in cm. 1, PER, is read in.
If IFER = -3, the error in the frequencies, PER, is set equal to 1

em.”! IFER is punched in Columns 24-25 (FORMAT I2).

PER is the error referred to in above paragraph. If IFER = 1, PER
is a fraction. If IFER = -2, PER 1is in cm. 1" PER is punched in
Columns 26-33 (FORMAT F8.6). .

DMX, a fractional factor which is.multiplied by the force constant
perturbations to result in the "damped" perturbation. 'This factor
is used in those situations where the initial force constant cor-

rections are very large. DMX is punched in Columns 34-41 (FORMAT
F8.L4).
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IFREG is the regression option control. If.IFREG = 0, there is no
regression analysis. For IFREG =.1, the regression is performed
on the first iteration. If IFREG = -1, the regression is
initiated on the fourth-iteration. IFREG is punched in Columns
42-43 (FORMAT I2).

NDIAG, represents the number of force constants to be included in
all the regressions, punched in Columns LL-L46 (FORMAT I3).

INO is the number of force constants to be renumbered, punched in
Columns 47-L9 (FORMAT I3).

NIP, represents the spacing between the regressions. The spacing
is 3 - NIP where NIP may be negative. NIP is positioned in
Columns 50-52 (FORMAT I3). ’

DAMP is the damping factor for "damped least squares." For DAMP
greater than zero, DAMP*MAX[S(I,I)] is added to the diagonal terms

of the normal equations on each perturbation cycle. Schachtschneider
(89) suggests using DAMP = 0.001. DAMP is punched in Columns 53-58
(FORMAT F6.5). ’

RAP is the cut-off factor for the Jacobi diagonalization. The
rotations are terminated when MAX[H(I,J)] is less than RAP*MIN[H(I,I)].
If RAP is not entered or left blank, it is assigned a value of 0.5E-2

‘in the program. On the final iteration, RAP is automatically set
.equal to 0.5E-3 which gives eigenvalues to six significant figures

and eigenvectors to three or four 51gn1flcant figures. RAP is punched
in Columns 59-63 (FORMAT F5.L4).

FRAC is & fractional factor for decreasing RAP after each iteration.
After each iteration, RAP is set equal to FRAC¥RAP. If FRAC is not
entered, it is assigned a value of 0.9 by the program. FRAC is
punched in Columns 64-6T7 (FORMAT Fk.3).

CUTOF is the number of iterations after which DMX is set equal to
zero, punched in Columns 68-72 (FORMAT I5).

Problem Information Cards. Three cards containing any alphanumeric in-
formation about the problem the user may wish to enter. The first three
columns, i.e., Columns 1-3, should be left blank. Therefore, the
alphanumeric information may be punched in Columns L-72 on each of the
cards.

Warning: These three cards must élways be included With the input data
even if left blank.

Printout Option Cards. A 1 in the appropriate column will suppress the
printout of the follow1ng information.

&.

b.

I0l, the Z matrix suppression option, punched in Column 1.
~J

102, the eigenvalues and eigenvectors suppression optioh, punched
in Column 2.
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c. I03, the JZ matrix suppression option, punched in Column 3;
AR
d. IOL, the potential energy matrix suppression option, punched in
Column Uk,

e. 105, the correlation matrix suppression option, punched in Column 5.

f. I06, the varlance-covarlance matrlx suppress1on optlon punched in
Column 6.

g. IO07, the error distribution suppression option, punched in Column 7.

h. I08, a 1 will result in the final set of force constants being
punched onto cards in a format suitable for input to FADJ, FLPO, and
EIGV. I08 is punched in Column 8.

i. I09, a 1 will result in the test for unreasonable eigenvalues being
bypassed. This option is useful if the initial set of force constants
is not a good approximation, In this case, the refinement would
terminate on the first iteration if the elgenvalues are not considered
reasonable by the test built into the program. I09 is punched in
Column 9. '

Initial Set of Force Constants. ' The initial set of force constant param-
eters are punched on cards in 12 column fields, six per card, in the order
1 through NF (FORMAT 6F12.6).

Force Constants to be Renumbered. If INO is greater than zero, the force
constants to be renumbered along with their new numbers must be included
in the data deck.. The format is: NF1(I) = the old force constant number
and NF2(I) = the new force constant number, where I = 1 through INO.
NF1(I) and NF2(I) each occupy three columns and they are punched in pairs.
There are 24 fields of 3 columns each per card (FORMAT 2L4I3).

Force Constants Held Fixed. If NCZ is greater than zero, the. numbers of
the force constants to be held fixed, NCF(L), are punched con cards in 3
column-fields, 24 per card, for L = 1 through NCZ (FORMAT 24I3).

Note: These force constants do not enter the reflnement, and their final
Value is the same as their initial value.

Force Constants Forced Intoe the Regression. If NDIAG is greater than
zero, the numbers of the force constants forced into the regression,
NCON(I), must be included with the data. These numbers are punched in
3 column: fields, 24 per card, for I = 1 through NDIAG (FORMAT 2LI3).

Note: The force constants identified here are entered into the regression
equation without regard to the tests for significance.

Molecule Control Card.

a. IND.= -06, identifies the molecule control card and is punched in
Columns 1-3 (FORMAT I3).




10.

11.

12.
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b. NQ is the number of internal coordinates, punched in Columns 4-6
(FORMAT I3).

Warning: NQ cannot exceed 66.

c. NDD is the number of nonzero experimental freguencies to be in-
cluded with the input data. NDD is punched in Columns T-9 (FORMAT
I3).

Note: If no experimental frequencies are entered with the data,
NDD is set = O or left blank. This option may be used if one only
wishes to solve the secular equation to obtain the calculated
freguencies.

Warning: If NPMAX is greater than zero, so must be NDD.

d. N2z, signifies the number of Z matrix elements, punched in Columns
10-13 (FORMAT Ik), &

Warning: NZZ cannot exceed 650.
e, IFU is ignored by the pfogrém. The Columns 14-15 may be left blank.

f. IFW, represents the weighting element option for the weighted least
squares refinement. If IFW = 1 or -2, the weighting elements, E(I),
are read in and must be.included with the input data, one for each
nonzero experimental frequency. For IFW = -2, the weight(I) then
becomes = E(I). For IFW = 1, the weight(I) = E(I)/frequency param-
eter(I). If IFW = 0, the weight(I) = 1/frequency parameter(I). For
IFW = -1, the weight{I) = 1.0 and all frequencies are weighted

equally Finally, if IFW = -3, the weight(I) = 1/[frequency parameter-

(1)}?. IFW is punched in Columns 16-17 (FORMAT I2).

g. 1ISKZ is the Z matrix repeat option. If ISKZ = 0, the Z matrix is
included in The input data. For ISKZ = 1, the Z matriX from the
previous problem is used and & new Z matrix is not included with the
data deck. ISKZ is punched in Columns 18-19 (FORMAT I2).

Note: This option is specifically suitable for isotopically sub-
stituted molecules.

Molecule Information Card. One card containing the name of the molecule
or other pertinent alphanumeric information. The first three columns
should be left blank with the Columns h-72 open for the alphanumeric
data (FORMAT 184L).

The Z Matrix. The constraint matrix from UBZM or ZSYM is placed at this
p01nt in the data deck. The Z matrix elements are punched in 18 column
fields, 1 to 4 per card [FORMAT 4(313,F9.6)]. ,

Warning: The row number following the last element must be -2.

Experimental Frequencies. If NDD is greater than zero, the experimental
frequencies, in wave numbers, must be included with the input data. The
frequencies are entered in decreasing order and are punched in 12 column
fields, 6 per card (FORMAT 6Fl12.6).
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Note: If the frequencies are unknown or uncertain, enter a zero..,
For degenerate roots, enter one frequency and zeros for the rest.

Any frequency may Dbe given a zero weight in the refinement by entering
a zero instead of the actual value.

Warning: For NDD greater than zero, one must make NQ entries of which
NDD must be nonzero. A zero should be entered for each of the redun-
dancies. Blanks are read as zeros.

13. Estimated Errors in the Observed Frequencies. If IFER = -1, the
estimated errors in the cobserved frequencies, in cm._l, must be in-
cluded with the input data, one for each nonzero frequency. The
estimated frequency errors must be entered in the same order as the
experimental frequencies, with zZeros being entered corresponding to’
zeros in the frequency list. The estimated errors are entered in 12
column fields, six per card (FORMAT 6F12.6).

Warning: There must be NQ error entries for IFER = -1, NDD of them
nonzerc.

14, The Weighting Elements. If IFW = 1 or -2, the weighting elements are
read in, one element for each nonzerc frequency. The weighting elements
are punchéd in 12 column fields, six per card (FORMAT 6F12.6).

Note: There are a total of NDD weighting elements arranged in the
same order as the nonzero experimental frequencies.

15. The G Matrix. The G matrix from GMAT is inserted in the data deck at

this point. The da?é are punched in 18 column fields, four per card
[FORMAT 4(213,F12.6)].

Warning: The row number after the last element must be -1.

16. Data Termination Card. This card designates the end of the data deck
by a 999 punched in Columns 1-3 (FORMAT I3).

Note: If another problem is to be included, the problem ID card is
placed at this position and the data termination is moved to the end of
the second problem data.

If the same set of force consfants is to be used in the refinement for more
than one molecule, the data cards starting with the molecule control card through
the g>matrix cards must be lncluded, one set after another, for each molecule in
the refinement, i.e., NMOL sets of data. For symmetry factored blocks, NMOL must
be set equal to the number of factored blocks. The blocks are then treated as
separate molecules with the data handled in the manner Just described for several

molecules.
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The data deck is terminated with a card having /¥ punched in Columns 1-2

with the 08 system.

OUTPUT INFORMATION

The following information is printed out at the option of the user.

10.

11.

12.

i3,
1k,
15.
16.

17.

The initial set of force constants.
The renumbered force constants, old and new numbers.
The force constants to be held fixed.
The force constants to be forced into the regression.
The Z matrix.
=~
The eigenvalues and errors for each cycle.
The force constant perturbations after each iteration.

The regression data.

The final set of calculated frequencies, frequency parameters, observed
frequencies, errors, and weighting information.

The eigenvalues and eigenvectors for the final set of force constants.
The final JZ matrix.
<A
The potential energy distribution.
The correlation matrix.
The variance-covariance matrix.
The final set of force constants.

The estimated error in the final force constants.

The error distribution for the frequencies.

The final set of force constants is punched on cards, if desired.
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FLPO

This program solves the vibrational secular equation by the nmethod of'suc—
cessive orthogonalization followed by diagonalization. The diagonalization is
accomplished by the subroutine HDIAG which employs the Jacobi method. The
program will also refine an initial set of force constant parameters to provide
a linear or nonlinear (depending on the problem) weighted least squares "fit" of
the calculated frequencies to the experimental frequencies by the Fletcher-

Powell method (121).

This program was constructed gy the author of this text during the investi-
gation of the 1,5-anhydropentitol spectra. FLPO was developed from sections of
FADJ (the section involving the solution of the secular eguation) and from an IBM
subroutine, FMFP, (which is the basis of the Fletcher-Powell method) obtained
from their scientific subroutine package (;gg). The adaptation of the Fletcher-
Powell method is based on the paper by Gans (;gg). FLPO may be used with the IBM
360/44 0S operating system. The program requires a phase overlay procedure
available with 0S. The current version of FLPO is stored on disk at the Institute's

computer center.

A flow diagram for FLPO appears in Fig. 42, 43, and 4k. The JCL cards re-
quired to run the stored version of FLPO at the Institute are listed in Table
LII. These cards must pfecede the data deck. A listing of FLPO follows the JCL

cards in Table LIII.
INSTRUCTIONS FOR PROGRAM USE

The program, FLPO, requires a scratch tape or disk. This has already been
accounted for with the stored version of FLPO. The following information com-

prises the input data deck.
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TABLE LII

LISTING OF THE JCL CARDS NEEDED TO RUN THE
STORED VERSION OF FLFPO

//7FLPO Jos 94000110,LAR ¢ MSGLEVEL=1

//J0BLIB DD OSN=LAR,VOL=SER=DLIBO3,DISP=0LD,UNIT=SYSDA
/! EXEC PGM=FLPO

//FTOSFO01 DD ODNAME=SYSIN

//7FT06F001 DD SYSOUT=A

//FTOTFOO0L ©OD SYSOUT=8B

//7FTOLF001 OD UNIT=SYSDAyOSN=TAPEOL,DISP=(NEW,DELETE),
/77 VOL=SER=DLIBO1,

/7 SPACE=(CYL,(2041)),DCB=(RECFM=VS,BLKSIZ2E=120)
//SYSIN DD *

TABLE LIII

LISTING OF FLPO

PROGRAM FLPO. SOLUTION OF THE SECULAR EQUATION AND REFINEMENT
OF A SET OF FORCE CONSTANTS BY THE METHOD OF LEAST SQUARES.
SCHACHTSCHNE IDER 9/1/765
MODIFIED FOR OS BY L J PITZINER 10717711
MANY MOLECULE PERTURBATION USING FLETCHER-POWELL MINIMIZATION.
THIS PROGRAM USES SUBROUTINE FMFP FROM [BM'S SCIENTIFIC SUB. PACKe.
THIS PROGRAM ADJUSTS UP TO 70 FORCE CONSTANTS FOR A
LARGE NUMBER OF MOLECULES OR BLOCKS OF ORDER 70 OR LESS.

CODED IN FORTRAN IV FOR USE WITH THE 1B8SYS SYSTEM.

THE SECULAR EQUATIONS OF THE SYMMETRIC PROBLEMS ARE SOLVED BY

A SHARE SUBROUTINE MIHDI3 PROGRAMED BY F.J.CORBATO AND M.MERWIN

OF M.I.T.

DISCS ARE USED INSTEAD OF SCRATCH TAPES

DIMENSION EIG(66966)3sNR1650) ¢NC(650) ¢ NFOL650) 42(650)4NCF(T1)y
1ST(TL) o SISUTL)oFF(T71)4EX{TL) 41BZ(66471)3G(66966)+DXITL)DE(TL),
20G(TL) JECLTL)¢ELTL)sDV(TL)sDD(T1)4DCLTL)+FI(T71)9RECORD{54),
BREC(L8)yP{T1) yNFX(T1)oH(2734)+NROW(4) yNCOL{4)yNPO(4),DATIN(S)

EQUIVALENCE(EIG(Zb#O)oNCF).(EIGlZ?ZO)'SI)p(EIGIZBBO)oFF!o
2(EIG(2960)4EX)9(BZyG)y(BZ(4360)+sDX)¢(BZ(4440)4DEsDG)y
3(BZ2(4520),EC)y (E4DV,SIS)

COMMON BlgEleDDvE'DCyFIoRECORDoRECoPnNFX.NRDH.NCOL.NPD'DATINp
INCZo¢NC2SoNDT ¢ JOKER ¢ JOK¢EST4EPSy SUMDD¢yDEFR«FRyNP¢NOINo NOPROByNOZy
2NF ¢ NQ, TOL yNPMAX, FREQy ERPOJEROyRAP,FRAC,PERy IFREPy IFER,NMOL ¢ IND,
3SCALE,ERyERPyPTOT ¢NMyNML ¢ NDsNDD¢SUMoNVARy JUMP s NOVARsNRyNC y NFOy ZyHo
4LEAP,CONV STUT,1FU,y IFDELyRATIOsWSROs ITERMsNCOND

HN{A)=5.88852E~-7*A%A

FNC{B)=SQRT(B)

READ PROBLEM CONTROL CARD

PROBLEM CUNTROL CARD CONTAINS THE FOLLOWING INFORMATIDN

1.IND=-09y INDICATING THE START OF A PROBLEM IN COLUMNS 1-3.
2.NOPROB, THE PROBLEM NUMBER. IN COLUMNS 4-9,
3.NMOL, THE NUMBER OF MOLECULES,IN COLUMNS 10-12.
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TABLE LIIT (Continued)

4.NF, THE NUMBER OF FORCE CONSTANTS IN COLUMNS 13~-15.
LESS THAN 71
S.NPMAXe THE MAXIMUM NUMBER OF PERTURBAT!UNS DESIRED,COLUMNS

‘.6"18.
6.NCZ, THE NUMBER OF FORCE CONSTANTS TO BE HELD FIXEDs IN COLUMNS
19-21. (LESS THAN T1)

T.1FREP=1, IF DONLY A NEW SET OF FI{1),AND NCF{I) ARE TO BE
READ IN. DEyPyWeUsZyAND G FROM PREVIOUS PROBLEM ARE USED.
[FREP=0, [F A NEW PROBLEM IS TO BE STARTED.

IFREP=-1, FINAL FI(I) FROM PREVIQUS PROBLEM ARE USED AS INTIAL
FI(I). NEW NCF(I) ARE READ. ZS FROM PREVIOUS PROBLEM MAY BE
RENUMBERED. PUNCHED IN COLUMNS 22-23. -

B« IFER==34-24-1,0,1 PUNCHED IN COLUMNS 24-25
FOR IFER=1  PER 1S READ IN AND USED AS A FRACTIONAL ERROR
FOR IFER=0  PER= 0.005 USED AS A FRACTION
'FOR IFER=-1  ESTIMATED ERRORS ARE READ IN FOR EACH 0B8S.FREQ.

INPUT FOLLOWS DBS.FREQ.
FOR IFER=-2 ERROR IN ALL FREQ. ASSUMED TO BE PER CM-1
FOR IFER=-3 PER=1.0 CM-1 FOR ALL OBS. FREQ.
9.PER AN ERROR TO BE ASSUMED FOR ALL 0BS.FREQ.
A FRACTION IF IFER=1 IN CM-1 IF [FER=-2
PUNCHED IN COLUMNS 26 TO 33 WITH DECIMAL BETWEEN COL.
27 AND 28 OR PUNCHED
CONTINUE o
10. ESTy AN ESTIMATE OF THE MINIMUM FUNCTION VALUE.
PUNCHED IN COLUMNS 34 TO 41 WITH THE DECIMALBETWEEN COLUMNS
37 AND 38 DR PUNCHED. _
11. EPS, A TEST VALUE REPRESENTING THE EXPECTED ABSOLUTE ERROR.
A REASONABLE CHOICE IS 0.1E~05. PUNCHED IN COLUMNS 42-51.(RIGHT
JUSTIFIED) < "
12.RAP, THE CUT-OFF FACTOR FOR THE JACOBI DIAGONALIZATION.
THE JACOBI ROTATIONS ARE STOPPED WHEN MAX(H(T,d)) IS LESS
THAN RAP*MIN{H(1,I)). IF RAP IS NOV ENTERED IT IS TAKEN EQUAL
TO 0.5E~2. ON THE THE FINAL CYCLE RAP IS SET EQUAL TO
0.5E-3 GIVING EIGENVALUES TO 6 SIGNIFICANT FIGURES AND EIGEN-
VECTORS TO 3 OR 4 FIGURES.
RAP IS PUNCHED IN COLUMNS 52-56 WITH THE DECIMAL BETWEEN
COLUMNS 52 AND 53 DR PUNCHED.
CONTINUE .
13.FRAC, A FRACTIONAL FACTOR FOR DECREASING RAP ON EACH CYCLE.
AFTER EACH PERTURBATION RAP IS SET EQUAL TO FRAC*RAP.
IF FRAC IS NOT ENTERED IT 1S TAKEN EQUAL TO 0.9.
FRAC IS PUNCHED IN COLUMNS 57-60 WITH THE DECIMAL BETWEEN
COLUMNS 57 AND 58 OR PUNCHED. - .
14.LEAP, EITHER 1 OR O. A 1 CAUSES THE PRINT OUT OF THE EIGEN-
VALUES AND ERRORS, GRAD. VEC.yARG. VEC., DIR. VEC.,;ARG. DIFF.
VEC., AND GRAD. DIFF. VEC. TO BE SUPRESSED. A ZERG WILL PERMIT
THEIR PRINT QUT. LEAP IS PUNCHED IN COLUMNS 61 AND 62.
15.CONV, AN ARBITRARY CONSTANT USED TO JUDGE THE FORCE CONSTANT
CORRECTIONS FOR SATISFACTORY CONVERGENCE. IF CONV. IS NOT
ENTERED IT IS TAKEN TO BE 0.008 WHICH IS SCHACHTSCHNEIDER'S
CHOICE FOR THIS CONSTANT. CONV IS PUNCHED IN COLUMNS 63-70.
16.1FDELy, A 1 WILL CAUSE THE PRINTOUT OF THE DIFFERENCE BETWEEN
OBSERVED AND CALCULATED FREQUENCIES FOR EACH ITERATION.
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TABLE LIII (Continued)

IFDEL PUNCHED IN COLUMNS 71-72.MAY BE USED ONLY WHEN NMOLal.
READ(5,96001)IND
FORMAT(I3)
IFUIND.EQ.-9)GO TO 91
IF{IND.NE.999)GD TO 90
CALL EXIT
READ ( 544)IND NOPROByNMOL ¢NF yNPMAX NCZ o IFREP,IFER,PERCIESTHEPS,
1RAP,FRAC,LEAP,CONV, IFDEL
FORMAT(13,16,413,212yF8.69FB8o49EL0.29F5.49F4.3912,4F8. 6912)
WSR0O=1000.0
REWIND 1
IF(IFREP.EQ.O0)GO TO 802
IF(JOK)90,805,90
PER=PERC
NP=0
NCOND=0
JUMP=1
NVAR = NF - NCZ
NX=1
ER=0.0
ERP=0,0
NCZS=NCZ
IF(CONV.GT.0.0)GD TO 51311
CONV=0.008
NCYC=1
NOVAR=NF+1
IF(RAP.GT.0.0)GO TO 808
RAP=0.5E-2
DO 810 I=14NF
NFX(I)=1 -
IF(FRAC.GT.0.0)G0 TO 812
FRAC=0.9
JOK=0 |
IF(NPMAX.EQ.0)GO TO 942
JOKER=0
60 TO 96
JOKER=1
READ PROBLEM INFORMATION CARDS. 3 CARDS CONTAINING INFORMATION
ABOUT THE PROBLEM. -CARDS MUST BE INCLUDED EVEN IF BLANK.
READ (546)RECORD
FORMAT(18A4)
WRITE (69B8B)NOPROB¢NMOL ¢NF ¢yNPMAXoNCZyESTLEPS
FORMAT(13H1 PROBLEM NO.I8,6H NMOL=14,4H NF=14,7H NPMAX=[4,5H NCZ=1
14¢5H EST=F6.445H EPS=E10.2)
WRITEL698080)RECORD
FORMATI(1H 412Xy18A4)
IFUIFREP.LT.0)GO TO 9602
READ INTIAL FORCE CONSTANTS
THE FORCE CONSTANTS ARE PUNCHED IN 12 COLUMN FIELDS 6 PER CARD
WITH THE DECIMAL BETWEEN COLUMNS 6 AND T OR PUNCHED. IN ORDER
1 THROUGH NF.
READ (5,20)(FI(1),I=1, NF)
FORMAT(6F12.6) )
WRITE (6961INPo(I4FI(1)e1=14NF)




(e N aXal

OO0 NO

s X¥eXesReRaNeNaNg]

61
9610

9612

9613
9614
9624
9625

25
9630

99

100
14
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TABLE LIII (Continued)

FORMAT{23HO FORCE CONSTANTS AFTERI4y15H PERTURBATIONS./(16,F12.6))
1F(NCZ.LE.O)GO TO 9614
READ NUMBERS OF FORCE CONSTANTS TO BE HELD FIXED |
PUNCHED IN 3 COLUMN FIELDS 24 PER CARD. IF NCZ=0 ALL FORCE
CONSTANTS ARE ADJUSTED. |
READ (5,7} (NCFIL),L=1,NCZ)
FORMAT (2413)
DO 9613 [=1,NCZ
JX=NCF (1)
NFX(JX)==1
CONTINUE
IF(NCZ.LE.O)GO TO 9630
WRITE (6,25) (NCF(L),L=1,NCZ)
FORMAT (39HO NUMBERS OF FORCE CONSTANTS HELD FIXED/(1514))
NM=1
1F{ IFREP.NE.O)GD TO 470
SUM=0.0
NDT=0
PTOT=0.0
SCALE=1.0
READ MOLECULE CONTROL CARD.CONTAINING THE FOLLOWING INFORMATION
1. IND=-06, IDENTFYING COTROL .CARD. IN COLUMNS 1-3
2.NQy THE DIMENSION OF THE SECULAR EQUATION. COLUMNS 4-6.
3.NDD,THE NUMBER OF NON-ZERD EXPERIMENTAL FREQUENCIES. IN
COLUMNS 7-9.
4.NZZ, THE NUMBER OF Z MATRIX ELEMENTS. IN COLUMNS 10-13.
5.1FUy A L WILL CAUSE PRINTOUT OF THE FINAL H MATRIX. PUNCHED
IN COLUMNS 14-15.
6.1FW=1 OR -2, IF WEIGHTING ELEMENTS ARE INCLUDED WITH THE INPUT
IFW=0,-1,0R-3, IFWEIGHTING ELEMENTS ARE NOT INCLUDED.COLS.16~17
7.1SKZ=0, IF A NEW Z MATRIX IS TO BE READ IN FOR THE MOLECULE.
ISKZ=1, IF THE Z MATRIX FROM THE PREVIOUS MOLECULE IS TO BE
USED. E.G. ISOTOPIC MOLECULES . PUNCHED IN COLUMN 19.
8.STUT, THE VALUE FROM STUDENT'S T DISTRIBUTION NEEDED TO CALC-
ULATE THE 95 PERCENT CONFIDENCE INTERVALS. STUT=T{N~P,.975)
WHERE N=NO. OF NONZERO FREQ. AND P=NO. OF FORCE CONSTANTS
BEING REFINED. PUNCHED IN COLUMNS 20-2T. .
9.RATIO, IF THE RATIO OF SUCCESSIVE WEIGHTED SUM OF SQUARES
OF RESIDUALS IS = OR GT THIS VALUE, THE REFINEMENT WILL BE
TERMINATED AND SAID TO HAVE CONVERGED. RATIO IS PUNCHED IN
COLUMNS 28-35.
10.ITERMy NO. OF TIMES THE RATIO CONDITION FOR TERMINATION MUST BE
 MET .BEFORE ACTUAL TERMINATION OF THE REFINEMENT. COLS<36-39.
READ (5¢14) INDyNQoNDD¢NZZyIFU,IFWyISKZsSTUTyRATIO ) ITERM
FORMAT(31341493124F8.49F8.6414)
IFCIND.NE.-6)GO TO 900
INPUT DATA FOR EACH MOLECULE FOLLOW THE MOLECULE CONTROL
© CARD IN THE ORDER
1.MOLECULE INFORMATION CARD, 1L CARD CONTAINING THE NAME OF THE
MOLECULE OR BLANK. . (COLUMNS 1-3 MUST BE LEFT BLANK)
2.THE Z MATRIX
3.EXPERIMENTAL FREQUENCIES, NQ OF THEM FOR NDD GREATER THAN ZERO
IF NDD=0 NO FREQ. ARE ENTERED.
4.ESTIMATED ERRORS IN OBS.FREQ. FOR IFER=-1.
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5.WEIGHTING ELEMENTS, IF IFW=1 OR =2
6. THE G MATRIX.

READ MOLECULE INFORMATION CARD

READ (5,6)REC

ND=0

IF{ISKZ.GT.0)GO TO 203

READ Z MATRIX ,

Z IS NOT STORED AS A MATRIX, BUT RATHER AS & ONE DIMENSIONAL
ARRAYS NR GIVING THE ROW NUMBER OF THE F MATRIX ELEMENT, NC
GIVING THE COLUMN NUMBER OF THE F MATRIX ELEMENT, NFO GIVING
THE NUMBER OF THE DISTINCT FORCE CONSTANT AND Z GIVING THE Z
MATRIX ELEMENT. NC MUST BE GREATER THAN OR EQUAL TO NR

ONLY NON-ZERO ELEMENTS ARE ENTERED. |
THE Z ELEMENTS ARE PUNCHED IN 18 COLUMN FIELDS, 1 TO & PER CARD .
COLUMNS 1-3 GIVE NR 4 COLUMNS 4-6 GIVE NC o COLUMNS 7-9 GIVE NFO,
AND Z IS PUNCHED IN COLUMNS 10-18 WITH THE DECIMAL BETWEEN
COLUMNS 12 AND 13 OR PUNCHED.NROW=-2 AFTER LAST ELEMENT.
TOTAL NUMBER OF Z MATRIX ELEMENTS MUST BE LESS THAN 651.
NOZ=0
READ (5,18) (NROWIL)sNCOL(L)oNPOIL)+DATINCL) o L=1, 4)
FORMAT(4(313,F9.6))

DO 196 L=1,4

IF(NROW(L))198,1964192

IFINQ.LT.NCOL(L))GO TO 920

NDZ=NOZ +1 '

NR{NOZ )=NROW(L)

NC{NOZ)=NCOL(L)

NFO(NOZ )=NPO(L)

Z(NOZ)=DATIN(L)
CONTINUE

GO TO 191

IF{NROW(L ) .NE.=2)GO TO 920

IF(NOZ.GT.650)60 TO 920

IF(NDD.GT.0)GO TO 207
DO 206 I=1,NQ
DX(()=0.0
P{1)=0.0
GO TO 270

READ OBSERVED FREQUENCIES. IF NDD IS GREATER THAN ZERO.

PUNCHED IN 12 COLUMN FIELDS 6 PER CARD, DECIMAL BETWEEN COLUMNS

6 AND 7 OR PUNCHED. ENTERED IN DECREASING ORDER IN EACH FACTORED

"BLOCK. IF THE FREQUENCIES ARE UNKNOWN OR UNCERTIAN, OR ZERO

{REDUNDANCIES) ENTER A ZERO,FOR DEGENERATE ROOTS ENTER ONE
FREQUENCY AND THE REST ZERO. ANY FREQUENCY MAY BE GIVEN ZERO
WEIGHT IN THE PERTURBATION BY ENTERING A ZERO INSTEAD OF THE
ACTUAL FREQUENCY. FREQUENCIES ARE ENTERED IN WAVENUMBERS.

A TOTAL OF NQ ENTRIESy, ND OF THEM MUST BE NON-Z2ERO.
READ (5+20) (DE(TI)41=1,NQ)

COMPUTE THE FREQUENCY PARAMETERS FROM THE FREQUENCIES

D0 209 I=1,NQ

TEM=DE(T)

IF(TEM.LE.0.0)GO TO 209

ND=ND+1

DX{1)=HN(TEM)
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N1=0
IFtIFER+2)210,211,1122
IFCIFER) 21542204221
CONSTANT ERROR OF 1 CM-1 IN EACH OBS.FREQ. FOR IFER=-3
PER=1.0 ,
CONSTANT ERROR OF PER CM-1 IN EACH 0BS. FREQ. FOR IFER=-2
DO 212 I=1,NQ
E(1)=PER
G0 TO 217
‘READ ESTIMATED ERRORS IN 0BS.FREQ.IN CM-1. ONE FOR EACH
NON~-ZERD DE(1)y I.E. NQ ENTRIESy ND OF THEM NON-ZERO FOR IFER=~l.
READ (5,20){E(1)},1=1,NQ)
DO 219 I=1,NQ s
TEMP=DEL])
lF(TEMP)925v2199218
Ni=N1+1
DC(NL)=E(I)}/TEMP
CONTINUE
GO TO 225
CONSTANT FRACTIONAL ERROR OF 0.005 IN EACH 08S. FREQ. FOR
IFER=0
PER=0.005
CONSTANT FRACTIUNAL ERROR =PER IN EACH .0BS. FREQ. FOR IFER=1.
DO 222 1=1,4ND
DC(1)=PER
IF(1IFW+2)2304235,1311
IF(IFN) 250,255,235
WEIGHT= 1.0/ (FREQ.PAR. }%**2 FOR IFW=-3
DD 234 I=1,NQ
TEM=DX(1)
IF(TEMLLE.D0.0)GO TO 232
Pl1)=x1.0/{TEM*TEM)
PTOT=PTOT+P(1)
GO TD 234 .
P{1)=0.0
CONTINUE
NOT=NDT+ND
GO T0 260 :
READ WEIGHTING ELEMENTS ONE FOR EACH NON-ZERO 0OBS. FREQ. FOR
IFW=1 OR IFW=-~2
READ (5,20)(E(1),1=1,ND)
N1=0
N2=0
IF(IFW.GTL.0)GO TO 241
WEIGHT =E(I) FOR lFH=-2
D0 240 I=1,NQ
IF(OX(I).LE. 0.0160 T0 239
N1=N1+1
PLI)=E(N1)
TEM = P(I)
PTOT=PTOT+TEM
IFITEM.LE.0.0)GO TO 240
N2=N2+1
GO TD 240
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PL1)=0.0
CONTINUE
NDT=NDT+N2. i ‘
GO TO 260 , o
WEIGHT =E(1) / FREQ.PAR. FOR IFN=1
DD 248 1=1,NQ
TEM=DX(T) o
IF(TEM.LE.0.0)GOD TO 247
N1=N1+1
PLI)=E(NL1)/TEM
TEMP=P(I)
PTOT=PYOT+TEMP
IF(TEMP.LE.0.0)GD TO 248
N2=N2+1
GO TO 248
P(1)=0.0
CONTINUE
NDT=NDT+N2
GO 10 260
WEIGHT =1.0 FOR IFW=-1
DO 254 I=1,NQ
IF(DX{1).LE.0.0)G0O TO 253
P{1)=1.0
PTOT=PTOT+1.0
GO TO 254
P{I1)=0.0
CONTINUE
NDT=NDT4+ND
GO TO 260
WEIGHT= 1/ FREQ. PAR. FOR IFW=0
DO 259 I=1,NQ ’
TEM=DX(1I)
IF(TEM.LE.0.0)GO TO 258
P(1)=1.0/TEM
PTOT=PTOT+P(I)
GO TO 259
P(I)=0.0
CONTINUE
NDT=NDT+ND
NLl=0
DO 266 1=14NQ
TEMP=DX(1I)
IF(TEMP.LE.0.0)GO TO 266
N1l=N1+1
TEM=DC{N1)
DCS=TEM*TEM
SUM=SUM+TEMP*TEMP*P{ I )*DC S*(DCS+4.0*TEM+4.0)
CONTINUE
IF(ND-N11925,270,925
WRITE (1)NQeNDoNOZ
WRITE (1)(REC(I)y1I=1,18)
WRITE (1) (NR(K)¢NCIK) NFO(K),Z(K)osK=1,NOZ)
READ G MATRIX ,
READ NON-ZERO G MATRIX ELEMENTS +G{lsd)e
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G ELEMENTS ENTERED IN 18 COLUMN FIELD 1 TO & PER CARD GIVING

COLUMNS 1TEM

1-3 NROW=1 (ROW NO.)

4-6 NCOL=J (COLUMN NO.) (I LESS THAN OR=J)

1-18 DATIN=G{1,J) (DECIMAL BETWEEN 12-13 OR PUNCHED)

NROW IS SET =-1 AFTER LAST G ELEMENT.

SINCE THE G MATRIX IS SYMMETRIC ONLY DIAGONAL ELEMENTS AND THE

ELEMENTS ABOVE THE DIAGONAL ARE ENTERED. THAT 159 COLUMN NO.

GREATER THAN OR EQUAL TO THE ROW NO. :

DO 142 1=1,NQ :

DO 142 J=1,NQ

G(1,J)=0.0

READ (5,16) (NROWIL) JNCOL(L),DATINIL) yL=1,4)
FORMAT(4(213,F12.6))

DO 150 L=1,4

ITEM=NROW (L)

ITEMP=NCOL(L)

IF(ITEM)152,150,146

IFLITEMP.LTLITEMIGO TO 910

IFINQ.LT.ITEMP)GO TO 910

I=1TEM

J=1TEMP

G(1,J)=DATINIL)

CONTINUE

GO TO la4 ‘

IFLITEM.NE.~1)GO TO 910

SCHMIDT DRTHOGONALIZATION OF G ' :
STORE INVERSE TRANSFORMATION IN LOWER TRIANGLE OF G
NO=1 :
NL=2

GD=1.0 /G{NOyNO)

DO 156 J=NLsNQ

G(JoNO)=GINDe JI*GD

IF{NL.GYT.NQ)GO TO 170

DO 160 I=NL,NQ

DO 160 J=1,NQ

GlIs+J)=G(1,J)-(GI(NOyI)2GIND,J)*GD)

NO=NO+1

NL=NO+1

IFIGINO,NO)-0. 000001’164'1649155

IFINL.GT.NQ)GO TO 170

DO 166 J=NL,NQ

GlJyNOI=GIND,J)

G0 T10. 161

DO 175 I=14NQ

TEM=G(I,1)

IF(TEM.LE.D0.00005)6G0 TQ 173

DG(IV=FNC(TEM)

GO 1O 174

0G(1)=0,0

GlI,Il=1la0

DD 175 JU=14NQ .

G lJIe1)=GlJs1)#*DG(I)

DO 178 J=1,NQ
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WRITE (1) (G(I9J)elI=JsNQ)
WRITE (1) (DG{I),I=1,NQ)
WRITE (1) (DX(I),I=1,4NQ)}
WRITE (1) (P(1)s1=1,NQ)
"NM=NM+¢1

IFINMOL.GE.NM}GO TO 100
END FILE 1

REWIND 1

IFINDT.GT.0)GO TO 288
JOKER=1

FREQ=NF

SCALE=1.0

GO TO 470

FREQ=NOT

SCALE=FREQ/ PTOY

SUM=SCALE*SUM

DEFR = FREQ

CALL CYCLE

1F(2~J0K)90,901,90

WRITE (6481INOPROByNM :

FORMAT(40HO ERROR IN MOLECULE CONTROL CARD.PROBLEMIB,4H.NM=13)
IF(NM.GT.1)GO TO 903

JOK=1

GO VO 90

NMOL=NM-~1

JOK=2

GO TO 286

WRITE (6485)NMyNOPROB,LoNROW(L) ¢4NCOLIL) ,DATIN(L)

FORMAT(25H0 G MATRIX ERROR MOLECULE13,8H PROBLEMIB,6H FIELDI3,6H R
LEADSI44144F12.6)

JOK=1

GO T0 90

WRITE (648T7)NMoNOPROByNOZNROW(L) 4NCOLIL),NPO(L)DATINIL)
FORMAT(25H0 Z MATRIX ERROR MOLECULEI3,8H PROBLEMI8,8H ELEMENTI4,6H
1 READSI4y14414,F9.6)

JOK=1

GO TO 90

WRITE (64,88)NM,NOPROB,N1

FORMAT(27HO EIGENVALUE ERROR MOLECULEI3,8H PROBLEMI8¢4H ND=13)
JOK=1

GO TO 90

END

SUBROUTINE CYCLE

DIMENSION EIG(66966) ¢NR(650) ¢yNC(650) yNFO(650)+2(650)¢NCF(T1),
LSTUTL)9SISUTL) oFFUTL)sEX(TL)9BZ(66971)+6(66466)DXITL)oDE(TL),

2DG(TL) yECUTL) oE(TL1)+DV(TL)4DD(TL)4DC(TL)+FI(TL1),RECORD(54),
BRECULBIWPUTL) JNFXL{TL) yH(2734) sNROW(4) yNCOL(4) 9yNPO(4) ,OATIN(G)

EQUIVALENCE(EIG(2640)¢NCF), (EIG(2T720),SI)+(EIG(2880)FF),
2(EIG(2960)4EX)¢(BZyG)e(BZ(4360)¢DX)(B2(4440)DE,DG),
3(B2(4520),EC)y(EyDV,S1S)

COMMON BZ+EIGyDDoE+DCoFIyRECORDREC 4P ¢NFXyNROW,NCOLyNPOyDATIN,
INCZyNCZSyNDTy JOKER 9 JOK9ESTHEPSy SUMDDyDEFRFRoeNP,NOINy NOPROByNOZ,

2NF 9 NQy TOL ¢ NPMAX, FREQy ERPO,ERO¢RAP yFRAC, PER,IFREPy IFERyNMOL ¢ IND,

3SCALEJER¢ERPyPTOT ¢y NMgNML 9 ND9NDD» SUMyNVAR o JUMP ¢ NOVARyNRyNC yNFOo ZoHy
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4LEAPCONV ,STUT,IFU,IFDELRATIO WSRO, ITERM,NCOND
FN{A)=SQRT(A/5.88852E~-7) '
GN{A)=A/ND
REWIND 1
NM=1
SUMDD=0.0
READ (1) NQ.ND¢NOZ
READ (1) (REC(I),1=1,18)
READ (1) (NR(K)yNCUK)sNFO(K)9Z(K)(K=1,NOZ)
IFI{JOKER.LE.O)GO TO 300
RAP=0.5E-3
DO 301 J=1,NQ
READ (1) (G(1,J)yE=34NQ)
READ (1) (OG(I)sI=LyNQ)
READ (1) (DX(I)eI=1,NQ)
READ (1) (P{I)el=1,NQ)
IF(ND.GT.0)GO TO 306
IFLJOKER.LE.O)GO TO 468 '
COMPUTE TRANSFORMED # MATRIX AND STORE IN UPPER TRIANGLE OF .G.
DO 328 Jd=1,NQ ,
PLJI=SCALE*P(J)
DO 308 I=1.+NQ
DD(1)=0.0
D0 320 K=14NOZ
IX=NR(K)
IF{IXLTL.JIGO TO 320
IX=NC(K)
LX=NFO(K)
TEM = FLILX)*Z(K)
OD(IX)=DDUIX)+TEMEGLIX,J)
IF{IX-JX)318,320,318
OD(JIX )I=DDIIX)+TEMEG(IX,J)
CONTINUE
DO 324 K=J,NQ
DC{KY=0.0
00 324 L=K,NQ
DCIK)=DC(K)+G(L,K)*DD{(L)
DO 328 K=JyNQ
G(JsK)=DC(K)
NR2=0
LEGEN=0
DIAGONALIZE TRANSFORMED F MATRIX BY JACODB1 METHOD
CALL HDIAGI{GyNQy IEGEN,EIG4NR2,RAP)
COMPUTE €EIGEN VECTORS
DO 330 I=1,NQ '
DC{I1)=Gl1,1)
GlIo1)=DG(I)
DO 335 [=1.NQ
DO 333 J=1,NQ
0D(J)=0.0
D0 333 K=1l,J
OD(Jl=DD(J’*G(J'K"EIG(KQI’
00 335 J=1,NQ
EIGIJ,1)=DO(J)
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Cc ORDER EIGENVALUES AND EIGENVECTORS

1I1=NQ-1
DO 340 J=1,11
LOW=J+1
DO 340 K=LOW,NQ
IF(DC(J)-DCIK))I33T,340,340

337 TEM=DC(J)
DCLJ)=DCK)
DC(K)=TEM
00 338 [=1.NQ

338 DDUI)=EIG(1,J)
DD 339 I=1,NQ
EIGLI,J)=EIG(1I,K)

339 EIG{IX)=DD(1I)

340 CONTINUE

o COMPUTE EIGENVALUE ERRORS

341 DD 350 I=1,NQ
IF{DX(1))348,348,344

344 DD(I)=DX{I)-DCt])
SUMDD=SUMDD+DDI(TI)*DD{1)1*P(T)

GO TO 350
348 DD(1)=0.0

350 CONTINUE : .
352 IF(LEAP.NE.O)GO TO 63999
WRITE (6924)NMyNP¢NR2,RAP(DC(T)oI=1,NQ) .
24 FORMAT(37HO EIGENVALUES AND ERRORS FUR MOLECULEI4,6H AFTERI3g15H P
LERTURBATIONS.ISo11H ROTATIONS./6H RAP=EL12.4/(1H ,9FB.5))
WRITE (6+26)(DD(J)eJ=1,NQ)
26 FORMAT(BHO ERRORS/{1H ,9F8.5))
63999 WRITE(6,87787)SUMDDyNP
87787 FORMAT(26H0 WEIGHTED SUM OF SQUARES=E14.6,6H AFTERI3;15H PERTURBAT
' 1IONS.)
IFLIFDEL.LE.O)GO TO 90007
WRITE(6910113)NP
10113 FORMAT(1HO, *THE DIFFERENCE BETWEEN OBS. AND CALC. FREQUENCIES AFTE
1R, [4,42Xy *PERTURBATIONS')
.. WRITE(6,21012)
21012 FORMAT(1HO¢3X,*1*¢5Xy*DELTA FREQ.*)
DO 61531 J=1¢NQ:
61531 S1S{J)=0.0
D0 61532 J=1,NQ
IF(OX({J)LE.D0.,)GO TO 10011
TEMPL=FN(DX(J})
TEMP2=FN{DC({J))
SIS(J)=TEMP1-TEMP2
10011 WRITE(6,20022)J4S1S¢J)
20022 FORMAT(1H 414¢5XeFl12.6)
61532 CONTINUE
90007 IF(JOKER.GT.0)GO TO 364
354 CONTINUE
IFLJOK)468,400,400
c OQUTPUT FOR FINAL CYCLE
364 ER0=0.0 A
ERPO=0.0
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00 368 1I=1,NQ
DE(1)=FNIDX{T))
DV(T)=FNIDC(I))
TEM=DE(])
IF{TEM.LE.0.)GD TO 365
GO 1O 366

EC(I1)=0.0

EX{{)=0.0

DE(1)=0.0

GO TO 368
EX({I)=TEM-DV(I)
EC(I)=100.0%EX(I)/TEM
IF(P(I).LE.0.0)GO TO 368
ERO=ERO¢ABSLEX{I) )"
ERPO=ERPO+ABSIECIT))
CONTINUE

ER=ER+EROD

ERP=ERPLERPO
ERO=GN(ERO}
ERPO=GN{ERPO)

WRITE (642B)NMySCALE,REC

28 FORMAT(75H1 OBSERVED AND CALCULATED FREQUENCIES AND FREQUENCY PARA
LMETERS FOR MOLECULEI3/26H SCALE FACTOR FOR WEIGHTS=F10.6/12X,18A4)
369 WRITE (6929)(1DECI)4DVIIIJEXILIGEC(I)y PU(I)4OX(I)oDCII)oI=14NQ)

29

31

400

19156
401

410

416
418
420
421

438

FORMAT({95HO
1 WEIGHT

OBS.FREQ.’

" CALC.FREQ.PAR.

CALC.FREQ. OIFFERENCE PERCENT ERROR

76Xe6H{CM-1) 96X 6HICM-1

2) o TXe 6HICM=1)} /{149 F9cl 04X eFB. 104X oF6.1l9TXyFTa396X4FI.49F10.5¢Fl4e5

3))
WRITE (6931) ERO,ERPO

FORMAT(17HO AVERAGE ERROR=F6.2¢10H CM-1 ,0R F6-398H PERCENT)

SIGMA = SQRT{SUMDD/DEFR)

NM=NM+1 ,

1FINMOL~-NM) 825,480,480
COMPUTE THE J1 MATRIX

ILF{NM.NE.1)GO TO 401

DO 19156 [=1,NQ

SI1S(11=0.0

DO 421 K=1,NQ

DO 410 N=LlyNF

BZ{(KyNI=0.0

DD 420 L=]1,NOZ

I=NRIL)

J=NC(L)

M=NFOLL)

TEM=EIG(I,K)}*EIG(J,KISZ(L)

IFLI.NEL.JIGO TO 418

BZ(KyM)=BZIKsM)+TEM

GO T0 420

BZ(K'M)=BZ(K9H10tEM+TEM

CONTINVE

CONTINUE

COMPUTE S

DO 442 1=1,NQ

PU1)=SQRT(P(1))

({ CALLED 82}
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BZ(1+NOVAR)=DD(1)
DO 442 J=1,NOVAR

442 BZ(1,J)=P(1)%*BZ(1,J)
DO 458 I=1,NOVAR
DO 456 J=1,NOVAR
S1tI¥=0.0 - ..
DO 456 K=1,NQ

456 ST(J)=STI(J)I¢BZIKo1)*BZ(K,yJ)

458 SIS(I)=SI(NOVAR) + SIS(I)

463 CONTINUE

468 NM=NM+1
IFINMOL.GE.NM)GO TO 480
RAP=FRAC*RAP

600 [F{JOK.GE.OIGO TO 602

601 JOK=1
JOKER=1
GO T0 470

602 FR=NDT~-NF#NCZ -

608 DO 610 I=1,NF
SI(INI==2.%SIS(])

610 CONTINUE

642 DEFR=FREQ
IF{(NCZ.GT.0)GO TO 3286

9119 DO 47813 I=1,NF
SIS(I)=SI(1)

47813 FF(I)=FI(1}

GO TO 31311

3286 NCN=1
DO 31444 I=1oNF
IFINFX(1).LT.0)60 TO 31444

66222 FE(NCNI=FI(]I)

SISINCN)=SI{I)

NCN=NCN+1
31444 CONTINUE
c CALL FMFP TO MINIMIZE WEIGHTED SUM OF SQUARES OF RESIDUALS.

31311 CALL FMFP(HoNVAR¢FF¢SUMDD ¢SISsESTEPS¢NPMAX91ER ¢ JUMPyNPyNN2oNN3,
IN31,0LDF s TTyHNRMoGNRM,DDX o FFYALFA¢AMBDAFFXoDDY 22y DALFA WK, LEAP,
1CONVsRATIOy WSROy ITERMyNCOND)

IFINCZ.6T7.0)GO TO 32121
11211 DO 26162 I=1,NF
26162 FI(L)=FF(I)
GO TO 66871
32121 NCN=1
00 81181 I=1,NF
IF(NFX{I).LT.0)GO TO 81181
21381 FIC(I)=FF{NCN) :
NCN=NCN+1
81181 CONTINUE
66871 IF(JUMP.LT.5)G0 TO 470
8887 IF(IER)LO0101,20202,66666
10101 WRITE(6481918) _
81918 FORMAT(1HO¢5X, *ERRORS IN GRADIENT CALCULATION®)
GO 7O 90018
20202 WRITE(6472135)NP
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72135 FORMATV(1HO, *ONE OF THE CONOITIONS FOR TERMINATION WAS MNET AFTER®,
113,* PERTURBATIONS.?)
GO T0 90018
66666 IF({IER.GTL.1)GO TO 40404
30303 WRITEL(6,83562)
83562 FORMAT(1HO,5X,*NONE OF THE CONDITIONS FOR TER"'NAT[ON WERE MET 1IN
INPMAX ITERATIONS®)
GO TD 90018
404046 WRITE(6,75321)
75321 FORMATE1HO¢5Xo *LINEAR SEARCH TECHNIQUE INDICATES IV 1S LIKELY ND
IMINIMUM EXITS®)
90018 JOKER =1
GO Y0 470
825 IF{NPMAX.EQ. 0’50 T0 100
WRITE(T455445)(FI(1),1=1,NF)}
55445 FORMAT(6FL2.6)
N =NVAR
NZ2=N+N
N3=N2+N
N31=N3+¢1
K=N31
IFLIFU.LE.O0)GO TO 10201
WRITEL 6420302}
20302 FORMAT(1HLl,5X,°THE FINAL H MATRIX®)
KK=N31
KM=N3+N
DO 30403 L=1,N
WRITE(6¢50404) (HIKJI) o KJI=KKoKM)
504604 FORMAT(1H 'IOFlz 6)
KK=KM+1
KM=KM+N~L
30403 CONTINUE
10201 DO 4000 J=1,NVAR
TEM=ABS(H(K)) :
. EtJ)=SQRT(2. *TEH"SIGMA A
NJ=N=J’
IFINJ 1500045000, 2000
2000 DO 3000 L=1eNJ
 KL=KeL
3000 CONTINUE
4000 K=KL+1
5000 IF(NCZ.LE.O)GO VO 85361
NCHN=1
D0 95959 J=1,.NF
lF(NFX(J).LT.O,GD T0 95958
ECLJ)=EI(NCN)
NCN = NCN ¢+ 1
60 10 95959
95958 EC(J)=0,
95959 CONTINUE
DO 85364 I=1,NF
85364 ELL1)=EC{1)eSTUT
GO TD 95119
85361 DO 8B77T1 M=1,NF
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E(M)=E(M)*STUT

WRITE(6973613)NP

FORMAT(1H1,y *FINAL SET OF ‘FORCE CONSTANTS AFTER'QI‘!
1D APPRDXIHATE 95 PERCENT CONF[DENCE INTERVALS FOR?*)
“RITE(bgllZZl)FRgSTUT

FORMAT(1H ,F5.04¢ DEGREES OF FREEDOH. T ='4FB8.4)

DO 72131 I=1,NF : :
WRITE(6982113)I,FI(1),E(]) ‘ ‘
FORMAT(LIH 42X91395X9F12.642Xp%¢ OR =',F9.6)

RETURN

END

ITERATIONS AN

SUBROUTINE FMFP(HyNy X, F'GvEST'EPSQLIHITvlERoJUMP KUUNT1N2'N30N319
LOLDFs ToyHNRMyGNRM¢DXoFY o ALFA, AMBDA,FX'DY.ZpDALFA'H,LEAP.CONV.RATIO.

2WSRO¢ ITERMyNCOND)
DIMENSION HU2734)4X(T71)4G(T1)
R(A)=ABS(A)

..........‘.....‘O‘....Q....‘.......‘.......O...‘..O.........O.....

SUBROUTINE FHFP

PURPOSE

TO FIND ‘A LOCAL MINIMUM OF A FUNCYION OF SEVERAL VARIABLES

BY THE METHOD OF FLETCHER AND POWELL

USAGE
CALL FMFPIFUNCT ¢NoXoFoGoESTHEPSSLIMIT,IER H)

DESCRIPTION OF PARAMETERS

FUNCT -~ USER-WRITTEN SUBROUTINE CONCERNING THE FUNCTIUN 10

BE MINIMIZED. IT MUST BE OF THE FORM
SUBROUTINE FUNCT(N,ARGyVAL,GRAD)
AND MUST SERVE THE FOLLOWING PURPOSE

FOR EACH N-DIMENSIONAL ARGUMENT VECTOR ARG,
FUNCTION VALUE AND GRADIENT VECTOR MUST BE COMPUTED

"ANDes ON RETURN,y STORED IN VAL AND GRAD RESPECTIVELY

CONTINUE
N ~= NUMBER OF VARIABLES
. = VECTOR OF DIMENSION N CONTAINING THE INITIAL
ARGUMENT WHERE THE ITERATION STARTS. ON RETURN,
X HOLDS THE ARGUMENT CORRESPONDING TO THE
COMPUTED MINIMUM FUNCTION VALUE
F -~ SINGLE VARIABLE CONTAINING THE MINIMUM FUNCTION
VALUE ON RETURNy 1.E. F=F(X).
G - VECTOR OF DIMENSION N CONTAINING THE GRADIENT
: VECTOR CORRESPONDING TO THE MINIMUM ON RETURNj
IeEe G=G(X)e
EST ~ 1S AN ESTIMATE OF THE MINIMUM FUNCTION VALUE.
EPS - VYESTVALUE REPRESENTING THE EXPECTED ABSOLUTE ERROR.
A REASONABLE CHOICE IS 10**(-6), I.E. :
SOMEWHAT GREATER THAN 10#**(-D), WHERE D IS THE
NUMBER OF SIGNIFICANT. DIGITS IN FLOATING POINT
REPRESENTATION. .
LIMIT -~ MAXIMUM NUMBER OF ITERATIONS.
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TABLE LIII (Continued)

- ERROR PARAMETER
IER = O MEANS CONVERGENCE WAS OBTAINED
TER =1 MEANS NO CONVERGENCE IN LIMITV ITERATIONS
IER =~1 MEANS ERRORS IN GRADIENV. CALCULATION
IER = 2 MEANS LINEAR SEARCH TECHNIQUE INDICATES
IT IS LIKELY THAT THERE EXISTS NO MINIMUM.

~ WORKING STORAGE OF DIMENSION N*{N+T)/2.

v ~ARBITRARY CONSTANY TO WHICH DELTA VALUES IN FORCE
CONSTANTS ARE COMPARED TO CHECK FOR SATISFACTORY
CONVERGENCE.

S : A

THE SUBROUTINE NAME REPLACING THE DUMMY ARGUMENT FUNCT

MUST BE DECLARED AS EXVERNAL IN THE CALLING PROGRAM.
LER IS SET TO 2 IF o STEPPING IN ONE OF THE COMPUTED
OIRECTIONS, THE FUNCTION WILL NEVER INCREASE WITHIN
A TOLERABLE RANGE OF ARGUMENT. : A

JER = 2 MAY DCCUR ALSD IF THE INTERVAL WHERE F
INCREASES IS SMALL AND THE INIVIAL ARGUMENT WAS
RELATIVELY FAR AWAY FROM THE MINIMUM SUCH THAT THE
MINIMUM WAS OVERLEAPED. THIS IS DUE TO VHE SEARCH
TECHNIQUE WHICH DOUBLES THE STEPSIZE UNTIL A POINT
IS FOUND WHERE THE FUNCTYION INCREASES.

TINES AND FUNCflON SUBPROGRAMS REQUIRED
cT

METHOD IS DESCRIBED IN THE FOLLOWING ARTICLE

FLETCHER AND M.J.D. POWELLe A RAPID DESCENT METHOD FOR
IMIZATION, :

PUTER JOURNAL VDL-6. 1SS« 24 1963, PP.163-168.

AKEN FROM lBH'S SCIENTIFIC SUBROUTINE PACKAGE.
FOR USE WITH FLPO BY L.J.PITZNER 10/5/71

[ E N E N NN NN ENNENEEEEEEEENENENENYXEBANEREYNERENENNENREEXRENXENNERERRENERENN N

IONED DUMMY VARIABLES

IF(WSRN.GT.WSROIGO TO 61179

TEMP=WSRN

/WSRO

WRITE(6480934)TEMP
80934 FORMAT{1HO, *RATIO OF SUCCESSIVE WEIGHTED SUM OF SQUARES = %,F8.6)

IFLTEMP.L

T.RATIONGO TO 61179

NCONDO=NCOND+1

WRITE(641

2345)NCOND

12345 FORMAT(1HO, *NCOND=%*,14)

IFI(NCOND.

GT.ITERMIGD TO 55

61179 IF(LEAP.NE.O)GO TO 67761

WRITE(6,1

010)
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TABLE LIIT (Continued) '

1010 FORMAT(1HOy5X,°N®y6Xe *FORCE CONSTANTS® 44X, *GRADIENT VECTOR?)
111 WRITE(695213)(1+XUI) oG (I)oeI=1,N)

5213 FORMAT(1H ¢4X9124TXeF10.6¢8XsE14.6)

67761 IF(JUMP-3)3333,1002,1003

3333 [F{JUMP.GT.1)GO TO 1001

c FUNCTION VALUE AND GRADIENT VECTOR FOR INITIAL ARGUMENT
c
c RESET ITERATION COUNTER AND GENERATE IDENTITY MATRIX

1000 WRITE(69999)INeFoESTLEPS,LIMIT,KOUNT,CONV,RATIO, ITERM
999 FORMAT(3HON=12¢3H F=El4.6¢5H EST=F10.6,5H EPS=E10.2,7TH LIHIT=I4q7H
1 KOUNT=12,6H CONV=FB8.64TH RATIO=F8.6,7H ITERM=14)
1ER=0
KOUNT=0
N2=N+N
N3=N2+N
N31=N3+1
1 K=N31
DO & J=1,N
H{K)=1l.
NJ=N-J
IF(NJ)5¢5,2
2 DO 3 L=]1,NJ
KL=K+L
4 K=KL+1

START ITERATION LOOP
5 KOUNT=KOUNT +1

oo Oon

SAVE FUNCTION VALUE, ARGUMENT VECTOR AND GRADIENT- VECTOR
IF(LEAP.NE.O)GO TO 63331
WRITEL6y121)
121 FORMAT{1HOy5Xy *N®*¢5X *OIRECTION VECTOR®)
63331 OLDF=F
DO 9 J=14N
K=N+J
H{K)=G(J)
K=K +N
HIK)=X{J)

c DETERMINE DIRECTION VECTQR H

K=J+N3
T=0.
DO 8 L=1,N
T=T-G(L)*H(K)
IF(L.GE.J)GO TO 7

6 K=K4+N-L
GU T0 8

T K=K+1

8 CONTINUE
H{J)=T
IF(LEAP.NE.O)GO TO 9
WRITE(6+965)J,H(J)

965 FORMAT(1H 94X91296X9EL4.6)
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CONTINUE

CHECK WHETHER FUNCTION UILL DECREASE STEPPING ALONG H.
DY=0.
HNRM=0,
GNRM=0.

CALCULATE DIRECTIONAL DERIVATIVE AND TESTVALUES FOR DIRECTION
VECTOR. H- AND GRAD!ENT VECTOR G.

DO 10 J=1yN

TEM=H(J)

TEMP=G(J)

HNRM=HNRM+R(TEM)

GNRM=GNRM+R(TEMP)

DY=DY+TEM*TENP

WRITE(6+353)HNRM,GNRM,DY

FORMAT{1HO, 'MAG. OF DIRe VEC., = *4El4.694Xy*MAG. OF GRAD. VEC.= °*,

1E14.694Xy *DIRECTIONAL DERIVATIVE= *,E14.6)

REPEAT SEARCH IN OIRECTION OF STEEPEST DESCENT 1IF DIRECTIONAL
DERIVATIVE APPEARS TO BE POSITIVE OR ZERQ.
IF{DY)11,51,51

REPEAT SEARCH IN DIRECTION OF STEEPEST DESCENT IF DIRECTION
VECTOR H IS SMALL COMPARED TO GRADIENT VECTOR G.
IF(HNRM/GNRM-EPS)S51951,12

SEARCH MINIMUM ALONG OIRECTION H

SEARCH ALONG H FOR POS!T[VE DIRECTIONAL DERIVATIVE
FY=F
ALFA=2 ., % (EST-F)/70Y
AMBDA=1,

USE ESTIMATE FOR STEPSIZE ONLY IF IT7 IS POSITIVE AND LESS THAN
le OTHERWISE TAKE 1. AS STEPSIZE

IF(ALFA.LE.0.0)G0 YO 15

IF(ALFA.GE.AMBDA)GO TO 15

AMBDA=ALFA

ALFA=0,

SAVE FUNCTION AND DERIVATIVE VALUES FOR OLD ARGUMENT
FX=FY
DX=DY |
WRITE(6,91326)AMBOA
FORMAT(1HOy *STEPSIZE = *4E14.6)

. STEP ARGUMENT ALONG H
WRITE(6,201)
FORMAT(1HQ,5X s *N® 45X, *FORCE CONSTANTS®*,9X,*DELTA?)
DO 17 I=1,eN
DELTA = AMBDA#H(I)
WRITELG6,951) e X(1),DELTA
FORMAT(1H .4X.l2o4x'F12.6 8XeFl12.6)
X{E)=XC1)+DELTA
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COMPUTE FUNCTION VALUE AND GRADIENT FOR NEW ARGUMENT
JUMP = 2
GO TO 56
FY=F

CHECK FOR SATISFACTORY CONVERGENCE
DO 96581 1=1,4N

DELTA = AMBDA%H(I)
IF(RIDELTA).GT.CONV)IGO TO 75381
CONTINUE

GO TO 55

- COMPUTE DIRECTIONAL DER!VAT[VE oY FOR NEW ARGUMENT. TERMINATE
" SEARCH, IF DY IS POSITIVE. IF DY IS ZERO THE MINIMUM IS FOUND.

DY=0, :

DO 18 I=1,N

DY=DY+G{I)*H{1])

WRITEL6,752)DY

FORMAT(1HO, *THE DIRECTIONAL DERIVATIVE = *,E14.6)

IFIDY)19,36,22

TERMINATE SEARCH ALSO IF THE FUNCTION VALUE INDICATES THAT
A MINIMUM HAS BEEN PASSED.
IF(FY.GE.FX)GO TO 22

REPEAT SEARCH AND OOUBLE STEPSIZE FOR FURTHER SEARCHES
AMBDA=AMBDA+ALFA :
ALFA=AMBDA

END OF SEARCH LOOP

TERMINATE IF THE CHANGE lN ARGUMENT GETS VERY LARGE
CHARG = HNRM*AMBDA
WRITE(69954)CHARG
FORMAT(1HOy *CHANGE IN ARGUMENT VECTOR = *,El14.6)
lF(CHARG-l.ElO)16016'Zl

LINEAR SEARCH TECHNIQUE INDICATES THAT NO MINIMUM EX[STS
IER=2
JuMp = 5
RETURN

INTERPOLATE CUBICALLY IN THE INTERVAL DEFINED BY THE SEARCH
ABOVE AND COMPUTE THE ARGUMENT X FOR WHICH THE INTERPOLATION
POLYNOMIAL IS MINIMILZED

T=0. .

IF{AMBDA. EQ 0. O)GO 10 36

Z=3 . %(FX~-FY)/AMBDA+DX+DY

ALFA=AMAXLIR(Z)4R(DX)4R(DY))

DALFA=Z/ALFA o

DALFA=DALFA*DALFA~-DX/ALFA*DY/ALFA

WRITE(6,81351)DALFA

FORMAT(1HO, *DALFA= ' ,E]14,.6)

IF(DALFA.LT.0.0)GO TO 51

W=2ALFA*SQRT(DALFA)

ALFA = DY-DX+WeW

IF(ALFA.EQ.0.0)G0 TO 251




250

251
252

26

a0 O

1002

51131
61318
27
28
29
30
31

32

33
34
35

36

o000 O

38

10011
31113

TABLE LIII (Continued)

ALFA =(DY-2+W)/ALFA

G0 TO 252

ALFA =(Z¢DY=-W)/(Z+4DX+24DY)
ALFA = ALFA®*AMBDA
HRITE(64201)

DO 26 I=1,N

DELTYA =({T-ALFA)*H(I)
WRIVE(69951)1¢X(K)yDELTA
X{I)=X(])+DELTA

TERMINATE, IF THE VALUE OF THE ACTUAL FUNCTION AT X IS LESS
THAN THE FUNCTION VALUES AT THE INTERVAL ENDS. OTHERWISE REDUCE

THE INTERVAL BY CHOOSING ONE END-POINT EQUAL TO X AND REPEAT
THE INTERPOLATION., WHICH END-POINT IS CHOOSEN DEPENDS ON THE
VALUE OF THE FUNCTION AND ITS GRADIENT AT X

JUMP = 3

GO TO 56 |

CHECK FOR SATISFACTORY CONVERGENCE.

DO 51131 [=1,N

DELTA=(T-ALFA)®H( 1)

IF(R(DELTA).GT.CONVIGD TO 61318

CONTINUE

GO TO 55

IF(F.GT.FX)GO TO 28

IF(F.LE.FY)GO TO 36

DALFA=0.

DO 29 I=1,N

DALFA=DALFA+G(I)*H(1) .

IF(DALFA.GE.0.01G0O TO 33

IF(F-FX132,31,33

1F(DOX.EQ.0.0)G0 T0 36

FX=F

DX=DALFA

T=ALFA

AMBDA=ALFA

GO TO 23 ,

IF{FY.NE.FIGO TD 35

IF(DY.EQ.DALFA)GO -TD 36

FY=F

DY=DALFA

AMBDA=AMBDA~ALFA

G0 TO 22 ‘
TERMINATE, IF FUNCTION HAS NOT DECREASED DURING LAST ITERATION

IF(OLDF-F+EPS)51+38,38

COMPUTE OIFFERENCE VECTORS OF ARGUMENT AND GRADIENT FROM
TWO CONSECUTIVE ITERATIONS

IF(LEAP.NE.O)GO TO 31113 =

WR1TE(6410011)

FORMAT(1HOy 5Xy *N? 95X *ARG. DIFF. VEC.?¢3X,'GRAD. DIFF. VEC.')

DO 37 J=14N '

KaN&J

HIK}=G(J)-HIK)
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K=N+K

HIK)=2X(J)=-H(K)

IF(LEAP.NE.O)GO YO 37
WRITE(6,97533)J,HIN+J)oHINENEJ)
FORMAT(LIH ¢4X91295XeEL14.695X¢EL14,6)
CONTINUE

TEST LENGTH OF ARGUMENT DIFFERENCE VECTOR AND DIRECTION VECTOR
IF AT LEAST N ITERATIONS HAVE BEEN EXECUTED. TERMINATE, IF
BOTH ARE LESS THAN EPS
IER=0 )
IF(KOUNT.LTN)GOD TO 42
T=0.
1=0.
DO 40 J=1,N
K=N+J
W=H(K) .
K=K +N
TEM=H(K)
T=T+RITEM)
Z=24+W*TEM
WRITE(69,893)T,Z '
FORMAT(1HO, '"LENGTH OF ARG. DIFF. VECTOR = '4E14.6410X,'LENGTH OF D
1IRECTION VECTOR = '4E14.6) ' .
IF(HNRM.GT.EPS)GO TO 42
IF(T.LEL.EPS)GO TO 56

- TERMINATE, IF NUMBER OF ITERATIONS. WOULD EXCEED LIMIT
IF(KOUNT.GE.LIMIT)GO TO 50

PREPARE UPDATING OF MATRIX H
ALFA=0.
DG 47 J=1,N
K=J#N3
W=0.
DO 46 L=1,yN
KL=N+L
W=W+H{KL ) *H(K )
IF(L.GE.J)GO TO 45
K=K +N-L
GO TO 46
K=K+l
CONTINUE
K=N+J
ALFA=ALFA+WEH(K)
H{J)=W

REPEAT SEARCH IN DIRECTION OF STEEPEST DESCENT IF RESULTS
ARE NOT SATISFACTORY

TEM =Z*ALFA

WRITE(6996512)TEM

FORMAT({1HO, 'Z%ALFA= ',E14.6)

IF(TEM.EQ.0.0)GD TO 1
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UPDATE MATRIX H
K=N31
DO 49 L=1,N
KL=N2+L
DO 49 J=L,4N
NJ=N2+J
H(K’SH(K)#H(KL)'H(NJ)/Z‘H(L)*H(J!/ALFA
K=K+l '
GO 10 5
END OF ITERATION LOOP

NO CONVERGENCE AFTER LIMIT ITERATIONS
IER=1
JUMP = §
RETURN

RESTORE OLD VALUES OF FUNCTION AND ARGUMENTS

WRITE(6,201)

DO 52 J=1,N

DELTA = 0.0

K=N2+¢J

X(J)=HIK)

WRITE(65951)J4X{J)4DELTA

JUMP = 4

GO TO 56

REPEAT SEARCH IN DIRECTION OF STEEPEST DESCENT IF DERIVATIVE
FAILS TO BE SUFFICIENTLY SMALL
IFEGNRM.LE.EPS)GD TO 55

TEST FOR REPEATED FAILURE OF ITERATION

IF{JER.LT.0)GO TO 59

IER=~1

GG0T0 1

IER=0

JUMP = §

WSRO=WSRN

RETURN

END

SUBROUTINE HOIAG(HysNy IEGEN,UyNR,RAP)

A listing of the subroutine HDIAG was presented in Table
XXXIV and will not be repeated here because of space limita-
tions.
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Problem ID Card. This card identifies the beginning of a problem.
This card must have a -09 punched in Columns 1-3 (FORMAT I3).

Problem Control Card.

&.

IND = -09, identifies the problem contrcl card. IND is punched in
Columns 1-3 (FORMAT I3). :

NOPROB is the problem number, punched in Columns L4-9 (FORMAT I6).

NMOL, designates the number of molecules, punched in Columns 10-12
(FORMAT I3).

NF, signifies the number of force constant parameters. NF is punched
in Columns 13-15 (FORMAT I3).

Warning: NF must not excegd T1.

NPMAX is the maximum number of desired iterations. The refinement
will terminate when NPMAX is exceeded, even if coavergence has not
been reached. NPMAX is positioned in Columns 16-18 (FORMAT I3).

Note: If NPMAX is set equal to zero or left blank, there will be no
refinement of the force constant parameters, -and the frequencies will
be calculated for the problem based on the initial set of parameters.

NCZ, represents the number of force constants to be held fixed. These
force constants do not enter the refinement, and their final wvalue is
identical to their initial value. NCZ is punched in Columns 19-21
(FORMAT I3). ‘

IFREP is the problem repeat option. For IFREP = 0, a new problem is
started. If IFREP = 1, only a new set of force constants and list

of those force constants to be held fixed are read in; the rest of

the problem information is taken from the previous problem. For

IFREP = -1, the final set of force constants from the previous problem
are used as the initial set in the new problem; the rest of the problem
data must be included with the input data. IFREP is punched in Columns
22-23 (FORMAT I2),

IFER is the error option control. For IFER = 1, the fractional error
in the experimental fregquencies, PER, is read in. If IFER = 0, the
fractional error, PER, is assumed to be 0.005. For IFER = -1, the
estimated errors in the frequencies, in cm. "l are read in. For IFER =
-3, the error is assumed to be PER = 1.0 cm. - IFER i1s punched in
Columns 24-25 (FORMAT I2).

" PER is the error in the frequencies described in the above paragraph.

If PER is not needed, it may be left blank. PER is punched in
Columns 26-33 (FORMAT F8.6).

EST is the estimate of the value of the weighted sum of squares of
the residuals at the minimum. If a value cannot be estimated for
EST, one may set it equal to 0.0. EST is punched in Columns 34-41
(FORMAT 8.L4).
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k. EPS is a test value representing the expectéd . absolute error.
A reasonable choice for EPS is 0,1E-05. EPS is punched in
Columns 42-51 (FORMAT E10.2). ' »

Warning: EPS must be right justified.

1. RAP, the cutoff factor for the Jacobi diagonalization. The plane
rotations are terminated when MAX[H(I,J)] is less than RAP*MIN[H(I,I)].
If RAP is not entered, the program assigns a value of 0.5E-2. On the
final cycle, RAP is set equal to 0.5E-3 which results in eigenvalues
significant to 6 figures and eigenvectors significant to 3 or L
figures. RAP is punched in Columns 52-56 (FORMAT F5.4).

m. FRAC is a fractional factor for decreasing RAP on each cycle. After
each perturbation, RAP is set equal to FRAC¥RAP. If FRAC is not
entered, it is assigned a value of 0.9 by the program. FRAC is
punched in Columns 57-60 (FORMAT FL.3).

n. LEAP is a printer output suppression option. A 1 will result in the
printer suppreéssion of the eigenvalues and errors, gradient vector,
argument vector, direction vector, argument difference vector, and
gradient difference vector for each perturbatlon. LEAP is punched in
Columns 61-62 (FORMAT 12)

o. CONV is the convergence criterion. The refinement will terminate when
the corrections to the force constant parameters are all less than or
equal to CONV (i.e., the absolute value). CONV is punched in Columns
63-70 (FORMAT F8.6).

Note: Schachtschneider (89) suggests a value of 0.008 for CONV;
however the author suggests a value of 0.0001 for a more rigorous
crlterlon.

p. IFDEL, a 1 will cause the printout of the difference between the
calculated and observed frequencies for each perturbation. If
IFDEL is left blank the difference will not be printed. IFDEL is
punched in Columns T1-72 (FORMAT I2).

Warning: IFDEL can be set equal to 1 only when NMOL = 1.

Problem Information Cards. Three cards containing alphanumeric informa-
tion about the problem. The first three columns of each card should be
left blank, so that the alphanumeric information may be punched in any
column, 4-72 (FORMAT 18AkL).

Warning: These cards must be included in the data deck even if they are
left blank.

Initial Set of Force Constant Parameters. The force constants are
punched in 12 column fields, six per card, in the order 1 through NF
(FORMAT 6F12.6).

Force Constants to be Held Fixed. If NCZ i§ greater than zero, the
numbers of the force constants .to be held fixed are punched on cards in
3 column: fields, 24 per card, up to NCZ entries (FORMAT 24I3).
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The force constants designated on these cards are not entered

into the refinement and their final values are identical to their
initial wvalues.

Molecule Control Card.

a.

IND = -06, identifies the molecule control card. IND is punched in
Columns 1-3 (FORMAT I3).

NQ is the number of internal coordinates, punched in Columns 4-6
(FORMAT I3).

Warning: NQ cannot exceed 66.

NDD is the number of nonzero experimental frequencies included with
the input data. NDD is punched in Columns 7-9 (FORMAT I3).

Note: If one wishes to solve the secular equation to obtain the
calculated frequencies, but no refinement, the experimental
frequencies need not be iné¢luded so that NDD = 0 or left blank.

NZZ, the number of Z matrix elements, punched in Columns 10-13
(FORMAT Th). x

Warning: NZZ cannot exceed 650.

IFU, a 1 will result in the final H matrix being prlnted out,
punched in Columns 14L-15 (FORMAT IZ)

- IFW is the weighting element option for the welghted least squares

refinement. If IFW = 1 or -2, the weighting elements, E(I), are

read in, one for each nonzero experimental fregquency. For IFW = -2,
the weight(I) = E(I), and for IFW = 1, the weight(I) = E(I)/frequency
parameter(I). If IFW = O, the weight(I) = 1/frequency parameter(I).
For IFW = -1, the weight = 1.0 for all the frequencies. Finally, if
IFW = -3, the weight(I) = 1/[frequency parameter(I)]2. IFW is punched
in Columns 16-17 (FORMAT I2).

ISKZ is the Z matrix repeat option. If ISKZ = 0, the Z matrix is
included with the input data. For ISKZ = 1, the Z mat¥ix from the
previous problem is used so that a new Z matrix d3es not need to be
included with the input data. ISKZ is Punched in Columns 18-19
(FORMAT I2).

Note: This option is useful for isotopically substituted molecules.

STUT is the value from Student's t distribution needed to compute the

- 95% confidence intervals for the final set of force constants. ..STUT =

t(n-p,0.975) where n = NDD, the number of nonzero experimental
frequencies, and p = NF - NCZ, the number of force constant parameters
being refined. STUT is punched in Columns 20-27 (FORMAT F8.L).

Note: If STUT is set equal to 1.0, the standard errors in the force
constants are printed instead of the 95% confidence intervals.
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i. RATIO, establishes another criterion to judge the convergence of
the refinement and upon which to base termination of the refinement.
When the ratic of successive weighted sum of squares is equal to or
greater than RATIO, the force constant refinement will be terminated
and said to have converged if the condition has heen met previously
ITERM times. RATIO is punched in Columns 28-35 (FORMAT F8.6).

Note: A reasonable choice for RATIO is O. 995

J+. ITERM is the number of times that RATIO must be equaled or exceeded
before the refinement is actually terminated. ITERM is punched in
Columns 36~39 (FORMAT Ik).

Note: The refinement is terminated when RATIO has been equaled or
exceeded ITERM + 1 times. This device is a check against premature
termiration.

Molecule Information Card. One card containing the name of the molecule
or other alphanumeric information. The first three columns should be
left blank with the alphanumeric data following in any of the columns
through 72 (FORMAT 18AkL).

Warning: This card must be included with the input data even if left
blank. '

The Z Matrix. The programs UBZM and ZSYM punch the Z matrix in the
proper format for use in this program. The Z elemerits are punched in 18
column fields, 1 to 4 per card [FORMAT 4(313¥9.6)]

Warning: The row following the last g;matrlx element must be set equal
to =2, '

The Experimental Frequencies. If NDD is greater than zero, the experi-
mental frequencies, in cm._l, are included with the input data. The
frequencies are entered in decreasing order being punched in 12 column
fields, 6 per card (FORMAT 6Fl2 6).

Note: If the frequencies are unknown, uncertain, or zero (redundanc1es)
one should enter a zero. For degenerate roots, one should enter one
frequency and set the rest equal to zero. Any frequency may be given
zero weight in the refinement by entering a zero instead of the actual
frequency. :

Warning: For NDD greater than zero, one must make NQ frequency entries,
NDD of which must be nonzero. Blanks are read as zeros.

The Estimated Errors in the Experimental Frequencies. If IFER = -1,

the estimated errors in the observed frequencies, in cm.—l, must be in-
cluded with the input data, one for each nonzero frequency. The
estimated errors are entered in the same order as the experimental
frequencies, with zeros or blanks positioned properly corresponding to
zeros in the list. of experimental frequencies. The estimated errors are
entered in 12 column. fields, six per card (FORMAT 6F12.6).

Warning: There must be NQ error entries, NDD of the nonzero for IFER = -1.
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The Weighting Elements. If IFW = -2 or 1, the weighting elements must

. be included with the data deck, one element for each nonzero frequency.

The weilghting elements are punched in 12 column fields, six per card
(FORMAT 6F12.6).

Note: There are NDD weighting elements which must be arranged in the
same order as the nonzero experimental frequencies.

The G Matrix. The G matrix from GMAT is included at this point in the
data deck. The infOrmation is punched in 18 column fields, four per
card [FORMAT L4(2I13,F12.6)].

Warning: The row number following the last G matrix element must be set
equal to -1. o -~

Data Termination Card. This card must have a 999 punched in Columns 1-3
(FORMAT I3) and designates the end of the data.

Note: If another problem is to be included in the data deck, the problem
ID card for the next problem should be placed at this point and the data
termination card moved to the end of the second problen.

If the same set of force constants is to be refined for more than one molecule,

the data cards starting with the molecule control card and going through the G

matrix cards must be included, one set after another, for each molecule in the

refinement, i.e., NMOL sets of data. For symmetry factored biocks, NMOL must be

set equal to the number'of factored blocks. ZEach of the factored blocks may be

treated as separate molecules and the data cards from the molecule control card

through the G matrix cards included, one set after another, for all the factored
i

blocks in a manner similar to the refinement for several moleciules simultaneously.

With the 0S operating system, a /* must be punched in Columns 1-2 on' a card

which is placed at the end of the data deck and follows the data termination card.

OUTPUT INFORMATION

The following information is printed out at the option of the user.

l‘
2I

3.

The initial set of force constants.

The force constants being held fixed.

The eigenvalues and errors for each perturbation.
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L, The gradient vector for each perturbation.
5. The direction vector for -each perturbation.
6. The force constant corrections for each perturbation.

T. The calculated and experimental frequencies and frequency parameters
along with the differences, weights, and percent error.

8. The final E matrix.
s

9. The final set of force constants along with the 95% confidence intervals.

At the user's option, the final set of force constants are punched on cards
with the proper format for use in FADJ, FLPO, and EIGV.‘
Warnihg: If the data output is terminaﬁed béfore completion because of an error,
namely, the attempt to take the square root of a negative number, an error or
errors in the_refinemeﬂt, uéually user induced, are indicéted. Such an error may
be generated when the refinement has caused one of the diagonal‘g;matrix elements
to become negative (usually eléments of normally small magnitude, such as the
torsional elements). This errof may alsovbe generated if a calculated frequency
parameter becomes small compared to the accuracy of the computation. If such an
error message should occur after the interrupted printout of data, the user should
examine thé set of refined force constants and set of calculated frequencies and
frequency parameters for unusual.values. Extraordinary values for these items may

signal errors in the F and G matrix.
~ P

EIGV

This program solves the vibrational secular equation by the method of succes-
sive orthogonalization followed by Jacobi diagonalization. The eigenvalues and
eigenvectors are computed, the latter computation at the request of the user.

The ;;matrix and potential energy distribution among the diagonal elements Of‘ﬁ;

may be computed by EIGV if the user so specifies. If the B matrix is included
~/
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with the input data, the cartesian displacement coordinates and mean square
amplitudes for each norﬁal mode may‘also be computéd. In addition, EIGV has
been modified to permit the computation of the "squared amplitudes" of vibration
for each of the internal coordinates for each normal mdde. The diséussion of the

"squared amplitudes" appeared earlier in this text. The cartesian coriolis

coupling coefficients may also be calculated with EIGV.

This program was written by J. H. Schachtschneider (89) and modified for use
in the investigation of the 1,5-anhydropentitol vibrational spectra. EIGV may be
used with the IBM 360/L4 OS operating system. A flow diagram of EIGV appears in

Fig. 45 and a listing in Table LIV.
INSTRUCTIONS FOR PROGRAM USE

EIGV requires three scratch tapes or disks for normal operation. The disks
are favored over tapes because of* the faster operation of the disks during data
input/output. If the user wishes to exercise the option to wkite the potential
energy distribution and "squared amplitudes'" on tape, an additional scratch
tape must be provided. This option results in the potential energy distribution
and "squared amplitudes" being written on tape with the proper format to be used

as input data to SASORT.

The following information embodies the data deck which is included after
the program deck.
1. Problem ID Card. This card indicates the start of a new problem. The
problem ID card must have a -09 punched in Columns 1-3 (FORMAT I3).
2. Problem Control Card.

a. IND = -Q9, identifies the problem control card. IND is punched
in Columns 1-3 (FORMAT I3). -

b. NOPROB is the problem number,'punched in Columns 4-9 (FORMAT I6).
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TABLE LIV
LISTING OF EIGV

EIGV SCHACHTSCHNEIDER 7/19/65
MOOIFIED FOR OS BY L.J.PITINER 1/5772
THIS PROGRAM SOLVES THE WILSON GF VIBRATIONAL SECULAR EQUATION
BY AN ORTHOGONALIZATION OF THE BASIS OF G FOLLOWED BY A JACOBI
DIAGONALIZATION OF THE TRANSFORMED F MATRIX. INPUT INCLUDES THE G

- MATRIX AND THE POTENTIAL ENERGY IN THE FORM OF THE 2 MATRIX.

90

91
900
901

F MATRIX ELEMENTS F(I,J) ARE DEFINED AS THE SUM OVER K OF

(ZU1,JeK)*FItK)) WHERE FI{K) GIVES THE VALUE OF FORCE CONSTANT
NUMBER K. THE SYMMETRIC MATRICES ARE DIAGONALIZED BY SUBROUTINE
HDIAG (MIHDI3) PROGRAMED BY F.J. CORBATO AND M. MERWIN OF MIT.

RAP=0,5E-3 UNLESS SPECIFIED.

UNDER NORMAL OPERATION THIS PROGRAM COMPUTYES EIGENVALUES AND
EIGENVECTORS. AT THE OPTION OF THE USER ONLY THE EIGENVALUES
ARE COMPUTED.

AT THE OPTION OF THE USER THE CARTESIAN COORDINATES OF THE ATOMS
THE MASSES AND THE 8 MATRIX ARE READ IN AND THE CARTESIAN
DISPLACEMENT COORDINATES AND MEAN SQUARE AMPLITUDES FOR EACH
NORMAL MODE ARE CALCULATED
DIMENSION G( 669 66)D( 664 66) ¢NRL 650),NC( 6501 4NFO{ 650),

120 650)4FI( TL)JNOLUTL)oNEWITL) DGl T1),FF{ T1),DE( T1),

20C( TL)oOVI T1)sD0DC TL)oHJIC T1)oDJIU T1)oX0(2293)9X122,3),WT(22),

BWITL) o NRO(G) ¢yNCD14) g NPOLA) yDAT(A) JRECILB) 4PE( T1)9T(3),TT(22}),

4TSUM(22)NIPHL 71)'TEMP(53'DEL( T1),RECORD(54) ,ASQ{71),DES(72),

LXDIFF(22,3)

EQUIVALENCE (DyNR)y{D( 661)4NC)(D(L321)sNFO)(D{1971)9Z),

1 (DDeXO) o (DEeX)o {DCoNOL) ¢ (DVyNEW) 9 (DG DEL) 9 {FF,W)

COMMON GoD

RECONVERT PROBLEM CONTROL CARD CONTAINING THE FOLLOWING DATA
1. IND=~09 INDICATING THE START OF A PROBLEM AND I[ODENTIFYING

CONTROL CARDe. PUNCHED IN COLUMNS 1-3.

2.NOPROBy THE PROBLEM NUMBER IN COLUMNS 4-9.

3.NMOL, THE NUMBER OF MOLECULES IN COLUMNS 10-12,. : :

4.NFy THE NUMBER OF FORCE CONSTANTS IN COLUMNS 13-15. (71 MAX).

S+ INO, THE NUMBER OF FORCE CONSTANTS TO BE RENUMBERED IN THE

2 MATRIXo PUNCHED IN COLUMNS 16-18. (INO LESS THAN 100)
6.1EGy, FOR EIGENVALUES ONLY SET T1EG=1. PUNCH IN COLUMNS 19-21.
T«IFF 4 FOR F MATRIX OUTPUT SET EQUAL TO 1 COL. 22-24,
B8.RAP, INDICATOR FOR SHUT-OFF IN HDIAG. PUNCHED IN COLUMNS 25-34,
WITH THE DECIMAL BEVYWEEN COL.25 AND 26 OR PUNCHED.
JACOBY DIAGONALIZATION STOPS WHEN MAX{H{I,J)) LESS THAN
RAP&MIN(H(I,1)). [IF COL.25-34 ARE BLANK RAP IS SET EQUAL .000S

READ PROBLEM CONTROL CARD

REWIND 4

READ (5,2)IND

FORMAT(I3)

IF(9+IND)900,924 900

IF(IND~-999)904901,90

END FILE 4

REWIND 4

CALL EXIT

READ ( 5,4)IND, NDPRUBONHULQNF.lNU'lEG'IFF RAP

FORMAT(13916¢5134F10.9) :
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93
94
95

96

50

52

98
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TABLE LIV (Continued)

IF{RAP)93,93,94

RAP=0,.5E-3

IFUIEG)96,96495

TEGEN=1}

RAP=0.5E-2

60 70 97

LEGEN=0 .

READ 3 PROBLEM INFORMATION CARDS. (COLUMNS 1-3 MUST BE BLANK)
READ (5,6)RECORD

FORMAT(18A4)

READ FORCE CONSTANTS IN ORDER 1 TO NF PUNCHED IN 12 COLUMN FIELDS
6 PER CARD WITH DECIMAL BETWEEN COL.6 AND T OR PUNCHED.

READ (548) (FI(I)eI=14NF)

FORMAT(6F12.6)

NM=0

WRITE (6+50)NOPROByNMOLRAP,RECORD

FORMAT{39H1 VIBRATIONAL SECULAR EQUATION. PROBLEMI6,10HyNO.MOL. =1
13,5H RAP=E14.6/118A4)) '
NRITE {(6452)INFy(1+F1(1)e1=1,NF)

FORMAT(4HO 13,16H FORCE CONSTANTS/1TH - FILI)/(16,F1l2.6
1Y) .

DO 98 I=1,71

NIP(T)=1 . »

IF{INO)110,110,99

" READ NUMBERS FOR RENUMBERING FORCE CONSTANTS IN Z MATRIX.

99
10

53

100

NOL(I)oNEW(I),I=1,IND NOL GIVES OLD FORCE CONSTANT NO. AND
NEW GIVES NEW FORCE CONSTANT NUMBER. PUNCHED IN 6 COLUMN FIELDS
12 PER CARD . COL. 1-3 GIVE NOL AND COL.4-6 GIVE NEW.
READ (5410) (NOL(TI)sNEW(I),I=1,1INO)
FORMAT(2413) .
WRITE (6453)(NOLCTI)sNEW(T)oI=1,INO)
FORMAT{40HO FORCE CONSTANTS RENUMBERED IN I MATRIX/{1644H TO 13))
00 100 I=1,INOD
IX=NOL(1)
NIPLIX)=NEW(IT)
READ MOLECULE CONTROL CARD GIVING THE FOLLOWING DATA
l. IND=-06 IDENTIFYING CARD- -IN COLUMNS 1-3,
2.NQy THE DIMENSION OF THE SECULAR EQUATION. LESS THAN 101.
PUNCHED IN COLUMNS 4-6.
3.NDy OBS.FREQ.READ CONTROL. FOR ND=0 NO FREQ. ARE READ.
FOR ND GREATER THAN ZERO FREQ. ARE ENTERED. COLUMNS 7-9.
4.NZs THE NUMBER OF 2 MATRIX ELEMENTSI(LESS THAN 650) PUNCHED IN
COLUMNS 10-13. NZ IS NOT USED BY THE PROGRAM AND COL. 10-13
MAY BE LEFT BLANK.
Se«IFUgA 1 WILL SUPRESS PRINTOUT OF THE Z MATRIX. COLUMNS 14-15.
6.IFWy, A 1 WILL SUPRESS PRINT OUT OF THE L MATRIX AND P.E. DIST.
PUNCHED IN COLUMNS 16-17. A -1 WILL RESULT IN L MATRIX ONLY.
7. ISKZs Z MATRIX READ OPT]ION. PUNCHED IN COLUMN 19, ‘
FOR [ISKZ=0 A Z MATRIX IS ENTERED.
FOR [SKZ=]1 THE Z MATRIX FROM THE PREVIOUS MOLECULE IS USED.
8. 1FINVy INVERSE COMPUTATION CONTROL. PUNCHED [N COLUMN 21.
FOR TFINV=1 THE INVERSE EIGEN VECTORS ARE CALCULATED.
FOR IFINV=0 INVERSE NOT EVALUATED.
9.1FMAy A 1 WILL SUPRESS PRINT OUT OF L INVERSE MATRIX.
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TABLE LIV (Continued)

PUNCHED IN COLUMNS 22-23.
10.IFB, CARTESIAN NORMAL COORDINATE CONTROL. PUNCHED IN COL.25.
FOR IFB=1 THE B MATRIX AND MASSES ARE ENTERED AND CARTESIAN
NORMAL CODRDINATES ARE CALCULATED. IFINV MUST=1 FOR IFB=1
FOR IFB=0 CARTESIAN NORMAL COORDINATES ARE NOT CALCLATED.
11.NOAT, THE NUMBER OF ATOMS. MUST BE ENTERED FOR 1FB=1
PUNCHED IN COLUMNS 27-28. (22 MAX).

12.IFCORy, A 1 WILL CAUSE CALCULATION OF THE INTERNAL MEAN SQUARE
AMPLITUDE MATRIX. PUNCHED IN COLUMNS 29-30.

CONTINUE

13.NOTEP, NO. OF TEMPERATURES FOR WHICH MEAN SQ. AMP. CALC. IS
TO BE CALCULATED FOR. IF NOTEMP = 0 CALC. FOR ROOM TEMP.
PUNCHED IN COLUMNS 31-32.

14.SCALE, SCALE FACTOR FOR CARTESIAN DISPLACEMENTS. PUNCHED IN COL

33-38 WITH DECIMAL BETWEEN 37-38 OR PUNCHED. '
IF COLUMNS 33-38 ARE LEFT BLANK SCALE IS SET EQUAL TO 2.0.

15 TICARy A 1 WILL SUPRESS PRINY OUT OF CARTESIAN DISPLACEMENT

COORDINATES. PUNCHED IN COLUMNS 39-40.
16. IMSC, Al WILL SUPRESS PRINTOUT OF THE CARTESIAN MEAN SQUARE
"~ AMPLITUDES. PUNCHED IN COLUMNS 41-42.

17 ICORy.- A 1 WILL CAUSE CALCULATION OF THE CARTESIAN CORIOLIS
COEFFICIENTS. PUNCHED IN COLUMN 44,

CONTINUE

18. ITEMP, INTERNAL MEAN SQUARE AMP. CALCULATED FOR O DEG K IF
ITEMP=0. 1F ITEMP=1, THE INTERNAL MEAN SQ. AMP. IS CALC. FOR
ABST DEG K. ITEMP PUNCHED IN COLUMN 46.

19. ABST, IF ITEMP =14 ABST IS THE TEMP IN DEG K FOR WHICH THE
INTERNAL MEAN SQUARE AMP. IS TO BE CALC. PUNCHED IN COLUMNS
47-56. '

20. ICDy IF ICD=1, ONE MAY ENTER THE DESCRIPTION OF THE INTERNAL
COORDINATES (4 CHAR.) TO BE PRINTVED WITH THE INTERNAL MEAN
SQ. AMP, (A%%2), ICD PUNCED IN COL. 58.

2l. IPUN, IF IPUN=1 THE MEAN SQ. AMP. AND PE DISTR. FOR INTERNAL
COORDINATES WILL BE WRITTEN ON TAPE. IPUN PUNCHED IN COL. 60.

22. TFLy A 1 WILL CAUSE THE L MATRIX TO BE WRITTEN ON TAPE BY
COLUMNS. PUNCHED IN COLUMN 62.

110 READ (5¢12) INDyNQoyNDDyNZZ ¢ 1FUsIFW o ISKZy IFINVoIFMA2IFByNOAToIFCOR,
INOTEP 9 SCALE9 ICAR ¢ IMSCo ICORs ITEMPoABST4ICD, IPUN,IFL
12 FORMAT(313,14¢61291392129F6.194124F10.24312)
IFCIND+6)91,112,91
INPUT DATA FOR EACH MOLECULE FOLLOWS IN THE ORDER
1.MOLECULE INFORMATION CARD (COL.1-3 BLANK)
1'. INTERNAL COORDINATE DESCRIPTION IF ICD=1.
2.1 MATRIX (FOR ISKZ=0)
3.0BSERVED FREQ. (FOR ND GREATER THAN ZERO)
4.6 MATRIX ' .
SeX MATRIX (l.Ee CARTESIAN COORD. OF ATOMS IN EQUILBRIUM CONFIG)
6.MASSES
7«8 MATRIX
ITEMS 5-7 ENTERED ONLY FOR IFB=1
READ MOLECULE INFORMATION CARD
112 READ (5,46)REC
AFCICD)39539,39539,66661
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6661
1771

8881

9991
9539

113
114

115
116
16

117

118

119
120

122
127

3511
68

69
128

130
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TABLE LIV (Continued)

READ(S,TTT1){DEStJ)eJd=14NQ)

FORMAT(18A%)

WRITE(6,8881)

FORMAT{1H]1, *INTERNAL COORDINATE DESCRIPTION®)
WRITE(6+9991)(1,DEStI)I=1,NQ)

FORMATI1IH 21694XeA%)

REWIND 1

REWIND 2

REWIND 3

NM=NM+1

IF(SCALE) 113,113,114

SCALE=2.0

IFLISKZ)I115411540134

READ NON-ZERD Z MATRIX ELEMENTS Z(I,J,K) ENTERED AS FOUR ONE
DIMENS IONAL ARRAYS o (NR(L)¢NCUIL)oNFOIL),Z(L)L=14NZ WHERE NR(L)=1,
NCIL)=JoNFOIL)=Ky AND ZIL)=2(I4J9sK)) NI=NG. OF NON-ZERO Z ELEMENTS
ENTERED IN 18 COLUMN FIELDS 1 TO 4 PER CARD GIVING

COLUMNS ITEM
1-3 NR(LI=]I
4~-6 NC(L)=J {1 LESS THAN OR EQUAL TO J)
7-9 NFO (L )=K (NO. OF FORCE CONSTANT)
10-18 Z(L)=1(1,43,K) (DECIMAL BETWEEN COL.12 AND 13 OR
PUNCHED)
NR IS SET = -2 AFTER LAST ELEMENT.
NOZ=0

READ (5916) (NRO(L)¢NCOCL)¢NPOUIL) 4DAT(L) yL=1,4)
FORMAT(4(313,F9.6))

DO 120 L=1,4

IF(NRO(L) 112241206117

NOZ=NOZ+1

NR{NOZ )=NRO(L)

NCINOZI=NCO(L)

I=NPD{L)

NFO(NDZ)=NIP(1)

IFIDAT(L))118,119,118

ZI{NOZ)=DATI(L)

GO 10 120

L{(NOZ)¥=1.0

CONTINUE

GO 10 116 ‘

TFINRO(L)+2)605,127,605

REWIND 2

WRITE (2)INRUI)SNCLI)oNFO(I)Z(I),I=1,NOZ)
END FILE 2 '
1F(IFU}128,3511,128

WRITE (69468)NMgNOZ+REC

FORMAT(19H1 72 MATRIX MOLECULEI3,6H NOZ=14/(18A4))
WRITE (6369)INRIIDNCII) NFOLL)oZ(T)eIx=1yNOZ)
FORMAT(4(144213,F9.6))

DO 130 I=1,NQ

DO 130 J=1,NQ

G(I,J)=0.0

DO 132 K=1,N0OZ

I=NR(K)
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132
1128
70
1136
1133
133
134
136

137
138

139
140

141

142
14

144

146
148

150

154
156

158
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TABLE LIV (Continued)

J=NCIK)

LX=NFO(K)

GlIed)=GUlIzJ)+FIILXI*L(K)

IFLIFF) 113691136,1128

WRITE (64 TO)INMyRECORD

FORMAT(19H1 F MATRIX MOLECULEI3/(18A4))

DO 133 I=1,NQ

FFUI)=G(L,1)

IFUIFF)133,133,1133

WRITE (6956)1,(G{TsJ)eJd=1,NQ)

FORMAT(5HO ROWI3/(9F8.4))

CONTINUE

GD TO 136

REWIND 2

READ (2) (NRCED4NC(I)NFOULI)Z(1)oI=14N0O2Z)

IFINDD)1374137,4139

DD 138 I=1,NQ

DE(I1)=0.0

GO TO 140

READ OUBSERVED FREQ. IN ORDER 1 TO NQ PUNCHED IN 12 COLUMN FIELDS

6 PER CARD WITH DECIMAL BETWEEN COL.6 AND 7 OR PUNCHED.
CALC. FREQ. ARE IN DECREASING ORDER WITHIN EACH FACTORED

(ENTER ZEROS FOUR UNKNOWN FREQ. AND REDUNDANCIES)IN CM-)

READ {5,8) (DE(l)es1=1,NQ)

DO 141 I=1,NQ

DO 141 J=I,NQ

G(1,J)=0.0

READ NON-ZERO G MATRIX ELEMENTS ,G(I,J).

G ELEMENTS ENTERED IN 18 COLUMN FIELD 1 TO 4 PER CARD GIVING

COLUMNS ITEM
1-3 NRD =1 (ROW NO.)
4~6 NCO =J {(COLUMN NO.) (I LESS THAN OR=J)
7-18 DAT=G(1eJ) (DECIMAL BETWEEN 12-13 OR PUNCHED)

NRO IS SET =-1 AFTER LAST G ELEMENT.
READ (5514) (NRO(L)yNCO(L)¢DAT(L)sL=1,4)
FORMAT(4(2134F12.6))

DO 146 L=1,4

IF(NRO(L) 14841464144

I=NRO(L)

J=NCO(L)

G(I,J)=DAT(L)

CONTINUE ‘

GO TO 142

IFINRO(L)+1)600941504600

SCHMIDT ORTHOGONALIZATION OF G

STORE INVERSE TRANSFORMATION IN LOWER TRIANGLE OF G.
NRED=0

NO=1

NL=2

GD=1.0/ G(NO,NO)

DO 156 J=NL¢NQ

G(JyNO)I=GIND,sJ)*GD
IFINL-NQ)1589158,170

D0 160 I=NL.NQ




160
161

163
164

165
- 166

170
172

173
174

175

178

182
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TABLE LIV (Continued)

00 160 J=1,NQ
Glled)2G(14J)-(GINO,1)%G{NDO,J)*GD)
NO=NQO+1

NL=NO+1
IF(G(NQNO)~-0.000001)16451644154%
NRED=NRED+1

IF{NL~NQ) 165,165,170

D0 166 J=NL,NQ

G(JIyNOI=GI(NOyJ)

GO TO 161

D0 175 I=1,NQ
IF(G(To1)-0.00005)1T734173,172
DG II=SQRTI(G{I,1))

GO 710 174

DG(1)=0.0

G(}.th=l.0

DO 175 J=1,NQ

G(Js 112G I, 1}%DG(])

COMPUTE TRANSFORMED F MATRIX AND STORE IN UPPER TRIANGLE OF 6
DO 200 J=1,NQ

DO 178 [=1,NQ

DJ{I1)=0,0

DO 190 K=1,NOZ

IX=NR (K}

IF(IX~J)190,182,1862

IX=NC{K)

- LX=NFO(K}

186
190

196
200

201
61

202
203

62

DJLIX)I=DICIXI+FLIILX}®Z(KI*G(IX,yJ)
IFCIX-JX)1864190,186
DICIXI=DIULIXY+FIUILXIRZ(KI*G(IX,J)
CONTINUE

00 196 K=JyNQ

HJ(K)=0.0

D0 196 L=K4NQ

HITKI=SHICK) #+GILK)EDJLL)

DO 200 K=J4NQ '

GlJeKI=HI(K)

IFLIFF)203,203,201

WRITE (6461) RECORD

FORMAT(22H1 TRANSFORMED F MATRIX/(18A4))
D0 202 1=1,NQ

WRITE (6¢56)1¢1(GLT4J)4J=14NQ)}

CONTINUE

DIAGONALIZE TRANSFORMED F MATRIX BY JACOBI METHOD
NR2=0

CALL HDIAGUG¢NQy IEGEN,DyNR2,RAP)

WRITE (6462) NMgNRZ24RECORD A
FORMAT (9HIMOLECULEI3,21H NUMBER OF ROTATIONS=16/(1H ,18A4))
N1=0

PT=20.,0

SUH=0-0

DO 204 1=1,NQ

DCEI)=Gl1l,1)

G(I,1)=DG(I}



204

205

206

207

208

209
210

211
76

17

212
2121

12111
63
63154
213
4444

2631
65316
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TABLE LIV (Continued)

HJ(T)=DC( 1)
FOR COMPARISON WITH 0BS. FREQ. THE CALC. FREQ. ARE ORDERED HIGH
TO LOW.

11=NQ-1

DO 206 1=1,11

LOW=1+1

00 206 J=LOW,NQ

IF(HICT)=HI(J) 1205, 206,206

TEM=HJ(T)

HILT)=HICJ)

HJ(J)=TEM

CONTINUE

DO 209 I=1,NQ

DV(1)=SQRT(HJI(1)/5.88852E-T)

IF(DE(TI))207,207,208

DD{11=0.0

DJ(1)=0.0

GO TO 209

DD(1)=DE( 1)-DV(I)

DJ(1)=100.0*DD(T)/DE(1)

N1=N1+1

PT=PT+ABS(DJ(1))

SUM=SUM+ABS (DD(T))

CONTINUE

IFIN1)211,211,210

SUM=SUM/ FLOAT(N1)

PT=PT/ FLOAT(N1)

WRITE (64 7T6)RECs(JyDELJ)»OVIJ) oDD(J),DI(J) sHI(JI) ¢ J=1,NQ)
FORMAT(37HO OBSERVED AND CALCULATED FREQUENCIES/ 18A4 /TIHO  OBS
1.FREQe CALC.FREQ. DIFFERENCE PERCENT ERROR  CALC.FREQ.PAR./6X
26H{CM=1) ¢ TXy6H(CM=-1) ¢5Xg 6H{CM=11/ (I149F9els4XoFBalo4XsFbal s TXyFT03
3,9X4F9.5))

WRITE (6, 77)SUM,PT

FORMAT(1THO AVERAGE ERROR=FS5.1,9H CM-1 OR 4F5.249H PERCENT.)

IF( TEGEN) 500, 212,500 -

DO 2121 1=1,NQ

DV(1)=SQRT(DC(1)/5.88852E~7)

IF(IFN163154912111,63154

WRITE (6,63)NM,NR2,RECORD

FORMAT(56H1 L MATRIX BY COLUMNS AND POTENTIAL ENERGY DISTRIBUTION
1/41H  AMONG DIAGONAL ELEMENTS OF F. MOLECULEI3,14H NO.ROTATIONS=1
26/(18A4))

DO 220 I=1,NQ

IF(DC(1)-0.000050)220,220,213

IFCITEMP)2631,263144446

€2=(0.7193392/ABST)*DV(1)

ET=(16.8612/DV(I))/TANHIC2)

GO TD 65316

ET=16.8612/DV(1)

DO 215 J=1,NQ

HJ(J)=0.0 |

00 214 K=lyJ |

214 HI(JI)I=HILJ)+G(JeK)ED(K, 1)

ASQUJI)=ET*HJI(J)I*HI{J)



215
23475
86378

216

217
64

22002
66543
23151
11114
22224
21888
218
66
86586
93999

15357
75321
220

230
232

233
234

240

244

248
250
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TABLE LIV (Continued)

PE(JI=FF{JI®HILII®HI(JI) 7 DCLI)
IFUIFL)216,2164923475
NRITE(4,86378)¢HI1J)eJ=1¢NQ)
FORMAT(6F12.6)

WRITE (1) (HJI(J)J=1,NQ)
IF(IFW)217,217,22002

WRITE (6,64)DVIT)o(HI(I)4DES(JI) yI=1,NQ)

FORMAT(13HO FREQUENCY =F8.2,6H(CM-1),10H L COLUMN/(8{FB.4+1XsA4)})

1

IF{IPUN)21888,21888,66543
WRITE(4423151)1,DV(I)

FORMAT(13,F8.2)
WRITE(4,11214)(PE(J)4J=1,NQ)
FORMAT(9F8.4)
WRITE(4,422224)(ASQ1J)¢J=1,NQ)
FORMAT(6EL2.4)

IF(1FNW) 22042189220

WRITE (6¢66) (PE(J)yJ=1,NQ)
FORMAT(18H POTENTIAL ENERGY/(9F8.4))
IF(ICD)T5357,75357+86586
WRITE(6993999)ABSTo(ASQ(J)DESLJ) yJ=14NQ)

FORMAT(26H MEAN SQUARE AMP. (A*%2) FB8.2+7H DEG.
1))

60 10 220
WRITE(69T75321)ABST,, (ASQ(J)+J=1,NQ)

FORMAT(26H MEAN SQUARE AMP. (A*%*2) FB8.2,TH DEG.

CONTINUE
END FILE 1
IF{IFINV)400,4004230

K/(6{EL12.492XeA%)

K/7{9E12.4)).

INVERT ORTHOGONALIZATION MATRIX AND STORE ITS TRANSPOSE IN

UPPER TRIANGLE OF G
D0 234 I=1,NQ
IF(DG(1))2344234,232
DGil)s 1.0/ DGI)

D0 233 J=1I,NQ
G(Js1)=6(J,1)*DG(1)
CONTINUE

DO 240 K=1,NQ

NX=K+1

DO 240 I=NX,NQ
LiM=1-1

00 240 J=K,LIM
GIKyI)=G Ko I)=G(19J)2G(KeJ)
DO 244 [=1,NQ

DO 244 J=1I,NQ
Glled)=Gl1,J)*DG(J)
COMPUTE L INVERSE

D0 250 I=1,NQ

DO 248 J=1,NQ
HI(J)=0.0

DO 248 K=J4yNQ
HJ(JIVI=HJI(JI*G LI K)ED(Ky )
DO 250 J=1,NQ
D(Jol)=HI(J)



61611
67

260
65
21315
300

320

AOOHOOOO

322
324
330

332
314

316

302

VOO0

304
306

310
312
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TABLE LIV (Continued)

IFLIFMA)21315,61611,21315

WRITE (6,67)RECORD

FORMAT(26H]1 INVERSE L MATRIX BY ROWS/(18A4))

DO 260 J=1,NQ

WRITE (6465)J,DVIJ),(D(1,4J)s1=1,NQ)

FORMAT(11HO FREQUENCYIi3y2H =F8.1, 6HICM-III(1H '9F8.4))
IF(1FB) 400,400,300

DO 320 I=14NOAT

D0 320 J=1,3

X0(1,J)=0.0

READ NON-ZERO X MATRIX ELEMENTS PUNCHED IN 18 COLUMN FIELDS 1 TO ¢4
PER CARD GIVING

COLUMNS ITEM .
i-3 NRO =1 (I1=192,0R 3 FOR X,Y,OR Z RESPT.)
4-6 NCO =J (ATOM NUMBER)
7-18 DAT=X{1,J) (DECIMAL BETWEEN 12-13 OR PUNCHED)

NRO SEV =-1 AFTER LAST X ELEMENT.

READ (5414) (NRO(L)sNCO(L)¢DAT(L) yL=1y4)

DO 330 L=1,4

IFINRO(L) 332,330,324

I=NCO(L)

J=NRO(L)

X0(1sJ)2DAT(L)

CONTINUE

GO 10 322

IFINRO(L)#1)61593149615

NA=3%NDAT : .
READ MASSES IN ORDER 1 TO NOAT PUNCHED IN 12 COLUMN FIELDS 6 PER
CARD WITH DECIMAL BETWEEN COL.6-7 OR PUNCHED.

READ (548) (WT(1),1=1,NOAT)

DO 316 I=14NOAT

D0 316 M=1,3

L=3%(1-1)+M

WlL)=1.0 /7 WTLD)

READ B MATRIX

D0 302 I=1,NQ

D0 302 J=14NA

GilsJ)=0.0

READ NON-ZERO 8 MATRIX ELEMENTS 38B(lsJ).

B ELEMENTS ENTERED IN 18 COLUMN FIELD 1 TO & PER CARD GIVING

COLUMNS - 1TEM
1-3 NRO =1 (ROW NO.)
4-6 NCO =J (COLUMN NO.)
7-18 DAT=B(1,J) (DECIMAL BETWEEN 12-13 OR PUNCHED)

NRO IS SET =-5 AFTER LAST B ELEMENT.
READ (5,14) (NRO(L)'NCD(L"DAT(L)0L=lt4)
DO 310 L=1,4% .

TFI(NROIL))I312,310,306

I=NRO(L)

J=NCOo(L)

G6(1,J)=DATIL)

CONTINUE

GO TD 304 '

IFINRO(L)#5)610,334,610
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TABLE LIV {(Continued)

334 IF(ICAR)O61B836,20102,61836
20102 WRITE (64572) NMyRECORD
72 FORMAT(43HIEQUILIBRIUM CARTESIAN COORDINATES. MOLECULEI3/(18A4‘,
' WRITE (6,73)
73 FORMAT(5X439H ATOM MASS X Y z)
61836 DO 336 L=1,NOAY : ' .
TSUMIL)=0.0
IF(ICAR)336,5155,336 '
5155 WRITE (65 T4ILoWTI{L) o XOUtL,1)oX0ULo2),X0(L,3)
336 CONTINUE

REWIND 3
T4 FORMAT(LIH ¢5X9149F9.49F9.49F10.4,F10.4)
c COMPUTE CARTESIAN DISPLACEMENT COORDINATES AND THE MEAN SQUARE
C AMPLITUDE FOR EACH ATOM IN EACH NORMAL MODE 0 DEG. K

DO 360 I=1,NQ
IF(DC{1)-0.000050)360 360,350
350 ET=16.8612/DV{1)
DO 353 J=1,NOAT
TT(J120.0
DO 352 M=1,3
L=3%(J-1)+M
T(M)=0.0
DO 351 K=1,NQ
351 T(M)=T(MI+G(K.LI*D(Ky )W (L)
HI(L)=T(M)
TT(I=TT(I)+ETHT(MI*T (M)
 X(JeM)=XO(JoM) +SCALE*T(M)
352 XOIFF(J,M)=SCALE*T(M)
353 TSUMLJ)=TSUM(J)+TT(J)
IF(ICAR)6352,8888,6352
8888 WRITE (6,75)SCALE.1,DVII)ET,REC
75 FORMAT(46HO CARTESIAN COORDINATES FOR ATOMS DISPLACED BYF6.1,21H U
INITS OF NORMAL MODEI3/13H  FREQUENCY=F10.2,7H DELTA=E12.4/18A%)
WRITE (6,78)
78 FORMAT(LH +4X,* ATOM  MASS X \ 2 MEAN
1SQUARE AMP.(A%%2) 0 K DELTA X DELTA Y DELTA 2°)
359 WRITE (6979) (JoWT{J)oeXUJs1) o XUJ92)9X(J93)TTUI) ¢ XDIFF(JIs1),
. LXDIFF{Je2) s XDIFF(Je3)¢J=14NOAT)
79 FORMAT(LH 5Ky 149F90401F9.40F10.40FL10. 49 TXsE12.412X¢3F10.4)
6352 WRITE (3) (HJ(J)sJ=1,NA)
360 CONTINUE
END FILE 3
DO 362 J=1,NOAT
362 TT(J1=SQRT(TSUM(J))
IF(IMSC)400463554400 -
6355 WRITE (6,84) (J.tsuntJ).rr(JJ.Jsl.NﬂAr)
84 FORMAT(49HOMEAN AMP, FOR ATOMS SUMMED OVER ALL NORMAL MODES/5Xs44H
1 ATOM MEAN SQUARE ROOT MEAN -SQUARE/(1H ¢5Xs1496XeE12.60
26X,E12.4) )
400 1F(NOTEP)401,401,403
401 NOTEP=1
TEMP(1)12298.16
GO Y0 405 ,
403 READ (5,8) (TEMP(1),121,NOTEP)
405 IF(IFCOR)S500,500,406




406

56
407
408
409
410

411
412

55

415

416
418

420

426
427

57
429

430
431

85

450
452
453
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TABLE LIV (Continued)
REWIND 1
REWIND 3
NUM = 1
NI1=NQ
WRITE {6¢54)REC
FORMAT(56HLINTERNAL COORDINATE MEAN SQUARE AHPLITUDE MATRIX(X 100)

173X¢18A4)

DO 412 I=1,NQ
IF(DC{1)-0.000050)410,410,408
READ (NUM) (HJ(L)sL=1oNII)

DO 409 L=1,NII

GILy1)=HJ(L)

GO TO 412

DD 411 L=1,NI1

GlL,1)=0.0

CONTIENUE

C1=16.8612%100.0

D0 429 L=1,NOTEP

C2=0.7193392 / TEMPI(L)

WRITE (6555) TEMP(L)

FORMAT(15H0 TEMPERATURE=F10.2,6H DEG.K)
DO 418 I=1,NQ
IF(0.01-ABS(DVI1)))415,4164416
DEL(T)=C1 Z(TANH(C2%DV(1))%DV(I))
GO TO 418

DEL(1)=0.0

CONTINUE

DO 420 I=1,NII

DO 420 J=1,NII

D(1,J)=0.0

DO 420 K=1,NQ
D(Tsd)=D(14J)+G{L+K)*DEL(K) %G (J,oK)
DO 426 I=1,NII
DD(I)=SQRT(D(1,1))/10.0

DO 426 J=1,NIt

D(Je1)=D1T4J)

DO 427 1=1,NI1

WRITE (6956)14(D(19J)eJd=14NI1)
WRITE (6457) TEMP(L)4REC, {J¢DD(J) 4 J=1,NII)
FORMAT(1H0,22H RODT MEAN AMPLITUDES.,F10+2,6H oes.x13x.18A4/5x.33H

1COORDINATE ROOT MEAN AMPLITUDE/(9X¢1399XyF9.7))

CONTINUE
IF{1FB)450,500,431
I1FB=-1

NII=NA

NUM = 3

WRITE (6,485)REC
FORMAT(47H1 CARTESIAN MEAN SQUARE AMPLITUDE MATRIX(X 100)/3X'18A4)
G0 TO 407
IF(ICOR)500,45000452
IF(IFB)453,500,500
DO 455 I=1.NA
WII)=SQRT(1.0 /7 W(I))
DO 455 J=1,NQ
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¢, NMOL, the number of molecules in the problem, punched in Columns
10-12 (FORMAT I3).

d. NF is the number of force constants, punched in Columns 13-15
(FORMAT I3).

Warning: NF may not exceed T1.

e, INO, designates the number of force constants to be renumbered.
INO is punched in Columns 16-18 (FORMAT I3).

f. IEG, a 1 will result in the termination of the problem after the

secular equation has been soclved and the eigenvalues determined.
IEG is punched in Columns 19-21 (FORMAT I3).

g. IFF, a 1 will result in the printout of the g;matrix.

h., RAP is the cutoff factor for the Jacobi diagonalization. The plane
rotations are terminated when MAX[H(I,J)] is less than RAP*MIN[H(I,I)].
If RAP is left blank, a value of 0.5E-3 is assumed. RAP is punched in
Columns 25-34 (FORMAT F10.9).

Problem Information Cards. Three cards containing alphanumeric information
about the problem. The first three columns of each card should be left
blank with the alphanumeric information following in any of the Columns
L.72 (FORMAT 18AL).

Warning: These three cards must be included with the input data, even if
they are left blank, ‘

The Force Constants. The force constants are read in order 1 through NF
and are punched in 12 column fields, six per card (FORMAT 6F12.6).

The Force Constants to be Renumbered. If INO is greater than zero, the
force constants to be renumbered are entered with the old force constant
number listed first followed by the new number. There are INO sets of

numbers, each number punched in a 3 column field of which there are 24
per card (FORMAT 24I3).

Mcolecule Control Card.

a. IND = -06, identifies the molecule control card, punched in Columns
1-3 (FORMAT I3).

b. NQ is the number of internal coordinates, punched in Columns L4-6
(FORMAT I3).

Warning: NQ must not exceed 66.
¢c. NDD is fhe number of nonzero experimental frequencies entered with

the data. For NDD = O or blank, no frequencies are entered. NDD
is punched in Columns T7-9 (FORMAT I3).
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p. IMSC, a 1 will result in the suppression of the printout of the
‘cartesian "squared amplitudes" of vibration; punched in Columns’
L1-42 (FORMAT I2). ‘

q. . ICOR, a 1 will result in the calculation of the cartesian coriolis
coefficients being bypassed, punched in Columns 43-4L (FORMAT I2).

r. ITEMP is the temperature option control for the internal "squared
amplitudes" of vibration. If ITEMP = 0, the computations are com-
pleted for a temperature of 0°K. If ITEMP = 1, the internal
"squared amplitudes" are calculated for a temperature of ABST °K.
ITEMP is punched in Columns 45-46 (FORMAT I2).

5. ABST is the temperature in °K for which the internal "squared
amplitudes" are to be computed. ABST is punched in Columns 47-56
(FORMAT F10.2).

Note: ABST need only be entered‘in those instances when ITEMP = 1.

t. ICD is the internal coordinate description code contreol. If ICD = 1,
a description code identifying the internal coordinates must be
entered with the data. These four character codes are printed next
to the corresponding '"squared amplitudes," potential energy component,
or L matrix element to simplify their identification. ICD is punched
in Tolumns 57-58 (FORMAT I2).

u. IPUN, for IPUN = 1, the "squared amplitudés'" and potential energy
distribution are written on tape in the proper format for use as
input to SASORT. IPUN is punched in Columns 59-60 (FORMAT I2).

Warning: If IPUN = 1, an additional tape (Number L) must be provided.

v. IFL, if IFL = 1, the L matrix will be written on tape by columns. IFL
is punched in Columns 61-62 (FORMAT I2).

Warning: If IFL = 1, an additional tape (Number 4) must be provided.

Warning: Both IFL and IPUN should not be set = 1 in the same problem
because the data format will not be correct for use with SASORT.

Molecule Information Card. This card contains the name of the molecule
or any other alphanumeric data pertinent to the problem. The first
three columns of the card should be left blank with the alphanumeric
information following in any of the Columns 4-72 (FORMAT 18AlL).

Warning: This card must be included with the input data even if it is
left blank. :

Internal Coordinate Identification Cards. If ICD = 1, four character
alphanumeric codes must be entered which identifythe internal coordinates.
The codes must appear in the same order as the internal coordinates which
they are representing. The codes are punched in four column fields, 18
per card (FORMAT 18ak).




10,

ll.

12.

13.

1L,
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The Z Matrix. The Z matrix elements are read in as four one-~dimensional
arrays and are punched in 18 column fields, 1- 4 per card [FORMAT
4(313,F9.6)]. The Z matrix is punched in the proper format by UBZM or
ZSYM. -~

“Warning: The row after the last element must be set equal to -2.

The Experimental Frequencies. If NDD is greater than zero, the experi-~
mental frequencies must be entered with the input data. The frequencies
are entered in decreasing order 1 through NQ, of which NDD are nonzero.
For freguencies which are uncertain, unknown, or redundant a zero is
entered. The frequencies are punched in 12 column fields, 6 per card
(FORMAT 6F12.6).

Warning: There must be NQ frequency entries, NDD of these entries must
be nonzero. .

The G Matrix. The nonzero G matrix elements are entered as three arrays
and are punched in 18 column fields, four per card [FORMAT 4(2I3,F12.6)].
The G matrix is punched in proper format by GMAT.

Warnlng. The row number after the last element must be set equal to -1.

The Cartesian Coordinates. If IFB = 1, the cartesian coordinates must be
entered with the input data. The nonzerc cartesian coordinates are
described by three arrays. The elements are punched in 18 column fields,
four per card [FORMAT 4(2I3,F12.6)]. The cartesian ccordinates are
punched in the proper format by CART. ‘

Warning: The row number'éfter the last element must be = -1.

The Masses. If IFB = 1, the atomic masses must be entered with the input
data in the order 1 through NOAT. The masses are punched in 12 column
fields, six per card (FORMAT 6F12.6).

B Matrix. If IFB = 1, the B matrix must be entered with the input data.
The B matrix elements are entered as three arrays, punched in 18 column
fields, four per card [FORMAT 4(2I3,F12.6)]. The B matrix is punched in
the proper format by GMAT. ~

Warning: The row number following the last element must be set equal to -5.

Data Termination Card. The data termination card designates the end of
the input data. This card must have a 999 punched in Columns 1-3 (FORMAT
13). _

Note: If another problem is to be included in the data deck, the problem
ID card of the next problem should be placed at this point and the data
termination card moved to the end of the second problem.

With the 0S operating system, a card with a /¥ punched in Columns 1-2 must

be placed at the very end of the data deck, after the data termination card.
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OUTPUT INFORMATION

At the option of the user, the following information is printed out.

loi

11.

12.

13.
1k,
15.

16.

- The set of force constants.

The force constants to be renumbered.
The Z matrix.
=
The F matrix.
~
The calculated and observed frequencies and their difference.
The L_matrix.
NS

The potential energy distribution among the diagonal F elements.
A

The internal '"squared amplitudes” of vibration.
Note: These elements are improperly labeled mean square amplitudés in
The printout; however, this title is immediately followed by (A*¥2) which
should lessen the confusion.
The Lfl matrix,

~

The equilibrium cartesian coordinates.

The cartesian displacement coordinates and the cartesian "squared
amplitudes" of vibration.

Note: These latter elements are also improperly labeled mean square
emplitudes, but are followed by the designation (A**2) which should
reduce the confusion.

The cartesian mean amplitudes for the atoms summed over all the normal
modes and the root mean squares.

The internal coordinate root mean square amplitudes.
The internal coordinate mean square amplitude matrix.
The cartesian mean square amplitude matrix.

The  cartesian coriolis coupling coefficients.

At the option of the user, the internal coordinate '"squared amplitudes" of

vibration and the potential energy distribution for the normal modes are written

on tape in a format suitable for input to SASORT. The‘;;matrix mey also be

written on tape by columns.
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PAMOLE

This program employs the Calcomp 110 digital plotter to draw three dimen-
sional "ball and stick" representations of molecules from any viewpoint at any

reasonable distance away and is based on the cartesian coordinates of the atoms.

This program was written by P. G. Adamson Qgg) and modified at the Institute
for use on our IBM 360/Ll computer. The progrém may be -used with the IBM 360/Lk
OS operating system. A version of PAMOLE is stored on disk at the Institute. A
listing of the JCL cards required to run the stored version of PAMOLE appears in
Table LV. These cards are placed in front of the data deck. A listing of

PAMOLE cannot be included in this text because of space considerations. However,

&8 sample data input to PAMOLE is presented in Table LVI.
INSTRUCTIONS FOR PROGRAM USE
The following information is required to complete the data deck for PAMOLE.

1. Broblem Definition Card.

a. IND = -09, identifies the problem definition card, punched in
Columns 1-3 (FORMAT I3). :

b. MNCAT is the number of atoms in the molecule. NOAT is punched
©  in Columns 4-7 (FORMAT Ik). ' A

c. NVW, designates the number of views to be drawn for this molecule,
punched in Columns 8-11 (FORMAT Ik).

d. ITITLE, a 1 will permit alphanumeric information describing the
drawing to be written on plotter output, puached in Columns 12-15

(FORMAT I4).
Warning: For more than one view of a molecule with or without a

label, the plotter should be manually zeroed to the right after
each drawing.

e, XSTAR is the desired starting position along the x-axis, in inches
from the origin, for the alphanumeric lettering., XSTAR is punched
in Columns 16-21 (FORMAT F6.2). '

Note: If ITITLE = 0, XSTAR may be left blank.



TABLE LV

JOL CARDS REQUIRED TO RUN THE STORED
VERSION OF PAMOLE

//PAMOLE JOs

9400011041 JP,MSGLEVEL=] -

//J08BLIB DD DSN=PAM.VOL=SER=DLIBOB-DISP=DLD UNIT=SYSDA

- /] EXEC PGM=PAMOLE

//FTOSF001 0D OONAME=SYSIN
//FJ06F001 DD SYSOUT=A
//FTOTFO0L DD SYSOUT=B
//PLOTPLOT DD UNIT=PLOTTER
//SENSE DD UNIT=AFF=PLOTPLOY

//SYSIN DD *

TABLE LVI

SAMPLE INPUT DATA TO

-9 19 1

SCALE 1.2

SIZES C « 290 «27H e12

o1 0.000 0,000 0.000 C2

c2 le423 0.000 0.00001

C3 -0.543 1.315 0.000 O1

Ca 1.931 0.718 1.244C2

C5 -0.074 2.059 1.244 C3

Cé6 le446 2.162 1.230 C4

HT l.788 -1.033 0.,000C2

H9 ~1.638 1.258 0.000 €3

Hll =0.394 1.515 2.136 . C5

012 -~0.635 3.358 1.256 CS

H13 -~0.350 3.840 0.465 012
Hl4 1.770 2.646 0,305 C¢6

015 1.885 2.818 2.404 Cé6

H16 1.563 2.337 3,183 015
HL7 1.550 0.214 2.136 C4

018 3.345 0.696 1.256 C4&

H19 3.683 1.143 0,465 018
VIEW 5 5. -5.

999 '

/%

PAMOLE

145-ANHYDROXYLITOL

Cc3
H7 Ha C4
H9 H10 C5

cé 018 H17
Cce H1l 012
C5 Hle 015
H13
H16
H19
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f. YSTAR is the desired starting position along the y-axis, in inches
from the origin, for the alphanumeric lettering. ~YSTAR is punched
in Columns 22-27 (FORMAT F6.2). YSTAR is left blank if there is
to be no labeling of the drawing.

g. LHGT is the desired lettering height in inches, which must be an
integer multiple of 0.07. LHGT is punched in Columns 28-33 (FORMAT
F6.2). '

Note: LHGT is left blank if there is to be no label on the drawing.

Alphanumeric Information. If ITITLE = 1, the alphanumeric labeling to
appear on the drawing must be punched on a card in any of the Columns
1-80 and must be included with the input data (FORMAT 20AkL).

Note: This card must be included with the input data even if blank and
ITITLE = 0. In this case the alphanumerlc information will appear only
with the printer output.

BIG. This card requests that the wide paper (29%") be used. If this card
is omitted, the more commonly used narrow paper (10%") is required. The
characters BIG are punched in Columns 1-3 (FORMAT AL,A2,3FL.0).

SCALE XXXX. This card indicates the scale factor to be used in the
drawing. If this card is omitted, a scale factor of 1 is assumed. SCALE
is punched in Columns 1-6 and the numerical scale factor in Columns 7-10
(FORMAT AkL,2,3FL.0).

Note: The scale factor punched in Columns 7-10 may be decimal and the
Format Fb.0 will be overruled, e.g., SCALE 1.2.

ANGLES o,B,Y, This card. supplles the angles between the coordinates
(if not rectangular) vhere o is the angle between the y- and z-axes, B
is the angle between the x- and z-axes, and Y is the angle between the
x~- and y-axes. If this card is omltted rectangular axes are assumed.
ANGLES is punched in Columns 1-6, o in Columns T-10, B in Columns 11-1kh,
and Y in Columns 15-18 (FORMAT Ah JA2,3Fk.0).

Note: If decimal angles are entered, the Format F4.0 is overruled.

SIZES name r name r °***** ., This card indicates the general atom names
(name), e.g., C, H, 0, C1, Br, etc., and the corresponding radius of the
"ball" representation (r) in atomic units. There can be up to 10 atom
names. SIZES is punched in Columns 1-6, the atom name in Columns 7~10,
and the atom radius in Columns 11-13 with the next atom names and radii
following in groups of 4 columns and 3 columns through 10 atom names
[FORMAT 6X,10(L4A1,F3.2)].

Warning: The atom names must be left justified.

CELL x,y,z. This card indicates the fractional coordinates for the
atom positions, and is optional. This option is used when the coor-
dinates are x-ray crystallographic fractional coordinates. The unit
cell dimensions are specified in atomic units. If this card is in-
cluded with the input data, all subsequent atom coordinates will be
assumed fractional. CELL is punched in Columns 1-4, x in Columns 5-11,
¥ in €olumns 12-18, and z in Columns 19-25 (FORMAT 4Al1,3FT7.3).
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Name x y z namel name2 <¢***°* , The next set of cards specify .individual
atoms, up to 100. Each card refers to one atom giving its name with up
to four characters in Columns 1-U4; its position in space by the cartesian
or fractional coordinates (x is punched in Columns 5-11, y .in Columns
12-18, and z in Columns 19-25); and the names of the atoms connected to
it, up to 8 atoms, punched in four column fields with a blank separating
each entry [FORMAT 4A1,3F7.3,8(4A1,1X)].

Note: There should be NOAT cards in this group. The program checks for
duplicate names. The order of the drawing of atoms is the same as the
order 'of their specification on the data cards.

Note: The first one or two columns of the atom names should contain the
general stom name as it appears on the SIZES card. The remaining two or
three columns should contain an atom numbering code or some other identifi-
cation code to distinguish the individual atoms in the molecule. (For an
example, see Table LVI.)

Warning: The atom names should be left justified.

VIEW x,y,2. This card(s) specifies the coordinates of the viewpoint(s)
desired. The view is drawn from a point looking down the line joining
the viewpoint to the center (i.e., the average of the extremities) of the
molecule. VIEW is punched in Columns l-4 with Columns 5-6 left blank.
Then x is punched in Columns 7-10, y in Columns 11-1L4, and z in Columns
15-18 (FORMAT 6X,3F4.0). There should be NVW viewpoint cards in this
section.

Data Termination Card. This card indicates the end of the data deck and
has a 999 punched in Columns 1-3 (FORMAT I3). If another problém is to be
included in the data deck, the problem definition card for the next problem
should be placed at this point in the deck and the data termination card
moved to the end of the second problem. '

The date termination card is followed by a card with a /¥ punched in Columns

1-2 if the OS operating system is being used.

Warning:

For best results, the plotter should be manualiy zeroed, i.e., the pen

moved to the extreme right, after each drawing is completed.

OUTPUT INFORMATION

Besides the plotter . drawing, the following information is written out by the

printer.

ll

2‘

Alphanumeric information about the drawing (if this card is not blank).

Scale factor.
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3. Sizes of atoms.

4. Cartesian.coordinates (fractional coordinates if specified) and bond
information. - : o : '

- 5. Viewpoint coordinates.

6. Listing of those atoms hidden from view in the drawing.
PESORT AND SASORT

These programs read the potential energy and "squared amplitude" data from
tape, arrange the information in decreasing order, and label the numerical data

with an identifying code.

3

These programs were written ﬁy the author during the investigation of the
1,5-anhydropentitol spectra t6 arrange the potential energy and "squared ampli-
tude" data in a more convenient way. PESORT sorts the potential energy data in
terms of the force constantsvin decreasing order. The data is read from the out-
put tape from NFAD which is a simplified version of FADJ. PESORT reads four
character codes, one for each férceAconstant, which identify the force constants,
These force constant codes are then printed beside the corresponding potential
energy element when the ordered distributions are printed out by PESORT. PESORT
also converts the fractional elements to percent. GSASCRT reads the potential
energy data in terms of the internal'coordinétes (diagonal ;;matrix elements) and
"squared amplitude" data for internal coordinates from the output tape from EIGV.
These data are then arranged in decreasing order and labeled with a four character

code that identifies the internal coordinates.

Both PESORT and SASORT may be used with the IBM 360/L4L4 RAX operating system.
A listing of PESORT is presented in Table LVII and a listing of SASORT in Table

LVIII.
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TABLE LVII

LISTING O PiIESORT

DIMENSION DES(100)¢PE{100)¢DUM{100) oINDEX(100),REC(18)

PROGRAM PESORT

DESIGNED TO RUN ON RAX AND READ PE DISTRIBUTION OFF TAPE FROM
PROGRAM NFAD.

PESORT SORTS THE PE DISTRIBUTION DATA FOR EACH CALCULATED FREQ.
AND ARRANGES THE DATA IN DESCENDING ORDER.

A DESCRIPTION DOF THE FORCE CONSTANTS IS READ IN FROM CARDS

AND IS REPRODUCED ALONG WITH THE OUTPUT. (FORMAT A4).

PESORT WAS WRITTEN BY LeJ.PITZNER = 1713/72

READ PROBLEM CONTROL CARD '
NOTE EACH PROBLEM CONTROL CARD IS PRECEDED BY A CARD WITH -09 IN
COLUMNS 1-3.

1)e IND=-09 PUNCHED IN COLUMNS 1-3. -

2). NOPROB= PROBLEM NUMBER PUNCHED IN COLUMNS 4-9. -

3). NF= THE NUMBER OF FORCE CONSTANTS PUNCHED IN COLUMNS 10-12.
4). NFR= THE NUMBER OF FREQUENCIES PUNCHED IN COLUMNS 13-15.

REWIND 1
READ(S, L) IND
FORMAT(I[3)

" IF({IND+9})2,3,2

IF{IND=-999)4,5,4

REWIND 1

CALL EXIT

READ(5,6) INDy NOPROB ¢ NF o NFR

FORMAT(13,16,213)

READ PROBLEM INFORMATION CARD.

READ(5,18)REC

FORMAT(18A4)

WRITE(6919)NOPROB,LREC

FORMAT{1H]l, "APPROXIMATE POTENTIAL ENERGY DISTRIBUTION FOR PROBLEM?',

116701H ,12Xy18A4}))

READ FORCE CONSTANT DESCRIPTION CARDS
READ(S,7) (DES(J) 9J=14NF)
FORMAT(18A4)

DO 15 J=1,NFR
READ(1,70)NUM, FREQ
FORMAT(13,F8.2)
READ(1,80)(PE(L)yL=14NF)
FORMAT(9FB8.4)

DD 66 I=1,NF

INDEX(I)=1

MU=1

NU=2

DO 11 K=NU,NF
IF(PE(K)-PE(MU))11,11,10
TEM=PE(K)

PE(K)=PE(MU)

PE(MU)=TEM

ITEM= INDEX(K)
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TABLE LVII (Continued)

INDEX(K)=INDEX{MU)
INDEX(MU)=1TEM
11 CONTINUE
MU=MU+1
NU=MU+1
IF(MU-NF) 9,200,200
200 DO 13 JJ=1yNF

KK= INDEX(JJ)
13 DUM{JJ)I=DES(KK)"
D0 14 I=1,NF
14 PE(I)=100.*PE(I)
WRITE{6421)NUM,FREQ
: WRITE(6422)(PEIL)+DUM(L)sL=14NF)
.21 FORMAT{1HO, *FREQUENCY®* 134" ='9Fbely' CM-1")
22 FORMAT{1H 28(FB.2¢y2XyA%4))
15 CONTINUE
GO T0 4
END
/DATA
-09
-09 5009 56 51
1+5~ANHYDROXYLITOL  CORRECTED TETRAHEDRAL STRUCTURE.
COR CO ACH CH CC OHCCCOCOCGCOCHCCCHCHCHCOOHHCORCCORAHGCHCH?
COH CCC HCOCORC sB1 SB2 SB3 SB4 SB5 SBé SB7 SB8 SB9SB10 BBl BB2
B85 BB6 BB7 BBSE BB9BBIOBBI188128813881488158816881788188819 TCC
BB80BB20
=09
-09 5009 56 51
145-ANHYDRORIBITOL CORRECTED TETRAHEDRAL STRUCTURE.
COR CO ACH CH cCC OHCCCOCOCOCOCHCCCHCHCHCDUHHCORCCORAHCCHCH'
COH CCC HCOCORC SB1 SB2 SB3 SB4 SBS5 SB6 SB7 SB88 SB9SB10O BBl BB2
885 B8B6 BRT BB8 BBI9BB10BB118BB12BB138B1488158816881788188819 TCC
'BBOBB20
-09 :
~-09 5009 56 51 '
1,5-ANHYDRO-L-ARABINITOL CORRECTED TERAHEDRAL STRUCTURE.
COR CO ACH CH CC OHCCCOCOCOCOCHCCCHCHCHCOOHHCORCCORAHCCHCH®
COH CCC HCOCORC sB1 SB2 SB3 SB4 SB5 SB6 SB7 SB88 SB9SB10 8Bl BBZ2
B85 BB6 BB7 BBS8 BB9BBIOBBIlBBl28813BBI488158816881788188819 TCcC
BBOBB20
999

HCC CcOo
883 BBS4
TCOTCOR

HCC CCO
BB3 BB4
TCOTCOR

HCC CCO
883 BB4
TCOTCOR
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TABLE LVIII

LISTING OF SASORT

DIMENSION DES(100),PE(100),ASQ(100),DUM{L00), INDEX(IOO)vREC(IBI
PROGRAM SASORT

DESIGNED TO RUN ON RAX AND READ PE DISTRIBUTION OFF TAPE FROM
PROGRAM EIGV. THE MEAN SQ. AMP. (A*%2) IS ALSO READ FROM TAPE.
SASORT SORTS THE PE AND MEAN SQ. AMP, DATA FOR EACH CALC. FREQ.
AND ARRANGES THE DATA IN DESCENDING ORDER.

A DESCRIPTION OF THE INTERNAL COORDINATES IS READ IN FROM CARDS
AND IS REPRODUCED ALONG WITH THE OUTPUT. (FORMAT A4).

SASORT NAS WRITTEN BY L.J.PITZNER 1713772

NOTE EACH PROBLEM CONTROL CARD IS PRECEDED BY A CARD WITH -09 IN
COLUMNS 1-3.

1)e IND=-09 PUNCHED IN COLUMNS 1-3.

2). NOPROB= PROBLEM NUMBER PUNCHED IN COLUMNS 4-9.

3). NQ= THE NUMBER OF INTERNAL COORDINATES PUNCHED IN COLUMNS 10-12.
4). NFR= THE NUMBER OF FREQUENCIES PUNCHED IN COLUMNS 13—15.

READ PROBLEM CONTROL CARD

REWIND 1
READ(S5, 1) IND
FORMAT(I3)
IF(IND+9)2,3,2

IF{IND=-999) 44544

REWIND 1

CALL EXIT

READ(596) INDyNOPROByNQeNFR

FORMAT{1I3,164213)

READ PROBLEM INFORMATION CARD.

READ(5,18)REC

FORMAT(18A4)

WRITE(6919)NOPROB,REC

FORMAT(1H1, *APPROXIMATE PE AND MEAN SQ. AMP. DISTRIBUTION FOR PROBLEM®

1 16/(1H ,12X,18A4))

READ INTERNAL COORDINATE DESCRIPTION
READ(S,T)(DES(J)9J=1sNQ)
FORMAT(18A4)

DO 15 J=1,NFR

READ(1,70)NUM,FREQ

FORMAT(13,F8.2)
READ(1+80)(PE(L),L=1,NQ)
FORMAT(9F8.4)

READ(1,90)(ASQ(K) ¢K=1,NQ)

FORMAT(6E12.4)
NUM = J

00 66 [=1,NQ
INDEX(I)=1
MU=1

NU=2

DO 11 K=NU,NQ

IF(PE(K)=-PE(MU) ) L1s11,10 ’ !
TEM=PE(K)
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PABLE LVIII (Continued)

PE(K)=PE(MU)
CPE(MUI=TEM
ITEM= INDEX{K)
INDEX{K)=INDEX{MU) .
INDEX (MU)=TTEM
11 CONTINUE
MU=MU+1
NU=MU+1 5
IF{MU=-NQ) 9,200,200
200 DO 13 JJ=1,NQ
KK=INDEX(JJ)
13 DUM{JJI)I=DES(KK)
DO 14 I=1.,NQ
14 PE(I)=100.%PE(T)
 WRITE(6421)NUM,FREQ" .
21 FORMAT(1HO, *FREQUENCY® 13, =94F6.1+* CM-1")
WRITE16,30) ‘ ‘
WRITE(6+31)(PE(L),DUMIL)yL=1,NQ)
30 FORMAT(LH ,*POTENTIAL ENERGY DISTRIBUT[ON']
31 FORMATULH +8(FB8.2¢2X¢A4))
DO SO I=1,NQ
50 INDEX(I)=1
MU=1
© NU=2 :
39 DO 41 K=NUyNQ
TF(ASQIKI-ASQ(MU) 141,441,440
40 TEM=ASQ(K)
ASQ(K)=ASQIMU)
ASQ(MU)=TEM
1TEM= INDEX(K)
INDEX{K)=INDEX{MU)
. INDEX(MU)=1TEM
41 CONTINUE
MU=MU+1
NU=MU+1
IF(MU-NQ) 39,300,300
300 DO 43 JJ=1,NQ
© KK=INDEX{JJ)
43 DUM(JJ)=DES(KK)
WRITE(6,51)
WRITE(6+52) (ASQ(L),DUMIL) 4L=1+NQ)
51 FORMAT(1H »*MEAN SQ. AMP. (A#*%2)*)
52 FORMAT(1H ¢6(E12.4¢2X9A4))
15 CONTINUE :
GO TO &
END
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INSTRUCTIONS FOR PROGRAM USE

The input data appear on tape which is the output from EIGV or NFAD. ' The

following information embodies the data deck. The program deck, which precedes

the data deck, must be started with a /ID card, a /JOB GO card, and a /FILE card

with the RAX system. The data deck is preceded by a - /DATA card.

1.

Problem ID Card. This card indicates the start of a problem. A -09 is
punched in Columns 1-3 (FORMAT I3).

Problem Control Card.

a. IND = -09, identifies the problem control card, punched in Columns
1-3 (FORMAT I3).

b. NOPROB is the problem number, punched in Columns 4-9 (FORMAT I6).

c¢. NF (in PESORT) or NQ (in SASORT), NF is the number of force constants
and NQ the number of internal coordinates, punched in Columns 10-12
(FORMAT I3).

d. NFR is the number of nconzero calculated frequencies, punched in
Columns 13-15 (FORMAT I3).

The Force Constant Identification Codes (PESORT) or The Internal Coordi-
nate Identification Codes (SASORT). These four character alphanumeric
codes should provide easy identification of the force constants or
internal coordinates. They are punched in four column fields, 18 per
cargi in order 1 through NF (PESORT) or 1 through NQ (SASORT) (FORMAT
184ak).

Data Termination Card. This card indicates the end of the problem and

is characterized by a 999 in Columns 1-3 (FORMAT I3). If another problem
is to be included, the problem ID card for the next problem is placed at
this point. The data termination card is then moved to the end of the
second problem. -

With the RAX operating system, the data deck is terminated by a /END card.

Printer output for PESORT includes the sorted potential energy distribution (in

decreasing order) in terms of the force constants. Printer cutput for SASORT in-

cludes the sorted (in decreasing order) potential energy distribution in terms of

the diagonal F matrix elements and the internal coordinate "squared amplitudes.”
~~t

In both cases, the data are labeled with the identifying code characters.
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NFAD

This program is a condensed version of FADJ. NFAD solves the secular deter-
minant and computes the potential energy distribution in terms of the force
constants; however, the force constanté are not refined. NFAD will write the
potential energy distribution on tape in the proper format for input to PESORT.
NFAD may be used with the IEM 360/44 oé operé,ting system. NFAD will not be
listed in this text because of the similarity to FADJ which has been discussed

earlier in this appendix.
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APPENDIX VI

CALCULATED FREQUENCIES FOR BOTH CONFORMERS OF THE
1,5-ANHYDROPENTITOL MODELS
This appendix contains the listings of the calculated frequencies for the
1,5-AP models for both conformers and is based on the set of force constant
parameters listed in Table XX in the main text. The calculated frequencies

for 1,5-AX, 1,5-AR, and 1,5-ALA follow in Tables LIX, LX, and LXI, respectively.
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TABLE LIX

CALCULATED FREQUENCIES FOR BOTH CONFORMERS OF THE
1,5-ANHYDROXYLITOL MODEL BASED ON THE FORCE:
CONSTANTS IN TABLE XX

Stable Conf., Alternate Conf, Stable Conf., - - Alternate Conf.,
v, cm. ! v, cm. ! v, em. !} v, cm. !
3356 3356 1131 1133
3356 . - 3356 . 1110 1108
3356 3356 1096 1076
2982 2980 1095 1028
2979 2976 1049 971
2946 2930 101k 956
2926 2924 950 948
2911 2923 927 903
2882 2881 901 8sh
2880 2880 882 815
1468 , 1469 655 795
1460 1463 563 596
1437 1389 533 572
1k10 1382 her . 539
1388 1382 L2g 458
1363 1350 420 L34
1347 1328 ' 368 365
1345 1328 318 310
- 1329 - 1319 297 ' 286
1298 1303 278 241
1292 1289 241 238
1272 1253 230 230
1257 1239 ‘ 228 199
1207 1224 200 170
1201 1213 131 131

11kl 1162

o
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TABLE LX

CALCULATED FREQUENCIES FOR BOTH CONFORMERS OF THE
1,5-ANHYDRORIBITOL MODEL. BASED ON THE FORCE
CONSTANTS IN TABLE XX

Stable Conf., Alternate Conf., Stable Conf., Alternate Conf.,
v, cm. ! v, cm. ! v, cm. ! v, cm. *
3356 3356 1131 1136
3356 3356 1106 1089
3356 3356 1096 1059
2982 2980 1042 1037
2979 2976 102k 994
2931 2930 1010 963
2925 2924 981 9ké
2921 2922 926 889
2882 2881 876 865
2880 2880 850 809
1468 1469 676 786
1460 1461 641 666
1418 1373 599 601
1k12 1371 463 470
1393 1365 LL6 451
1367 1353 S 413 433
134k 1329 342 354
1320 1324 308 301
1317 1302 283 297
1295 1284 255 258
1289 1283 240 239
1265 1272 227 230
1255 1240 220 226
1233 1222 202 170
1220 1214 137 132

1155 1139
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TABLE LXI

CALCULATED FREQUENCIES FOR BOTH CONFORMERS OF THE
1,5-ANHYDRO~-L-ARABINITOL MODEL BASED ON THE FORCE
CONSTANTS IN TABLE XX

Stable Conf., Alternate Conf., Stable Conf., Alternate Conf.,
v, cm. ! v, cm. ! v, cm. * ' v, cm.
3356 3356 1130 1122
3356 3356 1108 1093
3356 3356 1097 1086
2981 2981 107h 1045
2978 2977 1061 1018
2940 2929 . 988 978
2926 2925 9kl ol
2915 2921 931 929
2882 2881 : 873 874
2880 2880 ~ 851 831
1469 1469 43 720
1461 1460 : 637 640
1419 1391 540 . 548
1395 1383 L8T 518
1378 1377 Lh1 451
1372 1348 403 419
1341 1333 380 387
1326 1320 302 313
1313 . 1303 285 288
1304 1295 260 243
1284 1278 237 238
1263 1255 236 238
1251 1232 236 228
1234 1230 222 214
1199 1220 185 190

1163 11k9 132 135



