The Institute of Paper Chemistry

Appleton, Wisconsin

Doctor's Dissertation

An Investigation of the Vibrational Spectra of the 1,5-Anhydropentitols

Larry James Pitzner

January, 1973

AN INVESTIGATION OF THE VIBRATIONAL SPECTRA OF THE $1,5-A N H Y D R O P E N T I T O L S$

A thesis submitted by
Larry James Pitzner
B.S. 1967, Wisconsin State University - La Crosse M.S. 1970, Lawrence University

in partial fulfillment of the requirements
of The Institute of Paper Chemistry
for the degree of Doctor of Philosophy from Lawrence University, Appleton, Wisconsin

Publication Rights Reserved by The Institute of Paper Chemistry

To My Wife, Marilyn
Page
SUMMARY 1
INTRODUCTION 3
BACKGROUND 5
THESIS OBJECTIVES 9
EXPERIMENTAL 12
Preparation of the 1,5 -Anhydropentitol Compounds 12
Preparation of 1,5-Anhydro-D- and L-Arabinitol 12
Tetra-O-acetyl-D-arabinopyranose 12
2,3,4-Tri-O-acetyl-D-arabinopyranosyl Bromide 13
2,3,4-Tri-0-acetyl-l,5-anhydro-D-arabinitol 14
1,5-Anhydro-D-arabinitol 15
Purification of the l,5-Anhydro-D-arabinitol Sirup 16
Crystallization of 1,5-Anhydro-D-arabinitol 16
1,5-Anhydro-L-arabinitol 18
Preparation of l,5-Anhydroribitol 18
Tetra-O-benzoyl-D-ribopyranose 18
1,5-Anhydroribitol 20
Preparation of l,5-Anhydroxylitol 20
Deuteration of the 1,5-Anhydropentitol Preparations 21
Preparation of l,5-Anhydro-DL-arabinitol 23
Nuclear Magnetic Resonance Measurements of the 1,5-Anhydro- pentitol Compounds 23
Measurement of the Infrared and Raman Spectra of the 1,5- Anhydropentitol Compounds 24
Measurement of the Infrared and Raman Spectra of the 1,5- Anhydropentitol Compounds in the Crystalline State 24
Measurement. of the Infrared and Raman- Spectra of the Deuterated 1,5-Anhydropentitol Compounds in the Crystalline State 25
Page
Measurement of the Raman Spectra of the 1,5-Anhydro- pentitol Solutions 26
Attempt to Measure the Raman Spectrum of the $1,5-A n h y d r o-$ xylitol Melt 26
Depolarization Ratio Measurements for l,5-Anhydroxylitol and l,5-Anhydroribitol Solutions 28
Measurement of the Infrared and Raman Spectra of 1,5-Anhydro-DL- arabinitol and the Deuterated Derivative 30
EXPERIMENTAL RESULTS 31
Nuclear Magnetic Resonance Spectra of the 1,5-Anhydropentitol Compounds 31
Infrared and Raman Spectra of the $1,5-A n h y d r o p e n t i t o l$ Compounds in the Crystalline State $3 I$
Infrared and Raman Spectra of the Deuterated 1,5-Anhydropentitol Compounds in the Crystalline State 48
Raman Spectra of the 1,5-Anhydropentitol Solutions 48
Depolarization Ratios for 1,5-Anhydroxylitol and 1,5-Anhydro- ribitol in Aqueous Solution 48
Infrared and Raman Spectra of $1,5-A n h y d r o-D L$-arabinitol and Deuterated 1,5-Anhydro-DL-arabinitol 66
NORMAL COORDINATE ANALYSES 73
Theory 73
Kinetic and Potential Energy in Classical Mechanics 75
Vibrational Wave Equation 77
Vibrational Secular Equation in Matrix Notation 78
Internal Coordinates 81
Vibrational Secular Equation in. Internal Coordinates 82
Computations 83
Definition of Model Geometry 83
Molecular Structure of the $1,5-A n h y d r o p e n t i t o l$ Compounds 83
Page
Conformation 84
Bond Angles and Bond Lengths 85
Calculation of Cartesian Coordinates for the Model Atoms 87
Transformation to Internal Coordinates and Calculation of the Inverse Kinetic Energy Matrix ($\underset{\sim}{G}$ Matrix) 88
Internal Coordinates 88
Definition of Internal Coordinates for the l,5-Anhydro- pentitol Models 89
Inverse Kinetic Energy Matrix (G Matrix) 92
Computation of the G Matrix 92
Symmetry Coordinates 93
Factoring the G Matrix 93
Computation of the Factored G Matrices for the $1,5-$ Anhydropentitol Models 95
Selection of a Force Field for the l,5-Anhydropentitol Models 95

1. The Valence Force Field (VFF) 97
2. The General Quadratic Force Field (GQFF) 98
A. OVFF 98
B. HOFF 99
C. UBFF 99
D. Inverse Force Constants 100
E. Simplified Valence Quadratic Force Field (SVQFF) 101
Computation of the $\underset{\sim}{F}$ Matrix 103
Factoring the $\underset{\sim}{\sim}$ Matrix 103
Computation of the Factored $\underset{\sim}{F}$ Matrix 104
SVQFF Force Constant Parameters for the 1,5-Anhydro- pentitol Models 105
Solution of the Vibrational Secular Equation and Least Squares Refinement of the Force Constants 105
Page
Solution of the Secular Equation by the Method of Successive Orthogonalization of GF Followed by Jacobi Diagonalization ~~ 105
Jacobi Diagonalization 116
Force Constant Refinement 118
Linear Least Squares Refinement Method 119
Computer Program for Linear Least Squares 124
Solution of the Secular Equation and Linear Least Squares Refinement for the l,5-Anhydro- pentitol Models 125
Nonlinear Least Squares Refinement Method 125
Termination of the Force Constant Refinement 131
Error Analysis 131
Refinement for a Series of Molecules 132
Computer Program for Nonlinear Least Squares 132
Potential Energy Distribution, Cartesian Dis- placement Coordinates, and Mean Square Amplitudes 133
Computer Program to Compute the Potential Energy Distribution, Cartesian Displacement Coordi- nates, Mean Square Amplitudes, and "Squared Amplitudes" 136
Solution of the Secular Equation and Nonlinear Least Squares Refinement of the Force Constants for the 1,5 -Anhydropentitol Models 137
DISCUSSION OF RESULIS 155
General Comments Concerning the Normal Coordinate Analyses 155
Discussion of the Individual l,5-Anhydropentitol Vibrational Spectra 165
1,5-Anhydroxylitol 165
Interpretation of the Solid State Spectra 165
Solution Spectra of l,5-Anhydroxylitol 171
Spectra of Deuterated l,5-Anhydroxylitol 173
Page
l,5-Anhydroribitol 174
Interpretation of the Solid State Spectra 174
Solution Spectra of 1,5 -Anhydroribitol 178
Spectra of Deuterated 1,5-Anhydroribitol 181
1,5-Anhydro-I-arabinitol 181
Interpretation of the Solid State Spectra 181
Solution Spectra of 1,5-Anhydro-L-arabinitol 185
Spectra of Deuterated 1,5-Anhydro-L-arabinitol 187
1,5-Anhydro-DL-arabinitol 188
Comparison of the 1,5-Anhydro-DL-arabinitol Spectra With that of the I Isomer 188
CONCLUSIONS 190
SUGGESTIONS FOR FUTURE WORK 193
ACKNOWLEDGMENTS 195
LITERATURE CITED 197
APPENDIX I 203
Computer Program for the Calculation of Cartesian Coordinates for the Atoms 203
Computation of the Cartesian Coordinates for the l,5-Anhydro- pentitol Models 206
Error Checks in Specification of Model Geometry 206
APPENDIX II 214
Computer Program for Computing the G Matrix 214
Calculation of the G Matrices for the 1,5 -Anhydropentitol Models 218
APPENDIX III 236
Computation of the $\underset{\sim}{\sim}$ Matrix 236
Z Matrices for the 1,5 -Anhydropentitol Models 236
Page
APPENDIX IV 243
Termination of the Linear Least Squares Refinement 243
Evaluation of Transferable Force Constants 243
Potential Energy Distribution in Terms of the Force Constants 244
Error Analysis 244
Multiple Solutions 245
Multiple Regression Analysis 246
Nonconvergence 249
APPENDIX V 252
CART
Instructions for Program Use 262
Output Information 264
gMAT 264
Instructions for Program Use 265
Output Information 285
UBZM 286
Instructions for Program Use 286
Output Information 294
ZSYM 295
Instructions for Program Use 303
Output Information 304
FADJ 305
Instructions for Program Use 305
Output Information 336
FLPO 337
Instructions for Program Use 337
Output Information 367
Page
EIGV 368
Instructions for Program Use 369
Output Information 387
PAMOLE 388
Instructions for Program Use 388
Output Information 391
PESORT and SASORT 392
Instructions for Program Use 397
NFAD 398
APPENDIX VI 399
Calculated Frequencies for Both Conformers of the 1,5-Anhydro- pentitol Models 399

The l,5-anhydropentitol compounds (namely, l,5̣-anhydroxylitol, l,5-anhydroribitol, and l,5-anhydro-D- and L-arabinitol) are a logical class of compounds with which to begin a systematic analysis of carbohydrate vibrational spectra. These compounds form a model system that is structurally: similar to the pentoses, although simpler because they lack a hydroxyl group at the Cl position of the ring. The vibrational spectra of these compounds are quite complex, complicated by extensive vibrational coupling. As a result, a complete interpretation of the vibrational spectra can be accomplished only by detailed normal coordinate analyses.

The laser Raman and infrared spectra of the crystalline 1,5 -anhydropentitol compounds were measured in the region from 4000 to $150 \mathrm{~cm} .^{-1}$ (wave number). (The infrared spectra were only recorded down to $300 \mathrm{~cm} .^{-1}$). The solid state spectra were assigned and interpreted with the aid of detailed normal coordinate calculations, performed for each compound in. the class. In the normal coordinate analyses, a series of computer programs were employed to construct and solve the vibrational secular equation by the Wilson $\frac{G F}{N}$ method. An iterative nonlinear least squares technique based on the Fletcher-Powell method was adapted to refine an initial set of force constant parameters for each of the 1,5 -anhydropentitol models simultaneously; whereby, the difference between the calculated and experimental frequencies were minimized. The result was an overall average error of $6.2 \mathrm{~cm} .^{-1}$

The comparative differences in band location (i.e., frequency) between the 1,5-anhydropentitol spectra are demonstrated to be primarily the result of a kinetic energy effect ($\underset{\sim}{G}$ matrix) rather than a potential energy effect ($\underset{\sim}{\sim}$ matrix) and are related to the hydroxyl group orientation, i.e.; axial or equatorial.

The Raman spectra of the water and dimethyl sulfoxide-d d_{6} solutions of the 1,5-anhydropentitol compounds were observed to be very similar upon exclusion of the solvent bands. This observation suggests that. the type of solvent, amphiprotic versus aprotic, has little affect on the vibrational spectra of these saccharide model compounds. The solution spectra were noted to correlate quite favorably with the crystalline spectra; however, the bands were greatly broadened in the solution spectra. Several additional bands were observed in the solution spectra for $1,5-a n h y d r o r i b i t o l$ and $1,5-a n h y d r o-L-a r a b i n i t o l ~ t h a t ~$ were not evident in the crystalline spectra. Conformational free energy calculations and normal coordinate computations support the argument that these bands originate from a significant portion of the molecules that exist in the alternate chair conformation in solution.

The infrared and Raman spectra of crystalline 1,5-anhydro-DL-arabinitol were recorded. The $1,5-a n h y d r o-D L-a r a b i n i t o l ~ s p e c t r a ~ w e r e ~ n o t ~ i d e n t i c a l ~ t o ~ t h e ~ s p e c t r a ~$ of the D and L isomers. Several spectral bands appeared to be shifted in frequency, and the relative intensities of a number of bands were not the same. The hydrogen bonding and crystal geometry are suspected of differing in the two systems; however, the influence of these factors upon the spectra was not investigated.

In addition to providing important vibrational information about a class of compounds previously unstudied, the investigation of the 1,5 -anhydropentitol spectra has also made available the necessary data to assist in the spectral interpretation of other carbohydrate compounds. The normal coordinate computations for these compounds have generated a force field which:should simplify the mathematical analyses of the monosaccharides, especially the pentoses:

INTRODUCTION ${ }^{1}$

The saccharides are a broad class of naturally occurring compounds composed of such groups as the pentoses (xylose, ribose, arabinose), hexoses (glucose, mannose, galactose), oligomers (lactose, fructose, sucrose), and polysaccharides (glycogen, pectin). Derivatives (glucosamine) and substituted polysaccharides (mucopolysaccharides) are also members of this group.

The saccharides are important elements in biological syistems. They form the subunits of more complex molecular systems such as the glycoproteins and glycolipids (- 3), are important structural components in a variety of living tissues, and are involved in a number of complex metabolic pathways (4, 5). In addition, saccharides enter into a number of important biological mechanisms, and they are constituents of some of the clinically important antibiotics (6).

The saccharides, especially the polymers of anhydroglucose, are also the basic raw material for several industries. For example, the starch industry utilizes the $\alpha-1,4-1 i n k e d$ polymer (1), while the cotton textiles and paper. industries depend upon cellulose; the β-1, 4 -linked polymer, as the basic raw material (8,9). The rayon, cellophane, sugar, and fermentation industries are further examples of areas of technology where saccharides are important.

Recently, polysaccharides have been determined as important elements in pollution abatement problems. The dewatering of sludges from municipal sewage treatment systems appears to be influenced by their waste cellulose fiber content and by the hydration properties of the capsular polysaccharides of microorganisms.

[^0]In view of the widespread importance of the saccharides, it is evident that an expansion of our basic understanding of these compounds through physical chemical investigations will result in potential applications in biochemistry, medicine, industrial technology, and ervironmental protection programs.

To date, physical chemical investigations:of the saccharides have employed optical rotation (10), x-ray crystallography (11, 12), and nuclear magnetic resonance spectrometry (13,14) as important sources of information. Vibrational spectroscopy, primarily infrared spectroscopy, has also been used extensively in the investigation of saccharides; however, its use has been almost entirely as an analytical tool, based on the group frequency approach. In recent years, the potential of vibrational spectroscopy as a physical chemical tool has been greatly expanded due to the increasing availability of laser Raman spectrometers and the development of computer methods for normal coordinate calculations. Laser Raman spectrometers provide complementary spectral information to infrared absorption measurements, and the computational methods allow the investigation of the vibrational dynamics of large molecules. Therefore, it now appears certain that detailed vibrational analyses of the spectra of well-chosen saccharides can add significantly to the fund of basic information developed utilizing other physical chemical techniques.

BACKGROUND

The vibrational spectra of the saccharides, their derivatives, and related compounds have been studied by many workers in this area of chemistry. Although some progress has been made in the interpretation of these spectra, the full potential of vibrational spectroscopy utilizing modern techniques has not been attained.

Coblentz (15) appears to have been the first person to critically examine the infrared spectra of the saccharides. He studied D-fructose and D-glucose in the region from $3200 \mathrm{~cm} .^{-1}$ to $833 \mathrm{~cm} .^{-1}$ The series was expanded by Rogers and Williams (16) to include D- and L-arabinose, D-galactose, and D-mannose: The spectra of several other simple sugars were examined by other workers (17). However, the work of Kuhn (18) represents the first effort to correlate the spectra with structure. His work was followed by a series of significant contributions published by a number of groups throughout the decade of the 1950's. Whistler and House (19) were the first workers to employ infrared spectra to differentiate between sugar anomers. A significant series of publications followed by a group of workers at The University of Birmingham (20-22). The spectral region from $670 \mathrm{~cm} .^{-1}$ to $1000 \mathrm{~cm} .^{-1}$ was investigated for many monosaccharides and their derivatives. They observed that the spectral features in this region could be correlated with structure, particularly at the $C l$ position. They found, however, that the fingerprint region was too complex for systematization.

Tipson and Isbell and their coworkers (23-29), at the National Bureau of Standards, investigated the infrared spectra of a substantial number of monosaccharides and their derivatives. In one of the more unusual applications of infrared spectral measurements in this field, they measured the equilibrium
compositions of aqueous solutions of monosaccharides (α - and β-anomer distribution and presence of the furanose form after mutarotation had taken place) by measuring the spectra of lyophilized samples of the solutions (28). They also attempted to make some band assignments in the fingerprint region.

A significant contribution to the study of polysaccharide spectra has been made by Marchessault and Liang and their coworkers (30-35). They have recorded the spectra of a number of celluloses, xylans; and chitin. They utilized polarized infrared absorption measurements on oriented samples as an aid to assigning some of the bands. Zhbankov and his coworkers (36) have also made important contributions in this area. They have measured the spectra of a large number of saccharides, especially celluloses from a variety of natural sources. In a more recent publication (37), they have reported low temperature studies of the infrared spectra of various monosaccharides.

Michell and coworkers (38-4i) have also substantially contributed to the study of the polysaccharides and have recorded spectra at low temperature (42, 43).

While the low temperature studies of Zhbankov and Michell have concentrated on the OH stretching bands, Katon and coworkers (44,45) have more recently demonstrated that low temperatures may also improve resolution in other regions of the spectra.

In the work cited so far, the utilization of infrared spectroscopy has been based on the group frequency approach which has been successful in many areas of organic chemistry, as well summarized by Bellamy (46,47). In this approach, model systems are very important, and the area of saccharide chemistry is no exception. The Birmingham school based their discussion of pyranose spectra on an assignment of the spectrum of tetrahydropyran by Burket and Badger (48).

The assignment of tetrahydropyran was confined to the region above $700 . \mathrm{cm}^{-1}$ in the spectrum and consequently, did not include the ring bending vibrations. Much of the later discussion of pyranose spectra is also based on this assignment. In later work, the workers at The University of Birmingham expanded the fund of basic information on relevant model compounds by investigating the spectra of tetrahydropyran-2-ol, -3-ol, -4-ol, and al so tetrahydro-2-hydroxymethylpyran (49). The assignment of these spectra were also based on Burket and Badger's assignment of tetrahydropyran, which, in turn, was based on analogy with the spectrum of cyclohexane. A normal coordinate analysis of cyclohexane had been reported by Beckett, et al. (50).

A more detailed review of the application of vibrational spectroscopy to saccharide chemistry is provided by Spedding (51). A recent review by Tipson (52) is even more exhaustive in its discussion of group frequencies. 'In summary, it is sufficient to state that most of the spectral investigations of saccharides in the past have been confined to the region above $700 \mathrm{~cm} .^{-1}$, and have been oriented primarily toward analytical application.

However, since most of this work on saccharides, their derivatives, and related compounds has been undertaken, i.e., since the period of the 1950's and early 1960^{\prime} s, there has been substantial progress in the methodology of vibrational spectroscopy which has made possible more rigorous analyses of the spectra of complex ${ }^{2}$ molecules. In particular, the work of Schachtschneider and Snyder on the hydrocarbons (53-55) and of Snyder and Zerbi on the ethers (56), have established the possibility of systematic analyses of the spectra of groups of related

[^1]compounds with the aid of normal coordinate computations. Their work has established the necessary computational methods for a mathematical analysis of molecular vibrations and demonstrated the applicability of these methods to large molecules. Snyder and Zerbi included the normal coordinate analysis of the vibrations of tetrahydropyran in their study of the ether spectra. (As stated earlier, tetrahydropyran is the basis for several interpretations of saccharide spectra.) 'More recently, Pickett and Strauss (57) have adapted the methods of Schachtschneider and Snyder in a study of the bending vibrations of cyclohexane and related oxanes, including tetrahydropyran. The normal coordinate analyses of tetrahydropyran, tetrahydropyran-4-01, $-4-C l$, and $-4-F$ are reportedly in progress at The Royal Holloway College in England (58). Tetrahydropyran-4-ol provides an improved model compound relative to tetrahydropyran for many of the saccharides, particularly the pentoses and simple sugars. This results from the addition of a hydroxyl group to the pyranose ring, which is an important element of saccharide molecules.

The availability of more comprehensive data on vibrational frequencies has been essential in the detailed vibrational studies of the saccharides in the past. The recent improvements in infrared instrumentation and the increasing availability of laser excited Raman spectrometers have made the necessary data obtainable. Furthermore, developments in computer systems and computational methods have made possible the mathematical vibrational analyses of large, complex molecules. In view of this progress, both in computational technology and instrumental capabilities, there is now a basis for a new effort at more comprehensive analyses of the saccharide spectra.

THESIS OBJECTIVES

With respect to what has been outlined in the previous section regarding current knowledge of the vibrational spectra of the saccharides and related model compounds, the next logical effort should be a detailed vibrational study of a model system in more close approximation to the saccharides than tetrahydropyran. The l,5-anhydropentitol (1,5-AP) compounds provide such a model system.

The compounds in this class are l,5-anhydroxylitol (1,5-AX), 1,5-anhydroribitol (1,5-AR), 1,5-anhydro-L-arabinitiol (1,5-ALA), and 1,5-anhydro-D-arabinitol (1,5-ADA). These compounds are represented in Fig. I. The 1,5-AP compounds constitute a particularly important model system for several reasons. First, they differ from the pentoses only in the absence of the hydroxyl group at Cl. Therefore, they approximate the pentoses more closely than the related model compounds previously studied. Second, the equivalence of $C l$ and $C 5$ increases the symmetry of $1,5-A X$ and $1,5-A R$, relative to the pentoses, from C_{1} to \underline{C}_{s}. This allows the magnitude of the vibrational problem to be reduced by symmetry considerations. This is particularly valuable in exploring effects associated with axial or equatorial orientation of the hydroxyl group at C3. Third, the compounds as a group have melting points which are low enough to permit, measurement of the spectra of the melts. Thus, it is possible to distinguish molecular bands from spectral features associated with the solid state. The monosaccharides, in contrast, generally undergo decomposition before melting. Fourth, the absence of the hydroxyl group at Cl eliminates the problems associated with mutarotation in solution. Thus, it is possible to investigate the spectra of aqueous solutions, without the complication of having two or more species present, as is the situation with the monosaccharides. The additional information provided by the solution spectra assists in the assignment of the solid state spectral bands.

In application of vibrational spectroscopy to physical chemical investigations, as distinguished from analytical investigations, it is necessary to begin with comprehensive assignments of the spectral bands in the spectra of the compounds of interest. Therefore, the major objective of this thesis is to achieve the assignment and interpretation of the vibrational spectra of the $1,5-\mathrm{AP}$. compounds based on comparisons of the infrared and Raman spectra, as well as on normal coordinate analyses of the molecular vibrations. In this endeavor, an attempt is made to apply the computational methods of Schachtschneider and Snyder (53-56) to the analyses of the more complex $1,5-\mathrm{AP}$ molecules.

EXPERIMENTAL

PREPARATION OF THE 1,5~ANHYDROPENTITOL COMPOUNDS

The l,5-AP compounds are not available commercially and were prepared as part of this investigation. The syntheses of $1,5-A R, 1,5-A L A$, and $1,5-A D A$ from their parent sugar compounds were based on the paper by Gray and Barker (59) and the unpublished laboratory procedures by Schroeder (60). \because The fourth compound in this class, l,5-AX, had been previously prepared in sufficient quantity by Dr. Paul Seib, formerly of the Institute staff.

PREPARATION OF 1,5-ANHYDRO-D- AND L-ARABINITOL

Tetra-O-acetyl-D-arabinopyranose

The procedure for the acetylation of D-arabinose was adapted from a method described in Schroeder's laboratory procedures (60).

Acetic anhydride (200 ml.) was added to a $600-\mathrm{ml}$. beaker equipped with a thermometer and an overhead stirrer. Anhydrous sodium acetate ($13.5 \mathrm{g}$.) and then D-arabinose (30 g.) were added to the beaker with continuous stirring. The mixture was heated to $70-75^{\circ} \mathrm{C}$. on a hot plate. At this point the external heat was removed. The temperature of the mixture continued to rise as a result of the heat being produced by the exothermic reaction. The reaction temperature was controlled between $90-100^{\circ} \mathrm{C}$. by increasing the rate of stirring and placing the beaker in a pan of chopped ice when necessary. The sodium acetate and D-arabinose went into solution in the acetic anhydride at approximately $90^{\circ} \mathrm{C}$. The temperature was maintained between $90-100^{\circ} \mathrm{C}$. for 15 minutes, applying external heat when requisite. The solution was then slowly cooled to room temperature. Upon cooling, the reaction mixture solidified. The solidified mixture was transferred, a small
portion at a time, to a beaker containing rapidly stirred ice and water (700 ml.) causing the acetylated arabinose to precipitate. Upon completion of the transfer, the contents of the beaker werestirred for an additional two hours with ice being added when needed. Chloroform (350 ml .) was next added to the mixture and the stirring continued for an additional minute. The entire water-chloroform . mixture was transferred to a separatory funnel (2 liter) and the chloroform layer drawn off. Additional chloroform (150 ml .) was added to the separatory funnel containing the water layer; the mixture shaken for a minute; and upon settling, the chloroform layer drawn off. The chloroform extraction solutions were combined. The chloroform solution was next transferred to a separatory funnel (l liter) and washed with saturated sodium bicarbonate solution ($2 \times 250 \mathrm{ml}$.) and distilled water ($3 \times 250 \mathrm{ml}$). The washed chloroform solution was dried over calcium chloride and concentrated in vacuo to a thick sirup. All attempts to crystallize tetra-0-acetyl-D-arabinopyranose from the sirup, using various solvents, were unsuccessful.

2,3,4-Tri-0-acetyl-D-arabinopyranosyl Bromide

The bromination procedure to be described was also adapted from a method in Schroeder's laboratory procedures (60).

The tetra-0-acetyl-D-arabinopyranose sirup (25 g.) was dissolved in $1,2-$ dichloroethane (60 ml.) and hydrogen bromide in glacial acetic acid ($20 \mathrm{ml} ., 43 \%$) added. The reaction was allowed to progress at room temperature for 45 minutes with occasional stirring of the solution and then the reaction stopped by the additional of chloroform (150 ml.). The diluted solution was poured into a separatory funnel (500 ml) , washed with ice water ($3 \times 225 \mathrm{ml}$) , and dried over calcium chloride. The dried chloroform solution was concentrated in vacuo to the point at which 2,3,4-tri-0-acetyl-D-arabinopyranosyl bromide began to
crystallize. The sirup was immediately dissolved in anhydrous diethyl ether.. (50 ml.$)$ and petroleum ether (b.p. $\left.30-60^{\circ} \mathrm{C}.\right)$ added until crystalilization was initiated. The mother liquor was put into a refrigerator overnight to allow for further crystallization. The triacetyl-D-arabinosyl bromide:crystals were then filtered from the mother liquor, washed with a small amount of diethyl ether, pressed with dental dam, and dried in a vacuum desiccator for ten minutes. A yield of 13.4 g. was recorded.: The melting point of the triacetylarabinosyl...... bromide crystals was not measured due to their instability. (The crystals were found to decompose rapidly in air, giving off hydrogen bromide vapors within a few minutes after exposure to the air.)

2,3,4-Tri-O-acetyl-1,5-anhydro-D-arabinitol

The procedure to be described for the reductive dehalogenation was adapted, for the most part, from Gray and Barker (59) with modifications in the choice of catalyst and bromine scavenger.

The crystalline 2,3,4-tri-0-acetyl-D-arabinopyranosyl bromide (13.4 g.) was dissolved in absolute ethyl acetate (160 ml .). Palladium catalyst on charcoal (l $\mathrm{B} \cdot, 10 \%$) and triethylamine (9 ml.) were added to the solution ${ }^{3}$. The reaction mixture was transferred to a teflon-coated Parr bomb reactor. A magnetic stirring bar was added; the bomb was sealed; hydrogen gas was introduced into the bomb to a pressure of 50 p.s.i.g.; and the bomb was placed on a magnetic stirring motor. The reaction mixture was stirred for 48 hours. Thin-layer chromatography was.. employed to establish when the reaction had reached completion. The reaction mixture was then filtered through Celite to remove the catalyst. .The Celite bed..

[^2]was washed with chloroform. Additional chloroform was added to the filtrate. until a total chloroform addition of 150 ml . was attained. :The chloroform-ethyl acetate solution was transferred to a separatory funnel (liter). The solution was washed with 0.5 N hydrochloric acid solution ($2 \times 200 \mathrm{ml}$), saturated sodium bicarbonate solution ($2 \times 200 \mathrm{ml}$.) , and distilled water ($2 \times 200 \mathrm{ml}$.). The washed solution was treated with silver nitrate in acetone ($7 \mathrm{ml} ., 3 \%$) to "strip" bromine from any unreacted triacetylarabinosyl bromide as suggested by Brandon (61). A turbid suspension of silver bromide formed immediately. The mixture was dried over calcium chloride. The suspended material was then removed by filtration through Celite. The solution was concentrated to a sirup in vacuo, and all attempts to crystallize 2,3,4-tri-0-acetyl-1,5-anhydro-D-arabinitol from the sirup were unsuccessful.

1,5-Anhydro-D-arabinitol
The deacetylation procedure was adapted from a method in the unpublished procedures by Schroeder (60).

The 2,3,4-tri-0-acetyl-1,5-anhydro-D-arabinitol sirup (9.5 g.) was dissolved in absolute methanol ($100: \mathrm{ml}$.) in a stoppered flask. Sodium methoxide in methanol (0.5 N) was added in $0.5-\mathrm{ml}$. increments until the methanol solution was basic to phenolphthalein solution. In this case, 1.0 ml . of sodium methoxide solution was required. The deacetylation was monitored by thin-layer chromatography using silica gel G and diisopropyl ether as the developing solvent. The deacetylation was observed to be almost simultaneous with the sodium methoxide solution addition. The methanol solution was deionized by adding Amberlite IR-120 (1.5 g.), a cation exchange resin, stirring, and testing for neutrality with litmus paper. The resin was removed by filtering the solution through Celite. The l,5-ADA solution
was then concentrated to a sirup in vacuo. 'The reaction scheme for the synthesis of:1,5-ADA is diagramed in Fig.: 2.

Purification of the 1,5-Anhydro-D-arabinitol Sirup
The most probable source of impurity in the l,5-ADA preparation was suspected to be the parent sugar. A reducing sugar can be removed by alkaline hydrolysis followed by ion-exchange chromatography. Alkaline hydrolysis of a reducing sugar results in the formation of metasaccharinic acids. These acids are then removed by passing the solution through a column containing an anion exchange resin and a cation exchange resin, to remove sodium ions.

The 1,5-ADA sirup (5 g.) was dissolved in distilled water (25 ml .) and treated with $0.5 \mathbb{N}$ sodium hydroxide solution (10 ml .). The solution was refluxed over a steam bath for two hours with the basicity being determined with pH paper at 30minute intervals. The pH of the solution remained above 12 throughout the hydrolysis. Upon cooling to room temperature, the hydrolysis solution was passed through a column packed with Amberlite MB-3 mixed bed ion exchange resin (50 ml .) followed by distilled water (150 ml .). The deionized solution was decolorized with activated charcoal, filtered through Celite, and concentrated to a sirup in vacuo at $50^{\circ} \mathrm{C}$.

Crystallization of 1,5-Anhydro-D-arabinitol

The purified l,5-ADA sirup was dissolved in an absolute ethanol-ethyl acetate mixture (50:50, v./v.) (20 ml.) and crystallization initiated by refrigeration. Two recrystallizations of this material from ethanol-ethyl acetate resulted in 1.8 g . of crystalline product. The melting point of the $1,5-\mathrm{ADA}$ product was determined to be $96-97^{\circ} \mathrm{C}$. which is in agreement with the literature value of $96-97^{\circ} \mathrm{C}$. reported by Fletcher and Hudson (62). The purified material displayed

an optical rotation of -96.5° ($\underline{c}, ~ 1.133$) in distilled water, the literature value being -98.6° (c, 0.8928) (62). An elemental analysis was performed on the $1,5-\mathrm{ADA}$ material by Micro-Tech Laboratories, Inc., Skokie, Illinois. The calculated percentages for C, H, and O based on the formula $\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{O}_{4}$ are $44.77,7.52$, and 47.71%, respectively. The corresponding percentages experimentally determined for the 1,5-ADA product were $44.67,7.66$, and 47.47%, respectively.

1,5-Anhydro-I-arabinitol

The compound 1,5-ALA was synthesized from its parent sugar, L-arabinose, in an analogous manner to the preparation of $1,5-A D A$. The product material was also subjected to the purification steps described for the $1,5-A D A$ preparation. A yield of 2.8 g. of crystalline product was obtained after crystallization followed by two recrystallizations. from absolute ethanol-ethyl acetate (50:50, v./v.). The melting point of the material was determined to be $97^{\circ} \mathrm{C}$. which agrees with the Iiterature value of $95 \sim 96^{\circ} \mathrm{C}$. reported by Rice and Inatome (63). The optical rotation of the $1,5-A L A$ solution in distilled water was measured to be $+97.1^{\circ}$ (c, 1.129) as compared with the literature value of $+101^{\circ}$ ($\mathrm{c}, 1.8$) (63). An elemental analysis was also performed by Micro-Tech on the. 1,5-ALA product. The C, H, and 0 percentages were determined to be $44.91,7.46$, and 47.72%, respectively. The corresponding percentages based on the formula $\mathrm{C}_{5} \mathrm{H}_{1} \mathrm{OO}_{4}$ were 44.77, 7.52, and 47.71%, respectively, as for 1,5-ADA.

PREPARATION OF 1,5-ANHYDRORIBITOL

Tetra-O-benzoyl-D-ribopyranose

Gray and Barker (59) state in their paper that triacetylribopyranosyl bromide is quite unstable, and the acetylated products are difficult to isolate. They suggest using benzoylated rather than acetylated intermediates in the
reaction scheme. Thus, in the preparation of $1,5-A R$ from D-ribose, the reaction scheme employed to prepare l,5-ALA and l,5-ADA was followed, with the exception that the intermediate compounds were benzoylated rather than acetylated derivatives. The benzoylation procedure was adapted from a method by Jeanloz, et al. (64).

D-Ribose (28 g.) was added to a beaker containing a chilled mixture ($-10^{\circ} \mathrm{C}$.) of pyridine (120 ml.), benzoyl chloride (115 ml.), and 1,2 -dichloroethane (230 ml.). The beaker was placed in an ice bath; the mixture stirred for 45 minutes at $0^{\circ} \mathrm{C} . ;$ and upon completion of the stirring, the beaker and contents were set in a refrigerator for 24 hours. After this period in the refrigerator, the beaker was removed and allowed to warm to room temperature overnight. The reaction mixture was then poured slowly into a beaker containing rapidly stirred ice and water. The stirring was continued for one-half hour with ice being added when necessary. Chloroform (500 ml .) was next added to the ice-water mixture and the stirring maintained for approximately one minute. The contents of the beaker were then transferred to a separatory funnel (2 iiters), the chloroform layer drawn off, and the aqueous layer back extracted with additional chloroform (200 ml .). The chloroform extracts were combined and washed with $2 \mathbb{N}$ sulfuric acid solution (i x 200 ml .), IN sulfuric acid solution ($2 \times 200 \mathrm{ml}$.) , saturated sodium bicarbonate solution $(2 \times 200 \mathrm{ml}$.$) , distilled water (2 \times 200 \mathrm{ml}$.) , lN sodium hydroxide solution (1 $\times 200 \mathrm{ml}$) , 0.5 N sodium hydroxide solution ($2 \times 200 \mathrm{ml}$.), and distilled water ($3 \times 200 \mathrm{ml}$). The chloroform solution was dried over calcium chloride, filtered through activated charcoal on Celite, and concentrated in vacuo to a thick sirup.

The procedure for the next steps in the synthesis scheme leading to $2,3,4-$ tri-O-benzoyl-1,5-anhydroribitol, namely, bromination and reductive dehalogena-tion, follows the preparation of 1,5-ALA and 1,5-ADA.

1,5-Anhydroribitol

The debenzoylation of $2,3,4$-tri-0-benzoyl-1,5-anhydroribitol was accomplished in an analogous procedure to the deacetylation of the acetyl derivatives : : of $1,5-A L A$ and $1,5-A D A$, i.e., by the addition of sodium methoxide in methanol to a methanol solution of the benzoyl derivative of l,5-AR. However, the rate of debenzoylation was considerably slower than the deacetylations. The process required two hours to reach completion at elevated temperatures near the boiling point of methanol. The product was next carried through the purification steps discussed earlier for $1,5-A D A$. Purified 1,5-AR was crystallized from absolute ethanol-ethyl acetate ($50: 50$, v./v.) followed by two recrystallizations. A yield of 3.4 g . of crystalline product was obtained. A melting point of $128^{\circ} \mathrm{C}$. was determined for this material. Jeanloz, et al. (64) have reported a melting point of $128-129^{\circ} \mathrm{C}$. for $1,5-\mathrm{AR}$. A solution of $1,5-\mathrm{AR}$ in distilled water was determined to have an optical rotation of 0° ($\underline{c}, 1.144$), as it should since the compound has symmetry, and is in agreement with the literature (64). An elemental analysis of the product determined the percentages of C, H, and 0 to be 44.68, 7.48, and 47.64%, respectively. These values are to be compared with the calculated values of 44.77 .7 .52 , and 47.71% for $\mathrm{C}_{5} \mathrm{H}_{1} \mathrm{OO}_{4}$.

PREPARATION OF•1,5-ANHYDROXYLITOL

As stated earlier, l,5-AX was prepared by Dr. Paul Seib, formerly of the Institute staff, employing the procedure of Gray and Barker (59). The melting point of the crystalline product was determined to be $117^{\circ} \mathrm{C}$. which is comparable to the accepted literature value of $116-117^{\circ} \mathrm{C}$. (65). The optical rotation for a solution of $1,5-\mathrm{AX}^{\prime}$ in distilled water was determined to be 0° (ㄷ, 1.100), which is expected since the compound has symmetry, and is also in agreement with the literature (65). An elemental analysis was performed by Micro-Tech for the

1,5-AX preparation. The percentages of C, H, and 0 were determined to be 44.73, 7.53 , and 47.70%, respectively. These values are to be compared with the calculated values of $44.77,7.52$; and 47.71% for $\mathrm{C}_{5} \mathrm{H}_{1} \mathrm{OO}_{4}$.

The melting points, optical rotation data, and elemental analyses for the four l,5-AP preparations are summarized in Table I.

TABLE I
SUMMARY OF PHYSICAL AND CHEMICAL DATA FOR THE
1,5-ANHYYROPENTITOLS
 $44.77 \quad 7.52 \quad 47.71^{\mathrm{a}} 100.00$

$1,5-A X$	117	$116-117^{\mathrm{b}}$	0.0	$0.0^{\mathrm{b}} \cdot 44.73$	7.53	47.70	99.96	
$1,5-\mathrm{AR}$	$: 128$	$128-129^{\mathrm{c}}$	0.0	0.0^{c}	44.68	7.48	47.64	99.80
$1,5-A L A$	97	$.95-96^{\mathrm{d}}$	+97.1.	$+101.0^{\mathrm{d}}$	44.91	7.46	47.72	100.09
$1,5-A D A$	$96-97$	$96-97^{\mathrm{e}}$	-96.5	-98.6^{e}	44.67	7.66	47.47	99.80

[^3]DEUTERATION OF THE 1,5-ANHYDROPENTITOL PREPARATIONS

The hydroxyl group protons for the l,5-AP preparations were exchanged for deuterium by crystallizing the compounds from monodeuteroethanol.

Approximately 300 mg . of the l,5-AP material was dissolved in a minimum amount of hot monodeuteroethanol $(99 \%, 0.5 \mathrm{ml}$.$) in a l0-ml. Erlenmeyer flask.$ The solution was then cooled in an ice bath. If crystallization did not occur upon cooling, approximately 0.5 ml . of cold ethyl acetate was added to the solution. In most cases, crystallization was initiated by scratching the bottom of the flask with a glass stirring rod. In the other cases, crystallization took place within a few hours after the mother liquor was refrigerated. The deuterated crystals were separated by filtration, washed with a small amount of cold ethyl acetate, and dried in a vacuum desiccator. The above procedure was then repeated two or more times. The degree of deuteration was not rigorously established.

The melting points of the deuterated $1,5-\mathrm{AP}$ compounds were determined to be 115, 128 , and $96.5^{\circ} \mathrm{C}$. for $1,5-A X, 1,5-A R$, and $1,5-A L A$, respectively : These melting points are quite close to the values determined for the undeuterated mother compounds as seen from Table II.

TABLE II

MELTING POINTS FOR THE DEUTERATED AND UNDEUTERATED 1,5-ANHYDROPENTITOL COMPOUNDS

1,5-Anhydroxylitol	117	115
1,5-Anhydroribitol	128	128
1,5-Anhydro-L-arabinitol	97	$\therefore \cdot$
1,5-Anhydro-DL-arabinitol	74	96.5

PREPARATION OF $1,5-A N H Y D R O-D L-A R A B I N I T O L$

The compound l,5-anhydro-DL-arabinitol (1,5-ADLA) was prepared by initiating crystallization from an ethanol solution of a racemic mixture of the D and L isomers.

Equal amounts of 1,5 -anhydro-L- and D-arabinitol (100 mg.) were weighed out into a lo-ml. Erlenmeyer flask. The mixture was dissolved in a minimum of hot absolute ethanol (0.3 ml.$)$. The resulting solution was next cooled in an ice bath, cold ethyl acetate added (0.3 ml.), and the mother liquor refrigerated overnight. The crystalline product was separated by filtration, washed with a small amount of cold ethyl acetate, and dried in a vacuum desiccator. After two recrystallizations, the melting point of the crystalline material remained constant at $74^{\circ} \mathrm{C}$. This value is noted to be substantially lower than the melting point measured for either of the D or L isomers $\left(96-97^{\circ} \mathrm{C}.\right)$ as listed in Table II.

The 1,5-ADLA product was later deuterated by the method described in the last section. The deuteration procedure was repeated three times, the degree of deuteration was not rigorously established, and the melting point was determined to be $73^{\circ} \mathrm{C}$., which is comparable to the undeuterated material (see Table II).

NUCLEAR MAGNETIC RESONANCE MEASUREMENTS OF THE 1,5-ANHYDROPENTITOL COMPOUNDS

The nuclear magnetic resonance (NMR) spectra for the 1,5-AP compounds in solution in heavy water ($D_{2} O$) and dimethyl sulfoxide- d_{6} ($D M S O-d_{6}$) were measured to provide conformational information which might be used to aid the interpretation of the solution vibrational spectra.

The NMR spectra were measured on a Varian A-60A analytical NMR spectrometer.

The infrared spectra of the crystalline $1,5-A P$ compounds were also recorded in two sample arrangements: l) as a potassium bromide pellet (KBr pellet) and 2) as a split mul1 ${ }^{4}$.

MEASUREMENT OF THE INFRARED AND RAMAN SPECTRA OF THE DEUTERATED 1,5-ANHYDROPENTITOL COMPOUNDS IN THE CRYSTALLINE STATE

The vibrational spectra of the deuterated $1,5-A P$ compounds were measured to provide additional information that might assist in the assignment of the solid state $1,5-A P$ spectral bands, primarily the COH bending vibrations.

The preparation of the deuterated l,5-AP compounds has already been discussed in an earlier section. The Raman spectra of the deuterated compounds were measured for the crystalline samples in capillary tubes. The infrared spectra were recorded for the potassium bromide pellets.

The pellet preparation sometimes resulted in a significant decrease in the degree of deuteration. This apparently was the result of the hygroscopic nature of potassium bromide and the generation of new crystal surfaces by grinding. Two sample preparation methods were observed to minimize protonation. The first alternative follows as a minor modification of the pellet preparation. That is, the deuterated sample is added to the potassium bromide base and the two materials ground and mixed together with an agate mortar and pestle, rather than the usual practice of grinding the sample first and then adding the potassium bromide. The second alternative is to prepare the sample as Fluorolube and Nujol mulls, since neither of these materials are hygroscopic. The first method was employed for the deuterated l,5-AP samples.

[^4]MEASUREMENT OF THE RAMAN SPECTRA OF THE $1,5-A N H Y D R O P E N T I T O L ~ S O L U T I O N S$

The l,5-AP aqueous solution spectra were measured to provide additional spectral information that might aid in the assignment of the solid state spectral bands. A comparison of the solid state and solution spectra provides a means of distinguishing molecular bands from spectral features associated with the solid state. In addition, the effect of the dissolution of the $1,5-\mathrm{AP}$ compounds upon the vibrational spectra can be investigated. Further; the 1:5-AP DMSO-d 6 solution spectra were recorded. A comparison of the l,5-AP water and DMSO-d. solution spectra will also permit the investigation of the effect of the type of solvent (amphiprotic versus aprotic) on the vibrational spectra.

The Raman spectra were measured for the $1,5-A P$ solutions in water and in DMSO-d ${ }^{6}$. The spectra were recorded with the samples in each of two sample arrangements, i.e., in a capillary tube and in an intermediate size quartz cell. The concentration of the DMSO_{6} solutions was approximately 30% by weight (mass), and the concentration of the aqueous solutions was approximately 25%. For comparison, the Raman spectra of the concentrated solutions or sirups were recorded. The sirups resulted from concentrating the 25% solutions through slow evaporation of water at room temperature.

ATTEMPT TO MEASURE THE RAMAN SPECCTRUM OF THE $1,5-A N H Y D R O X Y L I T O L ~ M E L T ~$

The measurement of the Raman spectra of the $1,5-A P$ melts would permit the examination of the vibrational spectra of these compounds in the fluid state without the presence of a solvent. A comparison of these spectra with the solid state spectra would provide a means of distinguishing molecular bands from spectral features associated with the solid state.

An attempt was initiated to record the Raman spectrum of the l, 5-AX melt. with the assistance of a Harney-Miller variable temperature cell ${ }^{5}$. A capillary tube was packed with the crystalline sample and inserted into the variable temperature cell. The cell was heated and its temperature controlled by passing hot nitrogen gas through it. The cell temperature was increased until the sample melted ($1177^{\circ} \mathrm{C}$.) and then maintained slightly above the melting point. The Raman spectrum was then recorded. Fluorescence from the glass cell walls resulted in an intense background. During the spectral scan, the fluorescence level began to increase, eventually masking the Raman spectrum. The increase in the level of fluorescence was traced to sample or sample impurity decomposition. The melt was observed to darken in color during the scan. In addition, the melting point of the sample after it had cooled and crystallized was determined to be a few degrees lower than the initial value. However, the $1,5-\mathrm{AP}$ compounds are considered to be quite stable to oxidation. This implies that the fluorescence problem may be derived from the decomposition of impurities present in the sample. The presence of only a small amount of fluorescent material will result in a high level of fluorescence which may mask the Raman spectrum. In addition, spurious bands and excessive background noise generated by continual formation of tiny gas bubbles in the melt added to the destruction of the spectrum. The result was a completely unusable vibrational spectrum.

No attempt was made to measure the melt spectra of $1,5-A R$ and $1,5-A L A$.

[^5]The depolarization ratios were measured for 1,5-AX and 1,5-AR in solution" in water and also DMSO-d. Such measurements provide additional data which assist the band assignment in the l,5-AP solid state spectra.

Discussions of the theory of depolarization ratios and the instrumental technique of their measurement can be found in almost any text treating Raman spectroscopy, for example (66-69). The various instrumental arrangements for measuring depolarization ratios have been discussed and evaluated for accuracy by Allemand (70). He suggests that the polarization of the exciting beam be kept constant and that the analyzer be placed after the sample as the experimental arrangement providing the most accurate depolarization ratios. He further states that in cases where it is impracticable to measure the instrument functions, the use of the scrambler eases the experimental difficulties at relatively little cost in accuracy of the depolarization ratio determinations. In this sample arrangement, the spectrum of the sample in a fluid state, such as in solution, is recorded with the plane of polarization of the analyzer set parallel to the plane of polarization of the incident beam. The spectrum is then measured with all instrument conditions the same except that the plane of polarization of the analyzer is rotated by 90°, so that it is now perpendicular to the plane of polarization of the incident beam. The scrambler is in place after the analyzer and before the entrance slit in both cases. The depolarization ratio of a particular band is then calculated by dividing the intensity of the band, which is proportional to the band height for symmetric band shapes, in the spectrum where the analyzer is in the perpendicular position by the intensity of the same band in the spectrum with the analyzer in the parallel position. In this experimental
arrangement, vibrations that are not totally symmetric have a theoretical depolari zation ratio of 0.75 , while totally symmetric vibrations have a ratio less than 0.75.

Both 1,5-AX and l,5-AR belong to the C-s $^{\text {s }}$ molecular point group. They possess a plane of symmetry which bisects the ring and passes through the ring oxygen and third carbon atom. The vibrational bands for these compounds are then expected to belong to either the symmetric (A') or antisymmetric (A") symmetry species which embody the $\underline{C}_{\text {S }}$ point group. The depolarization ratio calculations are seen to aid in the assignment of spectral bands. The spectral bands belonging to the totally symmetric species should have depolarization ratios less than 0.75 , while bands of the antisymmetric species should have ratios equal to 0.75 . The calculated spectral bands resulting from the normal coordinate calculations may be classified mathematically as belonging to either the symmetric or antisymmetric species. The assigned experimental bands should be of the same symmetry species. In the case of l,5-ALA, the molecule contains no elements of symmetry; therefore, all vibrational bands would be expected to have depolarization ratios less than 0.75 .

Depolarization ratios were calculated for $1,5-A X$ and $1,5-A R$ solutions in. water and in DMSO-d. The experimental arrangement discussed above involving a fixed plane of polarization for the incident beam, a polarization analyzer after the sample, and a polarization scrambler was employed in all cases. The calculated values for a number of bands are questionable, however, because the bands are overlapped with neighboring bands. It is virtually impossible to determine the band intensity of an overlapped band except by some approximation technique. The peak height is no longer strictly proportional to the band intensity, and the measured ratios are no longer accurate. Unfortunately, the solution spectra of $1,5-A X$ and

1,5-AR possess a number of overlapped bands. (The reader may wish to examine the solution spectra in the next section.)

MEASUREMENT OF THE INFRARED AND RAMAN SPECTRA OF 1,5-ANHYDRO-DL-ARABINITOL AND THE DEUTERATED DERIVATIVE

The Raman and infrared spectra of $1,5-A D L A$ were measured to investigate the differences, if any, that exist between the $1,5-A D L A$ vibrational spectra and the spectra of the D and L isomers. The hydrogen bonding and.crystal structure are suspected of differing between $1,5-A D L A, 1,5-A L A$, and $1,5-A D A$. The procedures employed in the preparation of $1,5 \sim A D L A$ from a racemic mixture of the D and L isomers and in the subsequent deuteration of this material have been described in earlier sections:

The infrared spectrum was recorded for the deuterated material in a mull pressed between sodium chloride windows. The spectral region from 3600-1300 $\mathrm{cm} .^{-1}$ was measured for the Fluorolube mull, and the region from $1300-600 \mathrm{~cm} .^{-1}$ was recorded for the Nujol mull. The mulls were employed because an excessive decrease in the degree of deuteration resulted from the preparation of $K B r$ pellets. This situation was encountered and discussed earlier in relation to the infrared spectra of deuterated $1,5-A P$ compounds; however, the decrease in the degree of deuteration was much more pronounced with the deuterated 1;5-ADLA compound.

EXPERIMENTAL RESULTS

NUCLEAR MAGNETIC RESONANCE SPECTRA.OF THE
$1,5-A N H Y D R O P E N T I T O L$ COMPOUNDS

The NMR spectra of the $1,5-A P$ compounds in solution in $\mathrm{D}_{2} \mathrm{O}$ are included in Fig. 3-5 in which sodium 2,2-dimethyl-2-silapentane-5-sulfonate (DSS) is the internal standard. The NMR spectra of the 1,5-AP compounds in solution in DMSO-d $_{6}$ are included in Fig. 6-8a in which tetramethylsilane (TMS) is the internal standard. The NMR spectrum of the $D M S O-d_{6}$ solution of $1,5-A L A$ to which a drop of $\mathrm{D}_{2} \mathrm{O}$ has been added and the solution exposed to HCl vapor is presented for comparison in Fig. 8b.

INFRARED AND RAMAN SPECTRA OF THE 1,5-ANHYDROPENTITOL COMPOUNDS IN THE CRYSTALLINE STATE

The Raman spectrum of $1,5-A X$ (pellet) is shown in Fig. 9. The corresponding infrared spectrum (KBr. pellet) is displayed in Fig. 10. In Table III, the measured frequencies (cm. ${ }^{-1}$) of the bands in the $1,5-A X$ infrared and Raman spectra, exhibited in Fig. 9 and 10, are listed as well as their relative intensities ${ }^{6}$. The Raman spectrum (pellet) and the infrared spectrum (KBr pellet) of 1,5-AR are reproduced in $F i g .11$ and 12 , respectively. The observed frequencies and relative intensities of the bands appearing in these spectra are tabulated in Table IV, The Raman spectrum (pellet) of $1,5-A L A$ is included in Fig. 13. The complementary infrared spectrum (KBr pellet) follows in Fig. 14. The frequencies and.relative intensities for these spectra are tabulated in Table V. The Raman and infrared spectra of $1,5-A D A$ are identical to those of the L isomer,

[^6]

Figure 3. The $\mathbb{N M R}$ Spectrum of 1,5-AX in $\mathrm{D}_{2} \mathrm{O}$ with DSS as an Internal Standard

Figure. 4. The $\mathbb{N M R}$ Spectrum of $1,5-A R$ in $D_{2} O$ with $D S S$ as an Internal Standard

Figure 5. The NMR Spectrum of $1,5-A L A$ in $D_{2} O$ with DSS as an Internal Standard

Figure 6. The NMR Spectrum of $1,5-\mathrm{AX}$ in $\mathrm{DMSO}_{-d_{6}}$ with TMS as an Internal Standard

Figure 7. The NMR Spectrum of $1,5-A R$ in $D M S O-d_{6}$ with TMS as an Internal Standard

Figure 8a. The NiMR Spectrum of 1,5-ALA in DMSO- d_{6} with TMS as an Internal Standard

Figure 8b. The NMR Spectrum of 1,5-ALA in DMSO- d_{6} with TMS as an Internal Standard After Adding a Drop of $\mathrm{D}_{2} \mathrm{O}$

Figure 9. The Raman Spectrum of Crystalline 1,5-Anhydraxylitol
-40-

Pigure 10. The Infrared Spectrum of Crystalline 1,5-Anhydroxylitol

$\begin{gathered} \Delta \nu,,^{-1} \\ R, \end{gathered}$	Relative Intensity	$\operatorname{IR}^{\mathrm{V}, \mathrm{~cm}_{\cdot}^{-1}}{ }^{\mathrm{b}}$	Relative Intensity	${ }_{R,}^{\Delta \nu, \mathrm{cm}^{-1}}{ }^{\mathrm{a}}$	Relative Intensity	$\stackrel{V,}{\operatorname{IR}, \mathrm{~cm}_{-1}^{-1}}$	Relative Intensity
3383	4	3387	85	1143	30	1145	47
3343	4	3350	87	1120	46	1125	63
3290	4	3300	82	$1100{ }^{\text {c }}$	17	$1100^{\text {c }}$	73
2985	45	2990	17	1092	38	1095	89
2970	45	2973	10	1056	14	$1060{ }_{c}$	100
		2941	22			$1052^{\text {c }}$	73
2928	29	2933	25	1017	31	1018	84
$2896{ }^{\text {c }}$	24			933	43	936	83
2885	46	2900	30			$928{ }^{\text {c }}$	17
2871	39	2873	30	$905^{\text {c }}$	11	$904^{\text {c }}$	26
1472	15	1470	28	896	50	899	32
1459	19	1464	25	635	5	637	29
1439	6	1440	27			565	23
1427	7			544	100	542	27
		$1402{ }^{\text {c }}$	25	$533{ }^{\text {c }}$	40	$533{ }^{\text {c }}$	18
		$1397{ }^{\text {c }}$	29	455	12	456	21
1385	7	1391	36	437	50	440	17
1370	14	1372	31	418	26	420.	12
1349	6	1356	37	369	5	$366^{\text {c }}$	9
1340	10	1340	15	315	10	$317^{\text {c }}$	3
1320	33	1321	24	299	8	295	3
1306	7			280	14	285	4
1296	11	1301	15	234	2		
1285	13	$1279{ }^{\text {c }}$	24	225	1		
1268	7	$1267^{\text {c }}$	20	220	1		
		1235	35	214	2		
1199	26	1198	39	202	2		
		1168	15				

[^7]$b_{\text {Infrared spectrometer }} \quad{ }^{c}$ Shoulder. operating conditions:

Sample arr.: KBr pellet Slit program: 1000×1
Gain: 4.6
Atten. speed: 1100
Scan time: 1×32
Suppression: 6
Scale expansion: 1X
Source current: 0.75

Figure 1l. The Raman Spectrum of Crystalline 1,5-Anhydroribitol

THE TABULATED FREQUENCIES FOR THE RAMAN AND INFRARED SPECTRA OF CRYSTALLINE 1,5-ANHYDRORIBITOL

$\frac{\Delta v,,^{-1}}{R, ~}$	Relative Intensity	IR, ${ }_{\text {cm, }}^{\text {cm, }}{ }^{\text {b }}$	Relative Intensity		Relative Intensity	IR, $\mathrm{V}, \mathrm{cm} .^{-1}$	Relative Intensity
3406	13	3409	100			$1077{ }^{\text {c }}$	63
3350	4	3345	92	$1073{ }^{\text {c }}$	17	$1070^{\text {c }}$	42
3250	3	3279	90	1045	10	1045	89
2997	47	3000	23	1040	11		
2972	63	2970	45	1005	25	1000	42
2943	92	2945	49	993	27	989	66
2932	48	$2934{ }^{\text {c }}$	47			963	8
		$2929{ }^{\text {c }}$	41	925	74	928	71
2918	32			$916^{\text {c }}$	7	$916^{\text {c }}$	11
2875	56	2880	44	878	57	879	67
1468	13	1466	53			$873{ }^{\text {c }}$	47
1458	35					832	22
		1435	52	.		776	10
1419	5					683	19
1403	9	$1400{ }^{\circ}$	38	669	7	668	$\therefore 23$
1385	5	$1388{ }^{\text {c }}$	21	647	6	649	13
		$1365^{\text {c }}$	29	581	100	582	30
1350	7	1354	36	$448{ }^{\text {c }}$	25	$451{ }^{\text {c }}$	5
	23	1310	19	437	55	433	17
$1281{ }^{\text {c }}$	5	1290	30	406	2	406	. 2
$\begin{aligned} & 1265 \\ & 1244^{c} \end{aligned}$	36	$1264{ }^{\text {c }}$	63	396	1	$395{ }^{\text {c }}$	2
	5	$1245{ }^{\text {c }}$	22			353	4
		1226	22	345	21	342	14
1202	7	1202	18	319	4		
		1167	39	306	3	305	18
1156	16	1156	33	271	3		
1124	29	1126	50	238	4		
1104	4	$1103{ }^{\text {c }}$	75	208	1		
	57	1093 1083	57 69	169	3		

```
\({ }^{\text {a }}\) Raman spectrometer
operating conditions:
        Sample arr.: pellet
        Laser wavelength: 5145 A.
        Laser power: 780 mw .
        Slit width: \(160 \mu \mathrm{~m}\).
        Slit height: 5 mm .
        Scan: \(50 \mathrm{~cm}_{-1}^{-1} / \mathrm{min}\).
        DC: \(0.1 \times 10^{-6}\)
        RT: 1 sec .
a Raman spectrometer operating conditions:
Sample arr.: pellet Laser wavelength: 5145 A. Laser power: 780 mw . Slit width: \(160 \mu \mathrm{~m}\). Slit height: 5 mm . Scan: \(50 \mathrm{~cm} 0_{-6}^{-1} / \mathrm{min}\). RT: 1 sec .
```

PM. voltage: 1900
PM temp.: $-20^{\circ} \mathrm{C}$.
Spike filter used
$b_{\text {Infrared }}$ spectrometer operating conditions:

Sample arr.: KBr pellet
Slit program: 1000×1
Gain: 4.6
Atten. speed: 1100

Scan time: 1 x 32
Suppression: 6
Scale expansion: 1X
Source current: 0.75
${ }^{c}$ Shoulder.

TABLE V

THE TABULATED FREQUENCIES FOR THE RAMAN AND INFRARED SPECTRA OF CRYSTALLINE $1,5-A N H Y D R O-L-A R A B I N I T O L$

3425	6	3428	100	1136	7	$1145^{\text {c }}$	38
3425	6	3385	93	1112	17	$1112^{\text {c }}$	66
3310	3	3320	94	1104	17	1103	85
2983	60	2985	42	1092	12	1093	90
2973	39	2976	45	1067	21	1074	99
$2932{ }^{\text {c }}$	19	$29.32^{\text {c }}$	31	1057	21	1056	79
		$2925{ }^{\text {c }}$	37	1005	25	1008	88
2916	44	2917	42	948	10	947	19
2879	15.	2879	31	926	14	927	37
2860	26	2863	55	876	2	880	55
1467	13	$1463{ }^{\circ}$	41	837	100	840	70
1454	19	1460°	37	758	14	755	50
$1446^{\text {c }}$	6	1442	22	633	23	636	26
1410	12	1410	28	546	41	546	25
$1381{ }^{\text {c }}$	3	. $379{ }^{\text {c }}$	42	483	16	483	19
1369	3	1371	46	430	14	426	27
1343 c	3	1349	42	408	11	408	14
$1325{ }^{\text {c }}$	4	1329	50	$406^{\text {c }}$	10		
		1313	46			383	19
1302	18	1300	40	$371{ }^{\text {c }}$	1	$375{ }^{\text {c }}$	14
1281	16	$1279{ }^{\text {c }}$	23	314	7	$306^{\text {c }}$	2
$1269^{\text {c }}$		$1262^{\text {c }}$	29	$296{ }^{\text {c }}$	2	$296{ }^{\text {c }}$	5
		$1248{ }^{\text {c }}$	40	256	2		
1233	8	1233	57	233	2		
1216	8	1217	53	197	4		
1150	14	1151	60	176	$?$		

```
\({ }^{\mathrm{a}}\) Raman spectrometer
    operating conditions:
        Sample arr.: pellet
        Laser wavelength: 5145 A .
        Laser power: 780 mw .
        Slit width: \(130 \mu \mathrm{~m}\).
    Slit height: 5 mm .
    Scan: \(50 \mathrm{~cm} .^{-1} / \mathrm{min}\).
    DC: \(\quad 0.1 \times 10^{-6}\)
    RT: 1 sec.
    PM voltage: 1900
    PM temp.: \(-20^{\circ} \mathrm{C}\).
    Spike filter used
```

as one might expect. Therefore, to refrain from repetition the $1,5-A D A$ spectra are not included.

INFRARED AND RAMAN SPECTRA OF THE DEUTFRATED 1,5-ANHYDRROPENTITOL COMPOUNDS IN THE CRYSTALLINE STATE

The Raman and infrared spectra of crystaliine deuterated $1,5-A X, 1,5-A R$, and $1,5-A L A$ follow in Fig. 15-20, respectively. The frequencies and relative intensities of these spectra are tabulated in Tables VI-VIII.

RAMAN SPECTRA OF THE 1,5-ANHYDROPENTITOL SOLUTIONS

The Raman spectra of the $1,5-A P$ sirups are reproduced in Fig. 21-23. The Raman spectra of the $D M S O-d_{6}$ solutions are not included because the spectra, excluding solvent bands, are almost identical with the aqueous solution spectra. However, the frequencies and relative intensities for the DMSO-d 6 solution spectra are tabulated along with the corresponding values for the aqueous solution spectra in Tables IX-XI. The solution spectra of $1,5-A L A$ and $1,5-A D A$ are identical and for this reason only the Raman spectrum of the L isomer is included.

DEPOLARIZATION RATIOS FOR 1,5-ANHYDROXYLITOL
AND $1,5-A N H Y D R O R I B I T O L ~ I N ~ A Q U E O U S ~ S O L U T I O N ~$

The calculated depolarization ratios for the vibrational bands of $1,5-A X$ and $1,5-A R$ are listed in Tables XII and XIII, respectively, with the questionable values resulting from overlapped bands designated by footnote c. The OH stretching bands in the region $3400-3200 \mathrm{~cm} .^{-1}$ are not included because they are too weak and broad to measure depolarization ratios. The $C H$ stretching bands in the region $3000-2850 \mathrm{~cm} .^{-1}$ are also omitted since they overlap extensively in the solution spectra making measurement of depolarization ratios impossible.

Pigure 17. The Raman Spectrum of Crystalline Deuterated 1,5-Anhydroribitol

TABULATED FREQUENCIES FOR THE RAMAN AND INFRARED SPECTRA OF DEUTERATED 1,5 -ANHYDROXYLITOL

[^8]TABLE VII
TABULATED FREQUENCIES FOR THE RAMAN AND INFRARED SPECTRA OF DEUTERATED 1,5-ANHYDRORIBITOL

$R_{R, ~ c m,-1}^{a}$	Relative Intensity	${\mathrm{IR}, \mathrm{~cm}^{-1}}_{\mathrm{b}}^{\mathrm{b}}$	Relative Intensity	$\frac{\Delta v,{ }_{R},{ }_{\mathrm{m}}^{\mathrm{s}}}{}$	Relative Intensity	$\stackrel{V, \mathrm{~cm}^{-1}}{\mathrm{~b}}$	Relative Intensity
2999	48	2996	27			1102	84
2975	66	2967	60			$1093{ }^{\text {c }}$	77
		2956	32	1085	51	1082	90
2945	100	2942	64			$1078{ }^{\text {c }}$	72
$2935{ }^{\text {c }}$	55	$2931{ }^{\text {c }}$	57			$1069{ }^{\text {c }}$	46
		$2925{ }^{\text {c }}$	47	1046	14	1045	100
2919	33			1023	14	1029	71
2879	66	2876	60	1005	14	999	49
2533	23	2528	81	988	23	986	70
2491	8	2487	58			$972^{\text {c }}$	39
2437	9	2440	58		\therefore	$962^{\text {c }}$	37
1467	15				\because	$931{ }^{\text {c }}$	25
		1463	58	920	28	925	80
1457	33			877	18	877	71
		1437	48	826	19	831	49
1427	2	1430	49		.	776	16
1420	2					682	27
1400	5	1396	40	669	9	668	22
1382	9	$1380{ }^{\circ}$	25			$663{ }^{\text {c }}$	23
		$1361^{\text {c }}$	33	646	2	$648^{\text {c }}$	12
1354	13	1350	40	628	5		
1347	12	1345	40	577	62	575	35
1333 c	25	1326	22			473	12
$1319{ }^{\text {c }}$	10			$465^{\text {c }}$	11		
		1307	22	$448{ }^{\text {c }}$	18	451	16
1289	8	1290	36	438	42	433	22
1272	33					421	23
		$1263{ }_{c}$	70	406	8		
		$1248{ }^{\text {c }}$	23			395	8
		1225	32	343	29	339	23
1215	5	1214	36	318	9		
1209°	4			306	7	304	31
		1200°	22			283	22
1166	16	$1161{ }^{\text {c }}$	46	265	2		
$1158^{\text {c }}$	15	1154	58	237	5		
1143 c	7			202	3		
$3124^{\text {c }}$	15	1124 c	54	165	8		
1114	25	$1109{ }^{\text {c }}$	73				

[^9][^10]

2985	35	2981	63	$1109{ }^{\text {c }}$	29	$1102^{\text {c }}$	95
2975	23	2971	62	1094	27	1091	98
$2935{ }^{\text {c }}$	10	$2931{ }^{\text {c }}$	42	1068	31	1069	100
2919	34	2911	61	$1059{ }^{\text {c }}$	30	1053	91
2883	8	2876	46	$1017^{\text {c }}$	26		
2862	16	2858	69	1008	40	1005	92
2538	14	2539	71			$995{ }^{\text {c }}$	67
2465	9	2464	66	950	13	943	36
1470	27			928	20	923	62
		1460	73	$921{ }^{\text {c }}$	15		
	36	$1456^{\text {c }}$	58			$912^{\text {c }}$	59
$1444^{\text {c }}$	9	1437	41	$900^{\text {c }}$	3	896	49
1410	22	1404	58	878	4	877	71
$1393{ }^{\text {c }}$	9					$869{ }^{\text {c }}$	64.
		$1376{ }^{\text {c }}$	64	839	100	837.	79
1373	5	1371	65	809	24	803	47
$1327{ }^{\text {c }}$	8	1327	64	759	23	750	74
1304	45	1310	62	634	48	631	39
		1297	63	547.	71	542	23
1284	30	1280	. 53	488	26	480	20
$1271{ }^{\text {c }}$	13			431	30	424	25
		$1259{ }^{\text {c }}$	58	407 c	26	402	25
		1248	58	$371{ }^{\text {c }}$	3	372	13
1239	16			$314{ }^{\text {c }}$	18		
		1229	71	$300^{\text {c }}$	8		
$1220{ }_{c}$	15	$1215{ }_{c}$	69	257	3		
$1161^{\text {c }}$	13	$1159{ }^{\text {c }}$	66	232	3		
1151	18	1147	75	198	10		
$1141^{\text {c }}$	13			175	2		
1114	30	1110°	89				

[^11]\[

$$
\begin{aligned}
& { }^{\mathrm{b}} \text { Infrared spectrometer } \\
& \text { operating conditions: } \\
& \text { Sample arr.: } \mathrm{KBr} \text { pellet } \\
& \text { Slit program: } 1000 \times 1 \\
& \text { Gain: } 4.6 \\
& \text { Atten. speed: } 1100 \\
& \text { Scan time: } 1 \times 32 \\
& \text { Suppression: } 6 \\
& \text { Scale expansion: } 1 \mathrm{X} \\
& \text { Source current: } 0.8
\end{aligned}
$$
\]

Figure 21. The Raman Spectrum of the Water Solution of 1,5-Anhydroxylitol

Figure 22. The Raman Spectrum of the Water Solution of 1,5-Anhydroribitol

Pigure 23. The Reman Spectrum of the water Solution of 1,5 -Anhydro-L-arabinitol

TABLE IX
TABULATED FREQUENCIES FOR THE RAMAN SPECTRA OF THE WATER AND DMSO-d 6 SOLUTIONS OF l,5-ANHYDROXYLITOL

$\begin{gathered} \Delta \nu, \\ \mathrm{H}_{2} \mathrm{O}, \mathrm{~cm} \cdot-^{\mathrm{a}} \end{gathered}$	Relative Intensity	$\begin{gathered} \Delta \nu, \\ \text { DMSO }_{6}, \mathrm{~d}_{6}, .^{-1} \end{gathered}$	Relative Intensity
2985	34	2972	34
$2912^{\text {c }}$	27	$2908{ }^{\text {c }}$	23
2875	45	2861	44
$1469^{\text {c }}$	12	$1470^{\text {c }}$	11
1462	19	1460	16
		1439	4
		$1410{ }^{\text {c }}$	3
		$1395{ }^{\text {c }}$	4
1385	10	1380	6
$1368{ }^{\text {c }}$	6	$1370^{\text {c }}$	4
$1340{ }^{\text {c }}$	6	$1337{ }^{\text {c }}$	4
1325	16	1319.	10
$1313{ }^{\text {c }}$	9	$1312^{\text {c }}$	6
		$1296{ }^{\text {c }}$	4
1285	5		
1232	2	1227	2
1202	6	1196	6
1140°	20	$1142{ }^{\text {c }}$	15
1123	28	1123	20
$1098{ }^{\text {c }}$	21	$1101{ }^{\text {c }}$	19
1092	26	1097	21
1062	7	solvent band:	
1023	8	solvent band	
941	17	$946{ }_{c}$	17
		913	3
896	32	899	20
812	4	812	9
630	5	solvent band	
535	100	536	100
$456^{\text {c }}$	9	$457{ }^{\text {c }}$	5
437	22	439	18
416	24	413	20
376	3	solvent band	
290	5	solvent band	

[^12]table X
TABULATED FREQUENCIES FOR THE RAMAN SPECTRA OF THE WATER AND DMSO-d 6 SOLUTIONS OF $1,5-A N H Y D R O R I B I T O L$

$\begin{gathered} \Delta \nu, \\ \mathrm{H}_{2} \mathrm{O}, \mathrm{~cm}^{-1} \end{gathered}$	Relative Intensity	$\begin{aligned} & \Delta \nu, \\ & \text { DMSO }-\mathrm{d}_{6}, \mathrm{~cm}^{-1} \end{aligned}$	Relative Intensity
2983	82	2969	94
2928	92	2913	88
2885	67	2869	98
$1471{ }^{\text {c }}$	19	$1463{ }^{\text {c }}$	30
1461	44	1456	55
$1452^{\text {c }}$	32	$1446^{\text {c }}$	28
1408	9		
1329	29	1321	39
1291	40	1286	38
1270°	30	1258	40
1229	10	1225	15
1206	5	1200	15
1160	15	1158	26
1121	37	1124	55
1090	60	1091	97
$1054{ }^{\text {c }}$	50	solvent bana	
$1048{ }^{\text {c }}$	20	solvent band	
997	34	solvent band	
967	10	solvent band	
934	39	937	84
884	100	881	96
$869{ }^{\text {c }}$	47	$869{ }^{\text {c }}$	45
837	31	solvent band	
795	40	$792^{\text {c }}$	60
692	85	688	100
648	17	solvent band	
584	84	577	99
456	41	451	55
434	78	431	99
358	13	solvent band	
293	5	solvent band	
175	3		

[^13]${ }^{\mathrm{b}}$ Raman spectrometer Neutral density operating conditions: filter used
Sample arr.: quartz cell ${ }^{\text {c }}$ Shoulder. Laser wavelength: 5145 A .
Laser power: 800 mw .
Slit width: $250 \mu \mathrm{~m}$.
Slit height: 10 mm .
Scan speed: $50 \mathrm{~cm} .^{-1} / \mathrm{min}$.
DC: 10×10^{-9}
RT: 3 sec .
PM voltage: 1900
PM temp.: $-20^{\circ} \mathrm{C}$.

TABLE XI
TABULATED FREQUENCIES FOR THE RAMAN SPECTRA OF THE WATER AND DMSO- d_{6}. SOLUTIONS OF $1,5-A N H Y D R O-L-A R A B I N I T O L$

$\begin{gathered} \Delta \nu, \\ \mathrm{H}_{2} \mathrm{O}, \mathrm{~cm}^{-1} \end{gathered}$	Relative Intensity	$\underset{\text { DMSO-d }_{6},}{\Delta \nu \mathrm{~cm}^{-1}}$	Relative Intensity
2979	56	2968	- 55
2916	65	2902	52
2872	50	2863	- 49
1468	20	1463	- 13
1452	23	1446	16
1388	9	1375 c	6
$1303{ }^{\text {c }}$	24	$1308{ }^{\text {c }}$	17
1296	27	1292	20
1229	12	1225	10
1153	16	1156	12
1120	24	1121	22
1095	22	1110	22
1072	25	solvent band	
$1060{ }^{\text {c }}$	19	solvent band	
1013	51	solvent band	
949	26	949	39
926	15	925	11
883	5	881	3
865	6	867	5
840	100	834	100
754	24	solvent band	
744	22	$742^{\text {c }}$	38
640	58	solvent band	
544	38	539	22
$532{ }^{\text {c }}$	21	522 c	19
487	46	483	26
$465^{\text {c }}$	12	$464^{\text {c }}$	6
425	22	420	13
407	19	409	12
301	8	solvent band	
270	3	solvent band	
165	6		

$a_{\text {Raman spectrometer }}$
operating conditions:
Sample arr.: cap. tube
Laser wavelength: 5145 A.
Laser power: 950 mw .
Slit width: $130 \mu \mathrm{~m}$.
Slit height: 5 mm .
Scan speed: $50 \mathrm{~cm} .^{-1} / \mathrm{min}$.
DC: 0.1×10^{-6}
RT: l sec.

PM voltage: 1900
PM temp.: $-20^{\circ} \mathrm{C}$.
Neutral density filter
$b_{\text {Raman }}$ spectrometer operating conditions:

Sample arr.: quartz cell Laser wavelength: 5145 A. Laser power: 800 mw . Slit width: $250 \mu \mathrm{~m}$.

Slit height: 10 mm .
Scan speed: $50 \mathrm{~cm} .^{-1 /}$ min.
DC: 10×10^{-9}
RT: 3 sec .
PM voltage: 1900
PM temp.: $-20^{\circ} \mathrm{C}$.
Neutral density filter
${ }^{c}$ Shoulder.

MEASURED DEPOLARIZATION RATIOS FOR WATER AND DIMETHYL SULFOXIDE- d_{6} SOLUTIONS OF $1,5-A N H Y D R O X Y L I T O L$

$\Delta \nu, \mathrm{cm}{ }^{-1}$	$\rho^{\mathrm{a}}, \mathrm{H}_{2} \mathrm{O}$	$\rho^{\text {a }}$, DMSO-d $_{6}$	Symmetry ${ }^{\text {b }}$
$1469{ }^{\text {e }}$	0.59	0.59	A^{\prime}
1460^{e}	0.65	0.74	A^{\prime}
$1385{ }^{\text {e }}$	0.64	0.69	A^{\prime}
$1325{ }^{\text {e }}$	0.67	0.74	A ${ }^{\text {, }}$
$1285{ }^{\text {e }}$	0.63	0.72	A^{\prime}
$1232{ }^{\text {e }}$	0.46	solvent ${ }^{\text {c }}$	A ${ }^{\text {, }}$
1202	0.68	0.74	A^{\prime}
$1140{ }^{\text {e }}$	0.67	0.72	A^{\prime}
$1123{ }^{\text {e }}$	0.62	0.61	A^{\prime}
$1092{ }^{\text {e }}$	0.21	0.29	A ${ }^{\text {a }}$
$1062{ }^{\text {e }}$. 0.19	solvent	A^{\prime}
1023	0.70	solvent	A'
942	0.25	0.25	A ${ }^{\prime}$
896	0.16	0.19	A ${ }^{\prime}$
812	0.00	0.00	A^{\prime}
630	0.44	solvent	A ${ }^{\text {a }}$
535	0.08	N.D. ${ }^{\text {d }}$	A^{\prime}
456	N. ${ }^{\circ}$.	0.75	A"
$437{ }^{\text {e }}$	0.71	0.75	A"
416^{e}	0.44	0.45	A^{\prime}
$369{ }^{\text {e }}$	0.29	N.D.	A^{\prime}

```
\(a_{p}\) Designates the depolarization ratio.
\(b_{A}\) ' (symmetric symm. species).
    \(A^{\prime \prime}\) (antisymmetric species).
\({ }^{c}\) Indicates that ratio could not be measured because of solvent
    band masking.
\(d_{\text {N.D. }}=\) not determined.
\({ }^{e}\) Measured depolarization ratio is questionable because band is
overlapped with neighboring bands.
```

TABLE XIII
MEASURED DEPOLARIZATION RATIOS FOR WATER AND DIMETHYL SULFOXIDE-d ${ }_{6}$ SOLUTIONS OF 1,5-ANHYDRORIBITOL

$\Delta \nu, \mathrm{cm} .^{-1}$	$\rho^{\mathrm{a}}, \mathrm{H}_{2} \mathrm{O}$	$\rho^{\text {a }}, \mathrm{DMSO}^{\text {d }}{ }_{6}$	Symmetry ${ }^{\text {b }}$
$1471{ }^{\text {d }}$	0.55	0.59	A'
1461 d	0.56	0.64	A^{\prime}
1329 d	0.73	0.58	A^{\prime}
$1291{ }^{\text {d }}$	0.61	0.60	A^{\prime}
$1270{ }^{\text {d }}$	0.71	0.58	A'
1229 d	0.68	0.60	A^{\prime}
$1160{ }^{\text {d }}$	0.25	0.28	A^{\prime}
1121	0.78	0.80	A"
$1090{ }^{\text {d }}$	0.46	0.56	A^{\prime}
$1054{ }^{\text {d }}$	0.64	solvent ${ }^{\text {c }}$	A^{\prime}
$1048{ }^{\text {d }}$	0.72	solvent	A^{\prime}
997	0.67	solvent	A ${ }^{\text {, }}$
967	0.50	solvent	A^{\prime}
934	0.07	0.13	A'
884	0.14	0.13	A ${ }^{\prime}$
837	0.23	solvent	A ${ }^{\text {a }}$
795	0.00	0.00	A^{\prime}
692	0.06	0.15	A^{\prime}
648	0.14	solvent	A^{\prime}
584	0.06	0.06	A'
$456{ }^{\text {d }}$	0.56	0.60	A^{\prime}
$434{ }^{\text {d }}$	0.16	0.09	A ${ }^{\prime}$
$358{ }^{\text {d }}$	0.40	solvent	A ${ }^{\text {, }}$

a_{ρ} Designates the depolarization ratio.
b_{A} ' (symmetric species).
A" (antisymmetric species).
${ }^{\text {c }}$ Indicates that the ratio could not be determined because the solvent band(s) masked the solute bands.
${ }^{d}$ Measured depolarization ratio is questionable because band is overlapped with neighboring bands.

INFRARED AND RAMAN SPECTRA OF 1,5-ANHYDRO-DL-ARABINITOL AND DEUTERATED 1,5-ANHYDRO-DL-ARABINITOL

The Raman (pellet) and infrared (KBr pellet) spectra of l,5-ADLA appear in Fig. 24 and 25, respectively. The measured frequencies and their relative intensities are tabulated in Table XIV.

The Raman spectrum of deuterated 1,5-ADLA (pellet) is included in Fig. 26. The infrared spectrum of deuterated I,5-ADLA is exhibited in Fig. 27, and the frequencies and relative intensities are tabulated in Table XV.

TABULATED FREQUENCIES FOR THE RAMAN AND INFRARED SPECTRA OF 1,5-ANHYDRO-DL-ARABINITOL

$\Delta v,-1$ $R, \mathrm{~cm}$.	Relative Intensity	$\mathrm{V}_{\mathrm{cm}}^{\mathrm{IR}_{-1}^{\mathrm{b}}}$	Relative Intensity	$\begin{array}{r} \Delta \nu,-{ }^{\mathrm{a}} \\ \mathrm{R}, \mathrm{~cm} .^{-1} \end{array}$	Relative Intensity	$\mathrm{IR}_{\mathrm{cm}}^{\mathrm{cm}} \mathrm{C}^{\mathrm{b}}$	Relative Intensity
		3400	78	1097	22	$1096{ }^{\text {c }}$	98
3324	1	3317	84			1093	100
3214	6	3223	79	1085	25		
3000	75	$2994{ }^{\text {c }}$	11	$1079{ }^{\text {c }}$	13	$1077{ }^{\text {c }}$	95
2989	65	2983	32			1074	97
2966	21	2960	29	1064	9	1059	87
2951	54	2945	30	1012	59	1009	84
2929	5	2925	27	951	12	950	19
$2890^{\text {c }}$	23	2889	34			$944{ }^{\text {c }}$	16
2887	25	2881	34	923	24	916	18
2852	65	2845	53	880	6	877	65
2787	1					$835^{\text {c }}$	59
1469	21	1463	68	840	100	832	64
$1450{ }^{\circ}$	28	1452	68	756	17	752	69
$1443{ }^{\text {c }}$	7	1441	53	$750^{\text {c }}$	11		
		1437	53			$678{ }^{\text {c }}$	14
1423	8					635	39
		$1416{ }^{\circ}$	45	629	50	627	43
$1396{ }^{\text {c }}$	9	$1398{ }^{\text {c }}$	37	550	38	546	26
$1381{ }^{\text {c }}$	5	1379	39	493	57	486	24
		1373	32	-		$482^{\text {c }}$	20
1359	6	1354	32	445	26	437	4
1340	5	$1338{ }^{\circ}$	39	429	16	421	8
1312	19	$1310^{\text {c }}$	34	407	14	402	10
		1304	48	383	3		
1287	19	1283	57	375	1	369	19
1271	15	1270	42	$338{ }^{\text {c }}$	3		
1243	7	1240	40	$326^{\text {c }}$	4		
1235	8	1237	41	313	9		
1224	9	1227	45			304	5
1154	25	1151.	60	291	9		
1127	17	$1125^{\text {c }}$	48			283	3
1113	14	1121	60	269	8		
				231	6		
		$1102{ }^{\text {c }}$	84	197	3		
				185	3		

[^14]RT: 1 sec .
Zero suppression: 10^{-7}
PM voltage: 1900
PM temp.: $-20^{\circ} \mathrm{C}$.
Spike filter used
${ }^{\mathrm{b}}$ Infrared spectrometer operating conditions:

Sample arr.: KBr pellet ${ }^{c}$ Shoulder.

Slit program: 1000 x 1
Gain: 4.6
Atten. speed: 1100
Scan time: 10×8
Suppression: 6
Scale expansion: 1X Source current: 0.8

TABLE XV

TABULATED FREQUENCIES FOR THE RAMAN AND INFRARED SPECTRA OF DEUTERATED 1,5-ANHYDRO-DL-ARABINTIOL

	Relative Intensity	$I R, \stackrel{v,}{c m} .^{-1}$	Relative Intensity		Relative Intensity	$\frac{V,{ }^{V}, .^{-1}}{}$	Relative Intensity
2999	100			1137	10	1130	64
2988	86			1118	42		
2965	29	2970	27	1102 a	57	1097	89
2950	85	2956 d	79	$1083{ }^{\text {d }}$	12	1075^{d}	95
		$2943{ }^{\text {d }}$	31				
2929 d	6	2927	74	1069	7	$1068{ }^{\text {a }}$	100
$2894{ }^{\text {d }}$	20	2891	50			$1052^{\text {a }}$	76
2885 d	40			$1036{ }_{\text {d }}$	16	1032	60
$2875{ }^{\text {d }}$	16			$1013{ }^{\text {d }}$	24.		
2850	87	2845	67	1004	40	1005	90
2804	4					$999{ }^{\text {d }}$	65
2458	13	2460	98	980	3		
2408	27	2405	100	$950{ }^{\text {d }}$	11		
		2356	83	939	30	944	25
1468	47	1462	24	917	24	916	43
$\begin{aligned} & 1450 \mathrm{a} \\ & 1441 \end{aligned}$	9	1455 d	21	$912{ }^{\text {d }}$	20	$\begin{aligned} & 898^{\mathrm{d}} \\ & 880 \\ & 871 \\ & 866^{\mathrm{d}} \end{aligned}$	$\begin{aligned} & 45 \\ & 59 \\ & 54 \\ & 48 \end{aligned}$
		1440 d	24	$895{ }^{\text {d }}$	16		
		$1434{ }^{\text {d }}$	26	875	15		
		1425	24				
1414	19						
$1401{ }^{\text {d }}$	6	$1405{ }^{\text {d }}$	30			844	66
		$1398{ }^{\text {d }}$	38	833	40	835	56
		$1395{ }^{\text {a }}$	29	814	78		
$1377{ }^{\text {d }}$	21			753	8	745	60
1370	35			733	15	633	29
		$1375{ }^{\text {a }}$	61	631	58		
		$1370{ }^{\text {c }} 1358$	60 61	542 491	38 67		
1342	10	1341	39	435	41		
1331	15	1329	41	427	35		
$1308{ }^{\text {d }}$	28			402	24		
1301	47	1303	54	$389{ }^{\text {d }}$	2		
${ }^{1286}$ a	46	1283	42	$374{ }^{\text {a }}$	4		
$1275{ }^{\text {d }}$	13			$329{ }^{\text {d }}$	9		
		1257	39	309	18		
1237 d	20	1235	35	287	12		
$1224^{\text {a }}$	2	1216 d	66	263	11		
${ }_{1154}{ }^{\text {d }}$	31 20	$1162^{\text {d }}$	52	227	11		
1156	20	1153	77	195	4		

[^15]${ }^{\mathrm{b}}$ Infrared spectrometer operating conditions:

Sample arr.: Nujol and Fluorolube mulls
Rest of data same as in Table XIV.

[^16]
NORMAL COORDINATE ANALYSES

The vibrational spectra of the saccharides and their derivatives are quite complex in that several of the bands arise from the coupling of two or more atomic group vibrations in the molecule. It would be almost, if not entirely, impossible to adequately interpret these spectra by the traditional group frequency approach. Normal coordinate calculations, supplemented with group frequency data, provide a means to interpret and understand the vibrational spectra.

Although these mathematical methods may not be considered rigorously quantitative, the qualitative results should provide an extremely valuable tool to the vibrational spectroscopist and physical chemist. With this tool, vibrational spectroscopy may play a more important role in future physical chemical research in the area of carbohydrates and also other complex molecules.

Therefore, an important aspect of this dissertation is the demonstration that the mathematical methods used by Schachtschneider and Snyder (54) and Snyder and Zerbi (56), to facilitate the interpretation of the vibrational spectra of the nparaffins and aliphatic ethers, may be successfully extended to larger and more complex molecules, such as the 1,5 -anhydropentitol compounds.

THEORY

In attempting to account for the observed infrared and Raman spectra of real molecules, a certain simplified model for such molecules is adopted, and then the spectra which this model would exhibit are calculated. The model is specified to consist of particles held together by certain forces. The particles represent the atoms of the molecule and are to be treated as if all the mass were concentrated at a point. The definition of the model geometry is usually based on the
bond lengths and angles for the real molecule. This information may be obtained from x-ray and neutron diffraction studies. An important part of the model specification is that the model obeys the laws of quantum mechanics. The BornOppenheimer approximation, as cited by Pauling and Wilson (71), is made which permits the separation of the problems of electronic and nuclear motion.

The forces between the particles may be crudely thought of as weightless springs which only approximately obey Hooke's law and which hold the "atoms" in the neighborhood of certain configurations relative to one another. This picture of the forces as springs is useful for visualization, but is not sufficiently general for all cases. The search for a potential function which involves a small number of parameters and which at the same time permits good agreement with experiment is far from ended and poses the largest barrier in a normal coordinate analysis.

The mathematical treatment of the vibrational dynamics of the model is initiated by setting up the classical mechanical expressions for the kinetic and potential energies in terms of the coordinates of the "atoms." These expressions in conjunction with the steady state Schrodinger equation are used to write the quantum mechanical wave equation for the model. If the kinetic energy is expressed in suitable coordinates, the wave equation for the model can be approximately separated into three equations, one for translation, one for rotation, and one for vibration ${ }^{78}$.

This fact is proved in a number of texts treating vibrational dynamics, for example, Wilson, et al. (68).

The proper coordinates are the three cartesian coordinates for the center of mass of the model; the three Eulerian angles for a rotating system of cartesian coordinates, the axes of which coincide with the principal axes of inertia for the undistorted model; and a set of coordinates giving the displacements of the particles from their equilibrium positions.

If for example, the cartesian displacement of the \underline{N} "atoms" are chosen or a set of $3 \underline{N}$ equivalent coordinates, there will be six coordinates too many which describe the translational and rotational motion of the molecule. The six conditions relating these coordinates assure that the vibrations do not cause motion of the center of mass and that the coordinate system rotates with the model. The resulting vibrational wave equation is a partial differential equation in $3 \mathbb{N}$ variables. This equation cannot be solved in most cases. By transforming to a new set of coordinates called normal coordinates, the partial differential wave equation may be separated into 3N total differential equations in one variable, which are usually solvable. The condition for the existence of the transformation to normal coordinates is called the vibrational secular equation. The solution of this equation is the heart of a normal coordinate analysis.

KINETIC AND POTENTIAL ENERGY IN CLASSICAL MECHANICS

The potential energy of the model, \underline{V}, may be expressed as a Taylor series in the $3 \mathbb{N}$ generalized displacement coordinates, $\underline{\underline{q}}_{\underline{i}}$, as shown in Equation (I).

$$
\begin{align*}
2 V & =2 V_{0}+2 \sum_{i=1}^{3 N}\left(\partial V / \partial q_{i}\right)_{0} q_{i}+\sum_{i, j=1}^{3 N}\left(\partial^{2} V / \partial q_{i} \partial q_{j}\right) q_{i} q_{j}+\cdots \text { higher terms } \\
& =2 V_{0}+2 \sum_{i=1}^{3 N} f_{i} q_{i}+\sum_{i, j=1}^{3 N} f_{i j} q_{i} q_{j}+\cdots \text { higher terms. } \tag{1}
\end{align*}
$$

If the energy is chosen to be zero at the equilibrium configuration, then $\underline{V}_{\underline{O}}=0$. Furthermore, when all the $\underline{\underline{q}}_{\underline{i}}$'s are zero, the atoms are at their equilibrium positions so that the energy must be a minimum for $\underline{q}_{\underline{i}}=0$, $\underline{i}=1,2,3, \cdots 3 N$. Therefore, ${ }^{9}$

[^17]\[

$$
\begin{gather*}
-76- \\
\left(\partial \mathrm{V} / \partial q_{i}\right)_{0}=f_{i}=0 \tag{2}
\end{gather*}
$$
\]

for $\underline{i}=1,2, \cdots, 3 N$. For small amplitudes of vibration, the higher order terms can be neglected and

$$
\begin{equation*}
2 V=\sum_{i, j=1}^{3 N} f_{i j} q_{i} q_{j} \tag{3}
\end{equation*}
$$

where the $\underline{f}_{\underline{i} \underline{j}}$'s are constants, called force constants, given by $\underline{f}_{\underline{i} \underline{j}}=\left(\partial^{2} \underline{V} / \partial \underline{q}_{\underline{i}} \partial \underline{g}_{\underline{j}}\right)$.

 transpose throughout this manuscript.)

The kinetic energy of the model is given by

$$
\begin{equation*}
2 T=\sum_{i, j=1}^{3 N} t_{i j} \dot{q}_{i} \dot{q}_{j} \tag{4}
\end{equation*}
$$

where the $\underline{t}_{\underline{i} \underline{j}}$'s are the kinetic energy coefficients and the $\underline{\underline{q}}_{\underline{i}}$'s are the velocities in generalized coordinates ${ }^{11}$. This expression may be written in matrix notation as $2 \underset{\sim}{\sim}=\underset{\sim}{\dot{q}}{ }^{\prime} \underset{\sim}{t} \underset{\sim}{\dot{q}}$, In general, the coefficients, $\underline{\underline{t}}_{\underline{i} \underline{j}}$, may be functions of the coordinates, $\underline{\underline{q}}_{\underline{i}}$. The proper procedure in that event is to expand them as a power series in the coordinates.

$$
\begin{equation*}
t_{i j}=t_{i j}^{0}+\sum_{k=1}^{3 N} t_{i j q_{k}}^{k}+\cdots \tag{5}
\end{equation*}
$$

For infinitesimal vibrations, all but the first term, $t_{i j}^{0}$, are neglected. Thus, in the approximation of small vibrations, the kinetic and potential energies are homogeneous quadratic forms in the velocities and coordinates, respectively.

[^18]The Lagrangian function, \underline{L}, may then be written, as

$$
\begin{equation*}
L=T-V=\frac{1}{2} \sum_{i, j=1}^{3 N}\left(t_{i j} \dot{q}_{i} \dot{q}_{j}-\dot{f}_{i j} q_{i} q_{j}\right) \tag{5a}
\end{equation*}
$$

Lagrange's equations of motion are defined in the following equation

$$
\begin{equation*}
\alpha\left(\partial L / \partial \dot{q}_{j}\right) / \partial t-\left(\partial L / \partial q_{j}\right)=0 \tag{5ib}
\end{equation*}
$$

where $\underset{j}{j}=1 ; 2,3, \cdots, 3 \mathrm{~N}$. Substitution of Equation (5a) into Equation (5b) results in the following expression for the equations of motion

$$
\begin{equation*}
\sum_{i=1}^{3 N}\left(t_{i j} \ddot{q}_{i}+f_{i j} q_{i}\right)=0 \tag{5c}
\end{equation*}
$$

where $\underline{j}=1,2,3 \cdots \cdots, 3 N$. This expression is a form of the vibrational secular equation. These equations of motion are satisfied by an oscillatory solution not only for one frequency, but for a set of 3 N frequencies. Therefore, the complete solution of these equations involves a superposition of oscillations with all the allowed frequencies. The solutions of the secular equation are often designated as the frequencies of free vibration or as resonant frequencies. Unless the resonant frequencies are commensurable, $\underline{\underline{q}}_{\underline{i}}$ will never repeat its initial value. Hence, the coordinates $\underline{q}_{\underline{i}}$ are not, in general, the separation coordinates of the problem, each of which is simply periodic. Such a set of periodic coordinates is obtained by a point transformation from the $\underline{q}_{\underline{i}}$'s to a new set of coordinates called normal coordinates, $\underline{Q}_{\underline{i}}$.

VIBRATIONAL WAVE EQUATION

From a quantum mechanical viewpoint, the classical kinetic and potential energy expressions may be used in conjunction with the steady state Schrodinger equation to derive the quantum mechanical wave equation for the model. By the
proper choice of coordinates (see footnote page 74), we can approximately separate the vibrational wave equation from the translational and rotational wave equations. The result is a partial differential equation in 3 N variables. In most cases, this equation is too complex to solve. However, by transforming to normal coordinates, \underline{Q}_{i}, where the kinetic and potential energy expressions contain no cross terms, the wave equation for vibrational motion is immediately separable into $3 \mathbb{N}$ one-dimensional equations. The wave function, Ψ_{v}, may be written as a product of wave functions

$$
\begin{equation*}
\Psi_{v}=\psi_{1}\left(Q_{1}\right) \psi_{2}\left(Q_{2}\right) \cdots \psi_{3 N}\left(Q_{3 N}\right) \tag{6}
\end{equation*}
$$

where the wave equations for $\psi_{\underline{k}}$ are

$$
\begin{equation*}
\left(\partial^{2} \psi_{k} / \partial Q_{k}^{2}\right)+\left(8 \pi^{2} / h^{2}\right)\left(E_{k}-\frac{1}{2} \lambda_{k} Q_{k}^{2}\right) \psi_{k}=0 \tag{7}
\end{equation*}
$$

for $\underline{k}=1,2,3, \cdots, 3 N$. These are also the wave equations for the one-dimensional harmonic oscillators. The vibrational energy of the state described by the wave function (6) is the sum of the energies $\underline{E}_{\underline{k}}$ belonging to the various $\psi_{\underline{k}}\left(\underline{Q}_{\underline{k}}\right)$ of (7).

$$
\begin{equation*}
E=\sum_{k=1}^{3 N} E_{k} \tag{8}
\end{equation*}
$$

The solutions of these equations are the well-known Hermite polynomials (71) and the energy levels are given by $\left(\underline{\underline{k}} \underline{\underline{k}}+\frac{1}{2}\right) \underline{\underline{h}} \underline{\underline{k}}^{\text {w }}$ where $\underline{\underline{\mathrm{v}}} \underline{\underline{k}}$ is the vibrational quantum number and $\nu_{\underline{k}}$ is the classical frequency of the oscillator given by

$$
\begin{equation*}
v_{k}=\left(\lambda_{k}\right)^{\frac{1}{2}} / 2 \pi \tag{9}
\end{equation*}
$$

VIBRATIONAL SECULAR EQUATION IN MATRIX NOTATION

The vibrational wave equation can be separated into a series of total differential equations by determining the transformation, $\underline{L}_{\underline{i j}}$, to normal
coordinates, $\underline{Q}_{\underline{j}}$, in which all the cross terms in the kinetic and potential energy expressions are eliminated. In matrix notation, the normal coordinate transformation, $\underline{L}_{\underline{i} \underline{j}}$, is sought which simultaneously diagonalizes the kinetic energy matrix, $\underset{\sim}{t}$, [see Equation (4)] and the potential energy matrix, $\underset{\sim}{f}$ [see Equation (3)]. The transformation matrix, $\underset{\sim}{\sim}$, is defined as

$$
\begin{equation*}
q_{i}=\sum_{j} L_{i j} Q_{j} \tag{9a}
\end{equation*}
$$

or in matrix notation where $\underset{\sim}{\underline{Q}}$ is defined as a column matrix of the $\underline{\underline{Q}}_{\underline{j}}$'s

$$
\begin{equation*}
\underset{\sim}{q}=\underset{\sim}{L} Q . \tag{10}
\end{equation*}
$$

As a consequence of the condition of $\underline{\underline{L}}$, we have

$$
\begin{equation*}
2 T \sim \dot{q}_{\sim}^{\prime} \underset{\sim}{t} \dot{\sim}=\dot{Q}^{\prime}\left(L_{\sim}^{\prime} t \underset{\sim}{L}\right) \dot{Q}=\dot{Q}^{\prime} \dot{\sim} \dot{\sim} \tag{11}
\end{equation*}
$$

or explicitly

$$
\begin{equation*}
2 T=\sum_{k} \dot{Q}_{k}^{2} \tag{11a}
\end{equation*}
$$

and

$$
\begin{equation*}
2 V \sim q_{\sim}^{\prime} \sim_{\sim}^{q}=Q^{\prime}\left(\mathcal{N}^{\prime} f L\right) Q=Q_{\sim}^{\prime} \wedge \underset{\sim}{Q} \tag{12}
\end{equation*}
$$

or explicitly

$$
\begin{equation*}
2 \mathrm{~V}=\sum_{\mathrm{k}} \lambda_{\mathrm{k}} Q_{\mathrm{k}}^{2} \tag{12a}
\end{equation*}
$$

where $\underset{\sim}{E}$ is the identity matrix and $\underset{\sim}{\sim}$ is a diagonal eigenvalue matrix. From Equations (11) and (12) we have the conditions

$$
\begin{equation*}
\therefore \quad \underset{\sim}{L_{\sim}^{\prime}} \underset{\sim}{t L}=\underset{\sim}{E} \tag{13}
\end{equation*}
$$

and

$$
\begin{equation*}
\underset{\sim}{\mathrm{L}} \underset{\sim}{\prime} \mathrm{fL}=\AA . \tag{14}
\end{equation*}
$$

Equation (13) is then solved for \underline{N}^{\prime},

$$
\begin{equation*}
{\underset{\sim}{L}}^{\prime}={\underset{\sim}{L}}^{-1} t^{-1} . \tag{15}
\end{equation*}
$$

Substituting this expression for $\underset{\sim}{\sim}{ }^{\prime}$ into Equation (14) results in the following expression,

$$
\begin{equation*}
{\underset{\sim}{L}}^{-1}{\underset{\sim}{t}}^{-1} \underset{\sim}{f L}=A . \tag{16}
\end{equation*}
$$

Multiplying on the left by $\underset{\sim}{L}$ we have

$$
\begin{equation*}
{\underset{\sim}{t}}^{-1} \tilde{\sim}_{\sim}=\underset{\sim}{L N} \tag{17}
\end{equation*}
$$

or

$$
\begin{equation*}
{\underset{\sim}{t}}^{-1} \sim_{\sim}^{L} L-\underset{\sim}{L}=0 . \tag{18}
\end{equation*}
$$

Consider a single column of the $\underset{\sim}{L}$ matrix denoted by $\underline{\underline{k}}_{\underline{k}}$ and denote the corresponding eigenvalue by $\lambda_{\underline{k}}$. (The $\lambda_{\underline{k}}$'s are the elements of $\underset{\sim}{\sim}$.) Equation (18) can now be rewritten in the form

$$
\begin{equation*}
\left({\underset{\sim}{t}}^{-2} \underset{\sim}{f}-\lambda_{k} E\right) L_{k}=0 \tag{19}
\end{equation*}
$$

for $\underline{k}=1,2,3, \cdots, 3 \underline{N}$ which is a form of the vibrational secular equation. For this equation to have a nontrivial solution, that is, $\underline{\mathrm{L}}_{\underline{\mathrm{k}}} \neq 0$, the determinant of the coefficient matrix must be zero (73). Thus,

$$
\begin{equation*}
\operatorname{det}\left({\underset{\sim}{t}}^{-1} \underset{\sim}{f}-\lambda_{k} E\right)=0 \tag{20}
\end{equation*}
$$

where det $|\mid$ indicates the determinant. The solution of this determinantal equation results in the determination of the frequency parameters, $\lambda_{\underline{k}}$, for the ,
mathematical model. The frequency parameters are related to the calculated frequencies, $\nu_{\underline{k}}$, by the relationship, $\lambda_{\underline{k}}=4 \pi^{2} \cdot v_{\underline{k}}$. Substitution of the calculated frequency parameters, $\lambda_{\underline{k}}$, into the vibrational secular equation (19). : results in sets of homogeneous linear equations, one for each column of $\frac{L}{\pi}$, from which the $\underline{\underline{L}}_{\underline{k}}$'s may be determined. (The $\underline{L}_{\underline{k}}$'s contain the information regarding the "atomic" vibrational motion of the model for each frequency, ν_{k}.) Stated another way, the transformation which diagonalizes the product ${\underset{\sim}{t}}^{-1} f$ is sought, resulting in a diagonal matrix, $\Lambda \sim$, of the $\lambda_{\underline{k}}$

$$
\begin{equation*}
L_{\sim}^{-1}\left({\underset{\sim}{t}}^{-1} \underset{\sim}{f}\right) L=\Lambda \tag{21}
\end{equation*}
$$

which is obtained by multiplying Equation (17) on the left by ${\underset{\sim}{~}}^{-1}$. With this form of the secular equation, the inverse kinetic energy matrix, ${\underset{\sim}{t}}^{-1}$, must be computed.

INTERNAL COORDINATES

As previously stated, the choice of 3 N generalized displacement coordinates, $\underset{\sim}{q}$, leads to a vibrational secular equation of degree $3 \underline{N}$ which has six zero roots corresponding to the translations and rotations. It is desirable to choose a set of coordinates which describe the internal configuration of the molecule only, that is, which satisfy the conditions that the center of mass remains fixed and assure that there is no rotation of its coordinate system, and satisfy the conditions set down by Eckart (74) and Sayvetz (75). A set of coordinates satisfying these conditions are known as internal coordinates.

A convenient set of internal coordinates has been defined by Wilson (76) and Decius (77). The internal coordinates in this set are bond stretching, valence angle bending, out-of-plane bending, and torsion. This particular set of internal coordinates is useful because the potential energy in terms of
these coordinates is chemically meaningful. Decius (78) has shown that this. set of four types of internal coordinates is sufficient to describe the most general vibrational displacement of any molecule. Further, he has given a prescription for defining a kinematically complete set of valence coordinates for both cyclic and acyclic molecules.

In some cases, it is advantageous to choose more than $3 \mathrm{~N}-6$ internal valence coordinates, either to make use of symmetry or to put the force constants on an equivalent basis, thereby overdefining the problem and introducing redundant coordinates. For example, only five of the six HCH angles in methane are independent. However, if we leave one of the angles out, the force constants lose their simple chemical meaning, and it is not possible to use symmetry to factor the secular equation.

VIBRATIONAL SECULAR EQUATION IN INTERNAL COORDINATES

For internal coordinates, $\frac{R}{\sim}$, it is easier to compute the inverse kinetic energy matrix; thus, the kinetic and potential energies are usually written in the form

$$
\begin{equation*}
2 \pi=\dot{e}_{\sim}^{\prime} \underline{e}^{-1} \dot{d} \tag{22}
\end{equation*}
$$

and

$$
\begin{equation*}
2 X=\text { R }_{\sim}^{\prime} \underset{\sim}{F R} \tag{23}
\end{equation*}
$$

which is obtained when $\frac{t}{\sim}=\frac{G^{-1}}{\sim}, \frac{f}{\sim}=\frac{F}{\sim}$, and $\underset{\sim}{q}=\frac{R}{\sim}$ in Equations (3) and (4). The vibrational secular equation is seen to be

$$
\begin{equation*}
\underset{\sim \sim N}{G F I}=I \Lambda_{\sim} \tag{24}
\end{equation*}
$$

from Equation (17). We then seek the transformation, $\underset{\sim}{L}$, from normal coordinates, Q, to internal coordinates, $\underset{\sim}{\sim}$,

$$
\begin{equation*}
\underset{\sim}{R}=\underset{\sim}{L} Q \tag{25}
\end{equation*}
$$

by solving the determinantial equation.

$$
\begin{equation*}
\operatorname{det}(\underset{\sim}{G F}-\lambda \underset{\sim}{E})=0 . \tag{26}
\end{equation*}
$$

The bulk of the normal coordinate computations to be described in this text is concerned with the solution of this determinantal equation (26) and the vibrational secular equation (24).

COMPUTATIONS

In this section, the computational methods employed in the normal coordinate analyses of the l,5-AP compounds will be presented. The data generated in the computations can be found in the appropriate appendices.

DEFINITION OF MODEL GEOMETRY

The positions of the "atoms" in the model are usually defined from the bond length and bond angle data for the real molecule. This information can be obtained from x-ray or neutron diffraction studies. If these data are not available, the model geometry must be approximated.

Molecular Structure of the 1,5-Anhydropentitol Compounds
Unfortunately, x-ray crystallographic data are not available to date for the 1,5-AP compounds. The geometry of these compounds must be inferred from structure data available for similar compounds, such as the pentoses. However, small differences in bond lengths and angles (in this case, deviations of the order of magnitude of a few hundredths of an angstrom in the bond lengths and a few degrees in the bond angles) should not affect the results significantly because such deviations from the real structure are overshadowed by other approximations incorporated into the mathematical methods. Snyder and Zerbi (56) were able to
perform a successful normal coordinate analysis for tetrahydropyran assuming tetrahedral bond angles and equivalent $C C, C H$, and $C O$ bond lengths for their model.

Conformation

The first matter to consider when defining the model geometry for the 1,5-AP compounds is the molecular conformation. In his review of crystal structure data for simple carbohydrates and their derivatives, Strahs (12) states that all of the crystaline pyranose-type compounds, thus far examined, adopt a chair conformation. In fact, a boat conformation has not yet been found for crystalline monocyclic compounds of sugars. Thus, it seems reasonable to assume that all of the $1,5-A P$ compounds adopt the chair conformation in the crystalline state. There are, however, two possible chair conformations for each structure. In solution there is an equilibrium existing between these two conformations. The position of the equilibrium is determined by the difference between the free energies of the components. When the components differ only in geometric configuration, the differences in free energy are due to steric factors, namely, to the energies of interaction between nonbonded atoms. In a comparatively rigid system, like that of the six-membered pyranose ring, the interaction energies can be evaluated and totaled. The comparison of these interaction energies have led to usually accurate predictions of the most stable conformer and the predominant conformer in solution. Eliel has provided a guide (79) for the calculation of the conformational free energies. More recently, Angyal (80) hés reported a set of interaction energies derived specifically for pyranose compounds. The details of the conformational analysis method can be found in Eliel, et al. (81). The conformational free energies have been evaluated in this thesis investigation for each of the chair conformers of the $1,5-A P$ models by
employing the interaction energy values derived by Angyal (80). The results of this evaluation are listed in Table XVI. These conformational free energy calculations suggest that the $1,5-A P$ compounds most probably exist in the chair conformations drawn in Fig. 28 in the crystalline state.

TABLE XVI
CALCULATED CONFORMATIONAL FREE ENERGIES (E EOnf; kcal./mole) FOR THE I,5-ANHYDROPENTITOL MODELS

	$\mathrm{E}_{\text {- }}$ onf		Difference	Ratio ${ }^{\text {a }}$
1,5-AX	$\begin{aligned} & 2.40 b \\ & a-a-a b \end{aligned}$	$\begin{array}{r} 0.70_{b}^{c} \\ e-e-e^{b} \end{array}$	1.70	95:5
1,5-AR	2.20	$1.60{ }^{\text {c }}$	0.60	$74: 26$
	a-e-a	e-a-e		
1, 5-A:LA	$\begin{array}{r} 1.70 \\ \text { a-a-e } \end{array}$	$\begin{aligned} & 1.15^{\mathrm{c}} \\ & \mathrm{e}-\mathrm{e}-\mathrm{a} \end{aligned}$	0.55	72:28

[^19]Bond Angles and Bond Lengths
As stated earlier, crystal structure data from x-ray and neutron diffraction studies were not available for the l,5-AP compounds at the time of this investigation. One method of specifying the model geometry approximating a l,5-AP molecule is to adapt as much of the available crystal structure data as possible from a related compound which in this case would be one of the pentoses. However, an equally valid approximation is to assume a tetrahedral model geometry. In

this model, all bond angles are assumed to be tetrahedral (109 28^{\prime}) except the COC angle ($112^{\circ} 27$.') and the torsional (dihedral) angles are set equal to 60°. Further, all common bond types are assigned an equivalent bond length. In specifying the geometry for the l,5-AP models, the COC bond angle and the corresponding $C O$ bond length were adapted from the data resulting from an electron diffraction study of \underline{p}-dioxane reported by Davis and Hassel (82). The remaining common bond lengths were estimated by averaging the appropriate crystal structure data reported for α-D-glucose (83), $B-D-g l u c o s e ~(84), ~ B-D L-a r a b i n o s e ~(85), ~ B-~$ lyxose (86), α-xylose (87), and methyl $\alpha-D$-mannopyranoside (88). The estimated values for the bond lengths and COC bond angle are tabulated in Table XVII. One should note that the only structural difference existing between the three ${ }^{12}$ l,5-AP models is the orientation of the hydroxyl groups, i.e., axial versus equatorial.

Calculation of Cartesian Coordinates for the Model Atoms
The cartesian coordinates of the "atoms" in l,5-AP models were computed from the bond lengths and bond angles specified in Table XVII by the computer program CART written by J. H. Schachtschneider (89). The atoms in the models were numbered in the manner depicted in Fig. 28.

The computational method employed in CART is discussed in Appendix I. The data input to CART and the resulting cartesian coordinates for the 1,5-AP models are also included in this appendix. A program written by Cole and Adamson (90) called PAMOLE which draws a three-dimensional stereographic

The compounds 1,5-ALA and 1,5-ADA are mirror images of one another and exhibit identical vibrational spectra. Therefore, only one of these compounds (1,5 -ALA) need be included in the normal coordinate calculations.
projection of a "ball and stick" representation of the model from the calculated cartesian coordinates may be used to check the cartesian coordinate calculations for errors. Drawings generated by PAMOLE for the 1,5-AP models based on the cartesian coordinates calculated by CART are included in Appendix I also.

TABLE XVII
BOND LENGTHS SPECIFIED FOR THE 1,5-ANHYDROPENTITOL MODELS ${ }^{\text {a }}$

Bond Length	Av. Value, A.	Bond Angle	Assigned Value
$\mathrm{CO}(\underline{r})^{b}$	1.423	COC	112.45°
CC	1.523		
CH, c	1.096		
CH	1.093		
CO	1.415		
OH	0.970		

${ }^{\text {a The bond angles were assumed to be tetrahedral (109 }}{ }^{\circ} 28^{\prime}$) and the dihedral angles set equal to 60°.
${ }^{\mathrm{b}}(r)$ Designates the pyranose ring oxygen atom.
${ }^{C}$ The CH' refers to the $C l$ and $C 5$ atoms of the ring.

The FORTRAN listing, flow diagram, and program instructions for CART and the program instructions for PAMOLE may be found in Appendix V.

TRANSFORMATION TO INTERNAL COORDINATES AND CALCULATION OF THE INVERSE KINETIC ENERGY MATRIX (G MATRIX)

Internal Coordinates

The vibrational problem is to be set up by the Wilson GF method (68, 76, 91). This method requires that the vibrational displacements be expressed in internal valence coordinates, $\underset{\sim}{\sim}$, which satisfy the Eckart (74)-Sayvetz (75) conditions, thereby separating the vibrational problem from translation and rotation. A
convenient set of internal valence coordinates has been defined by Wilson (76) and Decius (77). Decius has shown that a set of four types of internal valence coordinates, namely, bond stretching, valence angle bending, out-of-plane wagging, and torsion, is sufficient to describe the most general vibrational displacement of any molecule. He has also given a prescription for defining a kinematically complete set for both cyclic and acyclic molecules.

Definition of Internal Coordinates for the 1,5-Anhydropentitol Models
According to the prescription set down by Decius, there will be one bond stretching coordinate for each bond in the molecule. That is,

$$
\begin{equation*}
n_{r}=b \tag{27}
\end{equation*}
$$

where \underline{b} is the number of bonds in the molecule and $\underline{n}_{\underline{r}}$ is the number of bond stretching internal coordinates. For the l,5-AP models, there are 19 bonds; i.e., $\underline{n}_{\underline{r}}=\underline{b}=19$. The minimum number of valence angle bending internal coordinates, n_{ϕ}, is expressed as

$$
\begin{equation*}
n_{\phi}=4 b-3 a+a_{1} \tag{28}
\end{equation*}
$$

where a is the number of atoms in the molecule, and a_{1} is the number of terminal bonds (the number of atoms bonded to only one other atom). For the l,5-AP models, $\underline{a}=19$ and $\underline{a}_{1}=10$; thus, $\underline{n}_{\phi}=76-57+10=29$. The number of torsional internal coordinates, \underline{n}_{τ}, corresponds to the number of nonterminal bonds which is determined from the expression

$$
\begin{equation*}
n_{\tau}=b-a_{1} \tag{29}
\end{equation*}
$$

Therefore, $\underline{n}_{\tau}=19-10=9$. The result is a total of 57 internal coordinates. The minimum number of internal coordinates required to completely describe the
vibrational motion of the $1,5-\mathrm{AP}$ models is equal to the number of vibrational degrees of freedom, \underline{f}, where

$$
\begin{equation*}
f=3 a-6 \tag{30}
\end{equation*}
$$

For the $1,5-\mathrm{AP}$ models, $\underline{f}=3(19)-6=51$ degrees of freedom; so the set of internal coordinates derived from the Decius prescription is noted to contain six additional or redundant coordinates. These redundancies are due to the cyclic nature of the molecule and cannot be removed. There are six bond angles about each of the five carbon atoms in the ring. In the 29 valence angle bending coordinates specified above, only five of these angles have been included in each case because the sixth angle is not independent. To include this sixth angle would generate a locally redundant coordinate. However, to make use of symmetry and to put the force constants on an equivalent basis, the five redundant coordinates must be included, one for each carbon atom of the ring. This means that there are now 34 angle bending coordinates.

In summary, a total of 62 internal valence coordinates have been generated to describe the vibrational motion of the 1;5-AP models; namely, 19 bond stretching coordinates, 34 valence angle bending coordinates, and 9 torsional coordinates. Of these 62 coordinates, 11 are redundant. Five of these redundancies are local and removable, while the remaining six redundancies result from the cyclic nature of the molecule and are not removable.

The 62 internal coordinates for $1,5-A X$ are listed in Table XVIII. The internal coordinates for 1,5-AR and 1,5-ALA involve the same atoms, except for a few of the torsional coordinates, and are numbered in a similar manner as those for $1,5-A X$.

TABLE XVIII

DESCRIPTION OF THE 62 INTERNAL COORDINATES FOR 1,5-ANHYDROXYLITOL

Bond Stretch

1. Clo	6.	C50	11.	'02H2	16.	C404
2. ClC2	7.	ClH'	12.	C3H3	17.	$04 \mathrm{H}_{4}$
3. $\mathrm{C2C} 3$	8.	ClH"	13.	C303	18.	C5H'
4. C 3 C 4	9.	C2H2	14.	03H3	19.	C5H"
5. C4C5	10.	C202	15.	$\mathrm{CH}_{4} 4$		

Valence Angle Bend

54.	C3C4C5H')
	H4C4C5H"
	04 C 4 C 50
55.	H3C3C4H4
	$03 \mathrm{C} 3 \mathrm{C} 4 \mathrm{C} 5\}$
	C2C3C404

Torsion. ${ }^{\text {a }}$

58. $\mathrm{H}_{4} \mathrm{C} 4 \mathrm{O} 4 \mathrm{H}_{4}$
59. H3C3O3H3
60. H2C2O2H2
61. H'C5OC1
62. H'ClOC5

[^20]Inverse Kinetic Energy Matrix (G Matrix)
The expression for the kinetic energy in cartesian displacement coordinates may be written from Equation (11) by replacing $\underset{\sim}{q}$ with $\underset{\sim}{X}$ and $\underset{\sim}{t}$ with $\underset{\sim}{N}$ in the expression on the left-hand side where $\frac{M}{N}$ is defined to be a mass matrix. That is,

$$
\begin{equation*}
2 T=\dot{\sim}_{\sim}^{\dot{x}} \underset{\sim}{M} \dot{\sim} \tag{30a}
\end{equation*}
$$

The transformation, $\underset{\sim}{B}$, from cartesian displacement coordinates, $\underset{\sim}{X}$, to internal coordinates, $\frac{R}{N}$, may be computed from the set of internal coordinates specified in the last section.

$$
\begin{align*}
& \underset{\sim}{R}=\underbrace{B}_{\sim} \tag{31}\\
& \underset{\sim}{X}={\underset{\sim}{B}}^{-1} R . \tag{31a}
\end{align*}
$$

The kinetic energy in internal coordinates may be written by substituting Equation (31a) into Equation (30a).

If we define ${\underset{\sim}{G}}^{-1}=\left[\left({\underset{\sim}{B}}^{-1}\right){\underset{\sim}{\sim}}^{M B}{ }^{-1}\right]$, the expression defining the inverse kinetic energy matrix, $\underset{\sim}{G}$, follows directly

$$
\begin{equation*}
\underset{\sim}{G}={\underset{\sim N}{N}}^{-1} \cdot{ }_{\sim}^{\prime} \tag{33}
\end{equation*}
$$

and the kinetic energy is of the simple form $\frac{2 T}{\sim}=\dot{R}_{\sim} G^{-1} \stackrel{\dot{R}}{\sim}$.

Computation of the G Matrix
The $\underset{\sim}{G}$ matrix elements were computed for the $1,5-\mathrm{AP}$ models by the computer program GMAT which is based on Wilson's "S vector" technique (68). In the calculation of the \underline{G} matrix, the cartesian coordinates computed by CART for the "atoms" in the models were transformed into internal coordinates (see Table XVIII for a description of the internal coordinates for $1,5-A X)$.

The computational method employed in GMAT is discussed in Appendix II. The internal coordinate definitions for the $1,5-\mathrm{AP}$ models and the resulting G matrices are also listed in this appendix.

Symmetry Coordinates

Upon transforming from internal coordinates to symmetry coordinates, the $\frac{G}{\sim}$ matrix factors into a number of smaller blocks, one for each symmetry species (irreducible representation) of the molecular point group. The symmetry coordinates are constructed from linear combinations of the internal coordinates by a method based on the molecular point group character table. The construction of symmetry coordinates will not be discussed here, but the interested reader may wish to refer to one of the many texts that treat this topic, for example $(68,92,93)$.

The compounds l,5-AX and l,5-AR possess a plane of symmetry and, therefore, belong to the $\underline{C}_{\underline{s}}$ point group. The symmetry coordinates for these two models were developed with the relationships derived by Wilson (68) and are defined in Table XIX. The internal coordinate numbers specified in the table refer to the coordinates defined in Tables XXXVII and XXXVIII in Appendix II. The $\mathrm{C}_{\underline{s}}$ point group has two symmetry species (irreducible representations), symmetric, A^{\prime}, and antisymmetric, $A^{\prime \prime}$. The symmetry coordinates in Table XIX are classified into their respective symmetry species.

Factoring the $\frac{G}{\sim}$ Matrix

In GMAT, to transform from internal coordinates, $\underset{\sim}{R}$, to symmetry coordinates, $\underset{\sim}{N}$, an orthogonal transformation matrix, $\underset{\sim}{U}$, must be included with the input data, since

$$
\begin{equation*}
\underset{\sim}{S}=\underset{\sim}{N R} . \tag{34}
\end{equation*}
$$

DEFINITION OF SYMMETRY COORDINATES FOR 1,5-ANHYDROXYLITOL AND 1,5-ANHYDRORIBITOL

Sym. Coord. ${ }^{\text {a }}$ Comb. In. Coord. ${ }^{\text {b }}$

Sym. Coord. ${ }^{\text {a }}$ Comb. In. Coord. ${ }^{\text {b }}$

[^21]The $\underset{\sim}{U}$ matrices are identical for $1,5-A X$ and $1,5-A R$ and are simply a matrix representation of Table XIX. The elements of $\underset{\sim}{\sim}$, included with the input data, need not be normalized, since normalization is accomplished in the program. The $\underset{\sim}{G}$ matrix in the new coordinate system, $\frac{S}{\sim}$, is given by Equation (35),

$$
\begin{equation*}
\underset{\sim}{G}=\mathcal{U G}_{\sim}^{G U}{ }_{N}^{\prime} . \tag{35}
\end{equation*}
$$

$\frac{\text { Computation }}{1,5-\text { Anhydropent } \frac{\text { the }}{\text { itol }} \frac{\text { Factored }}{\text { Godels }}} \underset{\sim}{\text { Matrices }}$ for the
In the case of $1,5-A X$ and $1,5-A R$, the transformation from internal coordinates to symmetry coordinates reduces the $\underset{\sim}{G}$ matrix from 62×62 to two smaller matrices, 34×34 and 28×28, which belong to the irreducible representations A^{\prime} and $A^{\prime \prime}$, respectively. Listings of the factored $\frac{G}{y}$ matrices are not included in this manuscript because of space limitations.

SELECTION OF A FORCE FIELD FOR THE 1,5-ANHYDROPENTITIOL MODELS

Before the vibrational secular equation can be solved, an explicit form must be given to the force constant matrix, that is, the $\underset{\sim}{F}$ matrix in Equation (26). Unlike the $\underset{\sim}{G}$ matrix, the $\underset{\sim}{F}$ matrix is not easily derivable from experimental data, and certainly not from nonspectroscopic data. The only convenient source of information is the vibrational spectrum itself. For anything larger than a diatomic molecule, this is insufficient, except in rare cases, to allow the determination of the field, even in the quadratic approximation. This indeterminacy in the force field of molecules is one of the most vexing problems in spectroscopy today. Since the force field can only be determined from the spectrum itself, one might question the feasibility of solving the vibrational secular equation. The following comments are offered as support for the procedure to be adopted. First, it is well known that the chemical and
thermodynamic properties of bonds with similar environments are very much the same. It is reasonable, therefore, to expect that the forces resisting deformation of these bonds will be similar. The same is true for bond angles. This implies that the force constants should be transferable between similar molecules or between similar groupings in different molecules. As a result, the force constants derived from simple systems can be employed to construct the field of more complex systems. Second, errors in a force field, which reproduces to an acceptable accuracy the vibrational frequencies of a grouping in one molecule, will be relatively unimportant in frequency calculations in related systems containing the grouping, provided that both the assumed field and true field place the bulk of potential energy within the common grouping in both situations. This is because most of the vibrational motion is within the common grouping, so that the model form varies little in the different systems. Third, further improvements in the field of complicated systems can only arise from perturbation treatment of existing calculations, in which efforts are made to minimize discrepancies between actual and calculated observations.

The use of internal coordinates as a basis for potential field expressions has been fustified in an earlier section. A general quadratic field will have the form

$$
\begin{equation*}
2 V=\sum_{i} \sum_{j} f_{i j} R_{i} R_{j} \tag{36}
\end{equation*}
$$

where $\underline{R}_{\underline{i}}$ and $\underline{R_{j}}$ are internal coordinates and $\underline{\underline{f}_{\underline{i}} \underline{j}}$ are the appropriate force constants

$$
\begin{equation*}
f_{i j}=\left(\partial^{2} V / \partial R_{i} \partial R_{j}\right)_{0} \tag{37}
\end{equation*}
$$

For a diatomic molecule, only one quadratic force constant can be defined and no problem exists to its evaluation. For a polyatomic molecule, the number of
quadratic force constants greatly exceeds the number of vibrational frequencies. Although other sources of information exist about the vibrational modes and force constants; this information has still not allowed a unique quadratic force field to be established for any molecule with more than five atoms.

Approximations within the quadratic approximation itself are clearly unavoidable, and many have been tried. As might be expected, no single approximation emerges triumphant in all cases, but experience has shown that some types of fields have reasonable validity in certain structural situations. Therefore, the selection of an appropriate force field for the normal coordinate analyses of the $1,5-A P$ compounds is an important aspect of this investigation. Many of the major force field approximations are described in a text by Steele (94). Several of these approximations are briefly discussed below, and are evaluated for use in the normal coordinate computations of the $1,5-\mathrm{AP}$ compounds.

1. The Valence Force Field (VFF)

This approximation treats the potential energy as arising from stretching of chemical bonds and deformation of bond angles. The potential energy expression, Equation (36), only involves the diagonal elements in the force constant matrix, with the other elements being set equal to zero, that is,

$$
\begin{equation*}
2 V=\sum_{i} f_{i i} R_{i}^{2} \tag{38}
\end{equation*}
$$

Although the VFF force field has only a few force constant parameters and can be easily interpreted in a chemical sense, it is too simplified to adequately describe the vibrational dynamics of the l,5-AP compounds.
2. The General Quadratic Force Field (GQFF)

In this approximation, all possible $\underline{f}_{\underline{j} \underline{j}}$ terms are included. As has already been pointed out, this approximation usually introduces more parameters than can be determined with the available data, and therefore, in its complete form, it is indeterminate.

Since the GQFF is rarely derivable, many fields intermediate between the VFF and GQFF have been used. In the vast majority of force field studies, the GQFF has been simplified by arbitrarily fixing many interaction terms to zero and minimizing other interaction elements at their lowest possible values. Even though the assumptions have usually been made with some physical reasoning, such as that potential interactions between nonconjugated bonds with no common nucleus may be expected to be very small, the arbitrary character of the assumptions has rendered comparative studies of the different fields extremely difficult.

A small number of clearly defined fields have been used and their validity explored. The two fields which have evoked the most interest are Mills' Hybrid Orbital Force Field (HOFF) (95) and the older and controversial Urey Bradley Force Field (UBFF) (96). Also of considerable interest, though it has been little used except by its original exponent, is Linnett's Orbital Valency Force Field (OVFF) (97).
A. OVFF

This approximation seeks to explain differences in the deformation force constants, as derived from different symmetry classes in the valence force approximation, in terms of electronic rehybridization phenomena. However, even this modification of the VFF is far too simplified to be successful in the
mathematical treatment of the $1 ; 5-A P$ compounds. . On the other hand, the oVFF: may be useful as a basis for logically introducing interaction constants connecting angular deformations about a central nucleus in other types of force: fields.
B. HOFF

This force field is founded on the idea that interaction force constants are related to electronic charge movements; accompanying the nuclear distortions. The HOFF appears to be a reasonable approximation; however, it has only been used in conjunction with relatively small molecules.

C. UBFF

The basic Urey Bradley field treats the force field as arising from the VFF supplemented by forces between nonbonded nuclei. In the general case, the linear potential energy terms for the interbond angles and the bonds are linearly related by geometric factors to the nonbonded interaction terms. The direct consequence of this is that the independent parameters in the field reduce to those of the VFF plus the quadratic and the linear nonbonded interaction terms. If a redundancy relationship exists among the set of internal coordinates, $\underline{-j}^{\mathrm{j}}$, the condition for a potential minimum now takes the form

$$
\begin{equation*}
\partial V / \partial R_{j}+k_{j}=0 \tag{39}
\end{equation*}
$$

where $\underset{-}{k}$ i's usually known as the intramolecular tension and is an additional parameter in the force field. The UBFF in its simplest form is completely inadequate for the normal coordinate analyses of the $1,5-\mathrm{AP}$ compounds. In order to improve the performance, additional quadratic valence-type interaction terms must be introduced; but this detracts from the original simplicity of the model.

In addition, the UBFF elements are difficult to perceive in a chemical sense. Also, for the $1,5-A P$ models, this type of force field contains a large number of nonzero elements which exceeds the limit of the computer program (based on the storage capacity of the computer facility) which solves the vibrational. secular equation.

D. Inverse Force Constants

Inverse force constants are the elements of the reciprocal force constant matrix, ${\underset{\sim}{\sim}}^{-1}$, sometimes referred to as the compliance matrix, $\underset{\sim}{C}$. Several advantages of such fields exist, the main advantage arises from the independence of a given element, $\underset{-\underset{i}{-1}}{-1}$, to the definitions of coordinates $k, \underline{1} \neq \underset{i}{i}, \underline{j}$. Since the potential energy must be invariant to coordinate transformations, it follows that
 be invariant). This requires that if a new set of internal coordinates is chosen leaving a given coordinate, $\underline{R}_{\underline{k}}$, unaltered, then $\underset{\underline{k}}{-1}$ will be identical in the two systems. This invariance means that the transference of inverse force constants may be done with less concern for the compatibility of coordinate systems assumed in the two molecular models. The inverse force matrix and its advantages are described in more detail by Decius (98),

The concept of inverse force constants is attractive because the elements of the compliance matrix are unique, which is not the case for the $\underset{\sim}{\sim}$ matrix elements. However, the secular determinant, analogous to Equation (26), is now

$$
\begin{equation*}
\operatorname{det}\left(\mathrm{F}^{-1}-\lambda^{-1} G\right)=0 \tag{40}
\end{equation*}
$$

for the case in which there are redundant internal coordinates, since ${\underset{\sim}{G}}^{-1}$ cannot be determined. This means that new computer programs and computational methods must be developed to construct and solve this new secular determinant.

Furthermore, a least squares perturbation technique must be developed to refine the compliance parameters to minimize the differences existing between the calculated and observed frequencies. In addition, it is very difficult to secure the necessary initial compliance parameter data from the literature because workers in vibrational spectroscopy have been slow to adopt the inverse $\underset{\sim}{F}$ matrix method. For these reasons primarily, the ${\underset{\sim}{\sim}}^{-1}$ method was not selected for the investigation of the l,5-AP vibrational spectra.
E. Simplified Valence Quadratic Force Field (SVQFF)

The force field finally selected for this study shall be referred to as a "Simplified Valence Quadratic Force Field" (SVQFF) throughout the remainder of this text. This empirical force field is an extension of the fields developed by Schachtschneider and Snyder (54), Snyder and Zerbi (56), Pickett and Strauss (57), and Vasko (99) in their normal coordinate calculations. The SVQFF is derived from the GQFF by assigning negligible interaction force constants a zero value and grouping similar force constants by assigning one common numerical value. Such assumptions greatly reduce the number of independent force constant parameters necessary to describe the force field of large, complex molecules. One should note that these force constant assignments are not completely arbitrary, but are based on past experimental data and, experience.

For small molecules, especially those with a high order of symmetry, the diagonal and many of the interaction force constants can be determined from the vibrational spectrum. Assuming the validity of force constant transferability, manyof these force constants are employed in the normal coordinate calculations for slightly larger, more complex molecules to determine additional force constant values, otherwise indeterminable, from the spectral data. When the diagonal and interaction force constants corresponding to particular atomic
groupings are compared for a series of related compounds, it is often observed that the numerical values are very close to one another if the chemical environments of the atomic groupings are similar, i.e., the force constants are indeed transferable. This fact is especially true for the diagonal force constants. Such comparisons also permit one to determine which force constants may be equated and which may be set equal to zero without significantly altering the calculated frequenciès. Thus, one assembles the SVQFF from small to more complicated molecules, building on previous data. The result, although quite empirical, is a generally descriptive force field that satisfactorily predicts the observed vibrational frequencies and corresponding vibrational motion of the molecule. Generally, the number of independent force constant parameters required to specify adequately the SVQFF for large, complex molecules is approximately equal to the number of vibrational degrees of freedom. In addition, Schachtschneider and Snyder (54) have developed a method whereby the same set of force constant parameters may be refined for several similar molecules simultaneously. This greatly increases the ratio of experimental data points (measured spectral band frequencies) to variables (force constant parameters).

Schachtschneider and Snyder (54,55) have developed a SVQFF to describe the vibrational dynamics of a number of n-paraffins and saturated hydrocarbons. Snyder and Zerbi (56) started with this force field and from it developed a descriptive SVQFF for tetrahydropyran and the aliphatic ethers. Vasko (99) has demonstrated the generality and applicability of the SVQFF. He employed the SVQFF developed by Snyder and Zerbi for the aliphatic ethers and tetrahydropyran in the normal coordinate analysis of $\alpha-D-g l u c o s e$ and estimated the values of the new diagonal force constants resulting from the addition of hydroxyl groups to the pyranose ring. However, he neglected the new interaction terms introduced by the hydroxyl groups, for the most part, and did not attempt to refine the
force field to minimize the differences between the calculated and observed frequencies: (Furthermore, the validity of the results of the normal coordinate analysis of α-D-glucose also suffers from the fact that Vasko did not assign all the observed infrared and Raman spectral bands, only those in agreement with the calculations:.) Yet, under the circumstances, he was able to predict the experimental frequencies for $\alpha-D-g l u c o s e ~ r e m a r k a b l y ~ w e l l . ~$

Computation of the $\underset{\sim}{F}$ Matrix

For reasons of convenience, which will become apparent when the programs that solve the secular equation are discussed, the F matrix is not evaluated directly. Rather, the constraint matrix, $\underset{\sim}{Z}$, [which is the transformation from an independent set of force constant parameters to the force field in Equation (26)] is computed. . The transformation, $\frac{Z}{\sim}$, is defined by the expression

$$
\begin{equation*}
F_{i j}=\sum_{k} z_{i j k} \Phi_{k} \tag{41}
\end{equation*}
$$

where the $\Phi_{\underline{k}}$ are a set of independent force constants (to be called force constant parameters in this text), and the F_{ij} are the elements of the $\underset{\sim}{\mathrm{F}}$ matrix. The computer program UBZM will construct the $\underset{\sim}{\underline{Z}}$ matrix for a UBFF or a SVQFF. The computer program UBZM is discussed in Appendix III. Also included in this appendix are the tables of the $\underset{\sim}{Z}$ matrices for the $1,5-A P$ models. A program listing, user instructions, and flow diagram for UBZM may be found in Appendix V :

Factoring the $\underset{\sim}{F}$ Matrix

The $\underset{\sim}{\sim}$ matrix and, therefore, the $\underset{\sim}{F}$ matrix may be factored into a number of. smaller matrices by transforming from internal coordinates to symmetry coordinates in a manner similar to the factoring of the $\underset{\sim}{G}$ matrix discussed earlier in this text. Again, the number of smalier matrices is equal to the number of irreducible representations in the molecular point group character table.

146 (A^{\prime}) and 116 ($A^{\prime \prime}$) elements. The factored $\underset{\sim}{Z}$ matrices are not included in this text because of space limitations.

SVQFF Force Constant Parameters for the 1,5-Anhydropentitol Models
The force constant parameters specified in the $\underset{\sim}{Z}$ matrices are the elements which comprise the l,5-AP SVQFF discussed earlier. The initial values for many of these parameters were taken from the papers by Snyder and Zerbi (56) and Vasko (99). A total of 56 parameters (actually, only 55 parameters because one of the parameters is a dummy) were required to specify the $\underset{\sim}{F}$ matrices for the 1,5-AP models. The constraint matrices, $\underset{\sim}{Z}$, are presented in Tables XLIII, XLIV, and XLV in Appendix III. The force constant parameters are listed in Table XX along with the initial values, values aftier nonlinear least squares refinement, and the standard errors.

SOLUTION OF THE VIBRATIONAL SECULAR EQUATION AND LEAST SQUARES REFINEMENT OF THE FORCE CONSTANTS

Solution of the Secular Equation by the Method of Successive Orthogonalization of GF Followed by Jacobi Diagonalization

The $\underset{\sim}{F}$ and $\underset{\sim}{G}$ matrices for the 1,5-AP models have now been computed. The next step is to solve the vibrational secular determinantal equation (26). There are several methods which are applicable to computers for solving the secular equation [for example, see Wilson, et al. (68)]. The method adopted for all such computer programs employed in this investigation is that of successive orthogonalization of the product $\underset{\sim}{G F}$ followed by Jacobi diagonalization.

In this method, the transformation to a new set of coordinates in which $\frac{G}{\sim}$ is a unit matrix is computed

$$
\begin{equation*}
\bar{G}=\underset{\sim N \sim}{A G A}{ }_{\sim}^{\prime}=\left(G_{\sim}^{(m-1)}\right) \tag{46}
\end{equation*}
$$

table XX
SVQFF FORCE CONSTANT PARAMETERS FOR THE 1,5-ANHYDROPENTITOL MODELS

Force Constant Parameter No.

Atoms Common
Coordinates to Interacting Initial Final Error ${ }^{\text {a }}$ Involved Coordinates Value, $\Phi_{\underline{i}}$ Value, $\Phi_{\underline{i}} \sigma\left(\Phi_{\underline{i}}\right)$ Stretch
1
2
3
4
5
6

$\mathrm{C}-\mathrm{O}-\mathrm{C}$	$\mathrm{C}-\mathrm{O}$
$\mathrm{C}-\mathrm{OH}$	$\mathrm{C}-\mathrm{O}$
$\mathrm{H}-\mathrm{C}-\mathrm{O}-\mathrm{C}$	$\mathrm{C}-\mathrm{H}$
$\mathrm{H}-\mathrm{C}-\mathrm{OH}$	$\mathrm{C}-\mathrm{H}$
$\mathrm{C}-\mathrm{C}$	$\mathrm{C}-\mathrm{C}$
$\mathrm{O}-\mathrm{H}$	$\mathrm{O}-\mathrm{H}$

$5.090^{b}, c$	5.067	0.071
5.090^{c}	5.103	0.073
4.626^{c}	4.597	0.045
4.688^{c}	4.589	0.062
4.2611^{c}	4.247	0.071
6.440^{d}	6.283	0.034

Stretch-Stretch

7	C-C-O-C	C-C, $\mathrm{C}-\mathrm{O}$	C	$0.101^{\text {b,c }}$	0.107	0.075
	$\mathrm{C}-\mathrm{C}-\mathrm{OH}$	C-C, $\mathrm{C}-\mathrm{O}$	C			
	$\mathrm{C}-\mathrm{C}-\mathrm{C}$	$\mathrm{C}-\mathrm{C}, \mathrm{C}-\mathrm{C}$	C			
8	C-O-C	C-0, C-0	0	$0.288^{\text {c }}$	0.324	0.072
9	H-C-O-C	C-O, $\mathrm{C}-\mathrm{H}$	C	$0.000^{\text {e }}$	0.016	0.071
	$\mathrm{H}-\mathrm{C}-\mathrm{OH}$	C-O, $\mathrm{C}-\mathrm{H}$	C			
10	$\mathrm{C-C}(\mathrm{H})-\mathrm{O}-\mathrm{C}$	$\mathrm{C}-\mathrm{C}, \mathrm{C}-\mathrm{H}$	C	$0.000^{\text {e }}$	-0.027	0.071
	$\mathrm{C}-\mathrm{C}(\mathrm{H})-\mathrm{OH}$	$\mathrm{C}-\mathrm{C}, \mathrm{C}-\mathrm{H}$	C			
11	H-C(H)-O-C	$\mathrm{C}-\mathrm{H}, \mathrm{C}-\mathrm{H}$	C	$-0.046^{\text {c }}$	-0.010	0.034
12	$\mathrm{C}-\mathrm{O}-\mathrm{H}$	C-O,O-H	0	$0.000^{\text {e }}$	0.005	0.071

Bend

13	$\mathrm{H}-\mathrm{C}-\mathrm{O}-\mathrm{C}$	< HCO	$0.901^{c, f}$	0.926	0.066
14	C-C-O-C	<CCO	$1.182^{\text {c }}$	1.169	0.071
15	$\mathrm{C-C}(\mathrm{H})-\mathrm{O}-\mathrm{C}$	< HCC	$0.752^{\text {c }}$	0.792	0.066
16	$\mathrm{H}-\mathrm{C}(\mathrm{H})-\mathrm{O}-\mathrm{C}$	< HCH	$0.471^{\text {c }}$	0.452	0.062
17	$\mathrm{C-C}(\mathrm{H})-\mathrm{OH}$	< HCC	$0.718^{\text {c }}$	0.725	0.064
18	$\mathrm{C}-\mathrm{C}-\mathrm{OH}$	<CCO	$1.182^{\text {c }}$	1.180	0.071
19	$\mathrm{C}-\mathrm{O}-\mathrm{H}$	$<\mathrm{COH}$	$0.760^{\text {d }}$	0.734	0.069
20	$\mathrm{C}-\mathrm{C-C}$	$<\mathrm{CCC}$	$1.071^{\text {c }}$	1.056	0.071
21	$\mathrm{H}-\mathrm{C}-\mathrm{OH}$	< HCO	$0.961{ }^{\text {c }}$	0.963	0.067
22	C-0~C	$<\mathrm{COC}$	$1.313^{\text {c }}$	1.318	0.071

TABLE XX (Continued)
SVQFF FORCE CONSTANT PARAMETERS FOR THE
1,5-ANHYDROPENTITOL MODELS

Force Constant Parameter No.
 Stretch-Bend

23

24

25
26
27

28

29
30

31
32

$\mathrm{H}-\mathrm{C}-\mathrm{O}-\mathrm{C}$	$\mathrm{C}-\mathrm{O}, \angle \mathrm{HCO}$	CO
$\mathrm{H}-\mathrm{C}-\mathrm{OH}$	$\mathrm{C}-\mathrm{O}, \angle \mathrm{HCO}$	CO
$\mathrm{C}-\mathrm{C}-\mathrm{O}-\mathrm{C}$	$\mathrm{C}-\mathrm{O}, \angle \mathrm{CCO}$	CO
$\mathrm{C}-\mathrm{C}-\mathrm{OH}$	$\mathrm{C}-\mathrm{O}, \angle \mathrm{CCO}$	CO

Dummy parameter, not specified in $\underset{\sim}{Z}$ matrices

$\mathrm{C}-\mathrm{O}-\mathrm{C}$	$\mathrm{C}-\mathrm{O}, \angle \mathrm{COC}$	CO	0.483^{c}	0.487	0.071
$\mathrm{C}-\mathrm{C}-\mathrm{O}-\mathrm{C}$	$\mathrm{C}-\mathrm{C},<\mathrm{CCO}$	CC	0.403^{c}	0.381	0.074
$\mathrm{C}-\mathrm{C}-\mathrm{OH}$	$\mathrm{C}-\mathrm{C},<\mathrm{CCO}$	CC			
$\mathrm{C}-\mathrm{C}(\mathrm{H})-\mathrm{O}-\mathrm{C}$	$\mathrm{C}-\mathrm{C}, \leqslant \mathrm{HCC}$	CC.	0.478^{c}	0.481	0.064
$\mathrm{C-C}(\mathrm{H})-\mathrm{OH}$	$\mathrm{C}-\mathrm{C}, \angle \mathrm{HCC}$	CC			
$\mathrm{C}-\mathrm{C}-\mathrm{C}$	$\mathrm{C}-\mathrm{C},<\mathrm{CCC}{ }^{-}$	CC	$0.417^{\text {c }}$	0.485	0.071
$\mathrm{H}-\mathrm{C}-\mathrm{O}-\mathrm{C}$	$\mathrm{C}-\mathrm{H},<\mathrm{HCO}$	CH	0.000^{e}	-0.167	0.063
$\mathrm{H}-\mathrm{C}(\mathrm{H})-\mathrm{O}-\mathrm{C}$	$\mathrm{C}-\mathrm{H},<\mathrm{HCH}$	CH	$\therefore \quad$.
$\mathrm{C}-\mathrm{C}(\mathrm{H})-\mathrm{OH}$	$\mathrm{C}-\mathrm{H},<\mathrm{HCC}$	CH			
$\mathrm{C}-\mathrm{C}(\mathrm{H})-\mathrm{OH}$	$\mathrm{C}-\mathrm{H},\langle\mathrm{HCO}$	CH			
$\mathrm{C}-\mathrm{O}-\mathrm{H}$	$\mathrm{C}-\mathrm{O}, \mathrm{CCOH}$	CO	$0.387^{\text {d }}$	0.357	0.070
$\mathrm{C}-\mathrm{O}-\mathrm{H}$	$\mathrm{O}-\mathrm{H},<\mathrm{COH}$	OH	$0.000^{\text {e }}$.	0.006	0.071

Bend-Bend
33

34

35

$\mathrm{C-C}(\mathrm{H})-\mathrm{O}-\mathrm{C}$	$<\mathrm{HCO},<\mathrm{HCC}$	CH	$0.115^{c}, f$	0.135	0.042
$\mathrm{C}-\mathrm{C}(\mathrm{H})-\mathrm{OH}$	$<\mathrm{HCO},<\mathrm{HCC}$	CH			
$\mathrm{C-C}(\mathrm{H})-\mathrm{O}-\mathrm{C}$	$<\mathrm{HCO},<\mathrm{CCO}$	CO	$-0.031{ }^{c}$	-0.094	0.070
$\mathrm{C}-\mathrm{C}(\mathrm{H})-\mathrm{O}-\mathrm{C}$	$<\mathrm{CCO},<\mathrm{HCC}$	CC			
$\mathrm{C}-\mathrm{C}(\mathrm{H})-\mathrm{OH}$	$<\mathrm{HCC},<\mathrm{CCO}$	CC			
$\mathrm{C}-\mathrm{C}(\mathrm{H})-\mathrm{C}$	$<\mathrm{HCC},<\mathrm{CCC}$	CC	. -	.	
$\mathrm{C}-\mathrm{C}-\mathrm{C}-\mathrm{H}$	$<\mathrm{HCC},<\mathrm{CCC}$	CC			
$\mathrm{C}-\mathrm{C}(\mathrm{H})-\mathrm{OH}$	$<\mathrm{CCO},<\mathrm{HCO}$	CO			
$\mathrm{H}-\mathrm{C}(\mathrm{H})-\mathrm{O}-\mathrm{C}$	$<\mathrm{HCO},<\mathrm{HCO}$	CO	-0.005^{c}	-0.027	0.063

See end of table for footnote.

TABLE XX (Continued)

SVQFF FORCE CONSTANT PARAMETERS FOR THE 1,5-ANHYDROPENTITOL MODELS

See end of table for footnote.

TABLE XX (Continued)

SVQFF FORCE CONSTANT PARAMETERS FOR THE 1,5-ANHYDROPENTITOL MODELS

Force Constant Parameter No.	Group	Coordinates Involved	Atoms Common to Interacting Coordinates	$\begin{aligned} & \text { Initial } \\ & \text { Value, } \Phi_{\underline{i}} \end{aligned}$	$\begin{aligned} & \text { Final } \\ & \text { Value, } \Phi_{\text {i }} \end{aligned}$	$\begin{gathered} \operatorname{Error}^{\mathrm{a}} \\ \sigma\left(\Phi_{\underline{i}}\right) \end{gathered}$
		Bend-Bend	(Continued)			
45	$\mathrm{H}-\mathrm{C}-\mathrm{O}-\mathrm{H}$	$<\mathrm{COH},<\mathrm{HCO}$	$\begin{gathered} \text { (H) O-C(H) } \\ \text { gauche } \end{gathered}$	0.000^{e}	$0.000^{\text {h }}$	0.000
46	H-C-C-H	$<\mathrm{HCC},<\mathrm{CCH}$	$\left(\mathrm{H}_{\mathrm{a}}\right) \mathrm{C}-\mathrm{C}\left(\mathrm{H}_{\mathrm{b}}\right)$	$0.004^{\text {c }}$	-0.002	0.064
47	$\mathrm{H}-\mathrm{C}-\mathrm{C}-\mathrm{H}$	$<\mathrm{HCC},<\mathrm{CCH}$	$\begin{gathered} \text { gauche } \\ \left(\mathrm{H}_{\mathrm{a}}\right) \mathrm{C}-\mathrm{C}\left(\mathrm{H}_{\mathrm{b}}\right) \end{gathered}$	$0.121{ }^{\text {c }}$	0.049	0.071
48	H-C-C-C	$<\mathrm{CCC},<\mathrm{CCH}$	trans (C) $\mathrm{CO}=(\mathrm{H})$ trans	$0.049^{\text {c }}$	-0.047	0.074
49	$\mathrm{H}-\mathrm{C}-\mathrm{C}-\mathrm{C}$	$<\mathrm{CCC}, ~<\mathrm{CCH}$	(C) $\mathrm{C}-\mathrm{C}(\mathrm{H})$ gauche	-0.052	-0.106	0.071
50	$\mathrm{C}-\mathrm{C}-\mathrm{O}-\mathrm{H}$	$<\mathrm{CCO}, \angle \mathrm{COH}$	(C) $\mathrm{C}-\mathrm{O}(\mathrm{H})$	$0.000^{\text {e }}$	0.010	0.070
51	$\mathrm{H}-\mathrm{C}-\mathrm{O}-\mathrm{H}$	< $\mathrm{HOC}, \mathrm{COCH}$	(H) ${ }_{\text {gauche }}^{\text {(}}$ (H)	$0.000{ }^{\text {e }}$	0.016	0.070

Torsion

52	$\mathrm{C}-\mathrm{C}$	C-C		$0.024^{\text {c,g }}$	0.027	0.047
53	$\mathrm{C}-\mathrm{OH}$	C-0		$0.026^{\text {c }}$	0.028	0.055
54	C-O-C	C-0		$0.026^{\text {c }}$	0.012	0.073
Additional Bend-Bend						
55	$\mathrm{H}-\mathrm{C}(\mathrm{H})-\mathrm{O}-\mathrm{C}$	$<\mathrm{HCO}, \mathrm{SHCH}$	CH	$0.000^{\text {e }}$	-0.026	0.036
56	$\mathrm{H}-\mathrm{C}(\mathrm{H})-\mathrm{C}$	< $\mathrm{HCC},<\mathrm{HCH}$	CH	$0.000^{\text {e }}$	0.025	0.061

[^22]where $(\underset{\sim}{G}(\underline{m}-1)$ is a diagonal matrix
\[

$$
\begin{align*}
& \underset{\sim}{E}=\left(G_{\sim}^{(m-1)}\right)^{-\frac{1}{2}}(\underset{\sim}{G}(m-1))\left(G{ }_{\sim}^{(m-1)}\right)^{-\frac{1}{2}}= \\
& \left.{\underset{\sim}{G}}^{(m-1)}\right)^{-\frac{1}{2}}{ }_{\sim N A} A_{N} \cdot\left({ }_{\sim}(m-1)\right)^{-\frac{1}{2}} \tag{47}
\end{align*}
$$
\]

and then applied to the $\underset{\sim}{F}$ matrix.

$$
\begin{equation*}
\underset{\sim}{H}=\left(G_{\sim} \cdot(m-1)\right)^{\frac{1}{2}}\left(A^{-1}\right) \cdot \sim_{\sim} A^{-1}(\underset{\sim}{G} \cdot(m-1))^{\frac{1}{2}} . \tag{48}
\end{equation*}
$$

The new $\underset{\sim}{F}$ matrix, $\underset{\sim}{H}$, is symmetric and may be diagonalized by the Jacobi method as cited by Acton (100).

$$
\begin{equation*}
\underset{\sim}{H W}=\underset{\sim}{W} \tag{49}
\end{equation*}
$$

where Λ is a diagonal matrix of the eigenvalues, λ. Although the transformation, $\underset{\sim}{A}$, was first applied to $\underset{\sim}{G}$ and then to $\underset{\sim}{F}$, the result is the same as applying the transformation to the product $\underset{\sim}{G F}$ which appears in Equation (26). That is,
using Equation (47) and the fact that A is orthogonal. The details of the computational method follow.

The elements of G may be written as

$$
\begin{equation*}
G_{i j}=\sum_{k=1}^{3 N} m_{k}^{-\frac{2}{2}} B_{i k} m_{k}^{-\frac{2}{2}} B_{j k} \tag{51}
\end{equation*}
$$

${ }^{13}$ In this equation $(\underline{G}(\underline{m}-1))^{-\frac{1}{2}}$ is defined to be $\left[(\underline{G}(\underline{m}-1))^{\frac{1}{2}}\right]^{-1}$.
which corresponds to the matrix expression for $\underset{\sim}{G}$ given in Equation (32): A row vector, $\underline{D}_{\underline{i}}$, may be defined with $3 \underline{N}$ elements, $\underline{\underline{m}}^{-\frac{1}{2}}{ }^{-\frac{1}{\underline{i k}}}$, and Equation (51) may then be written as

$$
\begin{equation*}
G_{i j}=D_{i} D_{j}^{\prime} . \tag{.52}
\end{equation*}
$$

A new set of vectors, $\underline{\underline{D}}_{\underline{\underline{i}}}$, are then defined as linear combinations of the $\underline{D}_{\underline{i}}$ such that the new vectors are mutually orthogonal, that is,

$$
\begin{equation*}
\bar{D}_{i} \bar{D}_{j}^{\prime}=0 \tag{53}
\end{equation*}
$$

for $\underline{i} \neq \underline{j}$. The $\underset{\sim}{G}$ matrix in the new coordinates is diagonal, since

$$
\bar{G}_{i j}=\bar{D}_{i} \bar{D}_{j}^{\prime}=\left\{\begin{array}{c}
0 \quad i \neq j \tag{54}\\
\bar{D}_{i} \bar{D}_{i}^{\prime} \quad i=j
\end{array} .\right.
$$

The new vectors are obtained by the Schmidt orthogonalization procedure and are defined by the equations

$$
\begin{align*}
& \bar{D}_{1}=a_{12} D_{1} \\
& \bar{D}_{2}=a_{22} D_{2}+a_{21} \bar{D}_{1} \tag{55}\\
& \bar{D}_{3}=a_{33} D_{3}+a_{32} \bar{D}_{2}+a_{31} \bar{D}_{1} \\
& \text { etc. }
\end{align*}
$$

where $\underline{a}_{\underline{i} \underline{i}}=1$ for $\underline{i}=\underline{j}$ and $\underline{a}_{\underline{i} \underline{j}}=-\bar{D}_{\underline{j}} \underline{D}_{\underline{i}} /(\underline{\underline{D}} \underline{\underline{D}} \underline{\underline{j}})$ for $\underline{i} \neq \underline{j}$.

The coordinate transformation can be written as

$$
\begin{equation*}
\overline{\mathrm{E}}=\mathrm{AR} \tag{56}
\end{equation*}
$$

where the matrix $\underset{\sim}{A}$ is triangular and the elements given by

$$
\begin{equation*}
A_{i j}=a_{i k} A_{k j} \tag{57}
\end{equation*}
$$

for $\underline{i}>\underline{j}$. The coefficients $\underline{a}_{i k}$ may be computed by the following procedure. First, $\underline{G}_{1_{i}} \underline{G}_{1}{ }^{j} \underline{G}_{11}$ is subtracted from each element of $\underset{\sim}{G}$ except \underline{G}_{11}, and the resulting matrix is designated as $\underset{\sim}{G}(1)$. The matrix $\underset{\sim}{G}(\mathcal{I})$ is symmetric and the first row vanishes, so the operation need only be carried out for the rows two through \underline{N} and for $\underline{G}_{\underline{i j}}^{(1)}$, $\underline{i} \leqslant \underline{j}$.

It will now be shown that

$$
\begin{equation*}
\bar{D}_{2} \bar{D}_{2}^{\prime}=G_{22}^{(1)} \tag{58}
\end{equation*}
$$

and that

$$
\begin{equation*}
\bar{D}_{2} D_{j}^{\prime}=G_{2 j}^{(1)} \tag{59}
\end{equation*}
$$

for $\mathfrak{j}>2$. By Equation (55), one may see that

$$
\begin{align*}
\bar{D}_{2} \bar{D}_{2}^{\prime} & =\bar{D}_{2}\left(D_{2}^{\prime}+a_{21} \bar{D}_{1}^{\prime}\right)=\bar{D}_{2} D_{2}^{\prime} \\
& =\left(D_{2}+a_{21} D_{1}\right) D_{2}^{\prime}=G_{22}+a_{21} G_{12} \tag{60}\\
& =G_{22}-G_{12} G_{12} / G_{11}=G_{22}^{(I)} .
\end{align*}
$$

Similarly, we have

$$
\begin{equation*}
\bar{D}_{2} D_{j}^{\prime}=\left(D_{2}+a_{21} D_{1}\right) D_{j}^{\prime}=G_{2 j}-G_{12} G_{1 j} / G_{11}=G_{2 j}(1) . \tag{61}
\end{equation*}
$$

A similar process may be carried out on ${\underset{\sim}{\mathbb{G}}}^{(1)}$. defining

$$
\begin{equation*}
G_{i j}^{(2)}=G_{i j}^{(1)}-G_{21}^{(1)} G_{2 j}^{(1)} / G_{22}^{(1)} \tag{62}
\end{equation*}
$$

for $\underline{i}>2$ and $\underline{j}>\underline{i}$, and it can be shown that

$$
\bar{D}_{3} \bar{D}_{3}^{\prime}=G_{3}^{(2)}
$$

and

$$
\begin{equation*}
\bar{D}_{3} D_{j}^{\prime}=G_{3 j}^{(2)} \tag{63}
\end{equation*}
$$

for $\underline{j}>3$.

Successive applications of this process will lead to a diagonal matrix, ${\underset{\sim}{G}}_{(m-1)}^{(m)}$ whose elements are $\underline{G}_{11}^{(0)}, \underline{G}_{22}^{(1)}, \cdots$, where ${\underset{\sim}{G}}_{(0)}^{(0)}$ is the original $\underset{\sim}{G}$ matrix. In general,

$$
\begin{equation*}
G_{i j}^{(k)}=G_{i j}^{(k-1)}-G_{k i}^{(k-1)} G_{k j}^{(k-1)} / G_{k k}^{(k-1)} \tag{64}
\end{equation*}
$$

for $\underline{k}=1$ to $\underline{m}-1$ and $\underline{i}>\underline{k} ; \underline{\mathbf{j}} \geq \underline{i}$. Since

$$
\bar{D}_{i} D_{j}^{\prime}=G_{i j}^{(i-1)}
$$

and

$$
\begin{equation*}
\bar{D}_{i} \bar{D}_{i}^{\prime}=G_{i i}^{(i-1)} . \tag{65}
\end{equation*}
$$

The coefficients, $\underline{\underline{a}}_{\underline{j}}$, are given by

$$
\begin{equation*}
a_{j i}=-\bar{D}_{i} D_{j}^{\prime} /\left(\bar{D}_{i} \bar{D}_{i}\right)=G_{i j}^{(i-1)} / G_{i i}^{(i-1)} . \tag{66}
\end{equation*}
$$

The corresponding $\underset{\sim}{F}$ matrix transformation is given by

$$
\begin{equation*}
\left.\bar{\sim}=\left(A^{-1}\right)\right)_{\sim}^{F A}{ }^{-1} . \tag{67}
\end{equation*}
$$

So, one needs to compute ${\underset{\sim}{A}}^{-1}$. From Equation (55), one may see that, since $\underline{a}_{-\underline{i}}=1$, the inverse transformation is

$$
\begin{align*}
& \quad \frac{i}{D_{1}}=\bar{D}_{1} \\
& D_{2}=\bar{D}_{2}-a_{21} \bar{D}_{1} \tag{68}\\
& D_{3}=\bar{D}_{3}-a_{32} \bar{D}_{2}-a_{31} \bar{D}_{1} \\
& \text { etc. }
\end{align*}
$$

Therefore, the matrix ${\underset{\sim}{\sim}}^{-1}$ has the form

The matrix ${\underset{\sim}{N}}^{(\underline{m}-1)}$ is diagonal, but not a unit matrix. It is made a unit matrix by normalizing the vectors $\underline{\bar{D}}_{\underline{t}}$ to unity.

$$
\begin{equation*}
E_{i}=\bar{D}_{i} /\left(\bar{D}_{i} \bar{D}_{i}\right)^{\frac{1}{2}} . \tag{70}
\end{equation*}
$$

This is equivalent to a coordinate transformation $(\underset{\sim}{(m-l)})^{-\frac{1}{2}}$, that is,

$$
\begin{equation*}
\underset{\sim}{E}=\left(G_{\sim}^{(m-1)}\right)^{-\frac{1}{2}}\left(G_{G}^{(m-1)}\right)\left(G G^{(m-1)}\right)^{-\frac{1}{2}} \tag{71}
\end{equation*}
$$

The corresponding $\underset{\sim}{\underset{\sim}{F}}$ matrix transformation is

$$
\begin{equation*}
\left.\underset{\sim}{H}=\left(G{ }_{N}^{(m-1)}\right)^{\frac{1}{2}} \underset{\sim}{\bar{F}}(G)(m-1)\right)^{\frac{1}{2}} . \tag{72}
\end{equation*}
$$

The matrix $\underset{\sim}{H}$ is symmetric and can be diagonalized by an orthogonal matrix $\underset{\sim}{\mathrm{N}}$, that is,

$$
\begin{equation*}
\mathrm{HN}=\mathrm{WA} . \tag{73}
\end{equation*}
$$

Therefore, the transformations which diagonalize the kinetic and potential energy matrices are
and

$$
\begin{gather*}
W^{\prime}\left(G^{(m-1)}\right)^{-\frac{1}{2}} \sim_{\sim}^{A G A} \tag{74}\\
W_{\sim}^{\prime}\left(G^{(m-1)}\right)^{-\frac{1}{2}} \underset{\sim}{W}=\underset{\sim}{E} \tag{75}\\
(m-1))^{\frac{1}{2}}\left(A^{-1}\right){ }_{\sim}^{\prime} A_{\sim}^{-1}\left(G^{(m-1)}\right)^{\frac{1}{W}} \underset{\sim}{W}=\Lambda
\end{gather*}
$$

and

$$
\begin{align*}
& \sim_{\sim}^{L}=A^{-1}(G(m-1))^{\frac{1}{2}} \underset{\sim}{W} \tag{76}\\
& \sim^{-1}=W^{\prime}(G(m-1))^{-\frac{1}{2}} \underset{\sim}{L} \tag{77}
\end{align*}
$$

If redundant coordinates are used, the same procedure applies. If, for example, the i ith coordinate is a member of a redundant set and the other members of the set have lower numbers, the \underline{i} th row of the $G^{(i-1)}$ matrix vanishes,
and

$$
\begin{align*}
& G_{i i}^{(i-1)}=0 \tag{78}\\
& G_{i j}^{(i-1)}=0 \tag{79}
\end{align*}
$$

for $\underline{\mathbf{j}}>1$. This would seem to lead to difficulties in computing

$$
\begin{equation*}
a_{i j}=G_{i j}^{(i-1)} / G_{i i}^{(i-1)} \tag{80}
\end{equation*}
$$

and

$$
\begin{equation*}
G_{k j}^{(i)}=G_{k j}^{(i)}-G_{i k}^{(i-1)} G_{i j}^{(i-1)} / G_{i i}^{(i-1)} . \tag{8I}
\end{equation*}
$$

However, in the computer programs the $\underset{\sim}{G}$ matrix is entered with an accuracy of about six decimal places and one finds that
and

$$
\begin{align*}
& G_{i j}^{(i-1)} \sim 10^{-6} \\
& G_{i k}^{(i-1)} \sim 10^{-6} \tag{82}\\
& G_{i j}^{(i-1)} \sim 10^{-6}
\end{align*}
$$

and one can compute ${\underset{\sim}{\sim}}^{-1}$ even for redundant coordinates. Actually, the $i t h$ row of $\underset{\sim}{A}$ gives the redundancy accurate to about six significant figures.

The inverse normal coordinate transformation is defined by setting

$$
\begin{equation*}
\left(G_{i i}^{(m-1)}\right)^{-\frac{1}{2}}=0 \tag{83}
\end{equation*}
$$

for $\underline{G}_{\underline{i} \underline{i}}^{(m-1)}<0.00001$. This is possible because the momenta, $\underline{\underline{P}}_{\underline{i}}$, corresponds to a null coordinate, $\overline{\mathrm{R}}_{\underline{\underline{i}}}$, and does not contribute to the kinetic or potential energy. The matrices $\frac{L}{\pi}$ and $\frac{L}{N}^{-1}$ are then rectangular and

$$
\begin{align*}
& \sim_{\sim}^{-1} \underset{\sim}{\sim}=F_{3 N-6} \tag{84}\\
& \sim^{\prime}\left(\tau_{\sim}^{-1}\right)^{\prime}=E_{3 N-6}
\end{align*}
$$

but

$$
{\underset{\sim L}{L}}^{-1} \neq \underset{\sim}{E}
$$

and

$$
\left(L^{-1}\right) \text { '哂’ } \neq \underset{\sim}{E} .
$$

The matrix $\underset{\sim}{H}$ is diagonalized by the Jacobi method (100) to yield the eigenvalue matrix, $\underset{\sim}{\Lambda}$, and the transformation matrix, $\underset{\sim}{W}$. The transformation, $\underset{\sim}{L}$, from internal coordinates to normal coordinates is then computed from the matrix $\underset{\sim}{W}$ by Equation (76).

Jacobi Diagonalization

Schachtschneider (89) considered three methods of computing the eigenvalues and eigenvectors of the real symmetric matrix, $\underset{\sim}{\sim}$, by diagonalization; namely, the Jacobi method, the Givens method, and the Householder method. Although the Jacobi method is considered to be inefficient and slower than the other two methods, the eigenvectors resulting from this method have been shown to be more accurate (104). Also, the Jacobi method is less subject to catastrophic errors for degenerate and zero roots which are common in the vibrational problem. The Jacobi method of matrix diagonalization is discussed in several texts, for example, Schachtschneider (89), Greenstadt (102), and Froberg (103).

The Jacobi method is based on the following theorem. If $\underset{\sim}{H}$ is symmetric, there exists an orthogonal matrix, $\underset{\sim}{S}$, such that $\underset{\sim}{\text { S'HS }}$ is a diagonal matrix whose diagonal elements are the characteristic roots of $\underset{\sim}{H}$, that is, $\underset{\sim}{S}=A$.

Jacobi proposed the algorithm which will actually construct the unitary Shile diagonalizing $\underset{\sim}{\sim}$. He conceptualized $\underset{\sim}{A}$ as describing an \underline{n}-dimensional space and derived the transformations which orthogonalize the axes. A series of plane rotations is applied to $\underset{\sim}{H}$, the rotations have the form

where θ is a function of $\underline{h}_{\underline{i \underline{i}}}, \underline{\underline{h}}_{\underline{i j}}$, and $\underline{h}_{\underline{j} \underline{j}}$ of \underline{H}. If

$$
\begin{equation*}
\theta_{i j}=\frac{1}{2} \operatorname{Tan}^{-1}\left[2 h_{i j} /\left(h_{i i}-h_{j j}\right)\right] \tag{86}
\end{equation*}
$$

then it may be shown that the elements $\underline{h}_{\underline{i j}}$ reduce to zero upon the application of the transformation ($\underline{S}_{\underline{i} j}^{\prime}$) $\underset{\sim}{\sim}\left(\underline{S}_{\underline{j}}\right)$. Repeated application of this process takes the form

$$
\begin{gather*}
\left({ }_{k} S_{i j}^{\prime}\right) \cdots\left({ }_{1} S_{i j}^{\prime}\right) H\left({ }_{\sim} S_{i j}\right) \cdots\left({ }_{k} S_{i j}\right)= \\
\left({ }_{k} S_{i j}^{\prime}\right) \cdots\left({ }_{2} S_{i j}^{\prime}\right) \cdots\left({ }_{k} S_{i j}\right)=\Lambda^{\prime} \tag{87}
\end{gather*}
$$

It may be shown that $\underset{\sim}{\prime}$ ' in Equation (87) approximates Λ in the theorem. If we let $\underline{\underline{S}}=\left(\underline{1}_{\underline{i} \underline{j}}\right) \cdots\left(\underline{\underline{\underline{S}} \underline{S}_{\underline{j}}}\right)$, it can be shown that

$$
\begin{equation*}
S^{\prime}=\left({ }_{k} S_{i j}^{\prime}\right) \cdot \cdots\left({ }_{1} S_{i, j}^{\prime}\right) \tag{88}
\end{equation*}
$$

Furthermore, $\underset{\sim}{S}$ satisfies the orthogonality requirement as.

$$
\begin{equation*}
S_{N}^{\prime} S_{\sim}=E=S S_{N}^{\prime} \tag{89}
\end{equation*}
$$

and the columns of $\frac{S}{N}$ turn out to be the eigenvectors, $\underline{W}_{\underline{i}}$, corresponding to the eigenvalues, $\lambda_{\underline{i}}$.

Force Constant Refinement

The method of successive orthogonalization followed by diagonalization just discussed in the last sections provides the procedure for solving the following problem: given the force constants and the $\underset{\sim}{G}$ matrix, find the vibrational frequencies and normal coordinates. However, the problem posed in the normal coordinate calculations in this investigation is: given the observed vibrational frequencies and $\underset{\sim}{G}$ matrix, calculate the force constants and normal coordinates. The solution of this problem results in several difficulties. First, the number of observed frequencies is almost always smaller than the number of force constants in the general harmonic force field (GQFF). Second, the observed frequencies are anharmonic. Finally, the expansion and solution of the secular equation for the force constants is an extremely difficult procedure even. with a digital computer. The first two problems are fundamental and require additional data or some approximations. The last difficulty is computational and can be overcome by using an iterative method in which approximate force constants are refined to give the "best" fit to the observed data.

For certain small molecules or molecules with a high degree of symmetry, the first difficulty can be overcome by using frequencies fromisotopically substituted molecules, and by augmenting the frequency data with Coriolis coefficients, centrifugal stretching constants, mean amplitudes of vibration, or
vibrational intensities. In some cases, it is also possible to measure. or estimate the anharmonic corrections to the observed frequencies. : For most: molecules, however, the data are far short of the number of force constants. in the general harmonic force field, and in order to proceed with the calculation of force constants, we must make some approximations. That is, we must assume that certain force constants can be neglected; assume some model such as the UBFF, VFF, or SVQFF; and assume that the force constants can be transferred between related molecules. It is essential that the number of force constants be restricted so that it is less than or equal to the number of observed data. In most cases, we ignore the anharmonicity problem.

Because of the computational difficulties, it is desirable to have some iterative procedure by which a set of approximate force constants.can be refined to give the "best" fit to the observed frequencies. Following are the discussions of two iterative refinement techniques that were employed in this investigation; one, a linear least squares perturbation method and the other, a nonlinear least squares method. The linear least squares technique failed to converge in the normal coordinate analyses of the $1,5-A P$ compounds and was replaced by the nonlinear technique in this investigation.

Linear Least Squares Réfinement Method

The linear least squares refinement technique is based on a method by King (101). The relationship between the eigenvalues, λ_{i}, and the force constants, $\mathrm{F}_{-j k}$, is expanded in a Taylor series.

$$
\begin{equation*}
\Delta \lambda_{i}=\sum_{j}\left(\partial \lambda_{i} / \partial F_{j k}\right) \Delta F_{j k}+\frac{1}{2} \sum_{j k}\left(\partial^{2} \lambda_{i} / \partial F_{j k} \partial F_{l m}\right) \Delta F_{j k} \Delta F_{l m}+\cdots . \tag{90}
\end{equation*}
$$

Only the first term in the expansion will be considered (i.e., linear refinement). Suppose one is given an initial $\underset{\sim}{F}$ 응 matrix, and one solves the secular equation,

$$
\begin{equation*}
\operatorname{GF}_{N} \mathrm{~L}_{\mathrm{NO}}=I_{N_{O}} \Lambda_{0} \tag{91}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{GF}_{N O} \mathrm{~L}_{0}^{i}=\Lambda^{\circ} \mathrm{L}_{0}^{i} \tag{92}
\end{equation*}
$$

Let $\Delta \underset{\sim}{\sim}$ be a change in the $\underset{\sim}{F}$ matrix, and let $\underline{L}_{\underline{i}}$ be the $\underline{i} t h$ column of the new $\underset{\sim}{L}$ matrix. One can write

$$
\begin{equation*}
L^{i}=L_{o}^{i}+\sum_{j} \delta_{i, j} L^{j} \tag{93}
\end{equation*}
$$

and the secular equation for the new $\underset{\sim}{F}$ matrix is

$$
\begin{equation*}
\underset{\sim}{G}\left(F_{0}+\Delta F\right)\left(L_{0}^{i}+\sum_{j} \delta_{i j} L_{0}^{j}\right)=\left(\lambda_{i}^{0}+\Delta \lambda_{i}\right)\left(L_{0}^{i}+\sum_{j}^{j} \delta_{i j} L_{0}^{j}\right) \tag{94}
\end{equation*}
$$

Expanding the above expression, one obtains

$$
\begin{align*}
& G F_{\sim}^{L} L_{O}^{i}+G \Delta F L_{O}^{i}+\sum_{j} \delta_{i j \sim N O}^{G F} L_{O}^{j}+\sum_{j} \delta_{i j \sim} G \Delta F_{O}^{j} \\
& \quad \lambda_{i}^{O} L_{O}^{j}+\Delta \lambda_{i} L_{o}^{i}+\lambda_{i}^{O} \sum_{j} \delta_{i j} L_{o}^{j}+\Delta \lambda_{i} \sum_{j} \delta_{i j} L_{o}^{j} . \tag{95}
\end{align*}
$$

Using Equation (92) and rearranging, one has

$$
\begin{gather*}
\underset{\sim}{G \Delta F L_{O}^{i}}+\sum_{j} \delta_{1, j} G \Delta F L_{O}^{j}=\sum_{j} \delta_{i j}\left(\lambda_{i}^{0}-\lambda_{j}^{0}\right) L_{o}^{j}+\Delta \lambda_{i} L_{0}^{i} \\
+\Delta \lambda_{i} \sum_{j} \delta_{i j} L_{o}^{j} . \tag{96}
\end{gather*}
$$

From the relation

$$
\begin{equation*}
\underset{\sim}{L} \mathscr{N O}_{0}^{\prime}=\underset{\sim}{G} \tag{97}
\end{equation*}
$$

it follows that

$$
\begin{equation*}
\left(L_{0}^{i}\right)^{n}=\left(L_{0}^{-1}\right)_{i} G \tag{98}
\end{equation*}
$$

where (\underline{L}^{-1}) is the $\underline{\underline{i}}^{\text {th }}$ row of $\underline{L}_{\mathrm{N}} \mathrm{O}^{-1}$. Equation (96) is now multiplied on the left by ($\left.\underline{\underline{o}}^{-1}\right)_{\underline{i}}$ to obtain

$$
\begin{equation*}
\left(L_{0}^{i}\right) \cdot \Delta F L_{0}^{i}+\sum_{j} \delta_{i j}\left(L_{0}^{i}\right) \cdot \Delta F\left(L_{N}^{j}\right)=\Delta \lambda_{i}+\delta_{i i} \Delta \lambda_{i} . \tag{99}
\end{equation*}
$$

This equation is exact, but not very useful since the new coefficients $\delta_{i j}$ are functions of $\underset{\sim}{\Delta}$. One may note, however, that if ΔF is small, then the $\delta_{i j}$ and $\Delta \lambda_{\underline{i}}$ are also small. If one neglects the terms involving the products of two small quantities, Equation (99) is approximated by

$$
\begin{equation*}
\left(L_{0}^{i}\right) \cdot \Delta F\left(L_{0}^{i}\right) \cong \Delta \lambda_{i} . \tag{100}
\end{equation*}
$$

The linear refinement method is only as good as this approximation. Expanding Equation (100), one obtains

$$
\begin{equation*}
\Delta \lambda_{i} \cong \sum_{j}\left[\left(L_{0}\right)_{j i}^{2} \Delta F_{j j}\right]+2 \sum_{j<k}\left[\left(L_{0}\right)_{j i}\left(L_{0}\right)_{k i} \Delta F_{j k}\right] \tag{101}
\end{equation*}
$$

which upon comparison with Equation (90) is seen to provide an approximation to the first derivatives of the Taylor expansion. This gives one a linear relation between the force constants and the frequency parameters, λ, which one can write in matrix notation as

$$
\begin{equation*}
\overline{\Delta \lambda}=J \overline{\Delta N} \tag{102}
\end{equation*}
$$

where $\overline{\Delta \lambda}$ is a column matrix of $\Delta \lambda_{i}, \overline{\Delta F}$ is a column matrix of the elements $\Delta \underset{\underline{i}}{ }{ }_{\underline{Z}}$, and $\underset{\sim}{J}$, the Jacobian, is a rectangular matrix of the products $\left(\mathrm{I}_{0}\right)_{j \mathrm{ji}}^{2}$ and
 iterative linear least squares procedure for refining a set of force constants
to give the "best" fit to the observed frequencies. Suppose one is given an approximate $\underset{\sim}{F}$ matrix, $\underset{\sim}{F} \underset{O}{\sim}$, and the observed frequencies, $\lambda_{o b s}$. One solves the secular equation

$$
\begin{equation*}
\operatorname{GFNONO}^{L}=\mathrm{L}_{N O} \Lambda_{0} \tag{103}
\end{equation*}
$$

and letting $\Delta \lambda_{\underline{i}}=\lambda_{\underline{i}, \circ b s}-\lambda_{\underline{i}, \underline{Q}}$ in Equation (102) where $\underset{\sim}{J}$ is computed from the IO. One applies the least squares theory [for example, Draper and Smith (105)] to calculate Equation (104) by multiplying Equation (102) on the left by $\underset{\sim}{\mathrm{J}} \underset{\sim}{\mathrm{p}}$, where $\underset{\sim}{\sim}$ is a weighting matrix (diagonal).

$$
\begin{equation*}
J^{\prime} \sim_{\sim}^{\Delta \lambda} \overline{\Delta \lambda}=\left(J^{\prime} P J\right) \overline{\Delta F} . \tag{104}
\end{equation*}
$$

The solution of this equation is obtained by inverting ($\underset{\sim}{\sim} \sim_{\sim} \mathrm{PJ}$) to give

Now, if the number of frequencies is greater than the number of $\underset{\sim}{F}$ matrix elements, the matrix $\underset{\sim}{J}{ }_{\sim}^{\prime} \mathcal{N J}_{\sim}^{J}$ should be nonsingular, and one obtains the corrections, $\overline{\Delta F}$, which will minimize, $\underset{\sim}{r}{ }_{\sim}^{P r} \underset{\sim}{\sim}$, the sum of the weighted squares of the residuals, where $\underset{\sim}{r}=\Lambda^{\text {obs }}-\Lambda^{\text {calc }}$. If the corrections, $\overline{\Delta F}$, are fairly large, Equation (101) is approximate and the higher order terms in the Taylor expansion are important. One, therefore, uses the corrections to form a new $\underset{\sim}{F}=\underset{\sim}{F}=\underline{\sim}+\Delta \underset{\sim}{\sim}$ and repeats the process. If the calculation is well behaved, $\overline{\triangle F} \underset{\sim}{\sim}$ will decrease on each cycle. The process is repeated until $\frac{\overline{\Delta F}}{\sim}$ becomes very small. (See the following section on termination of the force constant refinement.)

As was mentioned earlier, in most cases, the number of data are not sufficient to determine all of the force constants in the GQFF, and it is necessary to introduce some constraints. Even when the data exceed the number
of force constants, it is usually not possible to determine all of the force constants. Mathematically, the determinant of $\underset{\sim}{\sim} \overline{N J}^{\prime}$ is zero or very smally and the solution to Equation (105) is ill-defined, so that it becomes necessary to introduce some constraints. . This is done by means of the constraint matrix, $\underset{\sim}{Z}$, discussed in an earlier section. $:$ The $\underset{\sim}{Z}$ matrix is the transformation matrix between the force constant parameters, Φ_{ℓ}, and the $\underset{\sim}{F}$ matrix. One has

$$
\begin{equation*}
F_{j k}=\sum_{l} Z_{j k l} \Phi_{1} \tag{i06}
\end{equation*}
$$

or in matrix notation

$$
\begin{equation*}
\bar{\sim}=\underset{\sim}{x} \tag{107}
\end{equation*}
$$

where \bar{Z} is a rectangular matrix of dimension $\underline{n} \underline{\underline{Z}}$ (\underline{n} is the number of force constants in $\underset{\sim}{F}$ and \underline{m} is the number of parameters in $\underset{\sim}{\Phi}$, Φ is a column matrix of elements $\Phi_{\underline{k}}$, and $\underset{\sim}{\sim}$ is a column matrix of the elements ${\underset{-}{j k}}^{\underline{j}}$. The elements of $\underline{\sim}$ are determined by the force field model. Differentiating Equation (107), one obtains

$$
\begin{equation*}
\bar{\sim} \overline{\Delta F}=Z \overline{\Delta \Phi} \tag{108}
\end{equation*}
$$

One substitutes this expression into Equation (104) to obtain

$$
\begin{equation*}
\mathcal{N}_{\sim}^{\prime} \underset{\sim}{P} \overline{\Delta \lambda}=\left(J_{\sim}^{\prime} P N_{N}\right) Z \overline{\Delta \Phi} \tag{109}
\end{equation*}
$$

and multiplies on the left by $\frac{Z}{\sim}$ ' to obtain the "normal equations" of linear least squares theory.

$$
\begin{equation*}
Z \sim \sim N P D \overline{\Delta \lambda}=\left(Z_{N}^{\prime} \sim_{N}^{\prime P J Z}\right) \overline{\Delta \Phi} . \tag{110}
\end{equation*}
$$

Solving this equation for $\bar{\sim}$, one has

The above expression is the one that is used to compute the corrections to the force constant parameters which minimize the differences between the calculated and observed frequencies. The $\underset{\sim}{N}$ matrix is then updated by Equation. (108) to account for the perturbations in the force constant parameters, $\Delta \Phi_{i}{ }^{\text {(}}$ Next, the secular equation (103) is solved with the corrected $\underset{\sim}{\sim}$ matrix, and the least squares corrections to the force constant parameters are computed by Equation (lll). The iterative process is continued until the condition for termination is met.

The condition for termination of the force constant refinement is discussed in Appendix IV. The topics of evaluation of transferable force constants, potential energy distribution, error analysis, multiple solutions, multiple regression analysis, nonconvergence, scaling, and damped least squares are also discussed in Appendix IV in connection with the least squares refinement technique.

Computer program for linear least squares. A computer program, FADJ, has been written by J. H. Schachtschneider (89) and modified for use in this investigation which will solve the vibrational secular determinant, refine the force constant parameters by the method of linear least squares, and will perform a multiple regression analysis at the option of the user. A program listing, flow diagram, and instructions for use of the program, FADJ, are provided in Appendix V. In addition to the computations listed above, FADJ will also calculate the potential energy distribution in $\Phi_{\underline{i}}$, the variance-covariance matrix, the correlation matrix, and the frequency error distribution.

Solution of the secular equation and inear least squares refinement for the 1,5-anhydropentitol models: FADJ was employed to solve the secular equation and refine the initial set of force constants (see Table $X x$) for the 1\%5-AP models. Unfortunately, the linear refinement technique embodied in FADJ failed in all attempts to refine the force constants. The force constant perturbations, computed by Equation (111), resulted in the differences between the calculated and observed frequencies increasing upon each iteration, that is, the refinement diverged. The most probable cause of the divergence was that the problem was extremely ill-conditioned resulting from several of the force constants being strongly correlated. This, in turn, had the effect of making the normal matrix,
 ~~NNN an attempt to force convergence of the refinement without success. The force constants were refined successfully later in the investigation after the linear least squares technique was abandoned for a nonlinear method, which will be discussed next.

Nonlinear Least Squares Refinement Method
The nonlinear least squares refinement technique to be described was suggested by Gans (120) and is based on the method of Fletcher and Powell (121).

In the Fletcher-Powell method (FP), the normal matrix, $\left(Z_{\sim}^{\prime} V^{\prime}{ }^{\prime} P J Z\right)^{-1}$, is not computed directly as in the linear Gauss-Newton-Raphson method (GNR) just discussed. Rather, the matrix is approximated on each iteration, beginning with a unit matrix and becoming a very good approximation to (Z'J'PJZ) near the minimum. This approach avoids the generation of errors that occur in the GNR method upon inverting a nearly singular matrix resulting from highly correlated force constants. In addition, the FP method considers the second-order derivatives in the Taylor expansion of the eigenvalues, whereas the GNR technique
terminates the series after the first term. The FP method has been reported (120) to converge to a minimum even though the initial set of force constants may be a poor approximation.

To derive the expressions comprising the nonlinear refinement technique, one again starts with an expansion of the eigenvalues in a Taylor series, say at the rth iteration.

$$
\begin{align*}
\Delta \lambda_{i}^{r}=\left(\lambda_{i}-\lambda_{i}^{r}\right)= & \sum_{j}\left(\partial \lambda_{i} / \partial F_{j k}\right)^{r} \Delta F_{j k}^{r}+ \tag{112}\\
& \frac{1}{2} \sum \sum_{j l}\left(\partial^{2} \lambda_{i} / \partial F_{j k} \partial F_{l m}\right)^{r} \Delta F_{j k}^{r} \Delta F_{l m}^{r}+\cdots
\end{align*}
$$

In the GNR method, one truncates the series after the linear term (Gauss linear approximation), excluding the second and higher order terms. Based on this approximation and linear least squares theory, one then derives the following expression for the corrections to the force constant parameters
where the \underline{r} indicates the rth iteration. In the method of least squares, one attempts to minimize the difference between the calculated frequency parameters, $\lambda \frac{r}{\underline{i}}$, and the experimental frequency parameters, $\lambda_{\underline{i}}$, such that the parameter \underline{R}, in Equation (114), is a minimum.

$$
\begin{equation*}
R^{r}=\sum_{k} P_{k}\left(\lambda_{k}-\lambda_{k}^{r}\right)^{2}=\left(\widetilde{\Delta \lambda}^{r}\right) P \sim \Delta \lambda^{r} . \tag{114}
\end{equation*}
$$

In the above expression, $\underline{\underline{P}}_{\underline{k}}$ are the elements of the weighting matrix, $\underset{\sim}{P}$. Now, if the expression in Equation (114) is differentiated with respect to the force constant parameters, $\Phi_{\underline{i}}$, the result is
$\overline{{ }^{14} \frac{\bar{\lambda}}{\sim}}$ is defined to be a matrix of the elements $\Delta \lambda \underline{\underline{i}}$.

$$
\begin{align*}
\mathrm{g}_{i}^{r}=\left(\partial R / \partial \Phi_{i}\right)^{r} & =\left(\partial R / \partial F_{l m}\right)^{r}\left(\partial F_{l m} / \partial \Phi_{i}\right)^{r} \\
& =-2 \sum_{k} P_{k} \Delta \lambda_{k}^{r}\left(\partial \lambda_{k} / \partial F_{l m}\right)^{r} Z_{l m} \tag{115}
\end{align*}
$$

where $\underline{\underline{r}} \underline{\underline{r}}$ is the ith element of the gradient vector, $\underline{\mathrm{g}}^{\underline{r}} ; \underline{\underline{I}} \underline{\underline{m}}$ is an element of the $\underset{\sim}{\sim}$ matrix; and $\Delta \lambda \underset{\underline{k}}{r}=\left(\lambda_{\underline{k}}-\lambda \underline{\underline{k}}\right)$. [The above result was obtained by employing the chain rule for differentiation and the relation between $\underset{\sim}{\bar{F}}$ and $\underset{\sim}{\Phi}$ which appears in Equation (107).] Equation (115) may be written in matrix notation as

$$
\begin{equation*}
{\underset{\sim}{g}}^{r}=-\dot{2}\left(\mathcal{J}_{\sim}^{r} \underset{\sim}{n}\right) \stackrel{P}{\sim} \overline{\sim \lambda}_{\sim}^{r} \tag{116}
\end{equation*}
$$

where the Jacobian matrix, $\frac{J}{\sim}-$, contains the elements $\left(\partial \dot{\lambda}_{\underline{k}} / \partial{\underset{\underline{F}}{\underline{m}}}^{\underline{m}}\right)$. When \underline{R} is a minimum, the gradient vector is zero. From Equation (116), it is seen that when ${\underset{\sim}{c}}_{\frac{r}{\sim}}$ is zero, either $\overline{\Delta \lambda}$ is zero, and the experimental frequencies are fitted exactly, or $\left(\frac{J}{\sim} \frac{r}{\sim}\right)$ is singular, and the minimum value of \underline{R} is not and cannot be zero. In general, the counterpart of Equation (116) requires that [($\underset{\sim}{\mathrm{J}}-\mathrm{Z})^{\mathrm{P}} \mathrm{P}_{\mathrm{N}}$ -$\left.\left(J_{\pi}^{r}-Z\right)\right]$ is singular if $\left.\overline{\Delta \lambda} \neq 0.\right\}$ If Equation (ll4) is differentiated once again with respect to $\Phi_{\underline{i}}$, one obtains Equation (117) [again employing the chain rule. for differentiation and the relation expressed in Equation (107)].

$$
\begin{align*}
D_{i j}^{r}=\left(\partial \partial^{2} R / \partial \Phi_{i} \partial \Phi_{j}\right)^{r} & =2 \sum_{k} P_{k}\left\{\left(\partial \lambda_{k} / \partial \Phi_{i}\right)^{r}\left(\partial \lambda_{k} / \partial \Phi_{j}\right)^{r}\right. \\
& \cdots \tag{117}\\
& \left.-\left(\partial^{2} \lambda_{k} / \partial \Phi_{i} \partial \Phi_{j}\right)^{r} \Delta \lambda_{k}^{r}\right\}
\end{align*}
$$

Applying the linear hypothesis, one has

$$
\begin{align*}
D_{i j}^{r} & \cong 2 \sum_{k} P_{k}\left\{\left(\partial \lambda_{k} / \partial \Phi_{i}\right)^{r}\left(\partial \lambda_{k} / \partial \Phi_{j}\right)^{r}\right\} \\
& =2 \sum_{k} P_{k}\left\{\left(\partial \lambda_{k} / \partial F_{m n}\right)^{r}\left(\partial F_{m n} / \partial \Phi_{i}\right)\left(\partial \lambda_{k} / \partial F_{r s}\right)^{r}\left(\partial F_{r s} / \partial \dot{\Phi}_{j}\right)\right\} \tag{118}\\
& =2 \sum_{k}\left(J^{r} Z\right)_{k i} P_{k}\left(J^{r} Z\right)_{k j} .
\end{align*}
$$

This expression is written in matrix form in Equation (119).

By comparing Equations (116) and (119) with Equation (113), one notes that the latter expression can be rewritten as

$$
\begin{equation*}
\Delta \Phi_{N}^{r}=-\left(\mathbb{D}^{r}\right)^{-1}{\underset{\sim}{g}}^{r} \tag{120}
\end{equation*}
$$

In the FP method, the second derivative terms in Equation (117) are reintroduced indirectly through Equation (120) in the following manner. A positive definite matrix, $\overrightarrow{H^{Y}}$, where $\underset{\sim}{\vec{\sim}}$ is to be distinguished from $\underset{\sim}{H}$ in Equation (72), is updated at each iteration from being, initially, a unit matrix to eventually becoming a good approximation to $(\underset{\sim}{D})^{-1}$. The increment added to the force constants, $\Delta \overline{\mathbb{N}}$, is calculated for each iteration by the following expression,

$$
\begin{equation*}
\Delta \bar{\Phi}^{r}=-\vec{H}_{N}^{\underline{g}}{ }^{r} . \tag{121}
\end{equation*}
$$

For linear problems, the FP and the GNR methods are ultimately identical because the linear hypothesis made in Equation (118) is valid. For nonlinear problems, the FP method ultimately becomes identical with Newton's method for nonlinear equations. The latter method converges slowly when not near the minimum. The FP technique attempts to overcome this by setting $\frac{\vec{H}_{N}^{1}}{\sim}=\mathbb{N}$ (unit matrix) and, therefore, $\Delta \bar{\Phi}^{1}=-g^{2}$; that is, the first iteration follows the path of steepest descent. However, Gans (120) suggests that a more effective
 however, in those problems where the force constants are highly correlated because then the matrix [(JZ) $\left.{ }_{\sim} \mathrm{P}(\mathrm{JZ})\right]$ is singular or nearly singular and cannot be inverted.

To approach $(\underset{\sim}{D})^{-1}$, a method of successive linear searches in $\bar{H}-c o n j u g a t e$ direction's is used. At the (r+l)st iteration step, a linear search is made. in the direction $\frac{n^{r}}{N}=-\frac{r}{N}$. By means of the linear search, the minimum of $\underline{R}(\underline{r})(\underline{t})=$
 where $\Delta \underset{\sim}{\Phi}-\underline{r}$ is now equal to $\underset{\sim}{t} \underline{r} \stackrel{r}{\sim}$ and $t_{\underline{r}}$ is an adjustable scalar. The argument of the minimum, ${\underset{\sim}{x}}^{\underline{x}}$, on the line through ${\underset{\sim}{\Phi}}^{\underline{N}}$ in the direction $\frac{h^{r}}{\sim}$ is determined by the relation that the scalar product $\left(\underset{\sim}{\underline{r}} \underline{\underline{n}}, \frac{h}{n}\right)=0$. Now, one has

$$
\begin{align*}
& \stackrel{\Phi}{n}^{n}=\bar{\Phi}^{j}+\sum_{i=j}^{n-1} t_{i} n^{i} \quad \text { for } j<n-1 \tag{122}\\
& {\underset{\sim}{g}}^{n}=g_{N}^{j}+\sum_{i=j}^{n-1} t_{i} \bar{H}^{i} n^{i} \quad \text { for } j<n-1 \tag{123}
\end{align*}
$$

and therefore,

$$
\begin{equation*}
\left({\underset{\sim}{g}}^{n}, h^{j}\right)=\sum_{i=j+1}^{n-1} t_{i}\left(\bar{H}^{i} h^{i}, h^{j}\right) . \tag{124}
\end{equation*}
$$

 ensures that $\underset{\sim}{\mathbb{H}}$ approaches $(\underline{D})^{-1}$ as $\underset{\sim}{\Phi^{2}}$ approaches $\bar{\Phi}_{\text {min }}$. The $\underset{\sim}{\underline{H}}$ matrix is modified on each iteration by the following expression

$$
\begin{align*}
& -\overrightarrow{H^{r}}(\mathrm{dg})(\mathrm{dg})_{\sim}^{\prime \vec{H}} /\left[(\mathrm{dg})_{\sim}^{\prime} \cdot \vec{N}^{r}(\mathrm{dg})\right] \tag{125}
\end{align*}
$$

 terminated after $\left|\Delta \bar{\Phi} \frac{\underline{r}}{\underline{i}}\right|$ become smaller than some arbitrary constant, set by the user, for one or more perturbations, also determined by the user. The linear search technique mentioned above is as follows. For a given argument vector,
$\underset{\sim}{\Phi}$, a direction vector, $\frac{h}{\sim}$, defining a direction through $\underset{\sim}{\Phi}$, a local minimum of the function $\underline{R}(\underline{t})=\operatorname{Func}\left(\bar{\Phi}^{r}-\underline{t}-\underline{r} \frac{\underline{h}}{\sim}\right)$ must be found. This means that a value, $\underline{t}_{\underline{m}}$, must be determined for which $\underline{R}^{\underline{r}}\left(\underline{\underline{-m}}\left(\frac{t^{m}}{}\right)=(\partial \bar{\Phi}) \frac{r}{t} \underline{\underline{m}}=\right.$ scalar product. $[\underline{\sim}$ $\underline{R}^{r}\left(t_{-m}\right)<\underline{R}^{\underline{r}}(0)$ should be found for positive values of t.

The calculation of the minimum is in three stages. The first estimates the magnitude of $t_{\underline{m}}$, the second determines an interval containing $t_{\underline{m}}$, and the third interpolates cubically the value of $t-\underline{m}$. [The interested reader can find the details of the cubic interpolation scheme in the IBM manual (122).]

For each new argument vector, $\bar{\sim}$, the secular equation must be solved to determine $\lambda_{\underline{k}}, \underline{R}(\Phi)$ must be evaluated by Equation (114), and $\underline{g}^{\underline{r}}$ determined by Equation (116). For each iteration, r, the process above may be repeated several times in search of a local minimum. Therefore, the time to complete a refinement is oftentimes longer with the FP method as compared to the GNR method because of the more numerous" solutions of the secular determinant required by the FP method. Thus, the computer time needed to diagonalize the transformed $\underset{\sim}{\sim}$ matrix, $\underset{\sim}{N}$, in Equation (73) becomes very important for large molecules or for a series of molecules. The inefficiency of the Jacobi method of diagonalizating a symmetric matrix has already been stated. However, at the present, computer time must be sacrificed because the Jacobi method results in more accurate eigenvalues and is less subject to errors due to redundancies in the coordinates than the two leading possible replacement methods (Givens and Householder methods) even though these methods are faster and more efficient.

Termination of the force constant refinement. The force constant refinement is terminated and said to have "converged" if either of the following two conditions are satisfied. The first condition requires that all the corrections to the force constants, $\left|\Delta \bar{\Phi}_{\underline{i}}\right|$, for a particular perturbation, be less than or equal to an arbitrary constant supplied by the program user. The second condition requires that the ratio of successive weighted sums of squares of the residuals be greater than a fractional constant supplied by the user (usually very close to $1: 0$). The user may require that this condition be met several times before actual termination is initiated, so as to provide a check against. premature termination.

Error analysis. The standard error in the force constant parameters, $\sigma\left(\dot{\Phi}_{\underline{i}}\right)$, may also be estimated for the FP method. The reader may recall that the standard error was computed from the diagonal elements of the normal matrix in the GNR method, that is,

$$
\begin{equation*}
\sigma\left(\Phi_{i}\right)=\left\{[(J Z) \cdot P(J Z)]_{i i}^{-1}\right\}^{\frac{1}{2}} \sigma_{\lambda} \tag{126}
\end{equation*}
$$

where $\sigma_{\lambda}=\left(\sum_{\underline{i}} \Delta \lambda_{\underline{i}-\underline{i}}^{2} \underline{\underline{n}}^{\frac{1}{2}}\right.$ is the standard error in $\lambda(\underline{n}$ is the number of nonzero experimental frequencies entered in the refinement). In the previous section, the following expressions were derived for linear problems.

$$
\begin{align*}
& {\underset{\sim}{g}}^{\mathrm{r}}=-2(\mathrm{JZ})_{\sim}^{\prime} \underset{\sim}{\mathrm{ANA}^{2}}, \tag{127}
\end{align*}
$$

For nonlinear problems, the above equations become approximations. Thus, $\overline{\underline{H}}$ may be used to compute the standard error in the force constant parameters, since

Potential energy distribution, cartesian displacement coordinates; and mean square amplitudes. The potential energy distributions in terms of the \because : force constant parameters, $\underset{\sim}{\Phi}$, and the internal coordinates, $\underset{\sim}{R}$; the cartesian displacement coordinates; the transformation matrix, $\underset{\sim}{L}$, from normal coordinates to internal coordinates; and the mean square amplitudes of vibration all aid one in the interpretation of the vibrational dynamics of the molecular model in terms of the atomic group vibrations for each of the normal modes.

The $\underset{\sim}{L}$ matrix may be computed by Equation (76) and ${\underset{\sim}{L}}^{-1}$ by Equation (77) after the secular determinant has been solved by the method of successive orthogonalization followed by diagonalization. The $\underset{\sim}{\text { B }}$ matrix, which is the transformation from cartesian coordinates to internal coordinates; is computed by the Wilson "Sㅡ vector" technique discussed in the section on $\underset{\sim}{G}$ matrix computation. The transformation, $\underset{\sim}{\sim}$, from normal coordinates, $\underline{\sim}$, to cartesian coordinates, $\frac{X}{\sim}$, where

$$
\begin{equation*}
X=T Q \tag{133}
\end{equation*}
$$

is then computed from the relation

$$
\begin{equation*}
\underset{\sim}{T}={\underset{\sim}{N}}^{-1}{\underset{N}{N}}^{\prime}\left(\mathbb{N}^{-1}\right) \prime \tag{134}
\end{equation*}
$$

where ${\underset{\sim}{N}}^{-1}$ is the inverse of the atomic mass matrix. The $\frac{T}{\sim}$ matrix gives the cartesian displacements for each atom in the molecule for each normal mode. If, for example, one gives the normal coordinate, $\underline{Q}_{\underline{i}}$, a unit displacement, the cartesian displacements are given by

$$
\begin{equation*}
x^{(i)}=\mathbb{T}^{(i)} \tag{135}
\end{equation*}
$$

where ${\underset{T}{N}}^{(\underline{i})}$ is the $\underline{\underline{i} t h ~ c o l u m n ~ o f ~ t h e ~ m a t r i x ~} \underset{\sim}{T}$. Let $\underset{\sim}{X}$ 으 be the column matrix of the equilibrium cartesian coordinates used to compute the $\underset{\sim}{\operatorname{B}}$ matrix; then the
cartesian coordinates of the atoms for the molecule displaced by one unit of $\underline{Q}_{\underline{i}}$ are

$$
\begin{equation*}
{\underset{\sim}{x}}^{(i)}=x_{0}+{\underset{\sim}{T}}^{(i)} . \tag{i36}
\end{equation*}
$$

If one plots the points $\underset{\sim}{\underline{X}}{ }^{(\underline{i})}$ and $\underset{\sim}{X} 0$, one obtains a representation of the molecule displaced in the normal mode $\underline{Q}_{\underline{i}}$. The elements of ${\underset{\sim}{T}}^{\text {(i) }}$ taken three at a time, giving the $\underline{x}, \underline{y}$, and \underline{z} coordinates of an atom, may be considered to be elements of a vector, $\underline{\vec{a}}(\underline{\underline{i}})$, with its origin at atom \underline{a}. These vectors give the direction of the straight-line motions of the \underline{n} atoms vibrating in normal mode \underline{i}, and the lengths show the relative amplitudes of vibration for each atom.

The expression for the potential energy in terms of the normal coordinates is given in the next equation.

$$
\begin{equation*}
2 V=\sum_{i} \lambda_{i} Q_{i}^{2} . \tag{137}
\end{equation*}
$$

One can see from this expression that $\lambda_{\underline{i}}$ is the potential energy for a unit displacement of normal mode $\underline{\underline{i}}_{\underline{i}}$. The following relation for $\lambda_{\underline{i}}$ may be derived from one of the conditions on the matrix .

$$
\begin{equation*}
\lambda_{i}=\sum_{j, k} L_{j i} L_{k i} F_{j k} \tag{138}
\end{equation*}
$$

The fractional contribution to $\lambda_{\underline{i}}$ from the various $\underset{\sim}{F}$ matrix elements, in terms of the internal coordinates, is given by

$$
\begin{equation*}
2 L_{j i} L_{k i} F_{j k} / \lambda_{i} \tag{139}
\end{equation*}
$$

for $\underline{i}<\underline{j}$ for the off-diagonal elements of $\underset{\sim}{F}$ and by

$$
\begin{equation*}
L_{j i}^{2} F_{j j} / \lambda_{i} \tag{140}
\end{equation*}
$$

for the diagonal elements of F. The sum of these terms is seen to be unitv.

In the harmonic oscillator approximation, the mean square amplitude of the normal mode $\underline{Q}_{\underline{i}}$ is given by

$$
\begin{equation*}
\bar{Q}_{i}^{2}=\left(h / 8 \pi^{2} \nu_{i}\right) \operatorname{coth}\left(h \nu_{k} / 2 k T\right) . \tag{1.41}
\end{equation*}
$$

where $\underline{i}_{\underline{i}}$ is the vibrational frequency in sec. ${ }^{-1}, \underline{h}$ is Planck's constant, \underline{k} is Boltzmann's constant, and $\underline{\underline{T}}$ is the absolute temperature. Also, one has ${\overline{\underline{Q}} \underline{\underline{i}}_{\underline{\underline{j}}}}_{\underline{\underline{j}}}=0$ for $\underline{i} \neq \underline{j}$. The mean square amplitude matrix for normal coordinates is defined as

$$
\begin{equation*}
\dot{\Sigma}^{Q}=\overline{Q Q} \tag{142}
\end{equation*}
$$

and is a diagonal matrix with elements

$$
\begin{equation*}
\sum_{k k}^{Q}=\bar{Q}_{k}^{2}=\left(h / 8 \pi^{2} v_{i}\right) \operatorname{Coth}\left(h v_{k} / 2 k T\right) . \tag{143}
\end{equation*}
$$

The mean square amplitude matrices for other coordinates, such as internal coordinates or cartesian coordinates, can be obtained from the normal coordinate transformations

$$
\begin{equation*}
\xrightarrow[\sim]{R}=\underset{\sim}{L Q} \tag{144}
\end{equation*}
$$

The matrices are defined as
and

The diagonal elements of the \sum_{\sim} matrices are the mean square amplitudes of vibration, and the off-diagonal elements are called the interaction mean square amplitudes. The mean amplitude of vibration for a given coordinate, i, is the root
mean square deviation of the coordinate and is given by the square root of the appropriate diagonal element of \sum_{\sim}.

In this investigation, the computer program which calculates the mean square amplitude matrix was modified to include the computation of what shall be referred to in this text as the "squared amplitudes," in terms of the internal coordinates, for each normal mode. The program already calculated a similar quantity for the cartesian coordinates. For any particular normal mode, $\underline{Q}_{\underline{i}}$, the "squared amplitudes" for the displaced molecule in terms of internal and cartesian coordinates are defined by the following equations.
and

$$
\begin{align*}
& \sum_{\sim}^{R(i)}={\underset{\sim}{L}}^{(i)^{2}}\left(h / 8 \pi^{2} \nu_{i}\right) \operatorname{Coth}\left(h \nu_{k} / 2 k T\right) \tag{148}\\
& \sum_{N}^{X(i)}=N_{N}^{(i)^{2}}\left(h / 8 \pi^{2} v_{i}\right) \operatorname{Coth}\left(h \nu_{k} / 2 k T\right) \tag{149}
\end{align*}
$$

where ${\underset{\sim}{\sim}}^{(\underline{i})}$ and ${\underset{\sim}{N}}^{(\underline{\text { i }})}$ are the ith columns of the $\underset{\sim}{\underline{L}}$ and ${\underset{\sim}{N}}^{\text {matrices. A comparison }}$ of the "squared amplitudes" for the various internal coordinates of any $\underline{\underline{i}}$ gives the relative magnitudes of the displacements of the coordinates from their equilibrium positions for that particular normal mode.

Computer program to compute the potential energy distribution, cartesian displacement coordinates, mean square amplitudes, and "squared amplitudes." The potential energy distribution in terms of internal coordinates, the cartesian displacement coordinates, the mean square amplitude matrix, and the "squared amplitudes" are all calculated by the computer program, EIGV, written by J. H. Schachtschneider (89) and modified for use in this investigation. The Coriolis coupling constants may also be computed with this program if desired [see Schachtschneider (89) for a discussion of the computation]. At the option of the user, the potential energy distribution and "squared amplitudes" are written on tape. The computer program, SASORT, written by the author of this text,
uses the tape as input, orders the numerical arrays in descending order, and identifies each value using an internal coordinate coding system:. The computer program, NFAD, which is an abbreviated version of FADJ, writes the potential energy distribution in terms of the force constants on tape. The computer program, PESORT, also written by the author, then orders the data in descending order and labels the elements of the arrays with .the appropriate internal coordinate code. The programs EIGV, SASORT, and PESORT are listed in Appendix V along with instructions for their use. A flow diagram accompanies the listing of EIGV.

Solution of the secular equation and nonlinear least squares refinement of the force constants for the 1 , 5-anhydropentitol models. Using the G. (Tables XL-XLII in Appendix $I I$) and $\underset{\sim}{Z}$ (Tables XLIII-XIV in Appendix III) matrices previously described for the $1,5-A P$ models, the computer program FLPO was employed to solve the secular equation by the method of successive orthogonalization of GF followed by Jacobi diagonalization to yield the eigenvalues, λ, for the initial set of force constant parameters listed in Table XX. The calculated frequencies were then computed from the eigenvalues, λ, using the expression $\lambda_{\underline{k}}=4 \pi^{2} v_{\underline{k}}{ }^{2}$. Theoretically, there should be $3 N-6$ calculated frequencies for the vibrational model where \mathbb{N} corresponds to the number of "atoms." For the $1,5-A P$ models, there are 19 "atoms" and thus, 51 nonzero calculated fundamental frequencies. The calculated frequencies for the tetrahedral $1,5-A P$ models, based on this initial set of frequencies, are shown in Table XXI. The initial frequency agreement of the calculated frequencies (Table XXI) with the crystalline infrared and Raman spectra (Tables III-V) is noted to be in the "ballpark" which supports the validity of the initial force field. The experimental frequencies from both the Raman and infrared spectra of the crystalline compounds were then correlated with these calculated frequencies with the Raman frequency being the value correlated if a choice between Raman and infrared existed. The correlation of

TABLE XXI
CALCULATED FREQUENCIES FOR THE 1,5-ANHYDROPENTITOL MODELS BASED ON THE INITIAL SET OF FORCE CONSTANTS LISTED IN TABLE XXXII

\checkmark		v V ${ }^{-1}$		ν v -1	
1,5-AX	.$\left.^{-1}\right)$	1,5-	.$\left.^{-1}\right)$	1,5-A	.$\left.^{-1}\right)$
3398	1149	3398	1144	3398	1139
3398	1139	3398	1119	3398	1132
3398	1113	3398	1119	3398	1106
2970	1086	2971	1040	2970	1078
2968	1059	2968	1039	2968	1071
2945	1023	2939	995	2943	989
2938	976	2937	989	2937	959
2932	943	2937	948	2934	928
2863	905	2863	872	2862	885
2862	876	2862	871	2861	839
1463	638	1462	651	1463	723
1459	561	1459	632	1460	622
1415	521	1412	588	1412	545
1405	462	1405	454	1401	484
1391	433	1397	449	1375	435
1356	421	1364	439	1373	409
1355	366	1340	362	1342	397
1330	327	1326	325	1331	315
1323	310	1316	293	1306	309
1316	299	1280	251	1301	260
1288	231	1273	231	1279	228
1256	223	1268	219	1263	227
1252	220	1256	215	1258	217
1234	196	1254	199	1242	180
1213	131	1248	136	1220	131
1155		1174		1176	

frequencies was based on band position and distribution. That is, bands in the spectra were correlated with calculated bands having approximately the same numerical frequency in wave numbers and/or with calculated bands distributed in a. like manner throughout an approximately equivalent region of the experimental spectra. For an example of this last technique for band correlation, consider the calculated bands 462,433 , and $421 \mathrm{~cm} .^{-1}$ for $1,5-A X$ in Table XXI. These
three bands are grouped together, locally "isolated" from other bands on either side. The closest band to $462 \mathrm{~cm} .^{-1}$ is $521 \mathrm{~cm} .^{-1}$, and the closest band to 421 $\mathrm{cm} .^{-1}$ is $366 \mathrm{~cm} .^{-1}$. The Raman and infrared spectra are next examined for three bands in this region, essentially "isolated" from their neighbors. Examination of the tabulated frequencies for the Raman and infrared spectra of crystalline 1,5-AX in Table III reveals that there are three bands in this region, namely 455, 437, and $418 \mathrm{~cm} .^{-1}$ These experimental bands are locally "isolated" from neighboring bands. The nearest band to $455 \mathrm{~cm} .^{-1}$ is $533 \mathrm{~cm} .^{-1}$, and the nearest band to, $418 \mathrm{~cm} .^{-1}$ appears at $369 \mathrm{~cm} .^{-1}$ These three spectral bands are then assigned to the calculated bands with frequencies 462,433 , and $421 \mathrm{~cm} .^{-1} \mathrm{In}$ addition, the information provided by the water and DMSO-d 6 solution spectra, deuterated $1,5-A P$ spectra, and depolarization ratio measurements assists in the frequency assignments.

The 56 initial force constant parameters (Table $X X$) were then refined for all three models simultaneously to minimize the differences between the observed and. calculated frequencies. The nonlinear least squares technique based on the Fletcher-Powell method, available in the computer program FLPO, was employed in this refinement. Actually, only 54 of the listed 56 parameters were included in the refinement. One of these parameters is a dummy and the other is a gauche bend-bend interaction term which does not appear in the $\underset{\sim}{F}$ matrices for the $1,5-\mathrm{AP}$ compounds, but was included for completeness. Therefore, the refinement involved 54 variables (force constant parameters in the SVQFF) and 144 data points (experimental frequencies for the three $1,5-\mathrm{AP}$ compounds) to resuit in 90 statistical degrees of freedom. The refinement converged after 24 iterations (i.e., the ratio of successive weighted sum of squares exceeded 0.995 a total of twelve times). The final set of force constants resulting from the refinement is listed in Table XX. The calculated frequencies and the assigned experimental frequencies
for the final set of refined force constants are tabulated in Tables XXII-XXIV for $1,5-A X, 1,5-A R$, and $1,5-A L A, r e s p e c t i v e l y$. The corresponding average errors (mean deviations) between the observed and calculated frequencies after force constant refinement were $5.91,7.60$, and $5.16 \mathrm{~cm} .^{-1}$ for $1,5-A X, 1,5-A R$, and $1,5-A L A$, respectively, for an overall average error of $6.22 \mathrm{~cm} .^{-1}$ (This average error does not include the $O H$ stretch bands because an attempt was not made to improve the frequency "fit" in this region by allowing separate $O H$ stretch: force constant parameters for the individual $O H$ groups.)

The factored $\underset{\sim}{G}$ and $\underset{\sim}{Z}$ matrices resulting from the transformation to symmetry coordinates were employed along with the final set of force constant parameters to calculate the frequencies belonging to each of the two irreducible representations, A^{\prime} and $A^{\prime \prime}$, for the $\underline{-}_{\underline{s}}$ point group for $1,5-A X$ and $1,5-A R$. The results of the symmetry classification are listed in Tables XXII and XXIII and also the results of the depolarization ratio measurements (see Tables XII and XIII). The depolarization ratios proved to be valuable in several cases where the assignment was questionable by providing additional data with which to evaluate the assignment and permitted a check on the assignment in other cases.

EIGV was employed to compute the potential energy distribution, $\frac{L}{\sim}$ matrix, internal: coordinate: : "squared amplitudes," and cartesian displacement coordinates for each of the l,5-AP models based on the final set of refined force constant parameters. These data provided the basis for classifying the vibrational motion of each normal mode in terms of the vibrations of the substituent atomic groups for each of the $1,5-A P$ models. The potential energy distribution, in terms of the internal coordinates, provides the relative contribution of each internal coordinate to the molecular vibration for each normal mode. The potential energy distributions are presented for $1,5-A X, 1,5-A R$, and $1,5-A L A$ in

Exper. Freq ${ }_{i}$, cm .		$\begin{aligned} & \text { Calc. } \\ & \text { Freq; } \end{aligned}$	$\begin{gathered} \text { Sym. } \\ \text { Class. } \end{gathered}$		$\begin{aligned} & \text { Approx. PE Dist., } \\ & \quad \%^{a, b, c, d} \end{aligned}$	
Raman	IR		Calc.	Exp.		Description ${ }^{\text {e }} \mathrm{f}$
3383	3387	3356	A^{\prime}		$\mathrm{OH}(99.9)$	OH stretch (str.)
3343	3350.	3356	A"		OH(99.9)	OH str.
3290	3300	3356	A^{\prime}		OH(99.9)	OH str.
2985	2990	2982	A^{\prime}		$\mathrm{ACH}(90)$	```Asymmetric (asym.) methylene str.```
2970	2973	2979.	A"		ACH (92)	Asym. methylene str.
	2941	2946	A'		$\mathrm{CH}(90)$	Methine str.
2928	2933	2926	$A^{\prime \prime}$		$\mathrm{CH}(92)$	Methine str.
2896.		2911	$A^{\prime \prime}$		$\mathrm{CH}(96)$	Methine str.
2885	2900	2882	A.		ACH(95)	```Symmetric (.sym.) methylene str.```
2871	2873	2880	A"		ACH(97)	Sym. methylene str.
1472	1470	1468	A^{\prime}	A!	$\mathrm{HCOR}(49) \mathrm{HCH}(47)$	Methylene wag(49) coupled with methylene scissor (47)
1459	1464	1460	A"	A ${ }^{\text {a }}$	$\operatorname{HCOR}(50) \mathrm{HCH}(48)$	Methylene wag(50) coupled with methylene scissor(48)
1439	1440	1437	A.		$\begin{aligned} & \operatorname{HCC}(38) \operatorname{AHCC}(21) \\ & \operatorname{HCOR}(12) \end{aligned}$	Methine op bend(38) coupled with methylene wag(33)
1427.		1410	A"		$\begin{aligned} & \operatorname{AHCC}(35) \mathrm{HCC}(20) \\ & \mathrm{HCOR}(11) \mathrm{COH}(10) \end{aligned}$	Methylene wag(46) coupled with methine op bend and OH ip bend
1385	1391	1388	A ${ }^{\prime}$	A ${ }^{\text {a }}$	$\begin{aligned} & \mathrm{HCC}(42) \mathrm{AHCC}(23) \\ & \mathrm{HCO}(12) \end{aligned}$	Methine deformation (both ip and op bend)(54) coupled with methylene wag(28)
1370	1372	1363	A"		$\begin{aligned} & \operatorname{HCC}(41) \operatorname{AHCC}(27) \\ & \operatorname{HCOR}(10) \mathrm{HCO}(10) \end{aligned}$	Methine deformation (both ip and op bend)(5l) coupled with methylene wag(37)
1349	1356	1347	A^{\prime}		$\begin{aligned} & \mathrm{HCO}(.56) \mathrm{HCC}(32) \\ & \mathrm{AHCC}(10) \end{aligned}$	Methine deformation (both ip and op bend)(88) coupled with methylene wag(12)
1340	1340	1345	$A^{\prime \prime}$		HCC(71) $\mathrm{HCO}(11)$	Methine deformation (both ip and op bend)(82)

See end of table for footnotes.

TABLE XXII (Continued)

CALCULATED AND EXPERIMENTAL FREQUENCIES INCLUDING
APPROXIMATE POTENTIAL ENERGY DISTRIBUTIONS FOR CRYSTALILINE $1,5-A N H Y D R O X Y L I T O L$

See end of table for footnotes.

TABLE XXII (Conṭinued)

CALCULATED AND EXPERIMENTAL FREQUENCIES INCLUDING

APPROXIMATE POTENTIAL ENERGY DISTRIBUTIONS FOR
CRYSTALLINE $1,5-A N H Y D R O X Y L I T O L$

Exper. Freq ${ }_{i}$, cm.		Calc. Freq.,	Sym. Class.		$\begin{gathered} \text { Approx. PE Dist. } \\ \%^{a, b, c, d} \end{gathered}$	$\because \quad \text { Description } \mathrm{e}, \mathrm{f}$
Raman	IR:	$\mathrm{cm} .{ }^{-1}$	Calc.	Exp.		
1056	1060	1049	$A^{\prime \prime}$	A ${ }^{\prime}$	$\begin{aligned} & \mathrm{CO}(47) \mathrm{CC}(34) \\ & \mathrm{AHCC}(26) \end{aligned}$	CO str. (47) coupled with ring CC str.(34) and methylene twist and rock (28)
1017	1018	1014	A^{\prime}	A ${ }^{\prime}$	$\operatorname{CC}(52) \operatorname{COR}(34)$	$\begin{aligned} & \text { Ring } \operatorname{CC}(52) \text { and } \operatorname{COR}(34) \\ & \text { str. } \end{aligned}$
		950	A"		$\begin{aligned} & \operatorname{CC}(72) \text { AHCC }(30) \\ & \text { HCC(18) } \end{aligned}$	Primarily ring CC str. (72) coupled with methylene twist and rock(38)
933	936	927	A ${ }^{\text {a }}$	A!	$\begin{aligned} & \operatorname{COR}(22) \mathrm{AHCC}(19) \\ & \mathrm{CC}(13) \mathrm{CCO}(11) \\ & \mathrm{CO}(9) \operatorname{CCOR}(7) \\ & \mathrm{HCOR}(6) \mathrm{COH}(6) \end{aligned}$	Sym. ring str. (35) coupled with methylene twist and rock(25) and CO str.(9)
905	904	901	A"		$\operatorname{cc}(70) \operatorname{cco}(21)$ AHCC(15)CO(12)	Asym. ring str.(70) coupled with methylene twist and rock(18) and CO str.(12)
896	899	882	A ${ }^{\prime}$	A ${ }^{\text {a }}$	CC(61)COR(23) AHCC(20)CCO (19) HCC(19)	Sym. ring str. (61) coupled with methylene twist and rock(23), CO op bend(19), and methine op bend (19).
635	637	655	A ${ }^{\prime}$	A'	$\operatorname{CCOR}(25) \operatorname{CORC}(24)$	Sym. ring bend
	565	563	$A^{\prime \prime}$		CCO(60) $\mathrm{HCC}(26)$	CO op bend(60) coupled with methine op bend(26)
544	542					
$\begin{gathered} 538 \\ (\text { àv. }) \end{gathered}$	$\begin{gathered} 537 \\ (\operatorname{av.}) \end{gathered}$	533	A ${ }^{\text {a }}$	A!	$\begin{aligned} & \operatorname{CC}(35) \operatorname{CCO}(14) \\ & \operatorname{Co}(1.4) \end{aligned}$	Ring CC str. (35) coupled with CO op bend(14) and CO str. (14)
455	456	467	A"	A"	$\begin{aligned} & \operatorname{CCO}(43) \operatorname{HCC}(14) \\ & \operatorname{CC}(11) \end{aligned}$	CO op bend(43) coupled with methine op bend(14) and ring CCC bend(11)
437	440	429	A"	$A^{\prime \prime}$	$\begin{aligned} & \operatorname{Ccc}(29) \operatorname{cco}(24) \\ & \operatorname{CCOR}(23) \end{aligned}$	Asym. ring bend
418	420	420	A ${ }^{\text {a }}$	A ${ }^{\prime}$	$\begin{aligned} & \operatorname{CCC}(37) \operatorname{CORC}(24) \\ & \operatorname{CCO}(19) \end{aligned}$	Sym. ring bend

See end of table for footnotes.

CALCULATED AND EXPERIMENTAL FREQUENCIES INCLUDING APPROXIMATE POTENTIAL ENERGY DISTRIBUTIONS FOR CRYSTALLINE 1,5-ANHYDROXYLITOL

Exper Freq; , cm .		Calc. Freq. , cm.	$\begin{gathered} \text { Sym. } \\ \text { Class. } \end{gathered}$		Approx. PE Dist.,$\%^{a, b, c, d}$	
Raman	IR		Calc.			Description ${ }^{\text {e,f }}$
369	366	368	A^{\prime}	A.	$\begin{aligned} & \operatorname{HCC}(24) \operatorname{CCC}(23) \\ & \operatorname{CCO}(15) \operatorname{CORC}(13) \\ & \operatorname{CCOR}(12) \end{aligned}$	Sym. ring bend (48) coupled with methine op bend(24) and $C O$ op bend(15)
315	317	318	A'		$\begin{aligned} & \mathrm{CCO}(66) \mathrm{HCC}(18) \\ & \operatorname{CCOR}(15) \mathrm{AHCC}(12) \end{aligned}$	CO op bend(66) coupled with methine op bend(18), ring CCOR bend(15), and methylene rock(15)
299	295	297	A^{\prime}		$\begin{aligned} & \operatorname{CCO}(48) \operatorname{TCC}(12) \\ & \operatorname{TCO}(10) \operatorname{CCOR}(9) \\ & \operatorname{HCC}(9) \operatorname{CCC}(8) \end{aligned}$	CO op bend (48) coupled with ring twist(21), OH op bend (10), and methine op bend (9)
280	285	278	$A^{\prime \prime}$		CCO(102)	CO op bend
234		241	$A^{\prime \prime}$		TCO(88)	OH op bend
225		230	$A^{\prime \prime}$		TCO(73)	OH op bend
220		228	$A^{\prime \prime}$		TCO(81)	OH op bend
202		200	A"		$\begin{aligned} & \operatorname{TCC}(52) \operatorname{cCOR}(13) \\ & \operatorname{CCO}(12) \operatorname{CCC}(10) \\ & \operatorname{TCO}(10) \end{aligned}$	Ring twist coupled with co op bend (12) and OH op bend (10)
		131	A^{\prime}		$\begin{aligned} & \operatorname{TCC}(52) \operatorname{CCC}(27) \\ & \operatorname{CCO}(11) \operatorname{CORC}(8) \end{aligned}$	Ring twist

${ }^{a}$ Just the most significant contributions to the potential energy are listed. The sum of the components of the potential energy distribution may total more than 100% due to the presence of negative contributions resulting from negative interaction force constants.
bAC...denotes the "anomeric" carbon atom (i.e., the carbon atom adjacent to the ring oxygen atom).
c...OR denotes the ring oxygen atom.
$\mathrm{d}_{\text {TCC }}, T C O$, and TCOR denote torsion about the CC, CO, and COR bonds, respectively.
${ }^{e}$ In this column the molecular vibration for each normal mode is classified in terms of the particular group vibrations accounting for most of the molecular vibration.
fip denotes "in-plane" bending and op denotes "out-of-plane" bending.
$G_{\text {The }}$ average error (mean deviation) is computed from the difference between the calculated and corresponding experimental frequencies, either infrared or Raman, whichever is closest, and excludes the $O H$ stretching bands. The maximum deviation in Table XXII is $26.8 \mathrm{~cm} .^{-1}$ and the minimum deviation in this table is $-0.5 \mathrm{~cm} .^{-1}$

Exper. Freq, cm.		$\begin{aligned} & \text { Calc. } \\ & \text { Freq; } \end{aligned}$	Sym. Class.		$\begin{gathered} \text { Approx. PE Dist., } \\ \%^{a, b, c, d} \end{gathered}$	
Raman	IR		Calc.	Exp.		Description
3406	3409	3356	A ${ }^{\prime}$		$\mathrm{OH}(99.9)$	OH stretch (str.)
3350	3345	3356	$\dot{A}^{\prime \prime}$		$\mathrm{OH}(99.9)$	OH str.
3250	3279	3356	A'		OH(99.9)	OH str.
2997	3000	2982	A ${ }^{\text {a }}$		ACH (92)	Asymmetric (asym.) methylene str.
2972	2970	2979	A"		ACH(92)	Asym. methylene str.
2943	2945	2931	A^{\prime}		CH(94)	Methine str.
2932	2934	2925	A"		$\mathrm{CH}(92)$	Methine str.
	2929	2921	A^{\prime}		CH (95)	Methine str.
2918		2882	A ${ }^{\text {a }}$		$\mathrm{ACH}(96)$	```Symmetric (sym.) methylene str.```
2875	2880	2880	A"		ACH (97)	Sym. methylene str.
1468	1466	1468	A ${ }^{\prime \prime}$	A ${ }^{\text {a }}$	HCOR(53) $\mathrm{HCH}(45$)	Methylene wag(53) coupled with methylene scissor (45)
1458		1460	A"	A ${ }^{\prime}$	HCOR (49) $\mathrm{HCH}(48)$	Methylene wag(49) coupled with methylene scissor(48)
1419		2418	A"		$\begin{aligned} & \operatorname{AHCC}(36) \mathrm{HCC}(27) \\ & \operatorname{HCOR}(14) \end{aligned}$	Methylene wag(50) coupled with methine op bend(27)
1403	1400	1412	A^{\prime}		$\begin{aligned} & \operatorname{AHCC}(42) \operatorname{HCC}(21) \\ & \operatorname{HCOR}(14) \end{aligned}$	Methylene wag(56) coupled with methine op bend(21)
1385	1388	1393	A ${ }^{\text {, }}$		$\begin{aligned} & \mathrm{HCC}(51) \mathrm{HCO}(18) \\ & \mathrm{AHCC}(9) \mathrm{CO}(7) \end{aligned}$	Methine deformation (mostly op but some ip bend) (69)
	1365	1367	A"		HCC(56)A.HCC(17)	Methine op bend (56) coupled with methylene wag(17)
1350	1354	1344	A^{\prime}		HCO(59)HCC (29)	Methine def̀ormation (mostly ip, but some op bend)
		1320.	A"		$\begin{aligned} & \mathrm{HCO}(68) \mathrm{HCC}(25) \\ & \mathrm{HCOR}(12) \end{aligned}$	Methine deformation (mostly ip with some op bend) coupled with methylene twist(12)

$\overline{\text { See end of table for footnotes. }}$

TABLE XXIII (Continued)
CALCULATED AND EXPERIMENTAL FREQUENCIES INCLUDING APPROXIMATE POTENTIAL ENERGY DISTRIBUTIONS FOR CRYSTALLINE 1,5-ANHYDRORIBITOL

Exper. Freq; cm.		Calc. Freq; cm.	Sym.Class.		Approx. PE Dist.,$\%^{a, b, c, d}$	
Raman	IR		Calc.	Exp.		Description ${ }^{\text {e, }}$ f
1315	1310	1317	A'	A!	$\begin{aligned} & \mathrm{HCO}(59) \mathrm{HCC}(28) \\ & \mathrm{HCOR}(10) \end{aligned}$	Methine deformation (mostly ip with some op bend) coupled with methylene twist(10)
	1290	1295	A ${ }^{\text {a }}$	A ${ }^{\text {a }}$	$\begin{aligned} & \operatorname{HCOR}(69) \operatorname{AHCC}(20) \\ & \operatorname{HCO}(13) \end{aligned}$	Methylene twist(89) coupled with methine ip bend (13)
1281		1289	$A^{\prime \prime}$		$\begin{aligned} & \operatorname{HCC}(45) \operatorname{HCOR}(32) \\ & \operatorname{AHCC}(12) \end{aligned}$	Methine op bend(45) coupled with methylene twist(44)
1265	1264	1265	A"	A ${ }^{\prime}$	$\begin{aligned} & \operatorname{HCC}(39) \operatorname{HCOR}(37) \\ & \mathrm{HCO}(16) \mathrm{AHCC}(10) \end{aligned}$	Methine deformation (mostly op with some ip bend)(55) coupled with methylene twist and rock(47)
1244	1245	1255	A^{\prime}		$\mathrm{COH}(77) \mathrm{CC}(8)$	OH ip bend (77)
	1226	1233	A ${ }^{\prime}$	A'	$\begin{aligned} & \mathrm{COH}(64) \mathrm{AHCC}(13) \\ & \mathrm{HCC}(12) \mathrm{HCO}(9) \end{aligned}$	OH ip bend(64) coupled with methylene twist and rock(l7)
1202	1202	1220	$A^{\prime \prime}$		$\begin{aligned} & \mathrm{COH}(69) \mathrm{HCC}(13) \\ & \mathrm{AHCC}(11) \mathrm{HCO}(7) \end{aligned}$	OH ip bend(69) coupled with methylene twist and rock(14)
1156	1156	1155	A^{\prime}	A^{\prime}	$\begin{aligned} & C O(42) \operatorname{AHCC}(22) \\ & C C(16) . \end{aligned}$	CO str.(42) coupled with methylene twist and rock(25) and ring CC str.(16)
1124	1126	1131	$A^{\prime \prime}$	$A^{\prime \prime}$	$\begin{aligned} & \operatorname{COR}(56) \text { AHCC (27) } \\ & \operatorname{CC}(11) \end{aligned}$	Asym. COR str. (56) coupled with methylene twist(28) and ring CC str.(11)
1104	1103	1106	A"		$\begin{aligned} & \operatorname{CC}(52) \operatorname{co}(25) \\ & \operatorname{COR}(22) \end{aligned}$	Asym. ring str.(74) coupled with CO str.(25)
1082	1083	1096	A^{\prime}	A ${ }^{\text {a }}$	$\begin{aligned} & \mathrm{CO}(37) \mathrm{CC}(26) \\ & \mathrm{HCO}(16) \operatorname{COH}(16) \\ & \operatorname{AHCC}(15) \end{aligned}$	CO str. (37) coupled with ring CC str. (26), methine ip bend(16), OH ip bend(16), and methylene twist and rock(16)
$\begin{aligned} & 1043 \\ & (\text { av. }) \end{aligned}$	1045	1042	A"	A ${ }^{\prime}$	$\begin{aligned} & C O(60) \operatorname{AHCC}(23) \\ & \operatorname{CC}(12) \end{aligned}$	CO str.(60) coupled with methylene twist and rock(26) and ring CC str.(12)

See end of table for footnotes.

TABLE XXIII (Continued)

CALCULATED AND EXPERIMENTAL FREQUENCIES INCLUDING APPROXIMATE POTENTIIAL ENERGY DISTRIBUTIONS FOR CRYSTALLINE 1,5-ANHYDRORIBITOL

Exper. Freq; , cm.		Calc. \quad Sym.Fregi, \quad Class.			Approx. PE Dist.,$\%^{a, b, c, d}$	
Raman	IR		Calc.	Exp.		Description ${ }^{\text {e, }}$ f
		1024	A^{\prime}.		$\begin{aligned} & \operatorname{CC}(40) \operatorname{COR}(25) \\ & \operatorname{AHCC}(21) \end{aligned}$	Sym. ring str.(65) coupled with methylene twist and rock(25)
1005	1000	1010	A ${ }^{\text {, }}$	A'	$\begin{aligned} & \mathrm{CO}(62) \mathrm{AHCC}(19) \\ & \mathrm{CC}(15) \end{aligned}$	CO str.(62) coupled with methylene twist and rock(21) and ring CC str.(15)
993	989	981	A"		CC(63)AHCC (22) HCC(19)CCO (15) COR(11)	Asym. ring str. (74) coupled with methylene twist and rock(27), methine op bend (19), and CO op bend(15)
925	928	926	A ${ }^{\text {a }}$	A^{\prime}	$\begin{aligned} & \operatorname{COR}(41) \operatorname{CC}(25) \\ & \operatorname{CCO}(17) \end{aligned}$	Sym. COR str. (41) coupled with ring CC str.(25) and CO op bend(17)
878	879	876	A^{\prime}	A. ${ }^{\text {a }}$	$\begin{aligned} & \operatorname{CC}(45) \operatorname{Co}(16) \\ & \operatorname{CCOR}(15) \operatorname{COR}(10) \end{aligned}$	Sym. ring str. (70) coupled with CO str.(16)
	832	850	$A^{\prime \prime}$		$\begin{aligned} & \mathrm{CC}(88) \mathrm{AHCC}(12) \\ & \operatorname{CCOR}(10) \end{aligned}$	Asym. ring CC str.(88) coupled with methylene rock(12)
669	668	676	A^{\prime}		$\mathrm{HCC}(21) \mathrm{CCO}(18)$ CC(18) CCC(17) AHCC(13)	Methine op bend(21) coupled with CO op bend(18), ring vib.(35) and methylene twist and rock(13)
647	649	641	A"	A'	$\begin{aligned} & \mathrm{CCO}(53) \mathrm{HCC}(24) \\ & \mathrm{CC}(15) \mathrm{AHCC}(9) \end{aligned}$	CO op bend(53) coupled with methine op bend (24)
581	582	599	A^{\prime}	A^{\prime}	$\begin{aligned} & \operatorname{COR}(25) \operatorname{cc}(21) \\ & \operatorname{CCOR}(20) \operatorname{Co}(11) \end{aligned}$	Sym. ring bend(66) coupled with CO str.(11)
448	451	463	A '	A. ${ }^{\text {, }}$	$\begin{aligned} & \operatorname{CCOR}(20) \operatorname{cco}(15) \\ & \operatorname{CCC}(14) \operatorname{cC}(10) \end{aligned}$	Ring bend (44) coupled with CO op bend(15)
437	433	446	A"	A^{\prime}	$\begin{aligned} & \operatorname{CCOR}(29) \operatorname{CCC}(25) \\ & \operatorname{CCO}(19) \end{aligned}$	Ring bend(54) coupled with CO op bend(19)
406	406	413	$A^{\prime \prime}$		$\begin{aligned} & \operatorname{CCO}(88) \operatorname{AHCC}(13) \\ & \mathrm{HCC}(11) \end{aligned}$	CO op bend (88) coupled with methylene rock(17) and methine op bend(11)
345.	342	342	A ${ }^{\text {, }}$	* A^{\prime}	$\begin{aligned} & \operatorname{CCO}(39) \operatorname{CCOR}(28) \\ & \operatorname{CoR}(16) \operatorname{TCC}(11) \end{aligned}$	co op bend (39) coupled with ring bend and twist.

See end of table for footnotes.

CALCULATED AND EXPERIMENTAL FREQUENCIES INCLUDING APPROXIMATE POTENTIAL ENERGY DISTRIBUTIONS FOR CRYSTALIINE 1,5-ANHYDRORIBITOL

Exper. Freq; cm.		Calc. Freq., cm .	Sym. Class.	Approx. PE Dist.,$\%_{0}^{a, b, c, d}$	
Raman	IR		Calc. Exp.		Description ${ }^{\text {e, }}$ f
319		308	A^{\prime}	$\begin{aligned} & \operatorname{CCO}(70) \operatorname{cCC}(8) \\ & \operatorname{CCOR}(7) \mathrm{HCC}(7) \\ & \operatorname{TCC}(7) \end{aligned}$	CO op bend (70) coupled with ring bend and twist
306	305	283	$A^{\prime \prime}$	$\begin{aligned} & \operatorname{CCO}(69) \mathrm{TCO}(19) \\ & \operatorname{HCC}(16) \end{aligned}$	CO op bend(69) coupled with OH op bend(19) and methine op bend(16)
271		255	A ${ }^{\text {a }}$	$\begin{aligned} & \operatorname{TCO}(31) \operatorname{cco}(30) \\ & \operatorname{CCC}(21) \mathrm{HCC}(13) \end{aligned}$	OH op bend(31) coupled with CO op bend, ring CCC bend(21), and methine op bend (13)
238		240	$A^{\prime \prime}$	TCO (89.)	OH op bend (89)
		227	$A^{\prime \prime}$	$\operatorname{TCO}(77) \mathrm{CCO}(15)$	OH op bend(77) coupled with CO op bend(15)
		220	A^{\prime}	$\begin{aligned} & \operatorname{TCO}(56) \operatorname{cco}(18) \\ & \operatorname{CCC}(13) \end{aligned}$	OH op bend(56) coupled with CO op bend(18) and ring CC bend(13)
208		202	A"	$\begin{aligned} & \operatorname{TCC}(56) \operatorname{CCOR}(14) \\ & \operatorname{CCC}(12) \operatorname{CCO}(12) \end{aligned}$	Ring twist coupled with CO op bend (12)
$(169)^{8}$		137	A ${ }^{\text {a }}$	$\operatorname{TCC}(51) \operatorname{CCC}(26)$ $\operatorname{CORC}(10) \mathrm{CCO}(8)$	Ring twist

Average error $=7.60 \mathrm{~cm} .^{-1 \mathrm{~h}}$

[^23]TABLE XXIV

CALCULATED AND EXPERIMENTAL FREQUENCIES INCLUDING APPROXIMATE POTENTIAL ENERGY DISTRIBUTIONS FOR. CRYSTALLINE $1,5-A N H Y D R O-L-A R A B I N I T O L$

$\begin{gathered} \text { Exper. Freq., } \\ \text { cm. } \end{gathered}$		Calc. Freq., cm.	$\begin{gathered} \text { Approx. PE Distr. } \\ \%^{a, b, c, d} \end{gathered}$	\because Description $^{e}{ }^{\text {f } f}$
Raman	IR			
3425	. 3428	3356	$\mathrm{OH}(99.9)$	OH stretch (str.)
	3385	3356	$\mathrm{OH}(99.9)$	OH str.
3310	3320	3356	$\mathrm{OH}(99.9)$	OH str.
2983	2985	2981	ACH (92)	$\begin{aligned} & \text { Asymmetric (asym.) } \\ & \text { methylene str. } \end{aligned}$
2973	2976	2978	$\mathrm{ACH}(95)$	Asym. methylene str.
2932	2932	2940	CH(92)	Methine str.
	2925	2926	$\mathrm{CH}(96)$	Methine str.
2916	2917	291.5	$\mathrm{CH}(96)$	Methine str.
2879	2879	2882	ACH (96.)	$\begin{aligned} & \text { Symmetric (sym.) } \\ & \text { methylene str. } \end{aligned}$
2860	2863	2880	ACH (97)	Sym. methylene str.
1467	1463	1469	HCOR (50) $\mathrm{HCH}(46)$	Methylene wag(50) coupled with methy:lene scissor(46)
1454	1460	1461	HCOR (48) $\mathrm{HCH}(48)$	Methylene wag(48) coupled with methylene scissor(48)
1410	1410	1419	AHCC (32) HCC (26) HCOR(11) COH (8)	Methylene wag(43) coupled with methine op bend(26)
		1395	HCC (54)A.HCC (21)	Methine op bend (54) coupled with methylene wag(21)
1381	1379	1378	$\begin{aligned} & \operatorname{HCC}(50) \mathrm{AHCC}(14) \\ & \mathrm{HCO}(10) \mathrm{COH}(8) \end{aligned}$	Methine op bend(50) coupled with methylene wag(18)
1369	1371	1372	$\operatorname{HCC}(47) \mathrm{HCO}(28)$ AHCC (17)	Methine deformation (both op and ip bend)(75) coupled with methylene wag (22)
1343	1349	1341	$\begin{aligned} & \mathrm{HCO}(45) \mathrm{HCC}(35) \\ & \text { AHCC }(11) \end{aligned}$	Methine deformation (both op and ip bend)(80) coupled with methylene wag (14)
1325	1329	1326	$\begin{aligned} & \mathrm{HCO}(61) \mathrm{HCC}(26) \\ & \operatorname{HCOR}(13) \end{aligned}$	Methine deformation (mostly ip with some op bend)(87) coupled with methylene twist(18)

See end of table for footnotes.

TABLE XXIV (Continued)

CALCULATED AND EXPERIMENTAL FREQUENCIES INCLUDING APPROXIMATE POTENTIAL ENERGY DISTRIBUTIONS FOR CRYSTALIINE 1,5-ANHYDRO-L-ARABINITOL

$\begin{gathered} \text { Exper. Freq., } \\ \text { cm, } \end{gathered}$		Calc. Freq., cm .	Approx. PE Distr.,$\%^{a, b, c, d}$	$\text { Description }^{e, f}$
Raman	IR			
1309	1313	1313	$\begin{aligned} & \operatorname{HCOR}(39) \mathrm{HCO}(20) \\ & \operatorname{AHCC}(19) \mathrm{HCC}(11) \end{aligned}$	Methylene twist and rock (58) coupled with methine deformation (both ip and op bend)(31)
1302	1300	1304	$\begin{aligned} & \operatorname{HCOR}(39) \operatorname{AHCC}(22) \\ & \operatorname{HCO}(12) \mathrm{HCC}(11) \end{aligned}$	Methylene twist(6l) coupled with methine deformation (both ip and op bend) (23)
1281	1279	1284	$\begin{aligned} & \mathrm{HCO}(39) \mathrm{HCOR}(30) \\ & \mathrm{HCC}(21) \mathrm{COH}(12) \\ & \mathrm{AHCC}(8) \end{aligned}$	Methine deformation (both ip and op bend)(60) coupled with methylene twist(38) and $O H$ ip bend(12)
1269	1262	1263	$\begin{aligned} & \mathrm{HCOR}(44) \mathrm{AHCC}(21) \\ & \mathrm{COH}(16) \mathrm{HCC}(15) \end{aligned}$	```Methylene twist(65) coupled with OH ip bend(16) and methine op bend(15)```
	1248	1251	$\begin{aligned} & \mathrm{COH}(54) \mathrm{HCC}(13) \\ & \mathrm{HCOR}(11) \mathrm{HCO}(10) \end{aligned}$	OH ip bend (54) coupled with methine deformation (both ip and op bend)(23) and methylene twist and rock(15)
1233	1233	1234	$\begin{aligned} & \mathrm{COH}(57) \mathrm{HCC}(15) \\ & \mathrm{HCO}(12) \end{aligned}$	```OH ip bend(57) coupled with methine deformation (both ip and op bend)(27)```
1216	1217	1199	$\begin{aligned} & \mathrm{COH}(77) \mathrm{HCC}(14) \\ & \mathrm{HCO}(8) \end{aligned}$	```OH ip bend(7T) coupled with methine deformation (both ip and op bend)(22)```
1150	1151	1163	$\begin{aligned} & \text { AHCC(25)CC(21)CO(18) } \\ & \text { HCC (17)COH(11)COR(11) } \\ & \text { HCO (8) } \end{aligned}$	Methylene rock(31) coupled with ring str.(32), CO str. (18), methine deformation (25), and OH ip bend(11)
1136	1145	1130	$\begin{aligned} & \operatorname{CO}(34) \operatorname{AHCC}(24) \\ & \operatorname{COR}(19) \operatorname{CC}(17) . \\ & \operatorname{CCC}(9) \end{aligned}$	Asym. ring str. (45) coupled with methylene twist and $\operatorname{rock}(27)$ and CO str. (34)
$\begin{aligned} & 1108 \\ & (\mathrm{av} .) \end{aligned}$	$\begin{aligned} & 1108 \\ & (\operatorname{av.} .) \end{aligned}$	1108	$\begin{aligned} & \operatorname{CO}(73) \operatorname{CC}(12) \\ & \operatorname{AHCC}(8) \operatorname{CCC}(8) \end{aligned}$	CO str. (73) coupled with ring vib.(20) and methylene rock(9)
1092	1093	1097	$\operatorname{COR}(4 \mathrm{I}) \mathrm{CC}(30) \mathrm{CO}(26)$	Asym. COR str. (41) coupled with ring CC str.(30) and CO str. (26)

See end of table for footnotes.

TABLE XXIV (Continued)
CALCULATED AND EXPERIMENTAL FREQUENCIES INCLUDING APPROXIMATE POTENTIAL ENERGY DISTRIBUTIONS FOR CRYSTALLINE 1,5-ANHYDRO-L-ARABINITOL

$\begin{gathered} \text { Exper. Freq., } \\ \mathrm{cm} . \end{gathered}$		$\begin{gathered} \text { Calc. Freq. } \\ \text { cm. } \end{gathered}$	Approx. PE Distr.,$\%^{a, b, c, d}$
Raman	IR		
1067	1074	1074	CC(35)CO(27) $\mathrm{AHCC}(27) \mathrm{COH}(10$. HCC (10)
1057	1056	1061	$\begin{aligned} & \mathrm{CC}(56) \operatorname{COR}(28) \\ & \mathrm{CO}(22) \text { AHCC }(11) \end{aligned}$
1005	1008	988	$\begin{aligned} & \operatorname{CC}(44) \operatorname{AHCC}(19) \\ & \operatorname{COR}(13) \operatorname{CO}(10) \end{aligned}$
948	947	941	$\operatorname{CC}(61) \mathrm{CCO}(18)$ AHCC (14) CCOR (12)
926	927	931	CO (40) Ahcc (26) CC(26)COR(14) HCC(I2)
876	. 880	873	$\begin{aligned} & \operatorname{CC}(58) \operatorname{COR}(23) \\ & \operatorname{HCC}(17) \mathrm{AHCC}(16) \\ & \operatorname{CCO}(11) \end{aligned}$
837	840	851	$\begin{aligned} & \operatorname{CC}(30) \operatorname{Co}(27) \operatorname{COR}(21) \\ & \operatorname{CCO}(12) \end{aligned}$
758	7.55	743	$\begin{aligned} & \operatorname{CCOR}(21) \operatorname{cc}(16) \operatorname{CO}(14) \\ & \operatorname{CCO}(10) \operatorname{CORC}(9) \operatorname{CCC}(7) \\ & \operatorname{HCC}(6) \end{aligned}$
633	636	637	$\begin{aligned} & \operatorname{CCO}(25) \operatorname{CC}(21) \mathrm{HCC}(12) \\ & \operatorname{CORC}(11) \operatorname{CCOR}(8) \end{aligned}$
546	546	540	$\operatorname{CCO}(34) \mathrm{CC}(17) \mathrm{CCOR}(17)$
483	483	487	$\operatorname{CCO}(40) \operatorname{CC}(13) \operatorname{ccc}(11)$
430	426	441	$\begin{aligned} & \mathrm{CCO}(46) \mathrm{HCC}(24) \\ & \operatorname{CORC}(15) \end{aligned}$

Asym. ring str.(35) coupled with CO str.(27), methylene twist and rock (30), OH ip bend(10), and methine op bend(10)

Sym. ring str.(84) coupled with CO str.(22) and methylene rock(17)
Asym. ring str.(57) coupled with methylene twist and rock(23) and CO str.(10)

Asym. ring str.(87) coupled with methylene rock(22)

CO str. (40) coupled with ring str. (40), methylene twist and rock(27), and methine op bend(12)
Sym. ring str.(81) coupled with methine op bend(17), methylene twist and rock (17), and CO op bend(11)

Sym. ring str.(51) coupled with CO str.(27) and CO op bend (12)

Ring bend (53) coupled with CO str. (14.) and methine op bend(6)

Ring bend (40) coupled with CO op bend(25) and methine op bend(12)
CO op bend(34) coupled with ring bend(34)
CO op bend(40) coupled with ring bend (24)
CO op bend(46) coupled with methine op bend(24) and CORC bend(15)

CALCULATED AND EXPERIMENTAL FREQUENCIES INCLUDING APPROXIMATE POTENTIAL ENERGY DISTRIBUTIONS FOR CRYSTALLINE 1,5-ANHYDRO-L-ARABINITOT.

Exper. Freq.,

Raman $\quad I R^{-1}$
408408

383

314

296
296
256

233

176

Average error $=5.16 \mathrm{~cm} .^{-18}$

185

132
Calc. Freq., cm. ${ }^{-1}$

403

380

302

285
260

237
236
222

Approx. PE Distr., $\%^{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}}$
$\operatorname{CCC}(31) \operatorname{CCO}(27)$
$\operatorname{COR}(10) \operatorname{CCOR}(7)$
$\operatorname{CCO}(44) \operatorname{CCC}(25)$
$\operatorname{CCOR}(15) \operatorname{AHCC}(11)$
$\operatorname{TCC}(11)$
CCO(38)CCOR(19) TCC(15)CORC(12)
$\mathrm{CCO}(102)$
$\operatorname{CCO}(38) \mathrm{TCO}(26)$ HCC (16) CCC (16)

TCO (90)
TCO (82)
$\operatorname{TCO}(62) \mathrm{CCO}(24)$
$\operatorname{TCC}(49) \operatorname{CCOR}(18)$ CCO (10) $\operatorname{CCC}(7)$
$\operatorname{TCC}(50) \operatorname{CCC}(28)$ $\mathrm{CCO}(9)$

Description ${ }^{e}{ }^{\text {f }}$:
Ring bend(48) coupled with methine op bend(27)

Ring bend and twist(5I) coupled with CO op bend (44) and methylene wag(11)

Ring bend and twist (46) coupled with CO op bend (38)

CO op bend(102)
CO op bend (38) coupled with OH op bend(26), methine op bend(16), and ring CCC bend(16)
OH op bend(90)
OH op bend(82)
OH op bend(62) coupled with CO op bend(24)

Ring twist(74) coupled with CO op bend(10)

Ring twist(78) coupled with CO op bend(9)

[^24]Tables XXII, XXIII, and XXIV, respectively. This information is essentially the heart of the interpretation of the vibrational spectra. The molecular vibrational motion was then classified in terms of the particular atomic group vibrations making the greatest contributions to the potential energy for each frequency or normal mode from the data computed by the program EIGV. The results of this classification appear in the last column in Tables XXII-XXIV. The definitions of several of the atomic.group vibrations listed in these tables are presented in Fig. 29.

GENERAL COMMENTS CONCERNING THE NORMAL COORDINATE ANALYSES

In general, the normal coordinate analyses of the 1, 5-AP models were a success. The computer methods of J. H. Schachtschneider (89) with appropriate modification coupled with nonlinear least squares refinement of the force constants appear to provide the means for successful analyses and interpretation of the vibrational spectra of large, complex ${ }^{15}$ molecules, at least of the monosaccharides. The successful application of the nonlinear least squares refinement technique based on the Fletcher-Powell method has been the key to the mathematical treatment of the molecular vibrations of the l,5-AP compounds, since the commonly used linear refinement technique could not be made to converge for these compounds.

The quality of the normal coordinate computations for the l,5-AP compounds can be estimated from a number of observations.

1. The average error between the calculated and experimental frequencies is noted to be numerically small ($6.22 \mathrm{~cm}^{-1}$). This observation suggests that the l,5-AP model geometry and the SVQFF are reasonable approximations to the real molecule.
2. The same SVQFF was used in the calculation of frequencies for all three models with the resulting average errors in the three cases being numerically small and of the same order of magnitude (5.91, 7.60 , and $5.16 \mathrm{~cm} .^{-1}$ for $1,5-\mathrm{AX}, 1,5-\mathrm{AR}$, and $1,5-\mathrm{ALA}$, respectively). This observation supports the validity of the force field employed in the calculations.
3. The calculated frequencies for the three models tend to reproduce the distribution of bands in the 1,5-AP vibrational spectra. The agreement between calculated and experimental band distribution is evident

[^25]in the bar graph representation of the l,5-AP spectra shown in Fig. 30. This observation is probably a more important indicator of the validity of the normal coordinate calculations than is the small average error value.
4. The analysis of the contributing group vibrations for the 1,5-AP spectral bands, which is based on the potential energy distributions in Tables XXII-XXIV, is in agreement with the group frequency correlation charts for those regions of the spectrum where the charts may be applied. This analysis also agrees with Snyder and Zerbi's interpretation of the tetrahydropyran spectrum (56).
5. The elements of the final SVQFF matrix in this investigation are, in general, numerically similar to Snyder and Zerbi's force field elements with the differences occurring in the hundredths place.

Several of the "new" interaction force constants which result from the introduction of hydroxyl groups to the tetrahydropyran ring are noted to have negligible values. These constants are primarily bend-bend interactions, However, when all the interaction force constants are compared with respect to magnitude, the $C O$ stretch-bend interaction force constants as a group are found to contain the most significant members of any other group. The contribution of the CO stretch-bend interactions to the $1,5-\mathrm{AP}$ force field is a major difference between the force fields of tetrahydropyran and the l,5-AP compounds (models).

The standard errors in the force constants resulting from the nonlinear refinement (see Table $X X$) are observed to be larger, by a factor of about 2 to 10 , than the standard errors listed by Snyder and Zerbi (56) resulting from the linear force constant refinement in the case of the aliphatic ethers. This may be a direct consequence of the fact that the nonlinear refinement in the analyses of the l,5-AP compounds was based on 90 statistical degrees of freedom, while the linear refinement in the analyses of the aliphatic ethers was based on 171 degrees of freedom. Another reason for the discrepancy may be that the force constant refinement in the investigation of the $1,5-\mathrm{AP}$ compounds was based on a nonlinear least squares technique in which the estimation of standard error is not as

straightforward as for the linear least squares technique employed by Snyder and Zerbi. [The reader may wish to compare the method of estimating the standard error in the linear refinement technique (Appendix IV) with the method for the nonlinear technique (page 131).]

A plot of eigenvalues vs. perturbation number reveals that the final set of eigenvalues for the $1,5-A P$ models were approached asymptotically, for the most part, in the nonlinear Fletcher-Powell refinement.

The average errors between the calculated and experimental frequencies are $5.91,7.60$, and $5.16 \mathrm{~cm} .^{-1}$ for $1,5-A X, 1,5-A R$, and $1,5-A L A$, respectively, which excludes the three $O H$ stretching bands. The overall average error is $6.22 \mathrm{~cm} .^{-1}$ This agreement is better than Snyder and Zerbi (56) obtained for tetrahydropyran (average error $12.5 \mathrm{~cm} .^{-1}$) even though they did not attempt to assign the CH stretch region of the spectrum. In fact; the agreement is better than these workers obtained for the entire series of aliphatic ethers (average error 10.4 $\mathrm{cm} .^{-1}$). The improved agreement between calculated and experimental frequencies resulting from the normal coordinate analyses of the $1,5-A P$ compounds is probably the result of including several additional interaction force constants that were excluded by Snyder and Zerbi. A few of these force constants were determined to have significant magnitude.

The close agreement between the calculated and experimental frequencies for the $1,5-A P$ compounds, as indicated by the low overall average error, suggests that the assumption of tetrahedral geometry for the models was reasonable. Indeed, the bond angles of the real molecules would not be expected to deviate from the ideal tetrahedral angle by more than a few degrees. Most of the averaged bond lengths used in the models should not vary more than a few hundreths of an
angstrom from those of the real molecules. However, the frequency agreement might have been even better had the exact molecular geometry been known.

The frequencies were calculated for the l,5-AR model with the lower portion of the ring, i.e., C2-C3-C4, being made "flatter." That is, the angle of intersection between the planes passing through C2-C3-C4 and Cl-C2, C4-C5 of the ring was reduced incrementally in a number of calculations keeping the force field constant. The average error was plotted vs. the $\operatorname{CCCO}(\underline{\underline{r}}$) dihedral angle (initially 60°) which is related to the angle of intersection of the ring planes. The result was that the average error decreased until the dihedral angle reached 58° after which the average error began to increase as the dihedral angle decreased. This observation suggests that the real molecule may be slightly "flatter" than the assumed l,5-AR model by a few degrees in the CCCO(r) dihedral angle which may account for the somewhat higher average error for this compound. This suggestion is partially supported by the x-ray diffraction data reported for methyl B-D-ribopyranoside (123) in which the lower portion of the ring is observed to be somewhat "flatter" by a few degrees in the CCCO(\underline{r}) dinedral angle. However, a crystal structure study of $1,5-A R$ must be completed before the validity of this suggestion based on normal coordinate calculations can be established.

The potential energy distribution (Tables XXII-XXIV) was used to characterize the calculated frequencies (therefore, the assigned frequencies also) as to the dominant group vibrations. The potential energy contributions of each internal coordinate comprising a particular group vibration (see Fig. 29), e.g., methylene "wag" which involves the internal coordinates $\angle H C O(\underline{r})$ and $\angle H C C$, are summed to estimate the contribution of that atomic group vibration to the potential energy of a calculated frequency: The characterization of each of the
calculated frequencies in terms of atomic group vibrations appears in the last. column of Tables XXII-XXIV. This information simplifies the correlation with group frequency charts and interpretation of the l,5-AP spectra.

Examination of the potential energy distributions for $1,5-A X, 1,5-A R$, and 1,5-ALA in Tables XXII-XXIV reveals that the vibrational bands are highly coupled; that is, more than one group vibration contributes significantly to the molecular vibration. This extensive vibrational coupling is the primary reason for the failure of the traditional group frequency approach for interpreting complex vibrational spectra. A comparison of Tables XXII-XXIV shows that corresponding calculated frequencies for each of the three l,5-AP models exhibit essentially equivalent potential energy distributions. Further examination of Tables XXII and XXIII, corresponding to $1,5-A X$ and $1,5-A R$, provides the observation that several of the corresponding calculated frequencies for the two models that differ by more than $10 \mathrm{~cm} .^{-1}$ involve internal coordinates of the OH group at C3 in the potential energy distribution, as might be expected.

The assigned symmetry species for the calculated frequencies for $1,5-\mathrm{AX}$ and 1,5-AR resulting from the solutions of the secular determinants using the factored G and $\underset{\sim}{Z}$ matrices (factored by the introduction of symetry coordinates) are in agreement, for the most part, with the symmetry species determined from the depolarization ratio measurements. In most of the cases where there is a conflict between the two symmetry classifications, the depolarization ratio is questionable because the spectral band is overlapped with another. In this situation, an accurate depolarization ratio cannot be determined. The only exception to the above statements is provided by the $1,5-A R$ spectral band at $648 \mathrm{~cm} .^{-1}$ The symmetry classification from the depolarization ratio measurement is in conflict with the calculated symmetry classification from the normal
coordinate computations. In this case, the band is not significantly overlapped with another. However, the band is quite weak which makes the depolarization ratio measurement questionable. In general, the depolarization ratio measurements agree with the calculated symmetry species.

The agreement between the experimental and calculated frequencies (i.e., average error) is approximately the same for the $1,5-\mathrm{AP}$ models. In addition, the force fields for the l,5-AP models are identical, with the exception of one or two numerically small interaction constants. Therefore, the differences in the spectral band positions (frequencies) between compounds (see Fig. 31 for a comparison of the Raman spectra and also Fig. 32 for a comparative bar graph of the Raman spectra for the 1,5-AP compounds), which tend to be reproduced by the calculated frequencies (see Fig. 30), must be the result of differences in the G matrix, primarily. The $\underset{\sim}{\text { G }}$ matrices contain 862 nonzero elements each for the 1,5-AP models. There are 160 elements that differ between the $\underset{\sim}{G}$ matrices of 1,5-AX and 1,5-AR and 150 elements that differ between the G_{N} matrices of $1,5-\mathrm{AX}$ and 1,5-ALA. These discrepancies are the result of the differences in the orientation of the hydroxyl groups, that is, axial vs. equatorial, between models. Since the bond angles and bond lengths remain the same, the orientation of the hydroxyl groups is the dominant source of frequency differences between the vibrational spectra of the $1,5-\mathrm{AP}$ compounds. The frequency variations may then be attributed primarily to a kinetic energy effect rather than a potential energy effect.

The NMR spectra of the $1,5-A P$ compounds were measured in this investigation in anticipation that they would provide conformational information regarding the 1,5-AP solutions. Unfortunately, the NMR spectra of the $1,5-A P$ compounds in $D_{2} O$

and DMSO- $_{6}$ do not offer much conformational information. The NMR spectra are much too complex to analyze. The series of spectral bands in the region from $\delta 4.2$ to $\delta 2.7$ p.p.m. in the $1,5-A X$ and $1,5-A_{L A} D_{2} O$ NMR spectra appears as a much condensed set of bands in the region from $\delta 4.0$ to $\delta 3.6$ p.p.m. in the 1,5-AR $D_{2} O$ spectrum (see Fig. 3-5). This may suggest rapid interconversion between conformations for 1,5-AR. (The strong band at approximately $\delta 4.6$ p.p.m. is due to the OH impurity in the $D_{2} O$.) The $D M S O-d_{6} N M R$ spectrum for 1,5-AR displays OH bands between $\delta 4.0$ and $\delta 5.0$ p.p.m. (see Fig. 7). That these are $O H$ bands is demonstrated by the fact that these bands disappear when $\mathrm{D}_{2} \mathrm{O}$ is added to the system [for example, compare Fig. 8a with Fig. 8b]. In summary, it is difficult to gain any evidence for the most stable conformer existing in solution for the l,5-AP compounds from the NMR spectra because of their complexity. However, later in this text it is shown that some conformational information is obtained from the Raman solution spectra.

The SVQFF developed in this investigation of the 1,5-AP compounds is expected to provide a reasonable initial force field for normal coordinate analyses of the pentoses. This force field should result in the simplification of the task of initially correlating the calculated frequencies with the experimental data. The additional interaction force constants which result from the introduction of a Cl hydroxyl group in going from the 1,5-AP compounds to the pentoses may be set equal to zero in the initial force field and evaluated later in the force field refinement after the frequency correlation is accomplished.

The vibrational spectra of the l,5-AP compounds (both crystalline and aqueous solution) have been interpreted in this study based on the normal coordinate analyses. In addition to providing important spectral data for a class of compounds previously unstudied, these interpretations should serve as a guide in
the assignment of other carbohydrate spectra. . The previous interpretations of carbohydrate spectra. which were based on the normal coordinate analysis of tetrahydropyran may be reevaluated with the results of this study, since the 1,5-AP compounds provide a more closely related saccharide model compound than does tetrahydropyran.

The results of the spectra analyses for the $1,5-A P$ compounds will now be discussed for each of the compounds individually.

DISCUSSION OF THE INDIVIDUAL $1,5-A N H Y D R O P E N T I T O L$ VIBRATIONAL SPECTRA

1,5-ANHYDROXYLITOL

Interpretation of the Solid State Spectra

In general, the Raman and infrared spectra for $1,5-A X$ in the solid state are complementary. Most of the spectral bands appear in both spectra, which should be the case, since the fundamental bands for the l,5-AP compounds are both Raman and infrared active. A few additional bands appear in the infrared. These bands are suspected to be overtone or combination bands.. It is a well-known fact that combination and overtone bands are more likely to be observed in the infrared spectrum than in the Raman spectrum.

The possibility of spectral aberrations in the infrared spectra of the $1,5-A P$ pellets which might result from interaction with the potassium bromide was investigated. The infrared spectra of the $1,5-A P$ compounds were recorded as Nujol and Fluorolube mulls. No spectral differences were observed when the mull spectra and pellet spectra were compared.

The interpretation of the crystalline $1,5-A X$ vibrational spectra (infrared and Raman) has essentially been accomplished by the normal coordinate analysis.

The resulting potential energy distributions and their characterization in terms of atomic group vibrations (see Table XXII and Fig. 29) are basically. the spectral interpretation. Only a few comments concerning the interpretation of the $1,5-A X$ spectra are required regarding those points not evident from the table. In the following discussions, the spectral bands will be referred to by their frequencies in wave numbers (cm. ${ }^{-1}$). The Raman frequency will be reported first with the corresponding infrared frequency following in parentheses. Any exceptions to this convention will be noted when they occur. (The reader may wish to refer to the crystalline 1,5-AX spectra in Fig. 9 and 10 and the tabulated frequencies in Table III for the discussion to follow. The comparative bar graphs in Fig. 30 and 31 may also be helpful.)

There are three $O H$ stretching bands observed in the solid state spectra at $3383(3387), 3343(3350)$, and $3290(3300) \mathrm{cm} .^{-1}$ However, the normal coordinate computations predict three bands in this region of the same frequency, $3356 \mathrm{~cm} .^{-1}$ The reason for this is that only one $O H$ stretching force constant was used in the force field, which is equivalent to saying that the three $O H$ groups have identical bond strengths. This assumption is invalid as the spectra demonstrate. One might use three independent $O H$ force constants to rectify this situation. Nevertheless, the final results would not indicate a great improvement in the average error because the three $O H$ stretching force constants would be averaged for the three molecules, and these bands differ widely in frequency for each compound because of the varying degrees of hydrogen bonding. The $O H$ stretching bands are independent of the rest of the vibrational spectrum. Therefore, the $O H$ stretching force constants could be set equal to zero without affecting the normal coordinate calculations. It is just as reasonable to employ only one force constant for OH stretching to make the analysis complete, but to disregard the contribution of the OH stretching bands to the average error. The differences between observed and
calculated frequencies in this region of the spectrum are not indicative of the frequency agreement for the rest of the vibrational spectrum, so to exclude these bands from the average error computation is justifiable.

The mathematical analysis predicts seven CH stretching bands. Only six. bands are seen in the individual Raman and infrared spectra. However, when the two spectra are compared, one observes that the seventh band appears at $2941 \mathrm{~cm} .^{-1}$ in the infrared spectrum and is not seen in the Raman spectrum. Correspondingly, the shoulder at $2896 \mathrm{~cm} .^{-1}$ in the Raman spectrum is not observed in the infrared spectrum.

The spectral region from $1472(1470) \mathrm{cm} .^{-1}$ through $1340(1340) \mathrm{cm} .^{-1}$ is characterized primarily by methylene "wag" coupled with methine deformation." An interesting observation is that the bands at $1472(1470) \mathrm{cm}^{-1}$ and $1459(1464) \mathrm{cm}^{-1}$ are not pure methylene "scissoring" bands as might be expected, but are equally coupled with methylene "wag" resulting in a more complex group vibration. Two bands observed in the infrared, but not Raman spectrum at 1402 and $1397 \mathrm{~cm} .^{-1}$, have not been assigned to fundamental vibrations. These bands are weak shoulders which the author suspects might arise from a combination of fundamentals, i.e., combination bands. Possible combinations which might result in each of these bands are presented in Table XXV to suggest that such bands are possible in this region of the spectrum. Further support for the argument that these bands are combination bands comes from the fact, stated above, that such bands are more likely to appear in the infrared than Raman spectrum.

The next region, from $1320(1321) \mathrm{cm} .^{-1}$ through $1285(1279) \mathrm{cm} .^{-1}$, is distinguished by primarily methylene "twist" coupled with:methine deformation.

TABLE XXV
SUGGESTED COMBINATION BANDS IN THE VIBRATIONAI SPECTRA OF CRYSTALLINE 1,5-ANHYDROXYLITOL AND POSSIBLE COMBINATIONS WHICH MIGHT RESULT IN SUCH BANDS
Suspected Combination Band, ${ }^{\text {a }}$ Possible Combination, ${ }^{\mathrm{b}}$
1402(IR)
$2 \times(1018)-(637)=1399$
1397(IR)
$(1199)+(1095)-(899)=1395$
1168(IR)
$(1095)+(1018)-(936)=1177$
1052(IR)
$(1018)+(936)-(899)=1055$
928(IR)
$2 \times(1060)-(1198)=922$
$a_{\text {IR designates }}$ that the band is observed in the infrared spectrum.
$b_{\text {The numbers shown in parentheses are the fundamental band frequencies }}$ in wave numbers.

The spectral bands at $1268(1267), 1239(1235)$, and $1199(1198) \mathrm{cm}^{-1}$ are interpreted as primarily COH bending bands (OH in-plane bending). This interpretation is supported by the fact that the corresponding bands in the spectra of deuterated l,5-AX (see Fig. 15 and 16 along with Máble VI) are reduced in relative intensity.

A very weak infrared band appearing at $1168 \mathrm{~cm}^{-1}$ is not assigned to a fundamental vibration. The author suspects that this band is a combination band. A possible combination which might result in a band in this region is presented in Table XXV.

From $1143(1145) \mathrm{cm} .^{-1}$ through $1120(1125) \mathrm{cm} .^{-1}$, the spectral bands are attributed to $C O(H)$ and $C O(\underline{r})$ stretching vibrations, where ($\underline{\text {) }}$ designates the pyranose ring oxygen atom. A calculated band in this region at $1131 \mathrm{~cm} \mathrm{~m}^{-1}$ is not observed in either the Raman or infrared spectrum. However, it is possible
that this band is present, but hidden because of the overlapping "band tails of the bands at 1143 (1145) and $1120(1125) \mathrm{cm}^{-1}$

The bands in the region from $1100(1100) \mathrm{cm}^{-1}$ through $896(899) \mathrm{cm} .^{-1}$ are assigned to $C O$ stretching vibrations and ring stretching vibrations coupled with methylene "twist" and "rock." A shoulder appears in the infrared spectrum at $1052 \mathrm{~cm} .^{-1}$ This band could be a combination band. A possible combination is presented in Table XXV. Another shoulder, although much weaker, is noted in the infrared at $928 \mathrm{~cm} .^{-1}$ This band also does not correlate with the set of calculated frequencies. The author suggests that this band is a combination band (see Table XXV). The normal coordinate calculations predict a band at $950 \mathrm{~cm} .^{-1}$ which is not observed in either the Raman or infrared spectrum. Perhaps, the intensity of this band is too weak for the band to be detected or the band may be masked by the strong band at $933(936) \mathrm{cm} .^{-1}$

The spectral region from $635(637) \mathrm{cm}^{-1}$ through $315(317) \mathrm{cm} .^{-1}$ is dominated by ring vibrations, bending, and stretching, coupled to a lesser extent with methine deformation or methylene "rock." In this region, a shoulder appears at 533 (533) cm..$^{-1}$ in both the Raman and infrared spectra which does not correlate with the calculated frequencies resulting from the mathematical analysis. The author suggests that this band is the result of band splitting, producing two bands at 544 (542) and $533(533) \mathrm{cm} .^{-1}$, caused by vibrational coupling within the crystal lattice. In other words, the splitting of a fundamental vibrational band into two bands is the result of the crystalline state of the compound. The position of the unperturbed fundamental band might be estimated to appear at $538 \mathrm{~cm} .^{-1}$ which is the average of 544 and $533 \mathrm{~cm} .^{-1}$ The solution spectra of $1,5-A X$ offer support for this argument (see Fig. 21 and Table IX). A single band is observed at 535 $\mathrm{cm} .^{-1}$ in the water solution spectrum and at $536 \mathrm{~cm}^{-1}$ in the $\mathrm{DMSO}^{-d_{6}}$. solution
spectrum. Furthermore, an average value of $538 \mathrm{~cm} .^{-1}$ is in closer agreement with the calculated frequency corresponding to the fundamental band which is $533 \mathrm{~cm} .^{-1}$

Potassium bromide absorbs strongly in the infrared region below $300 \mathrm{~cm} .^{-1}$, so the measured infrared spectrum is limited to the region above $300 \mathrm{~cm} .^{-1}$ The Raman spectrum, on the other hand, can be recorded below $300 \mathrm{~cm}^{-1}$, but below $150 \mathrm{~cm} .^{-1}$ Rayleigh scattering and grating ghosts (with the Spex Raman spectrometer equipped with an Argon ion laser employed in this investigation) mask the spectral bands of crystalline compounds.

The spectral bands at 299 (295) and $280(285) \mathrm{cm}^{-1}$ are assigned to $\mathrm{CO}(\mathrm{H})$ deformation.

The weak Raman bands at 234,225 , and $220 \mathrm{~cm} .^{-1}$ are assigned to $\mathrm{CO}(\mathrm{H})$ torsional vibrations (OH out-of-plane bending). The Raman spectrum of a magnesium oxide pellet displays two weak, broad bands at 232 and $212 \mathrm{~cm} .^{-1}$ with the wavelength of the laser beam at 5145 A . and the slit conditions similar to those employed for the $1,5-A X$ pellet spectra. These bands are grating ghosts as demonstrated by the fact that they shift in frequency when the wavelengths of the laser beam is changed to 4880 A . This observation suggests that the bands at 234 and $220 \mathrm{~cm} .^{-1}$ in the crystalline $1,5-\mathrm{AX}$ Raman spectrum may be the result of grating ghosts. To investigate this possibility, the Raman spectrum of crystalline 1,5-AX was recorded with the wavelength of the laser beam set at 4880 A . The two bands at 234 and $220 \mathrm{~cm} .^{-1}$ remained unshifted which indicates that they are real vibrational bands.

The Raman band at $202 \mathrm{~cm} .^{-1}$ is attributed to a ring twisting vibration. The calculations predict a band at $131 \mathrm{~cm} .^{-1}$ due to a ring twisting vibration, but this band cannot be detected in the solid state Raman spectrum because of the

Rayleigh scattering and grating ghosts. Although the grating ghosts did not appear in the $1,5-A X$ solution' spectrum, a band at approximately $1.31 \cdot \mathrm{~cm} .^{-1}$ could not be detected. If such a band does exist in the vibrational spectrum, it is probably extremely weak, too weak to be recorded in the solution spectrum.

Solution Spectra of 1,5-Anhydroxylitol
The concentrated water solution (more than 25%) spectrum of $1,5-A X$ appears in Fig. 21 and the frequencies for both the water and DMSO-d. solution spectra are tabulated in Table IX. (The spectra of the more concentrated solutions were observed to be quite similar to the less concentrated solutions except that the spectral bands were more intense in the former spectra.) The solution spectra provide a comparison of the vibrational dynamics of $1,5-A X$ in solution with that for the compound in the solid state. The concentrated water solution spectrum may be used as a substitute for the melt spectrum which could not be recorded in this investigation. In addition, the effect of solvent type on the vibrational spectrum can be estimated from a comparison of the solution spectrum of $1,5-A X$ in water, an amphiprotic solvent, with the solution spectrum of $1,5-A X$ in $D M S O-d_{6}$, an aprotic solvent. Such an examination (see. Table IX) suggests that the solvent type has very little effect on the spectrum, at least at concentrations greater than 30% by weight, because the two spectra are almost identical. Furthermore, the solvent itself does not appear to alter the spectrum to any large extent, since the solution spectral bands correlate well with the solid state spectral bands. (The correlation of the solution spectra with the solid state Raman spectrum is presented in Table XXVI.) Some of the solution spectral bands are shifted in frequency or are broadened from the corresponding bands appearing in the solid state spectrum, but these deviations are suggested to result from the rotation of the molecules rather than from the interaction with the solvent.

TABLE XXVI

CORRELATION OF THE 1,5-ANHYDROXYLITOL SOLUTION SPECTRA (WATER AND DMSO- d_{6}) WITH THE SOLID STATE RAMAN SPECTRUM

In Table XXVI, one notes that a "new" spectral band appears at $812 . \mathrm{cm}^{-1}$ in the solution spectra. This band does not appear in the solid staterspectra; and is not predicted by the mathematical analysis. This band is suspected to result from a small proportion of the l,5-AX molecules existing in the alternate chair conformation in solution. The conformational free energy calculations, in Table XVI, suggest that only about 5% of the molecules exist in the alternate conformation in solution at equilibrium. Furthermore, based on other information this is a reasonable region of the spectrum to expect a band due to the alternate conformer. The band at $812 \mathrm{~cm} .^{-1}$ may be the most intense band in the spectrum of the alternate conformer which would explain why it is seen and no other "new" bands are observed. Depolarization ratio measurements for this band classify it as belonging to the symmetric symmetry species; A'. These bands are usually more intense in the Raman spectrum than the antisymmetric bands, $A^{\prime \prime}$.

Spectra of Deuterated 1,5-Anhydroxylitol
The vibrational spectra of crystalline deuterated l,5-AX were measured for the purpose of providing additional information to assist the assignment of the 1,5-AX solid state spectral bands, especially the assignment of the COH deformation bands.

In general, the spectra of deuterated $1,5-A X$ is characterized by the appearance of several (11) "new" bands, the decrease in relative intensity of several bands (10), and the increase in relative intensity of other bands (2). (The reader may wish to compare the spectra of deuterated 1,5-AX, Fig. 15 and 16 and summarized in Table VI, with the spectra for l,5-AX, Fig. 9 and 10 and summarized in Table III.) The bands that were reduced in relative intensity were found to contain a significant contribution of COH bending. An examination of the
deuterated $1,5-A X$ spectra reveals that the compound was not completely deuterated, i.e., 100%, after pellet preparation.

1,5-ANHYDRORIBITOL

Interpretation of the Solid State Spectra
The interpretation of the $1,5-A R$ solid state spectra (Fig: 11 and 12 along. with Table IV) is again based upon the potential energy distributions expressed in terms of the various group vibrations (see Table XXIII and Fig. 29) which result from the normal coordinate computations. In keeping with the discussion of the $1,5-A X$ vibrational spectra, only those points of the interpretation requiring further comment will be presented. In the following discussion, the frequency, in wave numbers, of the Raman band will be given first followed by the corresponding frequency for the infrared band in parentheses, unless otherwise indicated.

The three $O H$ stretching bands at $3406(3409), 3350(3345)$, and $3250(3279) \mathrm{cm} .^{-1}$ are assigned to the three calculated bands of the same frequency, 3356 cm. . 1 As stated in the discussion of the $1,5-A X$ spectra, this is a result of using only one OH stretching force constant. These bands are not included in the computation of the average error because they are not representative of the frequency agreement for the rest of the spectrum. An interesting observation is that the middle $O H$ stretching band which occurs at $3350(3345) \mathrm{cm} .^{-1}$ is at approximately the same position as the midde $O H$ stretching band for $1,5-A X$ which is at $3343(3350) \mathrm{cm} .^{-1}$ The other two bands are spread further apart for $1,5-A R, 3406(3409) \mathrm{cm} .{ }^{-1}$ for $1,5-$ AR versus $3383(3387) \mathrm{cm}:^{-1}$ for $1,5-A X$ and $3290(3279) \mathrm{cm} .^{-1}$ versus $3290(3300) \mathrm{cm} .^{-1}$ This observation suggests that there are differences in the hydrogen bonding in the two crystalline compounds.

Again, one notes that the calculations predict seven CH stretching bands and both the Raman and infrared spectra show only six bands each in this region. By comparing the Raman and infrared spectra, the seventh band is observed in the infrared spectrum at $2929 \mathrm{~cm} .^{-1}$, since it is an additional band to what is seen in the Raman spectrum. The Raman band at $2918 \mathrm{~cm} .^{-1}$ is not seen in the infrared, so this accounts for the fact that only six bands appear in each of the spectra.

The spectral region from $1468(1466) \mathrm{cm} .^{-1}$ through $1350(1354) \mathrm{cm} .^{-1}$ is characterized by primarily methylene "wagging" vibrations coupled with methylene deformation. The bands at $1468(1466)$ and $1458 \mathrm{~cm} .^{-1}$ are not pure methylene "scissor" vibrations as was noted for l,5-AX, but are methylene "scissor" coupled with methylene "wag," approximately equally mixed, to produce a complex methylene vibration. The broad band appearing at $1435 \mathrm{~cm} .^{-1}$ in the infrared spectrum is suspected of originating from the overlap of two bands corresponding to the bands at 1458 and $1419 \mathrm{~cm} .^{-1}$ in the Raman spectrum. These individual bands do not appear in the infrared spectrum.

The calculated band with a frequency of $1320 \mathrm{~cm} .^{-1}$ is not observed in either the Raman or infrared spectrum. It is possible that this band may be hidden in the tail of the strong Raman band at $1315 \mathrm{~cm} .^{-1}$

The region from $1315(1310) \mathrm{cm}^{-1}$ through $1265(1264) \mathrm{cm} .^{-1}$ is described by methine deformation coupled with methylene "twist."

The three bands at 1244(1245), (1226), and 1202(1202) cm. ${ }^{-1}$ are assigned to COH bending (OH in-plane bending). This assignment is supported by the fact that the corresponding spectral bands in the deuterated'l,5-AR spectra are decreased in relative intensity (see Fig. 17 and 18 along with Table VII).

The spectral band at $1167 \mathrm{~cm} .^{-1}$ in the infrared does not correlate with the calculated frequencies. This band may be a combination band. A possible combi-.. nation which might result in a band in this region is presented in Table XXVII.

TABLE XXVII

SUGGESTED COMBINATION BANDS IN THE VIBRATIONAL SPECTRA OF CRYSTALLINE 1,5-ANHYDRORIBITOL AND POSSIBLE COMBINATIONS WHICH MIGHT RESULT IN SUCH BANDS

Suspected Combination Band, ${ }^{\text {a }}$	Possible Combination, b
$1167 \text { (IR) }$	$(1045)+(1000)-(879)=1166$
1093 (IR)	$2 \times(1045)-(1000)=1090$
1077 (IR)	$2 \times(1103)-(1126)=1080$
$1073(R)(I R)$	$2 \times(1000)-(928)=1072$
963 (IR)	$2 \times(1045)-(1126)=964$
916(R)(IR)	$(1045)+(879)-(1000)=924$
$873(I R)$	$(1045)+(928)-(1103)=870$
776(IR)	$(1045)+(1000)-(1264)=781$
683 (IR)	$2 \mathrm{x}(342)=684$
	$(1045)+(989)-(1354)=680$
$396(R)(I R)$	$(1400)-(1000)=400$

${ }^{a^{I}}$ designates that the band is observed in the infrared spectrum; while R designates that the band is observed in the Raman spectrum.
$b_{\text {The numbers show in parentheses are the fundamental band frequencies in }}$ wave numbers.

The spectral region from $1156(1156) \mathrm{cm} .^{-1}$ through (832) $\mathrm{cm} .^{-1}$ is characterized by CO:stretching and ring stretching vibrations coupled with methylene "twist" and "rock." There are two shoulders at 1093 and $1077 \mathrm{~cm} \mathrm{~cm}^{-1}$ in the infrared which do not correlate with the calculated frequencies. These bands
may be explained as combination bands (see Table XXVII). The band at 1073(1070) $\mathrm{cm} .^{-1}$ in both the Raman and infrared spectra may also be attributed to a combination band (see Table XXVII). The Raman bands at 1045 and $1040 \mathrm{~cm} .^{-1}$ may result from band splitting due to vibrational coupling within the crystal lattice. Support for this argument comes from the fact that the calculations predict only one band in this region and that the infrared solid state, solution, and deuterated 1,5-AR spectra display only one band in this region. In further support, the average of the two Raman band frequencies is $1043 \mathrm{~cm} .^{-1}$ which is in close agreement with the calculated band in this region at $1042 \mathrm{~cm} .^{-1}$ The normal coordinate calculations predict a band at $1024 \mathrm{~cm} .^{-1}$ which is not observed in the Raman spectrum. However, a weak shoulder in the infrared spectrum at 1018 $\mathrm{cm} .^{-1}$ might be assigned to the calculated band. This assignment is questionable and was not made in the normal coordinate calculations. A weak band at 963 $\mathrm{cm} .^{-1}$ in the infrared spectrum, which is not evident in the l,5-AR mull spectra, is suspected of being a combination band (see Table XXVII). The weak shoulder at 916 (916) $\mathrm{cm} .^{-1}$ appears in both the Raman and infrared spectra; but does not correlate with the calculated frequencies for the l, 5-AR model. This band is also suspected of being a combination band. (see Table XXVII). In addition, the three infrared bands occurring at 873,776 , and $683 \mathrm{~cm} .^{-1}$ are possibly combination bands with the exception that the last band might be an overtone band. (This band is not evident in the mull spectra.)

From $669(668) \mathrm{cm} .^{-1}$ through $306(305) \mathrm{cm}^{-1}$, the vibrational bands consist of mostly ring bending or twisting vibrations coupled with methylene "rocking" and "twisting" or CO deformation. The very weak band at $396(395) \mathrm{cm}^{-1}$ which is observed in both Raman and infrared spectra is suspected of being a combination band (Table XXVII), since it does not correlate with the calculated frequencies. What appears to be a shoulder at $353 \mathrm{~cm} .^{-1}$ in the infrared spectrum is
interpreted to be an artifact of the infrared spectrometer resulting from a slit. width change occurring in this region.

The Raman bands in the region from $306(305) \mathrm{cm} .^{-1}$ through $208 \mathrm{~cm} .^{-1}$ (the infrared spectral bands in this region being masked by the absorption of potassium bromide) are assigned to COH torsional vibrations (OH out-of-plane bending) except the band at $306(305) \mathrm{cm} .^{-1}$ which is a CO deformation. The Raman bands at 238 and $208 \mathrm{~cm} .^{-1}$ do not appear to be grating ghosts because they remain unshifted when the wavelength of the laser beam is changed to 4880 A . Two calculated bands at 227 and $220 \mathrm{~cm} .^{-1}$ are not visible in the Raman spectrum; however, since torsional vibrations are generally quite weak in intensity, it is possible that they are not detected by the spectrometer.

The calculated bands at 202 and $137 \mathrm{~cm} .^{-1}$ are characterized by ring twisting vibrations. The spectral band at $208 \mathrm{~cm} .^{-1}$ was assigned to the calculated frequency $202 \mathrm{~cm} .^{-1}$ Because of the Rayleigh scattering and the grating ghosts in the Raman spectrum of crystalline $1,5-A R$, the predicted band at $137 \mathrm{~cm} .^{-1}$ could not be detected. However, a band is observed at $169 \mathrm{~cm} .^{-1}$ in the Raman spectrum of the solid and at $175 \mathrm{~cm} .^{-1}$ in the solution spectrum. It is conceivable to assign this band to the calculated frequency $137 \mathrm{~cm} .^{-1}$, but such an assignment was not made for the normal coordinate calculations.

Solution Spectra of 1,5-Anhydroribitol
The solution spectra, both water and DMSO- $_{6}$ (see Fig. 22 and Table X), correlate quite well with the solid state spectra for 1,5-AR (see Fig. 11 and 12 along with Table IV) as was noted for the l, 5-AX spectra. The correlation between the solution and solid state Raman spectra for $1,5-A R$ is presented in Table XXVIII. An examination of this table indicates that several "new" bands exist in the solution spectra. These bands may result from the vibrational

TABLE XXVIII

CORRELATION OF THE , 1,5-ANHYDRORIBITOL SOLUTION SPECTRA (WATER AND DMSO- d_{6}) WITH THE SOLID STATE RAMAN SPECTRUM

motion of a significant amount of the molecules existing in the alternate conformation in solution (i:e, molecules in the alternative conformation to the more stable crystalline conformation). The free energy calculations for conformational differences reported in Table XVI imply that approximately 26% of the molecules may exist in the alternate conformation at equilibrium in solution. As discussed earlier in this section, the NMR spectra are too complicated to provide support for this argument. However, normal coordinate calculations, for which the ring of the $1,5-A R$ model is "inverted". to form the alternate chair conformation, do provide some support for the above argument. Solution of the secular determinant for $1,5-A R$ in the alternate conformation (i.e., a new $\underset{\sim}{G}$ matrix, but with the same F. matrix used in the calculations presented: in Table XXIV) results in several calculated frequencies which are significantly "shifted" in frequency from the corresponding calculated frequencies for the more stable conformer. These "shifted" frequencies are in fair agreement with the "new" spectral bands appearing in the solution spectra as may be judged from Table XXIX. The results of these calculations support the alternate conformation argument and support the validity of the normal coordinate computations for the 1,5-AP compounds. (A complete listing of the calculated frequencies for both conformations for each of the $1,5-A P$ models may be found in Appendix VI.)

TABLE XXIX
CORRELATION BETWEEN THE CALCULATED BANDS FOR THE ALTERNATE 1,5-ANHYDRORIBITOL CONFORMER AND THE "NEW" BANDS APPEARING IN THE SOLUTION SPECTRA

Spectra of Deuterated 1,5-Anhydroribitol
The spectra of crystalline deuterated l, 5-AR have provided additional information which has assisted the assignment of spectral bands in the crystalline. 1,5-AR spectra, especially the COH deformation (OH in-plane bending) bands. A comparison of Fig. 17 and 18 along with Table VII for deuterated l,5-AR with Fig. 11 and 12 accompanied by Table IV for $1,5-A R$ reveal that several additional bands appear upon deuteration (14), some bands were reduced in relative intensity (16), and others increased in relative intensity (4). From Table XXIII, it is found that most of the bands reduced in intensity involve COH vibrations. In general, the correlation between the spectra of $1,5-A R$ and its deuterated analog is quite good. Examination of the infrared spectra of deuterated 1,5-AR suggests that the degree of deuteration is below 100%. However, the degree of deuteration was undoubtedly reduced during sample preparation. Therefore, there is really no information regarding the extent of deuteration after preparation of the deuterated derivative.

1,5-ANHYDRO-L-ARABINITOL

Interpretation of the Solid State Spectra
The 1,5-ALA solid state spectra have been presented in Fig. 13 and 14 with the frequencies tabulated in Table V. Since the spectra of the isomers l,5-ALA and 1,5-ADA are identical, the following comments concerning l,5-ALA shall also pertain to $1,5-A D A$.

The interpretation of the solid state l, 5-ALA spectra is based on the potential energy distributions in terms of the various atomic group vibrations which are listed in Table XXIV. The definitions for several of the group vibrations are given in Fig. 29. As for $1,5-A X$ and $1,5-A R$, only those comments concerning the interpretation not immediately realized from Table XXIV shall be
presented in this section. The same convention regarding the listing of spectral band frequencies will be followed; that is, the frequency of the Raman band, in wave numbers, will be given first followed by the corresponding infrared band frequency in parentheses.

Again, the three $O H$ stretching bands at $3425(3428)$, (3385), and 3310(3320) $\mathrm{cm} .^{-1}$ are matched by three calculated bands, all of the same frequency, $3356 \mathrm{~cm} . \mathrm{c}^{-1}$ As before, the $O H$ stretching frequencies are not included in the computation of the average error. An interesting observation is that these three bands are spread out over an even wider spectral area than the corresponding bands for l,5-AX and l,5-AR. This suggests that there are differences in the hydrogen bonding for the crystalline $1,5-A P$ compounds.

All seven of the CH stretching bands are observed in the infrared spectrum of 1,5-ALA. The only band not seen in the Raman spectrum is the one occurring at $2925 \mathrm{~cm} .^{-1}$

The spectral region from $1467(1463) \mathrm{cm} .^{-1}$ through $1343(1349) \mathrm{cm} .^{-1}$. is characterized primarily by methylene "wag" vibrations coupled with methine deformation. The two bands at $1467(1463)$ and $1454(1460) \mathrm{cm} .^{-1}$ are again noted to be equal mixtures of methylene "scissoring" and methylene "wagging." The result is a complex methylene vibration. The weak shoulder appearing at 1446 (1442) $\mathrm{cm} .^{-1}$ in both the infrared and Raman spectra does not correlate with the calculated frequencies. This band is suspected of being a combination band. A possible combination resulting in a band in this region is suggested in Table XXX. The normal coordinate calculations predict a band at $1395 \mathrm{~cm} .^{-1}$ which is not seen in the Raman or infrared spectrum. However, a band in this region is. almost evident as a shoulder to the band at $1410 \mathrm{~cm} .^{-1}$ in the Raman spectrum.

TABLE XXX
SUGGESTED COMBINATION BANDS IN THE VIBRATIONAL SPECTRA OF CRYSTALLINE 1,5-ANHYDRO-L-ARABINITOL AND POSSIBLE COMBINATIONS WHICH MIGHT RESULT IN SUCH BANDS
Suspected Combination Band, ${ }^{\text {a }}$
Possible $\underset{\mathrm{cm}}{\text { Combination, }}$,
1446(R)(IR)
$(1281)+(1005)-(837)=1449$
406(R)
$(1410)-(1005)=405$
$371(R)(I R)$
$(1467)-(1092)=375$
$a_{\text {IR }(\hat{R})}$ designates that the band is observed in the infrared (Raman)
spectrum.
$b_{\text {The fundamental band frequencies, in wave numbers, appear in parentheses. }}$

From 1325(1329) cm. ${ }^{-1}$ through 1269(1262) $\mathrm{cm} .^{-1}$, the spectral bands are described by methylene "twisting" vibrations coupled with methine deformation.

The bands at (1248), 1233(1233), and $1216(1217) \mathrm{cm}^{-1}$ are assigned to COH bending vibrations (OH in-plane bending). The corresponding spectral bands in the spectra of deuterated $1,5-A L A$ are only slightly reduced in relative intensity or not reduced at all. However, examination of the deuterated 1,5-ALA spectra (Fig. 19 and 20 along with Table VIII) suggests that the degree of deuteration was well below 100% which may account for the above observation.

The region from $1150(1151) \mathrm{cm} .^{-1}$ through $758(7.55) \mathrm{cm} .^{-1}$ is distinguished by CO stretching vibrations and ring stretching vibrations coupled with methylene "twisting" and "rocking" vibrations. The two bands at lll2(1112). and $1104(1103) \mathrm{cm} .^{-1}$ are suspected of resulting from the splitting of a fundamental band due to vibrational coupling within the crystalline lattice. The calculations predict only one band in this region at $1108 \mathrm{~cm} .^{-1}$ The argument for band splitting is supported by the fact that only one band is noted in
this region in the solution spectra. In addition, the average of these two bands, $1108 \mathrm{~cm} .^{-1}$, agrees exactly with the frequency of the calculated band in this region for the $1,5-A L A$ model.

The spectral region from $633(636) \mathrm{cm}^{-1}$ through $256 \mathrm{~cm} .^{-1}$ is characterized by primarily $\mathrm{CO}(\mathrm{H})$ deformation with some ring vibrations. The Raman shoulder band at $406 \mathrm{~cm} .^{-1}$ and the shoulder band at 371 (375) $\mathrm{cm} .^{-1}$ in both the Raman and infrared spectra are suspected of being combination bands, since they do not correlate with the calculated frequencies (see Table XXX).

The normal coordinate calculations predict three bands resulting from OH torsional vibrations (OH out-of-plane bending) at 237, 236, and $222 \mathrm{~cm} .^{-1}$ The Raman band at $233 \mathrm{~cm} .^{-1}$ may be assigned to either of the calculated bands at 237 or $236 \mathrm{~cm} .^{-1}$ since it is impossible to evaluate the validity of one of the assignments over the other. In the normal coordinate calculations, this band was assigned to the calculated frequency $237 \mathrm{~cm} .^{-1}$. The calculated band at 222 $\mathrm{cm} .^{-1}$ is not observed in the Raman spectrum of 1,5-ALA. However, torsional vibrational bands are generally quite weak, and it is possible that such a band may not be detected by the instrument.

There are two ring twisting bands predicted by the computations at 185 and $132 \mathrm{~cm} .^{-1}$ There are two Raman bands in this region in the Raman crystalline 1,5-ALA spectrum at 197 and $176 \mathrm{~cm} .^{-1}$ The assignment listed in Table XXIV, which was assumed in the normal coordinate calculations, is based on the assumption that the band at $197 \mathrm{~cm} .^{-1}$ is a grating ghost. Grating ghosts have been observed in this region in several solid state spectra. Then the band at $176 \mathrm{~cm}^{-1}$ is correlated with the calculated band $185 \mathrm{~cm} .^{-1}$ It is not possible to detect a band in the region of $132 \mathrm{~cm} .^{-1}$ because of the Rayleigh scattering and grating ghosts. Further, the band is probably too weak to be observed.in
the solution spectra. In an alternate assignment, one might assume that the band at $197 \mathrm{~cm} .^{-1}$ is not a grating ghost and correlate this with the calculated band at $185 \mathrm{~cm} .^{-1}$ The observed band at $176 \mathrm{~cm} .^{-1}\left(165 \mathrm{~cm} .^{-1}\right.$ in the water solution spectrum) might then be correlated with the calculated band at $132 \mathrm{~cm} .^{-1}$ In the case of $1,5-A R$, a band was observed at $169 \mathrm{~cm} .^{-1}\left(175 \mathrm{~cm} .^{-1}\right.$ in the water solution spectrum), and the suggestion was made that this band might be correlated to a calculated bend at $137 \mathrm{~cm} .^{-1}$ In this respect, the above assignment is in agreement with the assignment for $1,5-A R$. However, the first assignment was favored in the normal coordinate computations, based entirely on preference.

Solution Spectra of 1,5-Anhydro-L-arabinitol
The solution spectra of $1,5-A L A$, both water :and DMSO-d 6 (see Fig. 23 and Table XI), agree quite well with the solid state spectra. Because of the rotation of the molecules, some of the solution spectral bands appear shifted in frequency and several of the bands are broadened. The water and DMSO-d 6 solution spectral bands are correlated with the solid state spectral bands for 1,5-ALA in Table XXXI. (The reader should note the frequency agreement between the water and the $D M S O-d_{6}$ solution spectra.)

The most noticeable feature of the solution spectra is the appearance of a few "new" bands not observed in the solid state spectra. As with $1,5-\mathrm{AR}$, these "new" bands are suggested to result from the presence of a significant amount of the $1,5-A L A$ molecules in the alternate conformation in solution. The conformational free energy calculations in Table XVI imply that approximately 28% of the molecules will exist in the alternate conformation in solution at equilibrium. The NMR spectra of $1,5-A T A$ in $D_{2} O$ (Fig. 5) and DMSO- d_{6} (Fig. 8a) cannot be used to support this argument because of the difficulty in interpreting the complex spectra. However, the normal coordinate calculations do support this

TABLE XXXI
CORRELATION OF THE 1,5-ANHYDRO-L-ARABINITOL SOLUTION SPECTRA
(WATER AND DMSO-d. ${ }^{\text {) }}$) WITH THE SOLID STATE RAMAN SPECTRUM

Raman, cm. ${ }^{-1}$	$\mathrm{H}_{2} \mathrm{O}$ Solution, $\mathrm{cm} .^{-1}$	DMSO-d6 Solution, cm. ${ }^{-1}$
2983		
2973	2979	2968
2932		
2916	2916	2902
2879		
2860	2872	2863
1467	1468	1463
1454	1452	1446
1442	slightly evident	slightly evident
1410	broad band	broad band
1381	broad band	broad band
1369	broad band	broad band
1343	broad band	broad band
1325	broad band	broad band
1309	1303	1308
1302	1296	1292
1281		
1233	1229	1225
1216 .		
1150	1153	1156
1136	hidden in overlap	hidden in overlap
1112	1120	1121
1104		
1092	1095	1110
1067	1072	solvent band
1057	1060	solvent band
1008	1013	solvent band
1005		solvent band
948	949	949
926	926	925
876	883	881
	865 (new band)	867 (new band)
837	840	834
758	754	solvent band
	744 (new band)	742 (new band)
633	640	solvent band
546	544	539
	532 (new band)	522 (new band)
430	425	420
408	407	409
314		solvent band

argument as they did in the discussion of the l,5-AR solution spectra. That is, the frequencies were calculated for the $1,5-A L A$ model with the ring "inverted" (i.e., in the alternate conformation) using the same $\underset{\sim}{F}$ matrix employed for the calculations reported in Table XXIV. The solution of the secular determinant for the "inverted" 1,5-ALA model resulted in a few calculated frequencies which deviated significantly from those calculated frequencies for the stable conformer. These calculated frequencies were found to be in fair agreement with the "new" spectral bands observed in the 1,5-ALA solution spectra. The results are tabulated in Table XXXII. (The complete calculated frequency list for both conformers appears in Appendix VI for each of the l,5-AP models.)

TABLE XXXII
CORRELATION BETWEEN THE CALCULATED BANDS FOR THE ALTERNATE 1,5-ANHYDRO-L-ARABINITOL CONFORMER AND THE "NEW" BANDS APPEARING IN THE SOLUTION SPECTRA

"New" Band		Calculated Band,
$\mathrm{H}_{2} \mathrm{O}, \mathrm{cm}$	DMSO-d $6, \mathrm{~cm} .{ }^{-1}$	$\mathrm{cm} .^{-1}$
865	867	831
744	742	720
532	522	518

Spectra of Deuterated 1,5-Anhydro-I-arabinitol
The deuterated l,5-ALA spectra appear in Fig. 19 and 20 and the frequencies are tabulated in Table VIII. Examination of these spectra reveals that the degree of deuteration after pellet preparation is well below 100%. The spectra of the deuterated derivative of $1,5-A L A$ is in close agreement with the $1,5-A L A$ spectra. Some bands are observed to be shifted slightly in frequency and others differ in relative intensity (15). In addition, several additional bands are apparent in the deuterated 1,5-ALA spectra (5).

1,5-ANHYDRO-DL-ARABINITOL

Comparison of the 1,5-Anhydro-DL-arebinitol Spectra
with that of the Li Isomer
As a matter of interest, the preparation of $1,5-A D L A$, measurement of the vibrational spectra, and comparison of the spectra with that of the L isomer were completed in this investigation. To the author's knowledge, such a comparison has not been made in the literature. The 1,5-ADLA spectra is found to correlate fairly well with the l,5-ALA spectra, but a number of the l,5-ADLA spectral bands are noted to'be shifted significantly in frequency from the corresponding l,5-ALA bands, and the relative intensity of several bands differ. A correlation of the Raman 1,5-ADLA spectral bands with the Raman 1,5-ALA spectral bands is presented in Table XXXIII.

Kim and Jeffrey (85) have noted that the structure of the unit cell of B-DL-arabinose has a center of symmetry while that of the isomers does not. Perhaps, the same is true for the l,5-anhydroalditol derivatives. The geometry of the unit cell may affect the resulting vibrational spectrum of a compound and, thus, explain the differences observed in the $1,5-A D L A$ spectra from the $1,5-A L A$ spectrum. In addition, the melting point of l,5-ADLA is 23 degrees lower than 1,5-ALA (see Table II). Thus, the intermolecular bonding, which is primarily hydrogen bonding, must differ for the two forms. The intermolecular bonding may very well affect the vibrational spectra and account for the differences between the 1,5-ADLA and 1,5-ALA spectra.

The l,5-ADLA spectra and also the deuterated 1,5-ADLA spectra for completeness (see Fig. 26 and 27 along with Table XV) have been presented in this thesis as a stimulus for research into the aspects of the effects of unit cell geometry and intermolecular bonding upon the vibrational spectra of saccharide and saccharide-type compounds.

TABLE XXXIII

CORRELATION BETWEEN THE SOLID STATE RAMAN SPECTRA
OF : 1,5-ANHYDRO-DL-ARABINITOL AND
1,5-ANHYDRO-L-ARABINITOL

1,5-ADLA , cm^{-1}	1,5-ALA, $\mathrm{cm.}^{-1}$	1,5-ADLA, cm^{-1}	1,5-ALA, cm. ${ }^{-1}$
3324	3425	1085	1092
3214	3310	1064	1067
3000	2983		1057
2989	2973	1012	1005
2966	2932	951	948
	2951	923	926
2916		880	876
	2890	840	837
2879	2887	756	758
2860	2852	750	
1469	1467	629	633
1450	1454	550	546
	1446	493	483
1423		445	
1396	1410	429	430
1381	1381	407	408
1359	1369		406
1340	1343	383	
	1325	375	371
	1309	338	
1312	1302	326	
1287	1281	313	314
1271	1269	291	296
1243		269	
1235	1233		256
1224	1216	231	233
1154	1150	197	197
1127	1136	185	176
1113	1112		
1097	1104	:	

CONCLUSIONS

The successful normal coordinate analyses of the 1,5-AP compounds has demonstrated the feasibility of extending such calculations to large, complex molecules. It now appears quite reasonable to attempt a complete normal coordinate analysis for, at least, the monosaccharides and their derivatives. The successful application of these methods to even larger molecules will depend upon the availability of a computer with the necessary core storage and computational speed". An important element in determining the success of the normal coordinate analyses was the introduction of the nonlinear force field perturbation technique which is based on the Fletcher-Powell method (121). Such a refinement method is very necessary for problems involving extensive vibrational coupling as is present in the case of large, complex molecules such as the l,5AP compounds and the monosaccharides.

The normal coordinate analyses have provided reasonable interpretations of the $1,5-A P$ solid state vibrational spectra. The mathematical methods employed in these analyses are admittedly qualitative. However, it is the qualitative aspects of the methods that make them so valuable to the physical chemist and vibrational spectroscopist. Although the numerical percentage contribution of $\underset{\sim}{\sim}$ matrix elements to the potential energy distribution cannot be assumed rigorously accurate, the numbers do indicate the relative contribution of each element to the potential energy which is extremely valuable in interpreting the spectra. The fact that such a close agreement was reached between the calculated and experimental frequencies for the three $1,5-A P$ compounds (average error of $6.2 \mathrm{~cm} .^{-1}$) and that the interpretation agrees with the experimental vibrational information available for similar compounds, including the group frequency correlation charts, add support to the results of the normal coordinate computations.

The SVQFF derived in this investigation is specific for pyranose ring compounds with hydroxyl groups. It should simplify the normal coordinate analyses of the pentoses (which should be considered the next logical set of compounds to be analyzed in the physical chemical investigation of the vibrational spectra of the saccharides) by reducing the difficulty involved in the initial correlation of the experimental and calculated frequencies. The spectral interpretation for the l,5-AP compounds should, by itself, assist in the assignment of the saccharide spectra. The assignment of these spectra in the past has been based on the normal coordinate analysis of tetrahydropyran, but the l,5-AP compounds are more closely related, structurally, to the saccharides.

The assumption of tetrahedral geometry for the l,5-AP models in this investigation appears to be quite reasonable and provides acceptable results. This approximation in the model geometry seems to be appropriate for those situations where the exact geometry is not available from crystal structure data. However, a better agreement (perhaps, $1-2 \mathrm{~cm} .^{-1}$) between experimental and calculated frequencies is expected when the exact molecular geometry is used. The normal coordinate computations suggest that the lower portion of the ring for the $1,5-A R$ compound is "flatter" in the real molecule than in the tetrahedral approximation. This variation between the real structure and the tetrahedral approximation is suggested as the source of the slightly larger average error for $1,5-A R$.

The normal coordinate computations have further demonstrated that the main source of the differences in the band positions between the l,5-AP spectra is a kinetic energy effect rather than a potential energy effect. More specifically, the shifts in frequencies between spectra are a result of the variation in orientation of the hydroxyl groups, i.e., axial versus equatorial, between l,5AP compounds. However, no spectral differences could be detected which could be
attributed to loss of symmetry in going from 1,5-AX and $1,5-A R$ to $1,5-A L A$ or 1,5-ADA.

In general, the solution spectra were quite similar to the solid state spectra, with some shifting of bands and considerable band broadening. Band broadening is a typical phenomenon of solution spectra resulting from rotationvibration coupling. There appears to be little band splitting in the solid state spectra since the solution spectra correlate so well with the solid state spectra. The type of solvent, i.e., amphiprotic versus aprotic, does not appear to affect the solution vibrational spectra, since the spectra of the 1,5-AP solutions in water and $\mathrm{DMSO}_{\mathrm{d}} \mathrm{d}_{6}$ are identical. Several additional bands were observed in the solution spectra of $1,5-A R$ and $1,5-A L A$. These bands are suspected of resulting from a significant amount of each species existing in the alternate conformation in solution. This argument is supported by normal coordinate computations for the alternate conformers and conformational free energy calculations.

The vibrational spectra of $1,5-A D L A$ were presented in this text so that they might be compared with the corresponding spectra of $1,5-A L A$. Several differences in the spectra of the two compounds were noted, both in band position and relative, intensity. The crystal structure and hydrogen bonding are suspected of differing in the two compounds. An investigation of this observation might result in the explanation of the effect of crystal structure and hydrogen bonding on the solid state vibrational spectra.

SUGGESTIONS FOR FUTURE WORK

This investigation immediately suggests three areas for future work in the investigation of the saccharide vibrational spectra and normal coordinate computations.

1. The most immediate extension of this work is the normal coordinate analyses of the pentoses. The SVQFF developed in this study should simplify the computations for the pentoses. The normal coordinate computations for the pentoses should then permit the SVQFF developed for the $1,5-A P$ compounds in this study to be extended to include the Cl hydroxyl group interactions. This should make the force field more specific for the monosaccharides. The pentoses would provide an even better model system upon which to base the interpretation of the saccharide spectra.

At the time this dissertation is being written, the normal coordinate analyses of the pentitols is in progress at the Institute. The study is being conducted by Gary Watson and includes an investigation of the effect of conformation on the vibrational spectrum. The results of this investigation should complement the work done on the pyranose ring compounds and provide the basis for future analyses of the vibrational spectra of open-chain polyalcohols.
2. The inverse F matrix technique should be investigated and compared with the conventional computational methods that were used in this investigation. The uniqueness of the ${\underset{\sim}{\sim}}^{-1}$ elements is very attractive. In addition, the HOFF and OVFF should be examined for the possibility of generating additional force field data from application of quantum mechanical principles. This would reduce the totally empirical character of the present SVQFF used in this study.

ACKNOWLEDGMENTS

I wish to extend my sincere thanks to Dr. Rajai Atalla, the chairman of my thesis advisory committee, for suggesting this thesis investigation and for offering numerous helpful suggestions throughout the course of this work. I shall always be deeply indebted to him for his continued interest in me and my work throughout this investigation, and for our innumerable conversations.

I also wish to gratefully acknowledge Drs. D. C. Johnson and G. A. Baum, who served on my thesis advisory committee, for their many critical discussions and constructive advice.

I am indebted to Dr. L. R. Schroeder and Mr. F. C. Haigh for their assistance, both in advice and equipment, in the preparation of the 1,5 -anhydropentitol compounds. I also wish to thank Messrs. J. J. Bachhuber and J. 0 . Church, of the Institute Computer Center, for their help in debugging and adapting the computer programs used in this thesis. I wish to gratefully acknowledge Mr. L. O. Sell who recorded most of the infrared spectra for me and all of the $\mathbb{N M R}$ spectra. I also wish to thank Mr. S. C. Nagel who assisted me in measuring several of the Raman spectra. I wish to express my gratitude to everyone else who has helped in some way toward the successful completion of this thesis, including the editorial department who are responsible for the final preparation of this manuscript.

I wish to especially thank Dr. J. H. Schachtschneider of Shell Development Company, Emeryville, California, for providing us with the original set of computer programs, which we modified and developed into the package of programs used in the normal coordinate analyses of the l,5-anhydropentitol models.

I am deeply indebted to The Institute of Paper Chemistry for the financial support which made this study possible.

Finally, my most sincere appreciation goes to my wife, Marilyn, who has made innumerable sacrifices so that this thesis could become a reality.

1. Stacey, M., and Barker, S. A. Carbohydrates of living tissue. . Chap. 8: and 9. p. 148 and p. 181. London, D. Van Nostrand, 1962.
2. Montgomery, R. Glycoproteins. In Pigman and Horton's The carbohydrates, chemistry and biochemistry. 2nd ed. p. 627. New York, Academic Press, 1970.
3. McKibbin, J.: M. Glycolipids. In Pigman and Horton's The carbohydrates, chemistry and biochemistry. 2nd ed. p. 7ll. New York, Academic Press, 1970.
4. Dickens, F., Randel, P. J., and Whelan, W. J. Carbohydrate metabolism and its disorders. Vol. l. New York, Academic Press, 1968. 576 p.
5. Florkin, M., and Stotz, E. H. Carbohydrate metabolism. Vol. 17. New York, Elsevier, 1969. 308 p.
6. Hanessian, S., and Haskell, T. H. Antibiotics containing sugars. In Pigman and Horton's The carbohydrates, chemistry and biochemistry. 2nd ed. p. 139. New York, Academic Press, 1970.
7. Whistler, R. L., and Paschall, E. F. Starch: chemistry and technology. New York, Academic Press, 1965. 579 p.
8. Ott, E., and Spurlin, H. P. Cellulose and cellulose derivatives. New York, Interscience, 1954.
9. Ward, K. Chemistry and chemical technology of cotton. New York, Interscience, 1955. 782 p.
10. Reeves, R. E., Adv. Carbohyd. Chem. 6:107-34(1951).
11. Jeffrey, G. A., and Rosenstein, R. D., Adv. Carbohyd. Chem. 19:7-22(1964).
12. Strahs, G., Adv. Carbohyd. Chem. 25:53-107(1970).
13. Hall, L. D., Adv. Carbohyd. Chem. 19:51-93(1964).
14. Inch, T. D., Ann. Rev. NMR Spectroscopy 2:35-82(1969).
15. Coblentz, W. W., Carnegie Inst. Washington Publ. 65, 1906.
16. Rogers, L. H., and Williams, D. J., J.A.C.S. 60:2619-21(1938).
17. Barr, E. S., and Christman, C. H., Jr., J. Chem. Phys. 8:51-5(1940).
18. Kuhn, L. P., Anal. Chem. 22:276-83(1950).
19. Whistler, R. L., and House, L. R., Anal. Chem. 25:1463-5(1953).
20. Barker, S. A., Bourne, E. J., Stacey, M., and Whiffen, D. H., J.C.S. 1954:171-6.
21. Barker, S. A., Bourne, E. J., Stephens, R., and Whiffen, D. H., J.C.S. 1954:3468-73.
22. Barker, S. A., Bourne, E. J., Stephens, R., and Whiffen, D. H., J.C.S. 1954:4211-15.
23. Isbell, H. S., Smith, F. A., Creitz, E. C., Frush, H. L., Moyer, J. D., and Stewart, J. E., J. Res. NBS 59:41-78(1957).
24. Tipson, R. S., and Isbell, H. S., J. Res. NBS 64A:239-63(1960).
25. Tipson, R. S., and Isbell, H. S., J. Res. NBS 64A:405-26(1960).
26. Tipson, R. S., and Isbell, H. S., J. Res. NBS 65A:31-50(1961).
27. Tipson, R. S., and Isbell, H. S., J. Res. NBS 65A:249-66(1961).
28. Tipson, R. S., and Isbell, H. S., J. Res. NBS 66A:31-58(1962).
29. Tipson, R. S., Isbell, H. S., and Stewart, J. E., J. Res. NBS 62:257-82(1959).
30. Liang, C. Y., and Marchessault, R. H., J. Polymer Sci. 37:385-95(1959).
31. Liang, C. Y., and Marchessault, R. H., J. Polymer Sci. 39:269-78(1959).
32. Liang, C. Y., and Marchessault, R. H., J. Polymer Sci. 43:85-100(1960).
33. Pearson, F. G., Marchessault, R. H., and Liang, C. Y., J. Polymer Sci. 43:101-16(1960).
34. Marchessault, R. H., and Liang, C. Y., J. Polymer Sci. 43:71-84(1960).
35. Marchessault, R. H., and Liang, C. Y., J. Polymer Sci. 59:357-78(1962):
36. Zhbankov, R. G. Infrared spectra of cellulose and its derivatives. New York, Consultants Bureau, 1966. 333 p.
37. Zhbankov, R. G., J. Polymer Sci. C-16:4629-43(1965).
38. Michell, A. J., and Higgins, H. G., Tetrahedron 21:1109-20(1965).
39. Michell, A. J., Carbohyd. Res. 5:229-32(1967).
40. Michell, A. J., Tetrahedron 24:4021-31(1968).
41. Michell, A. J., Austral. J. Chem. 21:2451-66(1968).
42. Michell, A. J., Austral. J. Chem. $21: 1257-66(1968)$.
43. Michell, A. J., Austral. J. Chem. 23:833-40(1970).
44. Katon, J. E., Miller, J. T., Jr., and Bentley, F. F., Arch. Biochem. 121:798-9(1967).
45. Katon, J. E., Miller, J. T., Jr., and Bentley, F.. F., Carbohyd. Res. 10:505-16(1969).
46. Bellamy, L. J. The infrared spectra of complex molecules. 2nd.ed. New. York, Wiley, 1958. 425 p.
47. Bellamy, L. J. Advances in infrared group frequencies. London, Methuen, 1968. 305 p.
48. Burket, S. C., and Badger, R. M., J.A.C.S. 72:4397-405(1950).
49. Bagget, N., Barker, S. A., Foster, A. B., Moore, R. H., and Whiffen, D. H., J.C.S. 1960:4565-70.
50. Beckett, C. W., Pitzer, K. S., and Spitzer, R., J.A.C.S. 69:2488-95(1947).
51. Spedding, H., Adv. Carbohyd. Chem. 19:23-49(1964).
52. Tipson, R. S., NBS Monograph No. 110, June, 1968.
53. Snyder, R. G., and Schachtschneider, J. H., Spectrochim. Acta 19:85-116(1963).
54. Schachtschneider, J. H., and Snyder, R. G., Spectrochim. Acta 19:117-68(1963).
55. Snyder, R. G., and Schachtschneider, J. H., Spectrochim. Acta 21:169-95(1965).
56. Snyder, R. G., and Zerbi, G.; Spectrochim. Acta 23A:391-437(1967).
57. Pickett, H., and Strauss, H., J. Chem. Phys. 53:376-88(1970).
58. Steele, D. Personal communication, 1970.
59. Gray, G. R., and Barker, R., J. Org. Chem. 32:2764-8(1967).
60. Schroeder, L. R. A-126 Laboratory Methods in Organic Chemistry Laboratory Notes. Appleton, Wis., The Institute of Paper Chemistry, 1969.
61. Brandon, R. E. Unpublished work, The Institute of Paper Chemistry.
62. Fletcher, H. G., Jr., and Hudson, C. S., J.A.C.S. 69:1672-4 (1947).
63. Rice, F. A. H., and Inatome, M., J.A.C.S. 80:4709-11 (1958).
64. Jeanloz, R., Fletcher, H. G., Jr., and Hudson, C. S., J.A.C.S. 70:4052-4 (1948).
65. Fletcher, H. G., Jr., and Hudson, C. S., J.A.C.S. 69:921-4 (1947).
66. Gilson, T. R., and Hendra, P. J. Laser Raman spectroscopy, New York, Wiley-Interscience, 1970. 266 p .
67. Tobin, M. C. Laser Raman spectroscopy. New York, Wiley-Interscience, 1971. 171 p.
68. Wilson, E. B., Jr., Decius, J. C., and Cross, P. C. Molecular vibrations. New York, McGraw-Hill Book Co., 1955. 388 p.
69. Herzberg, G. Infrared and Raman spectra of polyatomic molecules. New York, D. Van Nostrand Co., Inc., 1945. 632 p.
70. Allemand, C. D., Appl. Spectry. 24:348-53(1970).
71. Pauling, L., and Wilson, E. B., Jr. Introduction to quantum mechanics. New York, McGraw-Hill Book Co., Inc., 1935. 468 p.
72. Crawford, B., Jr., and Overend, J., J. Mol. Spectry. 12:307-18(1964).
73. Perlis, S. Theory of matrices. Reading, Mass., Addison-Wesley Publ. Co., Inc., 1952. 237 p.
74. Eckart, C., Phys. Rev. 47:552-8(1935).
75. Sayvetz, A., J. Chem. Phys. 7:383-9(1939).
76. Wilson, E. B., Jr., J. Chem. Phys. 7:1047-52(1939).
77. Decius, J. C., J. Chem. Phys. 16:1025-34(1948).
78. Decius, J. C., J. Chem. Phys. 17:1315-18(1949).
79. Eliel, E. L. Stereochemistry of carbon compounds. New York, McGraw-Hill Book Co., Inc., 1962. 486 p.
80. Angyal, S. J., Austral. J. Chem. 21:2737-46(1968).
81. Eliel, E. L., Allinger, N. L., Angyal, S. J., and Morrison, G. A. Conformational analysis. New York, Interscience, 1965. 524 p.
82. Davis, M., and Hassel, 0., Acta Chem. Scand. 17:1181(1963).
83. Brown, G. M., and Levy, H. A., Science 147:1038-9(1965).
84. Chu, S. S. C., and Jeffrey, G. A., Acta Cryst. B24:830-8(1968).
85. Kim, S. H., and Jeffrey, G. A., Acta Cryst. 22:537-45(1967).
86. Hordvik, A., Acta Chem. Scand. 20:1943-54(1966).
87. Hordvik, A., Acta Chem. Scand. 25:2175-82(1972).
88. Gatehouse, B. M., and Poppleton, B. J., Acta Cryst. 26B:1761-5(1970).
89. Schachtschneider, J. H. Vibrational analysis of polyatomic molecules. Technical Report No. 231-64 and Technical Report No. 57-65. Emeryville, Calif., Shell Development Co., 1964.
90. Cole, A. J., and Adamson, P. G., Acta Cryst, 25:535-9(1969).
91. Wilson, E. B., Jr., J. Chem. Phys. 9:76-84(1941).
92. Schonland, D. S. Molecular symmetry. New York, Van Nostrand Reinhold Co., 1965. 298 p.
93. Schutte, C. J. H. The wave mechanics of atoms, molecules, and ions. London, Edward Arnold Ltd., 1968. 502 p.
94. Steele, D. Theory of vibrational spectroscopy. Philadelphia, W. B. Saunders Co.., 1971. 226 p.
95. Mills, I. M., Spectrochim. Acta 19:1585-94(1963).
96. Urey, H. C., and Bradley, C. A., Phys. Rev. 38:1969-78(1931).
97. Linnett, J. W., and Wheatley, P. J., J.C.S. Faraday 45:33-9, 39-49(1949).
98. Decius, J. C.; J. Chem. Phys. 17:1315-18(1949).
99. Vasko, P. D. Spectroscopic and vibrational studies of carbohydrates. Doctoral Dissertation. Cleveland, Ohio, Case Western Reserve University, Jan., 1971. 127 p.
100. Acton, F. S. Numerical methods thät work. New York, Harper and Row, Publishers, 1970. 541 p .
101. King, W. T. Characteristic group vibrations. Doctoral Dissertation. Minneapolis, Minn., The University of Minnesota, 1956.
102. Greenstadt, J. The determination of the characteristic roots of a matrix by the Jacobi method. In Efroymson's Mathematical methods for digital computer. New York, John Wiley and Sons, Inc., 1960.
103. Froberg, C. E. Introduction to numerical analysis. 2nd ed. Reading, Mass., Addison-Wesley Publ. Co., 1969. 433 p.
104. White, P. A., and Brown, R. R., Math. of Computation 1964:457.
105. Draper, N. R., and Smith, H. Applied regression analysis. New York, John Wiley and Sons, Inc., 1966. 407 p.
106. Mann, D. E., Shimanouchi, T., Meal, J. H., and Fano, L., J. Chem. Phys. 27:43-51, 52-9(1957).
107. Mills, I. M., Spectrochim. Acta 16:35-48(1960).
108. Overend, J., and Scherer, J. R., J. Chem. Phys. 32:1289-95, 1720-33(1960).
109. Overend, J., and Scherer, J. R., J. Chem. Phys. 33:1681-94(1960).
110. Overend, J., and Scherer, J. R., J. Opt. Soc. Am. 50:1203-7(1960).
111. Shimanouchi, T., and Suzuki, I., J. Mol. Spectry. 6:277-300(1961).
112. Freeman, D. E., and Ross, I. G., Spectrochim. Acta 16:1393-408(1960).
113. Aldous, J., and Mills, I. M., Spectrochim. Acta 18:1073-91(1962).
114. Long, D. A., Gravenor, R. B., and Woodger, M., Spectrochim. Acta 19:937-49 (1963).
115. Bruton, M. J., and Woodward, L. A., Spectrochim. Acta 23A:175-81(1967).
116. Long, D. A., and Gravenor, R. B., Spectrochim. Acta 19:951-60(1963).
117. Levenberg, H., Quart. Appl. Math. 2:164(1944).
118. Marquardt, D. W., J. Soc. Ind. Appl. Math. 11:431-41 (1963).
119. Adams, D. M., and Churchill, R. G., J.C.S. (A) 1970:697-703.
120. Gans, P., J.C.S. (A) 1971:2017-24.
121. Fletcher; R., and Powell, M. J. D., Computer J. 6:163-8(1963).
122. IBM System/360 Scientific Subroutine Package Version III, 5th ed. p. 221. International Business Machine Corporation, Aug., 1970.
123. James, V. J., and Stevens, J. D., Carbohyd. Res, 21:334-5(1972).

APPENDIX I

COMPUTER PROGRAM FOR THE CALCULATION OF CARTESIAN COORDINATES FOR THE ATOMS

A computer program, CART, written by J. H. Schachtschneider (89) of Shell Development Co., Emeryville, California, was employed to compute the cartesian coordinates of the "atoms" (mass points) for the 1,5-AP models. The program was originally written for an IBM-7040 computer and coded in FORTRAN IV. (All computer programs to be discussed in this dissertation are coded 'in FORTRAN IV.) It was necessary to modify this program for use on the Institute's IBM-360/44 computer. CART calculates the cartesian coordinates of the atoms in a molecule from the bond distances and bond angles. If desired, the program will also compute the moments of inertia.

In the first part of the program, the coordinates of each atom of the molecule are calculated in a fixed coordinate system, $O(\underline{x}, \underline{y}, \underline{z})$, from the bond angles and bond lengths. The atoms are numbered in the order in which they are given in the data. (The atom numbering scheme used for the l,5-AP models is specified in Fig. 28 in the main text.) The first three atoms are used to define the coordinate system, $O(\underline{x}, \underline{y}, \underline{z})$. The origin is located at the first atom. The positive x-axis points in the direction of atom number two, and the triad 1-2-3 defines the $\underline{x}-\underline{y}$ plane. For each additional atom, a new coordinate system, $0^{\prime}\left(\underline{x}^{\prime}, \underline{y} \underline{\prime}^{\prime}, \underline{z}^{\prime}\right)$, is used. The atom is located by the spherical coordinates \underline{R}, θ, and ϕ in terms of its bond distances and bond angles. $O^{\prime}\left(\underline{x} \underline{x}^{\prime}, \underline{y}^{\prime}, \underline{z}\right.$ ') is located by giving the numbers of three previously defined atoms. The program calculates the transformation, \underline{T}, from $O^{\prime}\left(\underline{x}^{\prime}, \underline{y^{\prime}}, \underline{z}{ }^{\prime}\right)$ to $O(\underline{x}, \underline{y}, \underline{z})$; determines the cartesian coordinates $\underline{x}^{\prime}, \underline{y}^{\prime}$, and \underline{z}^{\prime} from the spherical coordinates \underline{R}, θ, and ϕ; and transforms $\underline{x}^{\prime}, \underline{y}^{\prime}$, and \underline{z}^{\prime} to $\underline{x}, \underline{y}$, and \underline{z}. At the user's option, the center of mass and moments of inertia are computed by conventional methods.

The input to CART includes a control card giving the number of atoms, the number of isotopic molecules, and specifying if the moments of inertia are to be computed. The following data are read in for each atom in the molecule:

1. The atom number, NO. (The atoms are numbered consecutively.)
2. The numbers of the atoms determining the coordinate system, 0^{\prime} NO $\left(x^{\prime}, \underline{y} \underline{y}^{\prime}, \underline{z}\right.$ '), used to locate atom NO.
a. NA: the number of atom A. (This atom determines the origin of the coordinate system.)
b. NB: the number of atom B defining the positive x^{\prime} directions running along the bond from A to B.
c. NC: the number of atom C which together with atoms A and B define the x'-y' plane such that the positive half plane is on the same side of the x^{\prime}-axis as atom C.
3. The spherical coordinates of the atom N in the coordinate system $0^{\prime}{ }^{\text {NO }}\left(\underline{x}{ }^{\prime}, \underline{y}^{\prime}, \underline{z}{ }^{\prime}\right)$.
a. R : the length of the bond from atom A to atom \mathbb{N}.
b. θ : the angle between the x-axis and the bond between atom A and N , i.e., angle NAB.
c. $\phi:$ the azimuthal angle between \underline{R} and the $\underline{x}-\underline{y}$ plane, i.e., the dihedral angle between the plane $C-B-A$ and the plane $N-A-B .^{16}$
d. WI: the mass of atom N. (Masses need not be entered if the moment of inertia is not desired.)

Since the first three atoms define the coordinate system, $O(\underline{x}, \underline{y}, \underline{z})$, some of these data are not required for these atoms. Thus, for atom number one, the cartesian coordinates are all zero by definition. For atom number two, the x-coordinate is equal to \underline{R} by definition, and only $N A$ and R are needed. For
${ }^{16}$ For a right-handed coordinate system the angle is defined as follows: Observe the configuration from the direction of atom C along the bond $B-A$ or $A-B$ depending on whether C is bonded to B or A. Now rotate about $B-A$ or $A-B$ to move atom C into the plane N-A-B. A clockwise rotation is defined as positive. However, if the angle of rotation is less than 90°, a clockwise rotation is defined as negative.
atom number three, the z-coordinate is zero and only NA, NB, \underline{R}, and θ are needed. The x-coordinate of atom C is

$$
\begin{equation*}
x_{C}=x_{A} \pm R \operatorname{Cos} \theta \tag{150}
\end{equation*}
$$

where + is used if $\underline{A}=1$ and - is used if $\underline{A}=2$. The \underline{y}-coordinate is

$$
\begin{equation*}
y_{C}=R \sin \theta . \tag{151}
\end{equation*}
$$

For each additional atom, the transformation matrix, \underline{T}, from $0^{\prime}\left(\underline{x}^{\prime}, \underline{y} \underline{\prime}^{\prime}, \underline{z}^{\prime}\right)$ is determined and used to transform $\underline{x}^{\prime}, \underline{y}^{\prime}$, and \underline{z}^{\prime} to $\underline{x}, \underline{y}$, and \underline{z}. The coordinates for atom N in $O^{\prime}\left(\underline{x}^{\prime}, \underline{y}^{\prime}, \underline{z}\right.$) are given by
and

$$
\begin{gather*}
x_{N}^{\prime}=R \cos \theta \\
y_{N}^{\prime}=R \sin \theta \cos \phi \tag{152}\\
z_{N}^{\prime}=R \sin \theta \sin \phi \\
x_{N}=x_{A}+T_{x X} \cdot x_{N}^{\prime}+T_{x y}, y_{N}^{\prime}+\dot{T}_{x z}, z_{N}^{\prime} \tag{153}
\end{gather*}
$$

The coordinates of the center of mass $\mathrm{C}_{\underline{x}}, \frac{\mathrm{C}}{\underline{y}}$, and $\underset{-\underline{z}}{ }$ are given by

$$
\begin{align*}
& C_{x}=(-1 / M) \sum_{i} m_{i} x_{i} \\
& C_{y}=(-1 / M) \sum_{i} m_{i} y_{i} \tag{154}\\
& C_{z}=(-1 / M) \sum_{i} m_{i} z_{i}
\end{align*}
$$

where $\underline{M}=\sum_{\underline{i}} \underline{m}_{\underline{i}}$. The elements of the moment of inertia tensor are

$$
\begin{equation*}
I_{x x}=\sum_{i} m_{i}\left[r_{i}-\left(x_{i}+C_{x}\right)^{2}\right] \tag{155}
\end{equation*}
$$

where $\underline{r}_{\underline{i}}$ is the distance from the center of mass to atom \underline{i} and

$$
\begin{gather*}
r_{i}^{2}=\left(x_{i}+C_{x}\right)^{2}+\left(y_{i}+c_{y}\right)^{2}+\left(z_{i}+c_{z}\right)^{2} \tag{156}\\
I_{x y}=-\sum_{i} m_{i}\left(x_{i}+c_{x}\right)\left(y_{i}+c_{y}\right) . \tag{157}
\end{gather*}
$$

The moment of inertia tensor is diagonalized to give the principal moments and the transformation to principal coordinates. Provision has been made for reading in a new set of masses for the calculation of the moments of inertia of isotropically substituted molecules.

The calculated cartesian coordinates are punched onto cards in a form suitable for input to the $\underset{\sim}{G}$ matrix program described later in this manuscript.

A listing of CART along with a flow diagram and instructions for use of the program may be found in Appendix V.

COMPUTATION OF THE CARTESIAN COORDINATES FOR THE
1,5-ANHYDROPENTITOL MODELS

The input data to CART for the 1,5-AX, 1,5-AR, and 1,5-ALA models, based on the geometry specified in an earlier section and summarized in Table XVII, are presented in Tables XXXIV, XXXV, and XXXVI, respectively. In addition, each table lists the cartesian coordinates computed in CART for each model.

ERROR CHECKS IN SPECIFICATION OF MODEL GEOMETRY

The cartesian coordinates computed in CART may be examined for errors in two ways. First, CART contains an atom distance check. The distances between every "atom" of the model and every other "atom" are calculated. These distances may be inspected to see if they are reasonable. The second check is provided by the computer program, PAMOLE, written by Cole and Adamson (90), which employs the Calcomp 110 Digital Plotter to draw "ball and stick"

TABLE XXXIV

COMPUTER PROGRAM INPUT AND CALCULATED CARTESIAN COORDINATES FOR 1，5－ANHYDROXYLITOL

CARTESIAN COORDINATES
1．5－ANHYDROXYLITOL．
THE C－O－C ANGLE．ONE BOND BOND LENGTH 1000000

2	1	0	0
3	1	2	0
4	2	1	3
5	3	1	2
6	5	3	1
7	2	1	4
8	2	4	1
9	3	1	5
10	3	5	1
11	5	3	6
12	5	3	6
13	12	5	11
14	6	4	5
15	6	5	4
16	15	6	14
17	4	2	6
18	4	2	6
19	18	4	17

1.422999
1.422999
1.523000
1.523000
1.523000

1． 096000
1.096000
1.096000
1.096000
1.092999
1.415000
0.970000
1.092999
1.415000
0.970000
1.092999
1.415000
0.970000

ALL BOND ANGLES ARE TETRAHEDRAL EXCEPT FOR LENGTH VALUE EACH FOR CO，CC，CH，OH，AND CO（R）．
15.994906
12.000000
12.000000
12.000000
12.000000
12.000000
1.007825
1.007825

1．007825
1.007825
1.007825
15.994906 1.007825 1.007825
15.994906
1.007825
1.007825
15.994906
1.007825

ATOM NO．	x	Y	z	MASS
1	0.0	0.0	0.0	15.994906
2	1.422999	0.0	0.0	12.000000
3	－0．543409	1.315155	0.0	12.000000
4	1.930665	0.717949	1.243524	12.000000
5	－0．073737	2.058514	1.243524	12．000000
6	1.445708	2.161613	1.229767	12．000000
7	1.788332	－1．033318	0.000001	1.007825
8	1.788332	0.516660	－0．894880	1.007825
9	－1．637928	1.258201	0.000001	1.007825
10	－0．205418	1.850101	－0．894880	1.007825
11	－0．393934	1.514558	2.135842	1.007825
12	－0．634535	3.357575	1.256446	15.994906
13	－0．350369	3.840312	0.464541	1.007825
14	1.769657	2.645977	0.305053	1.007825
15	1.884583	2.817815	2．404078	15.994906
16	1.562932	2.336884	3.182631	1.007825
17	1.550211	0.214294	2.135842	1.007825
18	3．345430	0.695734	1.256444	15.994906
19	3.683066	1.142712	0.464539	1.007825

TABLE XXXV
COMPUTER PROGRAM INPUT AND CALCULATED GARTESIAN COORDINATES FOR 1,5-ANHYDRORIBITOL

CARTESIAN CODRDINATES

1,5-ANHYDRORIBITOL.
THE C-O-C ANGLE. ONE

1	0	0	0
2	1	0	0
3	1	2	0
4	2	1	3
5	3	1	2
6	5	3	1
7	2	1	4
8	2	4	1
9	3	1	5
10	3	5	1
11	5	3	6
12	5	3	6
13	12	5	11
14	6	4	5
15	6	5	4
16	15	6	14
17	4	2	6
18	4	2	6
19	18	4	17

ALL BOND ANGLES ARE TETRAHEDRAL EXCEPT FOR 1000

- 8OND LENGTH
0.0 VALUE EACH FOR CO,CC,CH,OH, AND COIRI.
1.0
1.422999
1.422999
1.523000
1.523000
1.523000
1.096000
1.096000
1.096000
1.096000
1.092999
1.415000
0.970000
1.092999
1.415000
0.970000
1.09299 .9
1.415000
0.970000

0.0	15.994906
0.0	12.000000
0.0	12.000000
-60.000000	12.000000
60.000000	12.000000
-61.103989	12.000000
-120.000000	1.007825
-120.000000	1.007825
120.000000	1.007825
120.000000	1.007825
120.000000	1.007825
-120.000000	15.994906
180.000000	1.007825
-117.265396	1.007825
-117.265198	15.994906
180.000000	1.007825
-120.000000	1.007825
120.00000	15.994906
180.000000	1.007825

ATOM NO.	X	Y	MASS	
1	0.0	0.0	0.0	15.994906
2	1.422999	0.0	0.0	12.000000
3	-0.543409	1.315155	0.0	12.000000
4	1.930665	0.717949	1.243524	12.000000
5	-0.073737	2.058514	1.243524	12.000000
6	1.445708	2.161613	1.229767	12.000000
7	1.788332	-1.033318	0.000001	1.007825
8	1.788332	0.516660	-0.894880	1.007825
9	-1.637928	1.258201	0.000001	1.007825
10	-0.205418	1.850101	-0.894880	1.007825
11	-0.393934	1.514558	2.135842	1.007825
12	-0.634535	3.357575	1.256446	15.994906
13	-0.350369	3.840312	0.464541	1.007825
14	1.784715	2.668490	2.136847	1.007825
15	1.865091	2.788672	0.032629	15.994908
16	1.530784	2.288821	-0.728482	1.007825
17	1.550211	0.214294	2.135842	1.007825
18	3.345430	0.695734	1.256444	15.994906
19	3.683066	1.142712	0.464539	1.007825

TABLE XXXVI

COMPUTER PROGRAM INPUT AND GALCULATED CARTESIAN
COORDINATES FOR $1,5-A N H Y D R O-L-A R A B I N I T O L ~$

CARTESIAN COORDINATES
1.5-ANHYDRO-L-ARABINITOL. ALL BOND ANGLES ARE TETRAHEDRAL EXCEPT FOR THE C-O-C ANGLE. ONE BOND LENGTH VALUE EACH FOR CO,CC,CH,OH, AND COIRI.

1	0	0	0	0.0	0.0	0.0	15.994906
2	1	0	0	1.422999	0.0	0.0	12.000000
3	1	2	0	1.422999	112.449997	0.0	12.000000
4	2	1	3	1.523000	0.0	-60.000000	12.000000
5	3	1	2	1.523000	0.0	60.000000	12.000000
6	5	3	1	1.523000	0.0	-61.103989	12.000000
7	2	1	4	1.096000	0.0	-120.000000	1.007825
8	2	4	1	1.096000	0.0	-120.000000	1.007825
9	3	1	5	1.096000	0.0	120.000000	1.007825
10	3	5	1	1.096000	0.0	120.000000	1.007825
11	5	3	6	1.092999	0.0	120.000000	1.007825
12	5	3	6	1.415000	0.0	-120.000000	15.994906
13	12	5	11	0.970000	0.0	180.000000	1.007825
14	6	4	5	1.092999	0.0	117.265396	1.007825
15	6	5	4	1.415000	0.0	117.265091	15.994906
16	15	6	14	0.970000	0.0	180.000000	1.007825
17	4	2	6	1.092999	0.0	120.000000	1.007825
18	4	2	6	1.415000	0.0	-120.000000	15.994906
19	18	4	17	0.970000	0.0	180.000000	1.007825

ATOM NO.	X	Y	2	MASS
1	0.0	0.0	0.0	15.994906
2	1.422999	0.0	0.0	12.000000
3	-0.543409	1.315155	0.0	12.000000
4	1.930665	0.717949	1.243524	12.000000
5	-0.073737	2.058514	1.243524	12.000000
6	1.445708	2.161613	1.229767	12.000000
7	1.788332	-1.033318	0.000001	1.007825
8	1.788332	0.516660	-0.894880	1.007825
9	-1.637928	1.258201	0.000001	1.007825
10	-0.205418	1.850101	-0.894880	1.007825
11	-0.393934	1.514558	2.135842	1.007825
12	-0.634535	3.357575	1.256446	15.994906
13	-0.350369	3.840312	0.464541	1.007825
14	1.769657	2.645977	0.305053	1.007825
15	1.884583	2.817815	2.404078	15.994906
16	1.562932	2.336884	3.182631	1.007825
17	3.023482	0.700789	1.253504	1.007825
18	1.438128	0.065916	2.398722	15.994906
19	0.468288	0.081146	2.389860	1.007825

representations of the molecules from the cartesian coordinates of the atoms. (The program instructions for PAMOLE are presented in Appendix V.) Examination of these drawings based on the calculated cartesian coordinates may pinpoint any errors existing in the set of coordinates. The "ball and stick" drawings of the l,5-AP models generated by PAMOLE from the cartesian coordinates listed in Tables XXXIV, XXXV, and XXXVI appear in Fig. 33, 34 , and 35, respectively.

Figure 33. The "Ball and Stick" Representation of 1,5-Anhydroxylitol Generated by the Computer Program PAMOLE Based on the Set of Cartesian Coordinates of the Atoms Computed by CART

Figure 34. The "Ball and Stick" Representation of l,5-Anhydroribitol Generated by the Computer Program PAMOLE Based on the. Set of Cartesian Coordinates of the Atoms Computed by CART

Figure 35. The "Ball and Stick" Representation of l,5-Anhydro-L-arabinitol Generated by the Computer Program PAMOLE Based on the Set of Cartesian Coordinates of the Atoms Computed by CART

APPENDIX II

COMPUTER PROGRAM FOR COMPUTING THE G MATRIX

The $\underset{\sim}{\sim}$ and $\underset{\sim}{\sim}$ matrix elements are calculated by a computer program, GMAT, written by J. H. Schachtschneider (89) and modified for use in this investigation. GMAT punches the G matrix and factored $\underset{\sim}{\sim}$ matrix (optional) onto cards in a form suitable for input into the computer programs which solve the vibrational secular equation that are discussed in the text. The listing, flow diagram, and user instructions for GMAT are presented in Appendix V.

In GMAT, the B matrix elements are computed by Wilson's "S vector" technique (68). If $\underline{R}_{\underline{t}}$ represents one of the $3 N-6$ internal coordinates and $X_{\underline{i}}$ one of the $3 N$ cartesian displacement coordinates, the relations sought will be of the form

$$
\begin{equation*}
R_{t}=\sum_{i=1}^{3 N} B_{t i} X_{i} \tag{158}
\end{equation*}
$$

where $t=1,2,3, \cdots, 3 N-6$. Instead of using three cartesian coordinates to describe the displacement of an atom, it is convenient to introduce a vector $\vec{\rho}_{\alpha}$ for each atom α whose components along the three axis directions are the cartesian displacement coordinates $\underline{X}_{\underline{i}}$, $\underline{X}_{\underline{i}}^{\prime}, \underline{X}_{\underline{i}}^{\prime \prime}$ for that atom. Likewise, it is useful to
 $\underline{-t i}_{\prime \prime}^{\prime} \underline{-t}_{-1}^{\prime \prime}$ being associated with a given atom α. These quantities can be considered as components of a vector, $\overrightarrow{\underline{s}}_{\underline{t} \alpha}$, associated with the atom α and with the internal coordinate ${\underset{-t}{t}}^{\underline{t}}$. Then, Equation (158) takes on the simple form

$$
\begin{equation*}
R_{t}=\sum_{\alpha=1}^{N} \stackrel{\rightharpoonup}{s}_{t \alpha} \cdot \stackrel{\rightharpoonup}{p}_{\alpha} \tag{159}
\end{equation*}
$$

Where the dot represents the scalar product of two vectors. The physical meaning of the vector $\vec{s}_{-\underline{t} \alpha}$ is as follows: Let all atoms except atom α be in their
equilibrium positions. The direction of $\overrightarrow{\underline{s}}_{\underline{t} \alpha}$ is the direction in which a given displacement of atom α will produce the greatest increase of $\underline{R}_{\underline{t}}$. The magnitude, $\left|\underline{s}_{\underline{t} \alpha}\right|$, is equal to the increase in $\underline{R}_{\underline{t}}$ produced by unit displacement of the atom in this most effective direction.

Six types of internal coordinates are recognized by the program, namely, bond stretching, valence angle bending, torsion, out-of-plane wagging, perpendicular pair of linear valence angle bendings, and linear valence angle bending. The internal coordinates specified for the l,5-AP models involve only the first three types in the list; therefore, only these internal coordinates will be discussed. The reader may wish to refer to Wilson (68) or Schachtschneider (89) for a description of the other coordinate: types.

A "vector" describing the internal coordinate is made up of eight integers which are denoted by NI, NCOD, N1, N2, N3, N4, N5, and N6. NI gives the number assigned to the internal coordinate; NCOD is a code identifying the type of internal coordinate; and N1, N2, N3, N4, N5, and N6 give the numbers of the atoms defining the internal coordinates.

Following are the "S vector" expressions for the bond stretching, valence angle bending, and torsion internal coordinates. In these expressions, the unit vectors along the bonds, $\overrightarrow{\underline{e}}_{\underline{i} \underline{j}}$, are represented in cartesian coordinates as

$$
\begin{equation*}
\vec{e}_{i j}=\left[\left(x_{j}-x_{i}\right) \vec{i}+\left(y_{j}-y_{i}\right) \vec{j}+\left(z_{j}-z_{i}\right) \vec{k}\right] / r_{i j} \tag{160}
\end{equation*}
$$

where $\underline{\underline{i}}_{\underline{i} \underline{j}}$ is the distance between atoms $\underline{\underline{i}}$ and \underline{j}.

1. Bond Stretching: $\Delta \underline{\underline{i}} \underset{\underline{j}}{ }$

$$
\begin{array}{clllllll}
\text { NCOD } & \text { N1 } & \text { N2 } & \text { N3 } & \text { N4 } & \text { N5 } & \text { N6 } \\
1 & i & j & & & & & \\
& \stackrel{r}{i j} & & & & & &
\end{array}
$$

The "S vectors" for atoms \underline{i} and \underline{j} are

$$
\begin{aligned}
& \vec{s}_{i}=-\vec{e}_{i j} \\
& \vec{s}_{j}=\vec{e}_{i j} .
\end{aligned}
$$

and

The atom numbers $\underline{i x}$ and $\underline{j} \underline{x}$ define a bond distance, $R(\underline{x}-\underline{j} \underline{x}$), by which the internal coordinate is weighted. The weighted bending force constants will then have the same dimensions as the stretching force constants. If $\underline{i x}=\underline{j} \underline{x}=0$, the angle is not weighted, that is, $\underline{r}_{\underline{i x}, \underline{j}}=1.0$. The "́s vectors" for atoms $\underline{i}, \underline{j}$, and \underline{k} are

$$
\begin{gathered}
\vec{s}_{i}=r_{i x, j x}\left(\operatorname{Cos} \alpha_{i j k} \vec{e}_{j i}-\vec{e}_{j k}\right) / r_{i j} \sin \alpha_{i j k} \\
\vec{s}_{k}=r_{i x, j x}\left(\operatorname{Cos} \alpha_{i j k} \vec{e}_{j k}-\vec{e}_{j i}\right) / r_{j k} \sin \alpha_{i j k} \\
\vec{s}_{j}=-\left(\overrightarrow{s_{i}}+\vec{s}_{k}\right) .
\end{gathered}
$$

and
3. Torsion:

The " \underline{S} vectors" for atoms $\underline{i}, \underline{j}, \underline{k}$, and $\underline{\underline{l}}$ are

$$
\begin{gathered}
\vec{s}_{i}=-r_{i x, j x}\left(\vec{e}_{i j} x \vec{e}_{j k}\right) /\left(r_{i j} \sin ^{2} \alpha_{i j k}\right) \\
\vec{s}_{j}=r_{i x, j x}\left(r_{j k}-r_{i j} \operatorname{Cos} \alpha_{i j k}\right)\left(\vec{e}_{i j} x \vec{e}_{j k}\right) /\left(r_{j k} r_{i j} \sin ^{2} \alpha_{i j k}\right) \\
-r_{i x, j x} \cos \alpha_{j k l}\left(\vec{e}_{j k} \times \vec{e}_{k l}\right) /\left(r_{i j} \sin ^{2} \alpha_{j k l}\right) \\
\vec{s}_{k}=-\left(\vec{s}_{i}+\vec{s}_{j}+\vec{s}_{l}\right)
\end{gathered}
$$

where x represents the vector product. In many cases, it is convenient to use the sum of several torsions to avoid the introduction of redundancies. A provision has been made in GMAT for defining a coordinate as the sum of several torsions. (This provision is discussed in the user instructions for GMAT in Appendix V.)

The 62 internal coordinate "vector" descriptions for the l,5-AP models are listed in Tables XXXVII, XXXVIII, and XXXIX for $1,5-A X, 1,5-A R$, and $1,5-A L A$, respectively. The atom numbering scheme for these tables has been defined in Fig. 28 in the text. The internal coordinate definitions, along with the cartesian coordinates of the atoms, embody the input data to GMAT. The computer program then calculates the $\underset{\sim}{B}$ and $\underset{\sim}{G}$ matrices. The inverse kinetic energy matrix is computed by the expression

$$
\begin{equation*}
G_{t t^{\prime}}=\sum_{i=1}^{3 N}\left(1 / m_{i}\right) B_{t i^{\prime}} B_{t^{\prime} i} \tag{161}
\end{equation*}
$$

 notation in Equation (32) in the text. Employing Equations (158) and (159), we may write Equation (160) in terms of the "́ㅗ vector," that is,

$$
\begin{equation*}
G_{t t^{\prime}}=\sum_{\alpha=1}^{\mathbb{N}} \mu_{\alpha} \vec{s}_{t \alpha} \cdot \vec{s}_{t^{\prime} \alpha} \tag{162}
\end{equation*}
$$

where $\mu_{\alpha}=1 / \underline{m}_{\alpha}$, the reciprocal of the mass of atom α. GMAT uses Equation (162) to compute the G matrix. The various formulae resulting from the scalar product of "S vectors" in Equation (162) defining the $\underset{\sim}{G}$ matrix elements have been assembled, condensed, and tabulated by Decius (77) and summarized by Wilson, et al. (68).

CALCULATION OF THE $\underset{\sim}{G}$ MATRICES FOR THE 1,5-ANHYDROPENTITOL MODELS

The $\underset{\sim}{G}$ matrices for the $1,5-A P$ models are listed in Tables XL, XLI, and. XLII. The corresponding $\underset{\sim}{B}$ matrices have not been included in this manuscript because of space considerations.

NO.	CODE	1			K	L	X
1	1	1	3	0	0	0	0
2	1	3	5	0	0	0	0
3	1	5	6	0	0	0	0
4	1	4	6	0	0	0	0
5	1	2	4	0	0	0	0
6	1	1	2	0	0	0	0
7	1	3	9	0	0	0	0
8	1	3	10	0	0	0	0
9	1	5	11	0	0	0	0
10	1	5	12	0	0	0	0
11	1	12	13	0	0	0	0
12	1	6	14	0	0	0	0
13	1	6	15	0	0	0	0
14	1	15	16	0	0	0	0
15	1	4	17	0	0	0	0
16	1	4	18	0	0	0	0
17	1	18	19	0	0	0	0
18	1	2	7	0	0	0	0
19	1	2	8	0	0	0	0
20	2	1	3	9	0	0	0
21	2	1	3	10	0	0	0
22	2	1	3	5	0	0	0
23	2	9	3	5	0	0	0
24	2	10	3	5	0	0	0
25	2	9	3	10	0	0	0
26	2	3	5	11	0	0	0
27	2	3	5	12	0	0	0
28	2	5	12	13	0	0	0
29	2	3	5	6	0	0	0
30	2	11	5	6	0	0	0
31	2	12	5	6	0	0	0
32	2	11	5	12	0	0	0
33	2	5	6	14	0	0	0
34	2	5	6	15	0	0	0
35	2	6	15	16	0	0	0
36	2	4	6	5	0	0	0
37	2	4	6	14	0	0	0
38	2	4	6	15	0	0	0
39	2	14	6	15	0	0	0
40	2	17	4	6	0	0	0
41	2	18	4	6	0	0	0
42	2	4	18	19	0	0	0
43	2	2	4	6	0	0	0
44	2	2	4	17	0	0	0
45	2	2	4	18	0	0	0
46	2	17	4	18	0	0	0
47	2	7	2	4	0	0	0
48	2	8	2	4	0	0	0
10							

NO.	CODE	1	J	K	L	$I X$	$J X$
49	2	1	2	4	0	0	0
50	2	1	2	7	0	0	0
51	2	1	2	8	0	0	0
52	2	7	2	8	0	0	0
53	2	2	1	3	0	0	0
54	4	7	2	4	6	0	0
54	4	8	2	4	17	0	0
54	4	1	2	4	18	0	0
55	4	17	4	6	14	0	0
55	4	2	4	6	15	0	0
55	4	18	4	6	5	0	0
56	4	9	3	5	6	0	0
56	4	10	3	5	11	0	0
56	4	1	3	5	12	0	0
57	4	11	5	6	14	0	0
57	4	3	5	6	15	0	0
57	4	12	5	6	4	0	0
58	4	17	4	18	19	0	0
59	4	14	6	15	16	0	0
60	4	11	5	12	13	0	0
61	4	7	2	1	3	0	0
62	4	9	3	1	2	0	0

TABLE XXXVIII

INTERNAL COORDINATE DEFINITIONS FOR 1,5-ANHYDRORIBITOL

NO.	CODE	1	1	K	1	$1 X$	$J X$
1	1	1	3	0	0	0	0
2	1	3	5	0	0	0	0
3	1	5	6	0	0	0	0
4	1	4	6	0	0	0	0
5.	1	2	4	0	0	0	0
6	1	1	2	0	0	0	0
7	1	3	9	0	0	0	0
8	1	3	10	0	0	0	0
9	1	5	11	0	0	0	0
10	1	5	12	0	0	0	0
11	1	12	13	0	0	0	0
12	1	6	14	0	0	0	0
13	1	6	15	0	0	0	0
14	1	15	16	0	0	0	0
15	1	4	17	0	0	0	0
16	1	4	18	0	0	0	0
17	1	18	19	0	0	0	0
18	1	2	7	0	0	0	0
19	1	2	8	0	0	0	0

TABLE XXXIX

NO.	CODE	1	J	k	L	$1 \times$	Jx
1	1	1	3	0	0	0	0
2	1	3	5	0	0	0	0
3	1	5	6	0	0	0	0
4	1	4	6	0	0	0	0
5	1	2	4	0	0	0	0
6	1	1	2	0	0	0	0
7	1	3	9	0	0	0	0
8	1	3	10	0	0	0	0
9	1	5	11	0	0	0	0
10	1	5	12	0	0	0	0
11	1	12	13	0	0	0	0
12	1	6	14	0	0	0	0
13	1	6	15	0	0	0	0
14	1	15	16	0	0	0	0
15	1	4	17	0	0	0	0
16	1	4	18	0	0	0	0
17	1	18	19	0	0	0	0
18	1	2	7	0	0	0	0
19	1	2	8	0	0	0	0
20	2	1	3	9	0	0	0
21	2	1	3	10	0	0	0
22	2	1	3	5	0	0	0
23	2	9	3	5	0	0	0
24	2	10	3	5	0	0	0
25	2	9	3	10	0	0	0
26	2	3	5	11	0	0	0
27	2	3	5	12	0	0	0
28	2	5	12	13	0	0	0
29	2	3	5	6	0	0	0
30	2	11	5	6	0	0	0
31	2	12	5	6	0	0	0
32	2	11	5	12	0	0	0
33	2	5	6	14	0	0	0
34	2	5	6	15	0	0	0
35	2	6	15	16	0	0	0
36	2	4	6	5	0	0	0
37	2	4	6	14	0	0	0
38	2	4	6	15	0	0	0
39	2	14	6	15	0	0	0
40	2	17	4	6	0	0	0
41	2	18	4	6	0	0	0
42	2	4	18	19	0	0	0
43	2	2	4	6	0	0	0
44	2	2	4	17	0	0	0
45	2	2	4	18	0	0	0
46	2	17	4	18	0	0	0
47	2	7	2	4	0	0	0
48	2	8	2	4	0	0	0

TABLE XXXIX (Continued)

NO.	CODE	1	J	K	L	$1 \times$	$J X$
49	2	1	2	4	0	0	0
50	2	1	2	7	0	0	0
51	2	1	2	8	0	0	0
52	2	7	2	8	0	0	0
53	2	2	1	3	0	0	0
54	4	7	2	4	6	0	0
54	4	8	2	4	18	0	0
54	4	1	2	4	17	0	0
55	4	17	4	6	5	0	0
55	4	2	4	6	15	0	0
55	4	18	4	6	14	0	0
56	4	9	3	5	6	0	0
56	4	10	3	5	11	0	0
56	4	1	3	5	12	0	0
57	4	11	5	6	14	0	0
57	4	3	5	6	15	0	0
57	4	12	5	6	4	0	0
58	4	17	4	18	19	0	0
59	4	14	6	15	16	0	0
60	4	11	5	12	13	0	0
61	4	7	2	1	3	0	0
62	4	9	3	1	2	0	0

G MATRIX FOR 1,5-ANHYDROXYLITOL

		0.145758			-0.027752		1	0.023868		7	0.027752
	8	-0.027752	1	20	-0.071619	1	21	-0.071619	1	22	-0.051540
	23	0.061579	1	24	0.061579	1	25	0.071619		26	0.026625
	27	-0.051530	1	29	0.024905	1	49	0.020297		50	-0.040594
	51	0.020297	1	53	-0.040594	1	54	-0.037288		57	-0.047860
	2	0.166512	2	3	-0.027752	2		-0.027752	2	8	-0.027752
	9	-0.027752	2	10	-0.027752	2	20	0.063390	2	21	0.063390
2	22	-0.055161	2	23	-0.071619	2	24	-0.071619	2	25	0.071619
	26	-0.071816	2	27	-0.055473	2	28	0.027737	2	29	-0.051540
	30	0.061677	2	31	0.053506	2	32	0.063645	2	33	28654
2	34	-0.051517	2	36	0.024953	2	53	0.027581	2	55	. 046618
2	57	-0.012218	2	60	0.065968	2	61	0.051688	2	62	0.062938
3	3	0.166512	3	4	-0.021099	3	9	-0.027752	3	10	-0.027752
3	12	-0.027752	3	13	-0.027752	3	22	0.024905	3	23	-0.051530
3	24	0.026625	3	26	0.061677		27	0.053506	3	28	0.027737
3	29	-0.051540	3	30	-0.071816	3	31	-0.05547	3	32	0.063645
3	33	-0.071816	3	34	-0.055473	3	35	0.030127	3	36	-0.052881
3	37	0.053677	3	38	0.046975	3	39	0.069130	3	40	0.027270
3	41	-0.052872	3	43	0.025603	3	54	-0.049077	3	55	0.015809
3	56	0.015012	3	59	-0.070088	3	60	-0.065967	4	4	0.166512
4	5	-0.027752	4	12	-0.027752	4	13	-0.027752	4	15	-0.027752
4	16	-0.027752	4	29	0.025603	4	30	0.027270	4	31	-0.052872
4	33	0.053677	4	34	0.046975	4	35	0.030127	4	36	-0.052881
4	37	-0.071816	4	38	-0.055473	4	39	0.069129	4	40	-0.071816
4	41	-0.055473	4	42	0.027737	4	43	-0.051540	4	44	0.061677
4	45	0.053506	4	46	0.063645	4	47	-0.051530	4	48	0.026625
4	49	0.024905	4	54	-0.015012	4	56	0.049077	4	57	-0.015809
4	58	0.065967	4	59	0.070089	5	5	0.166512	5	6	-0.027752
5	15	-0.027752	5	16	-0.027752	5	18	-0.027752	5	19	-0.027752
5	36	0.024953	5	37	0.028654	5	38	-0.051517	5	40	. 061678
5	41	0.053506	5	42	0.027737	5	43	-0.051539	5	44	0.07181
5	45	-0.055473	5	46	0.063645	5	47	-0.071619	5	48	-0.071619
5	49	-0.055161	5	50	0.063390	5	51	0.063390	5	52	0.071619
5	53	0.027581	5	55	0.012218	5	57	-0.046618	5	58	-0.065968
5	61	-0.062938	5	62	-0.051688	5	6	0.145758	6	18	-0.027752
6	19	-0.027752	6	20	-0.040594	6	21	0.020297	6	22	0.020297
6	43	0.024905	6	44	0.026625	6	45	-0.051530	6	47	0.061579
	48	0.061579	6	49	-0.051539	6	50	-0.071619	6	51	-0.071619
6	52	0.071619	6	53	-0.040594	6	55	0.047860	6	56	0.037288
	7	1.075350	7	8	-0.027752	7	20	-0.055162	7	21	. 0.063390
	22	0.053350		23	-0.051540	7	24	0.061579	7	25	-0.071619
	26	0.024905	7	27	0.026625	7	29	-0.051530	1	53	-0.055161
7	56	-0.015117	7	57	0.001053	8	8	1.075349	8	20	0.063390
8	21	-0.055161	8	22	0.053350		23	0.061579	-	24	-0.051540
	25	-0.071619	8	26	-0.051530		27	0.024905	8	29	0.026625
8	53	0.027581	8	56	0.015117	8	57	0.046807	8	61	-0.051688
8	62	-0.062938	9	9	1.075350	9	10	-0.027752	9	22	0.026625
9	23	0.024905	9	24	-0.051530		26	-0.051540	9	27	0.053507
	28	-0.055473	9	29	0.051539	9	30	-0.051540		31	0.053507
	32	-0.055473	9	33	-0.051427	9	34	0.027076	9	36	0.026578
9	55	-0.045648	9	56	0.003613	9	57	-0.006349	10	10	0.145758
	11	-0.020834	10	22	-0.051530	10	23	0.026625	10	24	0.024905
	26	0.061678	10	27	-0.051540	10	28	-0.060751	10	29	0.024905 0.051539

TABLE XL (Continued)

10	30	78	10	31		10		-0.071816	10	,	0.022713
10	34	0.024440	10	36	-0.051531	10	53	-0.000970	10	56	-0.018625
10	57	0.018567	11	11	1.054595	11	27	0.020823	11	28	-0.041645
11	31	0.020823	11	32	-0.041645	11	56	0.038254	11	57	-0.038254
12	12	1.075349	12	13	-0.033693	12	29	0.028654	12	30	-0.051427
12	31	0.022773	12	33	-0.051539	12	34	0.059128	12	35	-0.053805
12	36	0.047221	12	37	-0.051539	12	38	0.059128	12	39	-0.053805
12	40	-0.051427	12	41	0.022773	12	43	0.028654	12	54	0.045438
12	55	0.003398	12	56	-0.045438	12	57	-0.003398	13	- 13	145758
13	14	-0.020834	13	29	-0.051517	13	30	0.027076	13	31	0.024440
13	33	0.067737	13	34	-0.051539	13	35	-0.060750	13	36	0.047221
13	37	0.067736	13	38	-0.051539	13	39	-0.069656	13	40	0.027077
13	41	0.024440	13	43	-0.051517	13	54	-0.001614	13	55	-0.017515
13	56	0.001614	13	57	0.017515	14	14	1.054595	14	34	0.022617
14	35	-0.041645	14	38	0.022617	14	39	-0.041645	14	55	0.037090
14	57	-0.037090	15	15	1.075351	15	16	-0.027752	15	36	0.026578
15	37	-0.051427	15	38	0.027076	15	40	-0.051540	15	41	0.053507
15	42	-0.055473	15	43	0.051539	15	44	-0.051540	15	45	0.053506
15	46	-0.055474	15	47	0.024905	15	48	-0.051530	15	49	0.026625
15	54	-0.003613	15	55	0.006349	15	57	0.045648	16	16	0.145758
16	17	-0.020834	16	36	-0.051531	16	37	0.022773	16	38	0.024440
16	40	0.061678	16	41	-0.051539	16	42	-0.060750	16	43	0.051539
16	44	0.061678	16	45	-0.051542	16	46	-0.071816	16	47	0.026625
16	48	0.024905	16	49	-0.051530	16	54	0.018625	16	55	-0.018567
16.	57	0.000969	17	17	1.054595	17	41	0.020823	17	42	-0.041645
17	45	0.020824	17	46	-0.041645	17	54	-0.038254	17	55	0.038254
18	18	1.075351	18	19	-0.027752	18	43	-0.051530	18	44	. 024905
18	45	0.026625	18	47	-0.051540	18	48	0.061579	18	49	. 0.053350
18	50	-0.055162	18	51	0.063390	18	52	-0.071620	18	53	-0.055161
18	54	0.015117	18	55	-0.001053	19	19	1.075349	19	43	0.026625
19	44	-0.051530	19	45	0.024905	19	47	0.061579	19	48	-0.051540
19	49	0.053350	19	50	0.063390	19	51	-0.055162	19	52	-0.071619
19	53	0.027581	19	54	-0.015117	19	55	-0.046807	19	61	0.062938
19	62	0.051688	20	20	1.002793	20	21	0.003973	20	22.	-0.009726
20	23	-0.432808	20	24	-0.140658	20	25	-0.423575	20	26	-0.058979
20	27	0.034237	20	29	0.024742	20	49	-0.005894	20	50	0.011787
20	51	-0.0058.94	20	53	0.101564	20	54	0.010827	20	56	0.746442
20	57	0.057083	21	21	1.002789	21	22	-0.009726	21	23	-0.140658
21	24	-0.432807	21	25	-0.423573	21	26	0.022650	21	27	0.036074
21	29	-0.058724	21	49	-0.020203	21	50	-0.005894	21	51	0.026097
21	53	-0.050782	21	54	-0.019590	21	56	-0.746438	21	57	0.008220
21	61	0.085718	21	62	0.036697	22	22	0.169380	22	23	-0.006123
22	24	-0.006124	22	25	-0.137681	22	26	-0.052312	22	27	0.097452
22	28	-0.007082	22	29	-0.046659	22	30	-0.057105	22	31	0.024312
22	32	0.034311	22	33	-0.022906	22	34	-0.004851	22	36	0.030295
22	49	0.026097	22	50	-0.005894	22	51	-0.020203	22	53	-0.048287
22	54	0.008763	22	55	-0.010499	22	56	0.012880	22	57	0.035081
22	60	-0.014800	22	61	-0.081044	22	62	-0.031005	23	23	1.000262
23	24	0.005239	23	25	-0.425911	23	26	-0.050779	23	27	-0.052326
23	28	-0.025321	23	29	0.100359	23	30	0.036567	23	31	0.025394
23	32	-0.059214	23	33	-0.006076	23	34	0.011937	23	36	-0.006397
23	53	0.023116	23	55	-0.010474	23	56	0.004780	23	57	0.001956
23	60	0.030622	23	61	-0.062021	23	62	-0.834169	24	24	1.000258
24	25	-0.425909	24	26	0.105065	24	27	-0.048946	24	28	0.032403
24	29	-0.051854	24	30	0.020537	24	31	-0.049706	24	32	0.024904
24	33	0.028982	24	34	-0.007086	24	36	-0.023899	24	53	-0.061199
24	55	0.020972	24	56	-0.017660	24	57	-0.040584	24	60	-0.015822
24	61	-0.009350	24	62	-0.011385	25	25	1.836644	25	26	0.034355
25	27	-0.066491	25	29	0.032136	25	53	0.035588	25	57	-0.061756
25	61	0.066696	25	62	0.839860	26	26	1.005274	26	27	-0.005808

TABLE XL (Continued)

	28	0.	26	29	0.	26	30	-0.436830	26	31	-0.118916
	32	0.43518	26	33	0.0179	26	34	0.03433	26	36	-0.057114
26	53	-0.	26	55	-0.0095	88	56	-0.014095	26	57	0.751018
26	60	-0.84215	26	61	0.023	26	62	0.029216	27	27	
27	28	-0.05042	27	29	-0.016	27	30	-0.	21	31	-0
27	32	-0.01013	27	33	-0.04968	27	34	0.02744	27	36	0.024266
	53	-0.00704		55	0.0448	27	56	01739	27	5	0.00
27	60	-0.02293	27	61	0.0115	27	62	0141	28	28	,
28	29	-0.0515	28	30	0.0232	28	31	0.0504	28	32	. 1
28	33	0.03285	28	34	-0.0264	28	36	-0.0070	28	55	0.034460
28	56	-0.04067	28	57	0.0427	29	29	0.16750	29	30	-0.008532
29	31	-0.016120	29	32	0.118197	29	33	0.05583	29	34	0.09
29	35	-0.00603	29	36	0.04495	29	37	06001	29	38	. 02
29	39	0.03390	29	40	-0.02463	29	41	-0.0049	29	4	. 0
29	53	0.03222	29	54	0.01204	29	55	-0.03480	29	5	-0.00
9	57	0.00101	29	59	. 01719	29	61	-0.012397	29	62	-0.015
30	30	1.00527	30	31	0.00580	30	32	0.435187	30	3	. 10
30	34	-0.053237	30	35	. 03127	30	36	-0.050307	30	37	0.01
30	38	-0.052394	30	39	0.02500	30	40	0.02876	30	4	0.00
30	43	-0.02463	30	54	-0.02014	30	55	. 0409	30	5	-0.
30	57	0.00796	30	59	. 01831	30	6	0.8421	31	31	0.17034
31	32	-0.01013	31	33	-0.04477	31	34	-0.04625	31	35	-0.02
31	36	0.09374	31	37	0.0403	31	38	0.0287	31	39	-0.05
31	40	-0.0041	31	41	0.00910	31	4	-0.0049	31	54	0.008105
31	55	-0.00195	31	56	-0.001409	31	5	-0.00669	31	5	-0.035
31	60	0.02293	32	32	. 00883	32	33	0.0273	32	34	-0.0588
32	36	0.03436	32	55	0.05016	32	56	0.752	32	5	-0.
33	33	1.00527	33	34	0.0144	33	35	0.018646	33	36	-0.
33	37	-0.3525	33	38	0.11679	33	39	-0.47926	33	40	0.
33	41	0.04035	33	43	-0.06001	33	5	0.012675	33	55	-0.79284
33	56	0.04084	33	57	0.00706	33	59	0.84682	33	60	0.017028
34	34	0.17034	34	35	-0.0547	34	36	-0.009	34	37	-0.
	38	-0.01014	34	39	-0.01890	34	40	-0.05	34	41	0.02
34	43	0.02361	34	54	0.04970	34	55	0.00173	34	56	-0.00
34	57	-0.008365	34	59	0.03058	34	60	-0.03061	35	35	1.22
35	36	-0.051263	35	37	0.01864	35	38	-0.05477	35	39	0.1
	40	0.031276	35	41	-0.02524	35	43	-0.00603	35	5	0.034611
	55	-0.03846	35	56	0.03461	35	57	0.03846	36	36	0.1
36	37	-0.00101	36	38	0.00921	36	39	0.11762	36	40	-0.05030
36	41	0.093746	36	42	-0.00704	36	43	-0.04495	36	44	-0.05
	45	0.02426	36	46	. 034	36	47	-0.00639	36	48	-0.023899
	49	0.03029	36	54	0.03224	36	55	-0.00056	36	56	-0.032242
	57	0.00056	36	58	0.01482	36	60	. 01482	37	\%	. 00
37	38	-0.01442	37	39	-0.47926	37	40	. 10490	37	41	-0.04
37	42	0.03285	37	43	-0.05583	37	44	0.01799	37	45	-0.049681
	46	0.02739	37	47	-0.00607	31	48	. 02898	37	4	-0.022906
\%	54	-0.040848	37	55	0.00706	37	56	0.01267	37	5	. 79284
37	58	-0.017028	37	59	-0.84682	38	38	. 17034	38	39	0.01
38	40	-0.053237	38	41	-0.04625	38	42	-0.02640	38	43	0.096587
38	44	0.03433	38	45	0.027448	38	46	-0.05887	38	4	0.011937
38	48	-0.00708	38	49	-0.00485	38	54	. 00474	38	55	0.00836
38	56	-0.049708	38	57	. 001731	88	58	03061	38	59	0.03058
39	39	1.016509	39	40	0.025009	39	41	-0.05891	39	43	0.03390
39	54	-0.051394	39	55	0.73080	39	56	. 05139	39	57	-0.730805
40	40	1.005276	40	41	0.005808	40	42	0.023222	40	43	-0.008532
40	44	-0.436831	40	45	.118916	40	46	-0.435188	40	47	8
40	48	0.020537	40	49	-0.057105	40	54	0.751590	40	55	-0.007961
40	56	0.020146	40	57	-0.040940	40	58	-0.842151	40	59	-0.018315
	41	. 1	41	42	-0.050428	41	43	-0.016120	41	44	-0.118916
	45	0.0	41	46	.	41	47	. 0	41	48	-0.0

TABLE XL (Continued)

41	49	0.024312	41	54	0.001409	41	55	0.006692	41	56	-0.008105
41	57	0.001951	41	58	-0.022933	41	59	0.035511	42	42	1.223993
42	43	-0.051511	42	44	0.023222	42	45	-0.050425	42	46	0.105922
42	47	-0.025321	42	48	0.032403	42	49	-0.007082	42	54	0.040672
42	55	-0.042737	42	57	-0.034460	43	43	0.167503	43	44	-0.008533
43	45	-0.016120	43	46	-0.118197	43	47	0.100359	43	48	-0.051854
43	49	-0.046659	43	50	0.024742	43	51	-0.058724	43	52	0.032136
43	53	0.032221	43	54	0.003296	43	55	0.001018	43	56	-0.012041
43	57	0.034803	43	59	-0.017196	43	61	0.015095	43	62	0.012397
44	44	1.005275	44	45	-0.005808	44	46	-0.435186	44	47	-0.050779
44	48	0.105065	44	49	-0.052312	44	50	-0.058979	44	51	0.022650
44	52	0.034355	44	53	-0.025179	44	54	0.014095	44	55	-0.751021
44	57	0.009504	44	58	0.842152	44	61	-0.029216	44	62	-0.023994
45	45	0.170341	45	46	-0.010131	45	47	-0.052326	45	48	-0.048946
45	49	0.097452	45	50	0.034237	45	51	0.036074	45	52	-0.066491
45	53	-0.007042	45	54	-0.017391	45	55	0.001279	45	57	0.044849
45	58	0.022933	45	61	0.014120	45	62	0.011597	46	46	1.008832
46	47	-0.059214	46	48	0.024903	46	49	0.034311	46	54	-0.752998
46	55	0.749991	46	57	-0.050166	47	47	1.000262	47	48	0.005239
47	49	-0.006124	47	50	-0.432808	47	51	-0.140658	47	52	-0.425911
47	53	0.023116	47	54	-0.004780	47	55	-0.001956	47	57	0.010474
47	58	-0.030622	47	61	0.834169	47	62	0.062021	48	48	1.000258
48	49	-0.006123	48	50	-0.140658	48	51	-0.432806	48	52	-0.425910
48	53	-0.061199	48	54	0.017661	48	55	0.040584	48	57	-0.020972
48	58	0.015822	48	61	0.011385	48	62	0.009350	49	49	0.169380
49	50	-0.009726	49	51	-0.009726	49	52	-0.137681	49	53	-0.048287
49	54	-0.012881	49	55	-0.035081	49	56	-0.008763	49	57	0.010499
49	58	0.014800	49	61	0.031005	49	62	0.081044	50	50	1.002792
50	51	0.003973	50	52	-0.423575	50	53	0.101564	50	54	-0.746442
50	55	-0.057083	50	56	-0.010827	51	51	1.002789	51	52	-0.423574
51	53	-0.050782	51	54	0.746439	51	55	-0.008220	51	56	0.019590
51	61	-0.036697	51	62	-0.085718	52	52	1.836649	52	53	0.035589
52	55	0.061756	52	61	-0.839861	52	62	-0.066696	53	53	0.167539
53	54	0.027912	53	55	-0.0111106	53	56	-0.027912	53	57	0.011106
54	54	2.912177	54	55	-0.487531	54	56	-0.035927	54	57	-0.003006
54	58	-0.501667	54	59	0.032961	54	61	-0.491836	54	62	0.011649
55	55	2.027383	55	56	-0.003007	55	57	-0.405595	55	58	-0.500009
55	59	-0.559957	55	60	0.027703	55	61	-0.026538	55	62	-0.021795
56	56	2.912174	56	57	-0.487529	56	59	0.032962	56	60	-0.501668
56	61	0.011649	56	62	-0.491836	57	57	2.027379	57	58	0.027703
57	59	-0.559960	57	60	-0.500007	57	61	-0.021795	57	62	-0.026538
58	58	2.273606	59	59	2.339827	60	60	2.273607	61	61	1.088884
61	62	0.076993	62	62	1.088884	-1	0	0.0			

TABLE XLI
G MATRIX FOR 1,5-ANHYDRORIBITOL

	1	0.145758	1	2	-0.027752	1	6	8	1	7	-0.027752
1	8	-0.027752	,	20	-0.071619	1	21	-0.071619	1	22	-0.051540
1	23	0.061579	1	24	0.061579	1	25	0.071619	1	26	0.026625
1	27	-0.051530	1	29	0.024905	1	49	0.020297	1	50	-0.040594
	51	0.020297	1	53	-0.040594	1	54	-0.037288	1	57	-0:047860
2	2	0.166512	2	3	-0.027152	2	7	-0.027752	2	8	-0.027752
2	9	-0.027752	2	10	-0.027752	2	20	0.063390	2	21	0.063390
2	22	-0.055161	2	23	-0.071619	2	24	-0.071619	2	25	071619
2	26	-0.071816	2	27	-0.055473	2	28	0.027737	2	29	-0.051540
2	30	0.061677	2	31	0.053506	2	32	0.063645	2	33	-0.051517
2	34	0.028654	2	36	0.024953	2	53	0.027581	2	55	0.046618
2	57	-0.012218	2	60	0.065968	2	61	0.051688	2	62	0.062938
3	3	0.166512	3	4	-0.021099	3	9	-0.027752	3	10	-0.027752
3	12	-0.027752	3	13	-0.027752	3	22	0.024905	3	23	-0.051530
3	24	0.026625	3	26	0.061677	3	27	0.053506	3	28	0.027737
3	29	-0.051540	3	30	-0.071816	3	31	-0.055473	3	32	0.063645
3	33	-0.071816	3	34	-0.055473	3	35	0.030127	3	36	-0.052881
3	37	0.053678	3	38	0.046975	3	39	0.069130	3	40	0.027
3	41	-0.052872	3	43	0.025603	3	54	-0.049077	3	55	-0.015809
3	56	0.015012	3	59	0.070088	3	60	-0.065967	4	4	0.166512
4	5	-0.027752	4	12	-0.027752	4	13	-0.027752	4	15	-0.027752
4	16	-0.027752	4	29	0.025603	4	30	0.027270	4	31	-0.052872
4	33	0.053678	4	34	0.046975	4	35	0.030127	4	36	-0.052881
4	37	-0.071816	4	38	-0.055473	4	39	0.069129	4	40	-0.071816
4	41	-0.055473	4	42	0.027737	4	43	-0.051540	4	44	.
4	45	0.053506	4	46	0.063645	4	47	-0.051530	4	48	0.026625
4	49	0.024905	4	54	-0.015012	4	56	0.049077	4	57	0.015810
4	58	0.065967	4	59	-0.070088	5	5	0.166512	5	6	-0.027752
5	15	-0.027752	5	16	-0.027752	5	18	-0.027752	5	19	-0.027752
5	36	0.024953	5	37	-0.051517	5	38	0.028654	5	40	0.061678
5	41	0.053506	5	42	0.027737	5	43	-0.051539	5	44	-0.071816
5	45	-0.055473	5	46	0.063645	5	47	-0.071619	5	48	-0.071619
5	49	-0.055161	5	50	0.063390	5	51	0.063390	5	52	0.071619
5	53	0.027581	5	55	0.012218	5	57	-0.046618	5	58	-0.065968
5	61	-0.062938	5	62	-0.051688	6	6	0.145758	6	18	-0.027752
6	19	-0.027752	6	20	-0.040594	6	21	0.020297	,	22	0.020297
6	43	0.024905	6	44	0.026625	6	45	-0.051530	6	47	0.061579
6	48	0.061579	6	49	-0.051539	6	50	-0.071619	6	51	-0.071619
6	52	0.071619	6	53	-0.040594	6	55	0.047860	6	56	0.037288
6	7	1.075350	7	8	-0.027752	7	20	-0.055162	7	21	0.063390
7	22	0.053350	7	23	-0.051540	7	24	0.061579	7	25	-0.071619
7	26	0.024905	7	27	0.026625	7	29	-0.051530		53	-0.055161
7	56	-0.015117	7	57	0.001053	8	8	1.075349		20	0.063390
8	21	-0.055161	8	22	0.053350	8	23	0.061579	8	24	-0.051540
8	25	-0.071619	8	26	-0.051530	8	27	0.024905	8	29	0.026625
8	53	0.027581	8	56	0.015117		57	0.046807	8	61	-0.051688
8	62	-0.062938	9	9	1.075350	9	10	-0.027752	9	22	0.026625
9	23	0.024905	9	24	-0.051530	9	26	-0.051540	9	27	0.053507
9	28	-0.055473	9	29	0.051539	9	30	-0.051540)	31	0.053507
9	32	-0.055473	9	33	0.027076	9	34	-0.051427	9	36	0.026578
9	55	-0.045648	9	56	0.003613	9	57	-0.006349	10	10	0.145758
10	11	-0.020834	10	22	-0.051530	10	23	0.026625	10	24	0.024905
10	26	0.061678	10	27	-0.051540	10	28	-0.060751	10	29	0.051539

TABLE XII (Continued)

10	30	0.061678
10	34	0.022773
10	57	0.018567
11	31	0.020823
12	12	1.075351
12	31	0.024440
12	36	0.047221
12	40	0.027076
12	55	-0.003398
13	14	-0.020834
13	33	0.067737
13	37	0.067736
13	41	0.022773
13	56	-0.045438
14	35	-0.041645
14	57	0.037090
15	37	0.027076
15	42	-0.055473
15	46	-0.055474
15	54	-0.003613
16	17	-0.020834
16	40	0.061678
16	44	0.061678
16	48	0.024905
16	57	0.000969
17	45	0.020824
18	18	1.075351
18	45	0.026625
18	50	-0.055162
18	54	0.015117
19	44	-0.051530
19	49	0.053350
19	53	0.027581
19	62	0.051688
20	23	-0.432808
20	27	0.034237
20	51	-0.005894
20	57	0.057083
24	24	27
24	24	-0.061

10
10
11
11
12
12
12
12
12
13
13
13
13
13
14
15
15
15
15
15
16
16
16
16
17
17
18
18
18
18
24
24
24
24
24
23
19
23
23
23
23
20
20
20
21
\square31
31
36
11
32
13
33
37
41
56
29
34
38
43
57
38
15
38
43
47
55
36
41
45
49
17

-0.051539	10	32	-0.071816	10	33	0.024440
-0.051531	10	55	-0.000970	10	56	-0.018625
1.054595	11	27	0.020823	11	28	-0.041645
-0.041645	11	56	0.038254	11	57	-0.038254
-0.033693	12	29	-0.051517	12	30	0.027076
-0.051540	12	34	0.059128	12	35	-0.053805
-0.051540	12	38	0.059128	12	39	-0.053806
0.024441	12	43	-0.051517	12	54	-0.001614
0.001614	12	57	0.003398	13	13	0.145758
0.028654	13	30	-0.051427	13	31	0.022773
-0.051539	13	35	-0.060750	13	36	0.047221
-0.051539	13	39	-0.069656	13	40	-0.051427
0.028654	13	54	0.045438	13	55	0.017515
-0.017515	14	14	1.054595	14	34	0.022617
0.022617	14	39	-0.041645	14	55	-0.037090
1.075351	15	16	-0.027752	15	36	0.026578
-0.051427	15	40	-0.051540	15	41	0.053507
0.051539	15	44	-0.051540	15	45	0.053506
0.024905	15	48	-0.051530	15	49	0.026625
0.006349	15	57	0.045648	16	16	0.145758
-0.051531	16	37	0.024440	16	38	0.022773
-0.051539	16	42	-0.060750	16	43	0.051539
-0.051542	16	46	-0.071816	16	47	0.026625
-0.051530	16	54	0.018625	16	55	-0.018567
1.054595	17	41	0.020823	17	42	-0.041645
-0.041645	17	54	-0.038254	17	55	0.038254
-0.027752	18	43	-0.051530	18	44	0.024905
-0.051540	18	48	0.061579	18	49	0.053350
0.063390	18	52	-0.071620	18	53	-0.055161
-0.001053	19	19	1.075349	19	43	0.026625
0.024905	19	47	0.061579	19	48	-0.051540
0.0 .063390	19	51	-0.055162	19	52	-0.071619
0.0 .0 .00						

TABLE XLI (Continued)

26	28	0.023222	26	29	-0.008532	26	30	-0.436830	26	31	-0.118916
26	32	-0.435187	26	33	0.034337	26	34	0.017992	26	36	-0.057114
26	53	-0.025179	26	55	-0.009504	26	56	-0.014095	26	57	. 751018
26	60	-0.842150	26	61	0.023994	26	62	0.029216	27	27	170341
27	28	-0.050428	27	29	-0.016120	27	30	-0.118916	27	31	-0.019366
27	32	-0.010131	27	33	0.027448	27	34	-0.049681	27	36	0.024266
27	53	-0.007042	27	55	-0.044849	27	56	0.017391	27	57	-0.001279
27	80	-0.022934	27	61	-0.011597	27	62	-0.014120	28	28	1.223996
28	29	-0.051511	28	30	0.023222	28	31	-0.050428	28	32	2
28	33	-0.026403	28	34	0.032859	28	36	-0.007047	28	55	0.034460
28	56	-0.040672	28	57	0.042737	29	29	0.167503	29	30	2
29	31	-0.016120	29	32	-0.118197	29	33	0.100380	29	34	-0.053723
29	35	0.030852	29	36	-0.044953	29	37	0.021753	29	38	5
29	39	0.023042	29	40	-0.024637	29	41	-0.004975	29	43	0.029612
29	53	0.032221	29	54	0.012041	29	55	-0.037436	29	56	6
29	57	0.009372	29	59	-0.017196	29	61	-0.012397	29	62	-0.015095
30	30	1.005272	30	31	-0.005809	30	32	-0.435187	30	33	0
30	34	0.101116	30	35	-0.004841	30	36	-0.050307	30	37	-0.060409
30	38	0.021894	30	39	0.035649	30	40	0.028768	30	1	1
30	43	-0.024637	30	54	-0.020146	30	55	0.038135	30	56	-0.751588
30	57	0.019028	30	59	-0.018315	30	60	0.842150	31	31	0.170341
31	32	-0.010132	31	33	-0.048055	31	34	-0.043100	31	35	-0.026011
31	36	0.093746	31	37	0.038655	31	38	0.030356	31		
31	40	-0.004130	31	41	0.009105	31	43	-0.004975	31.	54	0.008105
31	55	0.003487	31	56	-0.001409	31	57	-0.028150	31	59	0.035511
31	60	0.022933	32	32	2.008831	32	33	-0.058879	32	4	0.027395
32	36	0.034363	32	55	0.050166	32	56	0.752995	32		
33	33	1.005276	33	34	-0.014423	33	35	0.018646	33	36	-0.001012
33	37	-0.352561	33	38	-0.116795	33	39	-0.479268	33	40	-0.060409
33	41	0.038655	33	43	0.021753	33	54	0.060664	33	55	0.792845
33	56	-0.004866	33	57	0.004744	33	59	-0.846828	33	60	-0.030615
34	34	0.170341	34	35	-0.054773	34	36	-0.009213	34	37	-0.116795
34	38	-0.010148	34	39	-0.018905	34	40	0.021894	34	41	0.030356
34	43	-0.052250	34	54	0.005182	34	55	0.001730	34	56	0.037503
34	57	0.020171	34	59	-0.030584	34	60	0.017028	35	35	1.223991
35	36	-0.051262	35	37	0.018646	35	38	-0.054773	35	39	0.109762
35	40	-0.004841	35	41	-0.026011	35	43	0.030852	35	54	-0.012963
35	55	0.038469	35	56	0.012963	35	57	-0.038468	36	36	0.161767
36	37	-0.001012	36	38	-0.009213	36	39	-0.117627	36	40	-0.050307
36	41	0.093746	36	42	-0.007047	36	43	-0.044953	36	44	-0.057114
36	45	0.024266	36	46	0.034363	36	47	-0.006397	36.	48	-0.023899
36	49	0.030295	36	54	0.032242	36	55	0.026335	36	56	-0.032242
36	57	-0.026336	36	58	-0.014829	36	60	0.014829	37	37	1.005275 -0.048055
37	38	-0.014422	37	39	-0.479266	37	40	-0.055230	37	45	-0.048055
37	42	-0.026403	37	43	0.100379	37	44	0.034337	37	45	0.027448 -0.004851
37.	46	-0.058879	37	47	0.011937	37	48	-0.007085	37	49	-0.004851
37	54	0.004866	37	55	-0.004744	37.	56	-0.060664	37	57 39	-0.792846
37	58	0.030614	37	59	0.846830	38	38	0.170341	38	39	-0.018905
38	40	0.101116	38	41	-0.043100	38	42	0.032859	38	43	-0.053723
38	44	0.017992	38	45	-0.049681	38	46	0.027395	38	47	-0.006076
38	48	0.028982	38	49	-0.022906	38	54	-0.037503	38	55	-0.020171
38	56	-0.005182	38	57	-0.001731	38	58	-0.017028	38	59	0.030584
39	39	1.016513	39	40	0.035649	39	41	-0.058691	39	43	0.023042
39	54	-0.057771	39	55	-0.730810	39	56	0.057771	39	57	0.730810
40	40	1.005276	40	41	-0.005808	40	42	0.023222	40	43	-0.008532
40	44	-0.436831	40	45	-0.118916	40	46	-0.435188	40	47	0.036567
40	48	0.020537	40	49	-0.057105	40	54	0.751590	40	55	-0.019028
40	56	0.020146	40	57	-0.038135	40	58	-0.842151	40	59	0.018315
41	41	0.170341	41	42	-0.050428	41	43	-0.016120	41	44	-0.118916
41	45	0	41	46	-0.010132	41	47	0.025394	41	48	

TABLE XLI (Continued)

,	49	0.024312	41	54	0.001409	41		0.028149	1	6	5
41	57	-0.003487	41	58	-0.022933	41	59	-0.035511	42	42	1.223993
42	43	-0.051511	42	44	0.023222	42	45	-0.050425	42	46	0.105922
42	47	-0.025321	42	48	0.032403	42	49	-0.007082	42	54	0.040672
42	55	-0.042737	42	57	-0.034460	43	43	0.167503	43	44	-0.008533
43	45	-0.016120	43	46	-0.118197	43	47	0.100359	43	48	-0.051854
43	49	-0.046659	43	50	0.024742	43	51	-0.058724	43	52	0.032136
43	53	0.032221	43	54	0.003296	43	55	-0.009372	43	56	-0.012041
43	57	0.037436	43	59	0.017196	43	61	0.015095	43	62	0.012397
44	44	1.005275	44	45	-0.005808	44	46	-0.435186	44	47	-0.050779
44	48	0.105065	44	49	-0.052312	44	50	-0.058979	44	51	0.022650
44	52	0.034355	44.	53	-0.025179	44	54	0.014095	44	55	-0.751020
44	57	0.009504	44	58	0.842152	44	61	-0.029216	44	62	-0.023994
45	45	0.170341	45	46	-0.010131	45	47	-0.052326	45	48	-0.048946
45	49	0.097452	45	50	0.034237	45	51	0.036074	45	52	-0.066491
45	53	-0.007042	45	54	-0.017391	45	55	0.001279	45	57	0.044849
45	58	0.022933	45	61	0.014120	45	62	0.011597	46	46	1.008832
46	47	-0.059214	46	48	0.024903	46	49	0.034311	46	54	-0.752998
46	55	0.749991	46	57	-0.050166	47	47	1.000262	47	48	0.005239
47	49	-0.006124	47	50	-0.432808	47	51	-0.140658	47	52	-0.425911
47	53	0.023116	47	54	-0.004780	47	55	-0.001956	47	57	0.010474
47	58	-0.030622	47	61	0.834169	47	62	0.062021	48	48	1.000258
48	49	-0.006123	48	50	-0.140658	48	51	-0.432806	48	52	-0.425910
48	53	-0.061199	48	54	0.017661	48	55	0.040584	48	57	-0.020972
48	58	0.015822	48	61	0.011385	48	62	0.009350	49	49	0.169380
49	50	-0.009726	49	51	-0.009726	49	52	-0.137681	49	53	-0.048287
49	54	-0.012881	49	55	-0.035081	49	56	-0.008763	49	57	0.010499
49	58	0.014800	49	61	0.031005	49	62	0.081044	50	50	1.002792
50	51	0.003973	50	52	-0.423575	50	53	0.101564	50	54	-0.746442
50	55	-0.057083	50	56	-0.010827	51	51	1.002789	51	52	-0.423574
51	53	-0.050782	51	54	0.746439	51	55	-0.008220	51	56	0.019590
51	61	-0.036697	51	62	-0.085718	52	52	1.836649	52	53	0.035589
52	55	0.061756	52	61	-0.839861	52	62	-0.066696	53	53	0.167539
53	54	0.027912	53	55	-0.011106	53	56	-0.027912	53	57	0.011106
54	54	2.912177	54	55	-0.467614	54	56	-0.035927	54	57	-0.008054
54	58	-0.501667	54	59	-0.032961	54	61	-0.491836	54	62	0.011649
55	55	2.027388	55	56	-0.008054	55	57	-0.405599	55	58	-0.500009
55	59	-0.559958	55	60	0.027703	55	61	-0.026538	55	62	-0.021795
56	56	2.912174	56	57	-0.467611	56	59	-0.032962	56	60	-0.501668
56	61	0.011649	56	62	-0.491836	57	57	2.027386	57	58	0.027703
. 57	59	-0.559963	57	60	-0.500007	57	61	-0.021795	57	62	-0.026538
58	58	2.273606	59	59	2.339830	60	60	2.273607	61	61	1.088884
61	62	0.076993	62	62	1.088884	-1	0	0.0			

TABIE XLII
G MATRIX FOR 1,5-ANHYDRO-L-ARABINITOL

	1	0.145758	1	2	-0.027752	1	6	-0.023868	1	7	-0.027752
1	8	-0.027752	1	20	-0.071619	1	21	-0.071619	1	22	-0.051540
1	23	0.061579	1	24	0.061579	1	25	0.071619	1	26	0.026625
1	27	-0.051530	1	29	0.024905	1	49	0.020297	1	50	-0.040594
1	51	0.020297	1	53	-0.040594	1	54	-0.037288	1	57	-0.047860
2	2	0.166512	2	3	-0.027752	2	7	-0.027752	2	8	-0.027752
2	9	-0.027752	2	10	-0.027752	2	20	0.063390	2	21	0.063390
2	22	-0.055161	2	23	-0.071619	2	24	-0.071619	2	25	0.071619
2	26	-0.071816	2	27	-0.055473	2	28	0.027737	2	29	-0.051540
2	30	0.061677	2	31	0.053506	2	32	0.063645	2	33	0.028654
2	34	-0.051517	2	36	0.024953	2	53	0.027581	2	55	0.046618
2	57	-0.012218	2	60	0.065968	2	61	0.051688	2	62	0.062938
3	3	0.166512	3	4	-0.021099	3	9	-0.027752	3	10	-0.027152
3	12	-0.027752	3	13	-0.027752	3	22	0.024905	3	23	-0.051530
3	24	0.026625	3	26	0.061677	3	27	0.053506	3	28	0.027737
3	29	-0.051540	3	30	-0.071816	3	31	-0.055473	3	32	0.063645
3	33	-0.071816	3	34	-0.055473	3	35	0.030127	3	36	-0.052881
3	37	0.053677	3	38	0.046975	3	39	0.069130	3	40	-0.052872
3	41	0.027270	3	43	0.025603	3	54	-0.049077	3	55	0.015809
3	56	0.015012	3	59	-0.070088	3	60	-0.065967	4	4	0.166512
4	5	-0.027752	4	12	-0.027752	4	13	-0.027752		15	-0.027752
4	16	-0.027752	4	29	0.025603	4	30	0.027270	4	31	-0.052872
4	33	0.053677	4	34	0.046975	4	35	0.030127	4	36	-0.052881
4	37	-0.071816	4	38	-0.055473	4	39	0.069129	4	40	-0.071816
4	41	-0.055473	4	42	0.027737	4	43	-0.051540	4	44	0.061678
4	45	0.053506	4	46	0.063645	4	47	-0.051530	4	48	0.026625
4	49	0.024905	4	54	0.015012	4	56	0.049077	4	57	-0.015809
4	58	-0.065967	4	59	0.070089	5	5	0.166512	5	6	-0.027752
5	15	-0.027752	5	16	-0.027752	5	18	-0.027752	5	19	-0.027752
5	36	0.024953	5	37	0.028654	5	38	-0.051517	5	40	0.061678
5	41	0.053506	5	42	0.027737	5	43	-0.051539	5	44	-0.071816
5	45	-0.055473	5	46	0.063645	5	47	-0.071619	5	48	-0.071619
5	49	-0.055161	5	50	0.063390	5	51	0.063390	5	52	0.071619
5	53	0.027581	5	55	-0.017805	5	57	-0.046618	5	58	0.065968
5	61	-0.062938	5	62	-0.051688	6	6	0.145758	6	18	-0.027752
6	19	-0.027752	6	20	-0.040594	6	21	0.020297	6	22	0.020297
6	43	0.024905	6	44	-0.051530		45	0.026625	6	47	0.061579
6	48	0.061579	6	49	-0.051539	6	50	-0.071619	6	51	-0.071619
6	52	0.071619	6	53	-0.040594	6	55	0.047860		56	0.037288
7	7	1:075350	7	8	-0.027752	7	20	-0.055162		21	0.063390
7	22	0.053350	7	23	-0.051540	7	24	0.061579	7	25	-0.071619
7	26	0.024905	7	27	0.026625	7	29	-0.051530	7	53	-0.055161
7	56	-0.015117	7	57	0.001053		8	1.075349	8	20	0.063390
8	21	-0.055161	8	22	0.053350	8	23	0.061579	8	24	-0.051540
8	25	-0.071619	8	26	-0.051530	8	27	0.024905	8	29	0.026625
8	53	0.027581	8	56	0.015117	8	57	0.046807	8	61	-0.051688
8	62	-0.062938	9	9	1.075350	9	10	-0.027752		22	0.026625
9	23	0.024905	9	24	-0.051530	9	26	-0.051540	9	27	0.053507
9	28	-0.055473	9	29	0.051539	9	30	-0.051540	9	31	0.053507
9	32	-0.055473	9	33	-0.051427	9	34	0.027076	9	36	0.026578
9	55	-0.045648	9	56	0.003613	9	57	-0.006349	10	10	0.145758
10	11	-0.020834	10	22	-0.051530	10	23	0.026625	10	24	0.024905
10	26	0.061678	10	27	-0.051540	10	28	-0.060751	10	29	0.051539

TABLE XLII (Continued)

	30	0.061678	10	31	-0.051539	10	32	-0.071816	10	33	
10	34	0.024440	10	36	-0.051531	10	55	-0.000970	10	56	-0.018625
10	57	0.018567	11	11	1.054595	11	27	0.020823	1	28	-0.041645
	31	0.020823	11	32	-0.041645	11	56	0.038254	11	57	-0.038254
12	12	1.075349	12	13	-0.033693	12	29	0.028654	12	30	-0.051427
12	31	0.022773	12	33	-0.051539	12	34	0.059128	12	35	-0.053805
12	36	0.047221	12	37	-0.051539	12	38	0.059128	12	39	-0.053805
12	40	0.022773	12	41	-0.051427	12	43	0.028654	12	54	0.045438
12	55	0.003398	12	56	-0.045438	12	57	-0.003398	13	13	. 145758
13	14	-0.020834	13	29	-0.051517	13	30	0.027076	13	31	. 024440
13	33	0.067737	13	34	-0.051539	13	35	-0.060750	13	36	0.047221
13	37	0.067736	13	38	-0.051539	13	39	-0.069656	13	40	0.024440
13	41	0.027077	13	43	-0.051517	13	54	-0.001614	13	55	-0.017515
13	56	0.001614	13	57	0.017515	14	14	1.054595	14	34	0.022617
14	35	-0.041645	14	38	0.022617	14	39	-0.041645	14	55	0.037090
14	57	-0.037090	15	15	1.075349	15	16	-0.027752	15	36	-0.05153i
15	37	0.022773	15	38	0.024440	15	40	-0.051540	15	41	0.053507
15	42	-0.055473	15	43	0.051539	15	44	-0.051540	15	45	0.053507
15	46	-0.055474	15	47	0.026625	15	48	0.024905	15	49	-0.051530
15	54	0.003613	15	55	-0.003555	15	57	. 000969	16	16	0.145758
16	17	-0.020834	16	36	0.026578	16	37	-0.051427	16	38	. 027076
16	40	0.061678	16	41	-0.051539	16	42	-0.060750	16	43	0.051539
16	44	0.061678	16	45	-0.051540	16	46	-0.071816	16	47	. 024905
16	48	-0.051530	16	49	0.026625	16	54	-0.018625	16	55	0.021360
16	57	0.045648	17	17	1.054594	17	41	. 020823	17	42	-0.041645
17	45	0.020823	17	46	-0.041645	17	54	0.038254	17	55	-0.038254
18	18	1.075351	18	19	-0.027752	18	43°	-0.051530	18	44	0.026625
18	45	0.024905	18	47	-0.051540	18	48	. 0.061579	18	49	0.053350
18	50	-0.055162	18	51	0.063390	18	52	-0.071620	18	53	-0.055161
18	54	0.015117	18	55	-0.001053	19	19	1.075349	19	43	0.026625
19	44	0.024905	19	45	-0.051530	19	47	0.061579	19	48	0.051540
19	49	0.053350	19	50	0.063390	19	51	-0.055162	19	52	-0.071619
19	53	0.027581	19	54	-0.015117	19	55	-0.046807	19	61	. 062938
19	62	0.051688	20	20	1.002793	20	21	. 003973	20	22	-0.009726
20	23	-0.432808	20	24	-0.140658	20	25	0.423575	20	26	-0.058979
20	27	0.034237	20	29	0.024742	20	49	-0.005894	20	50	. 011787
20	51	-0.005894	20	53	0.101564	20	54	0.010827	20	56	42
20	57	0.057083	21	21	1.002789	21	22	-0.009726	21	23	-0.140658
21	24	-0.432807	21	25	-0.423573	21	26	0.022650	21	27	. 0.036074
21	29	-0.058724	21	49	-0.020203	21	50	-0.005894	21	51	. 026097
21	53	-0.050782	21	54	-0.019590	21	. 56	-0.746438	21	57	. 0.008220
21	61	0.085718	21	62	0.036697	22	22	0.169380	22	23	-0.006123
22	24	-0.006124	22	25	-0.137681	22	26	-0.052312	22	27	0.097452
22	28	-0.007082	22	29	-0.046659	22	30	-0.057105	22	31	.024312
22	32	0.034311	22	33	-0.022906	22	34	-0.004851	22	36	0.030295
22	49	0.026097	22	50	-0.005894	22	51	-0.020203	22	53	-0.048287
22	54	0.008763	22	55	-0.010499	22	56	0.012880	22	57	0.035081
22	60	-0.014800	22	61	-0.081044	22	62	-0.031005	23	23	1.000262
23	24	0.005239	23	25	-0.425911	23	26	-0.050779	23	27	-0.052326
23	28	-0.025321	23	29	0.100359	23	30	0.036567	23	31	0.025394
23	32	-0.059214	23	33	-0.006076	23	34	0.011937	23	36	-0.006397
23	53	0.023116	23	55	-0.010474	23	56	0.004780	23	57	0.001956
23	60	0.030622	23	61	-0.062021	23	62	-0.834169	24	24	. .000258
24	25	-0.425909	24	26	0.105065	24	27	-0.048946	24	28	. 032403
24	29	-0.051854	24	30	0.020537	24	31	-0.049706	24	32	0.024904
24	33	0.028982	24	34	-0.007086	24	36	-0.023899	24	53	-0.061199
24	55	0.020972	24	56	-0.017660	24	57	-0.040584	24	60	-0.015822
24	61	-0.009350	24	62	-0.011385	25	25	1.836644	25	26	0.034355
25	27	-0.066491	25	29	0.032136	25	53	0.035588	25	57	-0.061756
25	61	0.066696	25	62	0.839860	26	26	1.005274	26	27	-0.005808

table XLII (Continued)

26	28	0.023222
26	32	-0.435187
26	53	-0.025179
26	60	-0.842150
27	28	-0.050428
27	32	-0.010131
27	53	-0.007042
27	60	-0.022934
28	29	-0.051511
28	33	0.032859
28	56	-0.040672
29	31	-0.016120
29	35	-0.006033.
29	39	0.033908
29	53	0.032221
29	57	-0.001018
30	30	1.005272
30	34	-0.053237
30	38	-0.052394
30	43	-0.024637
30	57	0.007961
31	32	-0.010132
31	36	0.093746
31	40	0.009105
31	55	-0.001951
31	60	0.022933
32	36	0.034363
33	33	1.005272
33	37	-0.352559
33	41	0.019658
33	56	0.040848
34	34	0.170341
34	38	-0.010148
34	43	0.023615
34	57	-0.008365
35	36	-0.051263
35	40	-0.025244
35	55	-0.038469
36	37	-0.001011
36	41	-0.048351
36	45	-0.049648
36	49	0.030295
36	57	0.000565
37	38	-0.014423
37	42	-0.004221
37	46	0.038319
37	54	-0.036973
37	58	0.017028
38	40	-0.048054
38	44	0.037025
38	48	-0.007086
38	56	-0.049708
39	39	1.016509
39	54	-0.051394
40	40	1.005276
40	44	-0.436831
40	48	-0.057419
40	56	-0.008105
41	41	0.170341
41	45	-0.019365

26	29	-0.008532
26	33	0.017992
26	55	-0.009504
26	61	0.023994
27	29	-0.016120
27	33	-0.049681
27	55	-0.044849
27	61	-0.011597
28	30	0.023222
28	34	-0.026403
28	57	0.042737
29	32	-0.118197
29	36	-0.044953
29	40	-0.004975
29	54	0.012041
29	59	0.017196
30	31	-0.005809
30	35	0.031276
30	39	0.025009
30	54	-0.020146
30	59	0.018315
31	33	-0.044776
31	37	0.040356
31	41	-0.004130
31	56	-0.001409
32	32	1.008831
32	55	0.050166
33	34	-0.014423
33	38	-0.116795
33	43	-0.060013
33	57	0.007062
34	35	-0.054773
34	39	-0.018905
34	54	0.049708
34	59	0.030584
35	37	0.018646
3	45	41

26	30	-0.436830
26	34	0.034337
26	56	-0.014095
26	62	0.029216
27	30	-0.118916
27	34	0.027448
27	56	0.017391
27	62	-0.014120
28	31	-0.050428
28	36	-0.007047
29	29	0.167503
29	33	-0.055832
29	37	-0.060013
29	41	-0.024637
29	55	-0.034803
29	61	-0.012397
30	32	-0.435187
30	36	-0.050307
30	40	-0.004131
30	55	0.040940
30	60	0.842150
31	34.	-0.046255
31	38	0.028779
31	43	-0.004975
31	57	-0.006692
32	33	0.027395
32	56	0.752995
33	35	0.018646
33	39	-0.479267
33	54	0.012675
33	59	0.846825
34	36	-0.009213
34	40	0.028779
34	55	-0.001730
34	60	-0.030615
35	38	-0.054773
35	43	-0.006033
35	57	0.038468
36	39	-0.117627
36	43	-0.044953
36	47	-0.006397
36	55	-0.010688
36	60	0.014829
37	40	-0.046453
37	44	-0.057685
37	48	0.028982
37	56	-0.012675
38	38	0.170341
38	42	-0.025086
38	46	-0.059267
38	54	-0.002220
38	58	-0.030615
39	41	0.025009
39	56	0.051394
40	42	0.023222
40	46	-0.435188
40	54	-0.751590
40	58	0.842152
41	43	-0.016120
42	47	0.027021

2631

$$
-0.118916
$$

$$
\begin{array}{ll}
26 & 36 \\
26 & 57
\end{array}
$$

$$
\begin{aligned}
& -0.118910 \\
& -0.057114
\end{aligned}
$$

$$
0.751018
$$

$$
0.170341
$$

$$
-0.019366
$$

$$
0.024266
$$

$$
-0.001279
$$

$$
\begin{aligned}
& 1.223996 \\
& 0.105922
\end{aligned}
$$

$$
\begin{aligned}
& 0.105922 \\
& 0.034460
\end{aligned}
$$

$$
-0.008532
$$

$$
0.096587
$$

$$
0.023615
$$

$$
0.029612
$$

$$
-0.003296
$$

$$
-0.015095
$$

$$
0.104902
$$

$$
\begin{aligned}
& 0.019657 \\
& 0.028768
\end{aligned}
$$

$$
-0.751588
$$

$$
0.170341
$$

$$
-0.025244
$$

$$
\begin{array}{r}
-0.058917 \\
0.008105
\end{array}
$$

$$
\begin{array}{r}
0.008105 \\
-0.035511
\end{array}
$$

$$
-0.058879
$$

$$
-0.749999
$$

$$
-0.001012
$$

$$
0.040356
$$

$$
-0.792841
$$

$$
0.017028
$$

$$
-0.116795
$$

$$
-0.052394
$$

$$
-0.004747
$$

$$
1.223994
$$

$$
0.109763
$$

$$
-0.034611
$$

$$
0.161767
$$

$$
\begin{aligned}
& 0.097539 \\
& 0.022549
\end{aligned}
$$

$$
-0.023899
$$

$$
\begin{array}{r}
-0.032242 \\
1.005272
\end{array}
$$

$$
0.101116
$$

$$
\begin{array}{r}
0.020535 \\
-0.022906
\end{array}
$$

$$
\begin{array}{r}
-0.022906 \\
0.792842
\end{array}
$$

$$
-0.018905
$$

$$
0.096587
$$

$$
0.011937
$$

$$
0.029265
$$

$$
-0.030584
$$

$$
0.033908
$$

$$
-0.730805
$$

$$
-0.008532
$$

$$
0.034813
$$

$$
\begin{array}{r}
-0.007252 \\
0.035511
\end{array}
$$

$$
0 \quad 59: 0.035511
$$

$$
4144-0.118916
$$

$$
4148 \quad 0.022624
$$

41	49	-0.049645
41	57	-0.037580
42	43	-0.051511
42	47	-0.026180
42	55	0.039945
43	45	-0.016120
43	49	-0.046659
43	53	0.032221
43	57	0.034803
44	44	1.005276
44	48	-0.050779
44	52	-0.066491
44	57	0.055072
45	45	0.170341
45	49	-0.050352
45	53	-0.025179
45	58	-0.022933
46	47	-0.058961
46	55	-0.756398
47	49	-0.006124
47	53	0.023116
47	58	0.030622
48	49	-0.006123
48	53	-0.061199
48	58	-0.015822
49	50	-0.009726
49	54	-0.002777
49	58	-0.014800
50	51	0.003973
50	55	-0.057083
51	53	-0.050782
51	61	-0.036697
52	55	0.061756
53	54	0.027912
54	54	2.912177
54	58	-0.501668
55	55	2.029649
55	59	-0.559957
56	56	2.912174
56	61	0.011649
57	59	-0.559960
58	58	2.273607
61	62	0.076993

4	54	-0.001409	41		-0.
41	58	0.022933	41	59	-0.018315
42	44	0.023222	42	45	-0.050428
42	48	-0.005793	42	49	0.031973
42	57	-0.012133	43	43	0.167503
43	46	-0.118197	43	47	0.100359
43	50	0.024742	43	51	-0.058724
43	54	-0.024583	43	55	0.028897
43	59	-0.017196	43	61	0.015095
44	45	-0.005808	44	46	-0.435187
44	49	0.101245	44	50	0.034237
44	53	-0.007042	44	54	-0.003451
44	58	-0.842152	44	61	0.014120
45	46	-0.010131	45	47	-0.048946
45	50	-0.058979	45	51	0.022650
45	54	0.028034	45	55	0.001563
45	61	-0.029216	45	62	-0.023994
46	48	0.036156	46	49	0.022805
46	57	-0.056744	47	47	1.000262
47	50	-0.432808	47	51	-0.140658
47	54	-0.025685	47	55	0.005013
47	61	0.834169	47	62	0.062021
48	50	-0.140658	48	51	-0.432806
48	54	0.028462	48	55	0.036984
48	61	0.011385	48	62	0.009350
49	51	-0.009726	49	52	-0.137681
49	55	-0.038449	49	56	-0.008763
49	61	0.031005	49	62	0.081044
50	52	-0.423575	50	53	0.101564
50	56	-0.010827	51	51	1.002789
51	54	0.746439	51	55	-0.008220
51	62	-0.085718	52	52	1.836649
52	61	-0.839861	52	62	-0.066696
53	55	-0.011106	53	56	-0.027912
54	55	-0.487909	54	56	-0.035927
54	59	0.032961	54	61	-0.491836
55	56	-0.003007	55	57	-0.386683
55	60	0.027703	55	61	-0.026538
56	57	-0.487529	56	59	0.032962
56	62	-0.491836	57	57	2.027379
57	60	-0.500007	57	61	-0.021795
59	59	2.339827	60	60	2.273607
62	62	1.088884	-1	0	0.0

41	56	0.020146
42	42	1.223995
42	46	0.105922
42	54	-0.040672
43	44	-0.008533
43	48	-0.051854
43	52	0.032136
43	56	-0.012041
43	62	0.012397
44	47	-0.054286
44	51	0.036074
44	55	0.754891
44	62	0.011597
45	48	0.101272
45	52	0.034355
45	57	0.002570
46	46	1.008832
46	54	0.752997
47	48	0.005239
47	52	-0.425911
47	57	0.010474
48	48	1.000258
48	52	-0.425910
48	57	-0.020972
49	49	0.169380
49	53	-0.048287
49	57	0.010499
50	50	1.002792
50	54	-0.746442
51	52	-0.423574
51	56	0.019590
52	53	0.035589
53	53	0.167539
53	57	0.011106
54	57	-0.009311
54	62	0.011649
55	58	-0.503330
55	62	-0.021795
56	60	-0.501668
57	58	-0.027703
61	62	-0.026538
4	1.088884	
	61	0.0

up of l,326 elements (independent elements), which may be reduced to 682 elements for $1,5-A X$ and $1,5-A R$ by introducing symmetry coordinates. The SVQFF for the l,5-AP models is seen to be greatly reduced in size from the GQFF.

TABLE XLIII

Z MATRIX FOR 1,5-ANFYDROXYLITOL

			1.000000				71.000000				1.000000				
	8		000000		20	5	3		21	23	1.000000		2	24	
	53	26					51.000000								
	8	10	1.000		9	0	01.00		10	7	1.		22	27	
	23	28	1.000		24	8	. 000		26	28	1.00000		27	27	.
	29	29	1.00	3							71.00000		9	10	
	10	7	1.0000		12	10	1.0000		13		1.000		29	29	
	30	28	1.000		31	2	00		33	328	. 0000		34	27	
	36	29	1.000000	4	4	5	1.000				1.00		12	10	
	13	7	1.00000		15	10	1.0000				1.00000		36	29	1.0000
	37	28	1.00000		38	27	000		40	28	. 00		41	27	
	43	29	1.00000				1.000				. 00		15	10	1.
	16		1.00000		18	10	. 000		19	10	1.000				
	44	28	1.000000		45	27	71.000		47	28	1.00		48	28	1.00000
	49	27	1.000000		6		1.000		18		1.00		19		1.00
	49	24	1.0000		50	23	.		5	23	.		53		
	7	3	1.000			11	1.000		20	30	. 00		23	30	1.0000
	25	30	1.0000	8	8		. 0000		21	130	. 00				
	25	30	1.000				. 000		10		1.00		26	30	1.
	30	30	1.00000		32		01.00000				. 0000				
0	27	24	1.00000	10	28			10		24				23	
	11		. 000	11	28		. 000	12	12		. 00	12	13		1.00
12	33	30	. 00000	12	37	30	. 000	12		30	. 00	13	13		1.
13	14	12	1.00000	13	34	4	1.000	13	35	51	. 00	13	38	24	1.
	39	23	1.0000	14	14		. 000	14			. 00				1.0
15	16		1.0000	15	40	30	1.000	15	44	30	. 00	15	46	30	L
	16		1.000	16	17	12	00	16	41	24	. 00000				
16	45	24	1.00	16	46	23	31.00	17			. 00				
	18		1.000	18	19		. 000	18	47		. 00	18	50	30	1.0
18	52	30	1.000000	19	19		1.00000	19	48	30	. 00	19			1.0
19	52	30	1.000000	20	20		1.00000	20	21	35	. 00	20	22	34	,
	23	33	. 00000	20	25		. 000000	20	5		. 00	21	21		1.0
21	22	34	. 00000	21	24	33	1.00000	21			. 00	21	53	40	
22	22	14	. 00000	22	23		00000	22			, 0	22			
22		42	00	22			00000			41	. 00	23			1.0
	24	4	. 00000	23	25	56	. 000000	23	26		. 00	23	27	43	. 0
23	29	48	1.000000	24	24		1.00000	24	25		. 000000	24			. 0
24	27	43	1.00000	24	29	49	1.00000	25	25	516	. 000	26	26	17	. 0
	27	34	00000	26	29		000	26				26			
27	27	18	00000	27	28	O	. 00000	27	29	38	00	27	31	38	1.00
	32	34	1.000000	28	28	19	1.00000	-	31	50	. 000	28	32	-	.
29	29	20	. 00000	29	30	34	000		31	38	. 000		33		. 0
	34	42	. 000000	29	36	41	11.00000	30	30	17	. 00000	30	31	34	,
30	32	33	. 000000	30			71.000	30				30			
31	31	18	1.00000	31	32	34	. 00000	31	33	343	. 000	31	34	41	,
31	36	42	000	32	32	1		33	33			33			
33	36	34	1.000	33	37	37	71.00000	33	39	33		34	34	18	
34	35	50	1.0	34	36	38	8	4	38	38		34		34	
35	35	19		35	38	O									
		34	1.000000				1. 000000								

TABLE XLIII (Continued)

| 36 | 43 | 41 | 1.000000 | 37 | 37 | 17 | 1.000000 | 37 | 38 | 34 | 1.000000 | 37 | 39 | 33 | 1.000000 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 37 | 40 | 47 | 1.000000 | 37 | 41 | 43 | 1.000000 | 37 | 43 | 49 | 1.000000 | 38 | 38 | 18 | 1.000000 |
| 38 | 39 | 34 | 1.000000 | 38 | 40 | 43 | 1.000000 | 38 | 41 | 41 | 1.000000 | 38 | 43 | 42 | 1.000000 |
| 39 | 39 | 21 | 1.000000 | 40 | 40 | 17 | 1.000000 | 40 | 41 | 34 | 1.0000000 | 40 | 43 | 34 | 1.000000 |
| 40 | 44 | 37 | 1.000000 | 40 | 46 | 33 | 1.000000 | 41 | 41 | 18 | 1.0000000 | 41 | 42 | 50 | 1.000000 |
| 41 | 43 | 38 | 1.000000 | 41 | 45 | 38 | 1.000000 | 41 | 46 | 34 | 1.000000 | 42 | 42 | 19 | 1.000000 |
| 42 | 45 | 50 | 1.000000 | 42 | 46 | 51 | 1.000000 | 43 | 43 | 20 | 1.000000 | 43 | 44 | 34 | 1.000000 |
| 43 | 45 | 38 | 1.000000 | 43 | 47 | 48 | 1.000000 | 43 | 48 | 49 | 1.000000 | 43 | 49 | 41 | 1.000000 |
| 44 | 44 | 17 | 1.000000 | 44 | 45 | 34 | 1.000000 | 44 | 46 | 33 | 1.000000 | 44 | 47 | 46 | 1.000000 |
| 44 | 48 | 47 | 1.000000 | 44 | 49 | 43 | 1.000000 | 45 | 45 | 18 | 1.000000 | 45 | 46 | 34 | 1.000000 |
| 45 | 47 | 43 | 1.000000 | 45 | 48 | 43 | 1.000000 | 45 | 49 | 42 | 1.000000 | 46 | 46 | 21 | 1.000000 |
| 47 | 47 | 15 | 1.000000 | 47 | 48 | 36 | 1.000000 | 47 | 49 | 34 | 1.000000 | 47 | 50 | 33 | 1.000000 |
| 47 | 52 | 56 | 1.000000 | 48 | 48 | 15 | 1.000000 | 48 | 49 | 34 | 1.000000 | 48 | 51 | 33 | 1.000000 |
| 48 | 52 | 56 | 1.000000 | 49 | 49 | 14 | 1.000000 | 49 | 50 | 34 | 1.000000 | 49 | 51 | 34 | 1.000000 |
| 49 | 53 | 41 | 1.000000 | 50 | 50 | 13 | 1.000000 | 50 | 51 | 35 | 1.000000 | 50 | 52 | 55 | 1.000000 |
| 50 | 53 | 39 | 1.000000 | 51 | 51 | 13 | 1.000000 | 51 | 52 | 55 | 1.000000 | 51 | 53 | 40 | 1.000000 |
| 52 | 52 | 16 | 1.000000 | 53 | 53 | 22 | 1.000000 | 54 | 54 | 52 | 1.000000 | 55 | 55 | 52 | 1.000000 |
| 56 | 56 | 52 | 1.000000 | 57 | 57 | 52 | 1.000000 | 58 | 58 | 53 | 1.000000 | 59 | 59 | 53 | 1.000000 |
| 60 | 60 | 53 | 1.000000 | 61 | 61 | 54 | 1.000000 | 62 | 62 | 54 | 1.0000000 | | | | |

TABLE XLIV
Z MATRIX FOR 1,5-ANHYDRORIBITOL

| 1 | 1 | 1 | 1.000000 | 1 | 2 | 7 | 1.000000 | 1 | 6 | 8 | 1.000000 | 1 | 7 | 9 | 1.000000 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 8 | 9 | 1.000000 | 1 | 20 | 23 | 1.000000 | 1 | 21 | 23 | 1.000000 | 1 | 22 | 24 | 1.000000 |
| 1 | 53 | 26 | 1.000000 | 2 | 2 | 5 | 1.000000 | 2 | 3 | 7 | 1.000000 | 2 | 7 | 10 | 1.000000 |
| 2 | 8 | 10 | 1.000000 | 2 | 9 | 10 | 1.000000 | 2 | 10 | 7 | 1.000000 | 2 | 22 | 27 | 1.000000 |
| 2 | 23 | 28 | 1.000000 | 2 | 24 | 28 | 1.000000 | 2 | 26 | 28 | 1.000000 | 2 | 27 | 27 | 1.000000 |
| 2 | 29 | 29 | 1.000000 | 3 | 3 | 5 | 1.000000 | 3 | 4 | 7 | 1.000000 | 3 | 9 | 10 | 1.000000 |
| 3 | 10 | 7 | 1.000000 | 3 | 12 | 10 | 1.000000 | 3 | 13 | 7 | 1.000000 | 3 | 29 | 29 | 1.000000 |
| 3 | 30 | 28 | 1.000000 | 3 | 31 | 27 | 1.000000 | 3 | 33 | 28 | 1.000000 | 3 | 34 | 27 | 1.000000 |
| 3 | 36 | 29 | 1.000000 | 4 | 4 | 5 | 1.000000 | 4 | 5 | 7 | 1.000000 | 4 | 12 | 10 | 1.000000 |
| 4 | 13 | 7 | 1.000000 | 4 | 15 | 10 | 1.000000 | 4 | 16 | 7 | 1.000000 | 4 | 36 | 29 | 1.000000 |
| 4 | 37 | 28 | 1.000000 | 4 | 38 | 27 | 1.000000 | 4 | 40 | 28 | 1.000000 | 4 | 41 | 27 | 1.000000 |
| 4 | 43 | 29 | 1.000000 | 5 | 5 | 5 | 1.000000 | 5 | 6 | 7 | 1.000000 | 5 | 15 | 10 | 1.000000 |
| 5 | 16 | 7 | 1.000000 | 5 | 18 | 10 | 1.000000 | 5 | 19 | 10 | 1.000000 | 5 | 43 | 29 | 1.000000 |
| 5 | 44 | 28 | 1.000000 | 5 | 45 | 27 | 1.000000 | 5 | 47 | 28 | 1.000000 | 5 | 48 | 28 | 1.000000 |
| 5 | 49 | 27 | 1.000000 | 6 | 6 | 1 | 1.000000 | 6 | 18 | 9 | 1.000000 | 6 | 19 | 9 | 1.000000 |
| 6 | 49 | 24 | 1.000000 | 6 | 50 | 23 | 1.000000 | 6 | 51 | 23 | 1.000000 | 6 | 53 | 26 | 1.000000 |
| 7 | 7 | 3 | 1.000000 | 7 | 8 | 11 | 1.000000 | 7 | 20 | 30 | 1.000000 | 7 | 23 | 30 | 1.000000 |
| 7 | 25 | 30 | 1.000000 | 8 | 8 | 3 | 1.000000 | 8 | 21 | 30 | 1.000000 | 8 | 24 | 30 | 1.000000 |
| 8 | 25 | 30 | 1.000000 | 9 | 9 | 4 | 1.000000 | 9 | 10 | 9 | 1.000000 | 9 | 26 | 30 | 1.000000 |
| 9 | 30 | 30 | 1.000000 | 9 | 32 | 30 | 1.000000 | 10 | 10 | 2 | 1.000000 | 10 | 11 | 12 | 1.000000 |
| 10 | 27 | 24 | 1.000000 | 10 | 28 | 31 | 1.000000 | 10 | 31 | 24 | 1.000000 | 10 | 32 | 23 | 1.000000 |
| 11 | 11 | 6 | 1.000000 | 11 | 28 | 32 | 1.000000 | 12 | 12 | 4 | 1.000000 | 12 | 13 | 9 | 1.000000 |
| 12 | 33 | 30 | 1.000000 | 12 | 37 | 30 | 1.000000 | 12 | 39 | 30 | 1.000000 | 13 | 13 | 2 | 1.000000 |
| 13 | 14 | 12 | 1.000000 | 13 | 34 | 24 | 1.000000 | 13 | 35 | 31 | 1.000000 | 13 | 38 | 24 | 1.000000 |
| 13 | 39 | 23 | 1.000000 | 14 | 14 | 6 | 1.000000 | 14 | 35 | 32 | 1.000000 | 15 | 15 | 4 | 1.000000 |
| 15 | 16 | 9 | 1.000000 | 15 | 40 | 30 | 1.000000 | 15 | 44 | 30 | 1.000000 | 15 | 46 | 30 | 1.000000 |
| 16 | 16 | 2 | 1.000000 | 16 | 17 | 12 | 1.000000 | 16 | 41 | 24 | 1.000000 | 16 | 42 | 31 | 1.000000 |

TABLE XLIV (Continued)

16	45	24	1.000000	16	46	23	1.000000	17	17	6	1.000000		4232	1.000000
18	18	31	000000	8	9	11	. 000000	18	47	30	1.000000	18	5030	1.000000
18	523	30	1.000000	19	19	3	1.000000	19	48	30	1.000000	19	5130	1.000000
19	523	30	1.000000	20	20	13	1.000000	20	21	35	1.000000	20	2234	1.000000
20	233	33	1.000000	20	25	55	1.000000	20	53	39	1.000000	21	2113	1.000000
2	223	34	1.000000	21	24	33	1.000000	21	25	55	1.000000	21	5340	. 000000
22	221	14	1.000000	22	23	34	1.000000	22	24	34	1.000000	22	2643	1.000000
22	274	42	1.000000	22	29	41	1.000000	22	53	41	,	23	2315	1.000000
23	243	36	1.000000	23	25	56	1.000000	23	26	46	1.000000	23	2743	1.000000
23	294	48	1.000000	24	24	15	1.000000	24	25	56	1.000000	24	2647	000000
24	274	43	1.000000	24	29	49	1.000000	25	25	16	1.000000	26	2617	1.000000
26	27	34	1.000000	26	29	34	1.000000	26	30	37	1.000000	26	3233	1.000000
27	271	18	1.000000	27	28	50	1.000000	27	29	38	1.000000	27	3138	1.000000
27	323	34	1.000000	28	28	19	1.000000	28	31	50	1.000000	28	3251	. 000000
29	292	20	1.000000	29	30	34	1.000000	29	31	38	1.000000	29	3348	1.000000
29	344	41	1.000000	29	36	41	1.000000	30	30	17	1.000000	30	3134	1.000000
30	323	33	1.000000	30	33	46	1.000000	30	34	44	1.000000	30	36:49	1.0
31	311	18	1.000000	31	32	34	1.000000	31	33	43	1.000000	31	3441	1.000000
31	364	42	1.000000	22	32	21	1.000000	33	33	17	1.000000	33	3434	1.000000
33	363	34	1.000000	33	37	37	1.000000	33	39	33	1.00000	34	3418	.
34	355	50	1.000000	34	36	38	1.000000	34	38	38	1.000000	34	3934	. 000000
35	351	19	1.000000	35	38	50	1.000000	35	39	51	1.000000	36	3620	1.000000
36	373	34	1.000000	6	38	38	1.000000	36	40	49	1.000000	36	4142	1.000000
36	434	41	1.000000	37	37	17	1.000000	37	38	34	1.000000	3	3933	1.0
37	404	46	1.000000	37	41	43	1.000000	37	43	48	1.000000	38	3818	. 000000
38	393	34	1.000000	38	40	44	1.000000	38	41	41	1.000000	38	4341	1.000000
39	392	21	1.000000	40	40	17	1.000000	40	41	34	1.000000	40	4334	1.000000
40	443	37	1.000000	40	46	33	1.000000	41	41	18	1.000000	41	4250	1.000000
41	433	38	1.000000	41	45	38	1.000000	41	46	34	1.000000	42	4219	1.000000
42	455	50	1.000000	42	46	51	1.000000	43	43	20	1.000000	43	4434	1.000000
43	453	38	1.000000	43	47	48	1.000000	43	48	49	1.000000	43	4941	1.000000
44	441	17	1.000000	44	45	34	1.000000	44.	46	33	1.000000	44	4746	1.000000
44	484	47	1.000000	44	49	43	1.000000	45	45	18	1.000000	45	4634	1.000000
45	474	43	1.000000	45	48	43	1.000000	45	49	42	1.000000	46	4621	1.000000
47	471	15	1.000000	47	48	36	1.000000	47	49	34	1.000000	47	5033	1.000000
47	52	56	1.000000	48	48	15	1.000000	48	49	34	1.000000	48	51. 33	1.000000
48	525	56	1.000000	49	49	14	1.000000	49	50	34	1.000000	49	5134	1.000000
49	53	41	1.000000	50	50	13	1.000000	50	51	35	1.000000	50	5255	1.000000
50	53	39	1.000000	51	51	13	1.000000	51	52	55	1.000000	51	5340	1.000000
52	52	16	1.000000	53	53	22	1.000000	54	54	52	1.000000	55	5552	1.000000
56	56	521	1.000000	57	57	52	1.000000	58	58	53	1.000000	59	59	. 000000
60	60	531	1.	61	61	54	1.	62	62	54	1.00			

TABLE XLV

Z MATRIX FOR 1,5-ANHYDRO-L-ARABINITOL

		1	0		2	7	1.000000		6	8	1.000000		7	9	1.000000
1	8	9	1.000000	1	20	23	1.000000	1	21	23	1.000000		22	24	00
1	53	26	1. 000000	2	2	5	1.000000	2	3		1.000000	2		10	1.000000
2	8	10	1.000000	2	9	10	1.000000	2	10	7	1.000000		22	27	. 000
2	23	28	1.000000	2	24	28	1.000000	2	26	28	1.000000	2	27	27	. 000000
2	29	29	1.000000	3	3	5	1.000000		4	7	1.000000		9	10	000000
3	10	7	1.000000	3	12	10	1.000000	3	13	7	1.000000	3	29	29	. 000000
3	30	28	1.000000	3	31	27	1.000000	3	33	28	1.000000		34	27	1.000000
3	36	29	1.000000	4	4	5	1.000000	4	5		1.000000	4	12	10	000000
4	13	7	1.000000	4	15	10	1.000000		16		1. 000000		36	29	00
4	37	28	1.000000	4	38	27	1.000000		40	28	1.000000		41	27	1. 000000
4	43	29	1.000000	5	5	5	1.000000	5	6	7	1.000000		15	10	1.000000
5	16	7	1.000000	5	18	10	1.000000	5	19	10	1.000000		43	29	1.000000
5	44	28	1.000000	5	45	27	1.000000		47	28	1.000000	5	48	28	i. 000000
5	49	27	1.000000	6	6	1	1.000000		18	9	1.000000		19	9	1.000000
6	49	24	. 000000	6	50	23	1.000000	6	51	23	1.000000	6	53	26	1.000000
7	7	3	1.000000	7	8	11	1.000000		20	30	1.000000		23	30	1.000000
7	25	30	1.000000	8	8	3	. 0000		21	30	1.000000		24	30	1.000000
8	25	30	1.000000	9	9	4	1.000000	9	10		1.000000	9	26	30	0
9	30	30	1.000000	9	32	30	1.000000	10	10	2	1.000000	10	11	12	1.000000
0	27	24	. 000000	10	28	31	. 000000	0	31	24	1.000000	10	32	23	000
	11	6	. 000000	11	28	32	. 00	12	12	4	1.000000	12	13	9	0
12	33	30	. 000000	12	37	30	1.000000	12	39	30	1.000000	13	13	2	1.
13	14	12	1.000000.	13	34	24	1.000000	13	35	31	1.000000	13	38	24	1.000000
13	39	23	. 000000	14	14	6	1.000000	14	35	32	1.000000	15	15	4	0
5	16	9	. 000000	15	40	30	1.00	15	44	30	1.00000	15	46	30	. 000000
16	16	2	1.000000	16	17	12	1.000000	16	41	24	1.000000	16	42	31	1.000000
16	45	24	1.000000	16	46	23	1.000000	17	17		1. 000000	17	42	32	0
8	18	3	1.000000	18	19	11	1. 000000	18	47	30	1.000000	18	50	30	0
18	52	30	1.000000	19	19	3	1.000000	19	48	30	1.00000	19	51	30	. 0
19	52	30	. 000000	20	20	13	1.000000	20	21	35	1.000000	20	22	34	. 000000
20	23	33	. 000000	20	25	55	. 000000	20	53	39	1. 000000	21	21	13	. 000000
	22	34	1.000000	21	24	33	. 00	21	25	55	1.00	21	53	40	. 000000
22	22	14	1.000000	22	23	34	1.00000	22	24	34	. 000000	22	26	43	. 000000
22	27	42	. 000000	22	29	41	. 000000	22	53.	41	1.000000	23	23.	15	. 000000
23	24	36	1.000000	23	25	56	. 000000	23	26	46	1.000000	23	27	43	000
23	29	48	1.000000	24	24	15	. 000000	24	25	56	. 000000	24	26	47	. 000000
24	27	43	1.000000	24	29	49	1.000000	25	25	16	. 00000	26	26	17	. 000000
26	27	34	1. 000000	26	29	34	1.000000	26	30	37	1.000000	26	32	33	. 000000
27	27	18	1. 000000	27	28	50	1.000000	27	29	38	1.000000	27	31	38	. 000000
27	32	34	1.000000	28	28	19	1.0000	28	31	50	1.000000	28	32	51	1.000000
29	29	20	. 000000	29	30	34	1.000000	29	31	38	1.000000	29	33	49	. 000000
29	34	42	1.000000	29	36	41	1.000000	30	30	17	1.000000	30	31	34	1.000000
30	32	33	1.000000	30	33	47	1.00000	30	34	43	1.000000	30	36	49	. 000000
31	31	18	i. 000000	31	32	34	1.00000	31	33	43	1.000000	31	34	4	1.000000
31	36	42	1.000000	32	32	21	1. 000000	33	33	17	1.000000	33	34	34	1.000000
33	36	34	1.000000	33	37	37	1. 000000	33	39	33	1.000000	34	34	18	1.000000
34	35	50	1.000000	34	36	38	1.000000	34	38	38	1.000000	34	39	34	1.000000
35	35	19	1.000000	35	38	50	1.000000	35	39	51	1.000000	36	36	20	. 000000
36	37	34	1.000000	36	38	38	1.000000	36	40	48	1.000000	36	41	41	1.000000

TABLE XLV (Continued)

36	43	41	1.000000	37	37	17	1.000000	37	38	34	1.000000	37	39	33	1.000000	
37	40	46	1.000000	37	41	44	1.000000	37	43	49	1.0000000	38	38	18	1.000000	
38	39	34	1.000000	38	40	43	1.000000	38	41	41	1.000000	38	43	42	1.000000	
39	39	21	1.000000	40	40	17	1.000000	40	41	34	1.000000	40	43	34	1.000000	
40	44	37	1.000000	40	46	33	1.000000	41	41	18	1.000000	41	42	50	1.000000	
41	43	38	1.000000	41	45	38	1.000000	41	46	34	1.000000	42	42	19	1.000000	
42	45	50	1.000000	42	46	51	1.000000	43	43	20	1.000000	43	44	34	1.000000	
43	45	38	1.000000	43	47	48	1.000000	43	48	49	1.000000	43	49	41	1.000000	
44	44	17	1.000000	44	45	34	1.000000	44	46	33	1.000000	44	47	46	1.000000	
44	48	46	1.000000	44	49	44	1.000000	45	45	18	1.000000	45	46	34	1.000000	
45	47	43	1.000000	45	48	44	1.000000	45	49	41	1.000000	46	46	21	1.000000	
47	47	15	1.000000	47	48	36	1.000000	47	49	34	1.000000	47	50	33	1.000000	
47	52	56	1.000000	48	48	15	1.000000	48	49	34	1.0000000	48	51	33	1.000000	
48	52	56	1.000000	49	49	14	1.000000	49	50	34	1.000000	49	51	34	1.000000	
49	53	41	1.000000	50	50	13	1.000000	50	51	35	1.0000000	50	52	55	1.000000	
50	53	39	1.000000	51	51	13	1.000000	51	52	55	1.000000	51	53	40	1.000000	
52	52	16	1.000000	53	53	22	1.000000	54	54	52	1.000000	55	55	52	1.000000	
56	56	52	1.000000	57	57	52	1.000000	58	58	53	1.000000	59	59	53	1.000000	
60	60	53	1.000000	61	61	54	1.000000	62	62	54	1.000000					

APPENDIX IV

TERMINATION OF THE LINEAR LEAST SQUARES REFINEMENT

The criterion normally employed to judge when the force constant refinement has "converged" is to examine the corrections to the force constant parameters, $\left|\Delta \Phi_{\underline{i}}\right|$, after each iteration. When all the corrections are less than or equal to an arbitrary constant (0.008 in FADJ), the refinement is terminated and said to have "converged."

The weighted sum of squares of the residuals computed for each iteration is compared with the value computed for the previous iteration. If the weighted sum of squares increases for two consecutive iterations, the refinement is terminated and said to have "diverged."

EVALUATION OF TRANSFERABLE FORCE CONSTANTS

One method of introducing additional constraints is to assume that force constants may be transferred between related molecules. That is, one wishes to refine a set of force constants to give the best fit to a series of molecules. Suppose $\bar{\sim}$ is the set of force constants for a series of molecules. One can then partition the perturbation equations and write them in the form

where $\bar{\Delta} \lambda^{(i)}$ and $\underset{\sim}{J} \frac{(\underline{i})}{\underset{N}{N}}(\underline{i)}$ are the matrices for a single molecule or factored block. The combined equations for a series of large molecules become very large and taxes the memory of even the largest digital computer. However, it follows from Equation (163) that the normal equations for the combined molecules are given by the sum of the normal equations for the individual molecules, thus

This relation makes it possible to consider one molecule at a time in high-speed storage and to use magnetic tape or disk to collect the normal equations. Which are then summed as they are read back into the computer. The Φ_{i} 's determined from Equation (164) are by definition transferable among the molecules used in the refinement, and the "goodness of fit" is a measure of the degree of transferability.

POTENTIAL ENERGY DISTRIBUTION IN TERMS OF THE FORCE CONSTANTS

The potential energy distribution among the elements of Φ for each normal mode can be calculated as

$$
\begin{equation*}
\text { P.E. }=\Lambda^{-1} \mathrm{JZ} \mathrm{\Phi} \tag{165}
\end{equation*}
$$

ERROR ANALYSIS

The theory of least squares can be applied to estimate the uncertainties in the calculated force constants. The force constant moment matrix is

$$
\begin{equation*}
M(F)=\sigma^{2}\left(Z: \sim_{N}^{\top} \underset{\sim}{P} J Z\right)^{-1} \tag{166}
\end{equation*}
$$

Where $\sigma^{2}=(\overline{\Delta \lambda})^{\prime} \underset{\sim}{P}(\overline{\Delta \lambda}) / \underline{\alpha}$ and \underline{d} is the number of degrees of freedom. The diagonal elements of $M(F)$ give the uncertainties in the calculated force constants, and
the offodiagonal elements give the correlation between the errors in the force constants. One must be cautious about attaching great significance to the uncertainties for several reasons. First, if the number of degrees of freedom is small, the statistical analysis is in doubt. Second, the errors may not be normally distributed due to anharmonicity. Finally, because the force constants and frequency parameters are assumed to be linearly related over the range of errors considered.

However, the analysis does give some indication of the consistency of the data and of the sensitivity of the force constants to the data. For example, if (Z'J'PJZ) is nearly singular, certain force constants will have a large uncertainty indicating that they are not sensitive to the data.

MULTIPLE SOLUTIONS

In many problems, there are a number of distinct solutions to the force field which will fit the data to within acceptable errors. The various solutions represent alternate minima in the hypersurface of the quantity ($\overline{\Delta N}^{\prime}{\underset{\sim}{\sim}}_{\overline{\Delta \lambda}}$) as a function of the force constants, Φ, and correspond to alternate assignments of the vibrational frequencies. The various minima can be reached by starting the calculation with different initial $\underset{\sim}{\sim}$ matrices. Some of the minima are much higher than others and can be eliminated because of the poorer fit to the data. In other cases, a solution may be unacceptable because the force constants are physically unreasonable. However, in some situations there will be no method of deciding which is the best solution without having some additional data.

MULTIPLE REGRESSION ANALYSIS

Suppose one has a force field defined by a constraint matrix, $\frac{Z}{\sim}$, for which the determinant of ($\left.Z^{\prime} \frac{J^{\prime}}{\sim} \frac{P J Z}{N}\right)$ is too small to obtain a convergent solution. One then wishes to adjust as many of the force constants in the set $\underset{\sim}{\Phi}$ as possible to obtain a least squares fit between the observed and calculated frequencies. One starts with a force field containing the most important force constants. These constants are then refined by the perturbation technique, While holding all other force constants fixed at zero. One then enters a multiple regression analysis in which all the possible interaction constants are added to the normal equations, one at a time, in the order which gives the greatest estimated improvement in the fit between the observed and calculated $\lambda^{\prime} s$, as measured by the variance of $\lambda, \underline{V}_{\lambda}$,

$$
\begin{equation*}
v_{\lambda}=(\overline{\lambda \lambda}) \cdot p_{\sim}^{p}(\overline{\Delta \lambda}) . \tag{167}
\end{equation*}
$$

This procedure is continued until the estimated standard error of the next force constant to be added becomes lower than some preset level. A convenient point to stop the regression is the point at which the standard error in λ begins to increase, that is, the decrease in the variance, V_{λ}, due to the addition of the next force constant does not compensate for the decrease in d , the number of degrees of freedom. The standard error in λ is defined by

$$
\begin{equation*}
\sigma_{\lambda}=\left(v_{\lambda} / d\right)^{\frac{1}{2}} \tag{168}
\end{equation*}
$$

This corresponds to the point at which the next force constant to be added to the force field will have an estimated standard error larger than the value of the constant itself and indicates that the determinant of (Z J'PJZ) is becoming small. When the regression is completed, the perturbation cycle is once more entered,
and the force field including those constants selected as significant by the regression is refined. Because the process is iterative, $J Z$ is a function of the force constants, and it may be desirable to again enter the regression after refining the constants to obtain the modified JZ matrix. This process is based on least squares theory and is subject to three criticisms. First, the errors in λ may not be random due to anharmonicity. Second, if the number of degrees of freedom is small, least squares does not apply. Third, if the $\Delta \bar{\Phi}_{\underline{i}}$ are large, the linear approximation is poor, and the variance estimates, V_{λ}, will reflect this error.

The method does, however, give one a systematic procedure for selecting a subset of force constants that will give a well-behaved perturbation. In addition, the final estimates of the standard errors in $\underset{\sim}{\Phi}$ will give some indication of the approximations involved in the regression.

In the stepwise regression, a force constant that may be significant at an early stage may become insignificant after the addition of other force constants. The insignificant force constant is remoyed from the regression equation before adding additional force constants.

The normal equations are a set of simultaneous linear algebraic equations in $\underset{\sim}{\Delta}$ and are solved by the Gaussian elimination method, that is,

$$
\begin{equation*}
\underset{\sim}{Y}=\$ \Delta \bar{\Phi} \tag{169}
\end{equation*}
$$

where $\underset{\sim}{Y}=(\underset{\sim}{J Z}) \cdot \underset{\sim}{p} \overline{\sim \lambda}$ and $\underset{\sim}{S}=(\underset{\sim}{J Z}) \cdot(\underset{\sim}{P}(J Z)$. For convenience, the normal equations are normalized to unity as follows:

$$
\begin{equation*}
c_{i j}=s_{i j} /\left[\left(s_{i i}\right)^{\frac{1}{2}}\left(s_{j j}\right)^{\frac{1}{2}}\right] \tag{170}
\end{equation*}
$$

$$
\begin{equation*}
X_{i}=Y_{i} /\left[\left(S_{i i}\right)^{\frac{1}{2} \sigma} \sigma\right] \tag{171}
\end{equation*}
$$

where $\sigma=\left[(\overline{\Delta \lambda}) \cdot \frac{P}{\sim}(\overline{\Delta \lambda})\right]^{\frac{1}{2}}$. The matrix $\underset{\sim}{C}$ is the correlation matrix and ${\underset{\sim}{\sim}}^{-1}$ is the variance-covariance matrix. An F level ($F_{i n}$) for entering a force constant and an F level (Fout) for removing a force constant are entered with the input data. The $\underset{\sim}{C}$ matrix at any stage in the regression is partially inverted, that is, the matrix can be partitioned into a matrix for the variables in the regression corresponding to ${\underset{\sim}{N}}^{-1}$ and into a matrix for the variables not in the regression corresponding to $\underset{\sim}{c}$. The variance increase due to the deletion of a variable, \underline{j}, is estimated by

$$
\begin{equation*}
v_{j}=\left(X_{j}^{-1}\right)^{2} /\left(C_{j j}^{-1}\right) \tag{172}
\end{equation*}
$$

for variables in the regression, and if the minimum ${\underset{-j}{j}},{ }_{-m i n}$, satisfies

$$
\begin{equation*}
v_{\min } a / \sigma<F_{\text {out }} \tag{173}
\end{equation*}
$$

the variable corresponding to $\mathrm{V}_{\mathrm{min}}$ is removed. If no variable is to be removed, the variance reduction due to the addition of the variables not in the regression is estimated by

$$
\begin{equation*}
v_{i}=x_{i}^{2} / C_{i i} \tag{174}
\end{equation*}
$$

and if the largest $\underline{-}_{\underline{-}}, V_{\max }$, satisfies the condition

$$
\begin{equation*}
V_{\max } a /\left(\sigma-V_{\text {max }}\right)>F_{\text {in }} \tag{175}
\end{equation*}
$$

the variable corresponding to $V_{\text {max }}$ is added to the regression.

It must be emphasized that the regression is a statistical test and is carried out at some intermediate point in the force constant refinement.

NONCONVERGENCE

The refinement procedure is not infallible as may be testified to by several investigators who have reported difficulties, for example, (106-115). There are two conditions which will lead to nonconvergent problems. First, if the initial F matrix is a poor approximation, $\overline{\Delta \lambda}$ will be large and $\overline{\Delta F}$ will contain large elements. In this case, the linear approximation given by Equation (101) in the text will be poor. This will be true also if the normal coordinates are very sensitive to certain force constants, causing the elements of $\underset{\sim}{J}$ to change drastically on each cycle. This will lead to oscillations because the corrections will tend to overshoot. This can be seen by examining Equation (99) in the main text. This difficulty can sometimes be overcome by finding a better initial $\underset{\sim}{\sim}$ matrix, or by selectively scaling down the large values in $\overline{\Delta F}$ in the first few cycles of the refinement. In effect, one must guide the calculations into a region where the linear approximation is valid: If the force field is not adequate, that is, if an important interaction constant is missing, it may not be possible to do this and the force field must be modified.

The second cause of nonconvergence is singularity or near-singularity in the normal equations, that is, the determinant of the matrix ($Z_{\sim}^{\prime} \sim_{\sim}^{\prime} P J Z$) is very small compared with the product of the diagonal terms,

$$
\begin{equation*}
\mathbb{K}^{\left(Z^{\prime} J^{\prime} P J Z\right)_{k k}} \tag{176}
\end{equation*}
$$

In this case, the calculations will diverge rapidly or converge very slowly to an ill-defined solution. This problem arises when the frequencies are nearly independent of one or more force constants or if two or more force constants are

 give an acceptable fit to the frequencies. In order to make the calculations converge, this variable must be fixed and eliminated from the normal equations.

$$
\begin{equation*}
\overline{\Delta \lambda}=J Z \overline{\Delta \Phi} . \tag{177}
\end{equation*}
$$

If two or more force constants are strongly correlated, one finds that the corresponding column of the JZ matrix will be linearly related. In order to cure this cause of singularity, some of the constants of the related set must be fixed or one must use some model to obtain a relation between the two that can be used as a further constraint in the $\underset{\sim}{Z}$ matrix.

In some situations, the difficulties caused by oscillation of successive values of $\bar{\Phi}_{\underline{i}}$, slow convergence, singularity or near-singularity of the normal...
 making the following modification in Equation (111) in the text. This equation may be rewritten as Equation (178) where and $\underset{\sim}{b}$ are constants and $\underset{\sim}{\underset{\sim}{x}}$ is a unit matrix.

$$
\begin{equation*}
\overline{\Delta \Phi}=\mathrm{a}\left(Z_{\sim}^{\prime} \mathcal{N}^{\prime} \underset{\sim}{p J Z} \underset{\sim}{ }+\mathrm{bE}\right)^{-1}{\underset{\sim}{Z}}^{\prime}{\underset{\sim}{N}}^{\prime} p \bar{\sim} \bar{\sim} \tag{178}
\end{equation*}
$$

The first term, a, is a scaling factor by which all of the adjustments are multiplied. This factor was mentioned in the above paragraph, and it ensures that $\overline{\Delta \Phi}$ does not produce force constants which lie outside the range over which the force constant-frequency relationships are approximately linear. This device is particularly useful in the first few iterations when "overshooting" is most likely to occur. This device has been employed successfully by a number of workers, for instance, Long and Gravenor (116).

The second term，b，represents additions to the diagonal terms of the normal matrix．Inclusion of this factor in the refinement has been labeled ＂damped least squares＂by workers in the field，among them，Schachtschneider （89）．The use of this factor in convergence problems was first suggested by Levenberg（117）and later，independently，by Marquardt（118）．Marquardt has shown that if a large enough positive value of b is used；convergence must occur． However，in many refinement problems convergence readily occurs without the use of a and／or b ，and in these cases，the rate of convergence is inhibited by b ， often quite seriously．

Adams and Churchill（119）have offered methods by which the appropriate values for a and b can be determined．

In summary，if the＂damped least squares＂procedure does not succeed，in order to obtain a stable solution the indeterminant and strongly correlated constants must be eliminated from the normal equations until the determinant assumes an acceptable value．This is equivalent to eliminating rows and columns from the matrix（ $Z^{\prime} J^{\prime} P J Z$ ）． こえ～べ

The elimination procedure may be carried out by trial and error by repeating the perturbation calculation with various force constants constrained equal to zero or a constant value until one obtains a convergent solution that gives an acceptable fit to the observed data and reasonable uncertainties on all the force constants．This is time consuming，so it is convenient to use the stepwise multiple regression technique previously described to select the most significant subset of force constants out of a set of possible constants．

APPENDIX V

This appendix contains the user instructions, flow diagrams, and listings for the computer programs employed in the normal coordinate analyses of the 1,5-anhydropentitol compounds. These programs form a package of programs which are available on tape from the Computer Center at The Institute of Paper Chemistry, Appleton, Wisconsin 54911 (Code No. IPCTHOO1).

CART

The computer program CART computes the cartesian coordinates of the atoms in a molecule from the bond distances and bond angles. If desired, the program will also compute the center of mass, moments of inertia, principal moments of inertia, and principal cartesian coordinates. As a check on the computation of the cartesian coordinates, the distances between each atom and every other atom are tabulated. The principal moments of inertia and the coordinate transformation are obtained by diagonalizing the moment of inertia tensor. This is accomplished by the subroutine, HDIAG, which uses the Jacobi method of diagonalization. At the option of the user, the standard cartesian coordinates and/or the principal cartesian coordinates are punched onto cards in the proper format for use in the programs GMAT and EIGV.

The program was written by J. H. Schachtschneider (89) and modified for use in this thesis. CART is coded in FORTRAN IV. The program may be used with the IBM 360/44 RAX operating system.

A flow diagram of CART is given in Fig. 36 and the listing in Table XLVI.

Figure 36. The Filow Diagrom of CART

TABLE XLVI (Continued)

```
        IF(TE)133,132,133
        132 CS =-0.33333333
            SS=0.94280907
            GO TO 135
        133 CS=COS(CON*TE)
            SS=SIN(CON*TE)
        135 DSQ=0
            DO 138 M=1.3
            VBA(M)=COR(NB,M)-COR(NA,M)
            VCA(M)=COR(NC,M)-COR(NA,M)
        138 DSQ=DSQ+VBA(M1**2
            RAB=SQRT(DSQ)
            SCALE=0.0
            DD 142 M=1,3
            TRANS(M,l)=VBA(M) / RAB
    142 SCALE=SCALE* TRANS(M,1)*VCA(M)
            DSQ=0.0
            DO 146 M=1,3
            RJA(M)=VCA(M)-SCALE*TRANS(M*1)
    146 DSQ=DSQ+RJA(M)**2
            RAJ=SQRT(DSQ)
            DO 148 M=1,3
    148 TRANS(M,2)=RJA(M) / RAJ
            TRANS(1,3)=TRANS(2,1)*TRANS(3,2)-TRANS(3,1)*TRANS (2,2)
            TRANS(2,3)=TRANS(3,1)*TRANS(1,2)-TRANS(1,1)*TRANS(3,2)
            TRANS(3;3)=TRANS(1,1)*TRANS(2,2)-TRANS(2,1)*TRANS(1,2)
            PRC(1)=R*CS
            PRC(2)=R*SS*COS(CON*PH)
            PRC(3)=R*SS*SIN(CON*PH)
            DO 160 M=1,3
            COR(NO,M)=COR(NA,M)
            DO 160 K=1,3
    160 COR(NO,M)=CDR(ND,M)+TRANS(M,K)*PRC(K)
    161 WRITE(6,60000)
60000 FORMAT(1HO.' ')
            WRITE. (6,60)
            60 FORMAT(55HO ATOM ND. X
            DO 164 I=1,NOAT
    164 WRITE (6,62)I,(COR(I,M),M=1,3),H(1)
            62 FORMAT(4X,13,3X,3F12.6,F13.6)
            (F(NOPT) 165,1230,165
C PUNCH STANDARD CARTESIANS
165 NX=0
            DO 1225 [=1,NOAT
            DO 1225 M=1,3
            IF(0.000005-ABS(COR(I,M)))1220,1220,1224
1220 NX= NX+1
                            NR(NX)=M
            NCO(NX)=1
            DAT(NX)=CDR(I,M)
            GO TO 1225
1224 COR(I,M)=0.0
1225 CONTINUE
```


TABLE XLVI (Continued)

```
    NX=NX+1
    NR(NX)=-1
    NCO(NX)=0.0
    DAT (NX)=0.0
    1228 WRITE (7,70)IND,NDAT,NX,(RECORD(I),I=1,12)
    1229 WRITE (7.72)(NR(I),NCO(1),DAT(I),I=1,NX)
    1230 WRITE (6,68)(RECORD(I),1=1,36)
        68 FORMAT(21H1 ATOM DISTANCE CHECK/(1X;18A4))
            DO 1236.I=1,NOAT
            DO 1234 J=1,NOAT
            DSQ=0.0
            DO 1233 M=1,3
            RR(M)=COR(J,M)-COR(I;M)
    1233 DSQ=DSQ+RR(M)*RR(M)
    1234 D(J)=SQRT(DSQ)
    1236 WRITE (6,69)I,(D(J):J=1;NOAT)
        69 FORMAT(5HOATOMI3/( 7F10.6))
            IFINOPTI168,168,92
            FIND CENTER:OF MASS
    168WT=0.0
                            DO 170 I= I,NOAT
    170WT=WT+W(I)
            DO 180 M=1,3
            CM(M)=0.0
            DO 179 I=1,NOAT
    179CM(M)=CM(M)+W(I)*COR(I,M)
    180 CM(M)=CM(M)/WT
            DO 185 I=1,NOAT
            RT(I)=0.0
            DO 185 M=1,3
            X(I,M)=COR(I,M)-CM(M)
    185 RT(I)=RT(I)+(X(I;M) ) ##2
            DO 190 I=1,3
            DO 190 J=1,3
            ONER(I,J)=0.0
            DO 190 K=1,NOAT
            IF(I-J)189,187,189
    187 DNER(I,J)=DNER(I,J)*W(K)*(RT(K)-X(K,I)*X(K,I))
    GO TO 190
    189 DNER(I,J)=DNER(I,J)-W(K)* X(K,I)*X(K,J)
    190 CONTINUE
        WRITE (6,80)(RECDRD(I),I=1,12),WT,(CM(M),M=1,3)
        80 FORMAT (27HI MOMENT OF INERTIA TENSOR. 12A4/13HO TOTAL MASS=F12.6,
            116H,CENTER OF MASS=3F12.61
            DO 192 I=1,3
    192 WRITE (6,82)(DNER(I,J),J=1,3)
    82 FORMAT(1H03F12.6)
        N=3
        I EGEN=0
C FIND TRANSFORMATION TO PRINCIPAL AXES.
    CALL HDIAG(DNER;N,IEGEN,TR;NR)
    200 WRITE (6,84)(DNER(I,I),I=1,3)
    84 FORMAT(2OHO PRINCIPAL MOMENTS 3FI2.6,2OH AND TRANSFORMATION.)
```

```
    201 DO 202 J=1.3
    202 WRITE (6,82)|TRII,J),J=1,3)
C
    ROTATE TO PRINCIPAL AXES.
    OO 210 I= I.NOAT
    OO 210 J=1.3
    CAR(I,J)=0.0
    OO 210 K=1.3
    210 CAR(I,J)=CAR(I,J)+TR(K,J)*X(I, K)
    WRITE (6,86)(RECORD(I),I=1,36)
    86 FORMAT\34HO PRINCIPAL CARTESIAN COORDINATES/(1X,18A4|)
    WRITE (6,60)
    OO 215 I=1,NOAT
    215 WRITE (6,62)I.(CAR\I,M),M=1.3),H(I)
        NX=0
C PUNCH PRINCIPAL CARTESIANS
    IF(IFPUN) 240,240,220
    220 00 225 I=1,NDAT
        DO 225 M=1,3
        IF(0.000005-ABS(CAR{I,M))1221.221.224
    221NX=NX+1
    NR(NX)=M
    NCO(NX)=I
    DAT(NX)=CAR(I,M)
        GO TO 225
    224CAR(I,M)=0.0
    225 CONTINUE
        NX=NX+1
        NR(NX)=-1
        NCO(NX)=0.0
        DAT (NX)=0.0
    236 WRITE (7,70)IND,NOAT,NX,{RECORD(1),I=1,12)
        70 FORMAT (13,6H NOAT =13,4H NX=14,12A4)
    238 WRITE (7,72)(NR(I),NCO(I), पAT(I),I=1,NX)
        72 FORMAT(2I 3,F12.6,213,F12.6,213,F12.6.213,F12.6)
    240 IF(NISO)92,92,242
C
C -06 IN COLUMN 1-3 ALPHA-NUMERIC INFORMATION ON REMAINDER
    242 READ (5,20)IND.{RECORD(I),I=1,15)
        20 FORMAT(I3,15A4)
            IF(6+INO)92,243,92
C READ ISOTOPIC MASSES NOAT DF THEM IN ORDER I-NOAT (GF12.6)
    243 READ (5,22)(W\I),I=1,NOAT)
    22 FORMAT(6F12.6)
        GO TO 168
        END
    SUBROUTINE HOIAG (H,N,IEGEN,U,NR)
C MIHDI3.FORTRANIV DIAGONALIZATION OF A REAL SYMMETRIC MATRIX BY
C THE JACOBI METHOD.
C PROGRAMMED BY CORBATO ANO M. MERWIN OF MIY
C CALLING SEQUENCE FOR DIAGONALIZATION
C CALL HDIAGI H, N, IEGEN. U. NRI
C WHERE H IS THE ARRAY TO BE DIAGONALIZED.
C N.IS THE ORDER OF THE MATRIX, H.
```

table Xlvi (Continued)
IF (N-1) 1000,1000,17
C SCAN FOR LARGEST OFF DIAGONAL ELEMENT IN EACH ROW
C X(I) CONTAINS LARGEST ELEMENT IN ITH ROW
C
17 NMII=N-1
DO 30 I=1,NMII
X(I) = 0.0
IPLI= I+1
DO 30 J={PL1,N
IF(XII)-ABS(H(I,J))) 20,20,30
20 x(I)=ABS(H{I,J))
IQ(I)=J
30 CONTINUE
SET INDICATOR FOR SHUT-OFF.RAP=2**-27,NR=NO.OF ROTATIONS
RAP=.745058059E-08
HDTEST=1.0E38
FIND MAXIMUM OF X(I) S FOR PIVOT ELEMENT AND
TEST FOR END OF PROBLEM
40 DO 70 I=1,NMII
IF (I-1) 60,60,45
45 IF(XMAX-X(1)) 60,70,70
60 XMAX=X(I)
IPIV=I
JPIV=IQ(I)
70 CONTINUE
IS MAX. XII) EQUAL TO ZERO, IF LESS THAN HDTEST,REVISE HDTEST
IF (XMAX) 1000,1000,80
80 IFI. HDTESTI 90,90,85
85 IF (XMAX - HDTEST) 90,90.148
90 HDIMIN = ABS\ H {1,1))
DO 110 I=2,N
IF (HDIMIN - ABSI H (I,IJ)I 110.110,100

```

TABLE XLVI (Continued)
```

 100 HDIMIN=ABS(HII.I))
 110 CONTINUE
 HDTEST = HDIMIN*RAP
 RETURN IF MAX.HII,JILESS THAN(2**-27)ABSF(H(K,K)-MIN)
 IF (HDTEST-XMAX) 148,1000.1000
 148 NR= NR+1
 COMPUTE TANGENT, SINE AND COSINE&HII,II,H(J.J)
 XDIF=H(IPIV,IPIVI-HIJPIV,JPIV)
 XD=SIGN{2.O.XDIFI*HIIPIV.JPIVI
 XS=XDIF**2+4.0*HIIPIV.JPIVI**2
 150 TANG=XO / (ABSIXDIF) + SQRT(XS))
 COSINE=1.0/SQRTI1.0+TANG**21
 SINE=TANG*COSINE
 HII=H(IPIV,IPIV)
 H(1I,II)=COSINE**2*{HII+TANG*(2.O*H(II,JJ)+TANG*H(JJ,JJ)))
 H(JJ,JJ)=COSINE**2*{H{JJ,JJ)-TANG*(2.0*H(II,JJ!-TANG*HII})
 H\IPIV&JPIVI=0.0
 PSEUDO RANK THE EIGENVALUES
 ADJUST SINE AND COS FOR COMPUTATION OF HIIKI AND UIIKI
 IF (H(IPIV,IPIV) - HIJPIV.JPIVI) 152.153.153
 152 HTEMP = HIIPIV.IPIV)
 H(IPIV,IPIV) = H(JPIV,JPIV)
 H(JPIV,JPIV) =HTEMP
 C RECOMPUTE SINE AND COS
HTEMP = SIGNI1.0. -SINEI * COSINE
COSINE =ABS(SINE)
SINE =HTEMP
153 CONTINUE
INSPECT THE IOS BETWEEN I +1 AND N-1 TO DETERMINE
WHETHER A NEW MAXIUM VALUE SHOULD BE COMPUTE SINCE
THE PRESENT MAXIMUM IS IN THE I OR J ROW.
DO 350 I=1,NMIL
IFII-IPIVI210.350.200
200 IF (I-JPIV) 210,350,210
210 IF(IQ(I)-IPIV) 230.240.230
230 IF(IQ(II-JPIV) 350.240.350
240 K=IQ(I)
250 HTEMP=H(I,K)
H(I,K)=0.0
lPL L=I+1
X(1) =0.0
SEARCH IN DEPLEYED ROW FOR NEW MAXIMUM
DO 320 J=IPLI,N
IF (XII)-ABS(HII.J)) 1 300,300,320
300 X(I) = ABS(H(I.J))
IQ(I)=J
320 CONTINUE
H(I,K)=HTEMP
350 CONTINUE
X(IPIV) =0.0
X(JPIV) =0.0
C CHANGE THE DRDER ELEMENTS OF H

```
```

 DO 530 I=1,N
 IF {I-IPIV| 370,530,420
 370 HTEMP = H(I,IPIV)
 H(I,IPIV)= COSINE*HTEMP + SINE*HII,JPIV)
 IF (X(I) - ABSI HII,IPIVI) 1380,390,390
 380 X(I) = ABS(HII,IPIV))
 IQ(I) = IPIV
 390 H(I.JPIV) = - SINE*HTEMP + COSINE*H(I.JPIV)
 IF (X(I) - ABSI H(I,JPIVI)) 400,530,530
 400 X(I) = ABS(H(I,JPIV))
 IQ(I) = JPIV
 GO TO 530
 420 IF(I-JPIV) 430,530,480
 430 HTEMP = H(IPIV,I)
 H(IPIV,I) = COSINE*HTEMP + SINE*H(I,JPIV)
 IF (X(IPIV) - ABSIH(IPIV.II)) 440.450,450
 440 X(IPIV) = ABS(H(IPIV,II)
 IQ(IPIV)=1
 450 H(I,JPIV) = - SINE*HTEMP + COSINE*H(I,JPIV)
 IF (X(I) - ABS(H(I,JPIV))) 400.530.530
 480 HTEMP = HIIPIV.II
 H(IPIV,I) = COSINE*HTEMP + SINE*H(JPIV,I)
 IF (X(IPIV) - ABS{ H(IPIV,I)I) 490,500,500
 490 X(IPIV) = ABS(H(IPIV,II)
 IQ(IPIV)=I
 500 H(JPIV,I) = - SINE*HTEMP + COSINE*H(JPIV,I)
 IF (X(JPIV) - ABS(H(JPIV,I)) 1510,530,530
 510 X(JPIV) = ABS(H(JPIV,I))
 IQ(JPIV) = I
 530 CONTINUE
 TEST FOR COMPUTATION OF EIGENVECTORS
 IF(IEGEN) 40,540.40
 540 DO 550 I=1,N
 HTEMP=U(I,IPIV)
 U(I,IPIV)=COSINE*HTEMP+SINE*U(I;JPIV)
 550 U(I,JPIV)= -SINE*HTEMP+COSINE*U(I,JPIV)
 GD TO 40
 1000 RETURN
END

```

With the RAX operating system, the program deck is preceded by an /ID card and a /JOB GO card. The program deck is followed by the input data deck. The following input data are required for each problem.
1. Problem ID Card. The first card to be read is the problem ID card. This card should contain a -09 in Columns l-3 (FORMAT I3).
2. Problem Control Card. The next card is the problem control card containing the following information.
a. IND, which identifies the problem control card, must be a - 09 and punched in Columns 1-3 (FORMAT I3).
b. NOAT is the number of atoms in the molecule, currently limited to 50 or less, and punched in Columns \(4-7\) (FORMAT I4).
c. NISO is the number of additional isotopically substituted molecules. In this case, the geometry will be the same for the substituted molecules; however, the masses of the isotopes will be different. NISO is punched in Columns 8-11 (FORMAT I4). If there are to be no isotopically substituted molecules to be included, a zero may be punched in Column 11 or left blank.
d. NOPT is the punch and moment of inertia option control. If NOPT = -1 , both the standard and principal cartesian coordinates are computed and punched on cards (the principal cartesian coordinates will be punched on cards only for IFPUN \(=1\) ). If NOPT \(=0\), both the standard and the principal cartesian coordinates are punched on cards (i.e., if IFPUN \(=1\), otherwise neither the principal or standard cartesian coordinates will be punched onto cards). If NOPT \(=1\), only the standard cartesian coordinates are computed, and they are punched on cards. NOPT is punched in Columns 14-15 (FORMAT I2).
e. IFPUN controls the card punching of the principal cartesian coordinates. IFPUN must equal 1 for the cards to be punched. IFPUN is punched in Column 17 (FORMAT I2).
3. Problem Information Cards. The next two cards are the problem information cards. These cards contain any alphanumeric information about the problem that the user may wish to include. The data may fill the first 72 columns of each card with the first three columns left blank (FORMAT 18A4).

Warning: These cards may be left blank, but they must be included with the input.
4. Atom Definition Cards. The next set of cards contains the atom position information. There is one card for each atom in the molecule, i.e., NOAT cards. The following data must appear on each card (this information appeared earlier in the text).
a. NO, the number of the atom being defined, punched in Columns 1-3 (FORMAT I3).
b. NA, the number of atom \(A\), punched in Columns 4-6 (FORMAT I3).
c. NB, the number of atom B, punched in Columns 7-9 (FORMAT I3).
d. NC, the number of atom \(C\), punched in Columns 10-12 (FORMAT I3).
e. R , the distance between atom NO and atom NA, i.e., the bond length \(\overline{\mathrm{NO}}-\mathrm{NA}\), punched in Columns 13-25 (FORMAT F \(\overline{12} .6\) ).
f. TE, the angle between atoms NO, NA, and NB, i.e., the bond angle NO-NA-NB, punched in Columns 25-36 (FORMAT F12.6).
Note: If TE is left blank or assigned a 0 , the angle is assumed to be tetrahedral.
g. PH , the dihedral angle between atoms NO, NA, NB, and NC, punched in Columns 37-48 (FORMAT F12.6).

Note: The sign convention given in the text must be followed. The convention is reversed for angles less than 90 degrees.
h. WT is the mass of atom NO. This information is only required if the center of mass is to be computed. WT is punched in Columns 49-60 (FORMAT Fl2.6).

Warning: The atom definition cards must be in the order of NO = \(1,2,3, \cdots\), etc., and NA, NB, and NC must be less than NO.
5. Mass ID Card. If NISO is greater than zero, the mass ID card for each isotopically substituted molecule must follow the atom definition cards. The mass ID card contains a -06 in Columns \(1-3\) (FORMAT I3) and may contain descriptive alphanumeric information in Columns 4-63 (FORMAT 15A4).
6. Atom Mass Cards. The masses of the atoms in the isotopically substituted molecule follow the mass ID card in the order \(1,2,3, \cdots\), NOAT with six masses per card (FORMAT 6F12.6).
7. Data Termination Card. The last card in the input deck designates the end of the input data. This card has a 999 punched in Columns l-3 (FORMAT I3).

Note: If another problem is to be included, the problem ID card for the next data deck is placed at this point instead of the data termination card. This arrangement permits the stacking of problems.

With the RAX system, the input deck is preceded with a /DATA card, and ended with a / END card.

OUTPUT INFORMATION

At the option of the user, the following information will be printed out.
1. The atom definition cards.
2. The standard cartesian coordinates.
3. The atom distance check.
4. The moment of inertia tensor and center of mass coordinates.
5. The principal moments and the transformation from standard coordinates.
6. The principal cartesian coordinates.

The following information may be punched onto cards at the request of the program user.
1. The standard cartesian coordinates in the sequence NR, NCO, and DAT, four per card [FORMAT \(4(I 2, F 12.6)]\).
a. NR designates the \(\underline{x}, \underline{y}\), or \(\underset{z}{ }\) coordinate by \(a l, 2\), or 3 , respectively (FORMAT I2).
b. NCO is the atom number (FORMAT I2):
c. DAT is the numerical value for the \(x, \underline{y}\), or \(\underline{z}\) coordinate of atom NCO. The row number following the last element is set equal to -l.
2. The principal cartesian coordinates with the same format as for the standard cartesian coordinates [4(I2,F12.6)].

GMAT

This program calculates the wilson \(G\) matrix (i.e., the vibrational inverse kinetic energy matrix) for polyatomic molecules. Input includes the cartesian
coordinates and masses for the atoms in the molecule, the numbers of the atoms defining a complete set of internal valence coordinates, and the symmetry transformation, if desired. The program computes the \(\underset{\sim}{B}\) matrix (i.e., the transformation from cartesian coordinates to internal coordinates), \(\underset{\sim}{\sim}\) matrix, and factored \(\underset{\sim}{G}\) matrix, if the transformation to symmetry coordinates is included. At the option of the user, the program will punch each of the above matrices on cards in a format suitable for input to FADJ, FLPO, or EIGV. (Only those \(\underset{\sim}{B}\) and \(\underset{\sim}{G}\) matrix elements whose absolute value is greater than 0.00005 are considered significant and retained by the program.)

The program was written by J. H. Schachtschneider (89) and modified for use in this thesis. GMAT is coded in FORTRAN IV and may be used with the IBM \(360 / 44\) RAX operating system.

A flow diagram of GMAT appears in Fig. 37 and the listing in Table XLVII.

\section*{INSTRUCTIONS FOR PROGRAM USE}

If isotopically substituted molecules are included in the computation, two scratch tapes must be employed. With the RAX system, the program deck is preceded by a. /ID and a /JOB GO card followed by two /FILE cards if scratch tapes are required. The program deck is followed by the input data which is comprised of the information below.
1. Problem ID Card. The first card of the input deck is the problem ID card. This card contains a -09 punched in Columns l-3 (FORMAT I3).
2. Problem Control Card. The problem control card follows the problem ID card. with the information given below.
a. IND, indicating the start of a problem. IND \(=-09\) which is punched in Columns l-3 (FORMAT I3).
b. NOPROB, the problem number punched in Columns 4-9 (FORMAT I6).


Figure 37. The Flow Diagram for GMAT

TABLE XIVII
90

93 CALL EXIT
94 READ(5,12) IND,NOPROB,NOAT,NQ,INTC,NISO,IFB,NCON
12 FORMAT(13,16,614)
RECONVERT PROBLEM CONTROL CARD CONTAINING THE FDLLOWING INFORMATIO 1. IND \(=-09\), INDICATING THE START OF A PROBLEM.IN COLUMNS 1-3. 2.NOPROB, THE PROBLEM NUMBER IN COLUMNS 4-9.
3. NOAT. THE NUMBER OF ATOMS IN THE MOLECULE. COLUMNS 11-13. 4.NQ. THE NUMBER OF INTERNAL COORDINATES. PUNCHED IN COLUMNS 15-1 5. INTC. COLUMNS 18-21. A 1 WILL CAUSE THE UNSYM. G MATRIX TO BE PUNCHED ON CARDS.
6. NISO=0 OR 1 FOR ADDITIONAL ISOTOPIC MOLECULES. COLUMN 25.
7.IFB, B MATRIX OUTPUT OPTIDNS. FOR IFB=1 B IS PUNCHED. FOR IFB=0 B IS NOT PUNCHED. IFB IS PUNCHED IN COL. 29. 8. NCON, PRINTOUT SUPPRESSION OPTION. IF NCON = O, NO SUPPRESSION OCCURS. IF NCON \(=1\), THE PRINTER OUTPUT OF THE X-MATRIX. B-MATRIX, UNSYMMET. G-MATRIX,U-MATRIX,AND CARD PUNCH DUTPUT OF THE SYMMET.G-MATRIX ARE SUPPRESSED. PUNCHED IN COL. 33.
INPUT DATA FOLLOWS PROBLEM CONTROL CARD IN THE OROER
1.TWO PROBLEM INFORMATION CARDS. COLUMNS 1-3 BLANK
2. THE CARTESIAN CODRDINATES
3. INTERNAL COORDINATE DEFINITIONS AND THE CARTESIAN COORDINATES OF THE POINTS GIVING THE ORIENTATIONS OF THE LINEAR BENDING COORDINATES. ONE POINT FOR EACH LINEAR BEND AS DEFINED

\section*{TABLE YLVII (Continued)}


TABLE XLVII (Continued)


\section*{TABLE XLVII (Contimued)}

C TORSION SUBROUTINE
160 CALL TORSINR,NC, \(B, X, N R G, N R U, N C G, N C U, D G, D U, I N D, N O P R O B, N D A T, N Q\), IINTC, NISO,IFB,NOINT,NO2,N1,N2,N3,N4,N5,N6,MX,JOKER,NOB,NA,MAP; GO TO 174
170 NO2=NOINT+1
C LINEAR BENDING SUBRDUTINE
CALL LIBEINR,NC, B, X,NRG,NRU,NCG,NCU,DG,DU,IND,NOPROB, NOAT, NQ,
1 INTC, NISO, IFB, NOINT,NOZ,NI,N2,N3,N4,NS,N6, MX, JOKER,NOB,NAI NOINT \(=\) NOINT +1
GO TO 174
172 CALL LIBEINR,NC, B, \(X, N R G, N R U, N C G, N C U, D G, D U, I N D, N O P R O B, N O A T, N Q\),
1 INTC,NISO, IFB,NOINT,NO2,N1,N2,N3,N4,N5,N6, MX, JOKER,NOB,NAI
174 [F(JOKER) 180, 180,605
180 CONTINUE
GO TO 118
182 NIB \(=\mathrm{NOB}+1\)
\(N R(N \mid B)=-5\)
NC(NIB) \(=0\)
\(B(N I B)=0.0\)
\(M=1\)
\(L L=1\)
DO \(2654 \mathrm{~L}=1\), NOINT
00 \(36751 \mathrm{~K}=\mathrm{LL}\), NIB
IF(NR(K)-L)26119.36751.26119
36751 CONTINUE
\(26119 \mathrm{JJ=K}-2\)
LL=K
\(N N=K-3\)
DO \(55000 \mathrm{MH}=1\), NN
DO \(50000 \mathrm{~J}=\mathrm{M}, \mathrm{JJ}\)
IF(NC(J+1)-NC(J))60000.50000,50000
\(60000 \mathrm{D}=\mathrm{NC}(\mathrm{J})\)
\(C=B(J)\)
NC(J) \(=\) NC \((J+1)\)
\(B(J)=B(J+1)\)
\(N C(J+1)=D\)
\(B(d+1)=C\)
50000 CONTINUE
55000 CONTINUE
\(M=\downarrow+2\)
26541 CONTINUE
IF(NCON187653,87653,23123
87653 WRITE(6,2314)
2314 FORMAT(10HI B-MATRIX)
23123 IF(IFB) 200,19500,19000
C PUNCH B
19000 IF(NCON) 190.190 .200
190 WRITE (7,54)IND, NOB, (RECORD(I), I=1,15)
54 FORMAT (13,5H NOB=14,15A4)
192 WRITE \((7,56)(N R(K), N C(K), B(K), K=1, N I B)\)
56 FORMATI \(213, F 12.6,213, F 12.6,213, F 12.6,213, F 12.61\)
C WRITE 8
19500 IF(NCON)195,195,200

\section*{TABLE XLVII (Continued)}

195 WRITE \((6,55) \mathrm{NOB},(\) RECORD \((1), I=1,15)\)
55 FORMAT(6HO NOB= \(14,15 A 4)\)
WRITE \((6,57)(N R(K), N C(K), B(K), K=1, N I B)\)
57 FORMAT(1H , 6(214,F11.6))
200 IF(NISO)210,210,202
202 REWINO 1
WRITE(1,111)(NR(K),NC(K),B(K),K=1,NIB)
END FILE 1
111 FORMAT (214,F11.6)
READ ISOTOPE CONTROL CARD CONTAINING THE FOLLOWING INFORMATION
1. IN \(=-06\) IDENTIFYING CARD IN COLUMNS \(1-3\).
2. IFU. U MATRIX READ OPTION CONTROL IFU=0 IF U MATRIX IS NOT INCLUDED. G NOT SYMMETRIZED. IFU=1 THE U MATRIX IS ENTERED. IFU=-1 U IS NOT INCLUDED WITH INPUT AND G IS SYMMETRIZED WITH U FROM PREVIOUS ISOTOPIC MOLECULE. IFU PUNCHED IN COLUMN 5-6
3. NSB, THE NUMBER OF FACTORED BLOCKS + 1. COLUMNS 7-9.
4.NS . THE NUMBER OF SYMMETRY COORDINATES. CDLUMNS 10-12.
name of molecule may be punched dn rest of card.
210 READ (5,20)IND,IFU,NSB,NS, (REC(I),I=1,14)
20 FDRMAT(413,14A4)
IF(IND+6)91,212,91
212 IF(NCON)57896,57896,66888
57896 WRITE(6,9559) IND,IFU,NSB,NS

\(C\) READ MASSES • SIX PER CARD IN ORDER 1 THRDUGH NOAT.
C FORMAT (6F12.6)
66888 READ (5,22)(WTIL),L=1,NOAT)
22 FORMAT(6F12.6)
IF(NCON) 33543,33543,31457
33543 WRITE 16,67 ) (REC(I), \(1=1,14\) ), (WT(J),J=1,NOAT)
67 FURMAT(17H1 UNSYMMETRIZED G.14A4/11H FOR MASSES/(9F12.6))
31457 NG=0
NT \(=1\)
NUB \(=1\)
DO \(216 \mathrm{~L}=1, \mathrm{NOAT}\)
DO \(216 \mathrm{M}=1,3\)
\(K=3 *(L-1)+M\)
W(K)=1.0 / WT(L)
\(216 \mathrm{BB}(\mathrm{K})=0.0\)
DO \(218 \mathrm{I}=1\), NQ
\(218 \mathrm{G}(1)=0.0\)
IFINISOI220,220,219
219 REWINO 1
READ(1,111) (NR(K),NC(K),B(K),K=1,NIB)
220 DO \(250 \mathrm{~K}=1\), NIB
221 IF(NR(K)-NT)382,240,382
382 DO 226 L=NUB,NOB
\(I=N R(L)\)
\(J=N C(L)\)
G(I)=G(I)+BB(J)*W(J)*B(L)
226 CONTINUE

DO 232 I=NT,NQ
IF(ABS(GII)-0.00005)232,232.229
229 NG=NG+1
NRG(NG) \(=N T\)
NCG(NG) \(=1\)
DG(NG)=G(I)
232 CONTINUE
IF(NR(K))252,252,234
\(234 N T=N T+1\)
NUB \(=K\)
DO \(238 \quad I=N T, N Q\)
238 GIII=0.0
DO \(239 \quad i=1\), NA
\(239 \mathrm{BB}(11=0.0\)
GO TO 221
240 JX=NC(K)
\(B B(J X)=B B(J X)+B(K)\)
250 CONTINUE
252 NOG \(=\) NG +1
NRG(NOG) \(=-1\)
NCG(NOG) \(=0\)
DG(NOG) \(=0.0\)
IF(IFU)253,254,253
253 IF(IFB) \(260,25801,25400\)
C PUNCH G
25801 IF(INTC) \(25800,25800,25400\)
25400 IF(NCONI254,254,260
254 WRITE (7,58)IND,NG,(REC(1),I=1,14)
58 FDRMAT(I3,5H NG=14,14A41
256 WRITE (7,56)(NRG(L),NCG(L), DG(L),L=1,NOG)
C
WRITE G
25800 IF(NCON)258,258,260
258 WRITE (6,59)NG,(REC(I), \(1=1,14\) )
59 FORMAT(5HO NG=14,14A4)
WRITE(6,57)(NRG(L), NCG(L), DG(L), \(L=1, N O G)\)
260 IF(IFU)261,210.263
261 REWIND 2
READ (2,333)(NRU(K), NCU(K), DU(K), \(K=1\), NOU)
333 FORMAT(214,F11.6)
GO TO 282
C READ U MATRIX.
C THE U MATRIX IS PUNCHED IN 18 COLUMN FIELDS, 1 TO 4 PER CARD
SIMILAR TO THE \(X\) MATRIX, THE ROW NO. FOLLOWING THE LAST ELEMENT
IS SET EQUAL TO -3. ZERO ELEMENTS NEED NOT BE ENTERED.
U MUST BE ENTERED IN ROW ORDER. NEED NOT BE NORMALIZED.
263 NOU=0
\(\mathrm{JX}=1\)
OSO \(=0.0\)
IF(NCON)65653.65653.264
65653 WRITE 6,7557\()\)
7557 FORMAT(1OHI U-MATRIX)
264 READ \((5,16)(\operatorname{NROW}(L)\), NCOL(L), DAT(L), \(L=1,4)\)
DO \(274 \mathrm{~L}=1,4\)

\section*{TABLE XLVII (Continued)}

IF(NROW(L))276.274,266
266 IF(NS-NROW(L)) 615, 267,267
267 IF(NROW(L)-JX)615,270.268
268 DA(JX) \(=1.0 / \operatorname{SQRT}(D S Q)\)
\(J X=j x+1\)
\(0 S Q=0.0\)
GO TO 267
270 DSO=DSO +DAT(L)**2
\(\mathrm{NOU}=\mathrm{NOU}+1\)
NRU(NOU)=NROW(L)
NCU(NOU)=NCOL (L)
DU(NOU)=DAT(L)
274 CONTINUE
GO TO 264
276 IF(3+NROW(L))615,277,615
277 DA \((J X)=1.0 / S Q R T(D S Q \mid\)
IF(NS-JX) \(615,278,615\)
278 DO \(279 I=1\), NOU
J=NRUII
279 DU(I)=OA(J)*DU\{I)
\(\mathrm{NOU}=\mathrm{NOU}+1\)
NRU(NOU) \(=-3\)
NCU(NOU) \(=0\)
DU(NOU) \(=0.0\)
IF (NCON) \(81985,81985,36631\)
81985 HRITE(6,4884)(NRU(L),NCU(L),DU(L), L=1, NOU)
4884 FORMAT(1H ,6(213,F12.6))
36631 IF(NISO)282,282,280
280 REHIND 2
HRITE(2,333)(NRU(I), NCU(I), DU(I),I=1,NOU)
END FILE 2
C READ SYMMEIRY BLOCK INFORMATION. NUMBERS OF FIRST ROW OF EACH
C FACTORED BLDCK. LAST NUMBER IS NS+1. PUNCHED IN 24 THREE COLUMN
C FIELDS. I.E.FORMAT(24I3)
282 READ (5, 18)(NB(I),I=1,NSB)
\(\mathrm{NU}=\mathrm{NOU}-1\)
\(J L=1\)
\(J X=2\)
NUT \(=1\)
NUB \(=1\)
\(I X=1\)
290 HRITE (6,60)IND,JL,(REC(I),I=1,14)
IF (NCDN) \(65987,65987,89981\)
65987 WRITE (7,71)IND.JL.(REC(I),I=1.14)
C PUNCH SYM. G
60 FORMATIIHO, \(13,12 H\) SYM.G.BLOCKI3,14A4)
71 FORMATII3.12H SYM.G.BLOCKI3.14A4I
\(89981 \mathrm{NT}=\mathrm{NB}(\mathrm{JX})\)
\(N P=N B\{J L\}\)
\(N E L=0\)
300 DO \(302 \quad I=1, \mathrm{NO}\)
GU(I) \(=0.0\)
302 U(I)=0.0
```

 303 DO 320 K=NUB,NOU
 IF(NRU(K)-IX)306,315,306
 306 DO 312L=1,NG
 l=NRG(L)
 JøNCG(L)
 309 GU(I)=GU(I)*U(J)*DG(L)
 1F(1-J)310,312,310
 310 GU(J)=GU(J)+U(I)*DG(L)
 312 CONTINUE
 75391 GO TO 322
315 JU=NCU(K)
320 U(JU)=DU(K)
322 NUB=K
DO 324 I=IX,NS
324 UG(1)=0.0
JAK=0
DO 335 L=NUT,NU
IF(JAK)332,330,332
330 1F(NRU(L)-1X)331,332.331
331 NWY=L
JAK = 1
332 {=NRU(L)
J=NCU(L)
335 UG(I)=UG(I)+DU(L)*GU(J)
NUT=NWY
DO 350 J=IX,NS
IF(0.00005-ABS(UG{J)1)342.350.350
342 IF(NT-J)343,343,344
343 WRITE (6,72)IX,J
72 FORMAT(4OH ERROR,ERROR,ERROR- G NOT FACTORING.ROHI4,TH COLUMNI4)
344 NEL=NEL+1
IF(101-NEL) 34500,34500,347
34500 [F(NCON) 88979,345,68996
345 WRITE (7,56)(NRS(I),NCS(I),GS{1), I=1,100)
68996 WRITE (6,57)(NRS(I),NCS(I),GS(1),I=1,100)
88979 NEL=1
347 NRS(NEL)=1X-NP+1
NCS(NEL): =\-NP+1
GS(NEL)=UG(J)
350 CONTINUE
IX=IX+1
IF(NT-IX)354,354,300
354 NEL=NEL+1
NRS(NEL)=-1
NCS(NEL)=0
GS(NEL)=0.0
IFINCONI35427,358,89765
358 WRITE (T,56)(NRS(I),NCS(1),GS(I),I=1,NEL:
89765 WRITE (6,57)(NRS(I),NCS(I),GS(I),I*I,NEL)
35427 JL=JL+1
Jx=\x+1
360 IF(NSB-JX)210,290,290
600 WRITE (6,80)NOPROB,L,NROW(L),NCQL(LI,DATIL)

```
80. FORMAT(24H X MATRIX ERROR PROBLEMIT,6H FIELDI3,6H READS2I4pF12.6I GO 10210
605 WRITE (6, 82JL,NE(L),NCOD(L),NI(L),NJ(L),NKIL),NL\{L), NX(L),NY(L) 1, JOKER
82 FORMATI33H INTERNAL COORDINATE ERROR.FIELDI3,6H READS8I4; BH JOKE \(1 R=131\) GO TO 210
615 WRITE \((6,84)\) NOPROB,L,NROWIL),NCOL(L), DATIL)
84 FORMATI24H U MATRIX ERROR PROBLEMI7,6H FIELDI3,6H READS2I4,F12.6) GO 10210 END SUBROUTINE BOSTINR,NC,B,X,NRG,NRU,NCG,NCU,DG,DU,IND,NOPROB,NOAT, INQ, INTC,NISO, IFB,NOINT,NO2,N1,N2,N3,N4,N5,N6, MX, JOKER,NOB,NAI THIS SUBROUTINE COMPUTES THE B MATRIX ELEMENTS FOR A BOND STRETCH
C AS DEFINED BY WILSON.
DIMENSION NR( 900),NC( 900), B( 900), NRG(1900), NCG(1900), DG(1900). 1 NRU(300), NCU(300), DU(300), X(3,25). 2RIJ(3)
100 [F(N6)130,101,130
101 IF(N5)130,102,130
102 IF(N4) 130,103,130
103 IF(N3)130,104,130
104 IF(NOAT-N2)130,105,105
105 IF(NOAT-N1)130.106.106
\(106 \mathrm{I}=\mathrm{NL}\)
\(J=N 2\)
DIJSQ=0.0
\(10900112 M=1,3\)
RIJ(M) \(\times X(M, J)-X(M, I)\)
112 DIJSQ=DIJSQ+RIJ(M)*RIJIM)
114 DO \(120 \mathrm{M}=1,3\)
IF(ABS(RIJ(M))-0.00005)120.120.115
\(115 \mathrm{NOB}=\mathrm{NOB}+1\)
NR (NOB) \(=\) NOINT
\(N C(N O B)=3 *(I-1)+M\)
B(NOB)=-RIJ(M)/SQRT(DIJSQ)
\(\mathrm{NOB}=\mathrm{NOB}+1\)
NR (NOB) \(=\) NOINT
NC (NOB) \(=3 *(\mathrm{~J}-1)+M\)
B(NOB)= RIJ(M) / SQRT(DIJSQ)
120 CONTINUE
GO TO 132
130 JOKER=1
132 RETURN
END
SUBROUTINE BENDINR,NC, \(B, X, N R G, N R U, N C G, N C U, D G, D U, I N D, N O P R O B, N O A T\), INQ, INTC,NISO, IFB,NOINT,NO2,N1,N2,N3,N4,N5,N6, MX,JOKER,NOB,NAI
C THIS SUBROUTINE COMPUTES THE B MATRIX ELEMENTS OF A VALENCE
C ANGLE BENDING COORDINATE AS DEFINED BY WILSON. \(J=\) THE NUMBER DF THE CENTRAL ATOM DIMENSION NR( 900),NC( 900), B( 900), NRG(1900), NCG(1900), DG(1900). 1 NRU(300), NCU(300), DU(300), X(3,25).

TABLE XLVII (Continued)
```

 2RJI(3),RJK(3),RIXJX(3),EJI(3);EJK(3)
 100 IF(NOAT-N6)150,101.101
101 IFINOAT-N5)150,102,102
102 IFIN4)150,103,150
103 1F(NOAT-N3)150,104,104
104 IF(NOAT-N2) 150,105.105
105 IFINOAT-N1)I150,106,106
106 I=N1
107 J=N2
K=N3
IX=N5
JX=NG
IF(|X)110,110,112
110 IX=1
Jx=1
112 DJISQ=0.0
DJKSQ=0.0
0XSO=0.0
11500 122 M=1,3
RJI{M)=X(M,I)-X(M,J)
RJK(M)=X(M,K)-X(M,J)
RIXJX{M}=X(M,JX)-X{M,IX)
DJISO=DJISQ+RJI(M)*RJI(M)
DJKSQ=DJKSQ4RJK(M)*RJK(M)
122 DXSQ=DXSQ+RIXJX(M)*RIXJX(M)
123 DJI=SQRT(DJISQ)
DJK=SQRT(DJKSQ)
DX= SQRT(DXSQ)
IF(DX)128,127,128
127 DX=1.0
128 DOTJ=0.0
129 DO 132 M=1,3
EJI(M)=RJI(M)/DJI
EJK(M)=RJK(M)/DJK
132 DOTJ=DOTJ\&EJI(M)*EJK(M)
{F(1.0-ABS(DOTJ))152,152,134
134 SINJ=SQRT(1.0-DOTJ*DOTJ)
136 DO 144 M=1,3
SMI=(DX*(ODTJ*EJI(M)-EJK(M)|)/ (DJI*SINJ)
IF(ABS(SMI)-0.00005)138.138.137.
137 NOB=NOB41
NR(NOB I=NOINT
NC(NOB)=3*(I-1)+M
B(NOB\=SMI
138SMK={DX*(DOTJ*EJK(M)-EJI(M)})/ {DJK*S|NJ)
IF(ABS (SMK)-0.00005)1140,140,139
139 NOB=NOB +1
NR(NDB)=NDINT
NC(NOB)=3\&(K-1)+M
B(NOB)=SMK
140 SUM=SMI+SMK
IF(ABS (SUM)-0.000051144.144.142
142 NOB=NDB+1

```

\section*{TABLE XLVII (Continued)}
```

 NR(NOB)=NOINT
 NC(NOB)=3*(J-1)+M
 B(NOB)=-SUM
 144 CONTINUE
 GO TO 154
 150. JOKER=1
 GO TO 154
 152 JOKER=2
 154 RETURN
 END
 SUBROUTINE OPLAINR,NC,B,X,NRG,NRU,NCG,NCU,DG,DU,IND,NOPROB,NOAT,
 INQ,INTC,NISO,IFB,NDINT,NO2,N1,N2,N3,N4,N5,N6,MX, JOKER,NOB,NAI
 THIS SUBROUTINE COMPUTES THE B MATRIX ELEMANTS FOR AN OUT OF
 C
C
C
C
PLANE HAGGING COORDINATE AS DEFINED BY HILSON.
I= THE END ATOM
J= THE APEX ATOM
K AND L = THE ANCHOR ATOMS.
DIMENSION NR(900),NC(900),B{ 900),NRG(1900),NCG{1900),0G{1900).
1 NRU(300),NCU(300),DU(300), X(3,25),
2RJI(3),RJK(3),RJL(3),RIXJX(3),EJI(3),EJK(3),EJL(3),C1(3),C2(3),
3C3(3)
100 IF(NOAT-N6)170,101,101
101 [F(NOAT-N5)170,102,102
102 IF(NOAT-N4)170,103,103
103 IF(NOAT-N3)170,104,104
104 {F(NOAT-N2)170,105,105
105 IF(NOAT-N1)170,106,106
106 I=N l
J=N2
K=N3
L=N4
IX=N5
JX=N6
IF(IX)110,110,112
110 I }X=
JX=1
112 DJISQ=0.0
DJKSQ=0.0
DJLSQ =0.0
115 DXSQ=0.0
116 00 124 M=1.3
RJI(M)=X(M,I)-X(M,J)
DJISQ=DJISQ+RJI(M)*RJI(M)
RJK(M)=X(M,K)-X(M,J)
DJKSQ=DJKSQ+RJK(M)*RJK(M)
RJL(M)=X(M,L)-X(M,J)
DJLSQ=OJLSQ+RJL(M)*RJL(M)
RIXJX(M)=X(M,JX)-X(M,IX)
124 DXSQ=DXSQ+RIXJX(M)*RIXJX(M)
126 DJI=SQRT(OJISQ)
DJK=SQRT(DJKSQ)
DJL=SQRT(DJLSQ)
DX=SQRT(DXSQ)

```

\section*{TABIEE XLVII (Continued)}
```

130 (F(DX)132,131,132
131 DX=1.0
132 DO 136 M=1,3
EJI(M)=RJI(M)/DJI
EJK(M)=RJK(M)/DJK
136 EJL(M)*RJL(M)/DJL
137C1(1)=EJK(2)*EJL(3)-EJK(3)*EJL(2)
C(12)=EJK(3)*EJL(1)-EJK(1)*EJL(3)
C1(3)=EJK(1)*EJL(2)-EJK(2)*EJL(1)
C2(1)=EJL(2)*EJI(3)-EJL(3)*EJI(2)
C2(2)=EJL(3)*EJI(1)-EJL(1)*EJI(3)
C2(3)=EJL(1)*EJI(2)-EJL(2)*EJI(1)
C3(1)=EJI(2)*EJK(3)-EJI(3)*EJK(2)
C3(2)=EJ[(3)*EJK(1)-EJI(1)*EJK(3)
139C3(3)=EJI(1)*EJK(2)-EJI(2)*EJK(1)
140 DET=EJI(1)*C1(1)+ESI{2)*Cl(2)+EJI(3)*Cl(3)
DOT I=0.0
142 DO 143 M=1,3
143 DOTI=DOTI+EJK(M)*EJL(M)
144 IF(1.0-ABS(DOTI))172.172,146
146 SINI=SQRTI1.O-DOTI*DOTII
147 SINT=OET/SINI
148 IFI1.0-ABSISINTIII74,174.149
149 COST=SQRT(1.O-SINT*SINT)
150 TANT=SINT/COST
155 DO 168 M=1,3
157 SMI =(ICIIM|/ICOST\#SINII|-(TANT*EJIIM|I)/DJI
IFIABS(SMI)-0.00005)160,160,158
158 NOB=NOB+1
NR(NOB)=NOINT
NC(NOB)=3*(I-1)*M
B(NOB)=DX*SMI
COMPI = SINI\#SINI
160 SMK=((C2(M)/(COST*SINI))-{(TANT*(EJK\&M)-DOTI*EJL(M))|/COMPI|)/DJK
IF(ABS(SMK)-0.00005)163,163,161
161 NOB=NOB+1
NR(NOB)=NOINT
NC(NOB)=3*(K-1)+M
B(NOB)=DX*SMK
163 SML=((C3(M)/ICOST*SINI|)-(|TANT*(EJL(M)-DOTI*EJK(M))|/COMPI|)/DJL
IF(ABS(SML)-0.00005)166,166,164
164 NOB=NOB+1
NR(NOB)=NOINT
NC(NOB)=3*(L-1)+M
B(NOB)=DX*SML
166 SUM=SMI+SMK+SML
IF(ABS(SUM)-0.00005)168,168,167
167 NOB=NOB+1
NR(NOB)=NOINT
NC(NOB)=3*(J-1)+M
8(NOB)=-DX*SUM
168 GONTINUE
GO TO 178

```

\section*{TABLE XLVII (Continued)}
```

170 JOKER=1
GO TO 178
172 JOKER=2
GO TO 178
174 JOKER=3
178 RETURN
END
SUBROUTINE TORSINR,NC,B,X,NRG,NRU,NCG,NCU,DG,DU,IND,NOPROB,NOAT,
INO,INTC,NISO,IFB,NOINT,NO2,N1,N2,N3,N4,N5,N6,MX, JOKER,NOB,NA,MAPI
THIS SUBROUTINE COMPUTES THE B MATRIX ELEMENTS FOR THE TORSION
AS DEFINED BY WILSION.
I AND L = THE END ATOMS . I NEARER OBSERVER.
J AND K = THE CENTRAL ATOMS. J NEARER OBSERVER.
DIMENSION NR(900),NC(900),B(900),NRG(1900),NCG(19001,DG(1900),
1 NRU(300),NCU(300), DU(300), X(3,25),
2RIJ(3),RJK(3),RKL(3),RIXJX(3),EIJ(3),EJK(3),EKL(3),CR1(3),CR2(3)
100 IF(NOAT-N6)180,101,101
101 IF(NOAT-N6)180,102,102
102 IF(NOAT-N4)180,103,103
103 IF(NOAT-N3)180,104,104
104 IF(NOAT-N2)180,105,105
105 IF(NOAT-N1)180,106,106
106 I=N1
J=N2
K=N3
L=N4
IX=N5
JX=NG
(F(IX)110,110,112
110 IX=1
JX=1
112 DIJSQ=0.0
DJKSQ=0.0
DKLSO=0.0
115 DXSQ=0.0
116 DO 124 M=1,3
RIJ(M)=X(M,J)-X(M,I)
DIJSQ=DIJSQ+RIJ(M)*RIJ(M)
RJK(M)=X(M,K)-X(M,J)
DJKSQ=DJKSQ+RJK(M)*RJK(M)
RKL(M)=X(M,L)-X(M,K)
DKLSQ=DKLSQ+RKL(M)*RKL(M)
RIXJX(M)=X(M,JX)-X(M,IX)
124 DXSQ=DXSQ+RIXJX(M)*RIXJX(M)
126 DIJ=SQRT(DIJSQ)
DJK=SQRT(DJKSQ)
DKL=SQRT(DKLSQ)
DX=SQRT(DXSQ)
130 [F(DX)132,131,132
131 DX=1.0
132 DO 136 M=1.3
EIJ(M)=RIJ(M)/DIJ

```

\section*{TABLE XLVII (Continued)}
```

 EJK(M)=RJK(M)/DJK
 136 EKL(M)=RKL(M)/DKL
138 CR1(1)=EIJ(2)*EJK(3)-E{J(3)*EJK(2)
CR1(2)=EIJ(3)*EJK(1)-E\J(1)*EJK(3)
CRI(3)=EIJ(1)*EJK(2)-EIJ(2)*EJK(1)
CR2(1)=EJK(2)*EKL(3)-EJK(3)*EKL(2)
CR2(2)=EJK(3)*EKL(1)-EJK(1)*EKL(3)
142CR2(3)=EJK(1)*EKL(2)-EJK(2)*EKL(1)
143 DOTPJ=0.0
DOT PK =0.0
145 DO 147 M=1,3
DOTPJ=DOTPJ-EIJ(M)*EJK(M)
147 DOTPK=DOTPK-EJK(M)*EKL(M)
148 [F(1.0-ABS(DOTPJ))182,182,149
149 IF(1.0-ABS(DOTPK))182,182,150
150 SINPJ=SQRT(1.0-DOTPJ*DOTPJ)
SINPK=SQRT(1.0-DOTPK*DOTPK)
152 DO 164 M=1,3
SMI=-CRI(M)/(DIJ*SINPJ*SINPJ)
IF(ABS(SMI)-0.00005)156,156,154
154 NOB=NOB+1
NR(NOB)=NOINT
NC(NDB)=3*(1-1)+M
B(NOB)=DX*SMI
156 F1=(CRI(M)*(DJK-DIJ*DOTPJ))/{DJK*DIJ*SINPJ*SINPJ)
F2=(DOTPK*CR2(M))/(DJK*SINPK*SINPK)
SMJ=F1-F2
1F(ABSISMJ)-0.000051158,158,157
157 NOB=NOB+1
NR(NOB)=NOINT
NC(NOB)=3*(J-1)+M
B(NOB)=DX*SMJ
158 SML= CR2(M)/\DKL*SINPK*SINPK)
IF(ABS(SML)-D.00005)160.160.159
159 NOB=NOB+1
NR(NOB)=NOINT
NC(NOB)=3*(L-1)+M
B(NOB)=DX*SML
160 SUM=SMI+SMJ+SML
IF(ABS(SUM)-0.00005)164,164,162
162 NOB=NOB+1
NR(NOB)=NOINT
NC(NOB)=3*(K-1)+M
B(NOB)=-DX*SUM
164 CONTINUE
GO TO 186
180 JOKER=1
GO TO 186
182 JOKER=2
186 RETURN
END
SUBROUTINE LIBEINR,NC,B,X,NRG,NRU,NCG,NCU,DG,DU,IND,NOPROB,NOAT,

```

\section*{ThBLE XLVII (Continued)}

INQ, INTC,NISO, IFB,NOINT,NO2,N1,N2,N3,N4,N5,N6,MX,JOKER,NOB,NA)

THIS SUBROUTINE COMPUTES THE B MATRIX ELEMENTS FOR A LINEAR BEND OR FDR A PAIR OF PERPENDICULAR LINEAR BENDS. NI =NO2 THE NUMBER OF THE SECOND COORDINATE. 1 AND K = THE END ATOMS. \(J=\) THE CNTRAL ATOM.
A gives the cartesian coordinates of a point in spaceg such THAT THE VECTOR FROM ATOM J TO POINT A IS PERPENDICULAR TO THE LINE I-J-K AND SERVES TO DRIENT THE CODRDINATES IN SPACE. DIMENSION NR( 900),NC( 900),B( 900), NRG(1900), NCG(1900), DG(1900).
1 NRU(300), NCU(300), DU(300), X(3,25),
2A(3),RJI(3), RJK(3),RIXJX(3),UN(3), UNIT(3),UP(3), EJI(3), EJK(3)
JSTOP = 0
100 IF(NOAT-N6) 160,101,101
101 IF(NOAT-N5)160.102.102
102 IF (NOAT-N4) 160,103,103
103 IF (NOAT-N3)160,104,104
104 IF(NOAT-N2) 160,105,105
105 READ (5,24)(A1I), I=1,3)
24 FORMAT(3F12.6)
IF(N4)160,109,108
\(1081=\mathrm{N} 2\)
\(J=N 3\)
\(K=N 4\)
\(J S T O P=1\)
GO TO 110
109 I=N1
\(\mathrm{J}=\mathrm{N} 2\)
\(K=N 3\)
110 I \(X=N 5\)
JX=N6
IFfIX1111,111,112
111 I \(X=1\)
\(J x=1\)
112 DJISQ=0.0
DJKSQ=0.0
DXSQ=0.0
116 DAJSQ \(=0.0\)
117 DO \(124 \mathrm{M}=1,3\)
RJI(M) \(=X(M, I)-X(M, J)\)
DJISQ=DJISQ+RJI(M)*RJI(M)
RJK \((M)=X(M, K)-X(M, J)\)
DJKSO=DJKSQ+RJK(M)*RJK(M)
RIXJX(M) \(=X(M, J X)-X(M, I X)\)
DXSQ=DXSQ+RIXJX(M)*RIXJX(M)
\(U N(M)=A(M)-X(M, J)\)
124 DAJSQ=DAJSQ+UN(M)*UN(M)
126 DJI=SQRT(DJISQ)
DJK=SQRT(DJKSQ)
DX=SQRT(DXSQ)
DAJ=SQRT(DAJSQ)
130 IF(OX)132.131,132
\(131 \mathrm{DX}=1.0\)

\section*{TABLE XIVII (Continued)}
```

132 DOTJ=0.0
DOTP=0.0
134 00 140 M=1,3
EJI(M)=RJI(M)/DJI
EJK(M)=RJK(M)/DJK
UNIT(M)=UN(M)/DAJ
DOTJ=DOTJ+EJI(M)*EJK(M)
140 DOTP=DOTP+EJI(M)*UNIT(M)
TEST=(ABS(00TS)-1.0)
IF(0.0001-ABS(TEST))162,142,142
142 IF(0.00005-ABS(DOTP))162,143,143
143 UP(1)=EJK(2)*UNIT(3)-EJK(3)*UNIT(2)
UP(2)=EJK(3)*UNIT(1)-EJK(1)*UNIT{3)
UP(3)=EJK(1)*UNIT(2)-EJK(2)*UNIT(1)
146 DO 149 M=1,3
IF(ABSIUNIT(M)I-0.00005)149,149.147
147 NOB=NOB+1
NR(NOBI=NOINT
NC(NOB)=3*(I-1)+M
B(NOB)=-DX*UNIT(M)/ DJI
NOB=NO8+1
NR(NOB)=NOINT
NC(NOB)=3*(K-1)+M
B(NOB)=-DX*UNIT(M)/ DJK
NOB=NOB+1
NR(NOB)=NOINT
NC(NOB)=3*(J-1)+M
B(NOB)=DX*(1.0/ DJI +1.0/DJK)*UNIT(M)
149 CONTINUE
IF(JSTOP)164,164,150
150 DO 158 M=1,3
IF(ABS(UP(M))-0.00005)158,158,151
151 NOB=NOB+1
NR (NOB)=NO2
NC(NOB)=3*(1-1)+M
B(NOB)=-DX*UP(M)/ DJI
NOB=NOB+l
NR(NOB)=NO2
NC(NOB)=3*(K-1)*M
B(NOB)=-DX*UP(M)/DJK
NOB=NOB+1
NR(NOB)=NO2
NC(NOB)=3*(J-1)+M
B(NOB)=DX*(1.0/DJI + 1.0/DJK)*UP(M)
158 CONTINUE
GO TO 164
160 JOKER=1
GO TO 164
162 JOKER=2
164 RETURN
END

```
c. NOAT, the number of atoms in the molecule. NOAT punched in Columns ll-13 (FORMAT I4).

Note: The maximum number of atoms permitted is 25 .
d. NQ, the number of internal coordinates, punched in Columns l4-17 (FORMAT I4).
e. INTC, must be a 1 for the unsymmetric \(G\) matrix to be punched on cards. INTC is punched in Column 21 (FORMAT I4).
f. NISO, the number of isotopically substituted molecules punched in Columns 22-25 (FORMAT I4).
g. IFB, may be 1,0 , or -1 . IFB is the \(B\) matrix suppression option. For IFB \(=-1\), the \(B\) and \(G\) matrices are not printed or punched onto cards. For IFB \(=\boldsymbol{Z}\), the \(\vec{B}\) matrix is printed, but not punched onto cards if NCON \(=0\), and the printing and punching of the \(G\) matrix depends on the values of INTC and. NGON. For IFB \(=1\), the \(B\) matrix and \(G\) matrix are printed and punched onto cards for NCON \(=0\). IFB is punched in Columns 26-29 (FORMAT I4).
h. NCON is the output suppression option. If \(N C O N=1\), all output, both printer and card punch, is suppressed, except the printout of the symmetric G matrix. There is no suppression for NCON \(=0\). NCON is punched in Column 33 (FORMAT I4).
3. Problem Information Cards. The problem control card is followed by two problem information cards. These cards may contain any desired alphanumeric information about the problem. The data can be punched in any column of the card except l-3, which should be left blank, through Column 72 (FORMAT 18A4).
Warning: These two cards must be included with the input data even if they are left blank.
4. Cartesian Coordinates. The next set of cards contain the cartesian coordinates, standard or principal, obtained as output data from CART [FORMAT \(4(2 I 3, F 12.6)]\). The row number following the last element should be -1 . This should have been accomplished by CART already.
5. Internal Coordinate Definition Cards. The next set of cards defines the internal coordinates. There are three internal coordinate "vectors" describing the internal coordinates per card. Each internal coordinate "vector" is denoted by eight numbers: NI, NCOD, N1, N2, N3, N4, N5, and N6. NI gives the number assigned to the internal coordinate, NCOD is the code number identifying the type of internal coordinate, and N1, N2, N3, N4, N5, and N6 are the numbers of the atoms defining the coordinate. A \(\overline{d e s c r i p t i o n ~} \bar{O}\) the internal coordinate coding system was presented earlier in this text which may also be found in Schachtschneider's manual (89) (FORMAT 24I3). The internal coordinate definition cards are followed by a card with -02 in Columns 1-3 which designates the end of the internal coordinate information.

Warning: The internal coordinates must be defined in the order 1 through NQ.

Note: If \(\mathrm{NI}=0\), the defined B matrix row is added to the B matrix row for the previous coordinat \(\mathbb{R}\), i.e., the internal coordinate becomes a linear sum of the two defined coordinates.
6. Isotope Control Card. There must be one of these cards for each molecule in the problem. The following information is contained on this card.
a. IN, identifies the isotope control card. IN \(=-06\) which is punched in Columns l-3 (FORMAT I3).
b. IFU, the \(U\) matrix read option control. (The \(U\) matrix is the transformation from internal coordinates to symmetry coordinates.) IFU may be a 1,0 , or -1 . IFU \(=0\), the \(U\) matrix is not included with the input and the \(G\) matrix is not symmetrized. IFU \(=1\), the \(U\) matrix is entered and the \(G\) matrix is symmetrized. IFU \(=-1,{ }^{刃}\) the \(U\) matrix is not entered with \({ }^{2}\) the input, but the \(G\) matrix is symmetrized with the \(U\) matrix from the previous isotopically substituted molecule. IFU is punched in Columns \(4-6\) (FORMAT I3).
c. NSB is the number of factored blocks or symmetry species plus 1 which is punched in Columns \(7-9\) (FORMAT I3).
d. NS is the number of symmetry coordinates which is punched in Columns 10-12 (FORMAT I3).
Note: The rest of the isotope control card through Column 68 may be used for descriptive alphanumeric information (FORMAT 14A4).
Warning: The isotope control card must be included with the input data even though there may not be any isotopically substituted molecules included in the problem.
7. Atomic Masses. The atomic masses, six per card, follow the isotope control card. The masses must follow in the order 1 through NOAT (FORMAT 6Fil2.6).
8. U Matrix. If IFU \(=1\), the \(U\) matrix must be included next. The \(U\) matrix Is punched in 18 column fieids, 1 to 4 per card, in a manner similar to the cartesian coordinates. The row number following the last element is set equal to -3. [See Schachtschneider (89) for a description of the U matrix.] The zero elements of the \(U\) matrix need not be included and the matrix does not have to be normalized. The row elements must be entered in order [FORMAT \(4(213, F 12.6)]\).
9. Symmetry Block Information. If IFU \(=1\), the U matrix is followed by a symmetry block information card giving the numbers of the first row of each factored block with the last number being NS +1 . These numbers are punched in 24 three column fields (FORMAT 24I3).
10. Data Termination Card. The data are followed by a card denoting the end of the problem. This card consists of 999 punched in Columns 1-3.

Note: If another problem is to be included with the input:data, the problem ID card of the next set of data is placed at this point instead of the data termination card.

Warning: If the \(\underset{\sim}{\boldsymbol{N}}\) matrix does not factor, a user error is signified.

With the RAX system the input deck is preceded by a /DATA card and ended with a /END card.

OUTPUT INFFORMATION

At the option of the program user, the following data will be printed out.
1. The cartesian coordinates (X matrix).
2. The internal coordinate definition "vectors."
3. The \(\underset{\sim}{B}\) matrix.
4. The atomic masses.
5. The unsymmetrized \(\underset{\sim}{\sim}\) matrix.
6. The normalized \(\underset{N}{U}\) matrix.
7. The symmetrized \(\underset{\sim}{\text { G }}\) matrix.

The data below willi be punched on cards if desired by the user.
1. The \(B\) matrix in the format row, column, and numerical value [FORMAT 4(213,F12.6)]. The row number following the last element is set equal to -5 .
2. The \(G\) matrix in the format row, column, and numerical value [FORMAT 4(213,F12.6)]. The row following the last element is set equal to -1.
3. The symmetrized or factored G matrix [FORMAT \(4(2 I 3, F 12.6)\) ]. The row number following the last el Jement is set equal to -1.

\section*{UBZM}

This program is designed to evaluate the transformation, \(\mathbb{Z}\), from force constant space to internal coordinate space. The program is specifically designed to calculate the SVQFF or UBFF which were described earlier in this text. The use of the program to compute the \(\mathbb{Z}\) matrix for a Urey-Bradey foree field will not be discussed here, but the reader will find a detailed description in Schachtschneider's manual (89). The employment of UBZM shall instead be oriented toward the computation of a simplified valence quadratic force field: The input data to UBZM consists of a specification of the \(\underset{\sim}{Z}\) matrix in terms of the position of the \(\frac{F}{\sim}\) matrix elements by row and column number and the number of the corresponding force constant parameters. The program then punches the \(\frac{\mathrm{Z}}{\sim}\) matrix on cards in a form suitable for use as input to ZSYM, FADJ, FLPO, and EIGV.

The program was written by J. H. Schachtschneider (89) and modified for use in this thesis. The program may be run with the IBM \(360 / 44\) RAX operating system.

A flow diagram of UBZM is presented in Fig. 38 and a listing in Table XLVIII [the UBFF subroutines are not included; see (89)].

INSTRUCTIONS FOR PROGRAM USE

The program deck must be preceded by a/ID and a/JOB GO card when the program is run with the RAX operating system.

Warning: If this program is to be required to compute the \(F\) matrix, the array \(F(I, J)\) in the dimension statement must be changed to \(\mathbb{F}(50,50)\) which will permit the evaluation of \(\underset{F}{m}\) up to 50 force constants.


Figure 38. The Flow Diagram of UBZM

\section*{LISTING OF UBZM}
```

UBZM SD-4080 CODED IN FORTRAN IV FOR THE IBM-360/44 RAX SCHACHTSCHNEIDER $9 / 1 / 60$ REVISED 10/1/63
MODIFIED FOR RAX BY L J PITZNER 4/1/71
THIS PROGRAM EVALUATES THE TRANSFORMATION FROM UREY-BRAOLEY SPACE TO INTERNAL COORDINATE SPACE FOR THREE TYPES OF CONFIGURATIDNS GIVEN THE CARTESIAN COORDINATES OF THE ATOMS. THE CONFIGURATIONS ARE 1.GEM.2.TETRA,AND 3. CIS. DIMENSION D(57.57 I.NCI(800), NC2 (800), NFO(800). DATINZI 800). 1X(3, 25), NA(5), KOOOFX(10), NFOR(700),N(NT(700), N1 (700), N2(700), 2NROWX (4), NCOLX(4), DATINX(4),RECORD(36), UBF(100),R(3),F\{1,1) INTEGER PUNCH
EQUIVALENCE (D) 1).NC1(1)).(D(810), NC2(1)).(D(1620).NFO(1)). 1(DI2430). DATINZ(1))
READ CONTROL CARD
CONTROL CARD CONTAINS THE FOLLOWING INFORMATION

1. IND $=-09$, INDICATING THE START OF A PROBLEM. IN COLUMNS 1-3.
2. NOPROB, THE PROBLEM NUMBER, COLUMNS 4-9.
3. NOAT. THE NUMBER OF ATOMS. IN COLUMNS 10-12. LESS THAN 25.
4.NCOR. THE NUMBER OF INTERNAL COURDINATES. IN COLUMNS 13-15.
5.NF, THE NUMBER OF FORCE CONSTANTS.IF COLUMNS 16-18.
4. IFF=I,IF THE VALUES OF THE FORCE CONSTANTS ARE INCLUDED HITH THE INPUT.
IFF $=0$, IF NOT. PUNCHED IN COLUMN 20.
5. NOFF, THE NUMBER OF NON UREY-BRADLEY CONSTANTS TO BE FILLED IN. IN COLUMNS 21-23
6. INFRA=1, IF THE INTERMEDIATE GEM,TETRA,AND CIS MATRICES ARE
TO BE WRITTEN.
INFR $=0$ IF NOT.
PUNCHED IN COLUMN 25.
7. PUNCH $=1$. IF THE PUNCHING OF THE $2-M A T R I X ~ I S ~ T O ~ B E ~ S U P R E S S E D . ~$ OTHERWISE PUNCH $=0$. IN COL. 27.
8. NOX, IF NOX=1, THE X-MATRIX IS NOT READ IN AND THE ATOM
DISTANCE CHECK IS NOT COMPUTED. THIS OPTION APPLYS TO JHE VFF
ONLY. NOX IS PUNCHED IN COLUMN 29.
90 READ 5,41 IND, NOPROB, NOAT, NCOR, NF, IFF, NOFF, INFRA, PUNCH, NOX
4 FORMATII3,16,313,12,I3,12,12,I21
91 IFIIND+9194,92,94
94 IF(IND-999)90.95.90
95 CALL EXIT
92 CONTINUE
INPUT DATA FDLLOWS CONTROL CARD IN THE ORDER
1.PROBLEM INFORMATION CARDS. 2 CARDS
9. THE X MATRIX. IF NOX $=0$.
10. THE NUMBERS OF THE DIAGONAL FORCE CONSTANTS. 4. NUMBERS FOR THE NON UB DFF DIAGONAL ELEMENTS.
11. CONFIGURATION VECTORS
12. THE VALUES DF THE FDRCE CONSTANTS.
13. FOLLOW DATA WITH TWO BLANK CARDS.
READ PROBLEM INFORMATION CARDS
100 REAO $(5,6)($ RECDRD $(I), I=1,36)$
6 FORMAT (18A4)
```

\section*{TABLE XLVIII (Continued)}
```

 102 WRITE (6,50)NOPROB,(RECORD(I),I=1,36)
 50 FORMAT(22H1 Z MATRIX PROBLEM ND.IB/(12X,18A4))
 READ X MATRIX
 IF(NOX)8175,8175,130
 8175 WRITE(6,3773)
 3773 FORMAT(1OHO X-MATRIX)
 105 DO 107 1 = 1,3
 DO 107 J=1,NOAT
 107 X(I,J)=0.0
 110 READ (5,B)(NROWX(L),NCOLX(L),DATINX(L),L=1,4)
 HRITE(6,2772)(NROWX(L),NCOLX(L),DATINX(L),L=1,4)
 2772 FORMAT(1H .4(213,F12.6))
8 FORMAT(4(213,F12.61)
112 DO 118 L=1,4
IF(NROWXILJ)120,605,114
114 IF(3-NROWX(L))605,115,115
115 IF(NOAT-NCOLX(L))605,116,116
116 I=NROWX\LI
J=NCOLX(L)
118 X(I,J)=DATINX(L)
GO TO 110
120 IF(1+NROWX(L))605,130,605
130 READ (5,10)(NINT(J),NFOR(J),J=1,NCOR)
10 FORMAT(2413)
WRITE(6,1771)
1771 FORMAT(34HO DIAGONAL VALENCE FORCE CONSTANTS)
WRITE(6,7557)(NINT(J),NFOR(J),J=1,NCOR)
7557. FORMATIIH, 2413)
132 NZ=0
140 DO 145 K=1,NCOR
IF(NCOR-NINT(K))610,142,142
142 IF(NF-NFOR(K))610,143,143
143 NZ=NZ+1
NC1(NZ)=NINT(K)
NC2(NZ)=NINT(K)
NFO(NZ)=NFOR(K)
145 DATINZ(NZ)=1.0
150 IF(NOFF)170,170,152
152 READ (5,10)(N1(1),N2(I),NFOR(I),I=1,NOFF)
HRITE(6,9339)
9339 FORMAT(37HO VALENCE FORCE INTERACTION CONSTANTS)
WRITE(6,7557)(N1(I),N2(I),NFOR(I),I=1,NOFF)
160 DO 168 K=1,NOFF
IF(NCOR-N2(K))610,162,162
162 IF(N2(K)-N1(K))610,163,163
163 IF(NF-NFOR(K) 1610,164,164
164 NZ=NZ+1
NC1(NZ)=N1(K)
NC2(NZ)=N2(K)
NFO(NZ)=NFOR(K)
168 DATINZ(NZ)=1.0
170 JOKE=0

```

\section*{TABLE XLVIII (Continued)}
```

 172 READ (5,10)NOPT,NCOD,(NA(I),I=1,5).(KOOOFX(J),J=1,10), (NFOR(
 1K),K=1,131
 WRITE (6,80)NCOD,NOPT, (NA(I),I=1,5)
 80 FORMAT(24HO SUBCONFIGURATION CODEI4;8H, DPTIONI3/14H ATOM NUMBER
 1S/1H 514%
 WRITE (6,81)(K000FX(J),J=1,10)
 81 FORMAT(29H INTERNAL COORDINATE NUMBERS/1H 10I4)
 WRITE (6,82)(NFOR(K),K=1,13)
 82 FORMAT(25H FORCE CONSTANT NUMBERS /IH 13I4)
 174 IF(NDPT)400,400,180
180 IF(NCOD)615,615,181
181 IF(4-NCOD 1615,182,182
182 DO 184 I=1.5
IF(NA(1)/615,183,183
183 [F(NOAT-NA(I) 615,184,184
184 CONTINUE
186 DO 189 1=1.10
IF(KOOOFX(1))615,188,188
188 IF(NCOR-KOOOFX(I))615,189,189
189 CONTINUE
190 00 193 I=1.13
IF(NFOR(I|)615,192,192
192 IFINF-NFOR(I)/615,193.193
193 CONTINUE
200 MX=NCOD
GO TO (210,220,230,240),MX
210 CALL EVGEM ID,NC1,NC2,NFO,DATINZ,X,NA,KOOOFX,NFOR,NOPT,INFRA,
INOPROB,JOKE,NOAT,NF,NZI
IF(JOKE)172,172,620
220 CALL ETETRAID,NC1,NC2,NFO,DATINZ,X,NA,KOOOFX,NFOR,NOPT,INFRA,
INOPROB,JOKE,NOAT,NF,NZI
IF(JOKE)172,172,620
230 CALL EVCIS 1D,NC1,NC2,NFO,DATINZ,X,NA,KOOOFX,NFOR,NOPT,INFRA,
INOPROB, JOKE,NOAT,NF,NZS
IF |JOKEII72,172,620
240 CALL EVCISP(D,NC1,NC2,NFO,DATINZ,X,NA,KOOOFX,NFDR,NOPT,INFRA,
INOPROB,JOKE,NDAT,NF,NZI
IF(JOKE)172,172,620
400 WRITE (6,53)IND,NOPROB,NZ
53 FORMATIIHII3,17H Z MATRIX PROBLEMIB,5H NZ={6)
IF(NOPT)63631,63631,11443
6 3 6 3 1 ~ N U M = 1
KK=1
11554 DO 96315 J=1,NZ
ITEM=NCI(J)
IF(ITEM-NUM)96315,88887,96315
88887 NFOR(KK)=ITEM
NINT(KK)=NC2(J)
NI(KK)=NFO(J)
KK=KK+1
96315 CONTINUE
NUM=NUM+1
IF(NUM-NCOR) 11554,11554,12021

```

\section*{TABLE XLVIII (Continued)}
```

12021 DO 87635 I=1,NZ
NC1(I)=NFOR(I)
NC2(I)=NINTII)
NFD(I)=NI(I)
87635 CONTINUE
11443 IF(PUNCH)89735,89735,402
89735 WRITEI7,5335IIND,NOPROB,NZ
5355 FORMAT(I3,17H 2 MATRIX PROBLEMI8,5H NZ=16)
402 WRITE (6,54)(NCI(I),NC2(I),NFO(I),DATINZ(I),I=1,NZ)
54 FORMAT(1H 313,F9.6,313,F9.6.313,F9.6,313,F9.6,3I3,F9.6,3I3,F9.6)
IF(PUNCH)63571,63571,420
63571 WRITE(7,2992) (NC1(1),NC2(I),NFQ(1),DATINZ(I),I=1,NZ)
2992 FORMAT(3I3,F9.6,3I3,F9.6,313,F9.6,3I3,F9.6)
420 IF(IFF)462,462,421
421 IF(50-NCOR)462,422,422
422 READ (5,14)(UBF(1),I=1.,NF)
14 FORMAT(6F12.6)
424 DO 426 I=1.NCOR
DO 426 J=I.NCOR
426 F(I,J)=0.0
428 DO 434 K=1,NZ
I=NC1(K)
J=NC2(K)
M=NFD(K)
434 F(I;J)=F(I,J)+DATINZ(K)*UBF(M)
NX=0
436 DD 444 I=I,NCOR
DO 444 J=1,NCOR
438 IF(0.0001-ABS(FII,J)I)439,439,444
4 3 9 ~ N X = N X + 1
NC2(NX)=1
NFO(NX)=J
DATINZ(NX)=F(I,J)
444 CONTINUE
NX=NX+1
NC2(NX)=-2
NFO(NX)=0
DATINZ(NX)=0.0
448 WRITE (6,57)IND,NOPRDB,NX
57 FORMATI2H1 13,17H F MATRIX PROBLEMI8,5H NO=16)
450 WRITE (6,58)(NC2(I),NFO(I),DATINZ(I),I=1,NX)

```

```

 462 IF(NOX)88462,88462,90
 88462 DO 470 I=1,NOAT
DO 470 J=1,NOAT
DSQ=0.0
466 DO 468 M=1,3
R(M) =X(M,J)-X(M,1)
4 6 8 DSQ=DSQ+R(M)*R(M)
470 D(I,J)=SQRT(DSQ)
471 WRITE (6,60INOPROB
60 FORMAT(28HIATOM DISTANCE CHECK PROBLEMI8)
472 DO 474 I=1,NOAT

```

\section*{TABT,E XLVIII (Continued)}
```

474 WRITE (6,62)I,(DII,J),J=1,NOAT)
62 FORMAT(5HOATOMI3/(1OF12.6))
GO TO 90
605 WRITE (6,70INOPROB
70 FORMAT(24HO X MATRIX ERROR PROBLEMI8)
GO TO 90
610 WRITE (6,72)NOPROB
72 FORMAT(38HODIAGONAL FORCE CONSTANT ERROR PROBLEMI8)
GD TO 90
615 WRITE (6,74)NOPROB,NOPT,NCOD,I
74 FORMAT(14HOERROR PROBLEMI8,5H NOPTI3,5H CODEI3,3H I=13)
GO TO 90
620 WRITE (6,76)NOPROB,NOPT,NCOD,JOKE,(NAII),I=1,5),(K000FX(J),J=1,10)
1;(NFOR(K),K=1,13)
76 FORMATI28HOERROR IN SUBROUTINE PROBLEMIB,5H NOPTI3.5H CODEI3,5H JO
1KEI3/28131
GO TO 90
END

```

The data deck follows the program deck with the following information.
1. Problem Control Card. The problem control card is the first card in the data deck. This card contains the information given below.
a. IND, indicates the start of a problem. A -09 must be punched in Columns l-3 (FORMAT I3).
b. NOPROB is the problem number punched in Columns 4-9 (FORMAT I6).
c. NOAT, the number of atoms, punched in Columns 10-12 (FORMAT I3). Note: The number of atoms must be less than or equal to 25.
d. NCOR, the number of internal coordinates. NCOR is punched in Columns 13-15 (FORMAT I3).
e. NF, the number of force constants, punched in Columns 16-18 (FORMAT I3).

Note: The number of force constants must be 100 or less, except in those cases where \(F\) is to be evaluated, then the number of force constants must be 50 or less. (Force constant is used here to mean, more specifically, force constant parameter.)
f. IFF, a l signifies that the force constants are included with the input and that the \(F\) matrix is to be evaluated. IFF is punched in Column 20 or is left blank (FORMAT I2).
g. NOFF is the number of non Urey-Bradley constants to be specified or the number of SVQFF interaction constants. NOFF is punched in Columns 2l-23 (FORMAT I3).
h. INFRA, a l will cause the intermediate GEM, TETRA, and CIS matrices (UBFF) to be written out. INFRA is punched in Column 25 or left blank (FORMAT I2).
i. PUNCH, a 1 will suppress the card punching of the \(\underset{\sim}{Z}\) matrix. PUNCH is placed in Column 27 (FORMAT I2).
j. NOX, if \(N O X=1\), the cartesian coordinates are not read in, and the atom distance check is not computed. NOX is punched in Column 29 (FORMAT I2).

Warning: This option is available for the SVQFF only; the cartesian coordinates must be included for the UBFF.
2. Problem Information Cards. Two problem information cards follow the problem control card. These cards contain any desired alphanumeric information about the problem or may be left blank. The data may be punched in any column through 72, but Columns l-3 should be left blank (FORMAT 18A4).

Warning: The problem information cards must be included with the input data, even if they are left blank.
3. The Cartesian Coordinates. If NOX \(=0\), the cartesian coordinates must be included at this point in the data deck. The cards should have been punched in proper format by CART, and the last row number should be a -l [FORMAT 4(2I3,F12.6)].
4. Diagonal Force Constants. The position of the element (row or column number) and force constant parameter number of the diagonal elements of the UBFF or SVQFF are punched on cards in 24 fields of three columns each (FORMAT 24I3).
5. Interaction Force Constants. The row, column, and force constant parameter number for each of the off-diagonal elements of the SVQFF or for each nondrey-Bradley interaction constant (FORMAT 24I3).
6. Two Blank Cards. For the computation of a UBFF, the configuration "vectors" are placed at this point [see Schachtschneider (89) for details] (FORMAT 24I3) followed by two blank cards. For a SVQFF one only needs the two blank cards at this point in the data deck.
7. Force Constant Parameters. If IFF \(=1\), i.e., the \(F\) matrix is to be evaluated, the force constant parameters are included in the data deck, six constants per card (FORMAT 6F12.6).
Warning: In this case, the number of force constants must not exceed 50. Also, the dimension statement must be modified so that one has \(F(50,50)\).
8. Data Termination Card, The data are followed by a card denoting the end of the problem. This card must have a 999 punched in Columns 1-3 (FORMAT I3).

Note: If another problem is to be included in the data deck, it may be placed at this point with the problem control card replacing the data termination card which then goes to the end of the second problem.

In the RAX operating system, the data deck is preceded by a /DATA card and the deck ended with a /END card.

\section*{OUTPUT INFORMATION}

The following data are printed out at the option of the user.
1. The cartesian coordinates, if included with the input.
2. The diagonal elements of the \(\underset{\sim}{Z}\) matrix.
3. The non-Urey-Bradley interaction elements or the SVQFF off-diagonal elements.
4. The Urey-Bradley configuration "vectors."
5. The intermediate GEM, TETRA, and CIS matrices.
6. The \(\frac{z}{\sim}\) matrix.
7. The \(\underset{\sim}{m}\) matrix.
8. The atom distance check, if the cartesian coordinates are included with the input data.

The \(\underset{\sim}{Z}\) matrix is punched on cards, if requested, in a form suitable for use in ZSYM, FADJ, FLPO, and EIGV. The data are arranged in the order of row, column, force constant number, and numerical value of \(\underset{\sim}{z}\) matrix element [FORMAT (6. 3 I3, F9.6)].

\section*{ZSYM}

This program symmetrizes the \(\underset{\sim}{\sim}\) matrix by transforming the internal coordinates to symmetry coordinates. Input to ZSYM includes the \(\underset{\sim}{Z}\) matrix elements and the \(\underset{\sim}{U}\) matrix (the transformation matrix from internal coordinates to symmetry coordinates). ZSYM can be used to factor the \(\underset{\sim}{Z}\) matrix for the UBFF, SVQFF, VFF, and other constrained force fields. The resulting factored \(\underset{\sim}{Z}\) matrix is punched onto cards in the proper format for input to FADJ, FLPO, and EIGV.

The program was written by J. H. Schachtschneider (89) and modified for use in this investigation. The program may be used with the IBM \(360 / 44\) RAX operating system.

A flow diagram for ZSYM.is presented in Fig. 39 and the program listing in Table XLIX.


Figure 39. The Flow Diagram of ZSYM

LISTING OF ZSYM
```

 ZSYM SD-4082 Z SYMMETRIZE POLYMER OPTION
 CODED IN FORTRAN IV FOR THE IBM-360/44
 SCHACHTSCHNEIDER
 MODIFIED FOR RAX BY L J PITZNER 4/2/71
 THIS PROGRAM SYMMETRIZES A Z MATRIX. F MATRIX ELEMENTS IN
 VALENCE FORCE SPACE ARE SPECIFIED BY AN ARRAY ZII,J.KI WHERE
 I IS ROW NUMBER DF F MATRIX ELEMENT
 J IS COLUMN NUMBER OF F MATRIX ELEMENT
 K IS THE NUMBER OF AN INDEPENDENT FORCE CONSTANT
 THE ELEMENT F(I,J) IS DEFINED AS Z\I,J.K)*VALUE OF FORCE CONSTANT
 DIMENSION NR(1500),NC(1500),NFO(1500),DZ(1500),NRU(150).
 1 NCU(1501,DU(150),NR1(150),NC1(1501, DU1(150), NRZ(2501.
 2NCZ(250),Z(250),NBL(101),NRS(101),NCS(101),NFC(101),FS(101),
 3NB1(1500), DA(250),U(250),FU(250), UF(250), RECORD(36),NB(20),NRO(4).
 4NCO(4),NPI(4), DAT(4)
 EQUIVALENCE(DA(1),U(1),UF(1)),(NB1(1),NRZ(1)),(NB1(251),NCZ(1)),
 1(NB1(502), 2(1)|
 RECONVERT PROBLEM CONTROL CARD CONTAINING FOLLOWING INFORMATION
 1.IND=-09 INDICATING THE START OF A PROBLEN IN COLUMNS 1-3.
 2.NQ. THE NUMBER OF INTERNAL COORDINATES. LESS THAN 6OI. PUNCHED
 IN COLUMNS 4-7.
 3.NF, THE NUMBER OF FORCE CONSTANTS IN COLUMNS 8-1i.
 4.NS, THE NUMBER OF SYMMETRY COORDINATES IN COLUMNS 12-15.
 5.NSB, THE NUMBER OF FACTORED BLOCKS+1 IN COLUMNS 16-19.
 6.IFSK, POLYMER CONTROL OPTION
 IFSK=0. NORMAL MOLECULE READ ONE U MATRIX.
 IFSK=1. POLYMER READ UL AND U2.
 IFSK PUNCHED IN COLUMN 23.
 7.IFREP, REPEAT OPTION CONTROL
 FOR IFREP=I ONLY NEW Z MATRIX IS READ AND U FROM PREVIOUS
 PRDBLEM IS USED TO SYMMETRIZE.
 IF IFREP=0 NEW PRDBLEM
 PUNCHED IN COLUMN 27.
 8.NST. STARTING INDEX FOR DO LOOP ON FORCE CONSTANTS FOR
 IFREP=1. NST IS PUNCHED IN COLUMNS 28-31.
 9.FPUN, CARD-PUNCH SUPPRESSIDN OPTION FOR THE SYMMET.Z-MATRIX.
 IF FPUN =I CARD-PUNCHING OF THE Z-MATRIX IS SUPPRESSED. IF FPUN
 =0 THERE IS NO SUPPRESSION. PUNCHED IN COL. 35.
 READ PROBLEM CONTROL CARD
 90 READ (5,12)IND,NQ,NF,NS,NSB,IFSK,IFREP,NST,FPUN
 12 FORMAT(I3,814)
 IF(IND+9)90,92,94
 INPUT DATA FOLLOWS IN ORDER
 1.TWO PROBLEM INFORMATION CARDS.
 2.Z MATRIX ELEMENTS
 3.U MATRIXIUL FOLLOWED BY U2 FOR IFSK=1)
 4.SYMMETRY BLOCK INFORMATION
 94 IF(IND-999)90,96,90
 9 6 ~ C A L L ~ E X I T ~
 92 CONTINUE
 REAO (5,14)(RECORD(I),Ix|,36)
    ```

\section*{TABLE XLIX (Gontinued)}
```

 GO 10 141
 145 DSQ=DSQ+DAT(L)**2
 NOU=NOU+1
 NRU(NOU)=NRO(L)
 NCU(NOU)=NCO(L)
 DU(NOU)=DAT(L)
 150 CONTINUE
 GO TO }13
 152 IF(3+NRD(L))605,154,605
 154 DA(NX)= 1.0 / SQRT(DSQ)
 IF(NS-NX)605,156,605
 156 WRITE(6,13352)NOU
 13352 FORMAT(1H, NOU= .,I4)
DO 158 I=1,NOU
J=NRU\I)
158 DU(I)=DA(J)*DU(1)
NOU=NOU+1
NRU(NOU)=-3
NCU(NOU)=0
DU(NOU)=0.0
WRIIE{6,75875)
75875 FORMAT(1HO, 'NORMALIZED U-MATRIX')
WRITE(6,18)(NRU(I),NCU(I),DU(I),I=1,NOU)
IF(IFSK)180,180.160
160 NU=0
NX=1
C READ U2 (SAME FORMAT AS U1)
162 READ (5,18)(NRO(L),NCO(L),DAT(L),L=1,4)
DO 174 L=1,4
IF(NRO(L)I176,174,164
164 IF(NS-NRO(L))605,165,165
165 IF(NRO(L)-NX)605,168,166
166 NX=NX+1
GO TO 165
168NU=NU+1
NR1(NU)=NX
NC1(NU)=NCO(L)
DUI(NU)=DAT(L)*DA(NX)
174 CONTINUE
GO TO 162
176 IF(3+NRO(L))605,75812,605
75812 WRITE(6,37812)NU
37812 FORMAT(1H.0NU = ',14)
GO TO 185
180 NU=NOU-1
DO 184 K=1,NU
NRI(K)= NRU(K)
NC1(K)=NCU(K)
184 DU1(K)=DU(K)
C READ SYMMETRY
C EACH FACTORED BLDCK. LAST ELEMENT IS NS+I. PUNCHED IN 3 COLUMN
C FIELDS 24 PER CARD.

```

\section*{TABLE XIIX (Continued)}
```

 185 READ (5,20)(NB(I),I=1,NSB)
 20 FORMAT(2413)
 NO=1
 186 NZ=0
 DO 190 K=1,NOZ
 IF(NO-NFO(K))190,188.190
 188 NZ=NZ+1
 NRZ(NZ)=NR(K)
 NCZ(NZ)=NC(K)
 Z(NZ)=DZ(K)
 190 CONTINUE
 WRITE(6,99853)NO,NZ
 99853 FORMAT(1H.'NO = ..14.4X,'NZ = ',14)
63521 IF(NZ)600,192,220
192 NO=NO+1
IF(NO-NF)186,186,295
220 NL=1
NX=2
NUT=1
NUB=1
NJ=1
230 NP=NB(NL)
NT=NB(NX)
236 DO 238 I= 1,NQ
FU(II=0.0
238 U(I)=0.0
DO 250 K=NUB,NOU
IF(NRU(K)-NJ)240,248.240
240 DO 246 L=1,NZ
I=NRZ(L)
J=NCZ(L)
FU(I)=FU(I)+Z(L)*U(J)
IF(I-J)244,246,244
244 FU(J)=FU(J)+Z(L)*U(I)
246 CONTINUE
GO TO }25
248 JU=NCU(K)
250 U(JU)=DU(K)
252 NUB=K
88971 DO 254 I=NJ,NS
254 UF(1)=0.0
LL = 0
41411 DO 265 L=NUT,NU
IF(LLI262,262,264
262 IF(NR1(L)-NJ)605,264,263
263 LL = 1
NWY=L
264 I=NR1(L)
J=NC1(L)
265 UF(I)=UF(I)+DUI(L)*FU(J)
NUT=NWY
DO 280 J=NJ,NS
IF(0.00005-ABS(UF(J)))270.280.280

```

\section*{TABLE XLIX (Continued)}
```

 270 [F(NT-J)271,271,272
 271 WRITE (6,72)NJ,J
 72 FORMAT (4OHO ERROR,ERROR,ERROR- Z NOT FACTORING.ROWI4,7H COLUMNI4)
 272 NE=NE+1
IF(101-NE)273,273,274
273 WRITE(1)(NBL(I),NRS(I),NCS(I),NFC(1),FS(I),I=1,100)
NREC=NREC+1
NE=1
274 NRS(NE)=NJ-NP+1
NCS(NE)=J-NP+1
NBL(NE)=NL
NFC(NE)=NO
FS(NE)=UF(J)
280 CONTINUE
NJ=NJ+1
IF(NT-NJ)284.284,236
284 NL=NL+1
NX=NX+1
IF(NSB-NX)290,230,230
290 NO=NO+1
IF(NF-NO)295,186,186
295 (F(NREC)296, 296,298
296 NOZ=0
GO TO 321
298 WRITE(I){NBL(I),NRS(I),NCS(I),NFC(I),FS(I),I=1,NE)
300 END FILE 1
REWIND 1
302 DO 312 L=1,NREC
READ (I)(NBL(I),NRS(I),NCS(I),NFC(I),FS(I),I=1,100)
DO 312 K=1,100
NZ=100*(L-1)+K
NBl(NZ)=NBL(K)
NR(NZ)=NRS(K)
NC(NZ)=NCS(K)
NFO(NZ)=NFC(K)
312 DZ(NZ)=FS(K)
NOZ=NZ
315 IF(NE)330,330,320
320 READ (1)(NBL(I),NRS(I),NCSII|,NFC(I),FS(I),I=1,NE)
321 00 324 K=1,NE
NZ=NOZ+K
NB1(NZ)=NBL(K)
NR(NZ)=NRS(K)
NC(NZ)=NCS(K)
NFO(NZ)=NFC(K)
324 DZ(NZ)=FS(K)
330 NSO=1
331 NT=0
NX=0
332 WRITE (6,64)IND,NSO,(RECORD(I),I=1,12)
IF(FPUN)87551,87551,75571
87551 WRITE (7,9119)IND,NSO,(RECORD(I),1=1,12)

```

\section*{TABLE XIIX (Continued)}

64 FORMAT(1HOI3,15H Z MATRIX BLOCKI \(3,12 A 4)\)
9119 FORMAT(I3,15H 2 MATRIX BLOCKI3,12A4)
75571 DO 340 I=1,NZ
IF(NSO-NB I I I) \(1340,336,340\)
\(336 N X=N X+1\)
IF(101-NX)337.337.338
337 WRITE \((6,66)(N R S(L), N C S(L), N F C(L), F S(L), L=1,100)\)
IF(FPUN)52151,52151,37751
52151 WRITE (7, 7131)(NRS(L),NCS(L),NFC(L),FS(L),L=1,1001
66 FORMAT(1H 313,F9.6,313,F9.6,313,F9.6,313,F9.6,313,F9.6,313,F9.6)
7131 FORMAT(313,F9.6,313,F9.6.313,F9.6.313,F9.6)
37751 NT =NT+100
\(N X=1\)
338 NRS(NX)=NRII)
NCS(NX) \(=\) NC(I)
NFC(NX)=NFO(I)
FS(NX)=DZ(I)
340 CONTINUE
IF(NX) 344,344.342
342 WRITE \((6,66)(N R S(L), N C S(L), N F C(L), F S(L), L=1, N X)\)
IFIFPUNI58888,58888,63333
58888 WRITE (7, 7131 )(NRS(L),NCS(L),NFC(L),FS(L), \(L=1, N X)\)
63333 NT \(=\) NT \(+N X\)
344 WRITE \((6,76) N T\)
IF(FPUN)85851,85851.99887
85851 WRITE (7,1211)NT
76 FDRMAT(1HO,5H NOZ \(=141\)
1211 FORMAT(5H NOZ=14)
\(99887 \mathrm{NSO}=\mathrm{NSO}+1\)
IF(NSB-NSO) 90,90,331
600 WRITE (6,56)L,NRO(L), NCO(L), NPI(L), DATPL)
56 FORMAT(23HO \(Z\) MATRIX ERROR FIELDI3,6H READS3I4,F12.6)
GO TO 90
605 WRITE ( 6,58 IL, NRO(L), NCO(L), DAT(L)
58 FORMAT \(\mathbf{2 3 H O}^{23}\) U MATRIX ERROR FIELDI3.6H READS2I4,F12.6)
GO TO 90
END

ZSYM requires the use of a scratch tape. If the program is being used with the RAX system, the program deck is preceded by /ID, /JOB GO, and /FILE cards.

The program deck is followed by the input data which consist: of the following information.
1. Problem Control Card. This is the first card of the data deck. The following data are punched on each problem control card.
a. IND, indicates the start of a problem. IND must be set equal to -09 and is punched in Columns l-3 (FORMAT I3).
b. NQ is the number of internal coordinates, punched in Columns 4-7 (FORMAT I4).
c. NF is the number of force constant parameters, punched in Columns 8-11 (FORMAT I4).
d. NSB, denotes the number of factored blocks plus 1 and is punched in Columns 16-19 (FORMAT I4).
e. IFSK is the polymer control option. For a normal molecule, IFSK \(=0\) and only one \(U\) matrix is read in. For a polymer, IFSK \(=I\) and two \(\underset{\sim}{U}\) matrices, \({\underset{U}{1}}^{\sim}\) and \({\underset{\sim}{2}}_{2}\), are read in. IFSK is punched in Column 23 (FORMAT I4).
f. IFREP is the repeat option control. If a new problem is to be started, \(\operatorname{IFREP}=0\), and new \(\underline{Z}\) and \(\mathbb{U}\) matrices are read in. If
 previous problem Is used for symmetrization. PFREP is punched in Column 27 (FORMAT I4).
g. NST is the starting index for the DO loop on force constants. This constant must be entered when IFREP \(=1\), otherwise, NST \(=0\) or is left blank. NST is punched in Columns 28-31 (FORMAT I4).
h. FPUN is the card punch suppression option. If FPUN \(=1\), the factored \(Z\) matrix is not punched on cards. FPUN is positioned in Column 35 (FORMAT I4).
2. Problem Information Cards. Two problem information cards follow the control card. These cards contain whatever alphanumeric information about the problem may be desired by the user. The information may be punched in any of the columns through Column 72 except that Columns 1-3 should be left blank (FORMAT 18A4).
Warning: These cards must be included in the data deck even if they are left blank.
3. Z Matrix. The \(Z\) matrix, punched in the proper format by UBZM, follows The problem information cards in the data deck. There are four \(\mathbb{Z}\) matrix elements per card; each element consists of row number; ₹olumn number, force constant parameter number, and numerical \(Z\) matrix element [FORMAT 4(3I3,F9.6)]. The row number after the last el?
4. U Matrix. The \(U\) matrix follows with the form: row, column and \(U\)
 element must be - 3 .

Note: The zero elements need not be included or the matrix normalized.
5. \(\mathrm{U}_{2}\) Matrix. If IFSK \(=1\), the second \(U\) matrix, \(U_{2}\), must follow the first Ũ matrix. The format is the same for the firs \(\tilde{T}^{\sim} \mathbb{F}^{\sim}\) matrix.
6. Symmetry Block Information Card. This card contains the row numbers of the beginning of each factored block. The last element is \(\mathbb{N S}+1\). These data are punched in 3 column fields of which there are 24 per card (FORMAT 24I3).
7. Data Termination Card. This card is placed at the end of the data deck and is used to denote the end of the input data for the problem(s) to be worked. The data termination card is marked by a 999 punched in Columns 1-3 (FORMAT I3).

Note: If another problem is to be included with the input data, the problem control card for the next problem is placed at this point in the deck, and the data termination card is placed at the end of the second problem.

Warning: Failure of the \(\underset{\sim}{Z}\) matrix to factor most often indicates a user error.

With the RAX system, the data deck is preceded by a/DATA card and terminated by a /END card.

\section*{OUTPUT INFORMATION}

The factored \(Z\) matrix is printed out and at the user's option, punched on cards in the proper format.

FADJ

This program solves the vibrational secular equation by the method of successive orthogonalization followed by diagonalization. The diagonalization is performed by the subroutine HDIAG which employs the Jacobi method. This program will also refine an initial set of force constants to give a linear weighted least squares "fit" between the calculated and observed frequencies. (This program is based on the Gauss-Newton-Raphson method.) At the user's option, a regression analysis is performed by the subroutine, REGRS, which may aid in the selection of the proper force field.

This program wes written by J. H. Schachtschneider (89) and modified for this investigation. The program may be used with the IBM \(360 / 44\) OS operating system. FADJ employs a phase overlay procedure for the subroutines and is permanently stored on disk at the Institute.

A flow diagram of FADJ is given in Fig. 40 and 41. A listing of the JCL cards for the stored version of FADJ are listed in Table L. These cards are to be placed in front of the data deck and replace the program deck which is stored on disk in compiled form. A listing of FADJ appears in Table LI.

INSTRUCTIONS FOR PROGRAM USE

FADJ requires two scratch tapes or disks. (Two scratch disks have been allotted for the stored version of FADJ.) The following data comprise the input information.
1. Problem ID Card. This card designates the start of a new problem. This card must have a -09 punched in Columns 1-3 (FORMAT I3).
2. Problem Control Card.



\section*{TABLE LI (Continued)}
1.IND=-09, INDICATING THE START OF A PROBLEM IN COLUMNS 1-3.
2.NOPROB, THE PROBLEM NUMBER. IN COLUMNS 4-9.
3. NMOL, THE NUMBER OF MOLECULESIIN COLUMNS 10-12.
4.NF, THE NUMBER OF FORCE CONSTANTS IN COLUMNS 13-15.

LESS THAN 71
5.NPMAX, THE MAXIMUM NUMBER OF PERTURBATIONS DESIRED,COLUMNS 16-18. (LESS THAN 201
6.NCZ, THE NUMBER UF FORCE CONSTANTS TO BE HELD FIXED,IN COLUMNS 19-21. (LESS THAN 71)
7.IFREP=1, IF ONLY A NEW SET OF FI(I), AND NCF(I) ARE TO BE
 IFREP \(=0\), IF A NEW PROBLEM IS TO BE STARTED. IFREP \(=-1\), FINAL FI(I) FROM PREVIOUS PROBLEM ARE USED AS INTIAL FIIII. NEW NCFIII ARE READ. ZS FROM PREVIOUS PROBLEM MAY BE RENUMBERED. PUNCHED IN COLUMNS 22-23.
8. IFER \(=-3,-2,-1,0,1\) PUNCHED IN COLUMNS 24-25

FOR IFER=1 PER IS READ IN AND USED AS A FRACTIONAL ERROR
FOR IFER=0 PER \(=0.005\) USED AS A FRACTION
FOR IFER=-1 ESTIMATED ERRDRS ARE READ IN FOR EACH OBS.FREQ.
INPUT FOLLOWS OBS.FREQ.
FOR IFER=-2 ERROR IN ALL FREQ. ASSUMED TO BE PER CM-1
FOR IFER=-3 PER=1.0 CM-1 FOR ALL OBS. FREQ.
9.PER AN ERROR TO BE ASSUMED FOR ALL OBS.FREQ.

A FRACTION IF IFER \(=1\) IN CM-1 IF IFER \(=-2\) PUNCHED IN COLUMNS 26 TO 33 WITH DECIMAL BETWEEN COL.
27 AND 28 OR PUNCHED
CONTINUE
10. DMX, A FRACTIONAL FACTOR TO BE APPLIED TO THE FORCE CONSTANT PERTURBATION ON EACH CYCLE 1 FOR DAMPING OSCILATION)
PUNCHED IN COLUMNS 34 TO 41 WITH THE DECIMALBETWEEN COLUMNS 37 AND 38 OR PUNCHED.
11. IFREG PUNCHED IN COLUMNS 42 AND 43

IFREG=0 FOR NO REGRESSION
IFREG=-1 FOR REGRESSIDNON CYCLE 4.
IFREG=1 FOR REGRESSION ON CYCLE 1
12. NDIAG, THE NUMBER OF FORCE CONSTANTS TO BE INCLUDED IN

ALL REGRESSIONS. PUNCHED IN COLUMNS 44 THROUGH 46.
13. INO, THE NUMBER OF FORCE CONSTANTS TO BE RENUMBERED. PUNCHED IN COLUMNS 47-49.
14.NIP PUNCHED IN COLUMNS 50 THROUGH 52.

SPACING BETWEEN REGRESSIONS EQUALS 3-NIP. NIP MAY BE NEGATIVE.
15. DAMP, DAMPING FACTOR FOR DAMPED LEAST SQUARES. FOR DAMP GREATER THAN ZERO DAMP*MAX(S(I,I)) IS ADDED TO THE DIAGONAL TERMS OF THE NORMAL EQUATIONS DN EACH PERTURBATION CYCLE. A VALUE DF DAMP \(=0.001\) WILL USUALLY CAUSE VERY ILL-CDNDITIONED PROBLEMS TO CONVERGE. DAMP IS PUNCHED.IN COLUMNS 53-58 WITH THE DECIMAL BETWEEN COLUMNS 53 AND 54 OR PUNCHED.
16.RAP, THE CUT-OFF FACTOR FOR THE JACOBI DIAGONALIZATION. THE JACOBI ROTATIONS ARE STOPPED WHEN MAX(H(I.J)I IS LESS THAN RAP*MIN(HYI,I)I. IF RAP IS NOT ENTERED IT IS TAKEN EQUAL TO 0.5E-2. ON THE THE FINAL CYCLE RAP IS SET EQUAL TO 0.5E-3 GIVING EIGENVALUES TO 6 SIGNIFIGANT FIGURES AND EIGEN-

TABLE LI (Continued)
VEGTORS TO 3 OR 4 FIGURES.
RAP IS PUNCHED IN COLUMNS 59-63 WITH THE DECIMAL BETWEEN COLUMNS 59 AND 60 OR PUNCHED.
CONTINUE
C
17. FRAC, A FRACTIDNAL FACTOR FOR DECREASING RAP ON EACH CYCLE. AFTER EACH PERTURBATION RAP IS SET EQUAL TO FRAC*RAP. IF FRAC IS NDT ENTERED IT IS TAKEN EQUAL TD 0.9. FRAC IS PUNCHED IN CDLUMNS 64-67 HITH THE DECIMAL BETHEEN COLUMNS 64 AND 65 OR PUNCHED.
18. CUTOF, THE NUMBER OF PERTURBATIONS AFTER WHICH DMX SET \(=0.0\)
PUNCHED IN COLUMNS 68-72.
90 READ(5,96001)IND
96001 FORMAT(13)
IF(94IND) \(901,91,901\)
901 IF(IND-999)90,9020.90
9020 CALL EXIT
91 READ (5,4IIND,NOPRDB,NMOL,NF,NPMAX,NCZ,IFREP,IFER,PERC, DMX,IFREG
1, NDIAG, INO, NIP, DAMP, RAP,FRAC, CUTOF
4 FORMAT \(13,16,413,212, F 8,6, F 8,4,12,13,13,13, F 6,5, F 5,4, F 4,3,151\)
REWIND 1
REWIND 2
93 IF (IFREP) \(800,802,800\)
800 IFIJOK)90,801,90
801 IFIINOI805,805,803
802 PER=PERC
803 DO \(8041=1,70\)
804 NOM (1) \(=1\)
\(805 \mathrm{NP}=0\)
\(N X=1\)
\(E R=0.0\)
\(E R P=0.0\)
DO \(806 \quad I=1,50\)
NPN(1)=0
806 NPL \(\mid I=0\)
NCZS=NCL
NCYC=1
LIMIT \(=2 *(N F-N C Z)\)
NOV \(A R=N F+1\)
NOVMI =NF
IF(RAP)807,807,808
807 RAP \(=0.5 E-2\)
808 DO \(8101=1\), NF
810 NFX(1)=0
IF (FRAC)811,811,812
611 FRAC \(=0.9\)
\(812 J 0 K=0\)
JET \(=0\)
IFIIFREGI94,94,95
94 IFINPMAX 1940,942.940
940 JOKER=0
GO TO 96
942 JOKER=1
```


TABLE LI (Continued)

```
            GO TO 96
        95 JOKER=-1
    96 READ (5.6)(RECORO(I),I=1.54)
    6 FORMAT(18A4)
        WRITE (6,8)NOPRDB,NMOL,NF,NPMAX,NCZ,(RECORD(I),I=1,54)
    8 FORMAT\13H1 PROBLEM NO.I8,6H NMOL=I4,4H NF=I4,7H NPMAX=I4,5H NCZ=I
        14/(12X,18A4))
            READ PRINT-OUT OPTION CARD
            A VALUE OF O FOR IXX CAUSES PRINT-OUT DF THE INFDRMATION IXX
            CONTROLS.
            A VALUE OF 1 FOR IXX WILL SUPRESS THE PRINT-OUT OF THE INFORMATION
            CONTROLLED BY IXX.
            IXX IS OF FORMAT.IL.
            THE PRINTED INFORMATION CONTROLLED BY THE VARIOUS IXX ARE DEFINED
            BELOW
            IXX CONTROLS THE PRINT-OUT OF
            1). IO1 THE Z MATRIX.
            2). IO2 THE EIGEN VALUES AND EIGENVECTORS.
            3). IO3 THE JX MATRIX.
            4). I04 THE POTENTIAL ENERGY MATRIX.
            5). I05 THE CORRELATION MATRIX.
            6). I06 THE VARIANCE-COVARIANCE MATRIX.
            7). IO7 THE ERROR DISTRIBUTION
            8). IO8 A 1 CAUSES PRINT-OUT OF FINAL SET OF FORCE CONSTANTS.
            9). IO9 A 1 CAUSES BYPASS OF TEST FOR UNREASONABLE EIGENVALUES.
            READ(5,90041)I01,I02,103,104,I05,106,107,108,109
0041 FORMAT( 9\1)
            IF(IFREP)9602,9601,9601
C READ INTIAL FORCE CONSTANTS
C THE FORCE CONSTANTS ARE PUNCHED IN 12 COLUMN FIELDS 6 PER CARD
C WITH THE DECIMAL BETWEEN COLUMNS 6 AND 7 OR PUNCHED. IN ORDER
C l THROUGH NF.
    9601 READ (5,20)(FI(I),I=1,NF)
        20 FORMAT(6F12.6)
    9602 WRITE (6,61)NP,(I,FI(I),I=1,NF)
        61 FORMAT(23HO FORCE CONSTANTS AFTERI4,15H PERTURBATIONS./(I6.F12.61)
90042 IF(INO)9610,9610,9603
C REAO FORCE CONSTANT RENUMBERING
C NFI\I)=OLD NUMBER.. NF2(I|= NEW NUMBER
    9603 READ (5,7) (NFI(I),NF2(II,I=1,INO)
        7 FORMAT (2413)
            OO 9605 I=1,INO
            JX=NF1\I!
    9605 NOM(JX)=NF2(I)
90002 WRITE (6,9) (NFI(I),NF2(I),I=1,INO)
            9 FORMAT\14HO Z RENUMBERED / (16.4H JO I3))
    9610 IF|NCZ19614,9614.9612
C READ NUMBERS OF FORCE CONSTANTS TO BE HELD FIXED
C THESE NUMBERS ARE USED. TO ELIMINATE ROWS AND COLUMNS FROM
                THE PERTURBATION MATRIX S:
                PUNCHED IN 3 COLUMN FIELDS 24.PER CARD. IF NCZ=0 ALL FORCE
                CONSTANTS ARE ADJUSTED:
```


TABLE LI (Continued)

```
    9612 READ (5,7) (NCF(L),L=1,NCZ)
    DO 9613 I=1,NCZ
    JX=NCF{I)
    9613 NFX(JX)=-1
    9614 IF(NDIAG)9615,9615,9620
    9615 NDIAG=NF-NCL
    NIO=0
    DO 9617 1=1,NF
    IF{NFX(I)I9617,9616,9617
9616 NIO=NID+1
    NCON(NIO)=1
9617 CONTINUE
    GO TO 9624
C READ NUMBERS OF FORCE CONSTANTS TO BE FORCED INTO REGRESSION.
C FORCE CONSTANTS IN THIS LIST ARE ENTERED INTO THE REGRESSION
C EQUATION WITHOUT REGARD TO TESTS FOR SIGNIFICANCE
C ON THE REGRESSION DPTION FORCE CONSTANTS IN THIS LIST
C ARE ADJUSTED ON EACH CYCLE.
9620 READ (5,7) (NCON(I),I=1,NDIAG)
90003 WRITE (6,13) (NCON(I),I=1,NDIAG)
    13 FORMAT(47HO FORCE CONSTANTS ALWAYS INCLUDED IN REGRESSION/(15I4))
    9624 IFINCZ19630,9630,9625
    9625 WRITE (6,25) (NCF(L),L=1,NCZ)
    25 FORMAT(39HO NUMBERS OF FORCE CONSTANTS HELD FIXED/(15I4)]
    9630 NM=1
        IF(IFREP) 470,99,470
    99 SUM=0.0
        NDT =0
        PTOT=0.
    SCALE=1.0
C
C
C
C
C
C
C
C
C
C
C
    100 READ (5,14)IND,NQ,NDD,NZZ,IFU,IFW,ISKZ
    14 FORMAT(313,14,312)
    IF(IND+6)900,101,900INPUT DATA FOR EACH MOLECULE FOLLOW THE MDLECULE CONTROLCARD IN THE ORUER
1.mOLECULE INFURMATION CARO. I GARD CONTAINING THE NAME DF THE
                    MOLECULE OR BLANK. (COLUMNS 1-3 MUST BE LEFT BLANK)
2.THE L MATRIX
3.EXPERIMENTAL FREQUENCIES, NQ OF THEM FOR NDD GREATER THAN ZERO
                        IF NDD=0 NO FREQ. ARE ENTERED.
4.ESTIMATED ERRORS IN OBS.FREQ. FOR IFER=-1.
5.WEIGHTING ELEMENTS. IF IFW=1 OR -.2
```

```
C
C
101 READ (5,6) (REC(I),I=1,18)
    ND=0
    IF(ISKZ)190,190,203
    READ 2 MATRIX
    2 IS NOT STORED AS A MATRIX, BUT RATHER AS 4 ONE DIMENSIONAL
    ARRAYS NR GIVING THE ROW NUMBER OF THE F MATRIX ELEMENT, NC
    GIVING THE COLUMN NUMBER OF THE F MATRIX ELEMENT, NFO GIVING
    THE NUMBER OF THE DISTINCT FORCE CONSTANT AND Z GIVING THE Z
    MATRIX ELEMENT. NC MUST BE GREATER THAN OR EQUAL TO NR
    ONLY NON-ZERO ELEMENTS ARE ENTERED.
    THE 2 ELEMENTS ARE PUNCHED IN 18 COLUMN FIELDS, 1 TO 4 PER CARD
    COLUMNS 1-3 GIVE NR, COLUMNS 4-6 GIVE NC, COLUMNS 7-9 GIVE NFO.
    AND 2 IS PUNCHED IN COLUMNS 10-18 WITH THE DECIMAL BETWEEN
    COLUMNS 12 AND 13 OR PUNCHED.NROW=-2 AFTER LAST ELEMENT.
        TOTAL NUMBER OF L MATRIX ELEMENTS MUST BE LESS THAN 651.
    190 NOZ=0
    191 READ (5,18) (NROW(L),NCOL(L),NPO(L),DATIN(L),L=1,4)
    18 FORMAT(4(313.F9.6))
    DO 196 L=1,4
    IF(NROW(L))198,196,192
    192 IF(NQ-NCOL(L))920,193,193
    193 NOZ=NOZ+1
    NR(NOZ)=NROH(L)
    NC(NOZ)=NCOL(L)
    IXX=NPO(L)
    NFO(NOZ)=NOM(IXX)
    Z(NOZ)=DATINIL)
    196 CONTINUE
    GO 10 191
    198 IF(NROW(L)+21920,203,920
    203 IF( 650-NOLI920,204,204
    204 1F(NDD)205,205,207
    205 DO 206 I=1,NQ
        DX( 1)=0.0
    206 P(1)=0.0
    GO TU 270
        READ OBSERVED FREQUENCIES. IF NDD IS GREATER THAN ZERO.
            PUNCHED IN }12\mathrm{ COLUMN FIELDS 6 PER CARD, DECIMAL BETWEEN COLUMNS
        6 AND 7 OR PUNCHED. ENTERED IN DECREASING ORDER IN EACH FACTORED
        BLOCK. IF THE FREQUENCIES ARE UNKNOWN OR UNCERTIAN, OR ZERO
        (REDUNDANCIES) ENTER A ZERO,FOR DEGENERATE ROOTS ENTER ONE
        FREQUENCY AND THE REST ZERO. ANY FREQUENCY MAY BE GIVEN ZERO
    WEIGHT IN THE PERTURBATION BY ENTERING A ZERO INSTEAD OF THE
    ACTUAL FREQUENCY. FREQUENCIES ARE ENTERED IN WAVENUMBERS.
    A TOTAL OF NQ ENTRIES, ND OF THEM MUST BE NON-ZERO.
207 READ (5,20) (DE(I),I=1,NQ)
    COMPUTE THE FREQUENCY PARAMETERS FROM THE FREQUENCIES
    DO 209 I=1,NQ
    IFIDE(I))209,209,208
    208 ND=ND+1
    209 DX(I)=5.88852E-7*DE(I)*DE(I)
        N1=0
```


TABLE LI (Continued)

```
C WEIGHT =EII|/FREQ.PAR. FDR IFW=I
    241 DO 248 I=1,NQ
    IF(DX(I))247,247,242
    242 N1=N1+1
        P(I)=E(N1) / (DX(I))
        PTOT=PTOT+P(I)
        IF(P(1)I248,248,246
    246 N2=N2+1
        GO TO 248
    247 P(1)=0.0
    248 CONTINUE
        NDT=NDT+N2
        GO TO 260
C WEIGHT =1.0 FOR IFW=-1
    250 DO 254 I=1,NQ
        IF(DX(I))253,253,251
    251 P(1)=1.0
        PTOT=PTOT+1.0
        GO TO 254
    253 P(I)=0.0
    254 CONTINUE
        NDT=NDT +ND
        GO TO 260
            WEIGHT= 1/ FREQ. PAR. FOR IFW=0
    255 DO 259 I=1,NQ
        IF(DX(I)I258,258,256
    256 P(I)=1.0 / DX(I)
        PTOT=PTOT+P(I)
        GO 1O }25
    258 P(I)=0.0
    259 CONTINUE
        NDT=NDT +ND
    260 N1=0
        DO 266 I=1.NQ
        IF(DX(I))266,266,262
    262 NI=N1+1
        DCS=DC(N1)*DC(N1)
        SUM=SUM+DX(I)*DX(I)*P(I)*DCS*(DCS+4.0*DC(N1)*4.0)
    266 CONTINUE
        IF(ND-N1)925,270,925
    270 WRITE (1)NQ,ND,NOZ
        WRITE (1) (REC(I),I=1,18)
        WRITE (1) (NR(K),NC(K),NFO(K),Z(K),K=1,NOZ)
        READ G MATRIX
C READ NON-ZERO G MATRIX ELEMENTS ,G(I;J).
    G ELEMENTS ENTERED IN 18 COLUMN FIELD 1 TO 4 PER CARD GIVING
            COLUMNS ITEM
                1-3 NROW=1 (ROW NO.)
                4-6 NCOL=J (COLUMN NO.) (1 LESS THAN OR=3)
                7-18 DATIN=GII.J) (DECIMAL BETWEEN 12-13 OR PUNCHED)
    NROW IS SET =-1 AFTER LAST G ELEMENT.
    SINCE THE G MATRIX IS SYMMETRIC DNLY DIAGONAL ELEMENTS AND THE
    ELEMENTS ABOVE THE DIAGONAL ARE ENTERED. THAT IS, COLUMN NO.
    GREATER THAN OR EQUAL TO THE ROW NO.
```

```
    140 DO 142 Im I,NQ
        DO 142 J=I,NQ
    142G(1,J)=0.0
    144 READ (5,16)(NROW(L),NCOL(L),DATIN(L),L=1,4)
        16 FORMAT{4(213,F12.6))
            DO 150 L=1,4
            IF(NROW(L))152,150,146
    146 IF(NCOL{L)-NROW(L))910,147,147
    147 IF(NQ-NCOL(L))910,148,148
    148 I=NROW(L)
    j=NCOL(L)
    G(I,J)=DATIN(L)
    150 CONTINUE
    GO TO }14
    152 IF(1+NRON(LJ)910,154,910
C
C
    154 NO=1
    NL=2
    155 GD=1.0 /G(NO,NO)
    DO }156\textrm{J}=\textrm{NL},N
156 G(J,NDI=G(NO,J)&GD
    IFINL-NQI158,158,170
158 DO 160 I=NL,NQ
    DO 160 J=I,NQ
    160G(I,J)=G(I,J)-(G(NO,I)*G(NO,J)*GD)
    161 ND=NO+1
    NL=NO+1
    163 IF(G(NO,NO)-0.000001)164,164,155
    164 [F(NL-NQ) 165,165,170
    165 DO 166 J=NL,NQ
    166G(J,NO)=G(NO,J)
    GO 10 161
170 DO 175 I= I,NQ
        IF(G(I,I)-0.00005)173,173,172
172 DG(I)=SQRT(G(I,I))
    GO TO }17
173 OG(I)=0.0
174 G(I,1)=1.0
    DO 175 J=I,NQ
175G(J,I)=G(J,I)*DG(I)
    DO 178 J=1,NQ
178 WRITE (1) (G(I,J),I=J,NQ)
    WRITE (II (DG(I),I=1,NQ)
    WRITE (1) (DX(I),I=1,NQ)
    WRITE (1) (P(1),I=1,NQ)
    NM=NM+1
        IF(NMUL-NM)286,100,100
    286 END FILE 1
        REWIND 1
        IF(NDT1287, 287,288
    287 JOKER=1
        FREQ=NF
        SCALE=1.0
```

```
    GO TO 470
288 FREQ=NDT
    SCALE=FREQ/ PTOT
    SUM=SCALE*SUM
470 CALL CYCLE
    IF(2-JOK)90,901,90
900 WRITE (6,81)NOPROB,NM
    81 FORMAT(40HO ERROR IN MOLECULE CONTROL CARD.PROBLEMI8.4H.NM=13)
        IFINM-11902,902,903
902 JOK=1
    GO TO 90
903 NMOL=NM-1
    JOK=2
    GO TO 286
910 WRITE (6,85)NM,NOPROB,L,NROW(L),NCOL(L),DATIN(L)
    85 FORMATI2SHO G MATRIX ERROR MOLECULEI3,8H PROBLEMI8,6H FIELDI3,6H R
        1EADS14,14,F12.6)
        JOK=1
        GO TO 90
920 WRITE (6,87)NM,NOPROB,NOZ,NROW(L),NCOL(L),NPO(L),DATIN(L)
    87 FORMAT(25HO 2 MATRIX ERROR MOLECULEI3,8H PROBLEMI8,8H ELEMENTI4,6t
        1 READSI4,14,14,F9.6)
            JOK=1
            GO TO 90
925 WRITE (6,88)NM,NOPROB,N1
    88 FORMATI27HO EIGENVALUE ERROR MOLECULEI3,8H PROBLEMI8,4H ND=13)
        JOK=1
        GO TO 90
        END
        SUBROUTINE CYCLE
        DIMENSION S( 84,84 ),EIG(66.66),NR( 650),NC( 650),NFO( 650),
        12(650),BZ(66,71),G(66,66),INDEX( 71),DX(71),DE(71),DG(71),
        2 NFX( 71),FF( 71),SI( 71),EC(71),Y( 71),NF11 71),NF21 71),00( 71).
        3 COEN{ 71),SIGMCO( 71),NOM( 71),EX( 71),PE( 71),E( 71),OV(71),
        4 DC( 71),FI( 71),NCON( 71),NCF( 71),NPL(50),NPN(50),RECORO(54),
        5 REC(18),P(71),NROW(4),NCOL(4),NPO(4),DATIN(4),SUMDD(20)
            EQUIVALENCE (S,EIG),(S(4365),NR),(S(5020),NC);(S(5675),NFO).
        1 (S(6330),Z),(BZ,G),(BZ(4360),INDEX,DX),(BZ(4440),DE,DG).
        2(BZ(4520),NFX,FF, EC),(BZ(4600),Y,NF1),(SIGMCO,NOM),
        3 (COEN,NF2,DD),(EX,PE),(E,DV)
            COMMON S,BZ,SIGMCO,COEN,EX,E,DC,FI,NCON,NCF,NPL,NPN,RECORD,REC,
        1P,SUMDD,NROW,NCOL,NPO,DATIN,NF,NCZ,NCZS,NDT,DET, JOKER,JOK,DMX,
        2 DEFR,FR,JET,NX,NP,NOIN,NOSTEP,NOVAR,NOVMI, EFOUT,EFIN,NCYC,
        3NOPROB,NOL,NQ,LIMIT,TOL,NDIAG,NPMAX,IFREG,PROD,FREQ,ERPO,ERO,DAMP,
        4RAP,FRAC,TIME,PER,INO,IFREP,IFER,NIP,NMOL,IND,SCALE,ER,ERP,PTOT,
        5 NM,NML,ND,NDD,SUM,101,102,103,104,105,106,107,108,109,CUTOF
            INTEGER CUTOF
470 REWIND 1
    REWIND 2
    NM* }
    NMI=0
480 READ (1) NQ,ND,NOZ
    READ (1) (REC(I),I=1,18)
    READ (1) (NR(K),NC(K),NFO(K),Z(K),K=1,NOZ)
```


TABLE LI (Continued)

IFIIFREP)484,490,484
484 IF(INO) $490,490,485$
$48500488 \mathrm{~K}=1$, NOZ
$I=N F O\{K)$
488 NFO (K)=NOH (I)
490 IF(JOKER) $300,300,492$
492 RAP $=0.5 E-3$
IF(101)300,90005,300
90005 WRITE $(6,80$ INM, (REC(K), $K=1,18), N Q, N O, N O Z$
80 FORMAT $123 H 12$ MATRIX FOR MOLECULEI4.3X. $1844 / 16.12 H$ CODRDINATESI3. 125 H EXPERIMENTAL FREQUENCIESI8,19H 2 MATRIX ELEMENTS.I
WRITE (6,81) \{NR(I),NC(I),NFO(I),Z(I),I=1,NOZ)
81 FORMAT (4114,213,F9.6)
300 DO $301 \mathrm{~J}=1$, NQ
301 READ (1) (G(I,J),I=J,NQ)
READ (1) (DG $1 \|, I=1 ; N O)$
READ (L) (DXII),I=1,NQ)
READ (1) (P(I), $1=1, N Q)$
IF (ND) $304,304,306$
304 IF (JOKER) 468,468,306
C
COMPUTE TRANSFORMED F MATRIX AND STORE IN UPPER TRIANGLE OF G.
306 DO $328 \quad J=1$, NQ
$P(J)=S C A L E * P(J)$
DO $308 \quad I=1, N Q$
308 DD(1) $=0.0$
DO $320 \mathrm{~K}=1, \mathrm{NOL}$
I $X=N R(K)$
IF(IX-J) 320.312 .312
$312 J X=N(1 K)$
$L X=N F Q(K)$
DD($\mid X)=00(I X)+F I(L X) * Z(K) * G(J X, J)$
$I F(I X-J X) 318,320,318$
$318 \mathrm{DO}(J X)=0 \mathrm{O}(J X)+F I(L X) * 2(K) * G(1 X, J)$
320 CONTINUE
DO $324 K=J$, NQ
$D C(K)=0.0$
$00324 \quad L \pm K, N Q$
324 DC(K) $=\mathrm{DC}(K)+G(L, K) * D D(L)$
DO $328 \mathrm{~K}=\mathrm{J}, \mathrm{NQ}$
$328 G(J, K)=D C(K)$
NR2=0
IEGEN=0
C. DIAGONALIZE TRANSFORMED F MATRIX BY JACOBI METHOD

CALL HDIAGIG,NQ,IEGEN,EIG,NR2,RAP)
C COMPUTE EIGEN VECTORS
$003301=1$ NQ
DC(I) $=$ G(1:1)
330 G(1.1)=0G(I)
DO $335 \quad 1=1$, NO
$00333 \mathrm{~J}=1$, NO
DO($j)=0.0$
DO $333 \mathrm{~K}=1 . \mathrm{J}$
333 DO (J) $=0 \mathrm{DO}(J)+G(J, K) \neq E I G(K, I)$
DO $335 \sqrt{2}=1, N Q$

```
    335 EIG(J,I)=0D(J)
C ORDER EIGENVALUES AND EIGENVECTORS
        II=NQ-1
        OO 340 Jx1,11
        LOW=J+1
        DO 340 K=LOW,NO
        IF(DC(J)-DC(K))337,340,340
        337 TEM=OC(J)
            DC(J)=DC(K)
            DC(K)=TEM
            DO 338 I=1,NO
        338 DD(I)=EIG(I,J)
            DO 339 I=1,NO
            EIG(I,J)=EIG(I,K)
        339 EIG(I,K)=00(II
        340 CONTINUE
C COMPUTE EIGENVALUE ERRORS
    341 DO 350 I=1,NQ
        IF(DX(I)I348,348,344
    344 DD(I)=DX(I)-DC(I)
        SUMDD(NX)=SUMDD(NX)+DD(I)*DD(I)*P(I)
        GO TD 350
    348 DO(1)=0.0
    350 CONTINUE
    352 WRITE (6,24)NM,NP,NR2,RAP,(DC(I),I=1,NQ)
        24 FORMATI37HO EIGENVALUES AND ERRORS FOR MOLECULEI4,6H AFTERI3,15H P
            IERTURBATIONS.15,11H ROTATIONS.16H RAP=E12.4/(1H,9F8.5))
            WRITE (6,26)(DD(J),J=1,NQ)
        26 FORMAT(8HO ERRORS/(1H ,9F8.5))
90007 IF(JOKER) 354,354,364
C TEST FOR UNREASDNABLE EIGENVALUES
    354 IF(109)61712,61712,91919
61712 DO 359 J=1,NQ
        IF(DC(J)+0.001)360,3550,3550
    3550 IF(DC(J))}3552,3552,35
    3552 IF(P(J))355,355,360
    355 IF(9.0-DC(J))360,360,356
    356 IF(2.5-DC(J))357,357,358
    357 IF(0.8-ABS(DD(J)))}360,360,35
    358 IF(0.4-ABS(DD(J)))360,360,359
    359 CONTINUE
91919 CONTINUE
    IF(JOK 1468,400,400
    360 JOK=-1
            WRITE (6,74)NM,NP
        74 FORMAT(26HO EIGENVALUES FOR MOLECULEI4,3IH NOT REASONABLE ON PERTU
            IRBATIONI4)
            GO ro 468
C OUTPUT FOR FINAL CYCLE
    364 ERO=0.0
        ERPO=0.0
        00 368 I=1,NO
        DE(II=SQRT(DX(I)/5.88852E-7)
        OV(I)=SQRT(OC(1)/5.88852E-7)
```

TABLE LI (Continued)
IF(DE(I))365,365,366
365 EC(I) $=0.0$
EX(I) $=0.0$
60 TO 368
366 EX(I)=DE(1)-DV(I)
EC(I) $=100.0 * E X(I) / D E(I)$
IFIP(I)I368,368,367
367 ERO=ERO+ABSIEX(I))
ERPO=ERPO $+A B S(E C(1))$
368 CONTINUE
$E R=E R+E R O$
$E R P=E R P+E R P D$
ERO=ERO / FLOAT(NO)
ERPO=ERPO / FLOAT(ND)
90008 WRITE $(6,28) N M, S C A L E,(R E C(I), I=1,18)$
28 FORMATI7SHI OBSERVED AND CALCULATED FREQUENCIES AND FREQUENCY PARA 1METERS FOR MOLECULEI3/26H SCALE FACTOR FOR WEIGHTS=F10.6/12X,18A4)
369 WRITE (6,29)(I,DE(I),DV(I),EX(I),EC(I), P(I), DX(I),DC(I),I=1,NQ) 29 FORMATI95HO OBS.FREQ. CALC.FREQ. DIFFERENCE PERCENT ERROR

1 WEIGHT OBS.FREQ.PAR. CALC.FREQ.PAR. /6X,6H(CM-1),6X,6H(CM-1
2),7X,6H(CM-1)/II4,F9.1.4X,FB.1,4X,F6.1,7X,F7.3,6X,F9.4,F10.5,F14.5
3)1

WRITE (6.31) ERO,ERPO
31 FDRMAT(17HO AVERAGE ERROR $=F 6.2,10 \mathrm{HCM}$ C 1 , OR F6.3.8H PERCENT)
90009 DD $3680 \quad I=1,50$
$K=51-1$
TES=FLOAT(K)-0.5
DD $3680 \mathrm{~J}=1$, NQ
IF(DX(J) $3680,3680,3670$
3670 IF(TES-ABS(EX(J))13672,3680,3680
3672 IF(EX(J)) $3673,3680,3674$
3673 NPN(K) $=$ NPN(K)+1
GO TO 3675
3674 NPL $(K)=$ NPL $(K)+1$
3675 EX(J) $=0.0$
3680 CDNTINUE
370 IF(102)400,90010,400
90010 WRITE (6,30)NOPROB,NM,NP,(REC(I),I=1,18)
30 FORMATI37HIEIGENVALUES AND EIGENVECTORS PROBLEMI8,9H MOLECULEI3.13
IH PERTURBATIONI4/12X,18A4)
DO $372 \mathrm{~J}=1$, NQ
372 WRITE (6,32)J,DV(J), (EIG(I,J),I=1,NQ)
32 FORMATI $10 H O F R E Q U E N C Y 13,2 H=F 8.1 .5 H$ CM-1,2OH EIGENVECTOR FOLLOWS/ 1(1H.9F8.4)
C COMPUTE THE JZ MATRIX (CALLED BZI
$40000421 \mathrm{~K}=1$, NQ
DO $410 \mathrm{~N}=1$, NF
$410 \mathrm{BZ}\left(K_{,}, N\right)=0.0$
DO $420 \mathrm{~L}=1, \mathrm{NOZ}$
$I=N R(L)$
$J=N C(L)$
$M=N F O(L)$
IFII-JI418.416.418

TABLE LI (Continued)

```
    416 BZ(K,M)=BZ(K,M)+EIG(I,K )*EIG(J,K )*Z(L)
        GO TO 420
    418 BZ(K,M)=BZ(K,M)+2.O*EIG(I,K )*EIG(J,K )*Z(L)
    420 CONTINUE
    421 CONTINUE
    422 IF(JOKER 1438,438,424
    424 IF(I03)90012,90011,90012
90011 WRITE (6,38)NP,NM,{REC(1),I=1,18)
    38 FORMATI28HI THE JZ MATRIX PERTURBATIONI4;9H MOLECULEI4/12X,18A4)
        DO 426 I=1,NQ
    426 WRITE (6,41)I,OC(I),DD(I),P(I),(B2(I,J),J=1,NF)
    41FORMATI11HO FREQ.PAR.I3,2H =F12.6.7H ERROR=F12.6,8H WEIGHT=F12.6/1
        1 9F8.4))
90012 IF(104)90014,90013,90014
90013 WRITE (6;42)(RECIII,I#I,18)
    4 2 ~ F O R M A T ( 3 1 H I ~ P O T E N T I A L ~ E N E R G Y ~ D I S T R I B U T I O N / 3 X ; 1 8 A 4 ) , ~
90014 DO 435 I=1,NO
        IF(DC(1)-0.0001)435,435,430
    430 DO 432 J=1,NF
    432 PE{J)={BZ(I,J)*FI(J))/ DC(I|
        IF(1041435,90015,435
90015 HRITE (6,45)I,DV(I),(PE(J),J=1,NF)
            45 FORMAT\11HO FREQUENCY13,2H=F6.1.5H CM-1/(1H ,9F8.4)\
    435 CONTINUE
C COMPUTE S
    438 DO 442 I=1,NQ
        P{I}=SQRT(P(I)|
        BZ(I,NOVAR)=DD(1)
        DO 442 J=1, NOVAR
    442 B2(1,J)=P(1)*BZ(1,J)
        OO 458 I=1,NOVAR
        DO 456 J=I, NOVAR
        SI(J)=0.0
        DO 456 K=1,NQ
    456 SI(J)=SI(J)+BZ(K,I)*BZ(K,J)
    458 HRITE (2) (SI(J),J=I,NOVAR)
    4 6 3 ~ N M L = N M 1 + 1 ~
    4 6 8 ~ N M = N M + 1
        IF(NMOL-NM)600,480,480
    600 IF(JOK)601,602,602
    601 JOK=1
    JOKER=1
    GO TO 470
    602 CONTINUE
    END FILE 2
    REHIND 2
    FR=NDT-NF+NCZ
    DO 604 I=1, NDVAR
    DO 604 J=1. NOVAR
    604 S(1.J)=0.0
        NM=1
C
    READ AND SUM S MATRICES
    608 DO 610 I=1,NOVAR
        READ (2) (SI(J),J=I,NOVAR)
```

DO $610 \mathrm{~J}=1$, NOVAR
$610 S(1, J)=S(1, J)+S I(J)$
$N M=N M+1$
(F(NM1-NM) 612,$608 ; 608$
612 IF (NP) $613,613,620$
$613006181=1, N F$
IFISII,I11614,614,618
614 IF (NC21617,617,615
$61500616 \mathrm{~J}=1 . \mathrm{NCZ}$
IF(I-NCF(J))616,618,616
616 CONTINUE
617 NCZ 2 NCZ 41
NC2S=NC2
NCF (NC2) $=1$
HRIVE 16.11I
1 FORMAT 16 HO FORCE CONSTANTI $3.42 H$ NOT A FUNCTIDN OF FREQ. F IXED ON ICYCLE 1.1
618 CONTINUE
DO $6185 I=1$, NDIAG
$K X=N C O N(I)$
6185 NFX(KX)=1
IF(NCZ)6189,6189,6186
6186 DO $6187 I=1$, NC2
$K X=N C F(1)$
6187 NFX(KX) $=-1$
6189 DO $61921=1$, NF
IF(NFX(I) $6192,6190,6192$
6190 NCZS = NCZS +1
NCF(NC2S) $=1$
6192 CONTINUE
$620 \mathrm{PROD}=1.0$
IFIDAMP 16207,6207,6201
6201 IF (JOKER) 6207,6202,6207
6202 SMAX=S(1,11
DD $62051=2, N F$
IF (S (I, 1)-SMAX)6205,6205,6203
6203 SMAX $=$ S(I,I)
6205 CONTINUE
$D B=D A M P$ * SMAX
WRITE (6.43) DAMP, DB
43 FORMAT (37HO DAMPED LEAST SQUARES.DAMPING FACTORF8.4,11H*SII, I)MAX= 1F8.4)
GO 10 621
$6207 \mathrm{DB}=0.0$
621 CONTINUE
DO $628 \quad I=1$, NOVAR
IF(SII,I) $622,622,623$
622 EXII $1=1.0$
GO TO 628
623 S(I,I)=S(I,I)+DB
EXII)=SQRT(SII.I)
628 CONTINUE
COMPUTE CORRELATION MATRIX
$006301=1$, NOVAR.

```
TABLE LI (Continued)
```

```
        DO 630 J=T,NOVAR
        S(I,J)=S(I,J)/ (EX(I)*EX(J))
    630 S(J,I)=S(I,J)
        IF(JOKER) 631,634,631
    631 IF(105)634,90016,634
90016 WRITE (6,53INP,(RECORD(I),I=1,54)
    53 FORMAT(29HI CORRELATION MATRIX ON CYCLEI3/(3X,18A4))
    DO 632 I= I,NOVAR
    632 WRITE (6,40) I,(S(I,J),J=1,NOVAR)
        40 FORMAT(4HOROWI3/(1H,9F8.4))
            WRITE (6,63) (EX(I),I=1,NF)
        6 3 \text { FORMATIGIHO SQUARE ROOTS OF THE DIAGONAL TERMS OF THE NORMAL EQUAT}
            IIONS./(1H,9F8.4)I
C ELIMINATE ROWS AND COLUMNS FROM CORRELATION MATRIX
    634 IF(JOKER)635,636,636
    6 3 5 \text { NVO=NCZ}
        GO TO 637
    6 3 6 ~ N V D = N C 2 S ~
    637 IF(NVO1642,642,638
    638 DO 640 I= 1,NVO
        K=NCF(1)
        DO 639 J=1,NOVAR
        S(K,J)=0.0
    639 S(J.K)=0.0
    640 S(K,K)=1.0
    6 4 2 ~ D E F R = F R E Q ~
CALL REGRES TO SOLVE PERTUBATION EQUATIONS OR REGRESSION
        CALL REGRES
        NFA=NF-NCZS
        DO 700 I=1,NDIAG
        KX=INDEXIII
        PROU=PROD*EX(KX)*EX(KX)
    700 FF(I)=FI(KX)
    IF(JOKER)702,710,702
    702 [F(106)710,90017,710
90017 WRITE (6,52)DET,NFA,NDT,(RECORD(I),I=1,54)
        52 FORMATI43HI VARIANCE-COVARIANCE MATRIX. DETERMINANT= E12.4/18.32H
            IFORCE CONSTANTS ADJUSTED TO FITI5,13H FREQUENCIES./(3X,18A4))
            DO 704 I=1,NOVAR
    704 WRITE (6,40) I,(S(I,J),J=1,NOVAR)
    710 CONTINUE
90018 WRITE (6,61)NP, DET,PROD,RAP,(INDEX(I),FF(I),COEN(I).
    1SIGMCO(I),I=1,NDIAG)
    61 FORMATI23HI FORCE CONSTANTS AFTERI3,14H PERTURBATIONS /15H
        1.DETERMINANT =E12.4.19H PRODUCT OF SII,I)=E12.4/5H RAP=E14.4/
        252H I FORCE CONSTANTIII DELTAIII EST.DISPERSION/
        3(14,4X,F12.6,F14.6,F16.6))
90019 IF(NC2S)715,715,712
    712 WRITE (6,66) (NCF(I),I=1,NC2S)
        66 FORMAT(28HO FORCE CONSTANTS HELD FIXED/(2413))
    715 IF(JOKER)718,718,780
    718 DO 720 I=1,NDIAG
        IF(2.0-ABS(COEN(I)))722,722,720
    720 CONTINUE
```

GO 70735
722 CMAX=ABS(COEN(I))
MAX=1+1
LX=I
DO $724 \mathrm{I}=\mathrm{MAX}$.NDIAG
IFICMAX-ABSICOEN(I)))723,724,724
723 CMAX=ABS(COEN(I))
$L X=1$
724 CONTINUE
NFIX=INDEX(LX)
90021 WRITE (6, 17)NFIX,COEN(LX),SIGMCO(LX)
17 FORMATI16HO FORCE CONSTANTI3,13H FIXED.DELTA $=$ F10.6.8H SIGMCO=F10. 161
90022 DO $7261=\mathbb{1}$, NCZS
$J X=$ NC $2 S-1+1$
$L X=J X+1$
726 NCF(LX) $=$ NCF(JX)
NCF $111=$ NF $1 \times$
NC $2=\mathrm{NC} 2+1$
NCZS $=$ NC $2 S+1$
NLC $=0$
DO $728 \mathrm{I}=\mathbb{1}$, NDIAG
IFIINDEXIII-NFIXI727,728,727
727 NLC=NLC+1
NCON(NLC)=INDEX(I)
728 CONTINUE
NDIAG=NLC
SUMDD (NX) $=0.0$
IFINOIAGI729,729,470
729 JOKER=1
NPMAX $=1$
GO TO 470
735 DO $736 \quad 1=\mathbb{I}$, NDIAG
IF(0.008-ABS(COEN(I)))738,738,736
736 CONTINUE
NPMAX $=0$
GO TO 751
738 IF(DMXI750,742,739
739 DO $740 \quad \mathrm{I}=1$, NDIAG
$740 \operatorname{COEN}(1)=\mathrm{DMX} * \operatorname{COEN}(1)$
(F(CUTOF-NP) 63152,63152,91516
$63152 \mathrm{DMX}=0.0$
91516 GO TO 750
742 DO $746 \quad \mathrm{I}=1$, NDIAG
IF(1.0-ABS(COEN(I)))743,744,744
743 COEN(II=0.7*COEN(I)
744 IF(0.5-ABS(COEN(I)) 745.746 .746
745 COEN(I) $=0.8 * C O E N(I)$
746 CONTINUE
750 IF (NPMAX) 758,751,751
751 DO $753 \mathrm{I}=1, \mathrm{NDIAG}$
JX=INDEX(I)
753 FI(JX) $=\mathrm{F}(1 \mathrm{JX})+\operatorname{COEN(I)}$
(FINP)758,758,754

TABLE LI (Continued)

```
    754 IF(SUMDD(NP)-SUMDD(NX))756,756.758
    756 JET=JET+1
    IF(2-JET)757,757,758
    757 WRITE (6,51)NOPROB,NP
    51 FORMATI9HO PROBLEMIT,14H DIVERGING NP=131
    NPMAX=0
    758NP=NP+1
    NX=NP+1
    NCYC=NCYC+1
    SUMDD(NX)=0.0
    RAP=FRAC*RAP
    IF(NPMAX-NP)762,762,765
    762 JOKER=1
    GO TO 470
    765 IF(IFREGI770,470,770
    770 IFINIP+3-NCYCI771,470,470
    771 JOKER=-1
        GO TO 470
    780 IF(NGZS)802,802,800
    800 DO 601 I=1,NCZS
    K=NCF(I)
    801 S(K,K)=0.0
    802 E3=SQRT(SUMDD(NX)/DEFR)
    E4=SQRT(SUM / DEFR)
    DO 810 I=1,NF
    TEM=ABS(SII,I)I
    E(I)=E4*SQRT(TEM)/ EX(I)
    810 Y(I)=E3*SQRT(TEM)/ EX(I)
    815 WRITE (6,55)NOPROB,(RECORD(I),I=1.54)
    55 FORMAT(1H1,5X,8H PROBLEMI8/(12X,18A4))
    816 WRITE (6,60)NP,(I,FI(I),Y(I),E(II,I=I,NF)
    60 FORMATI44HO FORCE CONSTANTS AND ESTIMATED ERRORS AFTERI4,15H PERTU
        IRBATIONS.//47H I FORCE CONSTANTIII ERROR * ERROR **/II4.
        23X,F12.6,5X,F9.6,5X,F8.6)।
90024 FR=DEFR
        NAD=NF-NCZS
        IF(108)817,817,99887
99887 WRITE(7,21121)(FI(I),I=1,NF)
21121 FORMAT(6F12.6)
    817 WRITE (6,62)SUMDD(NX),E3,SUM,E4
        62 FORMATI33HO * STANDARD ERROR ESTIMATED FROM/54H SUMDD=SUMI(LAMB
        IDA(I)DBS.-LAMBDA(I)CALC.)**2)*P(I)=E13.6/47H STANDARD ERROR IN
        2LAMBDA = SQRT(SUMDD/ FR)=E13.6 //33H ** STANDARD ERROR ESTIMATED F
        3ROM/39H SUMD=SUM(DELTA LAMBDA(I)|**2)*P(I)=E13.6/19H SQRT(SU
        4MD/ FRI=E13.6/37H WHERE DELTA LAMBDA ESTIMATED FROM/
        549H 1.[FER=-3,DELTA FREQ(I)=1.0 CM-1 FOR ALL I/
        649H 2.IFER=-2,DELTA FREQ(I)=PER CM-1 FOR ALL. I/
        745H 3.IFER=-1,DELTA.FREQ(I) READ IN (CM-1)/
        848H 4.IFER= 0,DELTA FREQ(I)=0.005*OBS.FREQ(I)/
        946H DR 5.IFER= 1,DELTA FREQ(I)=PER*OBS.FREQ(I))
90026 IF(NOT)825,825,820
    820 WRITE (6,64)IFER,PER,NF,NAD,NDT,FR,(SUMDD(I),I=1,NX)
        64 FORMATILOH IFER=13,9H AND PER=F8.4/ 16,17H FORCE CONSTANTS.IG
        1,16H AOJUSTED TO FITI6,13H FREQUENCIES./ 2X,F5.1,41H DEGREES OF FR
```

TABLE.LI (Continued)

```
    2EEDOM. SUMDD FOR EACH CYCLE /(5E13.6))
90028 CON=FREQ
    E5=ER/CON
    E6=ERP/CON
90029 WRITE (6,65)E5,E6
    65 FORMAT\3OHOAVERAGE ERROR IN FREQUENCIES=F7.1.9H CM-1 OR F8.4.9H PE
        IRCENT.)
90030 NZER=NDT
    DO 824 t=1,50
    84 NZER=N2ER-NPN(1)-NPL(I)
90031 IF(107)26261,26261,825
26261 WRITE (6,55)NOPRDB,(RECORD(I),I=1,54)
    WRITE (6,82)NDT,NMOL,NZER,(I,NPLII),NPN(I),I=1,50)
    B2 FDRMATI24HO ERRDR DISTRIBUTION FORI5,13H FREQUENCIES.I4,IIH MOLECU
        LLES./2OH 0.5 TO-0.5 CM-1 =I8/26H CM-1 PLUS MINUS/
        2(16,2110))
    825 RETURN
            END
1*
    SUBROUTINE REGRES
C MODIFICATIDN DF A PROGRAM FOR STEPUISE MULTIPLE
C
C
C
C
                    REGRESSION PROGRAMED BY M.A. EFROYMSON OF ESSO RESEARCH
                THE SUBRDUTINE IS ALSO USEU FOR MATRIX INVERSION AND FOR
        SOLVING THE LINEAR EQUATION ON CYCLES NOT USING THE REGRESSION
        TECHNIQUE
            DIMENSION S( 84,84 ), EIG(66,66),NR(650),NC( 650),NFO( 650),
    1 Z( 6501,B2(66,71),G(66,66),INOEX( 71),DX(71),DE(71),DG(71),
    2 NFX( 71),FF( 71),SII 71),EC{71),Y( 71),NF1( 711,NF2( 71),DD(711,
    3 COEN( 71),SIGMCO( 71),NOM( 71),EX( 71),PE( 71),E( 71),DV(71).
    4 OC( 711,FI( 71),NCONI 71),NCF( 71),NPL(50),NPN(50),RECORD(54),
    5 REC(18),P(71),NROW(4),NCOL(4),NPO(4),DATIN(4),SUMDD(20)
    EQUIVALENCE (S,EIG),(S(4365),NR),(S(5020),NC),(S(5675),NFO).
    1 (S(6330),Z),(BZ,G),(BZ(4360),INDEX,DX),(BZ(4440),DE,DG),
    2(8Z(4520),NFX,FF, EC),(BZ(4600),Y,NFI),(SIGMCO,NOMI,
    3 (COEN,NF2,DD),(EX,PE),(E,DV)
    COMMON S,BZ,SIGMCO,COEN,EX,E,DC,FI,NCON,NCF,NPL,NPN,RECORD,REC,
    1P,SUMDD,NRDW,NCOL,NPO,DATIN,NF,NCZ,NC, IS,NDT,DET, JOKER,JOK,DMX,
    2 DEFR,FR,JET,NX,NP,NOIN,NOSTEP,NOVAR,NOVMI,EFOUT, EFIN,NCYC,
    3NOPROB,NOZ,NQ,LIMIT,TOL,NDIAG,NPMAX,IFREG,PROD,FREQ,ERPO,ERO,DAMP,
    4RAP,FRAC,TIME,PER,INO, IFREP,IFER,NIP,NMOL,IND,SCALE,ER,ERP,PTOT;
    5.NM,NM1,ND,NDD,SUM,101,102,103,104,105,106
        DET=1.0
        NOIN=0
        DO 650 I=1,NF
    650. NFX(I)=0
        IF(JDKER)656,699,699
    656 WRITE (6,22)
    22 FORMAT(35HI CONSTANTS FORCED INTO REGRESSION.)
        VAR=0.0
        NOSTEP=-1
        IFSTEP=0
        TOL=0.001
        NIN=0
        ASSIGN 1320 TO NUMBER
```

```
C ENTER FORCE CONSTANTS IN THE LIST NCON(I),I=I,NDIAG INTO
    699 IX=1
    ASSIGN 71O TO NOL
    700 DEFR=DEFR-1.0
    JX=NCON ({X)
    NFX(JX)=1
    K=JX
    GO TO 1400
    70 NOIN=NOIN+1
    INDEX(NOIN)=JX
    IX=IX+I
    IF(NDIAG-IX)711,700,700
    711 FLEVEL=0.0
    SIGY=EX(NOVAR)*SQRT(S(NOVAR,NOVAR)/ DEFR)
    DO 720 I=1,NOIN
    KX=INDEX(I)
    COEN(I)=S(KX,NOVAR)*EX(NOVAR)/EX(KX)
    720 SIGMCO(I)=(SIGY/EX(KX))*SQRT(S(KX,KX))
    IF(JOKER)721.200,200
    721 WRITE (6,70)FLEVEL,SIGY,(INDEX(J),COEN(J),SIGMCO(J),J=1,NOIN)
    722 IF(IFREG)730,723,730
    723 EFIN=2.0
        EFOUT=1.0
        GO TO 731
    730 READ {5,20) EFIN,EFOUT
    20 FORMAT(2F12.6)
    71 WRITE (6,26) EFIN,EFOUT
    26 FORMAT136HO REGRESSION, F LEVEL FOR ENTERING =F10.6.23H F LEVEL FO
    IR REMOVING =F10.61
    790 DEFR=DEFR+1.0
    799 ASSIGN 1000 TO NO1
    AO=1
    NOMIN=0
    NDMAX=0
    NOENT =0
    K=0
1000 NOSTEP=NOSTEP+1
    IF(NOSTEP-LIMIT)1001.3001.3001
3001 WRITE (6,3005)
3005 FORMAT\3GHOTOO MANY STEPS, PROBLEM TERMINATED I
    JOKER=1
    GO TO 1381
1001 IF(S(NOVAR,NOVAR)/1002.1002.1010
1002 NSTPMI=NOSTEP-1
    WRITE (6,1004)NSTPM1
1004 FORMAT(IHO37HY SQUARE NON-POSITIVE,TERMINATE STEP I5)
    GO TO 1381
1010 SIGY=EX(NOVAR)*SQRT(S(NOVAR,NOVAR)/DEFR)
1015 DEFR=DEFR-AO
1016 IF(DEFR) 1017,1017,1020
1017 WRITE (6,1019)NDSTEP
```

TABLE LI (Continued)

```
1019 FORMAT(1HO29H NO MORE DEGREES FREEOOM STEP \5)
    GO TO 1381
1020 VMIN=0.0
L030 VMAX=0.0
1035 NO1N=0
1040 DO 1050 I=1,NOVMI
    IF(NFX(I):1041:1041:1080
1041 IF(S(I,I))1046,1050,1060
1043 WRITE (6,1044|IgNOSTEP
1044 FORMATIIHOIOH SQUARE S-I5.17H NEGATIVE. SOLONG I5.6H STEPSD
    GO TO 1381
1046 IF(S(1,1)+TOL) 1043,1050,1050
1060 IF(S(I,I)-TOL) 1050,1080,1080
1080 VAR=S(I,NOVAR)*S(NOVAR.I)/ S(I.II
1090 IF(VAR)1100,1050,1110
1100 NOIN=NOIN+1
1120 INOEX(NOIN)=【
1130 COEN(NOIND=S(I,NOVAR)*EX(NOVARI/EXII)
1140 SIGMCO(NOIN)=(SIGY/ EX(I))* SQRT(SII,I))
    IF(NFX(I) ) 1150,1150,1050
1150 IF(VMIN) 1160,1170,904
    904 WRITE (6,906)
    906 FORMAT\24H ERROR,VMIN PLUS,SOLDNG )
        GO TO 900
1170 VMIN=VAR
1180 NOMIN=I
1190 GO TO 1050
1160 IF(VAR-VMIN) 1050,1050,1170
1110 IF(VAR-VMAX)1050.1050.1210
1210 VMAX=VAR
1220 NOMAX=I
1050 CONTINUE
1230 IF(NIN)903,1240,1300
    903 WRITE (6.907)
    907 FORMAT{26H ERROR,NOIN MINUS, SOLONG J
        GO TO 900
1240 WRITE (6;65)SIGY
        65 FORMAT{39HO START REGRESSION.STANDARD ERROR OF Y=F12.6)
        NIN=1.
        GO TO 1350
1300 IF(IFSTEP)900,1310,1320
1310 IF(NOENT) 1311.1311.1313
13L1 WRITE 16.91INOSTEP,K
    91 FORMAT\9HOSTEP NO.I5/19H VARIABLE REMOVED I8)
1312 GO TO 1314
1313 WRITE 16,92INOSTEP,K
    92 FORMAT(9HOSTEP NO.15/20H VARIABLE ENTERING I8)
1314 WRITE (6,70)FLEVEL,SIGY,(INDEX(J),COEN(J),SIGMCO(J),J=1,NOIN)
    7 0 ~ F O R M A T I 1 2 H ~ F ~ L E V E L ~ \& F 1 2 . 6 / 2 4 H ~ S T A N D A R D ~ E R R O R ~ O F ~ Y ~ = F L 2 . 6 / 4 4 7 H
        1 CONSTANT PERTURBATION STANDARD ERROR/IIT,8X,F10.6,8X,F10
        2.6)1
1315GO TO NUMBER, (1320,1580)
1320 FLEVEL=VMIN*DEFR/ S(NOVAR,NOVAR)
1330 IF(EFUUT +FLEVEL)1350.1350.1340
```

```
1340 K=NOMIN
1345 NOENT=0
    AO=-1.0
    GO TO 1391
1350 FLEVEL=VMAX*DEFR/ (S(NOVAR,NOVAR)-VMAX)
    AO=1.0
1360 IF(EFIN-FLEVEL)1370,1361,1380
1361 IFIEFINII 380,1380,1370
1370 K=NOMAX
1390 NOENT=K
1391 IF(K) 1392,1392,1400
1392 WRITE (6,1395)
1395 FORMAT\12H K=0. STEP 16,7H SOLONGI
    GO TO 900
1400 DO 1410 I=1,NOVAR
1420 IF(I-K) 1430,1410,1430
1430 DO 1440 J=1,NOVAR
1450 IF(J-K) 1460,1440,1460
1460 S(I,J)=S(I,J)-(S(I,K)*S(K,J)/S(K,K))
1440 CONTINUE
1410 CONTINUE
    DET=S(K,K)*DET
1470 DO 1480 I=1,NOVAR
1490 IF(I-K) 1500,1480,1500
1500 S(I,K)= -S(I,K)/S(K,K)
1480 CONTINUE
1510 DO 1520 J=1,NOVAR
1530 IF(J-K)1540,1520,1540
1540 S(K,J)= S(K,J)/S(K,K)
1520 CONTINUE
1550 S(K,K)=1.0 / S(K,K)
1560 GO TO NOL,(710,10001
1380 WRITE (6,75)NOSTEP
    75 FORMAT(1OHOCOMPLETED 15,2OH STEPS OF REGRESSION)
1381 IF(IFSTEP)900,1580,1570
1570 ASSIGN 1580 TO NUMBER
1571 GO TO 1310
1580 WRITE (6,1586)(L,S(L,L),L=1,NOVAR)
1586 FORMATI22HO DIAGONAL ELEMENTS//2OH VAR.NO. VALUE //(1H 17.
    1F16.61)
    910 NCZS=NCZ
        IF(NCL)913,913,911
    911 DO 912 I=1,NCZ
    K=NCF(I)
912 NFX(K)=-1
913 DO 914 I=1,NOIN
    K=1NDEX(1)
    NCON{()=K
914 NFX(K)=1
    DO 916 I=1,NF
        IF(NFX(I)I916,915,916
    915 NCZS=NCZS+1
    NCF(NCZS)=I
    IF(0.01-ABS(FI(I)))916.916,917
```


TABLE LI (Continued)

```
    917 FI(I)=0.0
    916 CONTINUE
        NCYC=0
        JOKER=0
    200 NDIAG=NOIN
    201 RETURN
    900 JOKER=1
    GO TO 201
    ENO
/*
    SUBROUTINE HDIAG(H,N,IEGEN,U,NR,RAP)
Subroutine HDIAG has been presented earlier in Table XXXIV and will not be repeated here because of space limitations.
```

a. IND $=-09$ and indicates the start of a new problem. IND is punched in Columns 1-3 (FORMAT I3).
b. NOPROB is the problem number, punched in Columns 4-9 (FORMAT I6).
c. NMOL, denotes the number of molecules included in the problem. NMOL is punched in Columns 10-12 (FORMAT I3).
d. NF is the number of force constants, punched in Columns 13-15 (FORMAT I3).
Warning: NF must not exceed 71.
e. NPMAX, represents the maximum number of perturbations desired in the refinement. The refinement will terminate when the number of iterations exceeds NPMAX, even though the refinement may not have converged. NPMAX is punched in Columns 16-18 (FORMAT I3).

Note: If NPMAX is set equal to zero or left blank, the force constants will not be refined, and the frequencies will be calculated for the initial set of force constants.
f. NCZ, refers to the number of force constants to be held fixed. These force constants are not perturbed by the refinement. NCZ is punched in Columns 19-21 (FORMAT I3).
g. IFREP is the problem repeat option. If IFREP $=0$, a new problem is to be started. For IFREP $=1$, only a new set of force constants and identification of those constants to be held fixed need be entered; the remaining data are taken from the previous problem. If IFREP $=-1$, the final set of force constants from the previous problem are used as the initial set in the new problem: IFREP is punched in Columns 22-23. (FORMAT I2).
h. IFER is the error control. For IFER $=$ I, the fractional error, PER, is read in. For $I F E R=0$, the fractional error, $P E R$, is set equal to 0.005 . If IFER $=-1$, the estimated errors for each of the observed frequencies are read in.
Note: These errors must follow the observed frequencies. For IFER = -2 , the error in the observed frequencies in cm^{-1}, PER , is read in. If $I F E R=-3$, the error in the frequencies, $P E R$, is set equal to 1 $\mathrm{cm} .^{-1}$ IFER is punched in Columns $24-25$ (FORMAT I2).
i. PER is the error referred to in above paragraph. If $I F E R=1$, $P E R$ is a fraction. If $I F E R=-2$, $P E R$ is in $\mathrm{cm} .^{-1}$ PER is punched in Columns 26-33 (FORMAT F8.6).
j. DMX, a fractional factor which is multiplied by the force constant perturbations to result in the "damped". perturbation. This factor is used in those situations where the initial force constant corrections are very large. DMX is punched in Columns $34-41$ (FORMAT F8.4).
k. IFREG is the regression option control. If:IFREG $=0$, there is no regression analysis. For IFREG $=1$, the regression is performed on the first iteration. If IFREG $=-1$, the regression is initiated on the fourth iteration. IFREG is punched in Columns 42-43 (FORMAT I2).

1. NDIAG, represents the number of force constants to be included in all the regressions, punched in Columns $44-46$ (FORMAT I3).
m. INO is the number of force constants to be remmbered, punched in Columns 47-49 (FORMAT I3).
n. NIP, represents the spacing between the regressions. The spacing is 3 - NIP where NIP may be negative. NIP is positioned in Columns 50-52 (FORMAT I3).
O. DAMP is the damping factor for "damped least squares." For DAMP
 of the normal equations on each perturbation cycle. Schachtschneider (89) suggests using DAMP $=0.001$. DAMP is punched in Columns 53-58 (FORMAT F6.5).
p. RAP is the cut-off factor for the Jacobi diagonalization. The rotations are terminated when $\operatorname{MAX}[H(I, J)]$ is less than $R A P * M I N[H(I, I)]$. If RAP is not entered or left blank, it is assigned a value of $0.5 \mathrm{E}-2$ in the program. On the final iteration, RAP is automatically set equal to $0.5 \mathrm{E}-3$ which gives eigenvalues to six significant figures and eigenvectors to three or four significant figures. RAP is punched in Columns 59-63 (FORMAT F5.4).
q. FRAC is a fractional factor for decreasing RAP after each iteration. After each iteration, RAP is set equal to FRAC*RAP. If FRAC is not entered, it is assigned a value of 0.9 by the program. FRAC is punched in Columns 64-67 (FORMAT F4.3).
r. CUTOF is the number of iterations after which $D M X$ is set equal to zero, punched in Columns 68-72 (FORMAT I5).
2. Problem Information Cards. Three cards containing any alphanumeric information about the problem the user may wish to enter. The first three columns, i.e., Columns l-3, should be left blank. Therefore, the alphanumeric information may be punched in Columns $4-72$ on each of the cards.

Warning: These three cards must always be included with the input data even if left blank.
4. Printout Option Cards. A 1 in the appropriate column will suppress the printout of the following information.
a. IOl, the $\frac{Z}{\sim}$ matrix suppression option, punched in Column 1 .
b. IO2, the eigenvalues and eigenvectors suppression option, punched in Column 2 .
c. I03, the JZ matrix suppression option, punched in Column 3.
d. IO4, the potential energy matrix suppression option, punched in Column 4.
e. I05, the correlation matrix suppression option, punched in Column 5.
f. IO6, the variance-covariance matrix suppression option, punched in Column 6 .
g. IO7, the error distribution suppression option, punched in Column 7 .
h. IO8, a 1 will result in the final set of force constants being punched onto cards in a format suitable for input to FADJ, FLPO, and EIGV. IO8 is punched in Column 8.
i. I09, a 1 will result in the test for unreasonable eigenvalues being bypassed. This option is useful if the initial set of force constants is not a good approximation. In this case, the refinement would terminate on the first iteration if the eigenvalues are not considered reasonable by the test built into the program. IO9 is punched in Column 9.
5. Initial Set of Force Constants. 'The initial set of force constant parameters are punched on cards in 12 column fields, six per card, in the order 1 through NF (FORMAT 6F12.6).
6. Force Constants to be Renumbered. If INO is greater than zero, the force constants to be renumbered along with their new numbers must be included in the data deck... The format is: $N F I(I)=$ the old force constant number and NF2(I) = the new force constant number, where $I=1$ through INO. NFI(I) and NF2(I) each occupy three columns and they are punched in pairs. There are 24 fields of 3 columns each per card (FORMAT 24I3).
7. Force Constants Held Fixed. If $N C Z$ is greater than zero, the numbers of the force constants to be held fixed, $N C F(I)$, are punched on cards in 3 column fields, 24 per card, for $L=1$ through NCZ (FORMAT 24I3).

Note: These force constants do not enter the refinement, and their final value is the same as their initial value.
8. Force Constants Forced Into the Regression. If NDIAG is greater than zero, the numbers of the force constants forced into the regression, $\operatorname{NCON}(I)$, must be included with the data. These numbers are punched in 3 column fields, 24 per card, for $I=1$ through NDIAG (FORMAT 24I3).
Note: The force constants identified here are entered into the regression equation without regard to the tests for significance.
9. Molecule Control Card.
a. IND $=-06$, identifies the molecule control card and is punched in Columns 1-3 (FORMAT I3).
b. $N Q$ is the number of internal coordinates, punched in Columns 4-6 (FORMAT I3).

Warning: NQ cannot exceed 66.
c. NDD is the number of nonzero experimental frequencies to be included with the input data. NDD is punched in Columns 7-9 (FORMAT I3).
Note: If no experimental frequencies are entered with the data, $\overline{N D D}$ is set $=0$ or left blank. This option may be used if one only wishes to solve the secular equation to obtain the calculated frequencies.
Warning: If NPMAX is greater than zero, so must be NDD.
d. NZZ, signifies the number of $\underset{\sim}{Z}$ matrix elements, punched in Columns 10-13 (FORMAT I4).

Warning: NZZ cannot exceed 650.
e. IFU is ignored by the program. The Columns $14-15$ may be left blank.
f. IFW, represents the weighting element option for the weighted least squares refinement. If $I F W=1$ or -2 , the weighting elements, $E(I)$, are read in and must be included with the input data, one for each nonzero experimental frequency. For IFW $=-2$, the weight (I) then becomes $=E(I)$. For $I F W=I$, the weight $(I)=E(I) /$ frequency parameter (I). If IFW $=0$, the weight $(I)=I /$ frequency parameter (I). For IFW $=-1$, the weight $(I)=1.0$ and all frequencies are weighted equally. Finally, if IFW $=-3$, the weight $(I)=I /[$ frequency parameter$(I)]^{2}$. IFW is punched in Columns 16-17 (FORMAT I2).
g. ISKZ is the Z matrix repeat option. If ISKZ $=0$, the Z matrix is included in the input data. For ISKZ $=1$, the Z matri $\widetilde{\widetilde{X}}$ from the previous problem is used and 'a new Z matrix is \widehat{n} ot included with the data deck. ISKZ is punched in Columns 18-19 (FORMAT I2).

Note: This option is specifically suitable for isotopically substituted molecules.
10. Molecule Information Card. One card containing the name of the molecule or other pertinent alphanumeric information. The first three columns should be left blank with the Columns $4-72$ open for the alphanumeric data (FORMAT 18A4).
11. The Z Matrix. The constraint matrix from UBZM or ZSYM is placed at this point in the data deck. The Z matrix elements are punched in 18 column fields, 1 to 4 per card [FORMATT 4(3I3,F9.6)].
Warning: The row number following the last element must be -2 .
12. Experimental Frequencies. If NDD is greater than zero, the experimental frequencies, in wave numbers, must be included with, the input data. The frequencies are entered in decreasing order and are punched in 12 column fields, 6 per card (FORMAT 6F12:6).

Note: If the frequencies are unknown or uncertain, enter a zero. For degenerate roots, enter one frequency and zeros for the rest. Any frequency may be given a zero weight in the refinement by entering a zero instead of the actual value.

Warning: For NDD greater than zero, one must make NQ entries of which NDD must be nonzero. A zero should be entered for each of the redundancies. Blanks are read as zeros.
13. Estimated Errors in the Observed Frequencies. If IFER $=-1$, the estimated errors in the observed frequencies, in $\mathrm{cm} .^{-1}$, must be included with the input data, one for each nonzero frequency. The estimated frequency errors must be entered in the same order as the experimental frequencies, with zeros being entered corresponding. to ". zeros in the frequency list. The estimated errors are entered in 12 column fields, six per card (FORMAT 6Fl2.6).

Warning: There must be NQ error entries for IFER $=-1$, NDD of them nonzero.
14. The Weighting Elements. If $I F W=1$ or -2 , the weighting elements are read in, one element for each nonzero frequency. The weighting elements are punched in 12 column fields, six per card (FORMAT 6F12.6).
Note: There are a total of NDD weighting elements arranged in the same order as the nonzero experimental frequencies.
15. The G Matrix. The G matrix from GMAT is inserted in the data deck at this point. The da $\overline{\text { ta }}$ are punched in 18 column fields, four per card [FORMAT 4(213,F12.6)].
Warning: The row number after the last element must be -1 .
16. Data Termination Card. This card designates the end of the data deck by a 999 punched in Columns l-3 (FORMAT I3).
Note: If another problem is to be included, the problem ID card is placed at this position and the data termination is moved to the end of the second problem data.

If the same set of force constants is to be used in the refinement for more than one molecule, the data cards starting with the molecule control card through the G matrix cards must be included, one set after another, for each molecule in the refinement, i.e., NMOL sets of data. For symmetry factored blocks, NMOL must be set equal to the number of factored blocks. The blocks are then treated as separate molecules with the data handled in the manner just described for several molecules.

The data deck is terminated with a card having /* punched in Columns 1-2 with the OS system.

OUTPUT INFORMATION

The following information is printed out at the option of the user.

1. The initial set of force constants.
2. The renumbered force constants, old and new numbers.
3. The force constants to be held fixed.
4. The force constants to be forced into the regression.
5. The $\frac{Z}{\pi}$ matrix.
6. The eigenvalues and errors for each cycle.
7. The force constant perturbations after each iteration.
8. The regression data.
9. The final set of calculated frequencies, frequency parameters, observed frequencies, errors, and weighting information.
10. The eigenvalues and eigenvectors for the final set of force constants.
11. The final JZ matrix.
12. The potential energy distribution.
13. The correlation matrix.
14. The variance-covariance matrix.
15. The final set of force constants.
16. The estimated error in the final force constants.
17. The error distribution for the frequencies.

The final set of force constants is punched on cards, if desired.

FLPO

This program solves the vibrational secular equation by the method of successive orthogonalization followed by diagonalization. The diagonalization is accomplished by the subroutine HDIAG which employs the Jacobi method. The program will also refine an initial set of force constant parameters to provide a linear or nonlinear (depending on the problem) weighted least squares "fit" of the calculated frequencies to the experimental frequencies by the FletcherPowell method (121).

This program was constructed by the author of this text during the investigation of the l,5-anhydropentitol spectra. FLPO was developed from sections of FADJ (the section involving the solution of the secular equation) and from an IBM subroutine, FMFP, (which is the basis of the Fletcher-Powell method) obtained from their scientific subroutine package (122). The adaptation of the FletcherPowell method is based on the paper by Gans (120). FLPO may be used with the IBM 360/44 OS operating system. The program requires a phase overlay procedure available with OS. The current version of FLPO is stored on disk at the Institute's computer center.

A flow diagram for FLPO appears in Fig. 42, 43, and 44. The JCL cards required to run the stored version of FLPO at the Institute are listed in Table LII. These cards must precede the data deck. A listing of FLPO follows the JCL cards in Table LIII.

INSTRUCTIONS FOR PROGRAM USE

The program, FLPO, requires a scratch tape or disk. This has already been accounted for with the stored version of FLPO. The following information comprises the input data deck.

Figure 42. The Flow Diagram of FLPO
Start

Figure 43. The Flow Diagram of Subroutine CYCLE
Start

Figure 44. The Flow Diagram of Subroutine FMFP

TABLE LII

LISTING OF THE JCL CARDS NEEDED TO RUN THE STORED VERSION OF FLPO

```
//FLPO JOB 94000110.LAR.MSGLEVEL=1
//JOBLIB DD OSN=LAR,VOL=SER=DLIBO3,DISP=OLD,UNIT=SYSDA
// EXEC PGM=FLPO
//FTOSFOOI DD DDNAME=SYSIN
//FTO6FOOL DD SYSOUT=A
//FTOTFOOL DD SYSUUT=B
//FTOIFOOI DD UNIT=SYSDA,DSN=TAPEOL,DISP=(NEW,DELETEI.
// VOL=SER=DLIBOL.
// SPACE=(CYL,(20,1)),DCB=(RECFM=VS,BLKSIZE=120)
//SYSIN DD *
```

TABLE LIII

IISTING OF FLPO

PROGRAM FLPO. SOLUTION OF THE SECULAR EQUATION AND REFINEMENT OF A SET OF FORCE CONSTANTS BY THE METHOD OF LEAST SQUARES. SCHACHTSCHNEIDER 9/1/65
MODIFIED FOR OS BY L J PITZNER 10/1/71
MANY MOLECULE PERTURBATION USING FLETCHER-POWELL MINIMIZATION. THIS PROGRAM USES SUBRDUTINE FMFP FROM IBM'S SCIENTIFIC SUB. PACK.

THIS PROGRAM ADJUSTS UP TO 70 FORCE CONSTANTS FOR A
LARGE NUMBER OF MDLECULES OR BLOCKS OF ORDER 70 OR LESS. CODED IN FORTRAN IV FOR USE HITH THE IBSYS SYSTEM.
THE SECULAR EQUATIONS OF THE SYMMETRIC PROBLEMS ARE SOLVED BY A SHARE SUBROUTINE MIHDI3 PROGRAMED BY F.J.CORBATO AND M.MERWIN OF M.I.T.
DISCS ARE USED INSTEAD OF SCRATCH TAPES DIMENSION EIG(66,66), NR(650), NC (650), NFO(650), Z(650), NCF(71), 1SI(71),SIS(71),FF(71), EX(71), BZ(66,71),G(66,66),DX(71),DE(71), 2DG(71), EC(71), E(71), DV(71), DD(71), OC(71),F(171), RECORO(54), 3REC(18), P(71), NFX(71), H(2734), NROW(4), NCOL(4), NPO(4), DAT(N(4) EQUIVALENCE(EIG(2640), NCF), (EIG(2720), SI), (EIG(2880), FFI, 2(EIG(2960),EX),(BZ,G),(BZ(4360),DX),(BZ(4440),DE,DG). 3(BZ(4520), EC), (E,DV,SIS)
COMMON BZ,EIG,DD,E,DC,FI,RECORD,REC,P,NFX,NROW,NCOL,NPO,DATIN, INCZ, NC ZS, NDT, JOKER, JOK, EST,EPS, SUMDD, DEFR, FR, NP, NOIN, NOPROB, NOZ, 2NF,NQ,TOL, NPMAX,FREQ,ERPD,ERO,RAP, FRAC, PER, IFREP, IFER,NMOL, IND, 3SCALE, ER, ERP, PTOT, NM, NMI, ND, NDD, SUM, NVAR, JUMP, NOVAR, NR, NC, NFO, Z, H. 4LEAP, CONV ,STUT,IFU, IFDEL,RATIO,HSRO, ITERM, NCOND
$H N(A)=5.88852 E-7 * A * A$
FNC(B)=SQRT(B)
READ PROBLEM CONTROL CARD
PROBLEM CUNTROL CARD CONTAINS THE FOLLOWING INFORMATION 1.IND $=-09$. INDICATING THE START OF A PROBLEM IN COLUMNS 1-3. 2.NOPROB, THE PROBLEM NUMBER. IN COLUMNS 4-9. 3.NMOL. THE NUMBER OF MOLECULES,IN COLUMNS 10-12.

TABLE LIII (Continued)

| | 4.NF. THE NUMBER OF FORCE CONSTANTS IN COLUMNS 13-15. |
| :---: | :---: |
| C | LESS THAN 71 |
| C | S.NPMAX, THE MAXIMUM NUMBER OF PERTURBATIONS DESIRED,COLUMNS |
| C | 16-18. |
| C | 6.NCZ, THE NUMBER OF FORCE CONSTANTS TO BE HELD FIXED, IN COLUMNS |
| C | 19-21. ILESS THAN Til |
| C | 7. IFREP $=1$, IF ONLY A NEW SET Of Fifil, AND NCF(I) ARE TO BE |
| C | |
| C | IFREP $=0$, IF A NEW PROBLEM IS TO BE STARTED. |
| C | IFREP $=-1$, FINAL FIII) FROM PREVIOUS PROBLEM ARE USED AS INTIAL |
| C | FIIII. NEW NCFII) ARE READ. 25 FROM PREVIOUS PROBLEM MAY BE |
| C | RENUMBERED. PUNCHED IN COLUMNS 22-23. |
| C | 8. IFER $=-3,-2,-1,0,1$ PUNCHED IN COLUMNS 24-25 |
| c | FOR IFER=1 PER IS READ IN AND USED AS A FRACTIONAL ERROR |
| C | FOR IFER $=0$ PER $=0.005$ USED AS A FRACTION |
| C | FOR IFER $=-1$ ESTIMATED ERRORS ARE READ IN FOR EACH OBS.FREQ. |
| C | INPUT FOLLOWS OBS.FREQ. |
| C | FOR IFER=-2 ERROR IN ALL FREQ. ASSUMED TO BE PER CM-1 |
| C | FOR IFER=-3 PER=1.0 CM-1 FOR ALL OBS. FREQ. |
| C | 9.PER AN ERROR TO BE ASSUMED FDR ALL OBS.FREQ. |
| C | A FRACTION IF IFER=1 IN CM-1 IF IFER=-2 |
| \checkmark | PUNCHED IN COLUMNS 26 TO 33 WITH DEGIMAL BETWEEN COL. |
| C | 27 AND 28 OR PUNCHED |
| | CONTINUE |
| 6 | 10. EST, AN ESTIMATE OF THE MINIMUM FUNCTION VALUE. |
| 6 | PUNCHED IN COLUMNS 34 TO 41 WITH THE DECIMALBETHEEN COLUMNS |
| C | 37 AND 38 DR PUNCHED. |
| C | 11. EPS, A TEST VALUE REPRESENTING THE EXPECTED ABSOLUTE ERROR. |
| C | A REASONABLE CHOICE IS 0.1E~05. PUNCHED IN COLUMNS 42-51.1RIGHT |
| C | JUSTIFIEDI |
| C | 12.RAP, THE CUT-OFF FACTOR FOR THE JACOBI DIAGONALIZATION. |
| C | THE JACOBI ROTATIONS ARE STOPPED WHEN MAX(HIT, JI) IS LESS |
| c. | THAN RAP*MIN(HII, III. IF RAP IS NOT ENTERED IT IS TAKEN EQUAL |
| C | TO 0.5E-2. ON THE THE FINAL CYCLE RAP IS SET EQUAL TO |
| C | O.5E-3 GIVING EIGENVALUES TO 6 SIGNIFICANT FIGURES AND EIGEN- |
| C | VECTORS TO 3 OR 4 FIGURES. |
| C | RAP IS PUNCHED IN COLUMNS 52-56 WITH THE DEGIMAL BETWEEN |
| C | COLUMNS 52 AND 53 OR PUNCHED. |
| | CONTINUE |
| c | 13. FRAC, A FRACTIONAL FACTOR FOR DECREASING RAP ON EACH CYCLE. |
| c | AFTER EACH PERTURBATION RAP IS SET EQUAL TO FRAC*RAP. |
| C | If FRAC IS NOT ENTERED IT IS TAKEN EQUAL TO 0.9. |
| C | FRAC IS PUNCHED IN COLUMNS 57-60 WITH THE DECIMAL BETWEEN |
| C | COLUMNS 57 AND 58 QR PUNCHED. |
| C | 14.LEAP, EITHER 1 OR O. A 1 CAUSES THE PRINT OUT OF THE EIGEN- |
| 6 | |
| 6 | VEC. AND GRAD. DIFF. VEC. TO BE SUPRESSED. A ZERO WILL PERMIT |
| C | THEIR PRINT OUT. LEAP IS PUNCHED IN COLUMNS 61 AND 62. |
| C | 15.CONV, AN ARBITRARY CONSTANT USED TO JUDGE THE FORCE CONSTANT |
| 6 | CORRECTIONS FOR SATISFACTORY CONVERGENCE. If CONV. IS NOT |
| C | ENTERED IT IS TAKEN TO BE O.008 WHICH IS SCHACHTSCHNEIDER'S |
| C | CHOICE FOR THIS CONSTANT. CONV IS PUNCHED IN COLUMNS 63-70. |
| C | 16. IfDEL, A 1 WILL CAUSE THE PRINTOUT OF THE DIFFERENCE BETWEEN |
| C | OBSERVED AND CALCULATED FREQUENCIES FOR EACH ITERATION. |

TABLE LIII (Continued)

```
C. IFDEL PUNCHED IN COLUMNS 71-72.MAY BE USED ONLY HHEN NMOL=1.
    90 READ(5,96001)IND
96001 FORMAT(13)
    IF(IND.EQ.-9)GO TO 91
    901 IF(IND.NE.999)GO TO 90
    9020 CALL EXIT
        91 READ ( 5,4)IND,NOPROB,NMOL,NF,NPMAX,NCZ,IFREP,IFER,PERC,EST,EPS,
            IRAP,FRAC,LEAP, CONV, IFDEL
            4 FORMAT(13,16,413,212,F8.6,F8.4,E10.2,F5.4,F4.3,12,F8.6,121
            WSRO=1000.0
            REWIND 1
        93 IF(IFREP.EQ.O)GO TO }80
    800 1F(JOK)90,805.90
    802 PER=PERC
    805 NP=0
            NCOND=0
            JUMP=1
            NVAR = NF - NCZ
            NX=1
            ER=0.0
            ERP=0.0
            NCZS=NCZ
            IFICONV.GT.0.0)GO TO 51311
            CONV=0.008
51311 NCYC=1
            NOVAR=NF+1
            IF(RAP.GT.O.O)GO TO }80
    807 RAP=0.5E-2
    808 DO 810 I=1,NF
    810 NFX(I)=1
            IF(FRAC.GT.0.0)GO TO }81
    811 FRAC=0.9
    812 JOK=0
        94 IF(NPMAX.EQ.O)GO TO 942
    940 JOKER=0
            GO TO 96
    942 JOKER=1
C
C
    READ PROBLEM INFORMATION CARDS. 3 CARDS CONTAINING INFORMATION
    ABOUT THE PROBLEM. GARDS MUST BE INCLUDEO EVEN IF BLANK.
    96 READ (5,6)RECORD
    6 \text { FORMAT(18A4)}
            WRITE (6,8)NOPRDB,NMDL,NF,NPMAX,NCZ,EST,EPS
        8 FORMATI13HI PROBLEM NO.I8,6H NMOL=14,4H NF=14,7H NPMAX=14,5H NCZ=1
            14,5H EST=F6.4,5H EPS=E10.21
            WRITE(6, 8080)RECORD
    8080 FORMATI1H, 12X,18A4)
        IF(IFREP.LT.O)GD TO }960
C READ INTIAL FORCE CONSTANTS
C THE FORCE CONSTANTS ARE PUNCHED IN }12\mathrm{ COLUMN FIELDS 6 PER CARD
C WITH THE DECIMAL BETWEEN COLUMNS 6 AND 7 OR PUNCHED. IN DRDER
C }1\mathrm{ THROUGH NF.
9601 READ (5,20)(FI(I),I=1,NF)
    20 FORMAT (6F12.6)
9602 WRITE (6,61)NP,II,FI(I),I=1,NF)
```


TABLE LIII (Continued)

61 FORMATI23HO FORCE CONSTANTS AFTERI4.15H PERTURBATIONS./(I6.F12.6))
9610 IFINCZ.LE.OIGO TO 9614
C READ NUMBERS DF FORCE CONSTANTS TO.BE HELD FIXED CONSTANTS ARE ADJUSTED.
9612 READ (5,7) (NCF(L), L=1,NC2)
7 FORMAT (2413)
009613 I=1,NCZ
JX=NCF(I)
9613 NFX(JXI=-1
9614 CONTINUE
9624 IF(NCZ-LE.O)GOTO 9630
9625 WRITE (6,25) (NCF(L),L=1, NCZ)
25 FORMATI39HO NUMBERS OF FORCE CONSTANTS HELD FIXED/(15I4))
$9630 \mathrm{NM}=1$
IFIIFREP.NE.OIGD TO 470
99 SUM $=0.0$
NDT $=0$
PTOT $=0.0$
SCALE=1.0
READ MOLECULE CONTRDL CARD.CONTAINING THE FOLLOWING INFORMATION
1.IND $=-06$, IDENTFYING COTROL CARD. IN COLUMNS 1-3
2. NQ, THE DIMENSION OF THE SECULAR EQUATION. COLUMNS 4-6.
3. NDD, THE NUMBER OF NON-ZERD EXPERIMENTAL FREQUENCIES. IN COLUMNS 7-9.
4. NZZ. THE NUMBER OF 2 MATRIX ELEMENTS. IN COLUMNS 10-13.
5.IFU, A 1 HILL CAUSE PRINTOUT OF THE FINAL H MATRIX. PUNCHED IN COLUMNS 14-15.
6. IFW=1 OR -2, IF WEIGHTING ELEMENTS ARE INCLUDED WITH THE INPUT IFW $=0,-1$, OR-3, IFWEIGHTING ELEMENTS ARE NOT INCLUDEO.COLS.16-17
7. ISK $2=0$, IF A NEW 2 MATRIX IS TO BE READ IN FOR THE MOLECULE. ISKZ=1. IF THE 2 MATRIX FROM THE PREVIOUS MOLECULE IS TO BE USED. E.Ge ISOTOPIC MOLECULES - PUNCHED IN COLUMN 19.
8. STUT, THE VALUE FROM STUDENT'S T DISTRIBUTION NEEDED TO CALCULATE THE 95 PERGENT CONFIDENCE INTERVALS. STUT=TIN-P..975) WHERE $N=N O$. DF NONZERD FREQ. AND $P=N O$. OF FORCE CONSTANTS BEING REFINED. PUNCHED IN COLUMNS 20-27.
9. RATIO, IF THE RATIO OF SUCCESSIVE WEIGHTEO SUM OF SQUARES OF RESIDUALS IS = OR GT THIS VALUE, THE REFINEMENT WILL BE TERMINATED AND SAID TO HAVE CONVERGED. RATIO IS PUNCHED IN COLUMNS 28-35.
10. ITERM. NO. OF TIMES THE RATIO CONDITION FOR TERMINATION MUST BE MET BEFORE ACTUAL TERMINATION OF THE REFINEMENT. COLS:36-39.
100 READ (5, 14)IND, NQ, NDD, NZZ, IFU, IFH,ISKZ,STUT,RATID, ITERM
14 FORMAT(313,I4,3I2,F8.4,F8,6,14)
IF(IND.NE.-6)GO TO 900
C INPUT DATA FOR EACH MOLECULE FOLLOW THE MOLECULE CONTROL
C CARD IN THE ORDER
C
C
C
C
C

1. MOLECULE INFORMATION CARD, I CARD CONTAINING THE NAME DF THE

MOLECULE OR BLANK. (COLUMNS 1-3 MUST BE LEFT BLANK)
2.THE 2 MATRIX
3. EXPERIMENTAL FREQUENCIES, NQ OF THEM FOR NDO GREATER THAN ZERO If $N D O=0$ NO FREQ. ARE ENTERED.
4.ESTIMATED ERRORS IN OBS.FREQ. FOR IFER=-1.

```
C 5.WEIGHTING ELEMENTS. IF IFW=1 OR -2
        6. THE G MATRIX.
    READ MOLECULE INFORMATION CARD
    101 READ (5,6)REC
    NO=0
    IFIISKZ.GT.OIGO TO 203
        READ L MATRIX
    Z IS NOT STORED AS A MATRIX, BUT RATHER AS 4 ONE DIMENSIONAL
    ARRAYS NR GIVING THE ROW NUMBER OF THE F MATRIX ELEMENT, NC
    GIVING THE COLUMN NUMBER OF THE F MATRIX ELEMENT, NFO GIVING
    THE NUMBER OF THE DISTINCT FORCE CONSTANT AND Z GIVING THE Z
    MATRIX ELEMENT. NC MUST BE GREATER THAN OR EQUAL TO NR
    ONLY NON-ZERD ELEMENTS ARE ENTERED.
    THE Z ELEMENIS ARE PUNCHED IN 18 COLUMN FIELDS, 1 TO 4 PER CARD
    COLUMNS 1-3 GIVE NR , COLUMNS 4-6 GIVE NC . COLUMNS 7-9 GIVE NFO,
    AND Z IS PUNCHED IN COLUMNS 10-18 WITH THE DECIMAL BETWEEN
    COLUMNS 12 AND 13 OR PUNCHED.NROW=-2 AFTER LAST ELEMENT.
        TOTAL NUMBER OF 2 MATRIX ELEMENTS MUST BE LESS THAN 651.
    190 NOZ=0
    191 READ (5,18) (NROW(L),NCOL(L),NPO(L),DATIN(L),L=1,4)
        18 FORMAT(4(313,F9.6))
        DO 196 L=1,4
        IF(NROWILI)198,196,192
    192 IF(NQ.LT.NCOL(L))GO TO 920
    193 NOZ=NOZ+1
        NR(NOZ)=NROW(L)
    NC(NOZ)=NCOL(L)
    NFO(NOZ)=NPO(L)
    Z(NOZ)=DATIN(L)
    196 CONTINUE
    GO TO 191
    198 IF(NROW(L).NE.-2)GO TO 920
    203 IFINOZ.GT.650IGO TO 920
    204 IF(NDD.GT.OIGO TO 207
    205 DO 206 I=1,NQ
        DX(I)=0.0
    206 P(I)=0.0
    GO 10 270
        READ OBSERVED FREQUENCIES. IF NDD IS GREATER THAN ZERD.
            PUNCHED IN }12\mathrm{ COLUMN FIELDS 6 PER CARD, DECIMAL BETWEEN COLUMNS
    6 ~ A N D ~ 7 ~ O R ~ P U N C H E D . ~ E N T E R E D ~ I N ~ D E C R E A S I N G ~ O R D E R ~ I N ~ E A C H ~ F A C T O R E D ~
    BLOCK. IF THE FREQUENCIES ARE UNKNOWN OR UNCERTIAN, OR ZERO
    (REDUNDANCIES) ENTER A ZERD,FOR DEGENERATE ROOTS ENTER ONE
    FREQUENCY AND THE REST LERO. ANY FREQUENCY MAY BE GIVEN ZERO
    WEIGHT IN THE PERTURBATION BY ENTERING A ZERO INSTEAD OF THE
    ACTUAL FREQUENCY. FREQUENCIES ARE ENTERED IN WAVENUMBERS.
    A TOTAL OF NQ ENTRIES, ND OF THEM MUST BE NON-ZERO.
207 READ (5,20) (DE(I),I=1,NQ)
    COMPUTE THE FREQUENCY PARAMETERS FROM THE FREQUENCIES
    DO 209 I=1,NO
    TEM=DE(I)
    IF(TEM.LE.0.0)GO TO 209
    ND=ND+1
209
    DX(1)=HN(TEM)
```

```
        N1=0
        IFIIFER+21210,211,1122
    1122 IF(IFER)215,220,221
C CONSTANT ERROR OF I CM-1 IN EACH OBS.FREQ. FOR IFER=-3
    210 PER=1.0
C CONSTANT ERROR OF PER CM-I IN EACH OBS. FREQ. FOR IFER=-2
    211 DO 212 I=1,NQ
    212 E(I)=PER
        GO TO 217
C READ ESTIMATED ERRORS IN OBS.FREQ.IN CM-1. ONE FOR EACH
C NON-ZERD DE(I), I.E. NQ ENTRIES. ND OF THEM NON-ZERO FOR IFER=-I.
    215 READ (5,20)(E(1),I=1,NQ)
    217 DO 219 I=1,NO
            TEMP=DE(I)
            IF|TEMP 1925,219,218
    218 NL=N1+1
            DC(NL)=E(I)/TEMP
    219 CONTINUE
            GO TO 225
C CONSTANT FRACTIONAL ERROR OF 0.005 IN EACH OBS. FREQ. FOR
C IFER=0
    220 PER=0.005
C CONSTANT FRACTIONAL ERROR =PER IN EACH OBS. FREQ. FOR IFER=1.
        221 DO 222 I=1.ND
        222 DC(1)=PER
        225 IF(IFW+2) 230,235,1311
    1311 IF(IFW) 250,255,235
C WEIGHT= L.O/ (FREQ.PAR.)**2 FOR IFW=-3
    230 DO 234 I=1,NQ
        TEM=DX(I)
        IFITEM.LE.O.OIGO TO 232
    231P(1)=1.0/(TEM*TEM)
            PTOT=PTOT+P(1)
            GO TO 234
    232 P(I)=0.0
    234 CONTINUE
        NOT =NDT +ND
        GO TO 260
C READ WEIGHTING ELEMENTS ONE FOR EACH NON-ZERO OBS. FREQ. FOR
C IFW=1 OR IFW=-2
    235 READ (5,20){E{I\,I=1,ND)
        N1=0
        N2=0
        IFIIFW.GT.01GO T0 241
        HEIGHT =E\I) FDR IFW=-2
        236 DO 240 I= I,NQ
        IF(DX(I).LE.O.OIGOTO 239
    237 N1=N1+1
        P(I)=E\N1)
        TEM=P(I)
        PTOT=PTOT+TEM
        IFITEM.LE.O.OIGO TO 240
    238 N2=N2+1
        GO TO 240
```

```
    239 P(I)=0.0
    240 CONTINUE
    NDT=NDT+N2
    GO TO 260
C WEIGHT =E\II / FREQ.PAR. FOR IFW=1
    241 DO 248 I= 1,NO
    TEM=DX(I)
    IFITEM.LE.O.OIGO TO 247
    242 Nl=N1+1
    P(I)=E(NI)/TEM
    TEMP=P(I)
    PTOT=PTOT+TEMP
    IF(TEMP.LE.O.O)GO TO 248
    246 N2=N2+1
    GO TO 248
    247 P(I)=0.0
    248 CONTINUE
        NOT=NOT+N2
        GO TO }26
        WEIGHT =1.0 FOR IFWx-1
    250 DO 254 I=1,NQ
        IF(DX(I).LE.O.O)GO TO 253
    251 P(I)=1.0
    PTOT=PTOT+1.0
    GO rO 254
    253 P(I)=0.0
    254 CONTINUE
        NDT=NDT+ND
        GO TO 260
C WEIGHT= 1/ FREQ. PAR. FOR IFW=0
    255 DO 259 I=1,NQ
        TEM=DX(I)
        IF(TEM.LE.O.OIGO TO 258
    256 P(I)=1.0/TEM
        PTOT=PTOT+P(I)
        GO TO }25
    258 P(I)=0.0
    259 CONTINUE
    NDT =NDT +ND
    260 N1=0
        DO 266 1=1,NQ
        TEMP=DX(I)
        IF(TEMP.LE.O.OIGO TO 266
    262 Nl=N1+1
        TEM=DC(N1)
        DCS=TEM*TEM
        SUM=SUM+TEMP*TEMP*P(I)*DCS*(DCS*4.0*TEM+4.0)
    266 CONTINUE
        IF(ND-N1)925,270,925
    270 WRITE (1)NQ,ND,NOZ
        WRITE (1)(REC(1),I=1,18)
        WRITE (1) (NR(K),NC(K),NFO(K),Z(K),K=1,NOZ)
C READ G MATRIX
C READ NON-ZERO G MATRIX ELEMENTS ,GII,J).
```

TABLE LIII (Continued)
C
6
C
140 OO $142 \quad I=1$, NO
DO $142 \mathrm{~J}=\mathrm{I}$. NO
$142 \mathrm{G}(1, \mathrm{~J})=0.0$
144 READ $(5,16)($ NROWYLI, NCOL(L), DATIN(L), $L=1,4)$
16 FORMAT(4)(213,F12.6))
DO $150 \mathrm{~L}=1.4$
ITEM=NROW(L)
ITEMP=NCOL(L)
[F(ITEM) $152,150,146$
146 IFIITEMP.LT.ITEMIGO TO 910
147 IFINQ.LT.ITEMPIGO TO 910
148 I $=1$ TEM
$J=1$ TEMP
G(1, 1) $=$ DATIN(L)
150 CONTINUE
GD 10144
152 IFIITEM.NE.-1IGO TO 910
SCHMIDT DRTHOGONALIZATION OF G
STORE INVERSE TRANSFDRMATION IN LQWER TRIANGLE OF G
$154 \mathrm{NO}=1$
$N L=2$
$155 \mathrm{GD}=1.0 / \mathrm{G}(\mathrm{NO}, \mathrm{NO})$
DO $156 \mathrm{~J}=\mathrm{NL}$. NQ
$156 G(J, N O)=G(N O, J) * G D$
IFINL.GT.NQIGO TO 170
$158 \mathrm{DO} 160 \quad 1=\mathrm{NL}, \mathrm{NQ}$
DO $160 \mathrm{~J}=\mathrm{I}$, NO
$160 G(I, J)=G(I, J)-(G(N O, I) \neq G(N O, J) * G D)$
$161 \mathrm{NO}=\mathrm{NO}+1$
$\mathrm{NL}=\mathrm{NO}+1$
163 IFIG(NO,NO)-0.0000011164:164.155
164 IFINL.GT.NQIGO 10170
165 DO $166 \mathrm{~J}=\mathrm{NL}, \mathrm{NQ}$
166 G(J,NO) $=G(N O, J)$
GO TO. 161
170 DO $175 \quad I=1, N Q$
TEM=G(I.I)
IFITEM.LE.0.000051GO TO 173
172 DGIII=FNC(TEM)
6010174
173 OG(II=0.0
174 G(I. I $1=1.0$
DD $175 \mathrm{~J}=\mathrm{I}$, NQ
175 G(J.II=G(J,I)*DG(I)
DO $178 \mathrm{~J}=1, \mathrm{NQ}$

```
178 WRITE (1) (G(I,J),I=J,NQ)
    WRITE (1) (DG(1),I=1,NQ)
    WRITE (1) (DX(I),I=1,NQ)
    WRITE (1) (P(I),I=1,NQ)
    NM=NM+1
    IF(NMOL.GE.NMIGO TO }10
286 END FILE 1
    REWIND 1
    IFINDT.GT.OIGO TO 288
287 JOKER=1
    FREQ=NF
    SCALE=1.0
    GO TO 470
288 FREQ=NDT
    SCALE=FREQ/ PTOT
    SUM=SCALE*SUM
    DEFR = FREQ
470 CALL CYCLE
    IF(2-JOK)90,901,90
900 HRITE (6,81)NOPROB,NM
    81 FDRMAT(40HO ERROR IN MOLECULE CONTROL CARD.PROBLEMI8,4H.NM=13)
    IF(NM.GT.1)GO TO }90
902 JOK=1
    GO TO 90
903 NMOL = NM-1
        JOK=2
        GO TO 286
910 WRITE (6,85)NM,NOPROB,L,NROW(L),NCOL(L),DATIN(L)
    85 FORMAT(25HO G MATRIX ERROR MOLECULEI3,8H PROBLEMI8,6H FIELDI3,6H R
        IEADSI4,14,F12.61
        JOK=1
        GO TO 90
920 WRITE (6,87)NM,NOPROB,NOL,NROW(L),NCOL(L),NPO(L),DATIN(L)
    87 FORMAT(25HO Z MATRIX ERROR MOLECULEI3,8H PROBLEMI8,8H ELEMENTI4,6H
        1 READSI4,I4,14,F9.6)
        JOK=1
        GO TO 90
925 WRITE (6,88)NM,NOPROB,N1
    88 FORMAT(27HO EIGENVALUE ERROR MOLECULEI3,8H PROBLEMI8,4H ND=13)
        JOK=1
        GO TO }9
        END
        SUBRDUTINE CYCLE
        DIMENSION EIG(66,66),NR(650),NC(650),NFO(650),Z(650),NCF(71),
        LSI(71),SIS(71),FF(71),EX(71),BZ(66,71),G(66,66),DX(71),DE(71).
        2DG(71),EC(71),E(71),DV(71),DD(71),DC(71),F1(71),RECORD(54),
        3REC(18),P(71),NFX(71),H(2734),NROW(4),NCOL(4),NPO(4),OATIN(4)
        EQUIVALENCE(EIG(2640),NCF),(EIG(2720),SI),(EIG(2880),FF),
        2(EIG(2960),EX),(BZ,G),(BZ(4360),DX),(BZ(4440),DE,DG),
        3(BZ(4520),EC),(E,DV,SIS)
        COMMON BZ,EIG,DD,E,DC,FI,RECORD,REC,P,NFX,NROW,NCOL,NPD,DATIN,
        INCZ,NCZS,NDT,JOKER,JOK,EST,EPS,SUMDD,OEFR,FR,NP,NOIN,NOPROB,NOZ,
        2NF,NQ,TOL,NPMAX,FREQ,ERPO,ERO,RAP,FRAC, PER, IFREP, IFER,NMOL, IND,
        3SCALE,ER,ERP,PTOT,NM,NM1,ND,NDD,SUM,NVAR,JUMP,NOVAR,NR,NC,NFO, Z,H,
```

4LEAP, CONV, STUT, IFU, IFDEL, RATIO,WSRU,ITERM,NCOND
$F N(A)=S Q R T(A / 5.88852 E-71$
CN(A) $=A / N D$
470 REWIND 1
$N M=1$
SUMDD $=0.0$
480 REAO (1) NQ,ND,NOZ
READ (1) (REC(1),I=1,18)
READ (1) (NR(K),NC(K),NFD(K),Z(K),K=1,NOZ)
490 IFIJOKER.LE.OIGO TO 300
492 RAP $=0.5 \mathrm{E}-3$
300 DO $301 \mathrm{~J}=1, \mathrm{NQ}$
301 REAO (1) (GII,J),I=J,NQ)
READ (1) $C O G(I), I=1, N Q)$
READ (1) $\operatorname{DX}(1), I=1, N Q)$
READ (1) (P1I), i=1,NQ)
IF(ND.GT.OIGO TO 306
304 IF(JOKER.LE.O)GO TO 468
C
COMPUTE TRANSFORMED F MATRIX AND STORE IN UPPER TRIANGLE OF G.
306 DO $328 \mathrm{~J}=1, \mathrm{NQ}$
$P(J)=S C A L E * P(J)$
DO $308 \mathrm{I}=1$, NQ
308 OD($11=0.0$
DO $320 \mathrm{~K}=1$, NO 2
$1 X=N R(K)$
IF(IX.LT.J)GO TO 320
$312 J X=N C(K)$
$L X=N F O(K)$
$T E M=F I(L X) * Z(K)$
$D D(I X)=D O(I X)+T E M * G(J X, J)$
IF(IX-JX)318,320,318
318 DD(JX)=DD(JX)+TEM*G(IX,J)
320 CONTINUE
DO $324 \mathrm{~K}=\mathrm{J}$, NQ
DC(K)=0.0
DO $324 L=K, N Q$
324 DC(K) $=D C(K)+G(L, K) * D D(L)$
DO $328 K=J$, $N Q$
$328 G(J, K)=D C(K)$
NR2 $=0$
IEGEN=0
DIAGONALILE TRANSFDRMED F MATRIX BY JACOBI METHOD
CALL HDIAGIG,NQ,IEGEN,EIG,NR2,RAPI
C COMPUTE EIGEN VECTORS
DO $330 \quad I=1$, NQ
$D C(1)=G(1,1)$
330 G(I.I) $=D G(I)$
DO $335 \quad I=1$, NQ
DO $333 \mathrm{~J}=1$, NQ
$D 0(J)=0.0$
DO $333 K=1,1$
333 OD(J) $=00(J)+G(J, K) \neq E I G(K, I)$
DO $335 \mathrm{~J}=1, \mathrm{NQ}$
335 EIG(J.I)=DO(J)

```
C ORDER EIGENVALUES AND EIGENVECTORS
    II=NQ-1
        DO 340 J=L.1I
        LOW=j+1
        DO 340 K=LOW,NQ
        IF(DC(J)-DC(K))337,340,340
        337 TEM=DC(J)
        OC(J)=DC(K)
        DC(K)#TEM
        DO 338 I= I,NQ
        338 OD(I)=E\G(I,J)
        DO 339 I=1,NQ
        EIG(I,J)=EIG(I,K)
    339 EIG(I,K)=DD(I)
    340 CONTINUE
C COMPUTE EIGENVALUE ERRORS
    341 DO 350 I=1,NQ
    IF(DX(1))348,348,344
    344 DD(I)=DX(I)-DC(I)
        SUMDD=SUMDD*DD{I)*DD{1)*P{T}
        GO TO 350
    348 DD\I)=0.0
    350 CONTINUE
    352 IF(LEAP.NE.O.)GO TO 63999
        WRITE (6,24)NM,NP,NR2,RAP,(DC(I),I=1,NQ)
        24 FORMAT(37HO EIGENVALUES AND ERRORS FOR MOLECULEI4,6H AFTERI3:I5H P
        IERTURBATIONS.I5.11H ROTATIONS./6H RAP=E12.4/(1H ,9F8.5))
            WRITE (6,26)(DD(J),J=1,NQ)
        26 FORMAT(8HO ERRORS/(1H,9F8.5))
63999 WRITE(6,87787)SUMDD,NP
87787 FORMAT(26HO WEIGHTED SUM OF SQUARES土E14.6.6H AFTERI3.15H PERTURBAT
    IIONS.I
        IF(IFDEL.LE.O)GO TO }9000
        WRITE(6,10113)NP
10113 FORMATI1HO*'THE DIFFERENCE BETHEEN OBS. AND CALC. FREQUENCIES AFTE
    IR',I4,2X,'PERTURBATIONS'I
    WRITE(6,21012)
21012 FORMATIIHO, 3X, "I* 5X, 'DELTA FREQ.*)
    DO 61531 J=1,NQ
61531 SIS(J)=0.0
    DO 61532 J=1,NO
    IF(DX(J).LE.O.)GO TO 10011
    TEMP1=FN(DX(J))
    TEMP2=FN(DC(J))
    SIS(J)=TEMP1-TEMP2
10011 HRITE(6,20022)J,SIS(J)
20022 FORMAT(1H.14,5X,F12.6)
61532 CONTINUE
90007 IFIJOKER.GT.OIGO TO 364
    354 CONTINUE
        IF(JOK)468,400,400
C OUTPUT FOR FINAL CYCLE
    364 ERO=0.0
        ERPD=0.0
```


TABLE LIII (Continued)

```
        DO 368 l=1,NQ
        DE(1)mFN(DXII))
        DV(I)=FN(DC(I))
        TEM=DE{\\
        IF(TEM.LE.O.)GO TO }36
        GO 1O 366
        365 EC(1)=0.0
            EX(I)=0.0
            DE(1)=0.0
            GO TO 368
    366 EX(I)=TEM-DV(II
            EC(I)=100.0*EXII)/TEM
            IF(P(I).LE.O.O)GO TO 368
    367 EROxERO&ABS(EX(I))
            ERPO=ERPD+ABS(EC(I))
    368 CONTINUE
B1180 ER=ER+ERO
            ERP=ERP&ERPO
            ERO=GN(ERO)
            ERPD=GN(ERPO)
90008 WRITE (6, 28)NM,SCALE,REC
    28 FORMATI75HI OBSERVED AND CALCULATED FREQUENCIES AND FREQUENCY PARA
        IMETERS FOR MOLECULEI3/26H SCALE FACTOR FOR WEIGHTS=F10.6/12X.18A4)
    369 WRITE (6,29)II,DE(I),DVII),EX(I),EC(I), P(I),DX(I),DC(I)OI=1,NQ)
    29 FORMATI95HO OBS.FREQ. CALC.FREQ. DIFFERENCE PERCENT ERROR
            I HEIGHT OBS.FREQ.PAR. CALG.FREQ.PAR. /6X,6H&CM-11,6X,6HICM-1
            2),7X,6H(CM-1)/I14,F9.1,4X,F8.1,4X,F6.1,7X,F7.3,6X,F9.4,F10.5,F14.5
            3)
            HRITE (6,31) ERO,ERPO
            31 FORMAT(17HO AVERAGE ERROR=F6.2.1OH CM-1 .OR FG.3.BH PERCENT)
            SIGMA = SQRT(SUMDD/DEFR)
            NM=NM+1
            IF(NMOL-NM)825.480.480
C COMPUTE THE JZ MATRIX ( CALLED 8Z)
    400 IFINM.NE.IIGO TO 401
            OO 19156 I=1,NQ
19156 SIS(I)=0.0
    401 DO 421 K=1,NQ
            DO 410 N=1,NF
    410 BZ(K,N)=0.0
            DD 420 L=L,NOZ
            l=NR(L)
            J=NC(L)
            M=NFO(L)
            TEM=EIG(I,K)*EIG(J,K)*Z(L)
            IF(I.NE.J)GO TO 418
    416 BZ(K,M)=BZ(K,M)+TEM
            GO 10 420
    418 B2(K,M)=82(K,M)+TEM+TEM
    4 2 0 ~ C O N T I N U E ~
    421 CONTINUE
C COMPUTE S
    438 DO 442 I=I,NQ
            P(I)=SORT(P(I))
```

TABLE LIII (Continued)

```
    BZ(I,NOVAR)=DD(I)
    DO 442 Jx1,NOVAR
    442 BZ(I,J)=P(I)*BZ(I,J)
    DO 458 I=1.NOVAR
    DO 456 J=I.NOVAR
    SI|J)=0.0
    DO 456 K=1.NQ
    456 SI(J)=SI(J)&BZ(K,I)*BZ(K,J)
    458 SIS(I)=SI(NOVAR) + SIS(I)
    4 6 3 \text { CONTINUE}
    4 6 8 N M = N M + 1
        IF(NMOL.GE.NMIGO TO 480
        RAP=FRAC*RAP
    600 IF(JOK.GE.OIGO TO }60
    601 JOK=1
        JOK ER=1
        GO TO 470
    602 FR=NDT-NF+NCZ
    608 DO 610 I=1,NF
        SI|I)=-2.*SIS(II)
    610 CONTINUE
    6 4 2 ~ D E F R = F R E Q ~
        IFINCZ.GT.OIGO TO }328
    9119 00 47813 I=1,NF
        SIS(I)=SI|!|
47813 FF(I)=F1(I)
        GO TO 31311
    3286 NCN=1
    DO 31444 I=1,NF
    IF(NFX{1).LT.O)60 TO 31444
66222 FF(NCN)=FI(I)
    SIS(NCN)=SI(I)
    NCN=NCN+1
31444 CONTINUE
C CALL FMFP TO MINIMIZE WEIGHTED SUM OF SQUARES OF RESIDUALS.
31311 CALL FMFPIH,NVAR,FF,SUMDD,SIS,EST,EPS,NPMAX,IER,JUMP,NP,NN2,NN3,
    1N31,OLDF,TT,HNRM,GNRM,DDX,FFY,ALFA,AMBDA,FFX,DDY,ZZ,DALFA,WH,LEAP,
    ICONV,RATIO,WSRO,ITERM,NCONDI
    IF(NCZ.GT.O)GO TO 32121
11211 DO 26162 I=1,NF
26162 FI(I)=FF(I)
    GO TO 66871
32121 NCN=1
    DO 81181 I=1.NF
    IF(NFX(1).LT.O)GO TO 81181
21381FI(1)=FF(NCN)
    NCN=NCN+1
81181 CONTINUE
66871 IFIJUMP.LT.5IGO TO 470
    8887 IF(IERIIO101, 20202,66666
10101 WRITE(6,81918)
81918 FORMATIIHO,5X,'ERRORS IN GRADIENT CALCULATION'I
    GO TO 90018
20202 WRITE(6,72135)NP
```

```
72135 FORMATIIHO, DNE DF THE CONOITIONS FOR TERMINATION WAS MET AFTER'.
    1!3,* PERTURBATIONS.'I
    GO TO 90018
6 6 6 6 6 ~ I F ( I E R . G T . 1 I G O ~ T O ~ 4 0 4 0 4 ~
30303 WRITE(6,83562)
83562 FORMATIIHO,5X,"NONE OF THE CONDITIONS FOR TERMINATION WERE MET IN
    INPMAX ITERATIONS'I
        GO TO }9001
40404 HRITE{6.75321)
75321 FORMATIIHO,5X,'LINEAR SEARCH TECHNIOUE INDICATES IT IS LIKELY ND
    IMINIMUM EXITS',
90018 JOKER =1
        GO TO 470
    825 IF(NPMAX.EQ.OIGO TO 100
        WRITE(7,55445)(FI(I),I=1,NF)
55445 FDRMAT(6F12.6)
    N =NVAR
    N2=N+N
    N3=N2+N
    N31=N3+1
    K=N31
    IFIIFU.LE.OIGO TO 10201
    WRITEI6.203021
20302 FORMATIIHL,5X, 'THE FINAL H MATRIX'I
    KK=N31
    KM=N3+N
    DO 30403 L=1,N
    WRITE(6,50404)(H(KJ),KJ=KK,KM)
50404 FORMAT(1H . IOF12.6)
    KK=KM+1
    KM=KM+N-L
30403 CONTINUE
10201 DO 4000 J=1,NVAR
    TEM=ABS(H(K))
    E(d)=SORT(2.*TEM)*SIGMA
    NJ=N-J
    IF(NJI5000,5000,2000
2000 DO 3000 L=1.NJ
    KL=K+L
    3000 CONTINUE
4000 K=KL+1
5000 IF(NCZ.LE.OIGO TO }8536
    NCN=1
    DD 95959 J=1,NF
    IFINFX(J).LT.OIGO TO 95958
    EC(J)=E(NCN)
    NCN:= NCN + 1
    GO 10 95959
95958 EC(J)=0.
95959 CONTINUE
    DO 85364 Ia 1,NF
85364 E(1)=EC(1)#STUT
    GO 10 95119
85361 DO 88771 M=1.NF
```



```
    1010 FORMAT|1HO,5X,'N`,6X, 'FORCE CONSTANTS*.4X,"GRADIENT VECTOR')
    111 WRITE(6,5213)(1,X(I),G(I),I=1,N)
    5213 FORMAT\1H .4X,12,7X,F10.6.8X,E14.6)
67761 IF(JUMP-3)3333,1002,1003
    3333 IF(JUMP.GT.1)GO TO 1001
C FUNCTION VALUE AND GRADIENT VECTOR FOR INITIAL ARGUMENT
C
C RESET ITERATION COUNTER AND GENERATE IDENTITY MATRIX
    1000 WRITEI6,999IN,F,EST,EPS,LIMIT,KOUNT,CONV,RATIO,ITERM
    999 FORMATI 3HON=12,3H F=E14.6,5H EST=F10.6,5H EPS=E10.2,7H LIMIT=14,7H
        1 KOUNT=12,6H CONV=F8.6.7H RATIO=F8.6,7H ITERM=141
            IER=0
            KOUNT=0
            N2=N+N
            N3=N2+N
            N31=N3+1
            l K=N31
            DO 4 J=1,N
            H(K)=1.
            NJ=N-J
            IF(NJ)5,5,2
            2 DO 3 L=1,NJ
            KL=K+L
            3 H(KL)=0.
            4 K=KL+1
C
C START ITERATIDN LOOP
        5 KOUNT=KOUNT +1
C
C
                    SAVE FUNCTION VALUE, ARGUMENT VECTOR AND GRADIENT-VECTOR
        IF(LEAP.NE.O)GO TO 63331
        WRITE\6,121)
    121 FORMATIIHO,5X,'N',5X,'DIRECTION VECTOR')
63331 OLDF=F
            DO 9 J=1;N
            K=N+J
            H(K)=G(J)
            K=K+N
            H(K) =X(J)
C
C DETERMINE DIRECTION VECTOR H
    K=J+N3
    T=0.
    DO 8 L=1,N
    T=T-G(L)*H(K)
        IFIL.GE.JIGO TO }
        6 K=K+N-L
        GO 10 8
        7K=K+1
        8 CONTINUE
        H(J)=T
        IF(LEAP.NE.O)GOTO }
        WRITE(6,965)J,H(J)
    965 FORMATIIH ,4X,12,6X,E14.6)
```

9 CONTINUE
C
C $0010 \mathrm{~J}=1 \mathrm{i} \mathrm{N}$ TEM=H(J) TEMP $=G(J)$ HNRM=HNRM+R(TEM) GNRM=GNRM+R(TEMP)
10 DY=DY + TEM*TEMP WRITE (6,353)HNRM, GNRM,DY
353 FDRMATIIHO, !MAG. OF DIR. VEC. $=$, E $14.6 .4 X^{\circ}{ }^{\circ}$ MAG. OF GRAD. VEC. $=$. IE14.6,4X, 'DIRECTIONAL DERIVATIVE= •,E14.6)

11 IF(HNRM/GNRM-EPS)51,51,12

SEARCH MINIMUM ALONG OIRECTION H
SEARCH ALONG h for positive directional derivative
$12 \mathrm{FY}=\mathrm{F}$
ALFA=2.*(EST-F)/OY
$A M B D A=1$.
USE ESTIMATE FOR STEPSILE ONLY IF IT IS POSITIVE AND LESS THAN

1. OTHERWISE TAKE 1. AS STEPSILE IFIALFA.LE.0.0)GO TO 15
13 IF(ALFA.GE.AMBDA)GOTO 15
14 AMBDA $=A L F A$
15 ALFA $=0$.
C
C
SAVE FUNCTION AND DERIVATIVE VALUES FOR OLD ARGUMENT
$16 \mathrm{FX}=\mathrm{FY}$
DX=OY
WRITE (6.91326) AMBDA
91326 FORMATILHO, ${ }^{\circ}$ STEPSILE $=$.E14.6)
C
C
STEP ARGUMENT ALONG H
WRITE 6, 201)

DO $17 \quad 1=1, N$
DELTA = AMBDA*HII)
WRITE(6,951)I,X(I),DELTA
951 FORMAT(IH, $4 X, 12,4 X, F 12.6,8 X, F 12.6)$
17 X(I)=X(I)+DELTA
C

| C | COMPUTE FUNCTION VALUE AND GRADIENT FOR NEW ARGUMENT JUMP $=2$
 GO 1056 |
| :---: | :---: |
| 1001 | $F Y=F$ |
| C | |
| C | CHECK FOR SATISFACTORY CONVERGENCE DO 96581 I=1,N |
| | DELTA = AMBDA*H(I) |
| | IF(RIDELTA).GT.CONV)GO TO 75381 |
| 96581 | CONTINUE |
| | GO 1055 |
| C | COMPUTE DIRECTIONAL DERIVATIVE DY FOR NEW ARGUMENT. TERMINATE |
| C | SEARCH, IF DY IS POSITIVE. IF DY IS ZERO THE MINIMUM IS FOUND: |
| 75381. | DY $=0$. |
| | DO 18 I= $1, \mathrm{~N}$ |
| 18 | DY $=D Y+G(I) * H(I)$ |
| | WRITE(6,752)DY |
| 752 | FORMAT(1HO, 'THE DIRECTIONAL DERIVATIVE = .E14.6) |
| | IFIDY)19,36,22 |
| 6 | |
| ${ }_{6}^{6}$ | TERMINATE SEARCH ALSO IF THE FUNCTION VALUE INDICATES THAT |
| 6 | A MINIMUM HAS BEEN PASSED |
| 19 | IF(FY.GE.FX)GO TO 22 |
| C | |
| C | REPEAT SEARCH AND DOUBLE STEPSILE FOR FURTHER SEARCHES |
| 20 | $A M B D A=A M B D A+A L F A$ |
| | ALFA=AMBDA |
| C | END DF SEARCH LOOP |
| c | |
| C | TERMINATE IF THE CHANGE IN ARGUMENT GETS VERY LARGE |
| | CHARG $=$ HNRM*AMBDA |
| | WRITE(6,954) CHARG |
| 954 | FORMATIIHO, 'CHANGE IN ARGUMENT VECTOR $=$ - E14.6) |
| | IFICHARG-1.E10)16,16,21 |
| ${ }_{6} \mathrm{C}$ (LINEAR SEARCH TECHNIQUE INDICATES THAT NO MINIMUM EXISTS | |
| C | LINEAR SEARCH TECHNIQUE INDICATES THAT NO MINIMUM EXISTS |
| 21 | 1ER=2 |
| | JUMP $=5$ |
| | RETURN |
| C | |
| $C$$C$$C$ | INTERPOLATE CUBICALLY IN THE INTERVAL DEFINED BY THE SEARCH ABOVE AND COMPUTE THE ARGUMENT X FOR HHICH THE INTERPOLATION polynomial is minimized |
| | |
| | |
| 22 | $T=0$. |
| 23 | IF(AMBDA.EQ.0.0)GO TO 36 |
| 24 | $Z=3 . *(F X-F Y) / A M B D A+D X+D Y$ |
| | $A L F A=A M A X I(R(Z), R(D X), R(O Y))$ |
| | DALFA $=2 /$ ALFA |
| | DALFA $=$ DALFA*DALFA-DX/ALFA*DY/ALFA |
| | WRITE(6,81351)DALFA |
| 81351 | FORMAT(1HO, DALFA $=$, E14.6) |
| | IFIDALFA.LT.0.0)GO TO 51 |
| 25 | $H=A L F A * S Q R T(O A L F A)$ |
| | $A L F A=D Y-D X+W+W$ |
| | IF(ALFA.EQ.0.0)GO TO 251 |

```
    250 ALFA =(DY-Z+W)/ALFA
    GD TO 252
    251 ALFA =(Z+DY-W)/(Z+DX+Z+DY)
    252 ALFA = ALFA*AMBDA
    NRITEI6,201)
    DO 26 I=1,N
    DELTA =fT-ALFA)*H(II
    WRITE(6,951)1,X(II,DELTA
    26 X(I)=X(I)+DELTA
C
C
C
C
C
C
C
    JUMP = 3
    GO TO 56
C CHECK FOR SATISFACTORY CONVERGENCE.
1002 DO 51131 I=1,N
    DELTA=(T-ALFA)*H(I)
    IF(R(DELTA).GT.CDNVIGO TO 61318
51131 CONTINUE
    GO TO 55
61318 IF(F.GT.FX)GO TO 28
    27 IF(F.LE.FY)GO TO 36
    28 DALFA=0.
    DO 29 I=1,N
    29 DALFA=DALFA+G(I)*H(I)
    IF(DALFA.GE.0.0)GO TO }3
    30 IF(F-FX)32;31,33
    31 IF(DX.EQ.O.O)GO TO 36
    32 FX=F
        DX=DALFA
        T=ALFA
        AMBDA=ALFA
        GO TO }2
    33 IF(FY.NE.FIGO TO }3
    34 IF(DY.EQ.DALFAIGO TO. 36
    35 FY=F
        DY=DALFA
        AMBDA=AMBDA-ALFA
        GO TO 22
C TERMINATE, IF FUNCTION HAS NOT DEGREASED DURING LAST ITERATION
    36 IF(OLDF-F+EPS)51,38,38
C
C COMPUTE DIFFERENCE VECTORS OF ARGUMENT AND GRADIENT FROM
            TWO CONSECUTIVE ITERATIONS
    38 IFILEAP.NE.OIGO TO 31113
    WRITE(6,10011)
10011 FORMATILHO,5X,"N`,5X,"ARG. DIFF. VEC.',3X,'GRAD. DIFF. VEC.'I
31113 DO 37 Jx1,N
    K=N+J
    H(K)=G(J)-H(K)
```

```
    K=N+K
    H(K)=X(J)-H(K)
    IFILEAP.NE.OIGO TO 37
    WRITE(6,97533)J,H(N+J),H(N+N+J)
97533 FORMATIIH,4X,I2,5X,E14,6,5X,E14.61
    37 CONTINUE
C
C
C
            TEST LENGTH OF ARGUMENT DIFFERENCE VECTOR AND DIRECTION VECTOR
            IF AT LEAST N ITERATIONS HAVE BEEN EXECUTED. TERMINATE. IF
            BOTH ARE LESS THAN EPS
        IER=0
        IF(KOUNT.LT.NIGO TO }4
    39 T=0.
        Z=0.
        DO 40 J=1,N
        K=N+J
        H=H(K)
        K=K+N
        TEM=H(K)
        T=T+R(TEM)
        40 Z=2+W*TEM
        WRITE{6,893)T,Z
    893 FORMAT(1HO,'LENGTH OF ARG. DIFF. VECTOR m ',E14.6,10X.'LENGTH OF D
        IIRECTION VECTOR = ',E14.6)
        IF(HNRM.GT.EPS)GO TO }4
        41 IF(T.LE.EPS)GO TO }5
C
C TERMINATE, IF NUMBER OF ITERATIONS WOULD EXCEED LIMIT
    42 IFIKOUNT.GE.LIMITIGO TO 50
C
C PREPARE UPDATING OF MATRIX H
    4 3 ~ A L F A = 0 . ~
    DO 47 J=1,N
    K=J+N3
    H=0.
    DO 46 L=IN,N
    KL=N+L
    W=W+H(KL)*H(K)
    IF(L.GE.J)GO TO 45
    44 K=K+N-L
    GO TO 46
    45 K=K+1
    46 CONTINUE
        K=N+J
        ALFA=ALFA+W*H(K)
    47 H(J)=W
        REPEAT SEARCH IN DIRECTION OF STEEPEST DESCENT IF RESULTS
            ARE NOT SATISFACTORY
    TEM =2*ALFA
    WRITE(6,96512)TEM
96512 FORMAT(1HO,'2*ALFA= 0,E14.6)
    IF(TEM.EQ.O.OIGO TO I
```

```
C
    C UPDATE MATRIX H
        48 K=N31
        DU 49 L=1,N
        KL=N2+L
        DO 49 J=L,N
        NJ=N2+J
        H(K)=H(K)+H(KL)*H(NJ)/Z-H(L)*H(J)/ALFA
        4 9 K = K + 1
        GO TO 5
    C END OF ITERATION LOOP
C
C NO CONVERGENCE AFTER LIMIT ITERATIONS
    50 IER=1
    JUMP = 5
    RETURN
C
C RESTORE DLD VALUES OF FUNCTION AND ARGUMENTS
    51 WRITE(6,201)
    DO 52 J=1,N
    DELTA =0.0
    K=N2+J
    X(J)=H(K)
    52 WRITE(6,951)J,X(J),DELTA
        JUMP = 4
        GO TO 56
C
C REPEAT SEARCH IN DIRECTION OF STEEPEST DESCENT IF dERIVATIVE
C FAILS TO BE SUFFICIENTLY SMALL
    1003 IFPGNRM.LE.EPSIGO TO }5
C
C TEST FOR REPEATED FAILURE OF ITERATION
    53 IFQIER.LT.OJGO TD 59
    54 IER=-1
    GOTO 1
    55 IER=0
    59 JUMP = 5
    56 WSRO=WSRN
        RETURN
        END
        SUBROUTINE HDIAG(H,N,IEGEN,U,NR,RAP)
        A listing of the subroutine HDIAG was presented in Table
        XXXIV and will not be repeated here because of space limitam
        tions.
```

1. Problem ID Card. This card identifies the beginning of a problem. This card must have a -09 punched in Columns 1-3 (FORMAT I3).
2. Problem Control Card.
a. $\operatorname{IND}=-09$, identifies the problem control card. IND is punched in Columns 1-3 (FORMAT I3).
b. NOPROB is the problem number, punched in Columns 4-9 (FORMAT I6).
c. NMOL, designates the number of molecules, punched in Columns lo-l2 (FORMAT I3).
d. NF, signifies the number of force constant parameters. NF is punched in Columns 13-15 (FORMAT I3).
Warning: NF must not exceed 71 .
e. NPMAX is the maximum number of desired iterations. The refinement will terminate when NPMAX is exceeded, even if convergence has not been reached. NPMAX is positioned in Columns 16-18 (FORMAT I3).

Note: If NPMAX is set equal to zero or left blank, there will be no refinement of the force constant parameters, and the frequencies will be calculated for the problem based on the initial set of parameters.
f. NCZ, represents the number of force constants to be held fixed. These force constants do not enter the refinement, and their final value is identical to their initial value. $N C Z$ is punched in Columns 19-2l (FORMAT I3).
g. IFREP is the problem repeat option. For IFREP $=0$, a new problem is started. If IFREP $=1$, only a new set of force constants and list of those force constants to be held fixed are read in; the rest of the problem information is taken from the previous problem. For IFREP $=-1$, the final set of force constants from the previous problem are used as the initial set in the new problem; the rest of the problem data must be included with the input data. IFREP is punched in Columns 22-23 (FORMAT I2).
h. IFER is the error option control. For IFER $=1$, the fractional error in the experimental frequencies, $P E R$, is read in. If $I F E R=0$, the fractional error, PER, is assumed to be 0.005 . For IFER $=-1$; the estimated errors in the frequencies, in $\mathrm{cm} .^{-1}$, are read in. For $I F E R=$ -3 , the error is assumed to be $P E R=1.0 \mathrm{~cm} .^{-1}$ IFER is punched in Columns 24-25 (FORMAT I2).
i. PER is the error in the frequencies described in the above paragraph. If PER is not needed, it may be left blank. PER is punched in Columns 26-33 (FORMAT F8.6).
j. EST is the estimate of the value of the weighted sum of squares of the residuals at the minimum. If a value cannot be estimated for EST, one may set it equal to 0.0. EST is punched in Columns 34-41. (FORMAT 8.4).
k. EPS is a test value representing the expected. absolute error. A reasonable choice for EPS is $0.1 E-05$. EPS is punched in Columns 42-51 (FORMAT El0.2).

Warning: EPS must be right justified.

1. RAP, the cutoff factor for the Jacobi diagonalization. The plane rotations are terminated when $\operatorname{MAX}[H(I, J)]$ is less than RAP*MIN[H(I,I)]. If RAP is not entered, the program assigns a value of $0.5 \mathrm{E}-2$. On the final cycle, RAP is set equal to $0.5 \mathrm{E}-3$ which results in eigenvalues significant to 6 figures and eigenvectors significant to 3 or 4 figures. RAP is punched in Columns 52-56 (FORMAT F5.4).
m. FRAC is a fractional factor for decreasing RAP on each cycle. After each perturbation, RAP is set equal to FRAC*RAP. If FRAC is not entered, it is assigned a value of 0.9 by the program. FRAC is punched in Columns 57-60 (FORMAT F4.3).
n. LEAP is a printer output suppression option. A 1 will result in the printer suppression of the eigenvalues and errors, gradient vector, argument vector, direction vector, argument difference vector, and gradient difference vector for each perturbation. LEAP is punched in Columns 61-62 (FORMAT I2).
o. CONV is the convergence criterion. The refinement will terminate when the corrections to the force constant parameters are all less than or equal to CONV (i.e., the absolute value). CONV is punched in Columns 63-70 (FORMAT F8.6).

Note: Schachtschneider (89) suggests a value of 0.008 for CONV; however, the author suggests a value of 0.0001 for a more rigorous criterion.
p. IFDEL, a 1 will cause the printout of the difference between the calculated and observed frequencies for each perturbation. If IFDEL is left blank the difference will not be printed. IFDEL is punched in Columns 71-72 (FORMAT I2).

Warning: IFDEL can be set equal to 1 only when $N M O L=1$.
3. Problem Information Cards. Three cards containing alphanumeric information about the problem. The first three columns of each card should be left blank, so that the alphanumeric information may be punched in any column, 4-72 (FORMAT 18A4).

Warning: These cards must be included in the data deck even if they are left blank.
4. Initial Set of Force Constant Parameters. The force constants are punched in 12 column fields, six per card, in the order 1 through NF (FORMAT 6F12.6).
5. Force Constants to be Held Fixed. If NCZ is greater than zero, the numbers of the force constants to be held fixed are punched on cards in 3 column fields, 24 per card, up to NCZ entries (FORMAT 24I3).

Note: The force constants designated on these cards are not entered into the refinement and their final values are identical to their initial values.
6. Molecule Control Card.
a. $\operatorname{IND}=-06$, identifies the molecule control card. IND is punched in Columns 1-3 (FORMAT I3).
b. $N Q$ is the number of internal coordinates, punched in Columns 4-6 (FORMAT I3).
Warning: NQ cannot exceed 66.
c. NDD is the number of nonzero experimental frequencies included with the input data. NDD is punched in Columns $7-9$ (FORMAT I3).
Note: If one wishes to solve the secular equation to obtain the calculated frequencies, but no refinement, the experimental frequencies need not be included so that $N D D=0$ or left blank.
d. NZZ, the number of $\frac{Z}{\sim}$ matrix elements, punched in Columns IO-13 (FORMAT I4).

Warning: NZZ cannot exceed 650.
e. IFU, a 1 will result in the final \bar{H} matrix being printed out, punched in Columns 14-15 (FORMAT ITZ).
f. IFW is the weighting element option for the weighted least squares refinement. If $I F W=1$ or -2 , the weighting elements, $E(I)$, are read in, one for each nonzero experimental frequency. For $I F W=-2$, the weight $(I)=E(I)$, and for $I F W=1$, the weight $(I)=E(I) /$ frequency parameter (I). If $I F W=0$, the weight $(I)=I / f r e q u e n c y$ parameter (I). For $I F W=-1$, the weight $=1.0$ for all the frequencies. Finally, if $I F W=-3$, the weight $(I)=I /[\text { frequency parameter }(I)]^{2}$. IFW is punched in Columns 16-17 (FORMAT I2).
g. ISKZ is the Z matrix repeat option. If ISKZ $=0$, the Z matrix is included wit \vec{n} the input data. For ISKZ $=1$, the Z mat $\vec{r} i x$ from the previous problem is used so that a new $\underset{\sim}{Z}$ matrix dopes not need to be included with the input data. ISKZ is $\widehat{\widetilde{p} u n c h e d ~ i n ~ C o l u m n s ~ 18-19 ~}$ (FORMAT I2).

Note: This option is useful for isotopically substituted molecules.
h. STUT is the value from Student's t distribution needed to compute the 95% confidence intervals for the final set of force constants. STUT = $\underline{t}(\underline{n}-\underline{p}, 0.975)$ where $\underline{n}=N D D$, the number of nonzero experimental frequencies, and $p=N F-N C Z$, the number of force constant parameters being refined. STUT is punched in Columns 20-27 (FORMAT F8.4).

Note: If STUT is set equal to 1.0 , the standard errors in the force constants are printed instead of the 95% confidence intervals.
i. RATIO, establishes another criterion to judge the convergence of the refinement and upon which to base termination of the refinement. When the ratio of successive weighted sum of squares is equal to or greater than RATIO, the force constant refinement will be terminated and said to have converged if the condition has been met previously ITERM times. RATIO is punched in Columns 28-35 (FORMAT F8.6).

Note: A reasonable choice for RATIO is 0.995 .
j. ITERM is the number of times that RATIO must be equaled or exceeded before the refinement is actually terminated. ITERM is punched in Columns 36-39 (FORMAT I4).
Note: The refinement is terminated when RATIO has been equaled or exceeded ITERM +1 times. This device is a check against premature termination.
7. Molecule Information Card. One card containing the name of the molecule or other alphanumeric information. The first three columns should be left blank with the alphanumeric data following in any of the columns through 72 (FORMAT 18A4).
Warning: This card must be included with the input data even if left blank.
8. The Z Matrix. The programs UBZM and ZSYM punch the Z matrix in the proper format for use in this program. The Z elements are punched in 18 column fields, 1 to 4 per card [FORMAT 4(3I3,F9.6)].
$\frac{\text { Warning: }}{\text { to }-2}$. The row following the last $\underset{\sim}{Z}$ matrix element must be set equal
9. The Experimental Frequencies. If NDD is greater than zero, the experimental frequencies, in $\mathrm{cm} .^{-1}$, are included with the input data. The frequencies are entered in decreasing order being punched in 12 column fields, 6 per card (FORMAT 6F12.6).
Note: If the frequencies are unknown, uncertain, or zero (redundancies), one should enter a zero. For degenerate roots, one should enter one frequency and set the rest equal to zero. Any frequency may be given zero weight in the refinement by entering a zero instead of the actual frequency.
Warning: For NDD greater than zero, one must make NQ frequency entries, NDD of which must be nonzero. Blanks are read as zeros.
10. The Estimated Errors in the Experimental Frequencies. If IFER $=-1$, the estimated errors in the observed frequencies, in $\mathrm{cm} .^{-1}$, must be included with the input data, one for each nonzero frequency. The estimated errors are entered in the same order as the experimental frequencies, with zeros or blanks positioned properly corresponding to zeros in the list of experimental frequencies. The estimated errors are entered in 12 column fields, six per card (FORMAT 6F12.6).
Warning: There must be NQ error entries, NDD of the nonzero for IFER $=-1$.
11. The Weighting Elements. If IFW $=-2$ or 1 , the weighting elements must be included with the data deck, one element for each nonzero frequency. The weighting elements are punched in 12 column fields, six per card (FORMAT 6FI2.6).
Note: There are NDD weighting elements which must be arranged in the same order as the nonzero experimental frequencies.
12. The G Matrix. The G matrix from GMAT is included at this point in the data deck. The information is punched in 18 column fields, four per card [FORMAT $4(2 I 3, F 12.6)]$.
Warning: The row number following the last $\underset{\sim}{G}$ matrix element must be set equal to -1.
13. Data Termination Card. This card must have a 999 punched in Columns 1-3 (FORMAT I3) and designates the end of the data.
Note: If another problem is to be included in the data deck, the problem ID card for the next problem should be placed at this point and the data termination card moved to the end of the second problem.

If the same set of force constants is to be refined for more than one molecule, the data cards starting with the molecule control card and going through the $\underset{\sim}{G}$ matrix cards must be included, one set after another, for each molecule in the refinement, i.e., NMOL sets of data. For symmetry factored blocks, NMOL must be set equal to the number of factored blocks. Each of the factored blocks may be treated as separate molecules and the data cards from the molecule control card through the $\underset{\sim}{G}$ matrix cards included, one set after another, for all the factored blocks in a manner similar to the refinement for several molecules simultaneously.

With the OS operating system, a /* must be punched in Columns l-2 on a card which is placed at the end of the data deck and follows the data termination card.

OUTPUT INFORMATION

The following information is printed out at the option of the user.

1. The initial set of force constants.
2. The force constants being held fixed.
3. The eigenvalues and errors for each perturbation.
4. The gradient vector for each perturbation.
5. The direction vector for each perturbation.
6. The force constant corrections for each perturbation.
7. The calculated and experimental frequencies and frequency parameters along with the differences, weights, and percent error.
8. The final $\underset{\sim}{\sim}$ matrix.
9. The final set of force constants along with the 95% confidence intervals.

At the user's option, the final set of force constants are punched on cards with the proper format for use in FADJ, FLPO, and EIGV.

Warning: If the data output is terminated before completion because of an error, namely, the attempt to take the square root of a negative number, an error or errors in the refinement, usually user induced, are indicated. Such an error may be generated when the refinement has caused one of the diagonal $\underset{\sim}{F}$ matrix elements to become negative (usually elements of normally small magnitude, such as the torsional elements). This error may also be generated if a calculated frequency parameter becomes small compared to the accuracy of the computation. If such an error message should occur after the interrupted printout of data, the user should examine the set of refined force constants and set of calculated frequencies and frequency parameters for unusual values. Extraordinary values for these items may signal errors in the $\frac{F}{\sim}$ and $\underset{\sim}{q}$ matrix.

EIGV

This program solves the vibrational secular equation by the method of successive orthogonalization followed by Jacobi diagonalization. The eigenvalues and eigenvectors are computed, the latter computation at the request of the user. The $\underset{\sim}{\sim}$ matrix and potential energy distribution among the diagonal elements of $\underset{\sim}{\sim}$ may be computed by EIGV if the user so specifies. If the $\underset{\sim}{\sim}$ matrix is included
with the input data, the cartesian displacement coordinates and mean square amplitudes for each normal mode may also be computed. In addition, EIGV has been modified to permit the computation of the "squared amplitudes" of vibration for each of the internal coordinates for each normal mode. The discussion of the "squared amplitudes" appeared earlier in this text. The cartesian coriolis coupling coefficients may also be calculated with EIGV.

This program was written by J. H. Schachtschneider (89) and modified for use in the investigation of the 1,5 -anhydropentitol vibrational spectra. EIGV may be used with the IBM $360 / 44$ OS operating system. A flow diagram of EIGV appears in Fig. 45 and a listing in Table LIV.

INSTRUCTIONS FOR PROGRAM USE

EIGV requires three scratch tapes or disks for normal operation. The disks are favored over tapes because of the faster operation of the disks during data input/output. If the user wishes to exercise the option to write the potential energy distribution and "squared amplitudes" on tape, an additional scratch tape must be provided. This option results in the potential energy distribution and "squared amplitudes" being written on tape with the proper format to be used as input data to SASORT.

The following information embodies the data deck which is included after the program deck.

1. Problem ID Card. This card indicates the start of a new problem. The problem ID card must have a -09 punched in Columns 1-3 (FORMAT I3).
2. Problem Control Card.
a. IND $=-09$, identifies the problem control card. IND is punched in Columns 1-3 (FORMAT I3).
b. NOPROB is the problem number, punched in Columns 4-9 (FORMAT I6).
Start

LISTING OF EIGV

EIGV SCHACHTSCHNEIDER 7/19/65
MODIFIED FOR OS BY L.J.PITZNER 1/5/72
THIS PROGRAM SOLVES THE WILSON GF VIBRATIONAL SECULAR EQUATION BY AN ORTHOGONALIZATION OF THE BASIS OF G FOLLOWED BY A JACOBI DIAGONALIZATION OF THE TRANSFORMED F MATRIX. INPUT INCLUDES JHE G MATRIX AND THE POTENTIAL ENERGY IN THE FORM OF THE 2 MATRIX. F MATRIX ELEMENTS FII.JI ARE DEFINEO AS THE SUM OVER K OF (III,J,K)*FI(K)) WHERE FI(K) GIVES THE VALUE OF FORCE CONSTANT NUMBER K. THE SYMMETRIC MATRICES ARE DIAGONALIZED BY SUBROUTINE HDIAG (MIHDI3) PROGRAMED BY F.J. CORBATO AND M. MERHIN OF MIT. RAP $=0.5 E-3$ UNLESS SPECIFIED.
UNDER NORMAL OPERATION THIS PROGRAM COMPUTES EIGENVALUES AND EIGENVECTORS. AT THE OPTION OF THE USER ONLY THE EIGENVALUES
ARE COMPUTED.
AT THE OPTIDN DF THE USER THE CARTESIAN COORDINATES OF THE ATOMS
THE MASSES AND THE B MATRIX ARE READ IN AND THE CARTESIAN DISPLACEMENT CODRDINATES AND MEAN SQUARE AMPLITUDES FOR EACH NORMAL MODE ARE CALCULATED
DIMENSION G(66, 661,D(66. 661, NR(650), NC(6501, NFOI 6501.

```


```

3W(71), NRO(4), NCO(4), NPO(4), DAT(4),REC(18),PE(71), T(3), TT(22),
4 TSUM(22),NIP(71),TEMP(5),DEL(71).RECORD(54),ASQ(71), DES(72).
1XDIFF(22.3)
EQUIVALENCE (D,NR), (D ($6611, N C),(D(1321), N F O),(D(1971), 2)$.
$1(D D, X O),(D E, X),(D C, N D L),(D V, N E W),(D G, D E L),(F F, W)$ COMMON G.D
RECONVERT PROBLEM CONTROL CARD CONTAINING THE FOLLOWING DATA 1.INO=-09 INDICATING THE START OF A PROBLEM AND IDENTIFYING CONTROL CARD. PUNCHED IN COLUMNS 1-3. 2. NOPROB, THE PROBLEM NUMBER IN COLUMNS 4-9. 3. NMOL. THE NUMBER DF MOLECULES IN COLUMNS 10-12. 4.NF. THE NUMBER OF FORCE CONSTANTS IN COLUMNS 13-15. (71 MAX). 5. INO, THE NUMBER DF FORCE CDNSTANTS TO BE RENUMBERED IN THE 2 MATRIX. PUNCHED IN COLUMNS 16-18. (INO LESS THAN 100) 6. IEG. FOR EIGENVALUES ONLY SET IEG=1. PUNCH IN COLUMNS 19-21. 7. IFF FOR F MATRIX OUTPUT SET EQUAL TO 1 COL. 22-24. 8.RAP, INDICATOR FOR SHUT-DFF IN HDIAG. PUNCHED IN COLUMNS 25-34. WITH THE DECIMAL BETWEEN COL 25 AND 26 OR PUNCHED. JACOBI DIAGONALIZATION STOPS WHEN MAX(HII,J)I LESS THAN RAP*MIN(H(I.I)). IF COL.25-34 ARE BLANK RAP IS SET EQUAL . 0005
READ PROBLEM CONTROL CARD
REWIND 4
90 READ (5,2)IND
2 FORMAT(13)
91 IF(9+IND)900.92.900
900 IF(IND-999)90.901.90
901 END FILE 4
REWIND 4
CALL EXIT
92 READ (5,4IIND,NOPROB,NMOL,NF,INO,IEG,IFF,RAP
4 FORMATII3.16.513.F10.91)

```

\section*{TABLE LIV (Continued)}
```

 IF(RAP)93,93,94
 93 RAP=0.5E-3
 94 IFI|EGI96,96,95
 95 IEGEN=1
 RAP=0.5E-2
 GO TO 97
 96 IEGEN=0
 READ 3 PROBLEM INFORMATION CARDS. (COLUMNS 1-3 MUST BE BLANK)
 97 READ (5,6)RECORD
 6 \mp@code { F O R M A T (1 8 A 4) }
 READ FORCE CONSTANTS IN ORDER I TO NF PUNCHED IN }12\mathrm{ COLUMN FIELDS
 6 PER CARO WITH DECIMAL BETHEEN COL.6 AND }7\mathrm{ OR PUNCHED.
READ (5,8) (FI|I),I=1;NF)
8 FORMAT(GF12.6)
NM=0
WRITE (6,50)NOPROB,NMOL,RAP,RECORD
50 FORMATI39HI VIBRATIONAL SECULAR EQUATION. PROBLEMIG,1OH,NO.MOL. =I
13,5H RAP=E14.6/(18A4))
WRITE (6,52)NF,(I,FI(I),I=1,NF)
52 FORMATI4HO I3,16H FORCE CONSTANTS/I7H I F FIII//IIG,F12.6
H
DO 98 I=1.71
98 NIP(I)=I
IF(INO)110,110,99
READ NUMBERS FOR RENUMBERING FORCE CONSTANTS IN Z MATRIX.
NOL(I),NEWIII,I=1,INO NOL GIVES OLD FORCE CONSTANT NO. AND
NEW GIVES NEW FORCE CONSTANT NUMBER. PUNCHED IN 6 COLUMN FIELDS
12 PER CARD . COL. 1-3 GIVE NOL AND COL.4-6 GIVE NEW.
99 READ {5,10) (NOL(I),NEW(I),I=1,INO)
10 FORMAT(2413)
WRITE (6,53)(NOL(I),NEW(I),I=1,INOI
53 FORMATI40HO FORCE CONSTANTS RENUMBERED IN Z MATRIX/(I6.4H TO I3)]
DO 100 I= 1, INO
IX=NOL(1)
100 NIP(|X)=NEW(I)
READ MOLECULE CONTROL CARD GIVING THE FOLLOWING DATA
1.IND=-06 IDENTIFYING CARD IN COLUMNS 1-3.
2.NQ, THE DIMENSION OF THE SECULAR EQUATION. LESS THAN 101.
PUNCHED IN COLUMNS 4-6.
3.ND, OBS.FREQ.READ CONTROL. FOR ND=O NO FREQ. ARE READ.
FOR ND GREATER THAN ZERO FREQ. ARE ENTERED. COLUMNS 7-9.
4.NZ. THE NUMBER OF Z MATRIX ELEMENTS(LESS THAN 650) PUNCHED IN
COLUMNS 10-13. NZ IS NOT USED BY THE PRDGRAM AND COL. 10-13
MAY BE LEFT BLANK.
5.IFU,A 1 WILL SUPRESS PRINTOUT OF THE Z MATRIX. COLUMNS 14-15*
6.IFW. A 1 WILL SUPRESS PRINT OUT OF THE L MATRIX AND P.E. DIST.
PUNCHED IN COLUMNS 16-17. A -1 WILL RESULT IN L MATRIX ONLY.
7.ISKZ. Z MATRIX READ OPTION. PUNCHED IN COLUMN 19.
FOR ISKZ=O A Z MATRIX IS ENTERED.
FOR ISKZ=1 THE Z MATRIX FROM THE PREVIOUS MOLECULE IS USED.
8.IFINV. INVERSE COMPUTATIDN CONTROL. PUNCHED IN COLUMN 21.
FOR IFINV=1 THE INVERSE EIGEN VECTORS ARE CALCULATED.
FOR IFINV=O INVERSE NOT EVALUATED.
9.IFMA. A l WILL SUPRESS PRINT DUT OF L INVERSE MATRIX.

```

PUNCHED IN CDLUMNS 22-23.
10.IFB, CARTESIAN NORMAL COORDINATE CONTROL. PUNCHED IN COL. 25. FOR IFB=1 THE B MATRIX AND MASSES ARE ENTERED AND CARTESIAN NORMAL COORDINATES ARE CALCULATED. IFINV MUST=I FOR IFB=1 FOR IFB=O CARTESIAN NORMAL COORDINATES ARE NOT CALCLATED.
11. NOAT, THE NUMBER OF ATOMS. MUST BE ENTERED FOR IFB=1

PUNCHED IN COLUMNS 27-28. 122 MAXI.
12. IfCor, a 1 WILL CAUSE CALCULATION OF THE INTERNAL MEAN SQUARE AMPLITUDE MATRIX. PUNCHED IN COLUMNS 29-30.
continue
13. NOTEP, NO. OF TEMPERATURES FOR WHICH MEAN SQ. AMP. CALC. IS TO BE CALCULATED FOR. IF NOTEMP \(=0\) CALC. FOR ROOM TEMP. PUNCHED IN COLUMNS 31-32.
14. SCALE, SCALE FACTOR FOR CARTESIAN DISPLACEMENTS. PUNCHED IN COL 33-38 WITH DECIMAL BETWEEN 37-38 OR PUNCHED.
If COLUMNS 33-38 ARE LEFT BLANK SCALE IS SET EQUAL TO 2.0.
15. ICAR. A 1 WILL SUPRESS PRINT OUT OF CARTESIAN DISPLACEMENT COORDINATES. PUNCHED IN COLUMNS 39-40.
16. IMSC, AI WILL SUPRESS PRINTOUT OF THE CARTESIAN MEAN SQUARE AMPLITUDES. PUNCHED IN COLUMNS 41-42.
17. ICOR, A 1 WILL CAUSE CALCULATION OF THE CARTESIAN CORIOLIS COEFFICIENTS. PUNCHED IN COLUMN 44.
CONTINUE
18. ITEMP, INTERNAL MEAN SQUARE AMP. CALCULATED FOR O DEG K IF ITEMP=0. IF ITEMP=1, THE INTERNAL MEAN SQ. AMP. IS CALC. FOR ABST DEG K. ITEMP PUNCHED IN COLUMN 46.
19. ABST, IF ITEMP \(=1\), ABST IS THE TEMP IN DEG K FOR WHICH THE INTERNAL MEAN SQUARE AMP. IS TO BE CALC. PUNCHED IN COLUMNS 47-56.
20. ICD, IF ICD=1, ONE MAY ENTER THE DESCRIPTION OF THE INTERNAL COORDINATES 14 CHAR.) TO BE PRINTED WITH THE INTERNAL MEAN SQ. AMP. ( \(A * * 2\) ). ICD PUNCED IN COL. 58.
21. IPUN, IF IPUN=1 THE MEAN SQ. AMP. AND PE DISTR. FOR INTERNAL COORDINATES WILL BE WRITTEN ON TAPE. IPUN PUNCHED IN COL. 60.
22. IFL. A 1 WILL CAUSE THE L MATRIX TO BE WRITTEN ON TAPE BY COLUMNS. PUNCHED IN COLUMN 62.

110 READ (5,12)IND,NQ,NDD,NZZ,IFU,IFW,ISKZ,IFINV,IFMA,IFB,NOAT,IFCOR, INOTEP, SCALE, ICAR,IMSC,ICOR,ITEMP,ABST,ICD,IPUN,IFL
12 FORMAT(313,14,612,13,212;F6.1,412,F10.2,3121)
(F(IND+6)91,112.91
INPUT DATA FOR EACH MOLECULE FOLLOWS IN THE ORDER
1. MOLECULE INFORMATION CARD (COL•1-3 BLANK)

1'. INTERNAL COORDINATE DESCRIPTION IF ICD=1.
2.2 MATRIX (FOR ISKZ=0)
3.OBSERVED FREQ. (FOR ND GREATER THAN ZEROI
4.G MATRIX (I.E. CARTESIAN COORD. DF ATOMS IN EQUILBRIUM CONFIGI
6. MASSES
7.B MATRIX

ITEMS 5-7 ENTERED ONLY FOR IFB=1
READ MOLECULE INFORMATION CARD
112 READ (5,6)REC
IF(ICD) 39539,39539,66661
```

66661 READ(5,7771)(DES(J),J=1,NQ)
7771 FORMAT(18A4)
WRITE(6,8881)
8881 FORMAT(1HI,'INTERNAL COORDINATE DESCRIPIION')
WRITE(6,9991)(I,DES(I),I=1,NQ)
9991 FORMAT\1H,16,4X,A4)
39539 REWIND 1
REWIND 2
REWIND 3
NM=NM+1
IF(SCALE)113,113,114
113 SCALE=2.0
114 1F(ISKZ)115,115,134
115 NOZ=0
116 READ (5,16) (NRO(L),NCO(L),NPO(L),DAT(L),L=1,4)
16 FORMAT(41313.F9.6))
DO 120 L=1,4
IF(NRO(L)/122,120.117
117 NOZ=NOZ+1
NR(NOZ)=NRO(L)
NC(NOZ)=NCO(L.)
I=NPD(L)
NFO(NDZ)=NIP(I)
IF(DAT(L))118,119,118
118 Z(NOZ)=DAT(L)
GO TO }12
119 2(NOZ)=1.0
120 CONTINUE
GO TO 116
122 IF(NRO(L)+2)605,127,605
127 REWINO 2
WRITE (2)INRII),NC(I),NFO(I),Z(II,I=1,NOZ)
END FILE 2
IF(IFU)128,3511,128
3511 WRITE (6,68)NM,NOZ,REC
68 FORMAT(19HI 2 MATRIX MOLECULEI3,6H NOZ=14/(18A4))
WRITE (6,69)(NRII),NC(I),NFO(I),2(I),I=1,NOZI
69 FORMAT(4(I4,213,F9.6))
128 DO 130 I= 1,NQ
DO 130 J=1,NQ
130G(I.J)=0.0
DD 132 K=1,NOZ
I=NR(K)

```
```

 J=NCIK)
 LX=NFO(K)
 132G(I,J)=G(I,J)+FI(LX)*R(K)
 IF(IFF) 1136,113601128
 1128 WRITE (6,70)NM,RECORD
 70 FORMAT(19H1 F MATRIX MOLECULEI3/(18A4))
 1136 DO 133 I= 1,NQ
 FF(I)=G(I*I)
 IF(IFF)133,133.1133
 1133 HRITE (6,56)I,(G(I,J),JxI,NQ)
 56 FORMAT (5HO ROWI3/(9F8.4))
 133 CONTINUE
 GD TO 136
 134 REWIND 2
 READ (2) (NRIII,NCII),NFD(I), 2(I),I=1,NOZ)
 136 IF{NDD\137.137.139
 13700 138 I=1,NO
 138 DE(II)=0.0
 GO TO 140
 C READ OBSERVED FREQ. IN ORDER 1 TO NO PUNCHED IN I2 COLUMN FIELDS
139 READ {5,8| (DE{I},I=2,NQ)
140 00 141 I=1,NQ
DO 141 J=I,NO
141G(I;J)=0.0
READ NON-ZERO G MATRIX ELEMENTS ,GII,JI.
G ELEMENTS ENTERED IN 18 COLUMN FIELD I TO 4 PER CARD GIVING
COLUMNS
ITEM
1-3 NRO =1 (ROW NO.l
4-6 NCO =\ (COLUMN NO.) II LESS THAN OR=J)
7-18 DATzG(I,J) (DECIMAL BETHEEN 12-13 OR PUNCHED)
NRO IS SET =-1 AFTER LAST G ELEMENT.
142 READ (5,14) (NRO(L),NCO(L),DAT(L),L=1,4)
14 FORMAT(4(213,F12.6))
DO 146 L=1.4
IF(NRO(L)) 148,146,144
144 I=NRO(L)
J=NCOIL\
G(I,J)=DAT(L)
146 CONTINUE
GO TO 142
148 1F(NRO(L) +1)600,150,600
C SCHMIDT ORTHOGONALILATION OF G
C STORE INVERSE TRANSFORMATION IN LOWER TRIANGLE OF G.
150 NRED=0
NO=1
NL=2
154 GD=1.0/ G(ND,NO)
DO 156 J=NL,NQ
156 G(J,NO)=G(NO,J)*GD
IF(NL-NQ) 158,158,170
158 0O 160 I=NL ,NQ

```
```

 00 160 J=I,NO
 160 G(I,J)=G(I,J)-{G(NO,I)*G(NO,J)*GD}
 161NO=NO+1
 NL}=NO+
 163 IF(G(NO,NO1-0.000001)164,164.154
 164 NRED=NRED+1
 IF(NL-NQI165,165,170
 165 00 166 J=NL,NO
 166 G(J,NO)=G(NO,J)
 G0 TO 161
 17000 175 I=1,NO
 IF(G{I,I)-0.00005\173.173.172
 172 DG(II=SORT(G{I;I):
 GO TO 174
 173 DG(II=0.0
 174 GII,I|=1.0
 DO 175 \=I,NO
 175G(J.II=G(J.I)*DG(I)
 C COMPUTE TRANSFORMED F MATRIX AND STORE IN UPPER TRIANGLE DF G
DO 200 J=1,NO
DO 178 I=1,NO
178 DJ
\=0.0
DO 190 K=1,NOZ
IX=NR(K)
IF(IX-J)190,182,182
182 JX=NCIK)
LX=NFO\K\
DJ{IX.)=DJ{IX)+FI(LX)*Z(K)*G(JX,J)
IF(IX-JX|186,190,186
186 DJ{JX)=DJ(JX)+FI(LX)*Z(K)*G(IX,J)
190 CONTINUE
DO 196 K=J,NO
HJ|K|=0.0
DO 196 L=K,NO
196 HJ(K)=HJ(K)+G(L.K)*DJ(L.)
OO 200 K=J,NQ
200 G(J.K)=HJ(K)
IF(IFFI203.203.201
201 WRITE (6,61) RECORD
61 FORMATI22H1 TRANSFORMED F MATRIX/(18A4I:
DO 202 I=1,NQ
202 WRITE (6,56)I:(G(I,J):J=1,NQ|
203 CONTINUE
C DIAGONALILE TRANSFORMED F MATRIX BY JACOBI METHOD
NR2=0
CALL. HDIAG(G,NQ,IEGEN,D,NR2,RAP)
URITE (6,621 NM,NR2,RECORD
62 FORMATI9HIMDLECULEI3,21H NUMBER OF ROTATIONS=16/(1H,18A4)|
N1=0
PT=0.0
SUM=0.0
DO 204 1=1,N0
DC(1)=G(1.1)
G{1,1)=0G(I|

```
```

 204 HJ(II=DC(I)
 C TO LOW.
II=NQ-1
DO 206 I=1.11
LOW=1+1
DO 206 J=LOW.NQ
IF(HJ(I)-HJ(J))205,206,206
205 TEM=HJ(II
HJ(I)=HJ(J)
HJ(J)=TEM
206 CONTINUE
DO 209 I=1.NQ
DV(I)=SQRT(HJ(I)/5.88852E-7)
IF(DE(IH)207, 207,208
207 DD(I)=0.0
DJ(I)=0.0
GO TO 209
208 DD(I)=DE(I)-DV(I)
DJ(I)=100.0*DD(I)/DE(I)
N1=NL+1
PT=PT+ABS(DJ(1))
SUM=SUM+ABS(DD(I))
209 CONTINUE
IF(N1)211.211,210
210 SUM=SUM/ FLOAT(N1)
PT=PT/ FLOAT(N1)
211 WRITE (6,76)REC,(J,DE(J),OV(J),DD(J),DJ(J),HJ(J),J=1,NQ)
76 FORMATI37HO OBSERVED AND CALCULATED FREQUENCIES/ 18A4 171HO DBS
1.FREQ. CALC.FREQ. DIFFERENCE PERCENT ERROR CALC.FREQ.PAR./6X
26H(CM-1),7X,6H(CM-1),5X,6H(CM-1)/ (I4,F9.1,4X,F8.1,4X,F6.1,7X,F7.3
3,9X,F9.51)
WRITE (6,77)SUM,PT
77 FORMATI17HO AVERAGE ERROR=F5.1.9H CM-1 OR ,F5.2.9H PERCENT.)
IF(IEGENI500,212.500
212 DO 2121 I=1,NQ
2121 DV(II=SQRT(DC(I)/5.88852E-7)
IF(IFW)63154,12111,63154
12111 WRITE (6,63)NM,NR2.RECORD
63 FORMATI56HI L MATRIX BY COLUMNS AND POTENTIAL ENERGY DISTRIBUTION
1/41H AMONG DIAGONAL ELEMENTS OF F. MOLECULEI3,14H NO.ROTATIONS=I
26/(18A4))
63154 DO 220 I=1,NQ
IFIDC(I)-0.0000501220,220.213
213 IF(ITEMP) 2631,2631,4444
4444 C2 = (0.7193392/ABST)*DV(1)
ET=(16.8612/DV(I))/TANH(C2)
GO TO 65316
2631 ET=16.8612/DV(II)
65316 DO 215 J=1,NQ
HJ(J)=0.0
DO 214 K=1,J
214 HJ(J)=HJ(J)+G(J,K)*D(K,I)
ASQ(J)=ET*HJ(J)*HJ(J)

```

\section*{TABLE LIV (Continued)}
```

 215 PE(J)&FF(J)*HJ(J)*HJ(J) / DC(I)
 IF(IFLI216,216,23475
 23475 WRITE(4,86378){HJ(J),J=1,NQ)
86378 FORMAT(6F12.6)
216 WRITE (1) (HJ(J),J=1,NQ)
IF(IFH)217,217,22002
217 WRITE (6,64)DV(I),(HJ(J), DES(J),J=1,NO)
64 FORMAT\13HO FREQUENCY =F8.2.6H(CM-1).1OH L COLUMN/(8(F8.4.1X,A4))
1)
22002 IF(IPUNI21888,21888,66543
66543 WRITE(4.23151)I,DV(I)
23151 FORMATI13,F8.21
URITE{4,11114)(PE(J),J=1,NQ)
11114 FORMAT(9F8.4)
WRITE(4,22224)(ASQ(J),J=1,NQ)
22224 FORMAT(6E12.4)
21888 IF(IFW)220,218,220
218 WRITE (6,66) (PE(J),J=1,NQ)
66 FORMATII8H POTENTIAL ENERGY/(9F8.4))
IF(ICD)75357,75357,86586
86586 WRITE(6,93999)ABST,(ASQ(J),DES(J),J=1,NQ)
93999 FORMAT(26H MEAN SQUARE AMP. (A**2) F8.2.7H DEG. K/(6(E12.4.2X.A4)
1))
GO 10 220
75357 URITE(6,75321)ABST, (ASQ(J),J=1,NQ)
75321 FORMAT(26H MEAN SQUARE AMP. (A**2) F8.2.7H DEG. K/(9E12.4)\
220 CONTINUE
END FILE 1
IF(IFINV)400,400,230
C INVERT ORTHDGONALIZATION MATRIX AND STORE ITS TRANSPOSE IN
C UPPER TRIANGLE OF G
230 DO 234 I=1,NQ
IFIDG(I):234,234,232
232 DG(I)= 1.0/ DG(I)
DO 233 J=I,NQ
233G(J,1)=G(J,1)*DG(1)
234 CONTINUE
DO 240 K=1,NQ
NX=K+1
DO 240 I=NX,NQ
LIM=1-1
DO 240 J=K,LIM
240 G(K,I)=G(K,I)-G(I,J)\#G(K.J)
DO 244 I= 1,NQ
DO 244 J=I,NQ
244 G(I,J)=G(I,J)*DG(J)
C COMPUIE L INVERSE
00 250 I=1,NQ
DO 248 J=1,NO
HJ(J)=0.0
DO 248 K=J.NO
248 HJ(J)=HJ(J)+G(J,K)*D(K,|)
DO 250 J=1,NQ
250 0(J.I)=HJ(J)

```

IFIIFMA)21315,61611,21315
61611 WRITE 16,67 IRECORD
67 FORMAT(26H1 INVERSE L MATRIX BY ROWS/(18A4))
DO \(260 \mathrm{~J}=1\), NQ
260 WRITE (6,65) J, DV\{J), (DII, J), I=1,NQ)
65 FORMAT (IIHO FREQUENCYI3,2H =F8.1.6HICM-1I/I1H.9F8.41)
21315 IF(IFB)400,400,300
300 DO \(320 \quad I=1\), NOAT
DO \(320 \mathrm{~J}=1,3\)
\(320 \times 0(1, J)=0.0\)
C READ NON-ZERD X MATRIX ELEMENTS PUNCHED IN 18 COLUMN FIELDS 1 TO 4 \(C\) PER CARD GIVING

NRO SET \(=-1\) AFTER LAST \(X\) ELEMENT.
322 READ (5,14) (NRO(L), NCO(L),DAT(L),L=1,4)
DO \(330 L=1,4\)
IFINROILI)332,330,324
324 I=NCO(L.)
J=NRO(L)
XO(I,J) \(=\) DAT(L)
330 CONTINUE
GO to 322
332 IF(NROIL) \(+11615,314,615\)
314 NA \(=3\) *NDAT
C
C

C
316 W(L)=1.0/WTII
READ B MATRIX
DO \(302 \mathrm{I}=1\), NQ
\(00302 \mathrm{~J}=1\), NA
\(302 \mathrm{G}(1, \mathrm{~J})=0.0\)
C READ NON-ZERO B MATRIX ELEMENTS BII.JI.
C
C
C
C
C
C 304 READ (5,14) (NRO(L), NCO(L), DAT(L), L=1,4)

DO \(310 \mathrm{~L}=1,4\)
IF(NRO(L))312.310.306
306 I \(=\) NRO(L)
\(J=N C O(L)\)
G(I,J)=DAT(L)
310 CONTINUE
GO 10304
312 IFINROILI+51610,334,610

334 IFIICARI61836,20102,61836
20102 WRITE 16,721 NM,RECORD
72 FORMAT(43HIEQUILIBRIUM CARTESIAN COORDINATES.MDLECULEI3/(18A4)) WRITE \((6,73)\)
73 FORMAT(5X,39H ATOM MASS \(x\) 2)
61836 DO \(336 L=1\), NOAT
TSUM(L) \(=0.0\)
IF(ICAR) \(336,5155,336\)
5155 WRITE \((6,74) L, W T(L), X O(L, 1), X O(L, 2), X O(L, 3)\)
336 CONTINUE
REWIND 3
74 FORMATIIH ,5X,14,F9.4,F9.4,F10.4,F10.41
C COMPUTE CARTESIAN DISPLAGEMENT CODRDINATES AND THE MEAN SQUARE
C AMPLITUOE FOR EACH ATOM IN EACH NORMAL MODE O DEG. K
DO \(360 \quad I=1, N Q\)
IF(DC(1)-0.000050) \(360,360,350\)
\(350 \mathrm{ET}=16.8612 / \mathrm{DV}(1)\)
DO \(353 \mathrm{~J}=1\), NOAT
\(T(J)=0.0\)
Do \(352 M=1,3\)
\(L=3 *(J-1)+M\)
\(T(M)=0.0\)
DO \(351 \mathrm{~K}=1\), NQ
\(351 T(M)=T(M)+G(K, L) \neq D(K, I) * W(L)\)
HJ(L) \(=T(M)\)
TT(J) =TT(J)+ET*T(M)*T(M)
\(X(J, M)=X O(J, M)+S C A L E * T(M)\)
\(352 \operatorname{XDIFF}(J, M)=S C A L E * T(M)\)
\(353 \operatorname{TSUM}(J)=\operatorname{TSUM}(J)+\) TT(J)
IFIICARI6352,8888,6352
8888 WRITE (6,75)SCALE,I,DVIII,ET,REC
75 FORMAT(46HO CARTESIAN COORDINATES FOR ATOMS DISPLACED BYF6.1.2IH U INITS OF NORMAL MODEI3/13H FREQUENCY=F10.2.7H DELTA=E12.4/18A4) WRITE \((6,78)\)
78 FORMATIIH.4X.' ATOM MASS \(x \quad Y \quad z \quad\) MEAN
1SQUARE AMP.(A**2) 0 K DELTA \(X\) DELTA \(Y\) DELTA \(\left.2^{\circ}\right)\)
359 WRITE ( 6,79 ) (J,WT(J), X(J,1), X(J,2),X(J,3),TT(J),XDIFF(J, 1\(),\) 1 XDIFF \((J, 2)\), XDIFF \((J, 3), J=1\), NOAT \()\)
79 FORMAT(1H, 5X,14,F9.4,F9.4,F10.4,F10.4,7X,E12.4,12X,3F10.41
6352 WRITE (3) (HJ(J),J=1,NA)
360 CONTINUE
END FILE 3
DO \(362 \mathrm{~J}=1\), NOAT
362 TTIJ)=SORT(TSUM(J))
IF(IMSC) \(400,6355,400\)
6355 WRITE \((6,84)(J, T S U M(J), T T(J), J=1\), NOAT \()\)
84 FORMATI49HOMEAN AMP. FOR ATOMS SUMMED OVER ALL NORMAL MODES/5X.44H 1 ATOM MEAN SQUARE ROOT MEAN SQUARE/(IH .5X.14.6X.EI2.4.
26X.E12.4) )
400 IF (NOTEP) 401,401,403
401 NOTEP=1
TEMP (1)=298.16
GO 10405
\(403 \operatorname{READ}(5,8)\) (TEMP(1),I=1,NOTEP)
405 [F(IFCOR) 500,500,406
```

406 REWIND 1
REWIND 3
NUM = 1
NII=NQ
WRITE (6,54)REC
54 FDRMATI56HIINTERNAL COORDINATE MEAN SQUARE AMPLITUDE MATRIXIX 100)
1/3X,18A41
407 DO 412 I= I,NQ
IF(DC(I)-0.000050)410,410,408
408 READ (NUM) (HJ(L),L=1,NII)
DO 409 L=1,NII
409 G(L,I)=HJ(L)
GO 10 412
410 DD 411 L=1,NII
411G(L,I)=0.0
412 CONTINUE
C1=16.8612*100.0
DO 429 L=1,NOTEP
C2=0.7193392 / TEMP(L)
WRITE (6,55) TEMP(L)
55 FORMAT(15HO TEMPERATURE=F10.2.6H DEG.K)
DO 418 I=1,NQ
IF(0.01-ABS(DV(I)))415,416,416
415 DEL(1)=C1 /(TANH(C2*DV(1))*DV(I|)
G0 TO 418
416 DEL(I)=0.0
418 CONTINUE
DO 420 I= 1,NII
DO 420 J=1,NII
D(I,J)=0.0
DO 420 K=1.NQ
420D(I,J)=D(I,J)+G(I,K)*DEL(K)*G(J,K)
DO 426 I=I,NII
DD(1)=SQRT(D(I,I))/10.0
DO 426 J=I,NII
426 D(J,I)=0(I,J)
00 427 I= 1,NII
427 WRITE (6,56)I,(D(I,J),J=1,NII)
HRITE (6,57) TEMP(L),REC,(J,DD(J),J=1,NII)
57 FORMATIIHO,22H RODT MEAN AMPLITUDES.,F10.2,6H DEG,K/3X,18A4/5X,33H
ICOORDINATE ROOT MEAN AMPLITUDE/(9X,13,9X,F9.71)
4 2 9 ~ C O N T I N U E ~
430 IF(IFB)450,500,431
431 1F8=-1
NII=NA
NUM = 3
WRITE (6,85)REC
85 FORMAT(47HI CARTESIAN MEAN SQUARE AMPLITUDE MATRIX(X 100)/3X,18A4)
GO TO 407
450 IF(ICOR)500,500,452
452 IF(IFB)453,500,500
453 DO 455 I=1,NA
W(I)=SORT(1.0 | W(I)I
DO 455 J=1,NO

```
c. NMOL, the number of molecules in the problem, punched in Columns 10-12 (FORMAT I3).
d. NF is the number of force constants, punched in Columns 13-15 (FORMAT I3).

Warning: NF may not exceed 71.
e. INO, designates the number of force constants to be renumbered. INO is punched in Columns 16-18 (FORMAT I3).
f. IEG, a 1 will result in the termination of the problem after the secular equation has been solved and the eigenvalues determined. IEG is punched in Columns 19-21 (FORMAT I3).
g. IFF, a 1 will result in the printout of the \(\underset{\sim}{F}\) matrix.
h. RAP is the cutoff factor for the Jacobi diagonalization. The plane rotations are terminated when \(\operatorname{MAX}[H(I, J)]\) is less than RAP*MIN[H(I,I)]. If RAP is left blank, a value of \(0.5 \mathrm{E}-3\) is assumed. RAP is punched in Columns 25-34 (FORMAT FIO.9).
3. Problem Information Cards. Three cards containing alphanumeric information about the problem. The first three columns of each card should be left blank with the alphanumeric information following in any of the Columns 4-72 (FORMAT 18A4).

Warning: These three cards must be included with the input data, even if they are left blank.
4. The Force Constants. The force constants are read in order 1 through NF and are punched in 12 column fields, six per card (FORMAT 6Fl2.6).
5. The Force Constants to be Renumbered. If INO is greater than zero, the force constants to be renumbered are entered with the old force constant number listed first followed by the new number. There are INO sets of numbers, each number punched in a 3 column field of which there are 24 per card (FORMAT 24I3).
6. Molecule Control Card.
a. IND \(=-06\), identifies the molecule control card, punched in Columns 1-3 (FORMAT I3).
b. NQ is the number of internal coordinates, punched in Columns 4-6 (FORMAT I3).

Warning: NQ must not exceed 66.
c. NDD is the number of nonzero experimental frequencies entered with the data. For \(N D D=0\) or blank, no frequencies are entered. NDD is punched in Columns 7-9 (FORMAT I3).
p. IMSC, a 1 will result in the suppression of the printout of the cartesian "squared amplitudes" of vibration, punched in Columins 41-42 (FORMAT I2).
q. ICOR, a l will result in the calculation of the cartesian coriolis coefficients being bypassed, punched in Columns 43-44 (FORMAT I2).
r. ITEMP is the temperature option control for the internal "squared amplitudes" of vibration. If ITEMP \(=0\), the computations are completed for a temperature of \(0^{\circ} \mathrm{K}\). If ITEMP \(=1\), the internal "squared amplitudes" are calculated for a temperature of ABST \({ }^{\circ} \mathrm{K}\). ITEMP is punched in Columns \(45-46\) (FORMAT I2).
s. ABST is the temperature in \({ }^{\circ} \mathrm{K}\) for which the internal "squared amplitudes" are to be computed. ABST is punched in Columns 47-56 (FORMAT FIO.2).
Note: ABST need only be entered in those instances when ITTEMP \(=1\).
t. ICD is the internal coordinate description code control. If ICD \(=1\), a description code identifying the internal coordinates must be entered with the data. These four character codes are printed next to the corresponding "squared amplitudes," potential energy component, or \(L\) matrix element to simplify their identification. ICD is punched in Columns 57-58 (FORMAT I2).
u. IPUN, for IPUN \(=1\), the "squared amplitudes" and potential energy distribution are written on tape in the proper format for use as input to SASORT. IPUN is punched in Columns 59-60 (FORMAT I2).
Warning: If IPUN \(=1\), an additional tape (Number 4) must be provided.
v. IFL, if IFL = l, the L matrix will be written on tape by columns. IFL is punched in Columns 61-62 (FORMAT I2).
Warning: If IFL \(=1\), an additional tape (Number 4) must be provided.
Warning: Both IFL and IPUN should not be set \(=I\) in the same problem because the data format will not be correct for use with SASORT.
7. Molecule Information Card. This card contains the name of the molecule or any other alphanumeric data pertinent to the problem. The first three columns of the card should be left blank with the alphanumeric information following in any of the Columns 4-72 (FORMAT 18A4).
Warning: This card must be included with the input data even if it is left blank.
8. Internal Coordinate Identification Cards. If ICD \(=1\), four character alphanumeric codes must be entered which identify the internal coordinates. The codes must appear in the same order as the internal coordinates which they are representing. The codes are punched in four column fields, 18 per card (FORMAT 18A4).
9. The Z Matrix. The \(Z\) matrix elements are read in as four one-dimensional arrays and are punched in 18 column fields, \(1-4\) per card [FORMAT 4(3I3,F9.6)]. The \(Z\) matrix is punched in the proper format by UBZM or ZSYM.

Warning: The row after the last element must be set equal to -2 .
10. The Experimental Frequencies. If NDD is greater than zero, the experimental frequencies must be entered with the input data. The frequencies are entered in decreasing order 1 through \(N Q\), of which NDD are nonzero. For frequencies which are uncertain, unknown, or redundant a zero is entered. The frequencies are punched in 12 column fields, 6 per card (FORMAT 6F12.6).

Warning: There must be NQ frequency entries, NDD of these entries must be nonzero.
11. The G Matrix. The nonzero G matrix elements are entered as three arrays and are punched in 18 column fields, four per card [FORMAT 4(2I3,F12.6)]. The \(\underset{\sim}{G}\) matrix is punched in proper format by GMAT.
Warning: The row number after the last element must be set equal to -1 .
12. The Cartesian Coordinates. If IFB \(=1\), the cartesian coordinates must be entered with the input data. The nonzero cartesian coordinates are described by three arrays. The elements are punched in 18 column fields, four per card'[FORMAT 4(2I3,F12.6)]. The cartesian coordinates are punched in the proper format by CART.
Warning: The row number after the last element must be \(=-1\).
13. The Masses. If IFB \(=1\), the atomic masses must be entered with the input data in the order 1 through NOAT. The masses are punched in 12 column fields, six per card (FORMAT 6F12.6).
14. B Matrix. If IFB \(=1\), the \(B\) matrix must be entered with the input data. The \(B\) matrix elements are entered as three arrays, punched in 18 column fields, four per card [FORMAT \(4(2 I 3, F 12.6)]\). The \(\frac{B}{\sim}\) matrix is punched in the proper format by GMAT.

Warning: The row number following the last element must be set equal to -5 .
15. Data Termination Card. The data termination card designates the end of the input data. This card must have a 999 punched in Columns 1-3 (FORMAT I3).

Note: If another problem is to be included in the data deck, the problem ID card of the next problem should be placed at this point and the data termination card moved to the end of the second problem.

With the OS operating system, a card with a. /* punched in Columns 1-2 must be placed at the very end of the data deck, after the data termination card.

\section*{OUTPUT INFORMATION}

At the option of the user, the following information is printed out:
1. The set of force constants.
2. The force constants to be renumbered.
3. The \(Z\) matrix.
4. The \(F\) matrix.
5. The calculated and observed frequencies and their difference.
6. The \(\underset{\sim}{\sim}\) matrix.
7. The potential energy distribution among the diagonal \(\underset{\sim}{F}\) elements.
8. The internal "squared amplitudes" of vibration.

Note: These elements are improperly labeled mean square amplitudes in the printout; however, this title is immediately followed by ( \(A^{* * 2 \text { ) which }}\) should lessen the confusion.
9. The \(L^{-1}\) matrix.
10. The equilibrium cartesian coordinates.
11. The cartesian displacement coordinates and the cartesian "squared amplitudes" of vibration.

Note: These latter elements are also improperly labeled mean square amplitudes, but are followed by the designation ( \(A * * 2\) ) which should reduce the confusion.
12. The cartesian mean amplitudes for the atoms summed over all the normal modes and the root mean squares.
13. The internal coordinate root mean square amplitudes.
14. The internal coordinate mean square amplitude matrix.
15. The cartesian mean square amplitude matrix.
16. The cartesian coriolis coupling coefficients.

At the option of the user, the internal coordinate "squared amplitudes" of vibration and the potential energy distribution for the normal modes are written on tape in a format suitable for input to SASORT. The \(\underset{\sim}{\pi}\) matrix may also be written on tape by columns.

This program employs the Calcomp 110 digital plotter to draw three dimensional "ball and stick" representations of molecules from any viewpoint at any reasonable distance away and is based on the cartesian coordinates of the atoms.

This program was written by \(P\). G. Adamson (90) and modified at the Institute for use on our IBM \(360 / 44\) computer. The program may be used with the IBM \(360 / 44\) OS operating system. A version of PAMOLE is stored on disk at the Institute. A listing of the JCL cards required to run the stored version of PAMOLE appears in Table LV. These cards are placed in front of the data deck. A listing of PAMOLE cannot be included in this text because of space considerations. However, a sample data input to PAMOLE is presented in Table LVI.

\section*{INSTRUCTIONS FOR PROGRAM USE}

The following information is required to complete the data deck for PAMOLE.
1. Problem Definition Card.
a. \(\operatorname{IND}=-09\), identifies the problem definition card, punched in Columns 1-3 (FORMAT I3).
b. NOAT is the number of atoms in the molecule. NOAT is punched in Columns 4-7 (FORMAT I4).
c. NVW, designates the number of views to be drawn for this molecule, punched in Columns 8-11 (FORMAT I4).
d. ITITLE, a 1 will permit alphanumeric information describing the drawing to be written on plotter output, punched in Columns 12-15 (FORMAT I4).

Warning: For more than one view of a molecule with or without a label, the plotter should be manually zeroed to the right after each drawing.
e. XSTAR is the desired starting position along the x-axis, in inches from the origin, for the alphanumeric lettering. XXSTAR is punched in Columns 16-21 (FORMAT F6.2).

Note: If ITITLE \(=0\), XSTAR may be left blank.

\section*{JCL CAIDS REQUIRED TO RUN THE STORED VERSION OF PAMOLE}
```

//PAMOLE JOB 94000110.LJP.MSGLEVEL=1
//JOBLIB DD DSN=PAM,VOL=SER=DLIB03,DISP=OLD,UNIT=SYSDA
// EXEC PGM=PAMOLE
//FTOSFOO1 OD DDNAME=SYSIN
//FJO6FOO1 DD SYSOUT=A
//FTOTFOOI DD SYSOUT=B
//PLOTPLOT DD UNIT=PLOTTER
//SENSE DD UNIT=AFF=PLOTPLOT
//SYSIN DD *

```

TABLE LVI
SAMPLE INPUT DATA TO PAMOLE
\(-9 \quad 19 \quad 1\)


SIZES C . \(290.27 \mathrm{H} \quad .12\)
\(01 \quad 0.000 \quad 0.000 \quad 0.000 \quad\) C2 C3
\begin{tabular}{ccccccc}
\(C 2\) & 1.423 & 0.000 & 0.00001 & \(H 7\) & \(H 8\) & \(C 4\) \\
\(C 3\) & -0.543 & 1.315 & 0.000 O1 & \(H 9\) & \(H 10\) & \(C 5\) \\
\(C 4\) & 1.931 & 0.718 & \(1.244 C 2\) & \(C 6\) & 018 & \(H 17\) \\
\(C 5\) & -0.074 & 2.059 & \(1.244 \mathrm{C3}\) & C 6 & \(H 11\) & 012 \\
C 6 & 1.446 & 2.162 & \(1.230 \mathrm{C4}\) & \(\mathrm{C5}\) & H 4 & 015
\end{tabular}

1,5-ANHYDROXYLITOL

C 3

H8 \(1.788 \quad 0.517-0.895\) C2
H9 \(\quad-1.638 \quad 1.258 \quad 0.000 \quad\) C3 H1O \(-0.2051 .850-0.895 \quad\) C3
H11 \(\mathbf{- 0 . 3 9 4} 1.515 \quad 2.136\) C5
\(012-0.635 \quad 3.358 \quad 1.256 \quad\) C5 H13
\(\begin{array}{llllll}\mathrm{H} 13 & -0.350 & 3.840 & 0.465 & 012\end{array}\)
\(\begin{array}{llllll}\mathrm{H} 4 & 1.770 & 2.646 & 0.305 & \text { C6 }\end{array}\)
\(015 \quad 1.885 \quad 2.818 \quad 2.404\) C6 H16
\(\begin{array}{lllll}H 16 & 1.563 & 2.337 & 3.183 & 015\end{array}\)
\(\begin{array}{llll}H 17 & 1.550 & 0.214 & 2.136\end{array} \mathrm{C}_{4}\)
\(018 \quad 3.345 \quad 0.696 \quad 1.256 \quad C 4 \quad\) H19
\begin{tabular}{llll}
H 19 & 3.683 & 1.143 & 0.465 \\
\hline
\end{tabular}
VIEW 5. 5. -5.
999
/*
f. YSTAR is the desired starting position along the y-axis, in inches from the origin, for the alphanumeric lettering. YSTAR is punched in Columns 22-27 (FORMAT F6.2). YSTAR is left blank if there is to be no labeling of the drawing.
g. LHGT is the desired lettering height in inches, which must be an integer multiple of 0.07 . LHGT is punched in Columns 28-33 (FORMAT F6.2).
Note: LHGT is left blank if there is to be no label on the drawing.
2. Alphanumeric Information. If ITITLE \(=1\), the alphanumeric labeling to appear on the drawing must be punched on a card in any of the Columns l-80 and must be included with the input data (FORMAT 20A4).
Note: This card must be included with the input data even if blank and ITITLE \(=0\). In this case the alphanumeric information will appear only with the printer output.
3. BIG. This card requests that the wide paper (29른.") be used. If this card is omitted, the more commonly used narrow paper ( \(10 \frac{1}{2}\) " ) is required. The characters BIG are punched in Columns l-3 (FORMAT A4, A2, 3F4.0).
4. SCALE XXXX. This card indicates the scale factor to be used in the drawing. If this card is omitted, a scale factor of 1 is assumed. SCALE is punched in Columns 1-6 and the numerical scale factor in Columns 7-10 (FORMAT A4, 2;3F4.0).
Note: The scale factor punched in Columns \(7-10\) may be decimal and the Format F4.0 will be overruled, e.g., SCALE 1.2.
5. ANGLES \(\alpha, \beta, \gamma\). This card supplies the angles between the coordinates (if not rectangular) where \(\alpha\) is the angle between the \(\underline{y}\) - and \(\underline{z}\)-axes, \(\beta\) is the angle between the \(\underline{x}\) - and \(z\)-axes, and \(\gamma\) is the angle between the \(x\) - and \(y\)-axes. If this card is omitted, rectangular axes are assumed. ANGLES is punched in Columns 1-6, \(\alpha\) in Columns \(7-10, B\) in Columns 11-14, and \(\gamma\) in Columns 15-18 (FORMAT A \(4, A 2,3 F 4.0\) ).
Note: If decimal angles are entered, the Format F4.0 is overruled.
6. SIZES name r name r..... . This card indicates the general atom names (name), e.g., \(\mathrm{C}, \mathrm{H}, \mathrm{O}, \mathrm{Cl}, \mathrm{Br}\), etc., and the corresponding radius of the "ball" representation ( \(\underline{\underline{r}}\) ) in atomic units. There can be up to 10 atom names. SIZES is punched in Columns 1-6, the atom name in Columns 7-10, and the atom radius in Columns ll-13 with the next atom names and radii following in groups of 4 columns and 3 columns through 10 atom names [FORMAT 6X,10(4A1,F3.2)].
Warning: The atom names must be left justified.
7. CELL \(\mathrm{x}, \mathrm{y}, \mathrm{z}\). This card indicates the fractional coordinates for the atom positions, and is optional. This option is used when the coordinates are x-ray crystallographic fractional coordinates. The unit cell dimensions are specified in atomic units. If this card is included with the input data, all subsequent atom coordinates will be assumed fractional. CELL is punched in Columns l-4, \(x\) in Columns 5-11, \(y\) in Columns 12-18, and \(z\) in Columns 19-25 (FORMAT 4Al,3F7.3).
8. Name \(x\) y \(z\) namel name2 ..... . The next set of cards specify individual atoms, up to 100. Each card refers to one atom giving its name with up to four characters in Columns 1-4; its position in space by the cartesian or fractional coordinates ( \(x\) is punched in Columns 5-1l, y in Columns 12-18, and \(z\) in Columns 19-25); and the names of the atoms connected to it, up to 8 atoms, punched in four column fields with a blank separating each entry [FORMAT 4Al,3F7.3,8(4A1,1X)].

Note: There should be NOAT cards in this group. The program checks for duplicate names. The order of the drawing of atoms is the same as the order of their specification on the data cards.

Note: The first one or two columns of the atom names should contain the general atom name as it appears on the SIZES card. The remaining two or three columns should contain an atom numbering code or some other identification code to distinguish the individual atoms in the molecule. (For an example, see Table LVI.)

Warning: The atom names should be left justified.
9. VIEW \(x, y, z\). This card(s) specifies the coordinates of the viewpoint(s) desired. The view is drawn from a point looking down the line joining the viewpoint to the center (i.e., the average of the extremities) of the molecule. VIEW is punched in Columns l-4 with Columns 5-6 left blank. Then \(x\) is punched in Columns \(7-10\), \(y\) in Columns 11-14, and \(z\) in Columns 15-18 (FORMAT 6X,3F4.0). There should be NVW viewpoint cards in this section.
10. Data Termination Card. This card indicates the end of the data deck and has a 999 punched in Columns l-3 (FORMAT I3). If another problem is to be included in the data deck, the problem definition card for the next problem should be placed at this point in the deck and the data termination card moved to the end of the second problem.

The data termination card is followed by a card with a /* punched in Columns 1-2 if the OS operating system is being used.

Warning: For best results, the plotter should be manually zeroed, i.e., the pen moved to the extreme right, after each drawing is completed.

\section*{OUTPUT INFORMATION}

Besides the plotter drawing, the following information is written out by the printer.
1. Alphanumeric information about the drawing (if this card is not blank).
2. Scale factor.
3. Sizes of atoms.
4. Cartesian coordinates (fractional coordinates if specified) and bond information.
5. Viewpoint coordinates.
6. Listing of those atoms hidden from view in the drawing.

\section*{PESORT AND SASORT}

These programs read the potential energy and "squared amplitude" data from tape, arrange the information in decreasing order, and label the numerical data with an identifying code.

These programs were written by the author during the investigation of the l,5-anhydropentitol spectra to arrange the potential energy and "squared amplitude" data in a more convenient way. PESORT sorts the potential energy data in terms of the force constants in decreasing order. The data is read from the output tape from NFAD which is a simplified version of FADJ. PESORT reads four character codes, one for each force constant, which identify the force constants. These force constant codes are then printed beside the corresponding potential energy element when the ordered distributions are printed out by PESORT. PESORT also converts the fractional elements to percent. SASORT reads the potential energy data in terms of the internal coordinates (diagonal \(\underset{\sim}{\sim}\) matrix elements) and "squared amplitude" data for internal coordinates from the output tape from EIGV. These data are then arranged in decreasing order and labeled with a four character code that identifies the internal coordinates.

Both PESORT and SASORT may be used with the IBM 360/44 RAX operating system. A listing of PESORT is presented in Table LVII and a listing of SASORT in Table LVIII.

\section*{IISTING OF PMSORT}

DIMENSIDN DES(100), PE(100), DUM(100),INDEX(100),REC(18)

\section*{PROGRAM PESORT}

DESIGNED TO RUN ON RAX AND READ PE DISTRIBUTION OFF TAPE FROM PROGRAM NFAD.
PESORT SORTS THE PE DISTRIBUTION DATA FOR EAC.H CALCULATED FREQ.
AND ARRANGES THE DATA IN DESCENDING ORDER.
A DESCRIPTION DF THE FORCE CONSTANTS IS READ IN FROM CARDS
AND IS REPRODUCED ALONG WITH THE OUTPUT. (FORMAT A4).
PESORT WAS WRITTEN BY L.J.PITZNER 1/13/72
READ PROBLEM CONTROL CARD
NOTE EACH PROBLEM CONTROL CARD IS PRECEDED BY A CARD WITH -O9 IN COLUMNS 1-3.
1). IND \(=-09\) PUNCHED IN COLUMNS 1-3.
2). NOPROB = PROBLEM NUMBER PUNCHED IN COLUMNS 4-9.
3). NF = THE NUMBER OF FORCE CONSTANTS PUNCHED IN COLUMNS 10-12. 4). NFR \(=\) THE NUMBER OF FREQUENCIES PUNCHED IN COLUMNS 13-15.

REWIND 1
4 READ(5,1)IND
1 FORMAT(13)
IF(IND+9)2,3,2
2 IF(IND-999)4,5,4
5 REWIND 1
CALL EXIT
3 READ (5,6)INO,NOPROB,NF,NFR
6 FORMAT(13,16,213)
READ PROBLEM INFDRMATION CARD.
READ(5,18)REC
18 FORMAT(18A4)
WRITE(6.19)NOPROB,REC
19 FORMATIIHI,'APPROXIMATE POTENTIAL ENERGY DISTRIBUTION FOR PROBLEM'. 116/(1H,12X,18A4))
READ FORCE CONSTANT DESCRIPTION CARDS
READ (5,7)(DES(J), J=1,NF)
7 FORMAT(18A4)
DO \(15 \mathrm{~J}=1\), NFR
READ (1,70)NUM,FREQ
70 FORMAT(13,F8.2)
READ 1,80\()(P E(L), L=1, N F)\)
80 FORMAT(9F8.4)
DO 66 Ixi,NF
66 INDEX(I)=I
\(M U=1\)
\(N U=2\)
9 DO \(11 \mathrm{~K}=\mathrm{NU}, \mathrm{NF}\)
IF(PE(K)-PE(MU)) 11,11,10
10 TEM=PE(K)
\(P E(K)=P E(M U)\)
PE(MU) =TEM
ITEM=INDEX(K)

\section*{TABLE LVII (Continued)}
```

 INDEX(K)=INDEX(MU)
 INDEX(MU)=ITEM
 11 CONTINUE
 MU=MU+1
 NU=MU+1
 IFIMU-NFD9,200,200
 200 DO 13, JJ=1,NF
 KK=1NDEX(JJ)
 13 DUM(JJ)=DES(KK)
 DO 14 I= 1,NF
 14 PE(I)=100.*PE(I)
 WRITE(6,21)NUM,FREQ
 WRITE(6,22)(PE(L), DUM(L),L=1,NF)
 21 FORMAT(1HO,'FREQUENCY',13,' =',F6.1,' CM-1')
 22 FORMAT(1H,8(F8.2,2X,A4)I
 15 CONTINUE
 GO TO 4
 END
 /DATA
-09
-09 5009 56 51
1,5-ANHYDROXYLITOL CORRECTED TETRAHEDRAL STRUCTURE.
COR CO ACH CH CC OHCCCOCOCOCOCHCCCHCHCHCOOHHCORCCORAHGCHCH HCC CCO
COH CCC HCOCORC SBI SB2 SB3 SB4 SB5 SB6 SB7 SB8 SB9SB10 BB1 BB2 BB3 BB4
BB5 BB6 BB7 BB8 BB9BB1OBB11BB12BB13BB14BB15BB16BB17BB18BB19 TCC TCOTCOR
BBOBB2O
-09
-09 5009 56 51
1,5-ANHYDRORIBITOL CORRECTED TETRAHEDRAL STRUCTURE.
COR CO ACH CH CC OHCCCOCOCOCOCHCCCHCHCHCOOHHCORCCORAHCCHCH' HCC CCO
COH CCC HCOCORC SB1 SB2 SB3 SB4 SB5 SB6 SB7 S88 SB9SB1O BBI BB2 BB3 BB4
BB5 BB6 8B7 BB8 BB9BB1OBB11BB12BB13BB148B15BB168B17BB18BB19 TCC TCOTCOR
BBOBB2O
-09
-09 5009 56 51
1,5-ANHYDRO-L-ARABINITOL CORRECTED TERAHEDRAL STRUCTURE.
COR CO ACH CH CC OHCCCOCOCOCOCHCCCHCHCHCOOHHCORCCORAHCCHCH HCC CCO
COH CCC HCOCORC SB1 SB2 SB3 SB4 SB5 SB6 SB7 SB8 SB9SB1O BB1 BB2 BB3 BB4
BB5 BB6 BB7 BB8 BB9BB10BB11BB12BB13BB14BB15BB16BB17BB18BB19 TCC TCOTCOR
BBOBB20
9 9 9

```

TABLE LVIII

\section*{LISTING OF SASORT}

DIMENSION DES(100), PE(100), ASQ(100),DUM(100),INDEX(100),REC(18) PROGRAM SASORT
DESIGNED TO RUN ON RAX AND READ PE DISTRIBUTION OFF TAPE FROM PROGRAM EIGV. THE MEAN SQ. AMP. (A**2) IS ALSO READ FROM TAPE. SASORT SORTS THE PE AND MEAN SQ. AMP. DATA FOR EACH CALC. FREQ. AND ARRANGES THE DATA IN DESCENDING ORDER. A DESCRIPTION OF THE INTERNAL COORDINATES IS READ IN FROM CARDS AND IS REPRODUCED ALONG WITH THE OUTPUT. (FORMAT A4). SASORT WAS WRITTEN BY L.J.PITZNER 1/13/72

NOTE EACH PROBLEM CONTROL CARD IS PRECEDED BY A CARD WITH -O9 IN COLUMNS 1-3.
1). IND \(=-09\) PUNCHED IN CDLUMNS 1-3.
2). NOPROB = PROBLEM NUMBER PUNCHED IN COLUMNS 4-9:
3). NQ \(=\) THE NUMBER OF INTERNAL COORDINATES PUNCHED IN COLUMNS 10-12. 4). NFR= THE NUMBER OF FREQUENCIES PUNCHED IN COLUMNS 13-15.

READ PROBLEM CONTROL CARD

REWIND 1
4 READ 5,1 IIND
1 FORMAT(I3)
IF (IND+9)2,3,2
2.IF(IND-999)4.5.4

5 REWIND 1
CALL EXIT
3 READ (5,6) IND, NOPROB, NQ, NFR
6 FORMAT (13,16,213)
READ PROBLEM INFDRMATION CARD.
READ(5,18)REC
18 FORMAT(18A4)
WRITE (6, 19)NOPROB,REC
19 FORMATIIHI, APPROXIMATE PE AND MEAN SQ. AMP. DISTRIBUTION FOR PROBLEM: 1. \(16 /(1 \mathrm{H}, 12 \mathrm{X}, 18 \mathrm{~A} 4)\) )

READ INTERNAL CODRDINATE DESCRIPTION
READ (5,7)(DES(J), J=1, NQ)
7 FORMAT(18A4)
DO \(15 \mathrm{~J}=1\), NFR
READ (1,70)NUM, FREO
70 FORMAT ( \(13, F 8,2)\)
READ ( 1,80\()(P E(L), L=1, N Q)\)
80 FORMAT (9F8.4)
READ (1.90)(ASQ(K), \(K=1, N Q)\)
90 FORMAT(6E12.4)
400 NUM \(=J\)
DO 66 I \(1, N Q\)
66 INDEX (I)=I
\(M U=1\)
\(N U=2\)
9 DO \(11 K=N U, N Q\)
IF(PE(K)-PE(MU)) \(11,11,10\)
10 TEM=PE(K)
```

 PE(K)=PE(MU)
 PE:(MU)=TEM
 ITEM=[NDEX(K)
 INDEX(X)=INDEX(MU)
 INDEX(MU)= ITEM
 11 CONTINUE
MU=MU+1
NU=MU+1
1F(MU-NO)9,200,200
20000 13 JJ=1,NQ
KK=INDEX(JJ)
13 DUM{JJI=DES(KK)
DO 14 I=1.NQ
14 PE\I|=100.*PE\II
WRITE(6,21)NUM,FREO
21FORMAT (1HO, 'FREQUENCY',13.* =',F6.1.'CM-1')
WRITE(6.30)
HRITE{6,31)(PE{L),DUMIL},L=1,NQ)
30 FORMATIIH. PPOTENTIAL ENERGY DISTRIBUTION*I
31 FORMAT(1H,8(F8.2.2X,A4))
DO 50 I= I,NQ
50 INDEX(I)=I
MU=1
NU=2
39 DO.41 K=NU,NQ
IF(ASQ(K)-ASQ(MU):41.41.40
40 TEM=ASQ(K)
ASQ(K)=ASQ(MU)
ASQ(MU)=TEM
ITEM=INDEX(K)
INDEX(K) = INDEX{MU)
INDEX(MU)=ITEM
41 CONTINUE
MU=MU+1
NU=MU+1
IF(MU-NQ) 39,300,300
300 DO 43 JJ=1,NQ
KK=INDEX(JJ)
43 DUM(JJ)=OES(KK)
WRITE\6.51)
WRITE(6,52){ASQ(L),DUM(L),L=1,NQ)
51 FORMAT(1H, MMEAN SQ. AMP. (A**2)')
52 FORMAT(1H, 6(E12.4,2X,A4))
15 CONTINUE
GO TO 4
END

```

\section*{INSTRUCTIONS FOR PROGRAM USE}

The input data appear on tape which is the output from EIGV or NFAD. The following information embodies the data deck. The program deck, which precedes the data deck, must be started with a /ID card, a /JOB GO card, and a /FILE card with the RAX system. The data deck is preceded by a./DATA card.
1. Problem ID Card. This card indicates the start of a problem. A -09 is punched in Columns 1-3 (FORMAT I3).
2. Problem Control Card.
a. \(\operatorname{IND}=-09\), identifies the problem control card, punched in Columns 1-3 (FORMAT I3).
b. NOPROB is the problem number, punched in Columns 4-9 (FORMAT I6).
c. NF (in PESORT) or NQ (in SASORT), NF is the number of force constants and NQ the number of internal coordinates, punched in Columns l0-12 (FORMAT I3).
d. NFR is the number of nonzero calculated frequencies, punched in Columns 13-15 (FORMAT I3).
3. The Force Constant Identification Codes (PESORT) or The Internal Coordinate Identification Codes (SASORT). These four character alphanumeric codes should provide easy identification of the force constants or internal coordinates. They are punched in four column fields, 18 per card, in order 1 through NF (PESORT) or 1 through NQ (SASORT) (FORMAT 18A4).
4. Data Termination Card. This card indicates the end of the problem and is characterized by a 999 in Columns l-3 (FORMAT I3). If another problem is to be included, the problem ID card for the next problem is placed at this point. The data termination card is then moved to the end of the second problem.

With the RAX operating system, the data deck is terminated by a /END card. Printer output for PESORT includes the sorted potential energy distribution (in decreasing order) in terms of the force constants. Printer output for SASORT includes the sorted (in decreasing order) potential energy distribution in terms of the diagonal \(\underset{\sim}{F}\) matrix elements and the internal coordinate "squared amplitudes." In both cases, the data are labeled with the identifying code characters.

NFAD

This program is a condensed version of FADJ. NFAD solves the secular determinant and computes the potential energy distribution in terms of the force constants; however, the force constants are not refined. NFAD will write the potential energy distribution on tape in the proper format for input to PESORT. NFAD may be used with the IBM \(360 / 44\) OS operating system. NFAD will not be listed in this text because of the similarity to \(F A D J\) which has been discussed earlier in this appendix.

\section*{APPENDIX VI}

CALCULATED FREQUENCIES FOR BOTH CONFORMERS OF THE 1,5-ANHYDROPENTITOL MODELS

This appendix contains the listings of the calculated frequencies for the 1,5-AP models for both conformers and is based on the set of force constant parameters listed in Table \(X X\) in the main text. The calculated frequencies for \(1,5-A X, 1,5-A R\), and \(1,5-A L A\) follow in Tables \(L I X\), LX, and LXI, respectively.

\section*{CALCULATED FREQUENCIES FOR BOTH CONFORMERS OF THE l,5-ANHYDROXYLITOL MODEL BASED ON THE FORCE CONSTANTS IN TABLE XX}
\begin{tabular}{|c|c|c|c|}
\hline \[
\begin{gathered}
\text { Stable Conf., } \\
\nu, \mathrm{cm}^{-1}
\end{gathered}
\] & Alternate Conf. \(v, \mathrm{~cm}^{-1}\) & \[
\begin{gathered}
\text { Stable Conf., } \\
\nu, \mathrm{cm}^{-1}
\end{gathered}
\] & Alternate Conf., \(\nu, \mathrm{cm}^{-1}\) \\
\hline 3356 & 3356 & 1131 & 1133 \\
\hline 3356 & 3356 & 1110 & 1108 \\
\hline 3356 & 3356 & 1096 & 1076 \\
\hline 2982 & 2980 & 1095 & 1028 \\
\hline 2979 & 2976 & 1049 & 971 \\
\hline 2946 & 2930 & 1014 & 956 \\
\hline 2926 & 2924 & 950 & 948 \\
\hline 2911 & 2923 & 927 & 903 \\
\hline 2882 & 2881 & 901 & 854 \\
\hline 2880 & 2880 & 882 & 815 \\
\hline 1468 & 1469 & 655 & 795 \\
\hline 1460 & 1463 & 563 & 596 \\
\hline 1437 & 1389 & 533 & 572 \\
\hline 1410 & 1382 & 467 & 539 \\
\hline 1388 & 1382 & 429 & 458 \\
\hline 1363 & 1350 & 420 & 434 \\
\hline 1347 & 1328 & 368 & 365 \\
\hline 1345 & 1328 & 318 & 310 \\
\hline 1329 & 1319 & 297 & 286 \\
\hline 1298 & 1303 & 278 & 241 \\
\hline 1292 & 1289 & 241 & 238 \\
\hline 1272 & 1253 & 230 & 230 \\
\hline 1257 & 1239 & 228 & 199 \\
\hline 1207 & 1224 & 200 & 170 \\
\hline 1201 & 1213 & 131 & 131 \\
\hline 1241 & 1162 & & \\
\hline
\end{tabular}

\section*{TABLE LX}

CALCULATED FREQUENCIES FOR BOTH CONFORMERS OF THE 1,5-ANHYDRORIBITOL MODEL BASED ON THE FORCE CONSTANTS IN TABLE XX
\begin{tabular}{|c|c|c|c|}
\hline Stable Conf., \(\nu\), cm. & Alternate Conf., \(v\), cm. & \[
\begin{aligned}
& \text { Stable Conf., } \\
& v, \mathrm{~cm}^{-1}
\end{aligned}
\] & ```
Alternate Conf.
```

 \(\nu, \mathrm{cm}^{-1}\) \\
 \hline 3356 \& 3356 \& 1131 \& 1136

\hline 3356 \& 3356 \& 1106 \& 1089

\hline 3356 \& 3356 \& 1096 \& 1059

\hline 2982 \& 2980 \& 1042 \& 1037

\hline 2979 \& 2976 \& 1024 \& 994

\hline 2931 \& 2930 \& 1010 \& 963

\hline 2925 \& 2924 \& 981 \& 946

\hline 2921 \& 2922 \& 926 \& 889

\hline 2882 \& 2881 \& 876 \& 865

\hline 2880 \& 2880 \& 850 \& 809

\hline 1468 \& 1469 \& 676 \& 786

\hline 1460 \& 1461 \& 641 \& 666

\hline 1418 \& 1373 \& 599 \& 601

\hline 1412 \& 1371 \& 463 \& 470

\hline 1393 \& 1365 \& 446 \& 451

\hline 1367 \& 1353 \& 413 \& 433

\hline 1344 \& 1329 \& 342 \& 354

\hline 1320 \& 1324 \& 308 \& 301

\hline 1317 \& 1302 \& 283 \& 297

\hline 1295 \& 1284 \& 255 \& 258

\hline 1289 \& 1283 \& 240 \& 239

\hline 1265 \& 1272 \& 227 \& 230

\hline 1255 \& 1240 \& 220 \& 226

\hline 1233 \& 1222 \& 202 \& 170

\hline 1220 \& 1214 \& 137 \& 132

\hline 1155 \& 1139 \& \&

\hline
\end{tabular}

TABLE LXI
CALCULATED FREQUENCIES FOR BOTH CONFORMERS OF THE 1,5-ANHYDRO-L-ARABINITOL MODEL BASED ON THE FORCE CONSTANTS IN TABLE XX

| $\begin{aligned} & \text { Stable Conf., } \\ & \nu, \mathrm{cm}^{-1} \end{aligned}$ | Alternate Conf. ν, cm. | Stáble Conf., V, cm. | Alternate Conf., $v, \mathrm{~cm}$. |
| :---: | :---: | :---: | :---: |
| 3356 | 3356 | 1130 | 1122 |
| 3356 | 3356 | 1108 | 1093 |
| 3356 | 3356 | 1097 | 1086 |
| 2981 | 2981 | 1074 | 1045 |
| 2978 | 2977 | 1061 | 1018 |
| 2940 | 2929 | 988 | 978 |
| 2926 | 2925 | 941 | 947 |
| 2915 | 2921 | 931 | 929 |
| 2882 | 2881 | 873 | 874 |
| 2880 | 2880 | 851 | 831 |
| 1469 | 1469 | 743 | 720 |
| 1461 | 1460 | 637 | 640 |
| 1419 | 1391 | 540 | 548 |
| 1395 | 1383 | 487 | 518 |
| 1378 | 1377 | 441 | 451 |
| 1372 | 1348 | 403 | 419 |
| 1341 | 1333 | 380 | 387 |
| 1326 | 1320 | 302 | 313 |
| 1313 | 1303 | 285 | 288 |
| 1304 | 1295 | 260 | 243 |
| 1284 | 1278 | 237 | 238 |
| 1263 | 1255 | 236 | 238 |
| 1251 | 1232 | 236 | 228 |
| 1234 | 1230 | 222 | 214 |
| 1199 | 1220 | 185 | 190 |
| 1163 | 1149 | 132 | 135 |

[^0]: The Introduction, Background, and Thesis Objectives sections are based on an unpublished review by Dr. Rajai Atalla, The Institute of Paper Chemistry, Appleton, Wisconsin.

[^1]: The term complex is used in this context to indicate the presence of numerous atomic groups in large molecules. For saccharide compounds, this includes atomic groups such as $\mathrm{CH}, \mathrm{CC}, \mathrm{OH}$, and COC where the last group signifies the ether linkage in the pyranose ring.

[^2]: Gray and Barker suggest using a platinum on charcoal catalyst; however.s.the palladium catalyst was found to result in higher yields for the $1,5-A P$ compounds. Triethylamine was found to be an effective bromine scavenger with less tendency to produce side products.

[^3]: ${ }^{a_{C a l}}$ culated C, H. and O percentages based on the formula $\mathrm{C}_{5} \mathrm{H}_{1} \mathrm{O}_{4}$.
 $\mathrm{b}_{\text {Fletcher, }} \mathrm{H}$: G., Jr., and Hudson, C. S. (65).
 ${ }^{c}$ Jeanloz, R., et ai. (64).
 ${ }^{\text {dice, }}$ F. A. H., and Inatome, M. (63).
 ${ }^{\text {Fletcher, H. G., Jr., and Hudson, C. S. (62). }}$

[^4]: The spectral region from 3600 to $1300 \mathrm{~cm} .^{-1}$ was recorded employing a Fluorolube mull while the region from 1300 to $600 \mathrm{~cm}^{-1}$ was recorded with a Nujol mull. Sodium chloride windows were used in both cases.

[^5]: A.brief description and a diagram of this Raman spectrometer attachment can be found on page 76 in Tobin (67).

[^6]: The relative intensity of a spectral band is determined by computing the ratio of the peak heights from the background of that particular band to that of the most intense band in the spectrum.

[^7]: $\mathrm{a}_{\text {Raman }}$ spectrometer operating conditions:

 Sample arr.: pellet Laser wavelength: 5145 A . Laser power: 780 mw . Slit width: $250 \mu \mathrm{~m}$. Slit height: 2 mm . Scan: $50 \mathrm{~cm} .^{-1} / \mathrm{min}$.
 DC: 0.1×10^{-6}
 $\mathrm{DC}:$
 $\mathrm{RT}:$
 1 sec.
 PM voltage: 1900
 PM temp.: $-20^{\circ} \mathrm{C}$.
 Spike filter used

[^8]: $a_{\text {Raman }}$ spectrometer operating conditions:

 Sample arr.: cap. tube Laser wavelength: 5145 A . Laser power: 800 mw .
 Slit width: $250 \mu \mathrm{~m}$.
 Slit height: 2 mm .
 Scan speed: $50 \mathrm{~cm} .^{-1} / \mathrm{min}$.
 DC: 0.03×10^{-6}
 RT: 3 sec .
 PM voltage: 1900
 PM temp.: $-20^{\circ} \mathrm{C}$.

[^9]: Reman spectrometer operating conditions:

 Sample arr.: cap.tube.
 Laser wavelength: 5145 A .
 Laser power: 800 mw .
 Slit width: $250 \mu \mathrm{~m}$.
 Slit height: 2 mm .
 Scan speed: $50 \mathrm{~cm} .^{-1} / \mathrm{min}$.
 DC: 10×10^{-9}
 RT: 3 sec .
 PM voltage: 1900
 PM temp.: $-20^{\circ} \mathrm{C}$.

[^10]: ${ }^{c}$ Shoulder.

[^11]: $a_{\text {Raman }}$ spectrometer
 operating conditions:
 Sample arr.: cap, tube Laser wavelength: 5145 A .
 Laser power: 800 mw .
 Slit width: $250 \mu \mathrm{~m}$.
 Slit height: 2 mm .
 Scan speed: $50 \mathrm{~cm} .^{-1} / \mathrm{min}$.
 DC: 0.03×10^{-6}
 RT: 3 sec .
 PM voltage: 1900
 PM temp.: $-20^{\circ} \mathrm{C}$.

[^12]: $\mathrm{a}_{\text {Raman }}$ spectrometer operating conditions:

 Sample arr.: quartz cell Laser wavelength: 5145 A. Laser power: 800 mw .
 Slit width: $250 \mu \mathrm{~m}$.
 Slit height: 10 mm .
 Scan speed: $50 \mathrm{~cm} .^{-1} / \mathrm{min}$.

 DC: $0.03 \times 10^{-6} \quad$ Laser power: 800 mw .
 RT: 0.3 sec .
 Neutral density filter used

 - Raman spectrometer operating conditions:

 Sample arr.: quartz cell Laser wavelength: 5145 A. Neutral density filter ${ }^{c}$ Shoulder.

[^13]: a Reman spectrometer operating conditions:

 Sample arr.: cap. tube Laser wavelength: 5145 A . Laser power: 950 mw .
 Slit width: $250 \mu \mathrm{~m}$.
 Slit height: 2 mm .
 Scan speed: $50 \mathrm{~cm} .^{-1} / \mathrm{min}$.
 DC: 0.3×10^{-6}
 RT: 1'sec.
 PM voltage: 1900

[^14]: $a_{\text {Raman }}$ spectrometer operating conditions:

 Sample arr.: pellet
 Laser wavelength: 5145 A .
 Laser power: 900 mw .
 Slit width: $250 \mu \mathrm{~m}$.
 Slit height: 2 mm . Scan speed: ${ }_{-1}^{50} \mathrm{~cm} .^{-1} / \mathrm{min}$. DC: 0.1×10^{-6}

[^15]: $a_{\text {Raman }}$ spectrometer operating conditions:

 Sample arr.: pallet Laser power: 970 mw . Slit height: 5 mm . Rest of data same as

[^16]: ${ }^{C}$ The regions above and below this point correspond to different spectra, so relative intensities are different. Shoulder.

[^17]: This treatment ignores the fact that the coordinates, \underline{q}_{i}, are not all independent. For redundant coordinates, the energy should be minimizē with respect to an undetermined multiplier giving rise to one additional force constant for each redundancy. This point is discussed by Crawford and Overend (72).

[^18]: 10
 This is easily verified by referring to Equation (3).
 The generalized coordinates do not involve time explicitly.

[^19]: $\mathrm{a}_{\text {The }}$ proportion of each conformer existing in solution at equilibrium for the Angyal analysis is calculated from the expression $G_{1}^{0}-G_{2}^{O}=R T \ln \left(N_{1} / N_{2}\right)$, relating thé difference in conformational free energy to thē natūral Iogarithm of the ratio of the mole fractions, for $\underline{T}=298.16^{\circ} \mathrm{K}$ or $25^{\circ} \mathrm{C}$.
 $\mathrm{b}_{\text {The conformation }}$ is identified by designating the orientation of the hydroxyl group on C2, C3, and C4, respectively. An a denotes an axial hydroxyl group and an e denotes an equatorial hydroxyl group.
 ${ }^{C}$ This is the most stable conformer of the pair.

[^20]: $a_{\text {The torsional coordinates were defined for those atoms in the trans position }}$ about each bond.
 $b_{\text {The torsional coordinates in this group are summed together (linear combination) }}$ (loger to avoid the introduction of further redundancies.

[^21]: a Normalization of the symmetry coordinates requires that each coordinate be multipled by $1 / \sqrt{2}$, except for the symmetry coordinates S9, S10, SIl, S27, S28, S29, S30, and S61 where the factor is unity. The normalization is accomplished by GMAT.
 $\mathrm{b}_{\text {The }}$ internal coordinate numbers are defined in Tables XXXVII and XXXVIII in Appendix II.

[^22]: ${ }^{a_{\sigma}}\left(\Phi_{\underline{i}}\right)$ is the standard error in $\Phi_{\underline{i}}$ estimated from the standard error in the frequency parameters and the $\overline{\mathrm{H}}$ matrix in the nonlinear refinement.
 The units for the force constants in this group are mdyn./A.
 ${ }^{C}$ The initial force constant values were taken. from Snyder and Zerbi (56).
 $\mathrm{d}_{\text {The }}$ initial force constant values were taken from Vasko (99).
 The force constant was assigned an initial value of zero because a value was not reported in the literature.
 $\mathrm{f}_{\text {The }}$ units for the force constants in this group are mdyn./A./(rad) ${ }^{2}$.
 ${ }^{2}$ The units for the force constants in this group are mdyn./rad.
 The force constant was not included in the refinement because it was not specified in any of the constraint matrices since all the H-C-O-H torsional coordinates were assumed to be trans in the definition of the 1,5 -anhydropentitol models.

[^23]: ${ }^{\text {a }}$ Just the most significant contributions to the potential energy are listed. The sum of the components of the potential energy distribution may total more than 100% due to the presence of negative contributions resulting from negative interaction force constants.
 AC•••denotes the "anomeric" carbon atom (i.e., the carbon atom adjacent to the ring oxygen atom).
 c...OR denotes the ring oxygen atom.
 $\mathrm{d}_{\text {TCC }}$, TCO, and TCOR denote torsion about the CC, CO, and COR bonds, respectively.
 In this column the molecular vibration for each normal mode is classified in terms of the particular group vibrations accounting for most of the molecular fibration.
 rip denotes "in-plane" bending and op denotes "out-of-plane" bending.
 $\mathrm{g}_{\text {This }}$ band was not included in the force constant refinement.
 $h_{\text {The }}$ average error (mean deviation) is computed from the difference between the calculated and corresponding experimental frequencies, either infrared or Raman, whichever is closest, and excludes the OH stretching bands and the band at 169 $\mathrm{cm} .^{-1}$ denoted by footnote g . In Table XXIII the maximum deviation is $36.5 \mathrm{~cm} .^{-1}$ and the minimum deviation is $0.2 \mathrm{~cm} .^{-1}$

[^24]: ${ }^{a_{\text {Just }}}$ the most significant contributions to the potential energy are listed. The sum of the components of the potential energy distribution may total more than 100% due to the presence of negative contributions resulting from negative interaction force constants.
 $b_{\text {AC...denotes the "anomeric" carbon atom (i.e.; the carbon atom adjacent to the }}$ ring oxygen atom).
 c...OR denotes the ring oxygen atom.
 $d_{\text {TCC }}, T C O$, and TCOR denote torsion about the $C C, C O$, and COR bonds, respectively.
 $e_{\text {In this column the molecular vibration for each normal mode is classified in }}$
 terms of the particular group vibrations accounting for most of the molecular vibration.
 $f_{i p}$ denotes "in-plane" bending and op denotes "out-of-plane" bending.
 EThe average error (mean deviation) is computed from the difference between the calculated and corresponding experimental frequencies, "either infrared or Raman, whichever is closer, and excludes the OH stretching bands. In Table XXIV the maximum deviation is $-20.2 \mathrm{~cm} .^{-1}$ and the minimum deviation is $0.3 \mathrm{~cm} .^{-1}$

[^25]: ${ }^{15}$ The reader is reminded that in this text the term complex is used to describe those molecules with several different atomic groups.

