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SUMMARY

The 1,5-anhydropentitol compounds (namely, 1,5-anhydroxylitol, 1,5-anhydro-

ribitol, and 1,5-anhydro-D- and L-arabinitol) are a logical class of-compounds

with which to begin a systematic analysis of carbohydrate vibrational spectra.

These compounds form a model system that is structurally similar to the pentoses,

although simpler because they lack a hydroxyl group at the C1 position of the

ring. The vibrational spectra of these compounds are quite complex, complicated

by extensive vibrational coupling. As a result, a complete interpretation of the

vibrational spectra can be accomplished only by detailed normal coordinate

analyses.

The laser Raman and infrared spectra of the crystalline 1,5-anhydropentitol

compounds were measured in the region from 4000 to 150 cm.- 1 wave number). (The

infrared spectra were only recorded down to 300 cm.-1) The solid state spectra

were assigned and interpreted with the aid of detailed normal coordinate calcula-

tions, performed for each compound in the class. In the normal coordinate

analyses, a series of computer programs were employed to construct and solve the

vibrational secular equation by the Wilson GF method. An iterative nonlinear

least squares technique based on the Fletcher-Powell method was adapted to refine

an initial set of force constant parameters for each of the 1,5-anhydropentitol

models simultaneously; whereby, the difference between the calculated and experi-

mental frequencies were minimized. The result was an overall average error of

6.2 cm.- 1

The comparative differences in band location (i.e., frequency) between the

1,5-anhydropentitol spectra are demonstrated to be primarily the result of a

kinetic energy effect (G matrix) rather than a potential energy effect (F matrix)

and are related to the hydroxyl group orientation, i.e., axial or equatorial.
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The Raman spectra of the water and dimethyl sulfoxide-d6 solutions of the

1,5-anhydropentitol compounds were observed to be very similar upon exclusion

of the solvent bands. This observation suggests that.the-type of solvent,

amphiprotic versus aprotic, has little affect on the vibrational spectra of

these saccharide model compounds. The solution spectra were noted to correlate

quite favorably with the crystalline spectra; however, the bands were greatly

broadened in the solution spectra. Several additional bands were observed in

the solution spectra for 1,5-anhydroribitol and 1,5-anhydro-L-arabinitol that

were not evident in the crystalline spectra. Conformational free energy calcu-

lations and normal coordinate computations support the argument that these bands

originate from a significant portion of the molecules that exist in the alternate

chair conformation in solution.

The infrared and Raman spectra of crystalline 1,5-anhydro-DL-arabinitol were

recorded. The 1,5-anhydro-DL-arabinitol spectra were not identical to the spectra

of the D and L isomers. Several spectral bands appeared to be shifted in

frequency, and the relative intensities of a number of bands were not the same.

The hydrogen bonding and crystal geometry are suspected of differing in the two

systems; however, the influence of these factors upon the spectra was not in-

vestigated

In addition to providing important vibrational information about a class of

compounds previously unstudied, the investigation of the 1,5-anhydropentitol

spectra has also made available the necessary data to assist in the spectral

interpretation of other carbohydrate compounds. The normal coordinate compu-

tations for these compounds have generated a force field which should simplify

the mathematical analyses of the monosaccharides, especially the pentoses.
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INTRODUCTION 1

The saccharides are a broad class of naturally occurring compounds composed

of such groups as the pentoses (xylose, ribose, arabinose), hexoses (glucose,

mannose, galactose), oligomers (lactose, fructose, sucrose), and polysaccharides

(glycogen, pectin). Derivatives (glucosamine) and substituted polysaccharides

(mucopolysaccharides) are also members of this group.

The saccharides are important elements in biological systems. They form

the subunits of more complex molecular systems such as the glycoproteins and

glycolipids (1-3), are important structural component s in a variety of living

tissues, and are involved in a number of complex metabolic pathways C4,5). In

addition, saccharides enter into a number of important biological mechanisms,

and they are constituents of some of the clinically important antibiotics (6).

The saccharides, especially the polymers of anhydroglucose, are also the

basic raw material for several industries. For example, the starch industry

utilizes the a-1,4-linked polymer (7), while the cotton textiles and paper

industries depend upon cellulose, the B-1,4-linked polymer, as the basic raw

material (8,9). The rayon, cellophane, sugar, and fermentation industries are

further examples of areas of technology where saccharides are important.

Recently, polysaccharides have been determined as important elements in

pollution abatement problems. The dewatering of sludges from municipal sewage

treatment systems appears to be influenced by their waste cellulose fiber content

and by the hydration properties of the capsular polysaccharides of microorganisms.

1

The Introduction, Background, and Thesis Objectives sections are based on an
unpublished review by Dr. Rajai Atalla, The Institute of Paper Chemistry,
Appleton, Wisconsin.



In view of the widespread importance of the saccharides, it is evident that

an expansion of our basic understanding of these compounds through physical

chemical investigations will result in potential applications in biochemistry,

medicine, industrial technology, and environmental protection programs.

To date, physical chemical investigations of the saccharides have employed

optical rotation (10), x-ray crystallography (11,12), and nuclear magnetic

resonance spectrometry (13,14) as important sources of information. Vibrational

spectroscopy, primarily infrared spectroscopy, has also been used extensively in

the investigation of saccharides; however, its use has been almost entirely as an

analytical tool, based on the group frequency approach. In recent years, the

potential of vibrational spectroscopy as a physical chemical tool has been greatly

expanded due to the increasing availability of laser Raman spectrometers and the

development of computer methods for normal coordinate calculations. Laser Raman

spectrometers provide complementary spectral information to infrared absorption

measurements, and the computational methods allow the investigation of the vibra-

tional dynamics of large molecules. Therefore, it now appears certain that detailed

vibrational analyses-of the spectra of well-chosen saccharides can add significantly

to the fund of basic information developed utilizing other physical chemical

techniques.
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BACKGROUND

The vibrational spectra of the saccharides, their derivatives, and related

compounds have been studied by many workers in this area of chemistry. A1-

though some progress has been made in the interpretation of these spectra, the

full potential of vibrational spectroscopy utilizing modern techniques has not

been attained.

Coblentz (15) appears to have been the first person to critically examine

the infrared spectra of the saccharides. He studied D-fructose and D-glucose in

the region from 3200 cm. -1 to 833 cm. - 1 The series was expanded by Rogers and

Williams (16) to include D- and L-arabinose, D-galactose, and D-mannose. The

spectra of several other simple sugars were examined by other workers (17).

However, the work of Kuhn (18) represents the first effort to correlate the spectra

with structure. His work was followed by a series of significant contributions

published by a number of groups throughout the decade of the 1950's. Whistler and

House (19) were the first workers to employ infrared spectra to differentiate be-

tween sugar anomers. A significant series of publications followed by a group of

workers at The University of Birmingham (20-22). The spectral region from 670 cm.-1

to 1000 cm. 1 was investigated for many monosaccharides and their derivatives.

They observed that the spectral features in this region could be correlated with

structure, particularly at the C1 position. They found, however, that the finger-

print region was too complex for systematization.

Tipson and Isbell and their coworkers (23-29), at the National Bureau of

Standards, investigated the infrared spectra of a substantial number of mono-

saccharides and their derivatives. In one of the more unusual applications of

infrared spectral measurements in this field, they measured the equilibrium



-6-

compositions of aqueous solutions of monosaccharides (a- and B-anomer distribution

and presence of the furanose form after mutarotation had taken place) by measuring

the spectra of lyophilized samples of the solutions (28). They also attempted to

make some band assignments in the fingerprint region.

A significant contribution to the study of polysaccharide spectra has been

made by Marchessault and Liang and their coworkers (30-35). They have recorded

the spectra of a number of celluloses, xylans, and chitin. They utilized polarized

infrared absorption measurements on oriented samples as an aid to assigning some of

the bands. Zhbankov and his coworkers (36) have also made important contributions

in this area. They have measured the spectra of a large number of saccharides,

especially celluloses from a variety of natural sources. In a more recent publi-

cation (37), they have reported low temperature studies of the infrared spectra of

various monosaccharides.

Michell and coworkers (38-4i) have also substantially contributed to the

study of the polysaccharides and have recorded spectra at low temperature (42,43).

While the low temperature studies of Zhbankov and Michell have con-

centrated on the OH stretching bands, Katon and coworkers (44,45) have more re-

cently demonstrated that low temperatures may also improve resolution in other

regions of the spectra.

In the work cited so far, the utilization of infrared spectroscopy has been

based on the group frequency approach which has been successful in many areas of

organic chemistry, as well summarized by Bellamy (46,47). In this approach,

model systems are very important, and the area of saccharide chemistry is no

exception. The Birmingham school based their discussion of pyranose spectra on

an assignment of the spectrum of tetrahydropyran by Burket and Badger (48).
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The assignment of tetrahydropyran was confined to the region above 700 cm. in

the spectrum and consequently, did not include the ring bending vibrations.

Much of the later discussion of pyranose spectra is also based on this assignment.

In later work, the workers at The University of Birmingham expanded the fund of

basic information on relevant model compounds by investigating the spectra of

tetrahydropyran-2-ol, -3-ol, -4-ol, and also tetrahydro-2-hydroxymethylpyran (49).

The assignment of these spectra were also based on Burket and Badger's assignment

of tetrahydropyran, which, in turn, was based on analogy with the spectrum of

cyclohexane. A normal coordinate analysis of cyclohexane had been reported by

Beckett, et al. (50).

A more detailed review of the application of vibrational spectroscopy to

saccharide chemistry is provided by Spedding (51). A recent review by Tipson (52)

is even more exhaustive in its discussion of group frequencies. In summary, it

is sufficient to state that most of the spectral investigations of saccharides in

the past have been confined to the region above 700 cm. 1, and have been oriented

primarily toward analytical application.

However, since most of this work on saccharides, their derivatives', and re-

lated compounds has been undertaken, i.e., since the period of the 1950's and

early 1960's, there has been substantial progress in the methodology of vibrational

spectroscopy which has made possible more rigorous analyses of the spectra of

complex molecules. In particular, the work of Schachtschneider and Snyder on the

hydrocarbons (53-55) and of Snyder and Zerbi on the ethers (56), have established

the possibility of systematic analyses of the spectra of groups of related

2

The term complex is used in this context to indicate the presence of numerous
atomic groups in large molecules. For saccharide compounds, this includes
atomic groups such as CH, CC, OH, and COC where the last group signifies the
ether linkage in the pyranose ring.
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compounds with the aid of normal coordinate computations. Their work has

established the necessary computational methods for a mathematical analysis of

molecular vibrations and demonstrated the applicability of these methods to

large molecules. Snyder and Zerbi included the normal coordinate analysis of

the vibrations of tetrahydropyran in their study of the ether spectra. (As

stated earlier, tetrahydropyran is the basis for several interpretations of

saccharide spectra.) 'More recently, Pickett and Strauss (57) have adapted the

methods of Schacht schneider and Snyder in a study of the bending vibrations of

cyclohexane and related oxanes, including tetrahydropyran. The normal coordinate

analyses of tetrahydropyran, tetrahydropyran-4-ol, -4-C1, and -4-F are reportedly

in progress at The Royal Holloway College in England (58). Tetrahydropyran-4-0l

provides an improved model compound relative to tetrahydropyran for many of the

saccharides, particularly the pentoses and simple sugars. This results from the

addition of a hydroxyl group to the pyranose ring, which is an important element

of saccharide molecules.

The availability of more comprehensive data on vibrational frequencies has

been essential in the detailed vibrational studies of the saccharides in the past.

The recent improvements in infrared instrumentation and the increasing availability

of laser excited Raman spectrometers have made the necessary data obtainable.

Furthermore, developments in computer systems and computational methods have made

possible the mathematical vibrational analyses of large, complex molecules. In

view of this progress, both in computational technology and instrumental capa-

bilities, there is now a basis for a new effort at more comprehensive analyses

of the saccharide spectra.
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THESIS OBJECTIVES

With respect to what has been outlined in the previous section regarding

current knowledge of the vibrational spectra of the saccharides and related

model compounds, the next logical effort should be a detailed vibrational study

of a model system in more close approximation to the saccharides than tetrahydro-

pyran. The 1,5-anhydropentitol (1,5-AP) compounds provide such a model system.

The compounds in this class are 1,5-anhydroxylitol (l,5-AX),,l,5-anhydro-

ribitol (1,5-AR), 1,5-anhydro-L-arabinitol (1,5-ALA), and 1,5-anhydro-D-arabinitol

(1,5-ADA). These compounds are represented in Fig. 1. The 1,5-AP compounds con-

stitute a particularly important model system for several reasons. ·First, they

differ from the pentoses only in the absence of the hydroxyl group at C1. There-

fore, they approximate the pentoses more closely than the related model compounds

previously studied. Second, the equivalence of C1 and C5 increases the symmetry

of 1,5-AX and 1,5-AR, relative to the pentoses, from Cl to Cs. This allows the

magnitude of the vibrational problem to be reduced by symmetry considerations.

This is particularly valuable in exploring effects associated with axial or

equatorial orientation of the hydroxyl group at C3. Third, the compounds as a

group have melting points which are low enough to permit measurement of the

spectra of the melts. Thus, it is possible to distinguish molecular bands from

spectral features associated with the solid state. The monosaccharides, in con-

trast, generally undergo decomposition before melting. Fourth, the absence of the

hydroxyl group at C1 eliminates the problems associated with mutarotation in

solution. Thus, it is possible to investigate the spectra of aqueous solutions,

without the complication of having two or more species present, as is the situation

with the monosaccharides. The additional information provided by the solution

spectra assists in the assignment of the solid state spectral bands.
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In application of vibrational spectroscopy to physical chemical investigations,

as distinguished from analytical investigations, it is necessary to begin with com-

prehensive assignments of the spectral bands in the spectra of the compounds of

interest.. Therefore, the major objective of this thesis is to achieve the assign-

ment and interpretation of the vibrational spectra of the 1,5-AP compounds based

on comparisons of the infrared and Raman spectra, as well as on normal coordinate

analyses of the molecular vibrations. In this endeavor, an attempt is made to

apply the computational methods of Schachtschneider and Snyder (53-56) to the

analyses of the more complex 1,5-AP molecules.



EXPERIMENTAL

PREPARATION OF THE 1,5-ANHYDROPENTITOL COMPOUNDS

The 1,5-AP compounds are not available commercially and were prepared as

part of this investigation. The syntheses of 1,5-AR, 1,5-ALA, and 1,5-ADA from

their parent sugar compounds were based on the paper by Gray and Barker (59) and

the unpublished laboratory procedures by Schroeder (60). The fourth compound in

this class, 1,5-AX, had been previously prepared in sufficient quantity by Dr.

Paul Seib, formerly of the Institute staff.

PREPARATION OF 1,5-ANHYDRO-D- AND L-ARABINITOL

Tetra-O-acetyl-D-arabinopyranose

The procedure for the acetylation of D-arabinose was adapted from a method.

described in Schroeder's laboratory procedures (60).

Acetic anhydride (200 ml.) was added to a 6 00-ml. beaker equipped with a

thermometer and an overhead stirrer. Anhydrous sodium acetate (13.5 g.) and then

D-arabinose (30 g.) were added to the beaker with continuous stirring. The mixture

was heated to 70-75°C. on a hot plate. At this point the external heat was re-

moved. The temperature of the mixture continued to rise as a result of the heat

being produced by the exothermic reaction. The reaction temperature was controlled

between 90-100°C. by increasing the rate of stirring and placing the beaker in a

pan of chopped ice when necessary. The sodium acetate and D-arabinose went into

solution in the acetic anhydride at approximately 90°C. The temperature was main-

tained between 90-100°C. for 15 minutes, applying external heat when requisite.

The solution was then slowly cooled to room temperature. Upon cooling, the

reaction mixture solidified. The solidified mixture was transferred, a small
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portion at a time, to a beaker containing rapidly stirred ice and water (700 ml .)

causing the acetylated arabinose to precipitate. Upon completion of the transfer,

the contents of the beaker were stirred for an additional two hours with ice

being added when needed. Chloroform (350 ml.) was next added to the mixture and

the stirring continued for an additional minute. The entire water-chloroform

mixture was transferred to a separatory funnel (2 liter) and the chloroform layer

drawn off. Additional chloroform (150 ml.) was added to the separatory funnel

containing the water layer; the mixture shaken for a minute; and upon settling,

the chloroform layer drawn off. The chloroform extraction solutions were com-

bined. The chloroform solution was next transferred to a separatory funnel (1

liter) and washed with saturated sodium bicarbonate solution (2 x 250 ml.) and

distilled water (3 x 250 ml.). The washed chloroform solution was dried over

calcium chloride and concentrated in vacuo to a thick sirup. All attempts to

crystallize tetra-0-acetyl-D-arabinopyranose from the sirup, using various

solvents, were unsuccessful.

2,3,4-Tri-O-acetyl-D-arabinopyranosyl Bromide

The bromination procedure to be described was also adapted from a method in

Schroeder's laboratory procedures (60).

The tetra-0-acetyl-D-arabinopyranose sirup (25 g.) was dissolved in 1,2-

dichloroethane (60 ml.) and hydrogen bromide in glacial acetic acid (20 ml., 43%)

added. The reaction was allowed to progress at room-temperature for 45 minutes

with occasional stirring of the solution and then the reaction stopped by the

additional of chloroform (150 ml. ). The diluted solution was poured into a

separatory funnel (500 ml.), washed with ice water (3 x 225 ml.), and dried over

calcium chloride. The dried chloroform solution was concentrated in vacuo to

the point at which 2,3,4-tri-O-acetyl-D-arabinopyranosyl bromide began to



-14-

crystallize. The sirup was immediately dissolved in anhydrous diethyl ether

(50 ml.) and petroleum ether (b.p. 30-60°C.) added until crystallization was

initiated. The mother liquor was put into a refrigerator overnight to allow

for 'further crystallization. -The triacetyl-D-arabinosyl bromide crystals were

then filtered from the mother liquor, washed with a:small amount of diethyl

ether, pressed with dental dam, and dried in a vacuum desiccator forten minutes.

A yield of 13.4 g. was recorded. The melting point of the triacetylarabinosyl

bromide crystals was not measured due to'their instability. (The crystals were

found to decompose-rapidly in air, giving off hydrogen bromide vapors within a

few minutes after exposure to the air.)

2,3,4-Tri-O-acetyl- 1,5-anhydro-D-arabinitol

The procedure to be described for the reductive dehalogenation was adapted,

for the most part, from Gray and Barker (59) with modifications in the choice of

catalyst and bromine scavenger.

The crystalline 2,3,4-tri-0-acetyl-D-arabinopyranosyl bromide (13.4 g.) was

dissolved in absolute ethyl acetate (160 ml.). Palladium catalyst on charcoal

(l g., 10%) and triethylamine (9 ml.) were added to the solution3. The reaction

mixture was transferred to a teflon-coated Parr bomb reactor. A magnetic stirring

bar was added; the bomb was sealed; hydrogen gas was introduced into the bomb to a

pressure of 50 p.s.i.g.; and the bomb was placed on a magnetic stirring motor.

The reaction mixture was stirred for 48 hours. Thin-layer chromatography was

employed to establish when the reaction had reached completion. The reaction

mixture was then filtered through Celite to remove the catalyst. The Celite bed

Gray and Barker suggest using a platinum on charcoal catalyst; however, the
palladium catalyst was found to result in higher yields for the 1,5-AP
compounds. Triethylamine was found to be an effective bromine: scavenger with
less tendency to produce side products.
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was washed with chloroform. Additional chloroform was added to the filtrate

until a total chloroform addition of 150 ml. was attained. The chloroform-ethyl

acetate solution was transferred to a separatory funnel (1 liter). The solution

was washed with 0.5N hydrochloric acid solution (2 x 200 ml.), saturated sodium

bicarbonate solution 9(2 x 200 ml.), and distilled water (2 x 200 ml.). The

washed solution was treated with silver nitrate in acetone (7 ml., 3%) to "strip"

bromine from any unreacted triacetylarabinosyl bromide as suggested by Brandon

(61). A turbid suspension of silver bromide formed immediately. The mixture was

dried over calcium chloride. The suspended material was then removed by filtra-

tion through Celite. The solution was concentrated to a sirup in vacuo , and all

attempts to crystallize 2,3,4-tri-0-acetyl-l,5-anhydro-D-arabinitol from the

sirup were unsuccessful.

1,5-Anhydro-D-arabinitol

The deacetylation procedure was adapted from a method in the unpublished

procedures by Schroeder (60).

The 2,3,4-tri-0-acetyl-l,5-anhydro-D-arabinitol sirup (9.5 g.) was dissolved

in absolute methanol (100 ml.) in a. stoppered flask. Sodium methoxide in methanol

(0.5N) was added in 0.5-ml. increments until the methanol solution was basic to

phenolphthalein solution. In this case, 1.0 ml. of sodium methoxide solution was

required. The deacetylation was monitored by thin-layer chromatography using

silica gel G and diisopropyl ether as the developing solvent. The deacetylation

was observed to be almost simultaneous with the sodium methoxide solution addition.

The methanol solution was deionized by adding Amberlite IR-120 (1.5 g.), a cation

exchange resin, stirring, and testing for neutrality with litmus paper. The

resin was removed by filtering the solution through Celite. The 1,5-ADA solution



was then concentrated to a sirup in vacuo. 'The reaction scheme for the synthesis

of 1,5-ADA is diagrammed in Fig. 2.

Purification of the 1,5-Anhydro-D-arabinitol Sirup

The most probable source of impurity in the 1,5-ADA preparation was suspected

to be the parent sugar. A reducing sugar can be removed by alkaline hydrolysis

followed by ion-exchange chromatography. Alkaline hydrolysis of a reducing sugar

results in the formation of metasaccharinic acids. These acids are then removed

by passing the solution through a column containing an anion exchange resin and a

cation exchange resin, to remove sodium ions.

The 1,5-ADA sirup (5 g.) was dissolved in distilled water (25 ml.) and treated

with 0.5N sodium hydroxide solution (10 ml.). The solution was refluxed over a

steam bath for two hours with the basicity being determined with pH paper at 30-

minute intervals. The pH of the solution remained above 12 throughout the

hydrolysis. Upon cooling to room temperature, the hydrolysis solution was passed

through a column packed with Amberlite MB-3 mixed bed ion exchange resin (50 ml.)

followed by distilled water ( 150 ml.). The deionized solution was decolorized with

activated charcoal, filtered through Celite, and concentrated to a sirup in vacuo

at 500C.

Crystallization of 1,5-Anhydro-D-arabinitol

The purified 1,5-ADA sirup was dissolved in an absolute ethanol-ethyl acetate

mixture (50:50, v./v.) (20 ml.) and crystallization initiated by refrigeration.

Two recrystallizations of this material from ethanol-ethyl acetate resulted in

1.8 g. of crystalline product. The melting point of the 1,5-ADA product was

determined to be 96-97°C. which is in agreement with the literature value of

96-97°C. reported by Fletcher and Hudson (62). The purified material displayed
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being -98.6 ° (c, 0.8928) (62). An elemental analysis was performed on the 1,5-ADA

material by Micro-Tech Laboratories, Inc., Skokie, Illinois. The calculated per-

centages for C, H, and 0 based on the formula CsH 0 4 are 44.77, 7.52, and 47.71%,

respectively. The corresponding percentages experimentally determined for the

1,5-ADA product were 44.67, 7.66, and 47.47%, respectively.

1,5-Anhydro-L-arabinitol

The compound 1,5-ALA was synthesized from its parent sugar, L-arabinose, in

an analogous manner to the preparation of 1,5-ADA. The product material was also

subjected to the purification steps described for the 1,5-ADA preparation. A

yield of 2.8 g. of crystalline product was obtained after crystallization followed

by two recrystallizations from absolute ethanol-ethyl acetate (50:50, v./v.).

The melting point of the material was determined to be 97°C. which agrees with the

literature value of 95-96°C. reported by Rice and Inatome [63). The optical

rotation of the 1,5-ALA solution in distilled water was measured to be +97.1 °

(c, 1.129) as compared with the literature value of +101° (c, 1.8) (63). An

elemental analysis was also performed by Micro-Tech on the 1,5-ALA product. The

C, H, and 0 percentages were determined to be 44.91, 7.46, and 47.72%, respectively.

The corresponding percentages based on the formula CsH1004 were 44.77, 7.52, and

47.71%, respectively, as for 1,5-ADA.

PREPARATION OF 1,5-ANHYDRORIBITOL

Tetra-O-benzoyl-D-ribopyranose

Gray and Barker (59) state in their paper that triacetylribopyranosyl

bromide is quite unstable, and the acetylated products are difficult to isolate.

They suggest using benzoylated rather than acetylated intermediates in the
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reaction scheme. Thus, in the preparation of 1,5-AR from D-ribose, the reaction

scheme employed to prepare 1,5-ALA and 1,5-ADA was followed, with the exception

that the intermediate compounds were benzoylated rather than acetylated deriva-

tives. The benzoylation procedure was adapted from a method by Jeanloz, et al.

(64).

D-Ribose (28 g.) was added to a beaker containing a chilled mixture (-10°C.)

of pyridine (120 ml.), benzoyl chloride (115 ml.), and 1,2-dichloroethane (230 ml.).

The beaker was placed in an ice bath; the mixture stirred for 45 minutes at 0°C.;

and upon completion of the stirring, the beaker and contents were set in a refrig-

erator for 24 hours. After this period in the refrigerator, the beaker was removed

and allowed to warm to room temperature overnight. The reaction mixture was then

poured slowly into a beaker containing rapidly stirred ice and water. The stirring

was continued for one-half hour with ice being added when necessary. Chloroform

(500 ml.) was next added to the ice-water mixture and the stirring maintained for

approximately one minute. The contents of the beaker were then transferred to a

separatory funnel (2 liters), the chloroform layer drawn off, and the aqueous

layer back extracted with additional chloroform (200 ml.). The chloroform ex-

tracts were combined and washed with 2N sulfuric acid solution (1 x 200 ml.),

1N sulfuric acid solution (2 x 200 ml.), saturated sodium bicarbonate solution

(2 x 200 ml.), distilled water (2 x 200 ml.), 1N sodium hydroxide solution

(1 x 200 ml.), 0.5N sodium hydroxide solution (2 x 200 ml.), and distilled water

(3 x 200 ml.). The chloroform solution was dried over calcium chloride, filtered

through activated charcoal on Celite, and concentrated in vacuo to a thick sirup.

The procedure for the next steps in the synthesis scheme leading to 2,3,4-

tri-0-benzoyl-1,5-anhydroribitol, namely, bromination and reductive dehalogena-

tion, follows the preparation of 1,5-ALA and 1,5-ADA.
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1,5-Anhydroribitol

The debenzoylation of 2,3,4-tri-O-benzoyl-l,5-anhydroribitol was accom-

plished in an analogous procedure to the deacetylation of the acetyl derivatives.

of 1,5-ALA and 1,5-ADA, i.e., by the addition of sodium methoxide in methanol

to a methanol solution of the benzoyl derivative of 1,5-AR. However, the rate

of debenzoylation was considerably slower than the deacetylations. The process

required two hours to reach completion at elevated temperatures near the boiling

point of methanol. The product was next carried through the purification steps

discussed earlier for 1,5-ADA. Purified 1,5-AR was crystallized from absolute

ethanol-ethyl acetate (50:50, v./v.) followed by two recrystallizations. A yield

of 3.4 g. of crystalline product was obtained. A melting point of 128°C. was

determined for this material. Jeanloz, et al. (64) have reported a melting point

of 128-129°C. for 1,5-AR. A solution of 1,5-AR in distilled water was determined

to have an optical rotation of 0° (c, 1.144), as it should since the compound has

symmetry, and is in agreement with the literature (64). An elemental analysis of

the product determined the percentages of C, H, and 0 to be 44.68, 7.48, and

47.64%, respectively. These values are to be compared with the calculated values

of 44.77, 7.52, and 47.71% for C5H1004.

PREPARATION OF 1,5-ANHYDROXYLITOL

As. stated earlier, 1,5-AX was prepared by Dr. Paul Seib, formerly of the

Institute staff, employing the procedure of Gray and Barker (59). The melting

point of the crystalline product was determined to be 117°C. which is comparable

to the accepted literature value of 116-117°C. (65). The optical rotation for a

solution of 1,5-AX in distilled water was determined to be 0° (c, l.100),.which

is expected since the compound has symmetry, and is also in agreement with the

literature (65). An elemental analysis was performed by Micro-Tech for the
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1,5-AX preparation. The percentages of C, H, and 0 were determined to be 44.73,

7.53, and 47.70%, respectively. These values are to be compared with the calcu-

lated values of 44.77, 7.52 and 47.71% for CsH1004

The melting points, optical rotation data, and elemental analyses for the

four 1,5-AP preparations are summarized in Table I.

TABLE I

SUMMARY OF PHYSICAL AND CHEMICAL DATA FOR THE
1,5-ANHYDROPENTITOLS

25

Observed Reported Observed Reported %C %H %0 E%

44.77 7.52 47. 71a 100.00

b. b. .... ..........
1,5-AX 117 116-117 0.0 0.0 44.73 7.53 47.70 99.96

1,5-AR 128 128-129C . 0.0 0O 0c 44.68 7.48 47.64 99.80

1,5-ALA 97 95-96d +97.1. +101.0d 44.91 7.46 47.72 100.09

1,5-ADA 96-97 96-97e -96.5 -98.6 44.67 7.66 47.47 99.80

Calculated C, H. and 0 percentages based on the formula C5Hi 004.

bFletcher, H. G., Jr., and Hudson, C. S. (65).

CJeanloz, R., et al. C64).

Rice, F. A. H., and Inatome, M. C63). .

eFletcher, H. G., Jr., and Hudson, C. S. (62).

DEUTERATION OF THE 1,5-ANHYDROPENTITOL PREPARATIONS

The hydroxyl group protons for the 1,5-AP preparations were exchanged for

deuterium by crystallizing the compounds from monodeuteroethanol.
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Approximately 300 mg. of the 1,5-AP material was dissolved in a minimum

amount of hot monodeuteroethanol (99%, 0.5 ml ) in a 10-ml. Erlenmeyer flask.

The solution was then cooled in an ice bath. If crystallization did not occur

upon cooling, approximately 0.5 ml. of cold ethyl acetate was added to the

solution. In most cases, crystallization was initiated by scratching the bottom

of the flask with a glass stirring rod. In the other cases, crystallization took

place within a few hours after the mother liquor was refrigerated. The deuterated

crystals were separated by filtration, washed with a small amount of cold ethyl

acetate, and dried in a vacuum desiccator. The above procedure was then repeated

two or more times. The degree of deuteration was not rigorously established.

The melting points of the deuterated 1,5-AP compounds were determined to be

115, 128, and 96.5°C. for 1,5-AX, 1,5-AR, and 1,5-ALA, respectively. These melting

points are quite close to the values determined for the undeuterated mother

compounds as seen from Table II.

TABLE II

MELTING POINTS FOR THE DEUTERATED AND UNDEUTERATED
1,5-ANHYDROPENTITOL COMPOUNDS

M.p., °C.
Undeuterated Deuterated

1,5-Anhydroxylitol 117 115

1,5-Anhydroribitol 128 128

1,5-Anhydro-L-arabinitol 97 96.5

1,5-Anhydro-DL-arabinitol 74 73
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PREPARATION OF 1,5-ANHYDRO-DL-ARABINITOL

The compound 1,5-anhydro-DL-arabinitol (1,5-ADLA) was prepared by initiating

crystallization from an ethanol solution of a racemic mixture of the D and L

isomers.

Equal amounts of 1,5-anhydro-L- and D-arabinitol (100 mg..) were weighed out

into a 10-ml. Erlenmeyer flask. The mixture was dissolved in a minimum of hot

absolute ethanol (0.3 ml.). The resulting solution was next cooled in an ice bath,

cold ethyl acetate added (0.3 ml.), and the mother liquor refrigerated overnight.

The crystalline product was separated by filtration, washed with a small amount of

cold ethyl acetate, and dried in a vacuum desiccator. After two recrystallizations,

the melting point of the crystalline material remained constant at 74°C. This

value is noted to be substantially lower.. than the melting point measured for

either of the D or L isomers (96-97°C.) as listed in Table II.

The 1,5-ADLA product was later deuterated by the method described in the last

section. The deuteration procedure was repeated three times, the degree of

deuteration was not rigorously established, and the melting point was determined

to be 73°C., which is comparable to the undeuterated material (see Table II).

NUCLEAR MAGNETIC RESONANCE MEASUREMENTS OF THE
1,5-ANHYDROPENTITOL COMPOUNDS

The nuclear magnetic resonance (NMR) spectra for the 1,5-AP compounds in

solution in heavy water (D20) and dimethyl sulfoxide-d6 (DMSO-d6) were measured

to provide conformational information which might be used to aid the interpreta-

tion of the solution vibrational spectra.

The NMR spectra were measured on a Varian A-60A analytical NMR spectrometer.
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The infrared spectra of the crystalline 1,5-AP compounds were also recorded

in two sample arrangements: 1) as a potassium bromide pellet (KBr pellet) and

2) as a split mull 4 .

MEASUREMENT OF THE INFRARED AND RAMAN SPECTRA OF THE DEUTERATED
1,5-ANHYDROPENTITOL COMPOUNDS IN THE CRYSTALLINE STATE

The vibrational spectra of the deuterated 1,5-AP compounds were measured

to provide additional information that might assist in the assignment of the

solid state 1,5-AP spectral bands, primarily the COH bending vibrations.

The preparation of the deuterated 1,5-AP compounds has already been dis-

cussed in an earlier section. The Raman spectra of the deuterated compounds

were measured for the crystalline samples in capillary tubes. The infrared spectra

were recorded for the potassium bromide pellets.

The pellet preparation sometimes resulted in a significant decrease in the

degree of deuteration. This apparently was the result of the hygroscopic nature

of potassium bromide and the generation of new crystal surfaces by grinding. Two

sample preparation methods were observed to minimize protonation. The first

alternative follows as a minor modification of the pellet preparation.. That is,

the deuterated sample is added to the potassium bromide base and the two

materials ground and mixed together with an agate mortar and pestle, rather than

the usual practice of grinding the sample first and then adding the potassium

bromide. The second alternative is to prepare the sample as Fluorolube and Nujol

mulls, since neither of these materials are hygroscopic. The first method was

employed for the deuterated 1,5-AP samples.

4

The spectral region from 3600 to 1300 cm. was recorded employing a Fluorolube
mull while the region from 1300 to 600 cm. 1 was recorded with a Nujol mull.
Sodium chloride windows were used in both cases.
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MEASUREMENT OF THE RAMAN SPECTRA OF THE 1,5-ANHYDROPENTITOL SOLUTIONS

The 1,5-AP aqueous solution spectra were measured to provide additional

spectral information that might aid in the assignment of the solid state

spectral bands. A comparison of the solid state and solution spectra provides

a means of distinguishing molecular bands from spectral features associated

with the solid state. In addition, the effect of the dissolution of the 1,5-AP

compounds upon the vibrational spectra can be investigated. Further, the 1,5-AP

DMSO-d 6 solution spectra were recorded. A comparison of the 1,5-AP water and

DMSO-d 6 solution spectra will also permit the investigation of the effect of the

type of solvent (amphiprotic versus aprotic) on the vibrational spectra.

The Raman spectra were measured for the 1,5-AP solutions in water and in

DMSO-d 6. The spectra were recorded with the samples in each of two sample

arrangements, i.e., in a capillary tube and in an intermediate size quartz cell.

The concentration of the DMSO-d6 solutions was approximately 30% by weight (mass),

and the concentration of the aqueous solutions was approximately 25%. For com-

parison, the Raman spectra of the concentrated solutions or sirups were recorded.

The sirups resulted from concentrating the 25% solutions through slow evaporation

of water at room temperature.

ATTEMPT TO MEASURE THE RAMAN SPECTRUM OF THE 1,5-ANHYDROXYLITOL MELT

The measurement of the Raman spectra of the 1,5-AP melts would permit the

examination of the vibrational spectra of these compounds in the fluid state

without the presence of a solvent. A comparison of these spectra with the solid

state spectra would provide a means of distinguishing molecular bands from

spectral features associated with the solid state.
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An attempt was initiated to record the Raman spectrum of the 1,5AX melt

with the assistance of a Harney-Miller variable temperature cell5 . A capillary

tube was packed with the crystalline sample and inserted into the variable temper-

ature cell. The cell was heated and its temperature controlled bypassing hot

nitrogen gas through it. The cell temperature was increased until the sample

melted (117°C.) and then maintained slightly above the melting point. The Raman

spectrum was then recorded. Fluorescence from the glass cell walls resulted in

an intense background. During the spectral scan, the fluorescence level began to

increase, eventually masking the Raman spectrum. The increase in the level of

fluorescence was traced to sample or sample impurity decomposition. The melt was

observed to darken in color during the scan. In addition, the melting point of

the sample after it had cooled and crystallized was determined to be a few degrees

lower than the initial value. However, the 1,5-AP compounds are considered to be

quite stable to oxidation. This implies that the fluorescence problem may be

derived from the decomposition of impurities present in the sample. The presence

of only a small amount of fluorescent material will result in a high level of

fluorescence which may mask the Raman spectrum. In addition, spurious bands and

excessive background noise generated by continual formation of tiny gas bubbles

in the melt added to the destruction of the spectrum. The result was a completely

unusable vibrational spectrum.

No attempt was made to measure the melt spectra of 1,5-AR and 1,5-ALA.

5

A brief description and a diagram of this Raman spectrometer attachment can be
found on page 76 in Tobin (67).
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DEPOLARIZATION RATIO MEASUREMENTS FOR 1,5-ANHYDROXYLITOL
AND 1,5-ANHYDRORIBITOL SOLUTIONS

The depolarization ratios were measured for 1,5-AX and 1,5-AR in solution

in water and also DMSO-d6 . ·Such measurements provide additional data which

assist the band assignment in the 1,5-AP solid state spectra.

Discussions of the theory of depolarization ratios and the instrumental

technique of their measurement can be found in almost any text treating Raman

spectroscopy, for example (66-69). The various instrumental arrangements for

measuring depolarization ratios have been discussed and evaluated for accuracy

by Allemand (70). He suggests that the polarization of the exciting beam be

kept constant and that the analyzer be placed after the sample as the experimental

arrangement providing the most accurate depolarization ratios. He further states

that in cases where it is impracticable to measure the instrument functions, the

use of the scrambler eases the experimental difficulties at relatively little

cost in accuracy of the depolarization ratio determinations. In this sample

arrangement, the spectrum of the sample in a fluid state, such as in solution,

is recorded with the plane of polarization of the analyzer set parallel to the

plane of polarization of the incident beam. The spectrum is then measured with

all instrument conditions the same except that the plane of polarization of the

analyzer is rotated by 90°, so that it is now perpendicular to the plane of

polarization of the incident beam. The scrambler is in place after the analyzer

and before the entrance slit in both cases. The depolarization ratio of a parti-

cular band is then calculated by dividing the intensity of the band, which is

proportional to the band height for symmetric band shapes, in the spectrum where

the analyzer is in the perpendicular position by the intensity of the same band

in the spectrum with the analyzer in the parallel posit-ion. In this experimental
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arrangement, vibrations that are not totally symmetric have a theoretical depolari-

zation ratio of 0.75, while totally symmetric vibrations have a ratio less than

0.75.

Both 1,5-AX and 1,5-AR belong to the C molecular point group. They possess
-s

a plane of symmetry which bisects the ring and passes through the ring oxygen

and third carbon atom. The vibrational bands for these compounds are then ex-

pected to belong to either the symmetric (A') or antisymmetric (A") symmetry

species which embody the C point group. The depolarization ratio calculations
-s

are seen to aid in the assignment of spectral bands. The spectral bands belonging

to the totally symmetric species should have depolarization ratios less than 0.75,

while bands of the antisymmetric species should have ratios equal to 0.75. The

calculated spectral bands resulting from the normal coordinate calculations may be

classified mathematically as belonging to either the symmetric or antisymmetric

species. The assigned experimental bands should be of the same symmetry species.

In the case of 1,5-ALA, the molecule contains no elements of symmetry; therefore,

all vibrational bands would be expected to have depolarization ratios less than 0.75.

Depolarization ratios were calculated for 1,5-AX and 1,5-AR solutions in

water and in DMSO-d 6. The experimental arrangement discussed above involving a

fixed plane of polarization for the incident beam, a polarization analyzer after

the sample, and a polarization scrambler was employed in all cases. The calculated

values for a number of bands are questionable, however, because the bands are over-

lapped with neighboring bands. It is virtually impossible to determine the band

intensity of an overlapped band except by some approximation technique. The peak

height is no longer strictly proportional to the band intensity, and the measured

ratios are no longer accurate. Unfortunately, the solution spectra of 1,5-AX and
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1,5-AR possess a number of overlapped bands. (The reader may wish to examine

the solution spectra in the next section.)

MEASUREMENT OF THE INFRARED AND RAMAN SPECTRA OF 1,5-ANHYDRO-
DL-ARABINITOL AND THE DEUTERATED DERIVATIVE

The Raman and infrared spectra of 1,5-ADLA were measured to investigate

the differences, if any, that exist between the 1,5-ADLA vibrational spectra-

and the spectra of the D and L isomers. The hydrogen bonding and.crystal

structure are suspected of differing between l,5-ADLA, 1,5 ALA, and 1,5 ADA.

The procedures employed in the preparation of 1,5-ADLA from a racemic mixture

of the D and.L isomers and in. the subsequent deuteration of this material have

been described in earlier sections.

The infrared spectrum was recorded for the deuterated material in a mull

pressed between sodium chloride windows. The spectral region from 3600-1300

cm. l was measured for the Fluorolube mull, and the region from 1300-600 cm.

was recorded for the Nujol mull. The mulls were employed because an excessive

decrease in the degree of deuteration resulted from the preparation of KBr

pellets. This situation was encountered and discussed earlier in relation to

the infrared spectra of deuterated 1,5-AP compounds; however, the decrease in

the degree of deuteration was much more pronounced with the deuterated 1,5-ADLA

compound..
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EXPERIMENTAL RESULTS

NUCLEAR MAGNETIC RESONANCE SPECTRA OF THE
1,5-ANHYDROPENTITOL COMPOUNDS

The NMR spectra of the 1,5-AP compounds in solution in D20 are included

in Fig. 3-5 in which sodium 2,2-dimethyl-2-silapentane-5-sulfonate (DSS) is

the internal standard. The NMR spectra of the 1,5-AP compounds in solution in

DMSO-d 6 are included in Fig. 6-8a in which tetramethylsilane (TMS) is the internal

standard. The NMR spectrum of the DMSO-d 6 solution of 1,5-ALA to which a drop of

D20 has been added and the solution exposed to HC1 vapor is presented for com-

parison in Fig. 8b.

INFRARED AND RAMAN SPECTRA OF THE 1,5-ANHYDROPENTITOL
COMPOUNDS IN THE CRYSTALLINE STATE

The Raman spectrum of 1,5-AX (pellet) is shown in Fig. 9. The corre-

sponding infrared spectrum (KBr pellet) is displayed in Fig. 10. In Table III,

the measured frequencies (cm. 1) of the bands in the 1,5-AX infrared and Raman

spectra, exhibited in Fig. 9 and 10, are listed as well as their relative inten-

sities . The Raman spectrum (pellet) and the infrared spectrum (KBr pellet) of

1,5-AR are reproduced in Fig. 11 and 12, respectively. The observed frequencies

and relative intensities of the bands appearing in these spectra are tabulated

in Table IV. The Raman spectrum (pellet) of 1,5-ALA is included in Fig. 13.

The complementary infrared spectrum (KBr pellet) follows in Fig. 14. The

frequencies and.relative intensities for these spectra are tabulated in Table V.

The Raman and infrared spectra of 1,5-ADA are identical to those of the L isomer,

6
The relative intensity of a spectral band is determined by computing the ratio
of the peak heights from the background of that particular band to that of the
most intense band in the spectrum.
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Figure 7. The NMR Spectrum of 1,5-AR in DMSO-d 6 with TMS as an Internal Standard
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TABLE III

THE TABULATED FREQUENCIES FOR THE RAMAN AND INFRARED
SPECTRA OF CRYSTALLINE 1,5-ANHYDROXYLITOL

Av, a Relative
R, cm. -1 Intensity

3383
3343
3290
2985
2970

2928
2896 c

2885
2871

1472
1459
1439
1427

1385
1370
i349
1340

1320
1306
1296
1285
1268

1199

4
4
4
45
45

29
24
46
39

15
19
6
7

7
14
6
10

33
7
11
13
7

26

IR, cm.

3387
3350
3300
2990
2973
2941
2933

2900
2873

1470
1464
1440

1402C

1397C
1391
1372
1356
1340

1321

1301
1279c
1267C
1235
1198
1168

b Relative
Intensity

85
87
82
17
10
22
25

30
30

28
25
27

25
29
36
31
37
15

24

15
24
20

35
39
15

AV, a Relative
R, cm. 1 Intensity

1143 30
1120 46
1100c 17
1092 38
1056 14

1017 31
933 43

905c 11

896 50
635 5

544 100
533 c 40
455 12
437 50
418 26
369 5
315 10

299 8
280 14
234 2
225 1
220 1
214 2
202 2

IR, cm.- l

1145
1125
1 1 0 0

1095
1060
1052C

1018
936
928c

9 0 4c

899
637
565
542

53 3
456
440
420.
366C
317C

b Relative
Intensity

47
63
73
89

100
73
84
83
17
26

32
29
23
27
18
21
17
12

9
3

295
285

3
4

aRaman spectrometer
operating conditions:

Sample arr.: pellet
Laser wavelength: 5145
Laser power: 780 mw.
Slit width: 250 um.
Slit height: 2 mm.
Scan: 50 cm. /min.
DC: 0.1 x 10-6
RT: 1 sec.
PM voltage: 1900
PM temp.: -20°C.
Spike filter used

A.

Infrared spectrometer
operating conditions:

Sample arr.: KBr pellet
Slit program: 1000 x 1
Gain: 4.6
Atten. speed: 1100
Scan time: 1 x 32
Suppression: 6
Scale expansion: 1X
Source current: 0.75

Shoulder.
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TABLE IV

THE TABULATED FREQUENCIES FOR THE RAMAN AND INFRARED
SPECTRA OF CRYSTALLINE 1,5-ANHYDRORIBITOL

Av, a Relative
R, cm. - Intensity

3406
3350
3250
2997
2972
2943
2932

2918
2875

1468
1458

1419
1403
1385

1350
1315
1281C

1265
12440

1202

1156
1124
1104

1082

13
4
3
47
63
92
48

32
56

13
35

5
9
5

7
23

5

36
5

7

16
29
4

57

v , b Relative
IR, cm. - 1 Intensity

3409
3345
3279
3000
2970
2945
2934
2929

2880

1466

1435

1400
1388c

1365c

1354
1310
1290

1264
1245c

1226
1202
1167
1156
1126
1103
1093c

1083

100
92
90
23
45
49
47
41

44

Av, a
R, cm.

1073c
1045
1040
1005

993

925
916 c

878

Relative
Intensity

17
10
11
25
27

74
7

57

53

52

38
21
29
36
19
30

63
22
22
18
39
33
50
75
57
69

669
647
581
448c

437
406

396

345
319
306
271
238
208
169

7
6

100
25
55
2

1

21
4
3
3
4
1

3

V, b Relative
IR, cm. -1 Intensity

10 7 7c
1 0 7 0c
1045

1000
989
963
928
916 c

879

873 c

832
776
683
668
649
582

451c
433
406

395
353c

342

63
42
89

42
66

8
71
11
67

47
22
10
19
23
13
30

5
17

2

2
4

14

305

aRaman spectrometer
operating conditions:

Sample arr.: pellet
Laser wavelength: 5145 A.
Laser power: 780 mw.
Slit width: 160 um.
Slit height: 5 mm.
Scan: 50 cm.-l/min.
DC: 0.1 x 10- 6

RT: 1 sec.

PM voltage: 1900
PM temp.: -20°C.
Spike filter used

bInfrared spectrometer
operating conditions:

Sample arr.: KBr pellet
Slit program: 1000 x 1
Gain: 4.6
Atten. speed: 1100

Scan time: 1 x 32
Suppression: 6
Scale expansion: 1X
Source current: 0.75

CShoulder.
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TABLE V

THE TABULATED FREQUENCIES FOR THE RAMAN AND INFRARED
SPECTRA OF CRYSTALLINE 1,5-ANHYDRO-L-ARABINITOL

Relative
Intensity.

6

3
60
39
19

44
15
26

13
19

6
12
3
3
3
4

8
8

14

IR, cm.

3428
3385
3320
2985
2976,
2932
2925c '

2917.
.2879
2863

1463
1460o
1442
1410
1379 c

1371
1349
1329
1313
1300

1279
12620
1248 C

1233
1217
1151

Relative
Intensity

100
93
94
42
45
31
37
42
31

55

41
37
22
28
42
46
42
50
46
40

23
29
40
57
53
60

Av, a
R, cm. . 1 .

1136
1112
1104
1092
1067
1057
1005

948
926
876

837
758
633
546
483
430
408
406°

Relative
Intensity

7
17
17
12
21
21
25
10
14

2

100
14
23
41
16
14
11
10

371c

314
296c

256
233
197
176

7
2

2
2
4
2

v, b
IR, cm. -!

1145c

1112c

1103
1093
1074
1056
1008

947
. 927

880

840
755
636
546
483
426
.408

383
375C

306C
296c

Relative
Intensity

..38
66
85
90

99
79
88
19
37
55

70
50
26
25
19
27
14

19'
14

2

5

aRaman spectrometer
operating conditions:

Sample arr.: pellet
Laser wavelength: 5145 A.
Laser power: 780 mw.
Slit width: 130 um.
Slit height: 5 mm.
Scan: 50 cm.-/min.
DC: 0.1 x 10- 6

RT: 1 sec.
PM voltage: 1900
PM temp.: -20°C.
Spike filter used

Infrared spectrometer
operating conditions:

Sample arr.: KBr pellet
Slit program:' 1000 x 1
Gain: 4.6
Atten. speed:- 1100
Scan time: 1 x 32
Suppression: 6
Scale expansion: 1X
Source current: 0.8

Av, a
R, cm. .

3425

3310
2983
2973
2932

2916

2879
2860

1467
1454
14460
1410
1381c

1369
1343
1325

1302

1281
i269C

1233
1216
1150

CShoulder.
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as one might expect. Therefore, to refrain from repetition the 1,5-ADA spectra

are not included.

INFRARED AND RAMAN SPECTRA OF THE DEUTERATED 1,5-ANHYDRO-
PENTITOL COMPOUNDS IN THE CRYSTALLINE STATE

The Raman and infrared spectra of crystalline deuterated 1,5-AX, 1,5-AR,

and 1,5-ALA follow in Fig. 15-20, respectively. The frequencies and relative

intensities of these spectra are tabulated in Tables VI-VIII.

RAMAN SPECTRA OF THE 1,5-ANHYDROPENTITOL SOLUTIONS

The Raman spectra of the 1,5-AP sirups are reproduced in Fig. 21-23. The

Raman spectra of the DMSO-d 6 solutions are not included because the spectra, ex-

cluding solvent bands, are almost identical with the aqueous solution spectra.

However, the frequencies and relative intensities for the DMSO-d6 solution spectra

are tabulated along with the corresponding values for the aqueous solution spectra

in Tables IX-XI. The solution spectra of 1,5-ALA and 1,5-ADA are identical and

for this reason only the Raman spectrum of the L isomer is included.

DEPOLARIZATION RATIOS FOR 1,5-ANHYDROXYLITOL
AND 1,5-ANHYDRORIBITOL IN AQUEOUS SOLUTION

The calculated depolarization ratios for the vibrational bands of 1,5-AX

and 1,5-AR are listed in Tables XII and XIII, respectively, with the questionable

values resulting from overlapped bands designated by footnote c. The OH

stretching bands in the region 3400-3200 cm. -1 are not included because they are

too weak and broad to measure depolarization ratios. The CH stretching bands in

the region 3000-2850 cm. - are also omitted since they overlap extensively in the

solution spectra making measurement of depolarization ratios impossible.
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TABLE VI

TABULATED FREQUENCIES FOR THE RAMAN AND INFRARED
SPECTRA OF DEUTERATED 1,5-ANHYDROXYLITOL

Av, a Relative
R, cm. 1 Intensity

2989
2974

2931
2896C

2883
2874c

2508 c .
2488
2452

1474
1460

1439
1427
1402C

1394

1381
1373C

1344
1340
1320
1300
1287
1273

1203
1193c

1157c

1147

66
67

49
36

100
68
13
15
15

19
26

4

5
12
14

17
13

19
20
22

7
10

9

28
9

23
37

. , b Relative
IR, cm.- I Intensity

2983
2969
2935
2927
2894

2869
2509
2490
2453

1467
1460
14560

'1438

1400 c

13960
1390 c

1385
1369

1356

13420
1318
1298

1273
1233

1196
1189

1150
1142

29
24
35
37
46

40
51
56
51

38
24
20
20

22
24
29
30
26

24

16
19
14

17
24

34
24

39
46

R, cm.-1

1122

1 1 0 2 c
1093

1059
1021

936

906C
899

861
633

543
532 c

455 c

435
420
366

306
289 c

279
256
235
206
200

Relative
Intensity

30

22
49

7

6
14

9
25
23
12
17
8
12
7

79
48
18
30
25
4

10
12
18
1
1
3
3

V,
IR, cm. -

1121
1116c

1093
1086

1068 c

'1057
1025c

1016

990C
941 c

933
929 c

900c

897

632
562

539

.453
435
415
360
316
304
293
284

aRaman spectrometer
operating conditions:

Sample arr.: cap. tube
Laser wavelength: 5145 A.
Laser power: 800 mw.
Slit width: 250 um.
Slit height: 2 mm.
Scan speed: 50 cm. -/min.
DC: 0.03 x 10.6
RT: 3 sec.
PM voltage: 1900
PM temp.: -20°C.

bInfrared spectrometer
operating conditions:

Sample arr.: KBr pellet
Slit program: 1000 x -1
Gain: 4.6
Atten. speed: 1100
Scan time: 1 x 32
Suppression: 6
Scale expansion: 1-5X
Source current: 0.8

b Relative
Intensity

56
45

91
73

54
100

59
78

19
31
68
45
25
26

29
12

28-

15
18
17
11

1
2

5
5

Shoulder.

I .
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TABLE VII

TABULATED FREQUENCIES FOR
SPECTRA OF DEUTERATED

Relative
Intensity

48
66

100
55

33
66
23
8

9
15

33

2
2

5
9

13
12

25
10

8
33

5

16

15
7

15
25

v, b
IR, cm.

2996
2967
2956
2942
2931 c

2925

2876
2528
2487

2440

1463

1437
1430

1396
1380
1361C

1350
1345
1326

1307
1290

1263
1248c
1225
1214

1200C

1161l
1154

1124

1109c

Relative
Intensity

27
60
32
64
57
47

60
81
58

THE RAMAN AND INFRARED
1,5-ANHYDRORIBITOL

Av, a
R, cm. 1

1085

1046
1023
1005

988

Relative
.Intensity

51

14
14
14
23

58

58

48
49

40
25
33

40
.40
22

22

36

70
23
32
36

22
46
58

54
73

920
877
826

669

646

628
577

465C
448c

438

406

343
318

306

265

237
202
165

28
18
19

9

2

5
62

11
18
42

8

29
9

7

2

5
3
8

aReman spectrometer
operating conditions:

Sample arr.: cap.tube.
Laser wavelength: 5i45 A.
Laser power: 800 mw.
Slit width: 250 um.
Slit height: 2 mm.
Scan speed: 50 cm. t/min,
DC: 10 x 10-9
RT: 3 sec.
PM voltage: 1900
PM temp.: -20°C.

Infrared Spectrometer
operating conditions:

Sample arr.: KBr pellet
Slit program: 1000 x 1
Gain: 4.6
Atten. speed: 1100
Scan time: 1 x 32
Suppression: 6
'Scale expansion: 1X
Source current: 0.8

Av, a
R, cm. - 1

2999
2975

2945
2935

2919

2879
2533
2491

2437
1467

1457

1427
1420
1400
1382

1354
1347

1333
1319 c

'1289
.1272

1215

"1209c

1166
1158 c

1143
1124C
1114

vl
-Ib

IR, cm.

1102
1093c

1082
1078a

1 0 6 9 c
1045
1029

999
986
972

962c

931c

925
877
831

776
682
668
663
648e

575
473

451

433
421

395
339

304
283

Relative
Intensity

84
77
90
72
46

100
71
49
70
39

37
25
80
71
49
16
27
22
23
12

35
12

16
22
23

8
23

31
22

CShoulder.
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TABLE VIII

TABULATED FREQUENCIES FOR THE RAMAN AND INFRARED
SPECTRA OF DEUTERATED 1,5-ANHYDRO-L-ARABINITOL

Relative
Intensity

35
23
10
34
8
16
14

9
27

36
9
22
9

5
8
45

30

13

16

15
13
18
13
30

IR, cm.

2981
2971
2931
2911
2876
2858
2539
2464

1460

1456c
1437
1404

1376
1371
1327
1310
1297
1280

1259 c

1248

1229
1215
1159
1147

1110c

b Relative
Intensity

63
62
42
61
46
69
71
66

73 -

58
41
58

64
65
64
62
63
53

58
58

71
69
66
75

89

AV, a Relative
R, cm.-1 Intensity

1109c

1094
1068
1059
1017
1008

950
928
921-

9 0 0c
878

839
809
759
634
547
488

431
407
371c

314
30Q
257
232
198
175

29
27
31
30
26
40

13
20
15

3
4

100
24
23
.48
71
26

30
26
3
18
8
3
3

10
2

'V, b
IR, cm..'

1102c

1091
1069
1053

1005
995C
943
923

912C

896C
877
869C
837
803
750
631
542
480

424
402
372

Relative
Intensity

95
98

100
91

92
67
36
62

59
49
71
64
79
47
74
39
23
20

25
25
13

aRaman spectrometer
operating conditions:

Sample arr.: cap.tube
Laser wavelength: 5145 A.
Laser power: 800 mw.
Slit width: 250 rm.
Slit height: 2 mm.
Scan speed: 50 cm. -/min.
DC: 0.03 x 10. .
RT: 3 sec.
PM voltage: 1900
PM temp.: -20°C.

bInfrared spectrometer
operating conditions:

Sample arr.: KBr pellet
Slit program: 1000 x 1
Gain: 4.6
Atten. speed: 1100
Scan time: 1 x 32
Suppression: 6
Scale expansion: 1X
Source current: 0.8

Av, a
R, cm.

2985
2975
2935
2919
2883
2862
2538
2465
1470

1456
1444C
1410

1 3 9 3c

1373
1327
1304

1284

1271 c

1239

1220

1 1 6 1c
1151
1141C

1114

CShoulder.
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TABLE IX

TABULATED FREQUENCIES FOR THE RAMAN SPECTRA OF THE WATER

AND DMSO-d6 SOLUTIONS OF 1,5-ANHYDROXYLITOL

Av,
H20, cm.-

T
Relative
Intensity

Av, b
DMSO-d 6 , cm. 1

Relative
Intensity

2972
2908C

2861

1 4 7 0 c
1460
1439
1410
1395c

1380
1370c

1 3 3 7 c
i319
1312
1296c

1227
1196
1 1 4 2 C
1123
1101c

1097
solvent band
solvent band

946
913
899
812

solvent band
536
457C
439
413

solvent band
solvent band

aRaman spectrometer
operating conditions:

Sample arr.: quartz cell
Laser wavelength: 5145 A.
Laser power: 800 mw.
Slit width: 250 pm.
Slit height: 10 mm.
Scan speed: 50 cm. l/min.

DC: 0.03 x 10 6 Laser power: 800 mw.
RT: 0.3 sec. Slit width: 250 pm.

Neutral density filter used Slit height: 10 mm.
Scan speed: 50 cm.- /

Raman :spectrometer min.
operating conditions: DC: 10 x 109

Sample arr.: quartz cell RT: 3 sec.
Laser wavelength: 5145 A. Neutral density filter

Shoulder.

2985
2912
2875
1469c
1462

1385
1368C
1340
1325
1313

34
27
45
12
19

10
6
6
16

9

5
2
6

20
28
21
26

7
8

17

1285
1232
1202
1140C

1123
1098c

1092
1062
1023
941

34
23
44
11
16
4
3
4
6
4
4

10
6
4

2
6

15
20
19
21

17
3
20

9

100
5
18
20

896
812
630
535
456c

437
416
376
290

32
4
5

100

9
22
24

3
5

-61-
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TABLE X

TABULATED FREQUENCIES FOR THE RAMAN SPECTRA OF THE WATER
AND DMSO-d6 SOLUTIONS OF 1,5-ANHYDRORIBITOL

Av, a
H20, cm. -1

Relative
Intensity

Av, b
DMSO-d 6 , cm.-

Relative
Intensity

2969
2913
2869
1463C
1456
1446c

1321
1286
1258
1225
1200
1158
1124
1091

solvent band
solvent band
solvent band
solvent band

937
881
869C

solvent band
792c

688
solvent band

577
451
431

solvent band
solvent band

aRaman spectrometer
operating conditions:

Sample arr.: cap. tube
Laser wavelength: 5145 A.
Laser power: .950 mw.
Slit widthI 250 um.
Slit height: 2 mm.
Scan speed:: 50 cm.-'/min.
DC: 0.3.x.10-6
RT: -lsec.
PM voltage: .1900
PM temp.: -20°C.

bRaman spectrometer
operating conditions:

Sample arr.: quartz cell
Laser wavelength: 5145 A.
Laser power: 800 mw.
Slit width: 250 um.
Slit height: 10 mm.
Scan speed: 50 cm. -/min.
DC: 10 x 10- 9

RT: 3 sec.
PM voltage: 1900
PM temp.: -20°C.

2983
2928
2885
1471"
1461
1452 c

1408
1329
1291
1270 c

1229
1206
1160
1121
1090
1054
1048C

997
967
934
884
869C
837
795
692
648
584
456
434
358
293
175

94
88
98
30
55
28

39
38
40
15
15
26
55
97

82
92

67
19
44
32

9
29
40
30
10

5
15
37
60
50
20

34
10

39
100

47
31
40
85

17
84
41

78
13

5
3

84
96
45

60
100

99
55
99

Neutral density
filter used

Shoulder.
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TABLE XI

TABULATED FREQUENCIES FOR THE RAMAN SPECTRA OF THE WATER
AND DMSO-d 6 SOLUTIONS OF 1,5-ANHYDRO-L-ARABINITOL

H20, cm.-1
Relative
Intensity

Relative
Intensity

2968
2902
2863
1463
1446
1375
1308
1292
1225

1156
1121
1110

solvent band
solvent band
solvent band

949
925
881
867
834

solvent band
742c

solvent band

539
522
510 C

483
464.c

420
409

solvent band
solvent band

aRaman spectrometer
operating conditions:

Sample arr.: cap. tube
Laser wavelength: 5145 A.

Laser power: 950 mw.
Slit width: 130 pm.
Slit height: 5 mm.
Scan speed: 50 cm.l/min.
DC: 0.1 x 10- 6

RT: 1 sec.

PM voltage: 1900
PM temp.: -20°C.
Neutral density filter

bRaman spectrometer
operating conditions:

Sample arr.: quartz cell
Laser wavelength: 5145 A.
Laser power: 800 mw.
Slit width: 250 pm.

Slit height: 10 mm.
Scan speed: 50 cm. 1/
min.

DC: 10 x 10- 9

RT: 3 sec.
PM voltage: 1900
PM temp.: -20°C.
Neutral density

filter

Shoulder.

2979
2916
2872
1468
1452
1388

1303 c

1296
1229
1153
1120
1095
1072
1060O
1013
949
926
883
865
840
754
744
640
544
532c

487
465
425

407
301
270
165

56
65
50
20
23

9
24
27
12
16
24
22
25
19
51
26
15
5
6

100
24
22
58
38
21

46
12
22
19

8
3
6

55
52
49
13
16
6

17
20
10
12
22
22

39
11
3
5

100

38

22
19
8

26
6

13
12
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TABLE XII-

MEASURED DEPOLARIZATION RATIOS FOR WATER AND DIMETHYL
SULFOXIDE-d6 SOLUTIONS OF 1,5-ANHYDROXYLITOL

Av, cm.-

1469e

1460e

1 3 8 5e

1 3 2 5e

1 2 8 5e

1 2 3 2 e
1202
1140 e

1123 e

1092 e

1 0 6 2 e
1023

942
896
812

630
535
456
437e
416e
369e

p , H2 0

0.59
0.65
0.64
0.67
0.63

0.46

0.68
0.67
0.62
0.21

.0.19

0.70
0.25
0.16
0.00

0.44
o.08
N.D.
0.71
0.44
0.29

a DMSOd
p , DMSO-d 6 Symmetry

0.59
0.74
0.69
0.74
0.72

solventc

0.74
0.72
o.61
0.29

A'
A'
A'
A'
A'

A'
A'
A'
A'
A'

A'
A'

A'
A'
A'

solvent
solvent

0.25
0.19
0.00

solvent
N.D.
0.75
0.75
0.45
N.D.

A'
A'
A"
A"
A'
A'

p Designates the depolarization ratio.
b

A' (symmetric symm. species).
A" (antisymmetric species).

Indicates that ratio could not be measured because of solvent
band masking.

dN.D. = not determined.

eMeasured depolarization ratio is questionable because band is
overlapped with neighboring bands.
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TABLE XIII

MEASURED DEPOLARIZATION RATIOS FOR WATER AND DIMETHYL
SULFOXIDE-d6 SOLUTIONS OF 1,5-ANHYDRORIBITOL

ap , H20

0.55
0.56
0.73
0.61
0.71

0.68
0.25
0.78
0.46
0.64

0.72
0.67
0.50
0.07
0.14

0.23
0.00
o.o6
0.14
0.06

0.56
0.16
0.40

p , DMSO-d 6

0.59.
0.64
0.58
0.60
0.58

0.60
0.28
0.80
0.56

solvent

Symmetry

.A'
A'
A'
A'
A'

A'
A'
A"
A'
A'

solvent
solvent
solvent

0.13
0.13

solvent
0.00
0.15

solvent
0.06

0.60
0.09

solvent

A'
A'
A'
A'
A'

A'
A'
A'
A'
A'

A'
A'
A'

a
p Designates the depolarization ratio.

A' (symmetric species).
A" (antisymmetric species).

Indicates that the ratio could not be determined because the
solvent band(s) masked the solute bands.

Measured depolarization ratio is questionable because band is
overlapped with neighboring bands.

Av, cm.

14 71d
1461d

1329d
1291d
1270

1229d
116od
1 1 2 1 d

1090d
1054

1 0 4 8d
997
967
934
884

837
795
692
648
584

456d

434d
358d
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INFRARED AND RAMAN SPECTRA OF 1,5-ANHYDRO-DL-ARABINITOL
AND DEUTERATED 1,5-ANHYDRO-DL-ARABINITOL

The Raman (pellet) and infrared (KBr pellet) spectra of 1,5-ADLA appear in

Fig. 24 and 25, respectively. The measured frequencies and their relative in-

tensities are tabulated in Table XIV.

The Raman spectrum of deuterated 1,5-ADLA (pellet) is included in Fig. 26.

The infrared spectrum of deuterated 1,5-ADLA is exhibited in Fig. 27, and the

frequencies and relative intensities are tabulated in Table XV.
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TABLE XIV

TABULATED FREQUENCIES FOR THE RAMAN AND INFRARED
SPECTRA OF 1,5-ANHYDRO-DL-ARABINITOL

AV, a Relative

3324
3214
3000
2989
2966
2951
2929
2890
2887

2852

2787
1469
1450

1423

1396
1381c

1359
1340
1312

1287
1271
1243
1235
1224

1154
1127

1113

1
6

75
65
21
54

5
23
25

65
1

21
28
7

8

9
5

6
5

19

19
15

7
8
9

25
17

14

v, b Relative
IR, cm. -l Intensity

3400
3317
3223
2 9 9 4 c
2983
2960
2945
2925
2889
2881

2845

1463
1452
1441
1437

1416
1398c

1379

1373
1354
1338
1310C

1304
1283
1270
1240
1237
1227

1151.
1125c

1121

1102c

78
84
79
11

32
29
30
27
34
34

53

68
68
53
53

45
37
39

32
32
39
34
48
57
42
40
41
45

60
48
60

84

Av, a
R, cm.-

1097

1085
1079c

1064
1012

951

923

880

840
756

7 5 0c

629
550
493

445
429
407
383
375,
3 3 8c
326 c

313

291

269
231
197
185

Relative
Intensity

22

25
13

9
59
12

24

6

100

17
11

50
38
57

26
16
14

-3
1
3
4
9

9

8
6

3
3

v,
IR, cm.

1096c

1093

1077c

1074
1059
1009

950
944c
916

877
8 3 5C
832
752

678
635C

627
546
486

482c

437
421
402

369

304

283

b Relative
Intensity

98
100

95
97
87
84
19
16
18

65
59
64
69

14
39
43
26
24

20
4
8

10

19

5

3

aRaman spectrometer
operating conditions:

Sample arr.: pellet
Laser wavelength: 5145 A.
Laser power: 900 mw.
Slit width: 250 pm.
Slit height: 2 mm.
Scan speed: 50 cm. /min.
DC: 0.1 x 10-6

RT: 1 sec.
Zero suppression: 10 7

PM voltage: 1900
PM temp.: -20°C.
Spike filter used

bInfrared spectrometer
operating conditions:

Sample arr.: KBr pellet

Slit program: 1000 x 1
Gain: 4.6
Atten. speed: 1100
Scan time: 10 x 8
Suppression: 6
Scale expansion: 1X
Source current: 0.8

Shoulder.
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TABLE XV

TABULATED FREQUENCIES FOR THE RAMAN AND INFRARED
SPECTRA OF DEUTERATED 1,5-ANHYDRO-DL-ARABINTIOL

Relative
Intensity

100

86
29
85

6
20
40
16
87

, b Relative

2970
2956d
29 43
2927
2891

27
79
31
74
50

2845

4
13 2460
27 2405

2356
47 1462
38 1455

9 1440o
1434
1425

19

6 1405d

139 8 d
1395

21
35

1375 d
1370

8 1358c

10 1341
15 1329

28
47
46
13

20
2

31
20
11

1303
1283

1257
1235
1216d
1162
1153

98
100

83
24
21
24
26
24

30
38
29

61
60
61
39
41

54
42

39
35
66
52
77

Av, a Relative

R, cm.- Intensity

1137
1118
1102
1083

1069

10

42

57
12

7

1036d
1013
1004

980
950d
939
9 1 7 d
912

8 9 5 d
875

833
814

753
733
631
542
491
435
427

402
389 d

374
3 2 9 d

309
287
263
227
195
181

3
11

30
24
20
16
15

40
78
8
15
58
38
67
41
35

V,

IR, cm.- l

1130

1097

1 0 7 5d
1068
1052
1032

1005

9 9 9 d

944
916

898 d

880
871

8 6 6d

844
835

745

633

b Relative
Intensity

64

89

95
100

76
60

90

65

25
43

45
59
54
48

66
56

60

29

24
2
4
9

18
12
11
11
4
5

aRaman spectrometer
operating conditions:

Sample arr.: pellet
Laser power: 970 mw.
Slit height: 5 mm.
Rest of data same as

in Table XIV.

bInfrared spectrometer
operating conditions:

Sample arr.: Nujol and
Fluorolube mulls

Rest of data same as in
Table XIV.

CThe regions above and below
this point correspond to
different spectra, so
relative intensities are
different.
Shoulder.

Av, a
R, cm. 1

2999
2988
2965
2950

2 9 2 9 d
2894
2885
2875
2850

2804
2458
2408

1468
1450
1 4 41

1377 d

1370

1358
1342
1331

1308d
1301
1286
1 2 7 5

1237
1224

1164
1156
1141
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NORMAL COORDINATE ANALYSES

The vibrational spectra of the saccharides and their derivatives are quite

complex in that several of the bands arise from the coupling of two or more

atomic group vibrations in the molecule. It would be almost, if not entirely,

impossible to adequately interpret these spectra by the traditional group

frequency approach. Normal coordinate calculations, supplemented with group

frequency data, provide a means to interpret and understand the vibrational

spectra.

Although these mathematical methods may not be considered rigorously quanti-

tative, the qualitative results should provide an extremely valuable tool to the

vibrational spectroscopist and physical chemist. With this tool, vibrational

spectroscopy may play a more important role in future-physical chemical research

in the area of carbohydrates and also other complex molecules.

Therefore, an important aspect of this dissertation is the demonstration that

the mathematical methods used by Schachtschneider and Snyder (5_4) and Snyder and

Zerbi (56), to facilitate the interpretation of the vibrational spectra of the n-

paraffins and aliphatic ethers, may be successfully extended to larger and more

complex molecules, such as the 1,5-anhydropentitol compounds.

THEORY

In attempting to account for the observed infrared and Raman spectra of real

molecules, a certain simplified model for such molecules is adopted, and then the

spectra which this model would exhibit are calculated. The model is specified to

consist of particles held together by certain forces. The particles represent

the atoms of the molecule and are to be treated as if all the mass were concen-

trated at a point. The definition of the model geometry is usually based on the
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bond lengths and angles for the real molecule. This information may be obtained

from x-ray and neutron diffraction studies. An important part of the model

specification is that the model obeys the laws of quantum mechanics. The Born-

Oppenheimer approximation, as cited by Pauling and Wilson (71), is made which

permits the separation of the problems of electronic and nuclear motion.

The forces between the particles may be crudely thought of as weightless

springs which only approximately obey Hooke's law and which hold the "atoms" in

the neighborhood of certain configurations relative to one another. This picture

of the forces as springs is useful for visualization, but is not sufficiently

general for all cases. The search for a potential function which involves a small

number of parameters and which at the same time permits good agreement with ex-

periment is far from ended and poses the largest barrier in a normal coordinate

analysis.

The mathematical treatment of the vibrational dynamics of the model is

initiated by setting up the classical mechanical expressions for the kinetic and

potential energies in terms of the coordinates of the "atoms." These expressions

in conjunction with the steady state Schrodinger equation are used to write the

quantum mechanical wave equation for the model. If the kinetic energy is expressed

in suitable coordinates, the wave equation for the model can be approximately

separated into three equations, one for translation, one for rotation, and one for

vibration'8

7
This fact is proved in a number of texts treating vibrational dynamics, for
example, Wilson, et al. (68).

The proper coordinates are the three cartesian coordinates for the center of mass
of the model; the three Eulerian angles for a rotating system of cartesian coor-
dinates, the axes of which coincide with the principal axes of inertia for the
undistorted model; and a set of coordinates giving the displacements of the
particles from their equilibrium positions.
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If for example, the cartesian displacement of the N "atoms" are chosen or a

set of 3N equivalent coordinates, there will be six coordinates too many which

describe the translational and rotational motion of the molecule. The six con-

ditions relating these coordinates assure that the vibrations do not cause motion

of the center of mass and that the coordinate system rotates with the model. The

resulting vibrational wave equation is a partial differential equation in 3N

variables. This equation cannot be solved in most cases. By transforming to a

new set of coordinates called normal coordinates, the partial differential wave

equation may be separated into 3N total differential equations in one variable,

which are usually solvable. The condition for the existence of the transformation

to normal coordinates is called the vibrational secular equation. The solution of

this equation is the heart of a normal coordinate analysis.

KINETIC AND POTENTIAL ENERGY IN CLASSICAL MECHANICS

The potential energy of the model , V, may be expressed as a Taylor series in

the 3N generalized displacement coordinates, qi, as shown in Equation (1).

3N 3N

3N 3N

If the energy is chosen to be zero at the equilibrium configuration, then

V = 0. Furthermore, when all the q.s are zero, the atoms are at their equilib-

rium positions so that the energy must be a minimum for q. = 0, i = 1,2,3,"**3N.

Therefore, 9

9

This treatment ignores the fact that the coordinates, qi, are not all independent.
For redundant coordinates, the energy should be minimized .with .respect to an
undetermined multiplier giving rise to one additional force constant for each
redundancy. This point is discussed by Crawford and Overend (72).
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for i = 1,2, 3N. For small amplitudes of vibration, the higher order terms

can be neglected and

3N

In matrix notation, 2V = q' , where q is a column matrix of the qi's, and f is a

symmetric matrix 1 0 with elements fi. (The prime symbol shall denote the matrix
-ij.

transpose throughout this manuscript.)

The kinetic energy of the model is given by

3N

in generalized coordinates ll . This expression may be written in matrix notation

as 2T = q'tq. In general, the coefficients, tij, may be functions of the coor-

dinates, qi. The proper procedure in that event is to expand them as a power

series in the coordinates.

3N

k=l

For infinitesimal vibrations, all but the first term, t, are neglected. Thus,

in the approximation of small vibrations, the kinetic and potential energies are

homogeneous quadratic forms in the velocities and coordinates, respectively.

10

This is easily verified by referring to Equation (3).
The generalized coordinates do not involve time explicitly.The generalized coordinates do not involve time explicitly.
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The Lagrangian function, L, may then be written as

3N

Lagrange's equations of motion are defined in the following equation

where j = 1,2,3,*-..,3N. Substitution of Equation C5a) into'Equation C5b) results

in the following expression for the equations of motion

3N

where j = 1,2,3....,3N. This expression is a form of the vibrational secular

equation. These equations of motion are satisfied by an oscillatory solution

not only for one frequency, but for a set of 3N frequencies. Therefore, the

complete solution of these equations involves a superposition of oscillations

with all the allowed frequencies. The solutions of the secular equation are often

designated as the frequencies of free vibration or as resonant frequencies. Un-

less the resonant frequencies are commensurable, q. will never repeat its initial

value. Hence, the coordinates q. are not, in general, the separation coordinates

of the problem, each of which is simply periodic. Such a set of periodic coordi-

nates is obtained by a point transformation from the q 's to a new set of coor-

dinates called normal coordinates, Q

VIBRATIONAL WAVE EQUATION

From a quantum mechanical viewpoint, the classical kinetic and potential

energy expressions may be used in conjunction with the steady state Schrodinger

equation to derive the quantum mechanical wave equation for the model. By the
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proper choice of coordinates (see footnote page 74), we can approximately

separate the vibrational wave equation from the translational and rotational

wave equations. The result is a partial differential equation in 3N variables.

In most cases, this equation is too complex to solve. However, by trans-

forming to normal coordinates, Qi, where the kinetic and potential energy

expressions contain no cross terms, the wave equation for vibrational motion

is immediately separable into 3N one-dimensional equations. The wave function,

Tv, may be written as a product of wave functions

where the wave equations for k are

for k = 1,2,3,...,3N. These are also the wave equations for the one-dimensional

harmonic oscillators. The vibrational energy of the state described by the wave

function (6) is the sum of the energies Ek belonging to the various k(Qk) of (7).

3N
E = Ek (8)

k=l

The solutions of these equations are the well-known Hermite polynomials (71)

and the energy levels are given by (Ck + l)hvk where vk is the vibrational

quantum number and Vk is the classical frequency of the oscillator given by

VIBRATIONAL SECULAR EQUATION IN MATRIX NOTATION

The vibrational wave equation can be separated into a series of total

differential equations by determining the transformation, to normal
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coordinates, Qj, in which all the cross terms in the kinetic and potential energy

expressions are eliminated. In matrix notation, the normal coordinate trans-

formation, L.j, is sought which simultaneously diagonalizes the kinetic energy

matrix, t, [see Equation (4)] and the potential energy matrix, f [see Equation

(3)]. The transformation matrix, L, is defined as

or in matrix notation where is defined as a column matrix of the Q 's

As a consequence of the condition of L, we have

or explicitly

k

and

or explicitly

where E is the identity matrix and A is a diagonal eigenvalue matrix. From

Equations (11) and (12) we have the conditions

r Nr /
(13)
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and

L'fL = . (l4)

Equation (13) is then solved for L',

Substituting this expression for L' into Equation (14) results in the following

expression,

Multiplying on the left by L we have

or

Consider a single column of the L matrix denoted by Lk and denote the correspond-

ing eigenvalue by Xk. (The Xk's are the elements of A.) Equation (18) can now

be rewritten in the form

for k = 1,2,3,.*-, 3N which is a form of the vibrational secular equation. For

this equation to have a nontrivial solution, that is, Lk 0, the determinant

of the coefficient matrix must be zero (73). Thus,



mathematical model. The-frequency parameters are related to the calculated

frequencies, Vk, by the relationship, k = 47T2vk2. Substitution of the calcu-

lated frequency parameters, \k, into the vibrational secular equation (19)

results in sets of homogeneous linear equations, one for each column of L, from

which the Lk's may be determined. (The Lk's contain the information regarding

the "atomic" vibrational motion of the model for each frequency, Vk.) Stated

another way, the transformation which diagonalizes the product t f is sought,

resulting in a diagonal matrix, A, of the Xk

which is obtained by multiplying Equation (17) on the left by L- 1 . With this

form of the secular equation, the inverse kinetic energy matrix, t1, must be

computed.

INTERNAL COORDINATES

As previously stated, the choice of 3N generalized displacement coordinates,

q, leads to a vibrational secular equation of degree 3N which has six zero roots

corresponding to the translations and rotations. It is desirable to choose a set

of coordinates which describe the internal configuration of the molecule only,

that is, which satisfy the conditions that the center of mass remains fixed and

assure that there is no rotation of its coordinate system, and satisfy the

conditions set down by Eckart (74) and Sayvetz (75). A set of coordinates

satisfying these conditions are known as internal coordinates.

A convenient set of internal coordinates has been defined by Wilson (76)

and Decius (77). The internal coordinates in this set are bond stretching,

valence angle bending, out-of-plane'bending, and torsion. This particular set

of internal coordinates is useful because the potential energy in terms of
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these coordinates is chemically meaningful. Decius (78) has shown that thisset.

of four types of internal coordinates is sufficient to describe the most general.

vibrational displacement of any molecule. Further, he has given a prescription.

for defining a kinematically complete set of valence coordinates for both cyclic

and acyclic molecules.

In some cases, it is advantageous to choose more than 3N-6 internal valence

coordinates, either to make use of symmetry or to put the force constants on an

equivalent basis, thereby overdefining the problem and introducing redundant

coordinates. For example, only five of the six HCH angles in methane are inde-

pendent. However, if we leave one of the angles out, the force constants lose

their simple chemical meaning, and it is not possible to use symmetry to factor

the secular equation.

VIBRATIONAL SECULAR EQUATION IN INTERNAL COORDINATES

For internal coordinates, R, it is easier to compute the inverse kinetic

energy matrix; thus, the kinetic and potential energies are usually written

in the form

and

which is obtained when t = G1, f = F, and q = R in Equations (3) and (4).

The vibrational secular equation is seen to be

GFL = LA (24)

from Equation (17). We then seek the transformation, L, from normal coordinates,

Q, to internal coordinates, R,
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det GF - E) = 0 . 26)

The bulk of the normal coordinate computations to be described in this text

is concerned with the solution of this determinantal equation (26) and the

vibrational secular equation (24).

COMPUTATIONS

In this section, the computational methods employed in the normal coordinate

analyses of the 1,5-AP compounds will be presented. The data generated in the

computations can be found in the appropriate appendices.

DEFINITION OF MODEL GEOMETRY

The positions of the "atoms" in the model are usually defined from the bond

length and bond angle data for the real molecule. This information can be ob-

tained from x-ray or neutron diffraction studies. If these data are not available,

the model geometry must be approximated.

Molecular Structure of the 1,5-Anhydropentitol Compounds

Unfortunately, x-ray crystallographic data are not available to date for the

1,5-AP compounds. The geometry of these compounds must be inferred from structure

data available for similar compounds, such as the pentoses. However, small

differences in bond lengths and angles (in this case, deviations of the order of

magnitude of a few hundredths of an angstrom in the bond lengths and a few

degrees in the bond angles) should not affect the results significantly because

such deviations from the real structure are overshadowed by other approximations

incorporated into the mathematical methods. Snyder and Zerbi (56) were able to
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perform a successful normal coordinate analysis for tetrahydropyran assuming

tetrahedral bond angles and equivalent CC, CH, and CO bond lengths for their

model.

Conformation

The first matter to consider when defining the model geometry for the

1,5-AP compounds is the molecular conformation. In his review of crystal

structure data for simple carbohydrates and their derivatives, Strahs (12) states

that all of the crystalline pyranose-type compounds, thus far examined, adopt a

chair conformation. In fact, a boat conformation has not yet been found for

crystalline monocyclic compounds of sugars. Thus, it seems reasonable to assume

that all of the 1,5-AP compounds adopt the chair conformation in the crystalline

state. There are, however, two possible chair conformations for each structure.

In solution there is an equilibrium existing between these two conformations.

The position of the equilibrium is determined by the difference between the free

energies of the components. When the components differ only in geometric con-

figuration, the differences in free energy are due to steric factors, namely, to

the energies of interaction between nonbonded atoms. In a comparatively rigid

system, like that of the six-membered pyranose ring, the interaction energies

can be evaluated and totaled. The comparison of these interaction energies have

led to usually accurate predictions of the most stable conformer and the pre-

dominant conformer in solution. Eliel has provided a guide (79) for the calcu-

lation of the conformational free energies. More recently,-Angyal (80) has

reported a set of interaction energies derived specifically for pyranose com-

pounds. The details of the conformational analysis method can be found in

Eliel, et al. (81). The conformational free energies have been evaluated in this

thesis investigation for each of the chair conformers of the 1,5-AP models by
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employing the interaction energy values derived by Angyal (80). The results of

this evaluation are listed in Table XVI. These conformational free energy

calculations suggest that the 1,5-AP compounds most probably exist in the chair

conformations drawn in Fig. 28 in the crystalline state.

TABLE XVI

CALCULATED CONFORMATIONAL FREE ENERGIES CE ; kcal./mole)

FOR THE 1,5-ANHYDROPENTITOL MODELS*

E Difference Ratioa-conf

1,5-AX 2.40b 0.70° 1.70 95:5
a-a-a e-e-e

1,5-AR 2.20 1.60c 0.60 74:26
a-e-a e-a-e

1,5-ALA 1.70 1 .1 5C 0.55 72:28
a-a-e e-e-a

The proportion of each conformer existing in solution at equilibrium for
the Angyal analysis is calculated from the expression Gi - G2 = RTlnCNi/N2),
relating the difference in conformational free energy to the natural logarithm
of the ratio of the mole fractions, for T = 298.16°K or 25°C.

bThe conformation is identified by designating the orientation of the hydroxyl
group on C2, C3, and C4, respectively. An a denotes an axial hydroxyl group
and an e denotes an equatorial hydroxyl group.

This is the most stable conformer of the pair.

Bond Angles and Bond Lengths

As stated earlier, crystal structure data from x-ray and neutron diffraction

studies were not available for the 1,5-AP compounds at the time of this investi-

gation. One method of specifying the model geometry approximating a 1,5-AP

molecule is to adapt as much of the available crystal structure data as possible

from a related compound which in this case would be one of the pentoses. However,

an equally valid approximation is to assume a tetrahedral model geometry. In
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this model, all bond angles are assumed to be tetrahedral (109°28') except the

COC angle (112°27 ') and the torsional (dihedral) angles are set equal to 60°.

Further, all common bond types are assigned an equivalent bond length. In

specifying the geometry for the 1,5-AP models, the COC bond angle and the corre-

sponding CO bond length were adapted from the data resulting from an electron

diffraction study of p-dioxane reported by Davis and Hassel (82). The remaining

common bond lengths were estimated by averaging the appropriate crystal structure

data reported for a-D-glucose (83), B-D-glucose (84), B-DL-arabinose (85), B-

lyxose (86), a-xylose (87), and methyl a-D-mannopyranoside (88). The estimated

values for the bond lengths and COC bond angle are tabulated in Table XVII. One

should note that the only structural difference existing between the three 12

1,5-AP models is the orientation of the hydroxyl groups, i.e., axial versus

equatorial.

Calculation of Cartesian Coordinates for the Model Atoms

The cartesian coordinates of the "atoms" in 1,5-AP models were computed

from the bond lengths and bond angles specified in Table XVII by the computer

program CART written by J. H. Schachtschneider (89). The atoms in the models.

were numbered in the manner depicted in Fig. 28.

The computational method employed in CART is discussed in Appendix I.

The data input to CART and the resulting cartesian coordinates for the 1,5-AP

models are also included in this appendix. A program written by Cole and

Adamson (90) called PAMOLE which draws a three-dimensional stereographic

12
The compounds 1,5-ALA and 1,5-ADA are mirror images of one another and ex-
hibit identical vibrational spectra. Therefore, only one of these compounds
(l,5-ALA) need be included in the normal coordinate calculations.
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projection of a "ball and stick" representation of the model from the calculated

cartesian coordinates may be used to check the cartesian coordinate calculations

for errors. Drawings generated by PAMOLE for the 1,5-AP models based on the

cartesian coordinates calculated by CART are included in Appendix I also.

TABLE XVII

BOND LENGTHS SPECIFIED FOR THE 1,5-ANHYDROPENTITOL MODELSa

Bond Length Av. Value, A. Bond Angle Assigned Value

CO(r)b 1.423 COC 112.45°

CC 1.523

CH'c 1.096

CH 1.093

CO 1.415

OH 0.970

The bond angles were assumed to be tetrahedral (109°28') and the dihedral
angles set equal to 60° .

b(r) Designates the pyranose ring oxygen atom.

cThe CH' refers to the C1 and C5 atoms of the ring.

The FORTRAN listing, flow diagram, and program instructions for CART and

the program instructions for PAMOLE may be found in Appendix V.

TRANSFORMATION TO INTERNAL COORDINATES AND CALCULATION OF THE
INVERSE KINETIC ENERGY MATRIX (G MATRIX)

Internal Coordinates

The vibrational problem is to be set up by the Wilson GF method (68,76,91).

This method requires that the vibrational displacements be expressed in internal

valence coordinates, R, which satisfy the Eckart (74)-Sayvetz (75) conditions,

thereby separating the vibrational problem from translation and rotation. A
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convenient set of internal valence coordinates has been defined by Wilson (76)

and Decius (77). Decius has shown that a set of four types of internal valence

coordinates, namely, bond stretching, valence angle bending, out-of-plane wag-

ging, and torsion, is sufficient to describe the most general vibrational dis-

placement of any molecule. He has also given a prescription for defining a

kinematically complete set for both cyclic and acyclic molecules.

Definition of Internal Coordinates for the 1,5-Anhydropentitol Models

According to the prescription set down by Decius, there will be one bond

stretching coordinate for each bond in the molecule. That is,

n =b (27)
r

where b is the number of bonds in the molecule and n is the number of bond-r

stretching internal coordinates. For the 1,5-AP models, there are 19 bonds;

i.e., n = b = 19. The minimum number of valence angle bending internal coor--r

dinates, , is expressed as

n = 4b - 3a + al (28)

where a is the number of atoms in the molecule, and a is the number of terminal

bonds (the number of atoms bonded to only one other atom). For the 1,5-AP

models, a = 19 and al = 10; thus, n 76 = 76 - 57 + 10 = 29. The number of torsional

internal coordinates, n corresponds to the number of nonterminal bonds which is

determined from the expression

nT =b - a, . (29)

Therefore, n = 19 - 10 = 9. The result is a total of 57 internal coordinates.

The minimum number of internal coordinates required to completely describe the
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vibrational motion of the 1,5-AP models is equal to the number of vibrational

degrees of freedom, f, where

f = 3a - 6. (30)

For the 1,5-AP models, f = 3(19) - 6 = 51 degrees of freedom; so the set of

internal coordinates derived from the Decius prescription is noted to contain

six additional or redundant coordinates. These redundancies are due to the cyclic

nature of the molecule and cannot be removed. There are six bond angles about

each of the five carbon atoms in the ring. In the 29 valence angle bending coor-

dinates specified above, only five of these angles have been included in each case

because the sixth angle is not independent. To include this sixth angle would

generate a locally redundant coordinate. However, to make use of symmetry and to

put the force constants on an equivalent basis, the five redundant coordinates

must be included, one for each carbon atom of the ring. This means that there are

now 34 angle bending coordinates.

In summary, a total of 62 internal valence coordinates have been generated

to describe the vibrational motion of the 1,5-AP models; namely, 19 bond stretching

coordinates, 34 valence angle bending coordinates, and 9 torsional coordinates.

Of these 62 coordinates, 11 are redundant. Five of these redundancies are local

and removable, while the remaining six redundancies result from the cyclic nature

of the molecule and are not removable.

The 62 internal coordinates for 1,5-AX are listed in Table XVIII. The in-

ternal coordinates for 1,5-AR and 1,5-ALA involve the same atoms, except for a

few of the torsional coordinates, and are numbered in a similar manner as those

for 1,5-AX.
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TABLE XVIII

DESCRIPTION OF THE 62 INTERNAL COORDINATES
FOR 1,5-ANHYDROXYLITOL

2

HO
HO

1
H'

H

Bond Stretch

11.
12.
13.
14.
15.

02H2
C3H3
C303
03H3
C4H4

Valence Angle Bend

38. C4C303
39. H3C303
40. C3C4H4
41. C3C404
42. C404H4
43. C3C4C5
44. C5C4H4
45. -C5C404.
46. H4C404

54. C3C4C5H' b
a4C4C5H"

04C4C50 b
55. H3C3C4H4)

03C3C4C5
C2C3C404

a
Torsion

56. H'C1C2C3 b
H"C1C2H2
OCLC202 b

57. H2C2C3H3)
C1C2C303
02C2C3C4)

The torsional coordinates were defined for those atoms in the trans position
about each bond.

bThe torsional coordinates in this group are summed together (linear combination)
to avoid the introduction of further redundancies.

1. C10
2. C1C2
3. C2C3
4. C3C4
5. c4C5

6.

7.
8.
9.

10.

C50
C1H'
C1H"
C2H2
C202

16.
17.
18.
19.

20.
21.
22.
23.
24.
25.
26.
27.
28.

H'C10
H"C10
C2C10
H'C1C2
H"C1C2
H'C1H"
C1C2H2
C1C202
C202H2

29.
30.
31.
32.
33.
34.
35.
36.
37.

C1C2C3
H2C2C3
C3C202
H2C202
C2C3H3
C2C303
C303H3
C2C3C4
C4C3H3

C40 4

04H4
C5H'
C5H"

H'C5C4
H"C5C4
C4C50
H'C50
H"C50
H'C5H"
C1OC5

47.
48.
49.
50.
51.
52.
53.

58.
59.
60.
61.
62.

H4C404H4
H3C303H3
H2C202H2
H'C50C1
H'C1OC5
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Inverse Kinetic Energy Matrix (G Matrix)

The expression for the kinetic energy in cartesian displacement coordinates

may be written from Equation (11) by replacing q with X and t with M in the

expression on the left-hand side where M is defined to be a mass matrix. That is,

2T = X'MX. (30a)

The transformation, B, from cartesian displacement coordinates, X, to internal

coordinates, R, may be computed from the set of internal coordinates specified

in the last section.

R =BX (31)

X = B -R. (31a)

The kinetic energy in internal coordinates may be written by substituting

Equation (31a) into Equation C30a).

2T = (B'1R)'M(B 1 R) = R'(-B~1)'MIB1R. (32)

If we define G - = [(B-1)'MB- 1], the expression defining the inverse kinetic

energy matrix, G, follows directly

G = BM- B' C33)

and the kinetic energy is of the simple form 2T = R'G1R.

Computation of the G Matrix

The G matrix elements were computed for the 1,5-AP models by the computer

program GMAT which is based on Wilson's "S vector" technique (68). In the

calculation of the G matrix, the cartesian coordinates computed by CART for the

"atoms" in the models were transformed into internal coordinates (see Table XVIII

for a description of the internal coordinates for 1,5-AX).
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The computational method employed in GMAT is discussed in Appendix II.

The internal coordinate definitions for the 1,5-AP models and the resulting

G matrices are also listed in this appendix.

Symmetry Coordinates

Upon transforming from internal coordinates to symmetry coordinates, the G

matrix factors into a number of smaller blocks, one for each symmetry species

(irreducible representation) of the molecular point group. The symmetry coor-

dinates are constructed from linear combinations of the internal coordinates by

a method based on the molecular point group character table. The construction

of symmetry coordinates will not be discussed here, but the interested reader

may wish to refer to one of the many texts that treat this topic, for example

(68,92,93).

The compounds 1,5-AX and 1,5-AR possess a plane of symmetry and, therefore,

belong to the C point group. The symmetry coordinates for these two models
-s

were developed with the relationships derived by Wilson (68) and are defined

in Table XIX. The internal coordinate numbers specified in the table refer to

the coordinates defined in Tables XXXVII and XXXVIII in Appendix II. The C
-s

point group has two symmetry species (irreducible representations), symmetric,

A', and antisymmetric, A". The symmetry coordinates in Table XIX are classi-

fied into their respective symmetry species.

Factoring the G Matrix

In GMAT, to transform from internal coordinates, R, to symmetry coor-

dinates, S, an orthogonal transformation matrix, U, must be included with the

input data, since
input data, since

S = UR (34)



TABLE XIX

DEFINITION OF SYMMETRY COORDINATES FOR 1,5-ANHYDROXYLITOL
AND 1,5-ANHYDRORIBITOL

Sym. Coord.a Comb. In. Coord.b

= 1+ 6
= 2+ 5
= 3+ 4

7 + 18
8 + 19

9 + 15
= 10+ 16
=11 + 17

= 13

=20 + 50

=24 + 48

=26 + 44
=27 + 45

=30 + 40

= 33 + 37

= 35

= 39

=54 - 56

S32

S34
35

S37

S39
s40
s41
S42
S43
s44
s45
s46
S47
s48
S49

A"' S50
S51
S52
s53
s54
S55
S56
s57
s58
S59
s60
S61
S62

= 55 - 57
= 58 - 60
= 61 - 62
= 1- 6

2- 5
= 3 - 4

7 - 18
8 - 19

- 9 -15
- 10 - 16.

11 - 17
20 - 50

= 21 - 51
= 22 - 59
= 23 - 47
= 24 - 48

25 - 52
=26 - 44
= 27 - 45
= 28 - 42
= 29 - 43
= 30 - 40
= 31 - 41.
= 32 - 46

= 33 - 37
= 34 - 38

54 - 56

55 + 57
= 58 + 60
= 59
= 61 + 62

&Normalization of the symmetry coordinates requires that each coordinate
be multipled by 1//--, except for the symmetry coordinates S9, S10, Sll,
S27, S28, S29, S30, and S61 where the factor is unity. The normalization
is accomplished by GMAT.

The internal coordinate numbers are defined in Tables XXXVII and XXXVIII
in Appendix II.

S1
S2
S3
s4
S5

s6
S7
s8
S9
S10
Sll
S12
S13
s14
S15
s16

A'< S17
S18
S19
S20
S21
S22
S23
S24
S25
S26
S27
S28
S29
S30
S31
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The U matrices are identical for 1,5-AX and 1,5-AR and are simply a matrix

representation of Table XIX. The elements of U, included with the input data,

need not be normalized, since normalization is accomplished in the program.

The G matrix in the new coordinate system, S is given by Equation (35),

G = UGU'. 35)

Computation of the Factored G Matrices for the
1,5-Anhydropentitol Models

In the case of 1,5-AX and 1,5-AR, the transformation from internal coordi-

nates to symmetry coordinates reduces the G matrix from 62 x 62 to two smaller

matrices, 34 x 34 and 28 x 28, which belong to the irreducible representations

A' and A", respectively. Listings of the factored G matrices are not included

in this manuscript because of space limitations.

SELECTION OF A FORCE FIELD FOR THE
1,5-ANHYDROPENTITOL MODELS

Before the vibrational secular equation can be solved, an explicit form must

be given to the force constant matrix, that is, the F matrix in Equation (26).

Unlike the G matrix, the F matrix is not easily derivable from experimental data,

and certainly not from nonspectroscopic data. The only convenient source of

information is the vibrational spectrum itself. For anything larger than a

diatomic molecule, this is insufficient, except in rare cases, to allow the

determination of the field, even in the quadratic approximation. This indeter-

minacy in the force field of molecules is one of the most vexing problems in

spectroscopy today. Since the force field can only be determined from the

spectrum itself, one might question the feasibility of solving the vibrational

secular equation. The following comments are offered as support for the

procedure to be adopted. First, it is well known'that the chemical'and
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thermodynamic properties of bonds with similar environments are very much the

same. It is reasonable, therefore, to expect that the forces resisting defor-

mation of these bonds will be similar. The same is true for bond angles. This

implies that the force constants should be transferable between similar molecules

or between similar groupings in different molecules. As a result, the force

constants derived from simple systems can be employed to construct the field of

more complex systems. Second, errors in a force field, which reproduces to an

acceptable accuracy the vibrational frequencies of a grouping in one molecule,

will be relatively unimportant in frequency calculations in related systems

containing the grouping, provided that both the assumed field and true field

place the bulk of potential energy within the common grouping in both situations.

This is because most of the vibrational motion is within the common grouping,

so that the model form varies little in the different systems. Third, further

improvements in the field of complicated systems can only arise from perturbation

treatment of existing calculations, in which efforts are made to minimize dis-

crepancies between actual and calculated observations.

The use of internal coordinates as a basis for potential field expressions

has been justified in an earlier section. A general quadratic field will have

the form

ij

constants

For a diatomic molecule, only one quadratic force constant can be defined and

no problem exists to its evaluation. For a polyatomic molecule, the number of



quadratic force constants greatly exceeds the number of vibrational frequencies .

Although other.sources of, information exist about the-vibrational modes and

force constants, this information has-still not allowed a unique quadratic force

field to be established for any molecule with more than five atoms..

Approximations within the quadratic approximation itself are clearly un-

avoidable, and many have been tried. As might be expected, no single approxi-

mation emerges triumphant in all cases, but experience has shown that some

types of fields have reasonable validity in certain structural situations.

Therefore, the selection of an appropriate force field for the normal coordinate

analyses of the 1,5-AP compounds is an important aspect of this investigation.

Many of the major force field approximations.are described in a text by Steele

(94). Several of these approximations are briefly.discussed below, and are

evaluated for use in the normal coordinate computations of the 1,5-AP compounds.

1. The Valence Force Field VFF)

..This approximation treats the potential energy as arising from stretching

of chemical bonds and deformation of bond angles. The potential energy ex-

pression, Equation (36), only involves the diagonal elements in the force

constant matrix, with the other elements being set equal to zero, that is,

Although the VFF force field has only a few force constant parameters and

can be easily interpreted in a chemical sense, it is too simplified to ade-

quately describe the vibrational dynamics of the 1,5-AP compounds.
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2. The General Quadratic Force Field (GQFF)

In this approximation, all possible f terms are included. As has
-1J

already been pointed out, this approximation usually introduces more parameters

than can be determined with the available data, and therefore, in its complete

form, it is indeterminate.

Since the GQFF is rarely derivable, many fields intermediate between the

VFF and GQFF have been used. In the vast majority of force field studies, the

GQFF has been simplified by arbitrarily fixing many interaction terms to zero

and minimizing other interaction elements at their lowest possible values .

Even though the assumptions have usually been made with some physical reasoning,

such as that potential interactions between nonconjugated bonds with no common

nucleus may be expected to be very small, the arbitrary character of the

assumptions has rendered comparative studies of the different fields extremely

difficult.

A small number of clearly defined fields have been used and their validity

explored. The two fields which have evoked the most interest are Mills' Hybrid

Orbital Force Field (HOFF) (95) and the older and controversial Urey Bradley

Force Field (UBFF) (96). Also of considerable interest, though it has been

little used except by its original exponent, is Linnett's Orbital Valency Force

Field (OVFF) (97).

A. OVFF

This approximation seeks to explain differences in the deformation force

constants, as derived from different symmetry classes in the valence force

approximation, in terms of electronic rehybridization phenomena. However, even

this modification of the VFF is far too simplified to be successful in the
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mathematical treatment of the 1 ,5-AP compoundsm .On the other hand, the OVFF.:

may be useful as a basis for logically introducing interaction constants con-

necting angular deformations about a central nucleus in other types of force

fields.

B. HOFF

This force field is founded on the idea that interaction force constants

are related to electronic charge movements, accompanying the nuclear distortions.

The HOFF appears to be a reasonable approximation; however, it has only been used

in conjunction with relatively small molecules.

C. UBFF

The basic Urey Bradley field treats the force field as arising from the VFF

supplemented by forces between nonbonded nuclei. In the general case, the

linear potential energy terms for the interbond angles and the bonds are linearly

related by geometric factors to the nonbonded interaction terms. The direct

consequence of this is that the independent parameters in the field reduce to

those of the VFF plus the quadratic and the linear nonbonded interaction terms.

If a redundancy relationship exists among the set of internal coordinates, Rj,

the condition for a potential minimum now takes the form

where kj is usually known as the intramolecular tension and is an additional

parameter in the force field. The UBFF in its simplest form is completely in-

adequate for the normal coordinate analyses of the 1,5-AP compounds. In order

to improve the performance, additional quadratic valence-type.interaction terms

must be introduced, but this detracts from the original simplicity of the model.
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In addition, the UBFF elements are difficult to perceive in a chemical sense.

Also, for the 1,5-AP models, this type of force field contains a large number

of nonzero elements which exceeds the limit of the computer program (based on

the storage capacity of the computer facility) which solves the vibrational

secular equation.

D. Inverse Force Constants

Inverse force constants are the elements of the reciprocal force constant

matrix, F , sometimes referred to as the compliance matrix, C. Several ad-

vantages of such fields exist, the main advantage arises from the independence of

a given element, f., to the definitions of coordinates k,l ¢ i,j. Since the

potential energy must be invariant to coordinate transformations, it follows that

the inverse force constant elements, fiJ transform as R. and R. for f,.R.R. to

be invariant). This requires that if a new set of internal coordinates is chosen

leaving a given coordinate, Rk, unaltered, then f kk will be identical in the two

systems. This invariance means that the transference of inverse force constants

may be done with less concern for the compatibility of coordinate systems assumed

in the two molecular models. The inverse force matrix and its advantages are

described in more detail by Decius (98).

The concept of inverse force constants is attractive because the elements

of the compliance matrix are unique, which is not the case for the F matrix

elements. However, the secular determinant, analogous to Equation (26), is now

for the case in which there are redundant internal coordinates, since G 1 cannot

be determined. This means that new computer programs and computational methods

must be developed to construct and solve this new secular determinant.
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Furthermore, a least squares perturbation technique must be developed.to-refine

the compliance parameters to minimize the differences existing between the

calculated and observed frequencies. In addition, it is very difficult to

secure the necessary initial compliance parameter data from the literature

because workers in vibrational spectroscopy have been slow to adopt the inverse

F matrix method. For these reasons primarily, the F 1 method was not selected

for the investigation of the 1,5-AP vibrational spectra.

E. Simplified Valence Quadratic Force Field (SVQFF)

The force field finally selected for this study shall be referred to as a

"Simplified Valence Quadratic Force Field" (SVQFF) throughout the remainder of

this text. This empirical force field is an extension of the fields developed

by Schachtschneider and Snyder (54), Snyder and Zerbi (56), Pickett and Strauss

(57), and Vasko (99) in their normal coordinate calculations. The SVQFF is

derived from the GQFF by assigning negligible interaction force constants a zero

value and grouping similar force constants by assigning one common numerical

value. Such assumptions greatly reduce the number of independent force constant

parameters necessary to describe the force field of large, complex molecules.

One should note that these force constant assignments are not completely

arbitrary, but are based on past experimental data and, experience.

For small molecules, especially those with a high order of symmetry, the

diagonal and many of the interaction force constants can be determined from the

vibrational spectrum. Assuming the validity of force constant transferability,

many of these force constants are employed in the normal coordinate calculations

for slightly larger, more complex molecules to determine additional force

constant values, otherwise indeterminable, from the spectral data. When the

diagonal and interaction force constants corresponding to particular atomic
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groupings are compared for a series of related compounds, it is often observed

that the numerical values are very close to one another if the chemical environ-

ments of the atomic groupings are similar, i.e., the force constants are indeed

transferable. This fact is especially true for the diagonal force constants.

Such comparisons also permit one to determine which force constants may be

equated and which may be set equal to zero without significantly altering the

calculated frequencies. Thus, one assembles the SVQFF from small to more compli-

cated molecules, building on previous data. The result, although quite empirical,

is a generally descriptive force field that satisfactorily predicts the observed

vibrational frequencies and corresponding vibrational motion of the molecule.

Generally, the number of independent force constant parameters required to specify

adequately the SVQFF for large, complex molecules is approximately equal to the

number of vibrational degrees of freedom. In addition, Schachtschneider and

Snyder (54) have developed a method whereby the same set of force constant param-

eters may be refined for several similar molecules simultaneously. This greatly

increases the ratio of experimental data points (measured spectral band frequen-

cies) to variables (force constant parameters).

Schachtschneider and Snyder (54,55) have developed a SVQFF to describe the

vibrational dynamics of a number of n-paraffins and saturated hydrocarbons.

Snyder and Zerbi (56) started with this force field and from it developed a de-

scriptive SVQFF for tetrahydropyran and the aliphatic ethers. Vasko (99) has

demonstrated the generality and applicability of the SVQFF. He employed the

SVQFF developed by Snyder and Zerbi for the aliphatic ethers and tetrahydropyran

in the normal coordinate analysis of a-D-glucose and estimated the values of the

new diagonal force constants resulting from the addition of hydroxyl groups to

the pyranose ring. However, he neglected the new interaction terms introduced

by the hydroxyl groups, for the most part, and did not attempt to refine the
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force field to minimize the differences between the calculated and observed,

frequencies. (Furthermore, the validity of the results of the normal coor-

dinate analysis of a-D-glucose also suffers from the fact that Vasko did not

assign all the observed infrared and Raman spectral bands, only those in agree-

ment with the-calculations .) Yet, under the circumstances, he was able to

predict the experimental frequencies for a-D-glucose remarkably well.

Computation of the F Matrix

For reasons of convenience, which will become apparent when the programs

that solve the secular equation are discussed, the F matrix is not evaluated

directly. Rather, the constraint matrix, Z, [which is the transformation from

an independent set of force constant parameters to the force field in Equation

(26)] is computed. -The transformation, Z, is defined by the expression

where the $k are a set of independent force constants (to be called force

constant parameters in this text), and the F are the elements of the F matrix.

The computer program UBZM will construct the Z matrix for a UBFF or a SVQFF.

The computer program UBZM is discussed in Appendix III. Also included in this

appendix are the tables of the Z matrices for the 1,5-AP models. A program

listing, user instructions, and flow diagram for UBZM may be found in Appendix V.

Factorin the F Matrix

The Z matrix and, therefore, the F matrix maybe factored into a number of

smaller matrices by transforming from internal coordinates to symmetry coordinates

in a manner similar to the factoring of the G matrix- discussed earlier in this

text. Again, the number of smaller matrices is equal to the number of irreducible

representations in the molecular point group character table.
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146 (A') and 116 CA") elements. The factored Z matrices are not included in

this text because of space-limitations.

SVQFF Force Constant Parametersfor the 1,5-Anhydropentitol Models

The force constant.parameters specified in the Z matrices are the elements

which comprise the 1,5-AP SVQFF discussed earlier. The initial values for many

of these parameters were taken from the papers by Snyder and Zerbi (56) and

Vasko (99). A total of 56 parameters (actually, only 55 parameters because one

of the parameters is a dummy) were required to specify the F matrices for the

1,5-AP models. The constraint matrices, Z, are presented in Tables XLIII, XLIV,

and XLV in Appendix III. The force constant parameters are listed in Table XX

along with the initial values, values after nonlinear least squares refinement,

and the standard errors.

SOLUTION OF THE VIBRATIONAL SECULAR EQUATION AND LEAST
SQUARES REFINEMENT OF THE FORCE CONSTANTS

Solution of the Secular Equation by the Method of Successive
Orthogonalization of GF Followed by Jacobi Diagonalization

The F and G matrices for the 1,5-AP models have now been computed. The

next step is to solve the vibrational secular determinantal equation (26).

There are several methods which are applicable to computers for solving the

secular equation [for example, see Wilson, et al. (68)]. The method adopted for

all such computer programs employed in this investigation is that of successive

orthogonalization of the product GF followed by Jacobi diagonalization.

In this method, the transformation to a new set of coordinates in which G

is a unit matrix is computed



TABLE XX

SVQFF FORCE CONSTANT PARAMETERS FOR THE
1,5-ANHYDROPENTITOL MODELS

Force Constant
Parameter No. Group

Coordinates
Involved

Atoms Common
to Interacting
Coordinates

Initial

~.

Stretch

1

2

3

4

5

6

C-OH

H-C-O-C

H-C-OH

C-C

O-H

C-O

C-O

C-H

C-H

C-C

0-H

5.090c

5.090C

4.626c

4.688c

4.261c

6.440d

Stretch-Stretch

C-C-O-C

C-C-OH

C-C-C

C-O-C

H-C-O-C

H-C-OH

C-C H)-O-C

C-CCH)-OH

H-C H)-O-C

C-O-H

C-C,C-O

C-C ,C-O

C-C ,C-C

C-O,C-O

C-O,C-H

.C-O,C-H

C-C,C-H

C-C,C-H

C-H,C-H

C-O,O-H

C

C

C

0

C

C

C

C

C

0

0.107 0.075

0.288 c

0.000e

0.000e

0.000 e

0.324

0.016

0.072

0.071

-0.027 0.071

-0.010 0.034

0.005 0.071

Bend

C-C-O-C

H-CCH)-O-C

C-C-OH

C-O-H

C-C-C

H-C-OH

See end of table for footnote.

Final

5. 67

5.103

4.597

4.589

4.247

6.283

0.071

0.073

0.045

0.071

0.034

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

<HCO

<CCO

<HCC

<HCH

<HCC

<COH

<CCC

<HCO

< COC

1.182c

0.752c

0.718 c

0.961C

1.313C

0.926

1.169

0.792

0.452

0.725

1.180

0.734

1.056

0.963

1.318

o.o66

0.071

0.066

0.062

o.064

0.071

0.069

0.071

0.067

0.071
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TABLE XX (Continued)

SVQFF FORCE CONSTANT PARAMETERS FOR THE
1,5-ANHYDROPENTITOL MODELS

Force Constant
Parameter No.

Atoms Common
Coordinates to Interacting Initial Final Error

Group Involved Coordinates Value Value, . ( C.)

Stretch-Bend

23 H-C-O-C

H-C-OH

24 C-C-O-C

C-C-OH

25 Dummy

26 C-O-C-

27 C-C-O-C27 c-c-0-c

C-C-OH

28 C-CCH)-O-C

C-C(CH)-OH

29 C-C-C

30 H-C-O-C

H-C H)-O-C

C-CCH)-OH

C-C (H)-OH

31 C-O-H

32 C-O-H

C-O,4HCO CO

. C-O ,HCO CO

C-O ,CCO CO

C-O,<CCO CO

parameter, not specified in Z

C-O,<COC CO

C-C ,ccCO CC

C-C ,CCO CC

C-C <HCC CC

C-C,<HCC' . CC

C-C <CCC cc

C-H ,HCO CH

C-H,<HCH CH

C-H,<HCC CH

C-H,<HCO CH

C-O,<COH CO

O-H,<COH OH

0. 387C ,g

0. 618c.

matrices

0.483C

0.403C

0.478C

0 .41 7C

0.000e

0.387d'

0.000

0.388 0.072

0.664

0.487

0.381

0.070

0.071

0.074

0.481 0.064

0.485

-0.167

0.357

0.006

0.071

0.063

0.070

0.071

Bend-Bend

C-C CH)-O-C

C-CCH)-OH

C-CCH)-O-C

C-C(CH)-O-C

C-CCH)-OH

C-C (H)--C

C-C-C-H

C-C CH )-OH

H-C (H)-O-C

<HCO ,HCC

<HCO,<HCC

<HCO,<CCO

<CCO,<HCC

<HCC,<CCO

<HCC,<CCC -

<HCC,<CCC

<CCO,<HCO

<HCO ,HCO

CH

CH

CO

CC

CC

CC

CC

CO

CO

0.135 0.042

-0.031 -0.094 0.070

-0.005c -0.027 0.063

See end of table for footnote.
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34

35



Force Constant
Parameter No. Group

TABLE XX (Continued)

SVQFF FORCE CONSTANT PARAMETERS FOR THE

1,5-ANHYDROPENTITOL MODELS

Atoms Common
Coordinates to Interacting Initial

lp Involved Coordinates Value

Bend-Bend (Continued)

Final : Error ,

H-C(H)-C

C-CCH)-C

C-C OH)-C

C-CCOH)-C

H-C-O-C

H-C-O-C

C-C-O-C

HO-C-C-O-C.

C-C-C-O-C

C-C-C-OH

HO-C-C-OH

C-C-C-C

HO-C-C-O-C

C-C-O-C

HO-C-C-OH

C-C-C-C

C-C-C-OH

H-C-C-O-C

H-C-C-OH

H-C-C-O-C

H-C-C-OH

<HCC ,<HCC

<HCC ,(HCC

<CCO,<CCO

<CCO ,<CCC

<HCO,<COC

<HCO,<COC

<CCO ,<COC

<CCO,<CCC

<CCC,<CCO

< CCO ,<CCO

<CCC ,<CCC

< CO ,<CCO

<CCO ,<COC

<CCO,<CCO

<CCC ,<CCC

<CCC,<CCO

< CCO,<HCC

<CCO,<HCC

<CCO,<HCC

<CCO,<HCC

CC

CH

CO

CC

trans
(H)C-O(C)

gauche
(C)C-O(C)

gauche

tO)C-C CO)
gauche

(C)C-C(O)
gauche

(C)C-C(O)
gauche

(O)C-CCO)
gauche

(C)C-C(C)
gauche

(o)C-C(O)
trans

(C)C-oCC)
trans

(C)C-C(O)
trans

(C)C-C(C)
trans

(C)C-C O)
trans

(H)C-C(O)
gauche

(H)C-CCO)
gauche

(H)C-C(O)
trans

(H)C-C(O)
trans

0.105c

0.012C

-0.041c

-0.112c

0 .0 0 4 c

0.011

-0.011c

-0.113c

0.028c

0.066 o. 68

-0.001

0.052

-0.096

-0.037

-0.024

0.062

0.071

0.071

0.072

0.073

-0.014 0.072

-0.238 0.070

0.037 0.071

See end of table for footnote.
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TABLE XX (Continued)

SVQFF FORCE CONSTANT PARAMETERS FOR THE
1,5-ANHYDROPENTITOL MODELS

Force Constant
Parameter No. Group

Atoms Common
Coordinates to Interacting
Involved Coordinates

Initial
Value,

1~

Final
Value, O.

Bend-Bend (Continued)

H-C-O-H <COH,<HCO

H-C-C-H <HCC ,<CCH

H-C-C-H <HCC,<CCH

H-C-C-C <CCC,<CCH

H-C-C-C <CCC,<CCH

C-C-O-H <CCO,<COH

H-C-O-H <HOC,<OCH

(H)O-CCH)
'gauche

(H )C-C Cb)

gauche

(H )C-CCHb)

trans

(C)C-C(H)
trans

(C)C-CCH)
gauche

(C)C-O(H)
gauche

CH)O-C(H)
trans

0.0000.000e

-0.002 0.064

" 0.121i

0.049c

-0.052

0.000 e

0. 000e

0.049 0.071

-0.047 0.074

-0.106 0.071

0.010 0.070

0.016 0.070

Torsion

C-C

C-OH

C-O-C

C-C

c-O

C-O

0.024 c g

0.02 6C

0.026 c

0.027

0.028

0.012

0.047

0.055

0.073

Additional Bend-Bend

55

56

H-CCH)-0-C -<HCO<.HCH

H-C H)-C <HCC,<HCH

CH

CH 0.000e

-0.026

0.025

0.036

0.061

aG( i) is the standard error in 0. estimated from the standard error in the frequency

parameters and the H matrix in the nonlinear refinement.
The units for the force constants in this group are mdyn./A.
The initial force constant values weren taken from Snyder and Zerbi (56).
The initial force constant values were taken from Vasko (99).
The force constant was assigned an initial value of zero because a value was not
reported in the literature.
The units for the force constants in this group are mdyn./A./(rad)2 .
The units for the force constants in this group are mdyn./rad.
The force constant was not included in the refinement because it was not specified
in any of the constraint matrices since all the H-C-O-H torsional coordinates were
assumed to be trans in the definition of the 1,5-anhydropentitol models.

45

46

47

48

49

50

51

52

53

54
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where (G -- ) is a diagonal matrix

and then applied to the F matrix.

The new F matrix, H, is symmetric and may be diagonalized by the Jacobi method

as cited by Acton (100).

where A is a diagonal matrix of the eigenvalues, A. Although the transformation,

A, was first applied to G and then to F, the result is the same as applying the

transformation to the product GF which appears in Equation (26). That is,

using Equation (47) and the fact that A is orthogonal. The details of the computa-

tional method follow.

The elements of G may be written as
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which corresponds to the matrix expression for G given in Equation (32). A row

vector, D may be defined with 3N elements, m- and Equation (51) may then

be written as.

(52)

A new set of vectors, D. are then defined as linear combinations of the D. such

that the new vectors are mutually orthogonal, that is,

(53)

The new vectors are obtained by

defined by the equations

D2 =

etc.

the Schmidt orthogonalization procedure and are

al D1

The coordinate transformation can be written as

where the matrix A is triangular and the elements given by

(56)



-112-

for i > j. The coefficients aik may be computed by the following procedure.

First, Gi.Glj/Gl-is subtracted from each element of G except Gil, and the

resulting matrix is designated as G(l). The matrix G(1) is symmetric and the

first row vanishes, so the operation need only be carried out for the rows two

through N and for G ) i< j.

It will now be shown that

and that

Similarly, we have

D2Dj = (D2 + a2lD1)Dj = G2 -GG = 2j 61)

for i > 2 and j > i, and it can be shown that

D3:Dj = G~(2)
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Successive applications of this process will lead to a diagonal matrix,

matrix. In general,

for k = 1 to m-l and i > k; j > i. Since

and (65)

The corresponding F matrix transformation is given by

So, one needs to compute A 1 . From Equation (55), one may see that, since

a.. =1, the inverse transformation is

D1 = D

D2 = D2 - a21Dl (68)

D3 = D3 - a3 zDz - a3iDi

etc.

Therefore, the matrix A -1 has the form



1 0 0 0 ....

The matrix G( m- l ) is diagonal, but not a unit matrix. It is made a unit matrix

by normalizing the vectors Dt to unity.

The corresponding F matrix transformation is

The matrix H is symmetric and can be diagonalized by an orthogonal matrix W,

that is,

Therefore, the transformations which diagonalize the kinetic and potential

energy matrices are



-115-

If redundant coordinates are used, the same procedure applies. If, for

example, the ith coordinate is a member of a redundant set and the other members

(i-l)
of the set have lower numbers, the ith row of the G - matrix vanishes,

for j > 1. This would seem to lead to difficulties in computing

However, in the computer programs the G matrix is entered with an accuracy of

about six decimal places and one finds that

G.

and one can compute A 1 even for redundant coordinates. Actually, the ith row

of A gives the redundancy accurate to about-six significant figures.

The inverse normal coordinate transformation is defined by setting



for Gi ) < 0.00001. This is possible because the momenta, Pi, corresponds

to a null coordinate, R., and does not contribute to the kinetic or potential

energy. The matrices L and L- 1 are then rectangular and

The matrix H is diagonalized by the Jacobi method (100) to yield the eigenvalue

matrix, A, and the transformation matrix, W. The transformation, L, from

internal coordinates to normal coordinates is then computed from the matrix W by

Equation C76).

Jacobi Diagonalization

Schachtschneider C89) considered three methods of computing the eigenvalues

and eigenvectors of the real symmetric matrix, H, by diagonalization; namely,

the Jacobi method, the Givens method, and the Householder method. Although the

Jacobi method is considered to be inefficient and slower than the other two

methods, the eigenvectors resulting from this method have been shown to be more

accurate (104). Also, the Jacobi method is less subject to catastrophic errors

for degenerate and zero roots which are common in the vibrational problem. The

Jacobi method of matrix diagonalization is discussed in several texts, for

example, Schachtschneider (89), Greenstadt (102), and Froberg (103).

The Jacobi method is based on the following theorem. If H is symmetric,

there exists an orthogonal matrix, S, such that S'HS is a diagonal matrix

whose diagonal elements are the characteristic roots of H, that is, S'HS = A.
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Jacobi proposed the algorithm which will actually construct the. unitary S while

diagonalizing H. He conceptualized A as describing an n-dimensional space and

derived the transformations which orthogonalize the axes. A series of plane

rotations is applied to H, the rotations have the form
.

then it may be shown that the elements hij reduce to zero upon the application of

the transformation (ClS'.)H¢s i). Repeated application of this process takes

the form

It may be shown that A' in Equation (87) approximates A in the-theorem. If we
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Furthermore, S satisfies the orthogonality requirement as

and the columns of S turn out to be the eigenvectors, W., corresponding to the

eigenvalues,

Force Constant Refinement

The method of successive orthogonalization followed by diagonalization just

discussed in the last sections provides the procedure for solving the following

problem: given the force constants and the G matrix, find the vibrational

frequencies and normal coordinates. However, the problem posed in the normal

coordinate calculations in this investigation is: given the observed vibrational

frequencies and G matrix, calculate the force constants and normal coordinates.

The solution of this problem results in several difficulties. First, the number

of observed frequencies is almost always smaller than the number of force constants

in the general harmonic force field (GQFF). Second, the observed frequencies are

anharmonic. Finally, the expansion and solution of the secular equation for the

force constants is an extremely difficult procedure even with a digital computer.

The first two problems are fundamental and require additional data or some

approximations. The last difficulty is computational and can be overcome by using

an iterative method in which approximate force constants are refined to give the

"best" fit to the observed data.

For certain small molecules or molecules with a high degree of symmetry,

the first difficulty can be overcome by using frequencies from isotopically sub-

stituted molecules, and by augmenting the frequency data with Coriolis

coefficients, centrifugal stretching constants, mean amplitudes of vibration, or
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vibrational intensities. In some cases, it is also possible to.measure..or

estimate the anharmonic corrections to the observed frequencies..::For most

molecules, however, the data are far short of the number of force constants

in the general harmonic force field, and in order to proceed with the calcu-

lation of force constants, we must make some approximations. That is, we must

assume that certain force constants can be neglected; assume some model such

as the UBFF, VFF, or SVQFF; and assume that the force constants can be trans-

ferred between related molecules. It is essential that the number of force

constants be restricted so that it is less than or equal to the number of ob-

served data. In most cases, we ignore the anharmonicity problem.

Because of the computational difficulties, it is desirable to have some

iterative procedure by which a set of approximate force constants.can be refined

to give the "best" fit to the observed frequencies. Following are the discussions

of two iterative refinement techniques that were employed in this investigation;

one, a linear least squares perturbation method and the other, a nonlinear

least squares method. The linear least squares technique failed to converge in

the normal coordinate analyses of the 1,5-AP compounds and was replaced by the

nonlinear technique in this investigation.

Linear Least Squares Refinement Method

The linear least squares refinement technique is based on a method by King

(101). The relationship between the eigenvalues, A., and the force constants,

FJk' is expanded in a Taylor series.
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Only the first term in the expansion will be considered (i.e., linear refine-

ment). Suppose one is given an initial F matrix, and one solves the secular

equation,

GF L = L A 91)

If one assumes L to be the ith column of the L matrix, one can write

Let AF be a change in the F matrix, and let Li be the ith column of the new L

matrix. One can write

and the secular equation for the new F matrix is

Expanding the above expression, one obtains

Using Equation (92) and rearranging, one has

(96)

From the relation

L L' = G (97)



-121-

it follows that

where (L' ). is the ith row of L1. Equation (96) is now multiplied on the left

by (L1o)i to obtain

This equation is exact, but not very useful since the new coefficients 6 are

functions of AF. One may note, however, that if AF is small, then the 8 and

AX. are also small. If one neglects the terms involving the products of two

small quantities, Equation (99) is approximated by

The linear refinement method is only as good as this approximation. Expanding

Equation (100), one obtains

which upon comparison with Equation (90) is seen to provide an approximation to

the first derivatives of the Taylor expansion. This gives one a linear relation

between the force constants and the frequency parameters, , which one can write

in matrix notation as

where AX is a column matrix of AX., AF is a column matrix of the elements AFiJ,

and J, the Jacobian, is a rectangular matrix of the products (L )2 and

2(L )i CL o)k which approximate (aX /Fj). This relation forms the basis for the

iterative linear least squares procedure for refining a set of force constants
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to give the "best" fit to the observed frequencies. Suppose one is given an

approximate F matrix, F , and the observed frequencies, obs One solves the

secular equation

GF L = L A (103)

and letting AX. = ,obs - X in Equation (102) where J is computed from the

L . One applies the least squares theory [for example, Draper and Smith (105)]

to calculate Equation (104) by multiplying Equation (102) on the left by J'P,

where P is a weighting matrix (diagonal).

The solution of this equation is obtained by inverting (J'PJ) to give

Now, if the number of frequencies is greater than the number of F matrix elements,

the matrix J'PJ should be nonsingular, and one obtains the corrections, AF,

which will minimize, r'Pr, the sum of the weighted squares of the residuals,

where r = A - A . If the corrections, AF, are fairly large, Equation (101)

is approximate and the higher order terms in the Taylor expansion are important.

One, therefore, uses the corrections to form a new F = F + AF and repeats the

process. If the calculation is well behaved, AF will decrease on each cycle.

The process is repeated until AF becomes very small. (See the following section

on termination of the force constant refinement.)

As was mentioned earlier, in most cases, the number of data are not

sufficient to determine all of the force constants in the GQFF, and it is

necessary to introduce some constraints. Even when the data exceed the number



-123-

of force constants, it is usually not possible to determineall-of the force

constants. Mathematically, the determinant of J'PJ is zero or very small and

the solution to Equation (105) is ill-defined,.so that it. becomes necessary to

introduce some constraints. - This is done by means of the constraint matrix, Z,

discussed in an earlier section. The Z matrix is the transformation matrix

between the force constant parameters, (D, and the F matrix. One has

Fjk = jkl l (106)

or in matrix notation

where Z is a rectangular matrix of dimension nxm (n is the number of force con-

stants in F and m is the number of parameters in ), is a column matrix of

elements and F is a column matrix of the elements Fjk. The elements of Z

are determined by the force field model. Differentiating Equation (107), one

One substitutes this expression into Equation (104) to obtain

and multiplies on the left by Z' to obtain the "normal equations" of linear

least squares theory.

Solving this equation for At, one has
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The above expression is the one that is used to compute the corrections

to the force constant parameters which minimize the differences between the

calculated and observed frequencies. The F matrix is then updated by Equation

(108) to account for the perturbations in the force constant parameters, At..

Next, the secular equation (103) is solved with the corrected F matrix, and

the least squares corrections to the force constant parameters are computed

by Equation (111). The iterative process is continued until the condition for

termination is met.

The condition for termination of the force constant refinement is dis-

cussed in Appendix IV. The topics of evaluation of transferable force constants,

potential energy distribution, error analysis, multiple solutions, multiple

regression analysis, nonconvergence, scaling, and damped least squares are also

discussed in Appendix IV in connection with the least squares refinement

technique.

Computer program for linear least squares. A computer program, FADJ, has

been written by J. H. Schachtschneider (89) and modified for use in this investi-

gation which will solve the vibrational secular determinant, refine the force

constant parameters by the method of linear least squares, and will perform a

multiple regression analysis at the option of the user. A program listing, flow

diagram, and instructions for use of the program, FADJ, are provided in Appendix

V. In addition to the computations listed above, FADJ will also calculate the

potential energy distribution in i the variance-covariance matrix, the corre-

lation matrix, and the frequency error distribution.
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Solution of the secular equation and'linear least- squares refinement for

the 1,5-anhydropentitol models. FADJ was employed to solve the secular -equation

and refine the initial set of force constants (see Table XX)for the 1,5AP

models. Unfortunately, the linear refinement technique embodied in FADJ failed

in all attempts to refine the force constants. The force constant perturbations,

computed by Equation (111), resulted in the differences between the calculated

and observed frequencies increasing upon each iteration, that is, the refinement

diverged. The most probable cause of the divergence was that the problem was

extremely ill-conditioned resulting from several of the force constants being

strongly correlated. This, in turn, had the effect of making the normal matrix,

(Z'J'PJZ), nearly singular. Scaling and damped least squares were employed in

an attempt to force convergence of the refinement without success. The force

constants were refined successfully later in the investigation after the linear

least squares technique was abandoned for a nonlinear method, which will be dis-

cussed next.

Nonlinear Least Squares Refinement Method

The nonlinear least squares refinement technique to be described was sug-

gested by Gans (120) and is based on the method of Fletcher and Powell (121).

In the Fletcher-Powell method (FP), the normal matrix, (Z'J'PJZ) , is not

computed directly as in the linear Gauss-Newton-Raphson method (GNR) just dis-

cussed. Rather, the matrix is approximated on each iteration, beginning with a

unit matrix and becoming a very good approximation to (Z'J'PJZ) 1 near the

minimum. This approach avoids the generation of errors that occur in the GNR

method upon inverting a nearly singular matrix resulting from highly correlated

force constants. In addition, the FP method considers the second-order deriv-

atives in the Taylor expansion of the eigenvalues, whereas the GNR technique
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terminates the series after the first term. The FP method has been reported.

(120) to converge to a minimum even though the initial set of force constants

may be a poor approximation.

To derive the expressions comprising the nonlinear refinement technique,

one again starts with an expansion of the eigenvalues in a Taylor series, say

at the rth iteration.

(112)

In the GNR method, one truncates the series after the linear term (Gauss linear

approximation), excluding the second and higher order terms. Based on this

approximation and linear least squares theory, one then derives the following

expression for the corrections to the force constant parameters

where the r indicates the rth iteration. In the method of least squares, one

attempts to minimize the difference between the calculated frequency parameters,

X-, and the experimental frequency parameters, Xi, such that the parameter R,

in Equation (114), is a minimum.

In the above expression, Pk are the elements of the weighting matrix, P. Now, if

the expression in Equation (114) is differentiated with respect to the force

14

AX- is defined to be a matrix of the elements AS-.
1
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r
where g is the ith element of the gradient vector, g-; F is an element of the

F matrix; and AXr = (X - X ). [The above result was obtained by employing the

chain rule for differentiation and the relation between F and 0 which appears in

Equation (107).] Equation (115) may be written in matrix notation as

r
where the Jacobian matrix, J-, contains the elements a X,/ F )- When R is a

kk/ -1 m

minimum, the gradient vector is zero. From Equation (116), it is seen that when

is zero, either A - is zero, and the experimental frequencies are fitted

exactly, or (Jr-Z) is singular, and the minimum value of R is not and cannot be

zero. {In general, the counterpart of Equation (116) requires that (J-Z)'P-

(jJ-Z)] is singular if Ar- 0.} If Equation (114) is differentiated once again

with respect to one obtains Equation (117) [again employing the chain rule

for differentiation and the relation expressed in Equation (107)].

Applying the linear hypothesis, one has

k
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This expression is written in matrix form in Equation (119).

r = 2(JrZ)P(JrZ). (119)

By comparing Equations (116) and (119) with Equation (113), one notes that the

latter expression can be rewritten as

In the FP method, the second derivative terms in Equation (117) are rein-

troduced indirectly through Equation (120) in the following manner. A positive

definite matrix, H-, where H is to be distinguished from H in Equation (72), is

updated at each iteration from being, initially, a unit matrix to eventually

becoming a good approximation to (D)- 1. The increment added to the force con-

stants, Ar-, is calculated for each iteration by the following expression,

For linear problems, the FP and the GNR methods are ultimately identical be-

cause the linear hypothesis made in Equation (118) is valid. For nonlinear

problems, the FP method ultimately becomes identical with Newton's method for

nonlinear equations. The latter method converges slowly when not near the

minimum. The FP technique attempts to overcome this by setting H = E (unit

matrix) and, therefore, A1 -g1; that is, the first iteration follows the

path of steepest descent. However, Gans (120) suggests that a more effective

however, in those problems where the force constants are highly correlated be-

cause then the matrix P) is singular or nearly singular and cannot be

inverted.
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To approach Dr) 1, a method of successive linear searches in.H-conjugate

directions is used. At the (r+l)st iteration step, a linear search is made.in

(r)
the direction hr = -X-gr. By means of the linear search, the minimum of R (t) =

Func(C + t.-h- ) is determined, giving the argument -1+ = _ + t *hr- = $ + A'-,

-
where A-- is now equal to t -h and t is an adjustable scalar. The argument

of the minimum, , on the line through in the direction h- is determined

by the relation that the scalar product (g- ,hr) = 0. Now, one has

and therefore,

For the generation of H-conjugate directions, one starts with h = -g and calcu-

lates successive directions, h, by means of hr- = -, where is modified to

so that h is an eigenvector of the matrix with eigenvalue 1. This

ensures that approaches (Dr) 1 as 1 approaches The - matrix is

modified on each iteration by the following expression

- (dg)(dg)' '/[(dg).'lF(dg)J (125)

where Cdg) = g - g-- Ag and d) = . The refinement is

terminated after | A| become smaller than some arbitrary constant, set by the

user, for one or more perturbations, also determined by the user. The linear

search technique mentioned above is as follows. For a given argument vector,

(124)
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, a direction vector, h, defining a direction through , a local minimum of

the function R(t) = Func( + t .h-) must be found. This means that a value,

t , must be determined for which R ) = (R/3T)r = scalar product

The calculation of the minimum is in three stages. The first estimates

the magnitude of t , the second determines an interval containing t and the

third interpolates cubically the value of t [The interested reader can find

the details of the cubic interpolation scheme in the IBM manual (122).]

For each new argument vector, , the secular equation must be solved to

determine X, R(.T) must be evaluated by Equation (114), and gr determined by

Equation (116). For each iteration, r, the process above may be repeated

several times in search of a local minimum. Therefore, the time to complete a

refinement is oftentimes longer with the FP method as compared to the GNR

method because of the more numerous solutions of the secular determinant re-

quired by the FP method. Thus, the computer time needed to diagonalize the

transformed F matrix, H, in Equation (73) becomes very important for large

molecules or for a series of molecules. The inefficiency of the Jacobi method

of diagonalizating a symmetric matrix has already been stated. However, at the

present, computer time must be sacrificed because the Jacobi method results in

more accurate eigenvalues and is less subject to errors due to redundancies in

the coordinates than the two leading possible replacement methods (Givens and

Householder methods) even though these methods are faster and more efficient.
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Termination of the force constant refinement. The force constant refine-

ment is terminated and said to have "converged" if either of the following two

conditions are satisfied. The first condition requires that all the corrections

to the force constants, |A.il, for a particular perturbation, be less than or

equal to an arbitrary constant supplied by the program user. The second con-

dition requires that the ratio of successive weighted sums of squares of the

residuals be greater than a fractional constant supplied by the user (usually

very close to 1.0). The user may require that.this condition be met several

times before actual termination is initiated, so as to. provide a check against

premature termination..

Error analysis. The standard error in the force constant parameters,

may also be estimated for the FP method. The reader may recall that the standard

error was computed from the diagonal elements of the normal matrix in the GNR

method, that is,

(126)

where X = C.AXiP./n) is the standard error in X (n is the number of nonzero

experiment frequencies entered in the refinement). In the previous section
experimental frequencies entered in the refinement). In the previous section,

the following expressions were derived for linear problems.

For nonlinear problems, the above equations become approximations. Thus,

may be used to compute the standard error in the force constant parameters,

since

(128)
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Potential energy distribution, cartesian displacement coordinates, and

mean square amplitudes. The potential energy distributions in terms of the

force constant parameters, 0, and the internal coordinates, R; the cartesian

displacement coordinates; the transformation matrix, L, from normal coordi-

nates to internal coordinates; and the mean square amplitudes of vibration all

aid one in the interpretation of the vibrational dynamics of the molecular

model in terms of the atomic group vibrations for each of the normal modes.

The L matrix may be computed by Equation (76) and L- 1 by Equation (77)

after the secular determinant has been solved by the method of successive ortho-

gonalization followed by diagonalization. The B matrix, which is the trans-

formation from cartesian coordinates to internal coordinates, is computed by the

Wilson "S vector" technique discussed in the section on G matrix computation.

The transformation, T, from normal coordinates,.Q, to cartesian coordinates, X,

where

X =TQ (133)

is then computed from the relation

where M- 1 is the inverse of the atomic mass matrix. The T matrix gives the

cartesian displacements for each atom in the molecule for each normal mode. If,

for example, one gives the normal coordinate, Qi, a unit displacement,'the

cartesian displacements are given by

where T i) is the ith column of the matrix T. Let X be the column matrix of

the equilibrium cartesian coordinates used to compute the B matrix; then the
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cartesian coordinates of the atoms for the molecule displaced by one unit of

Qi are

If one plots the points X(i) and X , one obtains a representation of the

molecule displaced in the normal mode Q.. The elements of T (i) taken three at

a time, giving the x, y, and z coordinates of an atom, may be considered to be

elements of a vector, a(i), with its origin at atom a. These vectors give the

direction of the straight-line motions of the n atoms vibrating in normal mode i,

and the lengths show the relative amplitudes of vibration for each atom.

The expression for the potential energy in terms of the normal coordinates

is given in the next equation.

One can see from this expression that X. is the potential energy for a unit

displacement of normal mode Q.. The following relation for X. may be derived

from one of the conditions on the matrix L.

The fractional contribution to X. from the various F matrix elements, in terms

of the internal coordinates, is given by

for i < j for the off-diagonal elements of F and by

for the diagonal elements of F. The sum of these terms is seen to be unity.
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In the harmonic oscillator approximation, the mean square amplitude of

the normal mode Q. is given by

where v is the vibrational frequency in sec. , h is Planck's constant, k is

Boltzmann's constant, and T is the absolute temperature. Also, one has Qj

for i J j. The mean square amplitude matrix for normal coordinates is defined as

and is a diagonal matrix with elements

The mean square amplitude matrices for other coordinates, such as internal coor-

dinates or cartesian coordinates, can be obtained from the normal coordinate

transformations

R = LQ (144)

and -X = TQ. (145)

The matrices are defined as

The diagonal elements of the Z matrices are the mean square amplitudes of vibra-

tion, and the off-diagonal elements are called the interaction mean square ampli-

tudes. The mean amplitude of vibration for a given coordinate, i, is the root
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mean square deviation of the coordinate and is given by the square root of the

appropriate diagonal element of Z.

In this investigation, the computer program which calculates the mean

square amplitude matrix was modified to include the computation of what shall be

referred to in this text as the "squared amplitudes," in terms of the internal

coordinates, for each normal mode. The program already calculated a similar

quantity for the cartesian coordinates. For any particular normal mode, Qi'

the "squared amplitudes" for the displaced molecule in terms of internal and

cartesian coordinates are defined by the following equations.

where and T are the ith columns of the L and T matrices. A comparisonwhere L and T are the ith columns of the L and T matrices. A comparison

of the "squared amplitudes" for the various internal coordinates of any Qi gives

the relative magnitudes of the displacements of the coordinates from their

equilibrium positions for that particular normal mode.

Computer program to compute the potential energy distribution, cartesian

displacement coordinates, mean square amplitudes, and "squared amplitudes." The

potential energy distribution in terms of internal coordinates, the cartesian

displacement coordinates, the mean square amplitude matrix, and the "squared

amplitudes" are all calculated by the computer program, EIGV, written by J. H.

Schachtschneider (89) and modified for use in this investigation. The Coriolis

coupling constants may also be computed with this program if desired [see

Schachtschneider (89) for a discussion of the computation]. At the option of

the user, the potential energy distribution and "squared amplitudes" are written

on tape. The computer program, SASORT, written by the author of this text,
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uses the tape as input, orders the numerical arrays in descending order, and

identifies each value using an internal coordinate coding system. The computer

program, NFAD, which is an abbreviated version of FADJ, writes the potential

energy distribution in terms of the force constants on tape. The computer program,

PESORT, also written by the author, then orders the data in descending order and

labels the elements of the arrays with the appropriate internal coordinate code.

The programs EIGV, SASORT, and PESORT are listed in Appendix V along with in-

structions for their use. A flow diagram accompanies the listing of EIGV.

Solution of the secular equation and nonlinear least squares refinement

of the force constants for the 1,5-anhydropentitol models. Using the G. Tables

XL-XLII in Appendix II) and Z (Tables XLIII-XLV in Appendix III) matrices pre-

viously described for the 1,5-AP models, the computer program FLPO was employed

to solve the secular equation by the method of successive orthogonalization of

GF followed by Jacobi diagonalization to yield the eigenvalues, A, for the initial

set of force constant parameters listed in Table XX. The calculated frequencies

were then computed from the eigenvalues, A, using the expression Sk = 4r2v k2.

Theoretically, there should be 3N-6 calculated frequencies for the vibrational

model where N corresponds to the number of "atoms." For the 1,5-AP models,

there are 19 "atoms" and thus, 51 nonzero calculated fundamental frequencies.

The calculated frequencies for the tetrahedral 1,5-AP models, based on this

initial set of frequencies, are shown in Table XXI. The initial frequency

agreement of the calculated frequencies (Table XXI) with the crystalline infrared

and Raman spectra (Tables III-V) is noted to be in the "ballpark" which supports

the validity of the initial force field. The experimental frequencies from both

the Raman and infrared spectra of the crystalline compounds were then correlated

with these calculated frequencies with the Raman frequency being the value

correlated if a choice between Raman and infrared existed. The correlation of
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TABLE XXI

CALCULATED FREQUENCIES FOR THE 1,5-ANHYDROPENTITOL
MODELS BASED ON THE INITIAL SET OF FORCE CONSTANTS

LISTED IN TABLE XXXII

1149
1139
1113
1086
1059

1023
976
943
905
876

638
561
521
462
433

421
366
327
310
299

231
223
220
196
131

3398
3398
3398
2971
2968

2939
2937
2937
2863
2862

1462
1459
1412
1405
1397

1364
1340
1326
1316
1280

1273
1268
1256
1254
1248
1174

1144
1119
1119
1040
1039

995
989
948
872
871

651
632
588
454
449

439
362
325
293
251

231
219
215
199
136

frequencies was based on band position and distribution.

V

1,5-ALA (cm.-1)

3398
3398
3398
2970
2968

2943
2937
2934
2862
2861

1463
1460
1412
1401
1375

1373
1342
1331
1306
1301

1279
1263
1258
1242
1220
1176

1139
1132
1106
1078
1071

989
959
928
885
839

723
622
545
484
435

409
397
315
309
260

228
227
217
180
131

That is, bands in the

spectra were correlated with calculated bands having approximately the same

numerical frequency in wave numbers and/or with calculated bands distributed in

a like manner throughout an approximately equivalent region of the experimental

spectra. For an example of this last technique for band correlation, consider

the calculated bands 462, 433, and 421 cm.- 1 for 1,5-AX in Table XXI. These

V

1,5-AX

3398
3398
3398
2970
2968

2945
2938
2932
2863
2862

1463
1459
1415
1405
1391

1356
1355
1330
1323
1316

1288
1256
1252
1234
1213
1155



-139-

three bands are grouped together, locally "isolated" from other bands on either

side. The closest band to 462 cm. -1 is 521 cm. , and the closest band to 421

cm. 1 is 366 cm. -'1 The Raman and infrared spectra are next examined for three

bands in this region, essentially "isolated " from their neighbors. Examination

of the tabulated frequencies for the Raman and infrared spectra of crystalline

1,5-AX in Table III reveals that there are three bands in this region, namely

455, 437, and 418 cm.-1 These experimental bands are locally "isolated" from

neighboring bands. The nearest band to 455 cm. -is 533 cm. ,, and the nearest

band to,418 cm. 1 appears at 369 cm. 1 These three spectral bands are then

assigned to the calculated bands with frequencies 462, 433, and 421 cm. - 1 In

addition, the information provided by the water and DMSO-d6 solution spectra,

deuterated 1,5-AP spectra, and depolarization ratio measurements assists in the

frequency assignments.

The 56 initial force constant parameters (Table -XX) were then refined for. all

three models simultaneously to minimize the differences between the observed and

calculated frequencies. The nonlinear least squares technique based on the

Fletcher-Powell method, available in the computer program FLPO, was employed in

this refinement. Actually, only 54 of the listed 56 parameters were included

in the refinement. One of these parameters is a dummy and the other is a gauche

bend-bend interaction term which does not appear in the F matrices for the 1,5-AP

compounds, but was included for completeness. Therefore, the refinement involved

54 variables (force constant parameters in the SVQFF) and 144 data points (ex-

perimental frequencies for the three 1,5-AP compounds) to result in 90 statistical

degrees of freedom. The refinement converged after 24 iterations (i.e., the

ratio of successive weighted sum of squares exceeded 0.995 a total of twelve

times). The final set of force constants resulting from the refinement is listed

in Table XX. The calculated frequencies and the assigned experimental frequencies
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for the final set of refined force constants are tabulated in Tables XXII-XXIV

for 1,5-AX, 1,5-AR, and 1,5-ALA, respectively. The corresponding average

errors (mean deviations) between the observed and calculated frequencies after

force constant refinement were 5.91, 7.60, and 5.16 cm.1 for 1,5-AX, 1,5-AR,

and 1,5-ALA, respectively, for an overall average error of 6.22 cm. 1 (This

average error does not include the OH stretch bands because an attempt was not

made to improve the frequency "fit" in this region by allowing separate OH

stretch force constant parameters for the individual OH groups.)

The factored G and Z matrices resulting from the transformation to symmetry

coordinates were employed along with the final set of force constant parameters

to calculate the frequencies belonging to each of the two irreducible repre-

sentations, A' and A", for the C point group for 1,5-AX and 1,5-AR. The results
-s

0f the symmetry classification are listed in Tables XXII and XXIII and also the

results of the depolarization ratio measurements (see Tables XII and XIII). The

depolarization ratios proved to be valuable in several cases where the assign-

ment was questionable by providing additional data with which to evaluate the

assignment and permitted a check on the assignment in other cases.

EIGV was employed to compute the potential energy distribution, L matrix,

internal coordinate "squared amplitudes," and cartesian displacement coordi-

nates for each of the 1,5-AP models based on the final set of refined force

constant parameters. These data provided the basis for classifying the vibra-

tional motion of each normal mode in terms of the vibrations of the substituent

atomic groups for each of the 1,5-AP models. The potential energy distribution,

in terms of the internal coordinates, provides the relative contribution of

each internal coordinate to the molecular vibration for each normal mode. The

potential energy distributions are presented for 1,5-AX, 1,5-AR, and 1,5-ALA in



TABLE XXII

CALCULATED AND EXPERIMENTAL FREQUENCIES INCLUDING
APPROXIMATE POTENTIAL ENERGY DISTRIBUTIONS FOR

CRYSTALLINE 1,5-ANHYDROXYLITOL

Exper.
Freq.

cm.
Raman IR

Calc.
Freq.,

cm.1cm.

Sym.
Class.

Calc. Exp.

Approx. PE Dist.,
%a,b,c,d
%'

Desription e,f.Description

3383

3343

3290

2985

3387

3350

3300

2990

2970 2973

2941

2928 .2933

2896

2885 2900

2871

1472

2873

1470

3356

3356

3356

2982

2979

2946

2926

2911

2882

2880

1468

1459 1464

1439 1440

1427

1385 1391

1370 1372

1349 1356

1340 1340

1437

1410

1388

1363

1347

1345

A'

A"

A'

A'

A"

A'

A"

A'

A'

A"

A'

A"

A'

A"

A'

A"

A'

A"

OH(99.9)

OH(99.9)

OH(99.9)

ACH(90)

ACH (92)

CH(90)

CH(92)

CH(96)

ACH(95)

ACH(97)

A' HCOR(49)HCH(47)

A' HCOR 50)HCH(48)

HCC(38)AHCC(21)
HCOR(12)

AHCC 35)HCC(20)
HCOR(ll)COH(10)

A' HCC(42)AHCC(23)
HCO(12)

HCC(41HCC CC(27)
HCOR(10)HCO(lO)

HCO(56)HCC(32)
AHCC(10)

HCC(71)HCO(ll)

OH stretch (str.)

OH str.

OH str.

Asymmetric (asym.)
methylene str.

Asym. methylene str.

Methine str.

Methine str.

Methine str.

Symmetric (.sym.) methylene
str.

Sym. methylene str.

Methylene wag(4 9) coupled
with methylene scissor( 47)

Methylene wag(50) coupled
with methylene scissor(48)

Methine op bend(38) coupled
with methylene wag(33)

Methylene wag( 4 6) coupled
with methine op bend and
OH ip bend

Methine deformation (both
ip and op bend)(54) coupled
with methylene wag(28)

Methine deformation (both
ip and op bend)(51) coupled
with methylene wag(37)

Methine deformation (both
ip and op bend)(88) coupled
with methylene wag(12)

Methine deformation (both
ip and op bend)(82)

See end of table for footnotes.



TABLE XXII (Continued)

CALCULATED AND EXPERIMENTAL FREQUENCIES INCLUDING

APPROXIMATE POTENTIAL ENERGY DISTRIBUTIONS FOR

CRYSTALLINE 1,5-ANHYDROXYLITOL

Exper.
Freq.,

-1
cm.

Raman IR

Calc.
Freq,
cm.

Sym.
Class.

Calc. Exp.

Approx. PE Dist.,
%a,b,c,d Description

1320 1321 1329

1306 1298

1296 1301 1292

1285 1279 1272

1268 1267 1257

1239 1235 1207

1199 1198 1201

1143 1145 1141

1131

1120 1125 1110

1100 1100 1096

1092 1095 1095

A' A' HCO(59)HCC(19)
HCOR(19)COH(10)
AHCC(8)

A" HCO(38)HCCC32)
HCOR(30)

A' HCOR(64)HCO(19)
AHCC (15)

A" A' HCOR(46)HCO(25)
HCCC(17)AHCC (14)

A' A' COH(56)HCC(16)
HCO(14)HCOR(8)
AHCC(6)

A" COH(80)HCC(17)

A' A' COH(77)HCO(ll)
HCC(10)

A' A' CO(49)AHCC(18)
CCC15)HCORC2)

A" COR(60)AHCC(19)

A' A' CO(81),CC(16)

CCCC13)

A" CC(41)CO(33)
COR(20)

A' A' CO(28)AHCC(26)
CC(26)COH(18)
HCOR(2)

Methine deformation (both

ip and op bend)(7 8) coupled
with methylene twist(27)

Methine deformation (both
ip and op bend)(70) coupled
with methylene twist(33)

Methylene twist(79) coupled
with methine ip bend(19)

Methylene twist(60) coupled
with methine deformation
(both ip and op bend)(42)

OH ip bend(5 6) coupled with
methine deformation and CO

ip bend(30) and methylene
twist coupled with rock(l4)

OH ip bend(80) coupled with
methine op bend(l7)

OH ip bend(77) coupled with
methine deformation (both
ip and op bend)(21)

CO str.(49) coupled with
methylene twist and rock
(20) and ring CC str.(15)

Asym. CORC str.( 60) coupled
with methylene twist(21),
ring CC str.(19) and CO

str.(10)

CO str.(81) coupled with
ring vibration

CO str.(33) coupled with
ring CC(41) and COR str.

(20)

CO str.(2 8) coupled with
methylene twist and rock
(28), ring CC str.(2 6 ),
and OH ip bend(18)

See end of table for footnotes.
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TABLE XXII (Continued)

CALCULATED AND EXPERIMENTAL FREQUENCIES INCLUDING
APPROXIMATE POTENTIAL ENERGY DISTRIBUTIONS FOR

CRYSTALLINE 1,5-ANHYDROXYLITOL

Exper.
Freq. ,
cm.

Raman IR

Calc.
Freq.,

.-1cm.

Sym.
Class.

Calc. Exp.

Approx. PE Dist
%a,b,c,d

Description '

1056 1060 1049

1017 1018 014

950

933 936

905 904

896 899

635 637

565

927

901

882

655

563

A"

A'

A' Cco(47)CC(34)
AHCC(26)

A' CC(52)COR(34)

A" CC(72)AHCC(30)
HCC(18)

A' A! COR 22)AHCC(19)
CC (13)CC (ll)
CO(9)CCORC(7)
HCOR(6)COH(6)

A"

A'

A'

A"

CC(70)CCO(21)
AHCC (15)CO(12)

A' CC(61)COR(23)
AHCC(20)CCO(19)
HCC(19)

A' CCOR(25)CORC(24)

CCO(60)HCC(26)

CO str.(4 7) coupled with
ring CC str.(34) and
methylene twist and rock
(28)

Ring CC(52) and COR(34)
str.

Primarily ring CC str.(72)
coupled with methylene
twist and rock(38)

Sym. ring str. 35) coupled
with methylene twist and
rock(25) and CO str.(9)

Asym. ring str.(70) coupled
with methylene twist and
rock(18) and CO str.(12)

Sym. ring-str.(61) coupled
with methylene twist and
rock(23), CO op bend(19),
and methine op bend (19)

Sym. ring bend

CO op bend(60) coupled with
methine op bend(26)

A' A' CC(35)CCO(14)
CO(14)

A" A" CCO(43)HCC(14)
CCCI) "'

A" A" CCC(29)CCO(24)
CCOR(23)

A' A' CCC(37)CORC(24)
CCO'19)

Ring'CC str.(35) coupled
with CO op bend(14) and
CO str.(l 4 )

CO op bend(43) coupled with
methine op bend(14) and
ring CCC bend(ll)

Asym ring bend

Sym. ring bend

See end of table for footnotes.

544
538

(av.)

542

537
(av.)

455 456

533

467

429

420

437 440

418 420
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TABLE XXII (Continued)

CALCULATED AND EXPERIMENTAL FREQUENCIES INCLUDING
APPROXIMATE POTENTIAL ENERGY DISTRIBUTIONS FOR

CRYSTALLINE 1,5-ANHYDROXYLITOL

Exper.
Freq.,

-1
cm.

Raman IR

Calc.
Freq.,
cm.

Sym.
Class.

Calc. Exp.

Approx. PE Dist.,
%a,b,c,d Description

369 366

315 317

299 295

280 285

234

225

220

202

Average error

368

318

297

278

241

230

228

200

131

A' A' HCC(24)CCC(23)
CCO(15)CORC(13)
CCOR(12)

A'

A'

CCO(66)HCC(18)
CCOR(15)AHCC(12)

CCO(48)TCC(12)
TCO(lO)CCOR(9)
HCC(9)CCC(8)

A"

A"

A"

A'

CCO(102)

TCO(88)

TCO(73)

TCO(81)

TCC(52)CCOR(13)
CCO(12)CCC(10)
TCO(10)

TCC(52)CCC(27)
CCO(ll)CORC(8)

A"

A'

= 5.91 cm.1

Sym. ring bend(48) coupled
with methine op bend(24)
and CO op bend(15)

CO op bend(66) coupled with
methine op bend(18), ring
CCOR bend(15), and methyl-
ene rock(15)

CO op bend(48) coupled with
ring twist(21), OH op bend
(10), and methine op bend
(9)

CO op bend

OH op bend

OH op bend

OH op bend

Ring twist coupled with CO
op bend(12) and OH op bend
(10)
Ring twist

Just the most significant contributions to the potential energy are listed. The
sum of the components of the potential energy distribution may total more than
100% due to the presence of negative contributions resulting from negative inter-
action force constants.

AC.. denotes the "anomeric" carbon atom (i.e., the carbon atom adjacent to the
ring oxygen atom).

... OR denotes the ring oxygen atom.

TCC, TCO, and TCOR denote torsion about the CC, CO, and COR bonds, respectively.

In this column the molecular vibration for each normal mode is classified in
terms of the particular group vibrations accounting for most of the molecular
vibration.

f.
ip denotes "in-plane" bending and op denotes "out-of-plane" bending.

gThe average error (mean deviation) is computed from the difference between the
calculated and corresponding experimental frequencies, either infrared or Raman,
whichever is closest, and excludes the OH stretching bands. The maximum deviation
in Table XXII is 26.8 cm. -1 and the minimum deviation in this table is -0.5 cm. - 1
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TABLE XXIII

CALCULATED AND EXPERIMENTAL FREQUENCIES INCLUDING
APPROXIMATE POTENTIAL ENERGY DISTRIBUTIONS FOR

CRYSTALLINE 1,5-ANHYDRORIBITOL

Exper.
Freq.,
cm.

Raman IR

Calc.
Freq.,
cm.

Sym.
Class.

Calc. Exp.

Approx. PE Dist.,

3406

3350

3250

2997

2972

2943

2932

3409

3345

3279

3000

2970

2945

2934

2929

2918

2875

1468

2880

1466

1458

1419

3356

3356

3356

2982

2979

2931

2925

2921

2882

2880

1468

1460

1418

1403 1400 1412

1385 1388 1393

1365 1367

1350 1354 1344

1320

A'

A",

A'

A'

OH(99.9)

OH(99.9)

OH(99.9)

ACH(92)

A" ACH(92)

A' CH(94)

A" CH(92)

A' CH(95)

A' ACH(96)

A" ACH(97)

A' A' HCOR(53)HCH(45)

A" A' HCOR(49)HCH(48)

A"

A'

A'

A"

A'

A"

AHCC(36)HCC(27)
HCOR(14)

AHCC (42)HCC(21)
HCOR(14)

HCC(51)HCO(18)
AHCC(9)CO(7)

HCC(56)AHCC(17)

*HCO(59)HCC(29)

HCO(68)HCC(25)
HCOR(12)

OH stretch (str.)

OH str.

OH str.

Asymmetric (asym.)
methylene str.

Asym. methylene str.

Methine str.

Methine str.

Methine str.

Symmetric (sym.)
methylene str.

Sym. methylene str.

Methylene wag(53) coupled
with methylene scissor( 4 5)

Methylene wag(4 9) coupled
with methylene scissor(4 8)

Methylene wag(50) coupled
with methine op bend(27)

Methylene wag(56) coupled
with methine op bend(21)

Methine deformation
(mostly op but some ip
bend)(69)

Methine op bend(56) coupled
with methylene wag(17)

Methine deformation
(mostly ip, but some op
bend)

Methine deformation
(mostly ip with some op
bend) coupled with
methylene twist(12)

See end of table for footnotes.

Description e,fDescription



TABLE XXIII (Continued)

CALCULATED AND EXPERIMENTAL FREQUENCIES INCLUDING
APPROXIMATE POTENTIAL ENERGY DISTRIBUTIONS FOR

CRYSTALLINE 1,5-ANHYDRORIBITOL

Exper.
Freq.,
cm.

Raman IR

Calc.
Freq,
cm.

Sym.
Class.

Calc. Exp.

Approx. PE Dist.,
%a,b,c,d

Description e,f

1315 1310 1317

1290 1295

1281 1289

1265 1264 1265

1244 1245

1226

1255

1233

1202 1202 1220

1156 1156 1155

1124 1126 1131

1104 1103 1106

1082 1083

1043
(av.)

1045

1096

1042

A' A' HCO(59)HCC(28)
HCOR(1O)

A' A' HCOR(69)AHCC(20)
HCO(13)

A" HCC(45)HCOR(32 )
AHCC(12)

A" A' HCC(39)HCOR(37)
HCO(16)AHCC(10)

A'

A'

A"

A'

COH(77)CC(8)

A' COH (64)AHCC(13)
HCC(12)HCO(9)

COH(69)HCC(13)
AHCC(ll)HCO(7)

A' CO(42)AHCC(22)
CC(16).

A" A" COR(56)AHCC(27)
CC(ll)

A"

A' A'

CC 52)CO (25)
COR(22)

CO(37)CC(26)
HCO(16)COH(16)
AHCC(15)

A" A' CO(60)AHCC(23)
CC(12)

Methine deformation
(mostly ip with some op
bend) coupled with
methylene twist(10)

Methylene twist(89)
coupled with methine ip
bend(13)

Methine op bend(45) coupled
with methylene twist(44)

Methine deformation
(mostly op with some ip
bend)(55) coupled with
methylene twist and rock(47)

OH ip bend(77)

OH ip bend(64) coupled with
methylene twist and rock(17)

OH ip bend(69) coupled with
methylene twist and rock(l4)

CO str.(42) coupled with
methylene twist and rock(25)
and ring CC str.(16)

Asym. COR str.(5 6) coupled
with methylene twist(28)
and ring CC str.(11)

Asym. ring str.(74) coupled
with CO str.(25)

CO str.(37) coupled with
ring CC str.(26), methine
ip bend(16), OH ip bend(16),
and methylene twist and
rock(16)

CO str.(60) coupled with
methylene twist and rock(26)
and ring CC str.(12)

See end of table for footnotes.
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TABLE XXIII (Continued)

CALCULATED AND EXPERIMENTAL FREQUENCIES INCLUDING
APPROXIMATE POTENTIAL ENERGY DISTRIBUTIONS FOR

CRYSTALLINE 1,5-ANHYDRORIBITOL

Exper.
Freq.,

-cm.
Raman IR

Calc.
Freq.,
cm.

Sym.
Class.

Calc. Exp.

Approx. PE Dist.,
%a,b,c,d Description e,f

1024

1005 1000

993 989

925 928

878 879

832

669 668

647 649

581 582

448 451

437 433

406 406

345 342

1010

981

926

876

850

676

641

599

463

446

413

342

A' CC(40)COR(25)
AHCC (21)

A' A' CO(62)AHCC(19)

CCC15)

A" CC(63)AHCC (22)
HCC(19)CCC(15)
COR(11)

A' A' COR(41)CC(25)
CCO(17)

A' A' CC(45 )CO(16)
CCOR(15)COR(10)

CC(88)AHCC(12)
CCOR(10)

A' HCC(21)CCO(18)
CC(18)CCC(17)
AHCC(13)

A" A' CCO(53)HCC(24)

CC(15)AHCC(9)

A' A' COR(25)CC(21)
CCOR (20)CO(11)

A' A' CCOR(20)CCO(15)
CCC(14)CC(10)

A" A' CCOR(29)CCC(25)
CCO(19)

A"

A'

CCO(88)AHCC(13)
HCC(11)

A' CCO(39)CCOR(28)
COR(16)TCC(11)

Sym. ring str.( 65) coupled
with methylene twist and
rock(25)

CO str.( 62) coupled with
methylene twist and rock(21)
and ring CC str.(15)

Asym. ring str.(7 4) coupled
with methylene twist and
rock(27), methine op bend
(19), and CO op bend(l5)

Sym. COR str.(41) coupled
with ring CC str.(25) and
CO op bend(17)

Sym. ring str.(70) coupled
with CO str.(1 6 )

Asym. ring CC str.(8 8)
coupled with methylene
rock(12)

Methine op bend(21) coupled
with CO op bend(18), ring
vib.(35)'and methylene
twist and rock(13)

CO op bend(53) coupled
with methine op bend(24)

Sym. ring bend(66) coupled
with CO str.(ll)

Ring bend(44) coupled with
CO op bend(15)

Ring bend(54) coupled with
CO op bend(19)

CO op bend(88) coupled with
methylene rock(17) and
methine op bend(ll)

CO op bend(39) coupled with
ring bend and twist

See end of table for footnotes.

A"



TABLE XXIII (Continued)

CALCULATED AND EXPERIMENTAL FREQUENCIES INCLUDING
APPROXIMATE POTENTIAL ENERGY DISTRIBUTIONS FOR

CRYSTALLINE 1,5-ANHYDRORIBITOL

Exper.
Freq.,

-1cm.
Raman IR

Calc.
Freq.,
cm.

Sym.
Class.

Calc. Exp.

Approx. PE Dist.,
%a,b,c,d Description f

308

305 283

255

240

227

220

202

137

A'

A"

A'

A"

A"

A'

A"

A'

CCO(70)CCC(8)
CCOR(7)HCC(7)
TCC(7)

CCO(69)TCO(19)
HCC (6)

TCO(31)CCO(30)
CCC(21)HCC (13)

TCO (89)

TCO (77)CCO(15)

TC0(56)CC0(18)
CCC(13)

TCC(56)CCOR(14)
CCC(12)CCO(12)

TCC(51)CCC(26)
CORCC(10)CCO(8)

CO op bend(70) coupled
with ring bend and twist

CO op bend(69) coupled
with OH op bend(19) and
methine op bend(16)

OH op bend(31) coupled
with CO op bend, ring CCC
bend(21), and methine op
bend(13)

OH op bend(89)

OH op bend(77) coupled
with CO op bend(15)

OH op bend(56) coupled
with CO op bend(18) and
ring CC bend(13)

Ring twist coupled with CO
op bend(l2)

Ring twist

Average error = 7.60 cm.

Just the most significant contributions to the potential energy are listed. The
sum of the components of the potential energy distribution may total more than
100% due to the presence of negative contributions resulting from negative inter-
action force constants.
AC...denotes the "anomeric" carbon atom (i.e., the carbon atom adjacent to the
ring oxygen atom).
d .OR denotes the ring oxygen atom.
TCC, TCO, and TCOR denote torsion about the CC, CO, and COR bonds, respectively.
In this column the molecular vibration for each normal mode is classified in
terms of the particular group vibrations accounting for most of the molecular
vibration.
ip denotes "in-plane" bending and op denotes "out-of-plane" bending.

gThis band was not included in the force constant refinement.
The average error (mean deviation) is computed from the difference between the
calculated and corresponding experimental frequencies, either infrared or Raman,
whichever is closest, and excludes the OH stretching bands and the band at 169
cm.1 denoted by footnote g. In Table XXIII the maximum deviation is 36.5 cm.-1
and the minimum deviation is 0.2 cm. 1

319

306

271

238

208

(1 6 9 )g
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TABLE XXIV

CALCULATED AND EXPERIMENTAL FREQUENCIES INCLUDING
APPROXIMATE POTENTIAL ENERGY DISTRIBUTIONS FOR

CRYSTALLINE 1,5-ANHYDRO-L-ARABINITOL

Exper.
cm.

Raman

3425

3310

2983

2973

2932

2916

2879

2860

1467

1454

Freq.,
-1

IR

3428

3385

3320

2985

2976

2932

2925

2917

2879

2863

1463

1460

1410 1410

Calc. Freq.,
-1cm.

3356

3356

3356

2981

2978

2940

2926

2915

2882

2880

1469

1461

1419

1395

1381 1379

1369 1371

1343 1349

1325 1329

1378

1372

1341

1326

Approx. PE Distr.,
%a,b,c,d

OH(99.9)

OH(99.9)

OH(99.9)

ACH(92)

ACH(95)

CH(92)

CH(96)

CH(96)

ACH(96)

ACH(97)

HCOR(50)HCH(46)

HCOR(48)HCH(48)

AHCC(32)HCC(26)
HCOR(ll)COH(8)

HCC(54)AHCC(21)

HCC(50)AHCC(14)
HCO(lO)COH(8)

HCC(47)HCO(28)
AHCC 17)

HCO(45)HCC 35)
AHCC(ll)

HCO(61).HCC(26)
HCOR(13)

Description

OH stretch (str.)

OH str.

OH str.

Asymmetric (asym.)
methylene str.

Asym. methylene str.

Methine str.

Methine str.

Methine str.

Symmetric (sym.)
methylene str.

Sym. methylene str.

Methylene wag(50) coupled
with methylene scissor(46)

Methylene wagC48) coupled
with methylene scissor(48)

Methylene wag(43) coupled
with methine op bend(26)

Methine op bend(54)
coupled with methylene
wag(21)

Methine op bend(50)
coupled with methylene
wag(18)

Methine deformation (both
op and ip bend)(75)
coupled with methylene
wag(22)

Methine deformation (both
op and ip bend)(80)
coupled with methylene
wag(l4)

Methine deformation
(mostly ip with some op
bend)(87) coupled with
methylene twist(18)

See end of table for footnotes.
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TABLE XXIV (Continued)

CALCULATED AND EXPERIMENTAL FREQUENCIES INCLUDING
APPROXIMATE POTENTIAL ENERGY DISTRIBUTIONS FOR

CRYSTALLINE 1,5-ANHYDRO-L-ARABINITOL

Exper. Freq.,
-1

cm.
Raman IR

Calc. Freq.,
cm.1cm.

Approx. PE Distr.,
%a,b,c,d Description

1309 1313

1302 1300

1281 1279

1269 1262

1248

1233 1233

1216 1217

1150 1151

1136 1145

1108
(av.)

1108

(av.)

1092 1093

1313

1304

1284

1263

1251

1234

1199

1163

1130

1108

1097

HCOR(39)HCO(20)
AHCC (19)HCC (l1)

HCOR(39)AHCC(22)
HC0(12)HCC(ll)

HCO (39)HCOR(30)
HCC(21)COH(12)
AHCC 8)

HCOR(44)AHCC(21)
COH(16)HCC(15)

COH(54)HCC(13)
HCOR(ll)HCO(10)

COH(57)HCC(15)
HC(12)

COH(77)HCC(14)
HCO(8)

AHCC (25)CC 21)CO(21)C0(18)
HCC (l7 )COH (1l)COR (11)
HCO (8)

CO(34)AHCC(24)
COR(l9)CC(17)
CCC(9)

CO(73)CC(12)
AHCC(8)CCC 8)

COR(41)CC(30)CO(26)

Methylene twist and rock
(58) coupled with methine
deformation (both ip and
op bend)(31)

Methylene twist(61) coupled
with methine deformation
(both ip and op bend)(23)

Methine deformation (both
ip and op bend)(60) coupled
with methylene twist(3 8)
and OH ip bend(12)

Methylene twist(65) coupled
with OH ip bend(16) and
methine op bend(15)

OH ip bend(54) coupled with
methine deformation (both
ip and op bend)(23) and
methylene twist and rock(l5)

OH ip bend(57) coupled with
methine deformation (both
ip and op bend)(27)

OH ip bend(77) coupled with
methine deformation (both
ip and op bend)(22)

Methylene rock(31) coupled
with ring str.(32), CO str.
(18), methine deformation
(25), and OH ip bend(ll)

Asym. ring str.(45) coupled
with methylene twist and
rock(27) and CO str.(3 4 )

CO str.(73) coupled with
ring vib.(20) and methyl-
ene rock(9)

Asym. COR str.( 41) coupled
with ring CC str.(30) and
CO str.(26)

See end of table for footnotes.
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TABLE XXIV (Continued)

CALCULATED AND EXPERIMENTAL FREQUENCIES INCLUDING
APPROXIMATE POTENTIAL ENERGY DISTRIBUTIONS FOR

CRYSTALLINE 1,5-ANHYDRO-L-ARABINITOL

Exper. Freq.,
cm.

Raman IR

1067 1074

1057 1056

1005 1008

948

926

876

837

758

633

947

927

880

Calc. Freq.,
cm.

1074

1061

988

941

931

873

840

7,55

851

743

637636

Approx. PE Distr.,
%a,b,c,d

CC(35)CO(27)
AHCC (27)COH (10)
HCC(10)

CC(56)COR(28)
CO(22)AHCC(ll)

CC 44)AHCC(19)
COR(13)CO(10)

cc(61)Cco(18)
AHCC(14)CCOR(12)

CO(40)AHCC(26)
CC(26)COR(14 )
HCC(12)

CC(58)COR(23)
HCC(17)AHCC(16)
CCO(11)

CC(30)CO(27)COR(21)
CCO(12)

CCOR(21)CC(l6)C0(14)
CCO(l0)CORC 9)CCC(7)
HCC (6)

CCOC25)CC(21)HCC(12)
CORC (11)CCOR(8)

Description

Asym. ring str.(35)
coupled with CO str.(27),
methylene twist and rock
(30), OH ip bend(10), and
methine op bend(10)

Sym. ring str.(84) coupled
with CO str.(22) and
methylene rock(17)

Asym. ring str.(57) coupled
with methylene twist and
rock(23) and CO str.(10)

Asym. ring str.(87) coupled
with methylene rock(22)

CO str.( 40) coupled with
ring str.(40), methylene
twist and rock(27), and
methine op bend(12)

Sym. ring str.(81) coupled
with methine op bend(17),
methylene twist and rock
(17), and CO op bend(ll)

Sym. ring str.(51) coupled
with CO str.(27) and CO op
bend(12)

Ring bend(53) coupled with
CO str. (14) and methine op
bend(6)

Ring bend(40) coupled with
CO op bend(25) and methine
op bend(12)

CCO 34)CC(17)CCOR(17)

CCO(40)CC(13)CCC(1l)

CO op bend(34)
ring bend(34)

CO op bend(40)
ring bend(24)

coupled with

coupled with

CCO(46)HCC(24)
CORC(15)

CO op bend(46) coupled with
methine op bend(24) and
CORC bend(15)

See end of table for footnotes.

546546

483

540

483

430 426
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TABLE XXIV (Continued)

CALCULATED AND EXPERIMENTAL FREQUENCIES INCLUDING
APPROXIMATE POTENTIAL ENERGY DISTRIBUTIONS FOR

CRYSTALLINE 1,5-ANHYDRO-L-ARABINITOL

Exper. Freq.,
-1cm.

Raman IR

408

Calc. Freq.,
cm.cm.

408

383

314

296

256

403

380

302

285

260

296

233 237

236

222

176 185

132

Approx. PE Distr.,
%a,b,c,d

CCC(31)CCO(27)
COR(1O)CCOR(7)

CC0(44)CCC(25)
CCOR(15)AHCC(ll)
TCC(ll)

CCO (38)CCOR(l9)
TCC(15)CORC(12)

CCO(102)

CC0(38)TCO(26)
HCC(16)ccc(16)

TCO(90)

TCO(82)

TCO(62)CCO(24)

TCC 49)CCOR(18)
CCO(l0)CCC (7)

TCC(50)CCC(28)
CCO(9)

Description

Ring bend(48) coupled with
methine op bend(27)

Ring bend and twist(51)
coupled with CO op bend
(44) and methylene wag(ll)

Ring bend and twist(46)
coupled with CO op bend
(38)

CO op bend(102)

CO op bend(38) coupled
with OH op bend(26),
methine op bend(16), and
ring CCC bend(16)

OH op bend(90)

OH op bend(82)

OH op bend(62) coupled
with CO op bend(24)

Ring twist(7 4) coupled
with CO op bend(10)

Ring twist(78) coupled
with CO op bend(9)

Average error = 5.16 cm. -lg

Just the most significant contributions to the potential energy are listed. The
sum of the components of the potential energy distribution may total more than
100% due to the presence of negative contributions resulting from negative inter-
action force constants.

AC .. denotes the "anomeric" carbon atom (i.e., the carbon atom adjacent to the
ring oxygen atom).

· c OR denotes the ring oxygen atom.

dTCC, TCO, and TCOR denote torsion about the CC, CO, and COR bonds, respectively.

In this column the molecular vibration for each normal mode is classified in
terms of the particular group vibrations accounting for most of the molecular
vibration.

ip denotes "in-plane" bending and op denotes "out-of-plane" bending.

The average error (mean deviation) is computed from the difference between the
calculated and corresponding experimental frequencies, either infrared or Raman,
whichever is closer, and excludes the OH stretching bands. In Table XXIV the
maximum deviation is -20.2 cm. 1 and the minimum deviation is 0.3 cm. -1
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Tables XXII, XXIII, and XXIV, respectively. This information is essentially the

heart of the interpretation of the vibrational spectra. The molecular vibrational

motion was then classified in terms of the particular atomic group vibrations

making the greatest contributions to the potential energy for each frequency or

normal mode from the data computed by the program EIGV. The results of this

classification appear in the last column in Tables XXII-XXIV. The definitions

of several of the atomic group vibrations listed in these tables are presented in

Fig. 29.
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DISCUSSION OF RESULTS

GENERAL COMMENTS CONCERNING THE NORMAL COORDINATE ANALYSES

In general, the normal coordinate analyses of the1 ,5-AP models were a

success. The computer methods of J. H. Schachtschneider (89) with appropriate

modification coupled with nonlinear least squares refinement of the force con-

stants appear to provide the means for-successful analyses and interpretation

of the vibrational spectra of large, complex 1 5 molecules, at least of the mono-

saccharides. The successful application of the nonlinear least squares refine-

ment technique based on the Fletcher-Powell method has been the key to the

mathematical treatment of the molecular vibrations of the 1,5-AP compounds,

since the commonly used linear refinement technique could not be made to converge

for these compounds.

The quality of the normal coordinate computations for the 1,5-AP compounds

can be estimated from a number of observations.

1. The average error between the calculated and experimental frequencies
is noted to be numerically small (6.22 cm.-1). This observation
suggests that the 1,5-AP model geometry and the SVQFF are reasonable
approximations to the real molecule.

2. The same SVQFF was used in the calculation of frequencies for all
three models with the resulting average errors in the three cases
being numerically small and of the same order of magnitude (5.91,
7.60, and 5.16 cm.-1 for 1,5-AX, 1,5-AR, and 1,5-ALA, respectively).
This observation supports the validity of the force field employed
in the calculations.

3. The calculated frequencies for the three models tend to reproduce the
distribution of bands in the 1,5-AP vibrational spectra. The agree-
ment between calculated and experimental band distribution is evident

15
The reader is reminded that in this text the termcomplex is used to describe
those molecules with several different atomic groups.
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in the bar graph representation of the 1,5-AP spectra shown in Fig. 30.
This observation is probably a more important indicator of the validity
of the normal coordinate calculations than is the small average error
value.

4. The analysis of the contributing group vibrations for the 1,5-AP
spectral bands, which is based on the potential energy distributions
in Tables XXII-XXIV, is in agreement with the group frequency corre-
lation charts for those regions of the spectrum where the charts may be
applied. This analysis also agrees with Snyder and Zerbi's interpreta-
tion of the tetrahydropyran spectrum (56).

5. The elements of the final SVQFF matrix in this investigation are, in
general, numerically similar to Snyder and Zerbi's force field elements
with the differences occurring in the hundredths place.

Several of the "new" interaction force constants which result from the intro-

duction of hydroxyl groups to the tetrahydropyran ring are noted to have negligible

values. These constants are primarily bend-bend interactions. However, when all

the interaction force constants are compared with respect to magnitude, the CO

stretch-bend interaction force constants as a group are found to contain the most

significant members of any other group. The contribution of the CO stretch-bend

interactions to the 1,5-AP force field is a major difference between the force

fields of tetrahydropyran and the 1,5-AP compounds (models).

The standard errors in the force constants resulting from the nonlinear re-

finement (see Table XX) are observed to be larger, by a factor of about 2 to 10,

than the standard errors listed by Snyder and Zerbi (56) resulting from the linear

force constant refinement in the case of the aliphatic ethers. This may be a

direct consequence of the fact that the nonlinear refinement in the analyses of

the 1,5-AP compounds was based on 90 statistical degrees of freedom, while the

linear refinement in the analyses of the aliphatic ethers was based on 171 degrees

of freedom. Another reason for the discrepancy may be that the force constant

refinement in the investigation of the 1,5-AP compounds was based on a nonlinear

least squares technique in which the estimation of standard error is not as
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straightforward as for the linear least squares technique employed by Snyder and

Zerbi. [The reader may wish to compare the method of estimating the standard

error in the linear refinement technique (Appendix IV) with the method for the

nonlinear technique (page 131).]

A plot of eigenvalues vs. perturbation number reveals that the final set of

eigenvalues for the 1,5-AP models were approached asymptotically, for the most

part, in the nonlinear Fletcher-Powell refinement.

The average errors between the calculated and experimental frequencies are

5.91, 7.60, and 5.16 cm. -1 for 1,5-AX, 1,5-AR, and 1,5-ALA, respectively, which

excludes the three OH stretching bands. The overall average error is 6.22 cm.

This agreement is better than Snyder and Zerbi (56) obtained for tetrahydropyran

(average error 12.5 cm. -1) even though they did not attempt to assign the CH

stretch region of the spectrum. In fact, the agreement is better than these

workers obtained for the entire series of aliphatic ethers (average error 10.4

cm.- ). The improved agreement between calculated and experimental frequencies

resulting from the normal coordinate analyses of the 1,5-AP compounds is

probably the result of including several additional interaction force constants

that were excluded by Snyder and Zerbi. A few of these force constants were

determined to have significant magnitude.

The close agreement between the calculated and experimental frequencies

for the 1,5-AP compounds, as indicated by the low overall average error, suggests

that the assumption of tetrahedral geometry for the models was reasonable. In-

deed, the bond angles of the real molecules would not be expected to deviate from

the ideal tetrahedral angle by more than a few degrees. Most of the averaged

bond lengths used in the models should not vary more than a few hundreths of an
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angstrom from those of the real molecules. However, the frequency agreement

might have been even better had the exact molecular geometry been known.

The frequencies were calculated for the 1,5-AR model with the lower

portion of the ring, i.e., C2-C3-C4, being made "flatter." That is, the angle

of intersection between the planes passing through C2-C3-C4 and C1-C2, C4-C5 of

the ring was reduced incrementally in a number of calculations keeping the force

field constant. The average error was plotted vs. the CCCO(r) dihedral angle

(initially 60° ) which is related to the angle of intersection of the ring

planes. The result was that the average error decreased until the dihedral angle

reached 58° after which the average error began to increase as the dihedral

angle decreased. This observation suggests that the real molecule may be

slightly "flatter" than the assumed 1,5-AR model by a few degrees in the CCCO(r)

dihedral angle which may account for the somewhat higher average error for this

compound. This suggestion is partially supported by the x-ray diffraction data

reported for methyl B-D-ribopyranoside (123) in which the lower portion of the

ring is observed to be somewhat "flatter" by a few degrees in the CCCO(r) dihedral

angle. However, a crystal structure study of 1,5-AR must be completed before

the validity of this suggestion based on normal coordinate calculations can be

established.

The potential energy distribution (Tables XXII-XXIV) was used to

characterize the calculated frequencies (therefore, the assigned frequencies

also) as to the dominant group vibrations. The potential energy contributions

of each internal coordinate comprising a particular group vibration (see Fig. 29),

e.g., methylene "wag" which involves the internal coordinates <HCO(r) and <HCC,

are summed to estimate the contribution of that atomic group vibration to the

potential energy of a calculated frequency .The characterization of each of the



calculated frequencies in terms of atomic group vibrations appears in the last

column of Tables XXII-XXIV. This information simplifies the correlation with

group frequency charts and interpretation of the 1,5-AP spectra.

Examination of the potential energy distributions for 1,5-AX, 1,5-AR, and

1,5-ALA in Tables XXII-XXIV reveals that the vibrational bands are highly coupled;

that is, more than one group vibration contributes significantly to the molecular

vibration. This extensive vibrational coupling is the primary reason for the

failure of the traditional group frequency approach for interpreting complex

vibrational spectra. A comparison of Tables XXII-XXIV shows that corresponding

calculated frequencies for each of the three 1,5-AP models exhibit essentially

equivalent potential energy distributions. Further examination of Tables XXII

and XXIII, corresponding to 1,5-AX and 1,5-AR, provides the observation that

several of the corresponding calculated frequencies for the two models that

differ by more than 10 cm. - 1 involve internal coordinates of the OH group at

C3 in the potential energy distribution, as might be expected.

The assigned symmetry species for the calculated frequencies for 1,5-AX

and 1,5-AR resulting from the solutions of the secular determinants using the

factored G and Z matrices (factored by the introduction of symmetry coordinates)

are in agreement, for the most part, with the symmetry species determined from

the depolarization ratio measurements. In most of the cases where there is a

conflict between the two symmetry classifications, the depolarization ratio is

questionable because the spectral band is overlapped with another. In this

situation, an accurate depolarization ratio cannot be determined. The only

exception to the above statements is provided by the 1,5-AR spectral band at

648 cm. The symmetry classification from the depolarization ratio measurement

is in conflict with the calculated symmetry classification from the normal



coordinate computations. In this case, the band is not significantly over-

lapped with another. However, the band is quite weak which makes the depolari-

zation ratio measurement questionable. In general, the depolarization ratio

measurements agree with the calculated symmetry species.

The agreement between the experimental and calculated frequencies (i.e.,

average error) is approximately the same for the 1,5-AP models. In addition,

the force fields for the 1,5-AP models are identical, with the exception of one

or two numerically small interaction constants. Therefore, the differences in

the spectral band positions (frequencies) between compounds (see Fig. 31 for a

comparison of the Raman spectra and also Fig. 32 for a comparative bar graph of

the Raman spectra for the 1,5-AP compounds), which tend to be reproduced by the

calculated frequencies (see Fig. 30), must be the result of differences in the G

matrix, primarily. The G matrices contain 862 nonzero elements each for the

1,5-AP models. There are 160 elements that differ between the G matrices of

1,5-AX and 1,5-AR and 150 elements that differ between the G matrices of 1,5-AX

and 1,5-ALA. These discrepancies are the result of the differences in the

orientation of the hydroxyl groups, that is, axial vs. equatorial, between models.

Since the bond angles and bond lengths remain the same, the orientation of the

hydroxyl groups is the dominant source of frequency differences between the

vibrational spectra of the 1,5-AP compounds. The frequency variations may then

be attributed primarily to a kinetic energy effect rather than a potential

energy effect.

The NMR spectra of the 1,5-AP compounds were measured in this investigation

in anticipation that they would provide conformational information regarding the

1,5-AP solutions. Unfortunately, the NMR spectra of the 1,5-AP compounds in D20
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and DMSO-d 6 do not offer much conformational information. The NMR spectra are

much too complex to analyze. The series of spectral bands in the region from

6 4.2 to 6 2.7 p.p.m. in the 1,5-AX and 1,5-ALA D20 NMR spectra appears as a

much condensed set of bands in the region from 6 4.0 to 6 3.6 p.p.m. in the

1,5-AR D20 spectrum (see Fig. 3-5). This may suggest rapid interconversion

between conformations for 1,5-AR. (The strong band at approximately 6 4.6

p.p.m. is due to the OH impurity in the D20.) The DMSO-d 6 NMR spectrum for

1,5-AR displays OH bands between 6 4.0 and 6 5.0 p.p.m. (see Fig. 7). That

these are OH bands is demonstrated by the fact that these bands disappear when

D20 is added to the system [for example, compare Fig. 8a with Fig. 8b]. In

summary, it is difficult to gain any evidence for the most stable conformer

existing in solution for the 1,5-AP compounds from the NMR spectra because of

their complexity. However, later in this text it is shown that some conforma-

tional information is obtained from the Raman solution spectra.

The SVQFF developed in this investigation of the 1,5-AP compounds is

expected to provide a reasonable initial force field for normal coordinate

analyses of the pentoses. This force field should result in the simplification

of the task of initially correlating the calculated frequencies with the experi-

mental data. The additional interaction force constants which result from the

introduction of a C1 hydroxyl group in going from the 1,5-AP compounds to the

pentoses may be set equal to zero in the initial force field and evaluated

later in the force field refinement after the frequency correlation is accomplished.

The vibrational spectra of the 1,5-AP compounds (both crystalline and aqueous

solution) have been interpreted in this study based on the normal coordinate

analyses. In addition to providing important spectral data for a class of

compounds previously unstudied, these interpretations should serve as a guide in

�
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the assignment of other carbohydrate spectra. The previous interpretations of

carbohydrate spectra.which were based on the normal coordinate analysis of

tetrahydropyran may be reevaluated with the results of this study,:since the

1,5-AP compounds provide a more closely related saccharide model compound than

does tetrahydropyran.

The results of the spectra analyses for the 1,5-AP compounds will now be

discussed for each of the compounds individually.

DISCUSSION OF THE INDIVIDUAL 1,5-ANHYDROPENTITOL
VIBRATIONAL SPECTRA

1,5-ANHYDROXYLITOL

Interpretation of the Solid State Spectra

In general, the Raman and infrared spectra for 1,5-AX in the solid state

are complementary. Most of the spectral bands appear in both spectra, which

should be the case, since the fundamental bands for the 1,5-AP compounds are both

Raman and infrared active. A few additional bands appear in the infrared. These

bands are suspected to be overtone or combination bands. -It is a well-known fact

that combination and overtone bands are more likely to be observed in the infrared

spectrum than in the Raman spectrum.

The possibility of spectral aberrations in the infrared spectra of the 1,5-AP

pellets which might result from interaction with the potassium bromide was in-

vestigated. The infrared spectra of the 1,5-AP compounds were recorded as Nujol

and Fluorolube mulls. No spectral differences were observed when the mull spectra

and pellet spectra were compared.

The interpretation of the crystalline 1,5-AX vibrational spectra (infrared

and Raman) has essentially been accomplished by the normal coordinate analysis.



The resulting potential energy distributions and their characterization in terms

of atomic group vibrations (see Table XXII and Fig. 29) are basically the

spectral interpretation. Only a few comments concerning the interpretation of

the 1,5-AX spectra are required regarding those points not evident from the table.

In the following discussions, the spectral bands will be referred to by their

frequencies in wave numbers (cm.1-). The Raman frequency will be reported first

with the corresponding infrared frequency following in parentheses. Any ex-

ceptions to this convention will be noted when they occur. (The reader may wish

to refer to the crystalline 1,5-AX spectra in Fig. 9 and 10 and the tabulated

frequencies in Table III for the discussion to follow. The comparative bar

graphs in Fig. 30 and 31 may also be helpful.)

There are three OH stretching bands observed in the solid state spectra at

3383(3387), 3343(3350), and 3290(3300) cm.- However, the normal coordinate

computations predict three bands in this region of the same frequency, 3356 cm. 1

The reason for this is that only one OH stretching force constant was used in the

force field, which is equivalent to saying that the three OH groups have identical

bond strengths. This assumption is invalid as the spectra demonstrate. One

might use three independent OH force constants to rectify this situation. Never-

theless, the final results would not indicate a great improvement in the average

error because the three OH stretching force constants would be averaged for the

three molecules, and these bands differ widely in frequency for each compound

because of the varying degrees of hydrogen bonding. The OH stretching bands are

independent of the rest of the vibrational spectrum. Therefore, the OH stretching

force constants could be set equal to zero without affecting the normal coordinate

calculations. It is just as reasonable to employ only one force constant for OH

stretching to make the analysis complete, but to disregard the contribution of the

OH stretching bands to the average error. The differences between observed and
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calculated frequencies in this region of the spectrum are not indicative of the

frequency agreement for the rest of the vibrational spectrum, so to exclude these

bands from the average error computation is justifiable.

The mathematical analysis predicts seven CH stretching bands. Only six

bands are seen in the individual Raman and infrared spectra. However, when the

two spectra are compared, one observes that the seventh band appears at 2941 cm.

in the infrared spectrum and is not seen in the Raman spectrum. Correspondingly,

the shoulder at 2896 cm.- 1 in the Raman spectrum is not observed in the infrared

spectrum.

The spectral region from 1472(1470) cm. -1 through 1340(1340) cm. - 1 is charac-

terized primarily by methylene "wag" coupled with methine deformation.' An inter-

esting observation is that the bands at 1472(1470) cm. - 1 and 1459(1464) cm.- 1 are

not pure methylene "scissoring" bands as might be expected, but are equally coupled

with methylene "wag" resulting in a more complex group vibration. Two bands ob-

served in the infrared, but not Raman spectrum at 1402 and 1397 cm. 1, have not

been assigned to fundamental vibrations. These bands are weak shoulders which

the author suspects might arise from a combination of fundamentals, i.e., combi-

nation bands. Possible combinations which might result in each of these bands are

presented in Table XXV to suggest that such bands are possible in this region of

the spectrum. Further support for the argument that these bands are combination

bands comes from the fact, stated above, that such bands are more likely to appear

in the infrared than Raman spectrum.

The next region, from 1320(1321) cm.-1 through 1285(1279) cm. 1, is distin-

guished by primarily methylene "twist" coupled with methine deformation.



TABLE XXV

SUGGESTED COMBINATION BANDS IN THE VIBRATIONAL SPECTRA
OF CRYSTALLINE 1,5-ANHYDROXYLITOL AND POSSIBLE
COMBINATIONS WHICH MIGHT RESULT IN SUCH BANDS

Suspected Combination Band, Possible Combination,
cm. 1 cm.

1402(IR) 2 x (1018) - (637) = 1399

1397(IR) (1199) + (1095) - (899) = 1395

1168(IR) (1095) + (1018) - (936) = 1177

1052(IR) (1018) + (936) - (899) = 1055

928(IR) 2 x (1060) - (1198) = 922

IR designates that the band is observed in the infrared spectrum.

The numbers shown in parentheses are the fundamental band frequencies
in wave numbers.

The spectral bands at 1268(1267), 1239(1235), and 1199(1198) cm. -1 are

interpreted as primarily COH bending bands (OH in-plane bending). This inter-

pretation is supported by the fact that the corresponding bands in the spectra

of deuterated 1,5-AX (see Fig. 15 and 16 along with Table VI) are reduced in

relative intensity.

A very weak infrared band appearing at 1168 cm. -1 is not assigned to a

fundamental vibration. The author suspects that this band is a combination

band. A possible combination which might result in a band in this region is

presented in Table XXV.

From 1143(1145) cm. -1 through 1120(1125) cm. -1, the spectral bands are

attributed to CO(H) and CO(r) stretching vibrations, where (r) designates the

pyranose ring oxygen atom. A calculated band in this region at 1131 cm. 1 is

not observed in either the Raman or infrared spectrum. However, it is possible
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that this band is present, but hidden because of the overlapping band tails of

the bands at 1143(1145) and 1120(1125) cm.- 1

The bands in the region from 1100(1100) cm. -1 through 896(899) cm.-1 are

assigned to CO stretching vibrations and ring stretching vibrations coupled with

methylene "twist" and "rock." A shoulder appears in the infrared spectrum at

1052 cm. This band could be a combination band. A possible combination is

presented in Table XXV. Another shoulder, although much weaker, is noted in the

infrared at 928 cm.- 1 This band also does not correlate with the set of calculated

frequencies. The author suggests that this band is a combination band (see Table

XXV). The normal coordinate calculations predict a band at 950 cm.- which is not

observed in either the Raman or infrared spectrum. Perhaps, the intensity of

this band is too weak for the band to be detected or the band may be masked by

the strong band at 933(936) cm. -1

The spectral region from 635(637) cm. -1 through 315(317) cm. -1 is dominated

by ring vibrations, bending, and stretching, coupled to a lesser extent with

methine deformation or methylene "rock." In this region, a shoulder appears at

533(533) cm. -1 in both the Raman and infrared spectra which does not correlate

with the calculated frequencies resulting from the mathematical analysis. The

author suggests that this band is the result of band splitting, producing two

bands at 544(542) and 533(533) cm. 1, caused by vibrational coupling within the

crystal lattice. In other words, the splitting of a fundamental vibrational band

into two bands is the result of the crystalline state of the compound. The position

of the unperturbed fundamental band might be estimated to appear at 538 cm. -1 which

is the average of 544 and 533 cm.- 1 The solution spectra of 1,5-AX offer support

for this argument (see Fig. 21 and Table IX). A single band is observed at 535

cm. -1 in the water solution spectrum and at 536 cm. 1 in the DMSO-d6 solution
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spectrum. Furthermore, an average value of 538 cm. -1 is in closer agreement with

the calculated frequency corresponding to the fundamental band which is 533 cm. 1

Potassium bromide absorbs strongly in the infrared region below 300 cm. 1,

so the measured infrared spectrum is limited to the region above 300 cm. 1 The

Raman spectrum, on the other hand, can be recorded below 300 cm. - , but below

150 cm. 1 Rayleigh scattering and grating ghosts (with the Spex Raman spectrom-

eter equipped with an Argon ion laser employed in this investigation) mask the

spectral bands of crystalline compounds.

The spectral bands at 299(295) and 280(285) cm. -1 are assigned to CO(H)

deformation.

The weak Raman bands at 234, 225, and 220 cm. - 1 are assigned to CO(H) tor-

sional vibrations (OH out-of-plane bending). The Raman spectrum of a magnesium

oxide pellet displays two weak, broad bands at 232 and 212 cm. 1 with the wave-

length of the laser beam at 5145 A. and the slit conditions similar to those

employed for the 1,5-AX pellet spectra. These bands are grating ghosts as demon-

strated by the fact that they shift in frequency when the wavelengths of the

laser beam is changed to 4880 A. This observation suggests that the bands at 234

and 220 cm.- 1 in the crystalline 1,5-AX Raman spectrum may be the result of

grating ghosts. To investigate this possibility, the Raman spectrum of crystalline

1,5-AX was recorded with the wavelength of the laser beam set at 4880 A. The two

bands at 234 and 220 cm. - 1 remained unshifted which indicates that they are real

vibrational bands.

The Raman band at 202 cm.-1 is attributed to a ring twisting vibration. The

calculations predict a band at 131 cm. 1 due to a ring twisting vibration, but

this band cannot be detected in the solid state Raman spectrum because of the
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Rayleigh scattering and grating ghosts. Although the grating ghosts did not

appear in the 1,5-AX solution spectrum, a band at approximately 131 cm.-1 could

not be detected. If such a band does exist in the vibrational spectrum, it is

probably extremely weak, too weak to be recorded in the solution spectrum.

Solution Spectra of 1,5-Anhydroxylitol

The concentrated water solution (more than 25%) spectrum of 1,5-AX appears

in Fig. 21 and the frequencies for both the water and DMSO-d6 solution spectra

are tabulated in Table IX. (The spectra of the more concentrated solutions were

observed to be quite similar to the less concentrated solutions except that the

spectral bands were more intense in the former spectra.) The solution spectra

provide a comparison of the vibrational dynamics of 1,5-AX in solution with that

for the compound in the solid state. The concentrated water solution spectrum

may be used as a substitute for the melt spectrum which could not be recorded

in this investigation. In addition, the effect of solvent type on the vibrational

spectrum can be estimated from a comparison of the solution spectrum of 1,5-AX

in water, an amphiprotic solvent, with the solution spectrum of 1,5-AX in DMSO-d 6,

an aprotic solvent.. Such an examination (see Table IX) suggests that the solvent

type has very little effect on the spectrum, at least at concentrations greater

than 30% by weight, because the two spectra are almost identical. Furthermore,

the solvent itself does not appear to alter the spectrum to any large extent,

since the solution spectral bands correlate well with the solid state spectral

bands. (The correlation of the solution spectra with the solid state Raman

spectrum is presented in Table XXVI.) Some of the solution spectral bands are

shifted in frequency or are broadened from the corresponding bands appearing in

the solid state spectrum, but these deviations are suggested to result from the

rotation of the molecules rather than from the interaction with the solvent.
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TABLE XXVI

CORRELATION OF THE 1,5-ANHYDROXYLITOL SOLUTION SPECTRA

(WATER AND DMSO-d6 ) WITH THE SOLID STATE RAMAN SPECTRUM

Raman, cm. 1

2985
2970
2928
2896
2885
2871
1472
1459
1439
1427
1385
1370
1349
1340
1320

1306
1296
1285
1268
1239
1199
1143
1120
1100
1092
1056
1017
933
905
896

635
544
533
455
437
418
369
315
299
280

H20 Solution, cm.-1

2985

2912

2875 (broad)
1469
1462

broad band
broad band

1385
1368

lost in background
lost in background

1325
1313

hidden in broad band
hidden in broad band

1285 (broad)
hidden in broad band

1232
1202
1140
1123
1098
1092
1062
1023
941

not visible
896
812(new)
630
535

456
437
416

broad band
.broad band

DMSO-d 6

Solution, cm.

2972

2908

2861(broad)
1470
1460
1439

broad band
1380
1370

lost in background
lost in background

1319
1312

hidden in broad band
hidden in broad band

broad bend
hidden in broad band

1227
1196
1142
1123
1101

1097
solvent band
solvent band

946
not visible

899
812(new)

solvent band
536

457
439
413

solvent band
solvent band
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In Table XXVI, one notes that a "new" spectral band appears at 812 cm.

in the solution spectra. This band does not appear in the solid state spectra and is

not predicted by the mathematical analysis. This band is suspected to result from

a small proportion of the 1,5-AX molecules existing in the alternate chair con-

formation in solution. The conformational freeenergy calculations, in Table XVI,

suggest that only about 5% of the molecules exist in the alternate conformation

in solution at equilibrium. Furthermore, based on other information this is a

reasonable region of the spectrum to expect a band due to the alternate conformer.

The band at 812 cm. 1 may be the most intense band in the spectrum of the alter-

nate conformer which would explain why it is seen and no other "new" bands are

observed. Depolarization ratio measurements for this band classify it as be-

longing to the symmetric symmetry species A'. These bands are usually more

intense in the Raman spectrum than the antisymmetric bands, A".

Spectra of Deuterated 1,5-Anhydroxylitol

The vibrational spectra of crystalline deuterated 1,5-AX were measured for

the purpose of providing additional information to assist the assignment of the

1,5-AX solid state spectral bands, especially the assignment of the COH defor-

mation bands.

In general, the spectra of deuterated 1,5-AX is characterized by the appear-

ance of several (11) "new" bands, the decrease in relative intensity of several

bands (10), and the increase in relative intensity of other bands (2). (The

reader may wish to compare the spectra of deuterated 1,5-AX, Fig. 15 and 16 and

summarized in Table VI, with the spectra for 1,5-AX, Fig. 9 and 10 and summarized.

in Table III.) The bands that were reduced in relative intensity were found to

contain a significant contribution of COH bending. An examination of the
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deuterated 1,5-AX spectra reveals that the compound was not completely deuter-

ated, i.e., 100%, after pellet preparation.

1,5-ANHYDRORIBITOL

Interpretation of the Solid State Spectra

The interpretation of the 1,5-AR solid state spectra (Fig. 11 and 12 along

with Table IV) is again based upon the potential energy distributions expressed

in terms of the various group vibrations (see Table XXIII and Fig. 29) which

result from the normal coordinate computations. In keeping with the discussion

of the 1,5-AX vibrational spectra, only those points of the interpretation re-

quiring further comment will be presented. In the following discussion, the

frequency, in wave numbers, of the Raman band will be given first followed by

the corresponding frequency for the infrared band in parentheses, unless other

wise indicated.

The three OH stretching bands at 3406(3409), 3350(3345), and 3250(3279) cm.

are assigned to the three calculated bands of the same frequency, 3356 cm.-1 As

stated in the discussion of the 1,5-AX spectra, this is a result of using only one

OH stretching force constant. These bands are not included in the computation of

the average error because they are not representative of the frequency agreement

for the rest of the spectrum. An interesting observation is that the middle OH

stretching band which occurs at 3350(3345) cm.- 1 is at approximately the same

position as the middle OH stretching band for 1,5-AX which is at 3343(3350) cm. -1

The other two bands are spread further apart for 1,5-AR, 3406(3409) cm. - 1 for 1,5-

AR versus 3383(3387) cm.- 1 for 1,5-AX and 3290(3279) cm. - 1 versus 3290(3300) cm.- 1

This observation suggests that there are differences in the hydrogen bonding in

the two crystalline compounds.
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Again, one notes that the calculations predict seven CH stretching bands

and both the Raman and infrared spectra show only six bands each in this region.

By comparing the Raman and infrared spectra, the seventh band is observed-in the

infrared spectrum at 2929 cm. 1, since it is an additional band to what is seen

in the Raman spectrum. The Raman band at 2918 cm. -1 is not seen in the infrared,

so this accounts for the fact that only six bands appear in each of the spectra.

The spectral region from 1468(1466) cm. -1 through 1350(1354) cm. - l is

characterized by primarily methylene "wagging" vibrations coupled with methylene

deformation. The bands at 1468(l466) and 1458 cm. -1 are not pure methylene

"scissor" vibrations as was noted for 1,5-AX, but are methylene "scissor" coupled

with methylene "wag," approximately equally mixed, to produce a complex methylene

vibration. The broad band appearing at 1435 cm. -1 in the infrared spectrum is

suspected of originating from the overlap of two bands corresponding to the bands

at 1458 and 1419 cm. in the Raman spectrum. These individual bands do not

appear in the infrared spectrum.

The calculated band with a frequency of 1320 cm.- 1 is not observed in either

the Raman or infrared spectrum. It is possible that this band may be hidden in

the tail of the strong Raman band at 1315 cm. 1

The region from 1315(1310) cm.- 1 through 1265(1264) cm.-1 is described by

methine deformation coupled with methylene "twist."

The three bands at 1244(1245), (1226), and 1202(1202) cm.- 1 are assigned to

COH bending (OH in-plane bending). This assignment is supported by the fact that

the corresponding spectral bands in the deuterated'l,5-AR spectra are decreased

in relative intensity (see Fig. 17 and 18 along with Table VII).
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The spectral band at 1167 cm. - 1 in the infrared does not correlate with the

calculated frequencies. This band may be a combination band. A possible combi-

nation which might result in a band in this region is presented in Table XXVII.

TABLE XXVII

SUGGESTED COMBINATION BANDS IN THE VIBRATIONAL SPECTRA
OF CRYSTALLINE 1,5-ANHYDRORIBITOL AND POSSIBLE
COMBINATIONS WHICH MIGHT RESULT IN SUCH BANDS

Suspected Combination Band, Possible Combination,b
-1 -1cm. cm.

1167(IR) (1045) + (1000) - (879) = 1166

1093(IR) 2 x (1045) - (1000) = 1090

1077(IR) 2 x (1103) - (1126) = 1080

1073(R)(IR) 2 x (1000) - (928) = 1072

963(IR) 2 x (1045) - (1126)= 964

916(R)(IR) (1045) + (879) - (1000) = 924

873(IR) (1045) + (928) - (1103) = 870

776(IR) (1045) + (1000) - (1264) = 781

683(IR) 2 x (342) = 684

(1045) + (989) -- (1354) = 680

396(R)(IR) .(1400) - (l000) = 400

aIR designates that the band is observed in the infrared spectrum; while
R designates that the band is observed in the Raman spectrum.

bThe numbers shown in parentheses are the fundamental band frequencies in
wave numbers.

The spectral region from 1156(1156) cm. - 1 through (832) cm.- 1 is charac-

terized by CO.stretching and ring stretching vibrations coupled with methylene

"twist" and "rock." Thereare two shoulders at 10931 and 1077 cm. in the

infrared which do not correlate with the calculated frequencies. These bands
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may be explained as combination bands (see Table XXVII). The band at 1073(1070)

cm. 1 in both the Raman and infrared spectra may also be attributed to a combi-

nation band (see Table XXVII). The Raman bands at 1045 and 1040 cm. -1 may

result from band splitting due to vibrational coupling within the crystal

lattice. Support for this argument comes from the fact that the calculations

predict only one band in this region and that the infrared solid state, solution,

and deuterated 1,5-AR spectra display only one band in this region. In further

support, the average of the two Raman band frequencies is 1043 cm. 1 which is in

close agreement with the calculated band in this region at 1042 cm. 1 The normal

coordinate calculations predict a band at 1024 cm. 1 which is not observed in

the Raman spectrum. However, a weak shoulder in the infrared spectrum at 1018

cm. 1 might be assigned to the calculated band. This assignment is questionable

and was not made in the normal coordinate calculations. A weak band at 963

cm. 1 in the infrared spectrum, which is not evident in the 1,5-AR mull spectra,

is suspected of being a combination band (see Table XXVII). The weak shoulder at

916(916) cm. 1 appears in both the Raman and infrared spectra, but does not

correlate with the calculated frequencies for the 1,5-AR model. This band is

also suspected of being a combination band (see Table XXVII). In addition, the

three infrared bands occurring at 873, 776, and 683 cm. 1 are possibly combina-

tion bands with the exception that the last band might be an overtone band. (This

band is not evident in the mull spectra.)

From 669(668) cm. - through 306(305) cm. -1, the vibrational bands consist

of mostly ring bending or twisting vibrations coupled with methylene "rocking"

and "twisting" or CO deformation. The very weak band at 396(395) cm.- 1 which

is observed in both Raman and infrared spectra is suspected of being a combina-

tion band (Table XXVII), since it does not correlate with the calculated frequen-

cies. What appears to be a shoulder at 353 cm.- 1 in the infrared spectrum is
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interpreted to be an artifact of the infrared spectrometer resulting from a slit

width change occurring in this region.

The Raman bands in the region from 306(305) cm.-1 through 208 cm. - 1 (the

infrared spectral bands in this region being masked by the absorption of potassium

bromide) are assigned to COH torsional vibrations (OH out-of-plane bending) ex-

cept the band at 306(305) cm. - 1 which is a CO deformation. The Raman bands at

238 and 208 cm. -1 do not appear to be grating ghosts because they remain un-

shifted when the wavelength of the laser beam is changed to 4880 A. Two calcu-

lated bands at 227 and 220 cm. - 1 are not visible in the Raman spectrum; however,

since torsional vibrations are generally quite weak in intensity, it is possible

that they are not detected by the spectrometer.

The calculated bands at 202 and 137 cm. 1 are characterized by ring twisting-

vibrations. The spectral band at 208 cm. - 1 was assigned to the calculated

frequency 202 cm. - 1 Because of the Rayleigh scattering and the grating ghosts in

the Raman spectrum of crystalline 1,5-AR, the predicted band at 137 cm.- 1 could

not be detected. However, a band is observed at 169 cm. - 1 in the Raman spectrum

of the solid and at 175 cm. in the solution spectrum. It is conceivable to

assign this band to the calculated frequency 137 cm. 1, but such an assignment

was not made for the normal coordinate calculations.

Solution Spectra of 1,5-Anhydroribitol

The solution spectra, both water and DMSO-d 6 (see Fig. 22 and Table X),

correlate quite well with the solid state spectra for 1,5-AR (see Fig. 11 and 12

along with Table IV) as was noted for the 1,5-AX spectra. The correlation be-

tween the solution and solid state Raman spectra for 1,5-AR is presented in

Table XXVIII. An examination of this table indicates that several "new" bands

exist in the solution spectra. -These bands may result from the vibrational
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TABLE XXVIII

CORRELATION OF THE 1, 5-ANHYDRORIBITOL SOLUTION SPECTRA
(WATER AND DMSO-d 6 ) WITH THE SOLID STATE RAMAN SPECTRUM

Raman, cm.1

2997
2972
2943
2932
2918
2875
1468
1458

1419
1403
1385
1350
1315

1265
1244

1202
1156
1124
1104
1082
1073

1045
1040
1005
993

925
916
878

669
647
581
448
437
406
396
345

H20 Solution,.cm.. 1

2983

2928(broad)

2885
1471
1461
1452

broad band
broad band
broad band
broad band

1329
1291(IR of solid)
1270

not visible
1229(IR of solid)
1206.
1160
1121

hidden in overlap
1090 -

hidden in overlap
1054(new band)
1048

997

967(new band)
934

884
869(new band)
837(new band)
795 new band)
692(new band)

hidden by above band
648
584
456
434

hidden in overlap
hidden in overlap

358(broad)

DMSO-d6 Solution, cm .DMSO-d 6 Solution,,cm.

2969

2913(broad)

2869
1463
1456
1446

broad band
broad band
broad band
broad band

1321
1286(IR of solid)
1258

not visible
1225(IR of solid)
1200
1158
1124

hidden in overlap
1091.

hidden in overlap
solvent band
solvent band

solvent band

solvent band
937

881
869(new band)

solvent band
solvent band

688(new band)
solvent band
solvent band

577
451
431

solvent band
solvent band
solvent band
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motion of a significant amount of the molecules existing in the alternate con-

formation in solution (.i .e.,' molecules in the alternative conformation to the

more stable crystalline conformation). The free energy calculations for con-

formational differences reported in Table XVI imply that-approximately 26% of

the molecules may exist in the alternate conformation at equilibrium in solution.

As discussed earlier in this section, the NMR spectra are too complicated to

provide support for this argument. However, normal coordinate calculations,

for which the ring of the 1,5-AR model is "inverted" to form the alternate chair

conformation, do provide some support for the above argument. Solution of the

secular determinant for 1,5-AR in the alternate conformation (i.e., a new G

matrix, but with the same F matrix used in the calculations presented, in Table

XXIV) results in several calculated frequencies which are significantly

"shifted" in frequency from the corresponding calculated frequencies for the

more stable conformer. These "shifted" frequencies are in fair agreement with

the "new" spectral bands appearing in the solution spectra as may be judged from

Table XXIX. The results of these calculations support the alternate conformation

argument and support the validity of the normal coordinate computations for the

1,5-AP compounds. (A complete listing of the calculated frequencies for both

conformations for each of the 1,5-AP models may be found in Appendix VI.)

TABLE XXIX

CORRELATION BETWEEN THE CALCULATED BANDS FOR THE
ALTERNATE 1,5-ANHYDRORIBITOL CONFORMER AND THE
"NEW" BANDS APPEARING IN THE SOLUTION SPECTRA

"New" Band Calculated Band,
H2 0, cm. 1 DMSO-d 6, cm. cm.

1054 1059

967 963
869 869 865

837 809

795 786
692 688



Spectra of Deuterated 1,5-Anhydroribitol.

The spectra of crystalline deuterated 1,5-AR have provided additional in-

formation which has assisted the assignment of spectral bands in the crystalline

1,5-AR spectra, especially the COH deformation (OH in-plane bending) bands. A

comparison of Fig. 17 and 18 along with Table VII for deuterated 1,5-AR with

Fig. 11 and 12 accompanied by Table IV for 1,5-AR reveal that several additional

bands appear upon deuteration (14), some bands were reduced in relative intensity

(16), and others increased in relative intensity (4). From Table XXIII, it is

found that most of the bands reduced in intensity involve COH vibrations. In

general, the correlation between the spectra of 1,5-AR and its deuterated analog

is quite good. Examination of the infrared spectra of deuterated 1,5-AR suggests

that the degree of deuteration is below 100%. However, the degree of deuteration

was undoubtedly reduced during sample preparation. Therefore, -there is really

no information regarding the extent of deuteration after preparation of the

deuterated derivative.

1,5-ANHYDRO-L-ARABINITOL

Interpretation of the Solid State Spectra

The 1,5-ALA solid state spectra have been presented in Fig. 13 and 14 with

the frequencies tabulated in Table V. Since the spectra of the isomers 1,5-ALA

and 1,5-ADA are identical, the following comments concerning 1,5-ALA shall also

pertain to 1,5-ADA.

The interpretation of the solid state 1,5-ALA spectra is based on the

potential energy distributions in terms of the various atomic group vibrations

which are listed in Table XXIV. The definitions for several of the group vibra-

tions are given in Fig. 29. As for 1,5-AX and 1,5-AR, only those comments con-

cerning the interpretation not immediately realized from Table XXIV shall be
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presented in this section. The same convention regarding the listing of

spectral band frequencies will be followed; that is, the frequency of the Raman

band, in wave numbers, will be given first followed by the corresponding in-

frared band frequency in parentheses.

Again, the three OH stretching bands at 3425(3428), (3385), and 3310(3320)

cm.- 1 are matched by three calculated bands, all of the same frequency, 3356 cm. -

As before, the OH stretching frequencies are not included in the computation of

the average error. An interesting observation is that these three bands are

spread out over an even wider spectral area than the corresponding bands for

1,5-AX and 1,5-AR. This suggests that there are differences in the hydrogen

bonding for the crystalline 1,5-AP compounds.

All seven of the CH stretching bands are observed in the infrared spectrum

of 1,5-ALA. The only band not seen in the Raman spectrum is the one occurring

at 2925 cm. 1

The spectral region from 1467(1463) cm.- 1 through 1343(1349) cm.- is

characterized primarily by methylene "wag" vibrations coupled with methine defor-

mation. The two bands at 1467(1463) and 1454(1460) cm.- 1 are again noted to be

equal mixtures of methylene "scissoring" and methylene "wagging." The result

is a complex methylene vibration. The weak shoulder appearing at 1446(1442)

cm. 1 in both the infrared and Raman spectra does not correlate with the calcu-

lated frequencies. This band is suspected of being a combination band. A

possible combination resulting in a band in this region is suggested in Table

XXX. The normal coordinate calculations predict a band at 1395 cm. 1 which is

not seen in the Raman or infrared spectrum. However, a band in this region is

almost evident as a shoulder to the band at 1410 cm.- 1 in the Raman spectrum.
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TABLE XXX

SUGGESTED COMBINATION BANDS IN THE VIBRATIONAL SPECTRA
OF CRYSTALLINE 1,5-ANHYDRO-L-ARABINITOL AND POSSIBLE

COMBINATIONS WHICH MIGHT RESULT IN SUCH BANDS

Suspected Combination Band, Possible Combination,
cm. cm. 1

1446(R)(IR) (1281) + (1005) - (837) = 1449

406(R) (1410) - (1005) = 405

371(R)(IR) (1467) - (1092) = 375

aIR (R) designates that the band is observed in the infrared (Raman)
spectrum.

bThe fundamental band frequencies, in wave numbers, appear in parentheses.

From 1325(1329) cm. -1 through 1269(1262) cm.- 1, the spectral bands are

described by methylene "twisting" vibrations coupled with methine deformation.

The bands at (1248), 1233(1233), and 1216(1217) cm. - 1 are assigned to COH

bending vibrations (OH in-plane bending). The corresponding spectral bands in

the spectra of deuterated 1,5-ALA are only slightly reduced in relative in-

tensity or not reduced at all. However, examination of the deuterated 1,5-ALA

spectra (Fig. 19 and 20 along with Table VIII) suggests that the degree of

deuteration was well below 100% which may account for the above observation.

The region from 1150(1151) cm. -1 through 758755) cm. - 1 is distinguished

by CO stretching vibrations and ring stretching vibrations coupled with

methylene "twisting" and "rocking" vibrations. The two bands at 1112(1112)

and 1104(1103) cm. - 1 are suspected of resulting from the splitting of a funda-

mental band due to vibrational coupling within the crystalline lattice. The

calculations predict only one band in this region at 1108 cm. - 1 The argument

for band splitting is supported by the fact that only one band is noted in



this region in the solution spectra. In addition, the average of these two

bands, 1108 cm. -1 , agrees exactly with the frequency of the calculated band in

this region for the 1,5-ALA model.

The spectral region from 633(636) cm. -1 through 256 cm. -1 is characterized

by primarily CO(H) deformation with some ring vibrations. The Raman shoulder

band at 406 cm. - 1 and the shoulder band at 371(375) cm. -1 in both the Raman

and infrared spectra are suspected of being combination bands, since they do

not correlate with the calculated frequencies (see Table XXX).

The normal coordinate calculations predict three bands resulting from OH

torsional vibrations (OH out-of-plane bending) at 237, 236, and 222 cm. - 1 The

Raman band at 233 cm. - 1 may be assigned to either of the calculated bands at

237 or 236 cm.- 1 since it is impossible to evaluate the validity of one of the

assignments over the other. In the normal coordinate calculations, this band

was assigned to the calculated frequency 237 cm.-1 The calculated band at 222

cm. 1 is not observed in the Raman spectrum of 1,5-ALA. However, torsional

vibrational bands are generally quite weak, and it is possible that such a band

may not be detected by the instrument.

There are two ring twisting bands predicted by the computations at 185 and

132 cm. - l There are two Raman bands in this region in the Raman crystalline

1,5-ALA spectrum at 197 and 176 cm. - 1 The assignment listed in Table XXIV,

which was assumed in the normal coordinate calculations, is based on the

assumption that the band at 197 cm .- is a grating ghost. Grating ghosts have

been observed in this region in several solid state spectra. Then the band at

176 cm.- 1 is correlated with the calculated band 185 cm.-1 It is not possible

to detect a band in the region of 132 cm. 1 because of the Rayleigh scattering

and grating ghosts. Further, the band is probably too weak to be observed in
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the solution spectra. In an alternate assignment, one might assume that the

band at 197 cm. -1 is not a grating ghost and correlate this with the calculated

band at 185 cm.- 1 The observed band at 176 cm. i (165 cm.- 1 in the water solution

spectrum) might then be correlated with the calculated band at 132 cm. - 1 In the

case of 1,5-AR , a band was observed at 169 cm. -1 (175 cm. -1 in the water solution

spectrum), and the suggestion was made that this band might be correlated to a

calculated band at 137 cm. - In this respect, the above assignment is in agree-

ment with the assignment for 1,5-AR. However, the first assignment was favored

in the normal coordinate computations, based entirely on preference.

Solution Spectra of 1,5-Anhydro-L-arabinitol

The solution spectra of 1,5-ALA, both water and DMSO-d6 (see Fig. 23 and

Table XI), agree quite well with the solid state spectra. Because of the

rotation of the molecules, some of the solution spectral bands appear shifted

in frequency and several of the bands are broadened. The water and DMSO-d6

solution spectral bands are correlated with the solid state spectral bands for

1,5-ALA in Table XXXI. (The reader should note the frequency agreement between

the water and the DMSO-d6 solution spectra.)

The most noticeable feature of the solution spectra is the appearance of a

few "new" bands not observed in the solid state spectra. As with 1,5-AR,

these "new" bands are suggested to result from the presence of a significant

amount of the 1,5-ALA molecules in the alternate conformation in solution. The

conformational free energy calculations in Table XVI imply that approximately

28% of the molecules will exist in the alternate conformation in solution at

equilibrium. The NMR spectra of 1,5-ALA in D20 (Fig. 5) and DMSO-d 6 (Fig. 8a)

cannot be used to support this argument because of the difficulty in interpreting

the complex spectra. However, the normal coordinate calculations do support this



TABLE XXXI

CORRELATION OF THE 1,5-ANHYDRO-L-ARABINITOL SOLUTION SPECTRA
(WATER AND DMSO-d 6) WITH THE SOLID STATE RAMAN SPECTRUM

Raman, cm.

2983
2973
2932
2916
2879
2860
1467
1454
1442
1410
1381
1369
1343
1325
1309
1302
1281
1233
1216
1150
1136
1112
1104
1092
1067
1057
1008
1005
948
926
876

837
758

633
546

430
408
314

H 20 Solution, cm.-
1

2979

2916

2872
1468
1452

slightly evident
broad band
broad band
broad band
broad band
broad band

1303
1296

1229.

1153
hidden in overlap

1120

1095
1072
1060
1013

949
926
883
8 65( new band)
840
754
74 4 (new band)
640
--544

532(new band)
425
407

DMSO-d6 Solution, cm. 1

2968

2902

2863
1463
1446

slightly evident
broad band
broad band
broad band
broad band
broad band

1308
1292

1225

1156
hidden in overlap

1121

1110
solvent band
solvent band
solvent band
solvent band

949
925
881
867 new band)
834

solvent band
742(new band)

solvent band
539
522Cnew band)
420
409

solvent band

-186-
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argument as they did in the discussion of the 1,5-AR solution spectra. That is,

the frequencies were calculated for the 1,5-ALA model with the ring "inverted"

(i.e., in the alternate conformation) using the same F matrix employed for the

calculations reported in Table XXIV. The solution of the secular determinant for

the "inverted" 1,5-ALA model resulted in a few calculated frequencies which devi-

ated significantly from those calculated frequencies for the stable conformer.

These calculated frequencies were found to be in fair agreement with the "new"

spectral bands observed in the 1,5-ALA solution spectra. The results are tabu-

lated in Table XXXII. (The complete calculated frequency list for both conformers

appears in Appendix VI for each of the 1,5-AP models.)

TABLE XXXII

CORRELATION BETWEEN THE CALCULATED BANDS FOR THE
ALTERNATE 1,5-ANHYDRO-L-ARABINITOL CONFORMER AND
THE "NEW" BANDS APPEARING IN THE SOLUTION SPECTRA

"New" Band Calculated Band,

H20, cm. DMSO-d 6 , cm.
-1 cm.

865 867 - 831

744 742 720

532 522 518

Spectra of Deuterated 1,5-Anhydro-L-arabinitol

The deuterated 1,5-ALA spectra appear in Fig. 19 and 20 and the frequencies

are tabulated in Table VIII. Examination of these spectra reveals that the

degree of deuteration after pellet preparation is well below 100%. The spectra

of the deuterated derivative of 1,5-ALA is in close agreement with the 1,5-ALA

spectra. Some bands are observed to be shifted slightly in frequency and others

differ in relative intensity (15). In addition, several additional bands are

apparent in the deuterated 1,5-ALA spectra (5).



1,5-ANHYDRO-DL-ARABINITOL - .-

Comparison of the 1,5-Anhydro-DL-arabinitol Spectra
With that of the L Isomer

As a matter of interest, the preparation of 1,5-ADLA, measurement of the

vibrational spectra, and comparison of the spectra with that of the L isomer

were completed in this investigation. To the author's knowledge, such a com-

parison has not been made in the literature. The 1,5-ADLA spectra is found to

correlate fairly well with the 1,5-ALA spectra, but a number of the 1,5-ADLA

spectral bands are noted to be shifted significantly in frequency from the

corresponding 1,5-ALA bands, and the relative intensity of several bands differ.

A correlation of the Raman 1,5-ADLA spectral bands with the Raman 1,5-ALA

spectral bands is presented in Table XXXIII.

Kim and Jeffrey (85) have noted that the structure of the unit cell of

B-DL-arabinose has a center of symmetry while that of the isomers does not. Per-

haps, the same is true for the 1,5-anhydroalditol derivatives. The geometry of

the unit cell may affect the resulting vibrational spectrum of a compound and,

thus, explain the differences observed in the 1,5-ADLA spectra from the 1,5-ALA

spectrum. In addition, the melting point of 1,5-ADLA is 23 degrees lower than

1,5-ALA (see Table II). Thus, the intermolecular bonding, which is primarily

hydrogen bonding, must differ for the two forms. The intermolecular bonding may

very well affect the vibrational spectra and account for the differences between

the 1,5-ADLA and 1,5-ALA spectra.

The 1,5-ADLA spectra and also the deuterated 1,5-ADLA spectra for complete-

ness (see Fig. 26 and 27 along with Table XV) have been presented in this thesis

as a stimulus for research into the aspects of the effects of unit cell geometry

and intermolecular bonding upon the vibrational spectra of saccharide and

saccharide-type compounds.
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TABLE XXXIII

CORRELATION BETWEEN THE SOLID STATE RAMAN SPECTRA
OF 1,5-ANHYDRO-DL-ARABINITOL AND
1,5-ANHYDRO-L-ARABINITOL

1,5-ADLA, cm. -1 1,5-ALA, cm. - 1 1,5-ADLA, cm.- 1 1,5-ALA, cm. -1

3324 3425 1085 1092
3214 3310 1064 1067
3000 2983 1057
2989 2973 1012 1005
2966 . 2932 951 948

2951 923 926
2916 880 876

2890 840 837
2879 2887 756 758
2860 2852 750
1469 1467 629 633
1450 1454 550 546

1446 493 483
1423 445
1396 1410 429 430
1381 1381 407 408
1359 1369 406.
1340 1343 383

1325 375 371
1309 338

1312 1302 326
1287 1281 313 314
1271 1269 291 296
1243 269
1235 1233 256
1224 1216 231 233
1154 1150 197 197
1127 1136 185 176
1113 1112
1097 1104
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CONCLUSIONS

The successful normal coordinate analyses of the 1,5-AP compounds has

demonstrated the feasibility of extending such calculations to large, complex

molecules. It now appears quite reasonable to attempt a complete normal coor-

dinate analysis for, at least, the monosaccharides and their derivatives. The

successful application of these methods to even larger molecules will depend

upon the availability of a computer with the necessary core storage and computa-

tional speed. An important element in determining the success of the normal

coordinate analyses was the introduction of the nonlinear force field perturba-

tion technique which is based on the Fletcher-Powell method (121). Such a

refinement method is very necessary for problems involving extensive vibrational

coupling as is present in the case of large, complex molecules such as the 1,5-

AP compounds and the monosaccharides.

The normal coordinate analyses have provided reasonable interpretations of

the 1,5-AP solid state vibrational spectra. The mathematical methods employed

in these analyses are admittedly qualitative. However, it is the qualitative

aspects of the methods that make them so valuable to the physical chemist and

vibrational spectroscopist. Although the numerical percentage contribution of F

matrix elements to the potential energy distribution cannot be assumed rigorously

accurate, the numbers do indicate the relative contribution of each element to

the potential energy which is extremely valuable in interpreting the spectra.

The fact that such a close agreement was reached between the calculated and experi-

mental frequencies for the three 1,5-AP compounds (average error of 6.2 cm. 1) and

that the interpretation agrees with the experimental vibrational information

available for similar compounds, including the group frequency correlation charts,

add support to the results of the normal coordinate computations.
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The SVQFF derived in this investigation is specific for pyranose ring com -

pounds with hydroxyl groups. It should simplify the normal coordinate analyses

of the pentoses (which should be considered the next logical set of compounds to

be analyzed in the physical chemical investigation of the vibrational spectra of

the saccharides) by reducing the difficulty involved in the initial correlation

of the experimental and calculated frequencies. The spectral interpretation for

the 1,5-AP compounds should, by itself, assist in the assignment of the

saccharide spectra. The assignment of these spectra in the past has been based

on the normal coordinate analysis of tetrahydropyran, but the 1,5-AP compounds are

more closely related, structurally, to the saccharides.

The assumption of tetrahedral geometry for the 1,5-AP models in this investi-

gation appears to be quite reasonable and provides acceptable results. This

approximation in the model geometry seems to be appropriate for those situations

where the exact geometry is not available from crystal structure data. However,

a better agreement (perhaps, 1-2 cm.-1 ) between experimental and calculated

frequencies is expected when the exact molecular geometry is used. The normal

coordinate computations suggest that the lower portion of the ring for the 1,5-AR

compound is "flatter" in the real molecule than in the tetrahedral approximation.

This variation between the real structure and the tetrahedral approximation is

suggested as the source of the slightly larger average error for 1,5-AR.

The normal coordinate computations have further demonstrated that the main

source of the differences in the band positions between the 1,5-AP spectra is a

kinetic energy effect rather than a potential energy effect. More specifically,

the shifts in frequencies between spectra are a result of the variation in

orientation of the hydroxyl groups, i.e., axial versus equatorial, between 1,5-

AP compounds. However, no spectral differences could be detected which could be
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attributed to loss of symmetry in going from 1,5-AX and 1,5-AR to 1,5-ALA or

1,5-ADA.

In general, the solution spectra were quite similar to the solid state

spectra, with some shifting of bands and considerable band broadening. Band

broadening is a typical phenomenon of solution spectra resulting from rotation-

vibration coupling. There appears to be little band splitting in the solid

state spectra since the solution spectra correlate so well with the solid state

spectra. The type of solvent, i.e., amphiprotic versus aprotic, does not appear

to affect the solution vibrational spectra, since the spectra of the 1,5-AP

solutions in water and DMSO-d 6 are identical. Several additional bands were ob-

served in the solution spectra of 1,5-AR and 1,5-ALA. These bands are suspected

of resulting from a significant amount of each species existing in the alternate

conformation in solution. This argument -is supported by normal coordinate compu-

tations for the alternate conformers and conformational free energy calculations.

The vibrational spectra of 1,5-ADLA were presented in this text so that

they might be compared with the corresponding spectra of 1,5-ALA. Several dif-

ferences in the spectra of the two compounds were noted, both in band position

and relative intensity. The crystal structure and hydrogen bonding are sus-

pected of differing in the two compounds. An investigation of this observation

might result in the explanation of the effect of crystal structure and hydrogen

bonding on the solid state vibrational spectra.
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SUGGESTIONS FOR FUTURE WORK

This investigation immediately suggests three areas for future work in the

investigation of the saccharide vibrational spectra and normal coordinate

computations.

1. The most immediate extension of this work is the normal coordinate

analyses of the pentoses. The SVQFF developed in this study should simplify

the computations for the pentoses. The normal coordinate computations for the

pentoses should then permit the SVQFF developed for the 1,5-AP compounds in this

study to be extended to include the Cl hydroxyl group interactions. This should

make the force field more specific for the monosaccharides. The pentoses would

provide an even better model system upon which to base the interpretation of the

saccharide spectra.

At the time this dissertation is being written, the normal coordinate

analyses of the pentitols is in progress at the Institute. The study is being

conducted by Gary Watson and includes an investigation of the effect of confor-

mation on the vibrational spectrum. The results of this investigation should

complement the work done on the pyranose ring compounds and provide the basis

for future analyses of the vibrational spectra of open-chain polyalcohols.

2. The inverse F matrix technique should be investigated and compared with

the conventional computational methods that were used in this investigation.

The uniqueness of the F 1 elements is very attractive. In addition, the HOFF

and OVFF should be examined for the possibility of generating additional force

field data from application of quantum mechanical principles. This would

reduce the totally empirical character of the present SVQFF used in this study.
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APPENDIX I

COMPUTER PROGRAM FOR THE CALCULATION OF CARTESIAN
COORDINATES FOR THE ATOMS

A computer program, CART, written by J. H. Schachtschneider (89) of

Shell Development Co., Emeryville, California, was employed to compute the

cartesian coordinates of the "atoms" (mass points) for the 1,5-AP models.

The program was originally written for an IBM-7040 computer and coded in

FORTRAN IV. (All computer programs to be discussed in this dissertation are

coded in FORTRAN IV.) It was necessary to modify this program for use on the

Institute's IBM-360/44 computer. CART calculates the cartesian coordinates

of the atoms in a molecule from the bond distances and bond angles. If desired,

the program will also compute the moments of inertia.

In the first part of the program, the coordinates of each atom of the

molecule are calculated in a fixed coordinate system, O(x,y,z), from the bond

angles and bond lengths. The atoms are numbered in the order in which they are

given in the data. (The atom numbering scheme used for the 1,5-AP models is

specified in Fig. 28 in the main text.) The first three atoms are used to define

the coordinate system, O(x,y,z). The origin is located at the first atom. The

positive x-axis points in the direction of atom number two, and the triad 1-2-3

defines the x-y plane. For each additional atom, a new coordinate system,

O'Cx',y',z'), is used. The atom is located by the spherical coordinates R, 0,

and 0 in terms of its bond distances and bond angles. O'(x',y',z') is located

by giving the numbers of three previously defined atoms. The program calculates

the transformation, T, from O'(x',y',z') to O(x,y.,z); determines the cartesian

coordinates x',y'., and z' from the spherical coordinates R, 8, and a; and

transforms x', y', and z' to x, y, and z. At the user's option, the center of

mass and moments of inertia are computed by conventional methods.
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The input to CART includes a control card giving the number of atoms, the

number of isotopic molecules, and specifying if the moments of inertia are to

be computed. The following data are read in for each atom in the molecule:

1. The atom number, NO. (The atoms are numbered consecutively.)

2. The numbers of the atoms determining the coordinate system,
0'NO(x' ,y',z'), used to locate atom NO.

a. NA: the number of atom A. (This atom determines the origin
of the coordinate system.)

b. NB: the number of atom B defining the positive x' directions
running along the bond from A to B.

c. NC: the number of atom C which together with atoms A and B
define the x'-y' plane such that the positive half plane is on
the same side of the x'-axis as atom C.

3. The spherical coordinates of the atom N in the coordinate system

0No(x y' ,z' )

a. R: the length of the bond from atom A to atom N.

b. 0: the angle between the x-axis and the bond between atom A and
N, i.e., angle NAB.

c. <: the azimuthal angle between R and the x-y plane, i.e., the
dihedral angle between the plane C-B-A and the plane N-A-B.16

d. WT: the mass of atom N. (Masses need not be entered if the
moment of inertia is not desired.)

Since the first three atoms define the coordinate system, 0(x,y,z), some of

these data are not required for these atoms. Thus, for atom number one, the

cartesian coordinates are all zero by definition. For atom number two, the

x-coordinate is equal to R by definition, and only NA and R are needed. For

16
For a right-handed coordinate system the angle is defined as follows: Observe
the configuration from the direction of atom C along the bond B-A or A-B de-
pending on whether C is bonded to B or A. Now rotate about B-A or A-B to move
atom C into the plane N-A-B. A clockwise rotation is defined as positive.
However, if the angle of rotation is less than 90°, a clockwise rotation is
defined as negative.
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atom number three, the z-coordinate is zero and only NA, NB, R, and 0 are needed.

The x-coordinate of atom C is

x = xA R Cos e (150)

where + is used if A = 1 and - is used if A = 2. The y-coordinate is

YC = R Sin 0. (151)

For each additional atom, the transformation matrix, T, from 0'(x',y',z')

is determined and used to transform x',.y', and z' to x, y, and z. The coordinates

for atom N in O'(x',y',z') are given by

XN = RCos 0

y = R Sin 8 Cos C(152)

ZN = R Sin 0 Sin

The coordinates of the center of mass C , C , and C are given by

i -

where r. is the distance from the center of mass to atom i and
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The moment of inertia tensor is diagonalized to give the principal moments and the

transformation to principal coordinates. Provision has been made for reading in a

new set of masses for the calculation of the moments of inertia of isotropically

substituted molecules.

The calculated cartesian coordinates are punched onto cards in a form suit-

able for input to the G matrix program described later in this manuscript.

A listing of CART along with a flow diagram and instructions for use of the

program may .be found in Appendix V.

COMPUTATION OF THE CARTESIAN COORDINATES FOR THE
1,5-ANHYDROPENTITOL MODELS

The input data to CART for the 1,5-AX, 1,5-AR, and 1,5-ALA models, based on

the geometry specified in an earlier section and summarized in Table XVII, are

presented in Tables XXXIV, XXXV, and XXXVI, respectively. In addition, each

table lists the cartesian coordinates computed in CART for each model.

ERROR CHECKS IN SPECIFICATION OF MODEL GEOMETRY

The cartesian coordinates computed in CART may be examined for errors in

two ways. First, CART contains an atom distance check. The distances between

every "atom" of the model and every other "atom" are calculated. These dis-

tances may be inspected to see if they are reasonable. The second check is

provided by the computer program, PAMOLE, written by Cole and Adamson (90),

which employs the Calcomp 110 Digital Plotter to draw "ball and stick"



TABLE XXXIV

COMPUTER PROGRAM INPUT AND CALCULATED CARTESIAN
COORDINATES FOR 1,5-ANHYDROXLITOL

CARTESIAN COORDINATE
1.5-ANHYDROXYLITOL.
THE C-O-C ANGLE. ONE

1 0 0 0
2 1 0 0
3 1 2 0
4 2 1 3
5 3 1 2
6 5 3 1
7 2 1 4
8 2 4 1
9 3 1 5

10 3 5 1
11 5 3 6
12 5 3 6
13 12 5 11
14 6 4 5
15 6 5 4
16 15 6 i4
17 4 2 6
18 4 2 6
19 18 4 17

S
ALL BOND ANGLES ARE TETRAHEDRAL EXCEPT FOR

BOND LENGTH VALUE EACH FOR CO,CCCH,OH,AND CO(R).
0.0 0.0 0.0 15.994906
1.422999 0.0 0.0 12.00000
1.422999 112.449997 0.0 12.000000
1.523000 0.0 -60.000000 12.000000
1.523000 0.0 60.000000 12.000000
1.523000 0.0 -61.103989 12.000000
1.096000 0.0 -120.000000 1.007825
1.096000 0.0 -i20.000000 1.007825
i.096000 0.0 120.000000 1.007825
1.096000 0.0 120.000000 1.007825
1.092999 0.0 120.000000 1.007825
1.415000 0.0 -120.000000 15.994906
0.970000 0.0 180. 000000 1.007825
1.092999 0.0 i17.265396 1.007825
1.415000 0.0 117.265091 15.994906
0.970000 0.0 i80.000000 1.007825
1.092999 0.0 -120.000000 1.007825
1.415000 0.0 120.000000 15.994906
0.970000 0.0 180.000000 1.007825

ATOM NO.
1

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

X
0.0
1.422999

-0.543409
1.930665

-0.073737
1.445708
1.788332
1.788332

-1.637928
-0.205418
-0.393934
-0.634535
-0.350369.
1.769657
1.884583
1.562932
1.550211
3.345430
3.683066

y
0.0
0.0
1.315155
0.717949
2.058514
2.161613

-1.033318
0.516660
i.258201
1.850101
1.514558
3.357575
3.840312
2.645977
2.817815
2.336884
0.214294
0.695734
1.142712

0.0
0.0
0.0
1.243524
1.243524
1.229767
0.000001

-0.894880
0.000001

-0.894880
2.135842
1.256446
0.464541
0.305053
2.404078
3.182631
2.135842
1.256444
0.464539

MASS
15.994906
12.000000
12.00000
12.000000
12.000000
12.000000
1.007825
1.007825
1.007825
1.007825
1.007825
15.994906
1.007825
1.007825

15.994906
1.007825
1.007825

15.994906
1.007825
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TABLE XXXV

COMPUTER PROGRAM INPUT AND CALCULATED CARTESIAN
COORDINATES FOR 1,5-ANHYDRORIBITOL

CARTESIAN COORDINATE
1,5-ANHYDRORIBITOL.
THE C-O-C ANGLE. ONE

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

0
1
1
2
3
5
2
2
3
3
5
5
1.2

6
6

15
4
4

18

0 0

2 0
1 3

3 1

4 1
1 5

3 6
3 6
5 11
4 5
5 4
6 14
2 6
2 6
4 17

ALL BOND ANGLES ARE TETRAHEDRAL EXCEPT FOR

0.0 0.0 0.0 15.994906
1.422999 0.0 0.0 12.000000
1.422999 112.449997 0.0 12.000000
1.523000 0.0 -60.000000 12.000000
1.523000 0.0 60.000000 12.000000
1.523000 0.0 -61.103989 12.000000
1.096000 0.0 -120.000000 1.007825
1.096000 0.0 -120.000000 1.007825
1.096000 0.0 120.000000 1.007825
1.096000 0.0 120.000000 1.007825
1.092999 0.0 120.000000 1.007825
1.415000 0.0 -120.000000 15.994906
0.970000 0.0 180.000000 1.007825
1.092999 0.0 -117.265396 1.007825
1.415000 0.0 -117.265198 15.994906
0.970000 0.0 180.000000 1.007825
1.092999 0.0 -120.000000 1.007825
1.415000 0.0 120.000000 15.994906
0.970000 0.0 180.000000 1.007825

ATOM NO.
1

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

X
0.0
1.422999

-0.543409
1.930665

-0.073373
1.445708
1.788332
1.788332

-1.637928
-0.205418
-0.393934
-0.634535
-0.350369

1.784715
1.865091
1.530784
1.550211
3.345430
3.683066

y
0.0
0.0
1.315155
0.717949
2.058514
2.161613

-1.033318
0.516660
1.258201
1.850101
1.514558
3.357575
3.840312
2.668490
2.788672
2.288821
0.214294
0.695734
1.142712

z
0.0
0.0
0.0
1.243524
1.243524
1.229767
0.000001

-0.894880
0.000001

-0.894880
2.135842
1.256446
0.464541
2.136847
0.032629

-0.728482
2.135842
1.256444
0.464539

MASS
15.994906
12.000000
12.000000
12.000000
12.000000
12.000000
1.007825
1.007825
1.007825
1.007825
1.007825

15.994906
1.007825
1.007825

15.994906
1.007825
1.007825

15.994906
1.007825
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TABLE XXXVI

COMPUTER PROGRAM INPUT AND CALCULATED CARTESIAN
COORDINATES FOR 1 ,5-ANHYDRO-L-ARABINITOL

CARTESIAN COORDINATES
1,5-ANHYDRO-L-ARABINITOL. ALL BOND ANGLES ARE TETRAHEDRAL EXCEPT FOR
THE C-O-C ANGLE. ONE BOND LENGTH VALUE EACH FOR COCCCHOH,AND CO(R).

0 0 0 0.0
I 0 0 1.422999
1 2 0 1.422999
2 1 3 1.523000
3 1 2 1.523000
5 3 1 1.523000
2 1 4 1.096000
2 4 1 1.096000
3 1 5 1.096000
3 5 1 1.096000
5 3 6 1.092999
5 3 6 1.415000
12 5 11 0.970000

6 4 5 1.092999
6 5 4 1.415000

15 6 14 0.970000
4 2 6 1.092999
4 2 6 1.415000

18 4 17 0.970000

0.0
0.0

112.449997
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

0.0
0.0
0.0

-60.000000
60.000000

-61.103989
-120.000000
-120.000000

120.000000
120.000000
120.000000

-120.000000
180.000000
117.265396
117.265091
180.000000
120.000000

-120.000000
180.000000

15.994906
12.000000
12.000000
12.000000
12.000000
12.000000
1.007825
1.007825
1.007825
1.007825
1.007825

15.994906
1.007825
1.007825

15.994906
1.007825
1.007825

15.994906
1.007825

ATOM NO.
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

X
0.0
1.422999

-0.543409
1.930665

-0.073737
1.445708
1.788332
1.788332

-1.637928
-0.205418
-0.393934
-0.634535
-0.350369

1.769657
1.884583
1.562932
3.023482
1.438128
0.468288

y
0.0
0.0
1.315155
0.717949
2.0585'14
2.161613

-1.033318
0.516660
1.258201
1.850101
1.514558
3.357575
3.840312
2.645977
2.817815
2.336884
0.700789
0.065916
0.081146

z
0.0
0.0
0.0
1.243524
1.243524
1.229767
0.000001

-0.894880
0.000001

-0.894880
2.135842
1.256446
0.464541
0.305053
2.404078
3.182631
1.253504
2.398122
2.389860

MASS
15.994906
12.000000
12.000000
12.000000
12.000000
12.000000
1.007825
1.007825
1.007825
1.007825
1.007825

15.994906
1.007825
1.007825

15.994906
1.007825
1.007825

15.994906
1.007825

I
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
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representations of the molecules from the cartesian coordinates of the atoms.

(The program instructions for PAMOLE are presented in Appendix V.) Examination

of these drawings based on the calculated cartesian coordinates may pinpoint any

errors existing in the set of coordinates. The "ball and stick" drawings of the

1,5-AP models generated by PAMOLE from the cartesian coordinates listed in

Tables XXXIV, XXXV, and XXXVI appear in Fig. 33, 34, and 35, respectively.
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APPENDIX II

COMPUTER PROGRAM FOR COMPUTING THE G MATRIX

The B and G matrix elements are calculated by a computer program, GMAT,
«v v

written by J. H. Schachtschneider (89) and modified for use in this investiga-

tion. GMAT punches the G matrix and factored G matrix (optional) onto cards in

a form suitable for input into the computer programs which solve the vibrational

secular equation that are discussed in the text. The listing, flow diagram, and

user instructions for GMAT are presented in Appendix V.

In GMAT, the B matrix elements are computed by Wilson's "S vector"

technique (68). If Rt represents one of the 3N-6 internal coordinates and X

one of the 3N cartesian displacement coordinates, the relations sought will be

of the form

3N

i31

describe the displacement of an atom, it is convenient to introduce a vector p

for each atom a whose components along the three axis directions are the cartesian

displacement coordinates X., X' X for that atom. Likewise, it is useful to

group the coefficients, Bti for a given Rt into sets of three, each set Bti,

Bi', Bti being associated with a given atom a. These quantities can be considered

as components of a vector, s, associated with the atom C and with the internal

coordinate R. Then, Equation (158) takes on the simple form

N

Rt -= tacp (159)
c=l

where the dot represents the scalar product of two vectors. The physical meaning

of the vector st is as follows: Let all atoms except atom a be in their
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equilibrium positions. The direction of s is the direction in which a given

displacement of atom a will produce the greatest increase of Rt. The magnitude,

ts t, is equal to the increase in Rt produced by unit displacement of the atom

in this most effective direction.

Six types of internal coordinates are recognized by the program, namely,

bond stretching, valence angle bending, torsion, out-of-plane wagging, perpendi-

cuiar pair of linear valence angle bendings, and linear valence angle bending.

The internal coordinates specified for the 1,5-AP models involve only the first

three types in the list; therefore, only these internal coordinates will be dis-

cussed. The reader may wish to refer to Wilson (68) or Schachtschneider (89)

for a description of the other coordinate types.

A "vector" describing the internal coordinate is made up of eight integers

which are denoted by NI, NCOD, N1, N2, N3, N4, N5, and N6. NI gives the number

assigned to the internal coordinate; NCOD is a code identifying the type of

internal coordinate; and N1, N2, N3, N4, N5, and N6 give the numbers of the atoms

defining the internal coordinates.

Following are the "S vector" expressions for the bond stretching, valence

angle bending, and torsion internal coordinates. In these expressions, the unit

vectors along the bonds, ej, are represented in cartesian coordinates as

where r is the distance between atoms i and j.
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1. Bond Stretching:

NCOD N1 N2 N3 N4 N5 N6

r.

Si SJ-

2. Valence Angle Bend:

NCOD
2

The atom numbers ix and jx define a bond distance, R.(ix-jx), by which the

internal coordinate is weighted. The weighted bending force constants will

then have the same dimensions as the stretching force constants. If ix = jx = 0,

the angle is not weighted, that is, ri = 1.0. The "S vectors" for atoms

i,j, and k are
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3. Torsion:
-ix,jx ijkl

NCOD N1 N2 N3 N4 N5 N6
4 i j k 1 ix jx (

The "S vectors" for atoms i,j,k, and 1 are

where x represents the vector product. In many cases, it is convenient to use

the sum of several torsions to avoid the introduction of redundancies. A pro-

vision has been made in GMAT for defining a coordinate as the sum of several

torsions. (This provision is discussed in the user instructions for GMAT in

Appendix V.)
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The 62 internal coordinate "vector" descriptions for the 1,5-AP models are

listed in Tables XXXVII, XXXVIII, and XXXIX for 1,5-AX, 1,5-AR, and 1,5-ALA,

respectively. The atom numbering scheme for these tables has been defined in

Fig. 28 in the text. The internal coordinate definitions, along with the

cartesian coordinates of the atoms, embody the input data to GMAT. The computer

program then calculates the B and G matrices. The inverse kinetic energy

matrix is computed by the expression

3N

where t,t' = 1,2,3,-*,3N-6. This relationship has been expressed in matrix

notation in Equation (32) in the text. Employing Equations (158) and (159), we

may write Equation (160) in terms of the "S vector," that is,

N

Gtt, = sta st'a (162)
c=1

where a = 1/m , the reciprocal of the mass of atom a. GMAT uses Equation (162)

to compute the G matrix. The various formulae resulting from the scalar product

of "S vectors" in Equation (162) defining the G matrix elements have been

assembled, condensed, and tabulated by Decius (77) and summarized by Wilson,

et al. (68).

CALCULATION OF THE G MATRICES FOR THE 1,5-ANHYDROPENTITOL MODELS

The G matrices for the 1,5-AP models are listed in Tables XL, XLI, and XLII.

The corresponding B matrices have not been included in this manuscript because

of space considerations.
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TABLE XXXVII

INTERNAL COORDINATE DEFINITIONS FOR 1,5-ANHYDROXYLITOL

CODE
1
1

1
1
1

1
1
1

I
1

1
1
I
1
1
1
1

1
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2

I J K
1 3 0
3 5 0
5 6 0
4 6 0
2 4 0
1 2 0
3 9 0
3 10 0
5 11 0
5 12 0

12 13 0
6 14 0
6 15 0

15 16 0
4 17 0
4 . 18 0

18 19 0
2 7 0
2 8 0
1 3 9
1 3 10
1 3 5
9 3 5

10 3 5
9 3 10
3 5 11
3 5 12
5 12 13
3 5 6

11 5 6
12 5 6
11 5 12

5 6 14
5 6 15
6 15 16
4 6 5
4 6 14
4 6 15

14 6 15
17 4 6
18 4 6

4 18 19
2 4 6
2 4 17
2 4 18

17 4 18
7 2 4
8 2 4

L
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

IX JX
0 0
0 0
0 O
0 0
0 0
0

O O

0 0

0 0

0 0

0 0

0 0
0 0

0 0

0 0

0 0

0 0

0 0

O O

0 0

O 0

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
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TABLE XXXVII (Continued)

CODE I
2 1
2 1
2.' 1
2 7
2 2
4 7
4 8
4 1
4 17
4 2
4 18
4. 9
4 10
4 1
4 11
4 3
4 12
4 17
4 14
4 11
4 .7-

9

J K

2 4
2 7
2 8
2 8
1 3
2 4
2 4
2 4
4 6
4 6
4 6
3 5
3 5
3 5
5 6
5 6
5 6
4 18
6 15
5 12
2 1
3 1

L
0
0
0
0
0
6

17
18
14
i5

5
6

II
1.2
14
15

4
19
16
13

3
2

TABLE xxxvIII

INTERNAL COORDINATE DEFINITIONS FOR

CODE I
1 1
1 3
i 5
I . 4
1 2

1 1
1 3
1 3
1 5
1 5
I. 12
1 6
1 6
1 15
1 4
1 4
i 18
1 2
1 2

J
3
5
6
6
4
2
9

10
11
12
13
14
15
16
17
18
19

7
8

1,5-ANHYDRORIBITOL

K L IX

0 0 0
0 0 0
0 0 O
0 0 0
0 0 0
0 0 0
0 O 0
0 0 0
0 0 0
0 o 0
0 0 0
0 0 0
0 0 0
O 0 0
0 0 0
0 o 0
0 0 0
0 O 0

JX
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

NO.
49
50
51
52
53
54
54
54
55
55
55
56
56
56
57
57
57
58
59
60
61
62

IX
0
0
0
0
0
0
0
0
0
0-
0
0
0
0
0
0
0
0
0
0
0
0O

JX
0
0
0
'0
0
0
0

0
0
0
0:

0

0
0
O0
0

0
0
0
0O
O

NO.
1
2
3
4
5,
6
7
8
9

10
11.
12
13
14
15
16
17

,18
19
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TABLE XXXVIII (Continued)

NO. CODE I J K L IX JX
20 2 1 3 9 0 0 0
21 2 1 3 10 0 0 0
22 2 1 3 5 0 0 0
23 2 9 3 5 0 0 0
24 2 10 3 5 0 0 0
25 2 9 3 10 0 0 0
26 2 3 5 11 0 0 0
27 2 3 5 12 0 0 0
28 2 5 12 13 0 0 0
29 2 3 5 6 0 0 0
30 2 11 5 6 0 0 0
31 2 12 5 6 0 0 0
32 2 11 5 12 0 0 0
33 2 5 6 14 0 0 0
34 2 5 6 15 0 0 0
35 2 6 15 16 0 0 0
36 2 4 6 5 0 0 0
37 2 4 6 14 0 0 0
38 2 4 6 15 0 0 0
39 2 14 6 15 0 0 0
40 2 17 4 6 0 0 0
41 2 18 4 6 0 0 0
42 2 4 18 19 0 0 0
43 2 2 4 6 0 0
44 2 2 4 17 0 0 0
45 2 2 4 18 0 0 0
46 2 17 4 18 0 0 0
47 2 7 2 4 0 0 0
48 2 8 2 4 0 0 0
49 2 1 2 4 0 0 0
50 2 i 2 7 0 0 0
51 2 1 2 8 0 0 0
52 2 7 2 8 0 0 0
53 2 2 1 3 0 0 0
54 4 7 2 4 6 0 0
54 4 8 2 4 17 0 0
54 4 1 2 4 18 0 0
55 4 17 4 6 15 0 0
55 4 2 4 6 14 0 0
55 4 18 4 6 5 0 0
56 4 9 3 5 6 0 0
56 4 10 3 5 11 0 0
56 4 1 3 5 12 0 0
57 4 11 5 6 15 0 0
57 4 3 5 6 14 0 0
57 4 12 5 6 4 0 0
58 4 17 4 18 19 0 0
59 4 14 6 15 16 0 0
60 4 11 5 12 13 0 0
61 4 7 2 1 3 0 0
62 4 9 3 1 2 0 0
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TABLE XXXIX

INTERNAL COORDINATE DEFINITIONS FOR 1,5-ANHYDRO-L-ARABINITOL

NO. CODE
I 1
2 1
3 1
4 1
5 1
6 1
7 1
8 1
9 1

10 1
11 1
12 1
13 I
14 1
15 1
16 1
17 1
18 1
19 L
20 2
21 2
22 2
23 2
24 2
25 2
26 2
27 2
28 2
29 2
30 2
31 2
32 2
33 2
34 2
35 2
36 2
37 2
38 2
39 2
40 2
41 2
42 2
43 2
44 2
45 2
46 -2
47 2
48 2

I J K
1 3 0
3 5 0
5 6 0
4 6 0
2 4 0
1 2 0
3 9 0
3 10 0
5 11 0
5 12 0

12 i3 0
6 14 0
6 15 0

15 16 0
4 17 0
4 i8 0

18 19 0
2 7 0
2 8 0
1 3 9
1 3 10
1 3 5
9 3 5

10 3 5
9 3 10
3 5 11
3 5 12
5 12 13
3 5 6

11 5 6
12 5 6
11 5 12

5 6 14
5 6 15
6 15 16
4 6 5
4 6 14
4 6 15

14 6 15
17 4 6
18 4 6

4 18 19
2 4 6
2 4 17
2 4. 18

17 4 18
7 2 4
8 2 4

L
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

IX
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

JX
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
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TABLE XXXIX (Continued)

NO. CODE I J K L IX JX
49 2 1 2 4 0 0 0
50 2 1 2 7 0 0 0
51 2 1 2 8 0 0 0
52 2 7 2 8 0 0 0
53 2 2 1 3 0 0 0
54 4 7 2 4 6 0 0
54 4 8 2 4 18 0 0
54 4 1 2 4 17 0 0
55 4 17 4 6 5 0 0
55 4 2 4 6 15 0 0
55 4 18 4 6 14 0 0
56 4 9 3 5 6 0 0
56 4 10 3 5 11 0 0
56 4 1 3 5 12 0 0
57 4 11 5 6 14 0 0
57 4 3 5 6 15 0 0
57 4 12 5 6 4 0 0
58 4 17 4 18 19 0 0
59 4 14 6 15 16 0 0
60 4 11 5 12 13 0 0
61 4 7 2 1 3 0 0
62 4 9 3 1 2 0 0
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TABLE XL

G MATRIX FOR 1,5-ANHYDROXYLITOL

1 1 0.145758
1 8 -0.027752
1 23 0.061579
1 27 -0.051530
I 51 0.020297
2 2 0.166512
2 9 -0.027752
2 22 -0.055161
2 26 -0.071816
2 30 0.061677
2 34 -0.051517
2 57 -0.012218
3 3 0.166512
3 12 -0.027752
3 24 0.026625
3 29 -0.051540
3 33 -0.071816
3 37 0.053677
3 41 -0.052872
3 56 0.015012
4 5 -0.027752
4 16 -0.027752
4 33 0.053677
4 37 -0.071816
4 41 -0.055473
4 45 0.053506
4 49 0.024905
4 58 0.065967
5 15 -0.027752
5 36 0.024953
5 41 0.053506
5 45 -0.055473
5 49 -0.055161
5 53 0.027581
5 61 -0.062938
6 19 -0.027752
6 43 0.024905
6 48 0.061579
6 52 0.071619
7 7 1.075350
7 22 0.053350
7 26 0.024905
7 56 -0.015117
8 21 -00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 055161
8 25 -0.071619
8 53 0.027581
8 62 -0.062938
9 23 0.024905
9 28 -0.055473
9 32 -0.055473
9 55 -0.045648

10 11 -0.020834
10 26 0.061678

1 2 -0.027752 1 6 -0.023868 1 7 -0.027752
1 20 -0.071619 1 21 -0.071619 1 22 -0.051540
1 24 0.061579 1 25 0.071619 1 26 0.026625
1 29 0.024905 1 49 0.020297 1 50 -0.040594
1 53 -0.040594 1 54 -0.037288 1 57 -0.047860
2 3 -0.027752 2 7 -0.027752 2 8 -0.027752
2 10 -0.027752 2 20 0.063390 2 21 0.063390
2 23 -0.071619 2 24 -0.071619 2 25 0.071619
2 27 -0.055473 2 28 0.027737 2 29 -0.051540
2 31 0.053506 2 32 0.063645 2 33 0.028654
2 36 0.024953 2 53 0.027581 2 55 0.046618
2 60 0.065968 2 61 0.051688 2 62 0.062938
3 4 -0.021099 3 9 -0.027752 3 10 -0.027752
3 13 -0.027752 3 22 0.024905 3 23 -0.051530
3 26 0.061677 3 27 0.053506 3 28 0.027737
3 30 -0.071816 3 31 -0.055473 3 32 0.063645
3 34 -0.055473 3 35 0.030127 3 36 -0.052881
3 38 0.046975 3 39 0.069130 3 40 0.027270
3 43 0.025603 3 54 -0.049077 3 55 0.015809
3 59 -0.070088 3 60 -0.065967 4 4 0.166512
4 12 -0.027752 4 13 -0.027752 4 15 -0.027752
4 29 0.025603 4 30 0.027270 4 31 -0.052872
4 34 0.046975 4 35 0.030127 4 36 -0.052881
4 38 -0.055473 4 39 0.069129 4 40 -0.071816
4 42 0.027737 4 43 -0.051540 4 44 0.061677
4 46 0.063645 4 47 -0.051530 4 48 0.026625
4 54 -0.015012
4 59 0.070089
5 16 -0.027752
5 37 0.028654
5 42 0.027737
5 46 0.063645
5 50 0.063390
5 55 0.012218
5 62 -0.051688
6 20 -0.040594
6 44 0.026625
6 49 -0.051539
6 53 -0.040594
7 8 -0.027752
7 23 -0.051540
7 27 0.026625
7 57 0.001053
8 22 0.053350
8 26 -0.051530
8 56 0.015117
9 9 1.075350
9 24 -0.051530
9 29 0.051539
9 33 -0.051427
9 56 0.003613

10 22 -0.051530
10 27 -0.051540

4 56 0.049077
5 5 0.166512
5 18 -0.027752
5 38 -0.051517
5 43 -0.051539
5 47 -0.071619
5 51 0.063390
5 57 -0.046618
6 6 0.145758
6 21 0.020297
6 45 -0.051530
6 50 -0.071619
6 55 0.047860
7 20 -0.055162
7 24 0.061579
7 29 -0.051530
8 8 1.075349
8 23 0.061579
8 27 0.024905
8 57 0.046807
9 10 -0.027752
9 26 -0.051540
9 30 -0.051540
9 34 0.027076
9 57 -0.006349

10 23 0.026625
10 28 -0.060751

4 57 -0.015809
5 6 -0.027752
5 19 -0.027752
5 40 0.061678
5 44 -0.071816
5 48 -0.071619
5 52 0.071619
5 58 -0.065968
6 18 -0.027752
6 22 0.020297
6 47 0.061579
6 51 -0.071619
6 56 0.037288
7 21 0.063390
7 25 -0.071619
t 53 -0.055161
8 20 0.063390
8 24 -0.051540
8 29 0.026625
8 61 -0.051688
9 22 0.026625
9 27 0.053507
9 31 0.053507
9 36 0.026578

10 10 0.145758
10 24 0.024905
10 29 0.051539
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0.061678 10
0.024440 10
0.018567 11
0.020823 11
1.075349 12
0.022773 12
0.047221 12

-0.051427 12
0.003398 12

-0.020834 13
0.067737 13
0.067736 13
0.024440 13
0.001614 13

-0.041645 14
-0.037090 15
-0.051427 15
-0.055473 15
-0.055474 15
-0.003613 15
-0.020834 16

0.061678 16
0.061678 16
0.024905 16
0.000969 17
0.020824 17
1.075351 18
0.026625 18

-0.055162 18
0.015117 18

-0.051530 19
0.053350 19
0.027581 19
0.051688 20

-0.432808 20
0.034237 20

-0.005894 20
0.057083 21

-0.432807 21
-0.058724 21
-0.050782 21
0.085718 21
-0.006i24 22
-0.007082 22

0.034311 22
0.026097 22
0.008763 22

-0.014800 22
0.005239 23

-0.025321 23
-0.059214 23
0.023116 23
0.030622 23

-0.425909 24
-0.051854 24
0.028982 24
0.020972 24

-0.009350 24
-0.066491 25
0.066696 25

TABLE XL (.Continued)

31 -0.051539 10 32
36 -0.051531 10 55
11 1.054595 11 27
32 -0.041645 11 56
13 -0.033693 12 29
33 -0.051539 12 34
37 -0.051539 12 38
41 0.022773 12 43
56 -0.045438 12 57
29 -0.051517 13 30
34 -0.051539 13 35
38 -0.051539 13 39
43 -0.051517 13 54
57 0.017515 14 14
38 0.022617 14 39
15 1.075351 15 16
38 0.027076 15 40
43 0.051539 15 44
47 0.024905 15 48
55 0.006349 15 57
36 -0.051531 16 37
41 -0.051539 16 42
45 -0.051542 16 46
49 -0.051530 16 54
17 1.054595 17 41
46 -0.041645 17 54
19 -0.027752 18 43
47 -0.051540 18 48
51 0.063390 18 52
55 -0.001053 19 19
45 0.024905 19 47
50 0.063390 19 51
54 -0.015117 19 55
20 1.002793 20 21
24 -0.140658 20 25
29 0.024742 20 49
53 0.101564 20 54
21 1.002789 21 22
25 -0.423573 21 26
49 -0.020203 21 50
54 -0.019590 21 56
62 0.036697 22 22
25 -0.137681 22 26
29 -0.046659 22 30
33 -0.022906 22 34
50 -0.005894 22 51
55 -0.010499 22 56
61 -0.081044 22 62
25 -0.425911 23 26
29 0.100359 23 30
33 -0.006076 23 34
55 -0.010474 23 56
61 -0.062021 23 62
26 0.105065 24 27
30 0.020537 24 31
34 -0.007086 24 36
56 -0.017660 24 57
62 -0.011385 25 25
29 0.032136 25 53
62 0.839860 26 26

-0.071816 10 33 0.022773
-0.000970 10 56 -0.018625
0.020823 11 28 -0.041645
0.038254 11 57 -0.038254
0.028654 12 30 -0.051427
0.059128 12 35 -0.053805
0.059128 12 39 -0.053805
0.028654 12 54 0.045438

-0.003398 13 -13 0.145758
0.027076 13 31 0.024440

-0.060750 13 36 0.047221
-0.069656 13 40 0.027077
-0.001614 13 55 -0.017515

1.054595 i4 34 0.022617
-0.041645 14 55 0.037090
-0.027752 15 36 0.026578
-0.051540 15 41 0.053507
-0.051540 15 45 0.053506
-0.051530 15 49 0.026625
0.045648 16 16 0.145758
0.022773 16 38 0.024440
-0.060750 16 43 0.051539
-0.071816 16 47 0.026625
0.018625 16 55 -0.018567
0.020823 17 42 -0.041645

-0.038254 17 55 0.038254
-0.051530 18 44 0.024905

0.061579 18 49 0.053350
-0.071620 18 53 -0.055161

1.075349 19 43 0.026625
0.061579 19 48 -0.051540

-0.055162 19 52 -0.071619
-0.046807 19 61 0.062938
0.003973 20 22. -0.009726

-0.423575 20 26 -0.058979
-0.005894 20 50 0.011787

0.010827 20 56 0.746442
-0.009726 21 23 -0.140658
0.022650 21 27 0.036074

-0.005894 21 51 0.026097
-0.746438 21 57 0.008220

0.169380 22 23 -0.006123
-0.052312 22 27 0.097452
-0.057105 22 31 0.024312
-0.004851 22 36 0.030295
-0.020203 22 53 -0.048287

0.012880 22 57 0.035081
-0.031005 23 23 1.000262
-0.050779 23 27 -0.052326

0.036567 23 31 0.025394
0.011937 23 36 -0.006397
0.004780 23 57 0.001956

-0.834169 24 24 1.000258
-0.048946 24 28 0.032403
-0.049706 24 32 0.024904
-0.023899 24 53 -0.061199
-0.040584 24 60 -0.015822

1.836644 25 26 0.034355
0.035588 25 57 -0.061756
1.005274 26 27 -0.005808

10 30
10 34
10 57
11 31
12 12
12 31
12 36
12 40
12 55
13 14
13 33
13 37
13 41
13 56
14 35
14 57
15 37
15 42
15 46
15 54
16 17
16 40
16 44
16 48
16 57
17 45
18 18
18 45
18 50
18 54
19 44
19 49
19 53
19 62
20 23
20 27
20 51
20 57
21 24
21 29
21 53
21 61
22 24
22 28
22 32
22 49
22 54

22 60
23 24
23 28
23 32
23 53
23 60
24 25
24 29
24 33
24 55
24 61
25 27
25 61
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0.023222 26 29 -0.008532 26 30 -0.436830 26 31
-0.435187 26 33 0.017992 26 34 0.034331 26 36
-0.025179 26 55 -0.009504 26 56 -0.014095 26 57
-0.842150 26 61 0.023994 26 62 0.029216 27 27
-0.050428 27 29 -0.016120 27 30 -0.118916 27 31
-0.010131 27 33 -0.049681 27 34 0.027448 27 36
-0.007042 27 55 -0.044849 27 56 0.017391 27 57
-0.022934 27 61 -0.011597 27 62 -0.014120 28 28
-0.051511 28 30 0.023222 28 31 -0.050428 28 32
0.032859 28 34 -0.026403 28 36 -0.007047 28 55

-0.040672 28 57 0.042737 29 29 0.167503 29 30
-0.016120 29 32 -0.118197 29 33 -0.055832 29 34
-0.006033 29 36 -0.044953 29 37 -0.060013 29 38
0.033908 29 40 -0.024637 29 41 -0.004975 29 43
0.032221 29 54 0.012041 29 55 -0.034803 29 56

-0.001018 29 59 0.017196 29 61 -0.012397 29 62
1.005272 30 31 -0.005809 30 32 -0.435187 30 33

-0.053237 30 35 0.031276 30 36 -0.050307 30 37
-0.052394 30 39 0.025009 30 40 0.028768 30 41
-0.024637 30 54 -0.020146 30 55 0.040940 30 56
0.007961 30 59 0.018315 30 60 0.842150 31 31
-0.010132 31 33 -0.044776 31 34 -0.046255 31 35
0.093746 31 37 0.040356 31 38 0.028779 31 39

-0.004130 31 41 0.009105 31 43 -0.004975 31 54
-0.001951 31 56 -0.001409 31 57 -0.006692 31 59
0.022933 32 32 1.008831 32 33 0.027395 32 34
0.034363 32 55 0.050166 32 56 0.752995 32 57
1.005272 33 34 -0.014423 33 35 0.018646 33 36

-0.352559 33 38 -0.116795 33 39 -0.479267 33 40
0.040356 33 43 -0.060013 33 54 0.012675 33 55
0.040848 33 57 0.007062 33 59 0.846825 33 60
0.170341 34 35 -0.054773 34 36 -0.009213 34 37

-0.010148 34 39 -0.018905 34 40 -0.052394 34 41
0.023615 34 54 0.049708 34 55 -0.001731 34 56

-0.008365 34 59 0.030584 34 60 -0.030615 35 35
-0.051263 35 37 0.018646 35 38 -0.054773 35 39
0.031276 35 41 -0.025244 35 43 -0.006033 35 54

-0.038469 35 56 0.034611 35 57 0.038468 36 36
-0.001011 36 38 -0.009213 36 39 -0.117627 36 40
0.093746 36 42 -0.007047 36 43 -0.044953 36 44
0.024266 36 46 0.034363 36 47 -0.006391 36 48
0.030295 36 54 0.032242 36 55 -0.000564 36 56
0.000565 36 58 -0.014829 36 60 0.014829 37 37

-0.014423 37 39 -0.479265 37 40 0.104902 37 41
0.032859 37 43 -0.055832 37 44 0.017992 37 45
0.027395 37 47 -0.006076 37 48 0.028982 37 49

-0.040848 37 55 -0.007062 37 56 -0.012675 37 57
-0.017028 37 59 -0.846827 38 38 0.170341 38 39
-0.053237 38 41 -0.046255 38 42 -0.026403 38 43
0.034337 38 45 0.027448 38 46 -0.058879 38 47

-0.007086 38 49 -0.004851 38 54 0.004747 38 55
-0.049708 38 57 0.001731 38 58 0.030614 38 59
1.016509 39 40 0.025009 39 41 -0.058917 39 43

-0.051394 39 55 0.730806 39 56 0.051394 39 57
1.005276 40 41 -0.005808 40 42 0.023222 40 43

-0.436831 40 45 -0.118916 40 46 -0.435188 40 47
0.020537 40 49 -0.057105 40 54 0.751590 40 55
0.020146 40 57 -0.040940 40 58 -0.842151 40 59
0.170341 41 42 -0.050428 41 43 -0.016120 41 44

-0.019365 41 46 -0.010132 41 47 0.025394 41 48

-0.118916
-0.057114
0.751018
0.170341

-0.019366
0.024266

-0.001279
1.223996
0.105922
0.034460

-0.008532
0.096587
0.023615
0.029612

-0.003296
-0.015095
0.104902
0.019657

-0.004131
-0.751588
0.170341

-0.025244
-0.058917
0.008105

-0.035511
-0.058879
-0.749989
-0.001012
0.019658

-0.792841
0.017028
-0.116795
0.028779

-0.004747
1.223994
0.109763

-0.034611
0.161767

-0.050307
-0.057114
-0.023899
-0.032242

1.005272
-0.044776
-0.049681
-0.022906
0.792842

-0.018905
0.096587
0.011937
0.008365

-0.030584
0.033908

-0.730805
-0.008532
0.036567

-0.007961
-0.018315
-0.118916
-0.049706

26 28
26 32
26 53
26 60
27 28
27 32
27 53
27 60
28 29
28 33
28 56
29 31
29 35
29 39
29 53
29 57
30 30
30 34
30 38
30 43
30 57
31 32
31 36
31 40
31 55
31 60
32 36
33 33
33 37
33 41
33 56
34 34
34 38
34 43
34 57
35 36
35 40
35 55
36 37

36 41
36 45
36 49
36 57
37 38
37 42
37 46
37 54
37 58
38 40
38 44
38 48
38 56
39 39
39 54
40 40
40 44
40 48
40 56
41 41
41 45
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41 49 0.024312 41 54-- 0.001409 41 55
41 57 0.001951 41 58 -0.022933 41 59
42 43 -0.051511 42 44 0.023222 42 45
42 47 -0.025321 42 48 0.032403 42 49
42 55 -0.042737 42 57 -0.034460 43 43
43 45 -0.016120 43 46 -0.118197 43 47
43 49 -0.046659 43 50 0.024742 43 51
43 53 0.032221 43 54 0.003296 43 55
43 57 0.034803 43 59 -0.017196 43 61
44 44 1.005275 44 45 -0.005808 44 46
44 48 0.105065 44 49 -0.052312 44 50
44 52 0.034355 44 53 -0.025179 44 54
44 57 0.009504 44 58 0.842152 44 61
45 45 0.170341 45 46 -0.010131 45 47
45 49 0.097452 45 50 0.034237 45 51
45 53 -0.007042 45 54 -0.017391 45 55
45 58 0.022933 45 61 0.014120 45 62
46 47 -0.059214 46 48 0.024903 46 49
46 55 0.749991 46 57 -0.050166 47 47
47 49 -0.006124 47 50 -0.432808 47 51
47 53 0.023116 47 54 -0.004780 47 55
47 58 -0.030622 47 61 0.834169 47 62
48 49 -0.006123 48 50 -0.140658 48 51
48 53 -0.061199 48 54 0.017661 48 55
48 58 0.015822 48 61 0.011385 48 62
49 50 -0.009726 49 51 -0.009726 49 52
49 54 -0.012881 49 55 -0.035081 49 56
49 58 0.014800 49 61 0.031005 49 62
50 51 0.003973 50 52 -0.423575 50 53
50 55 -0.057083 50 56 -0.010827 51 51
51 53 -0.050782 51 54 0.746439 51 55
51 61 -0.036697 51 62 -0.085718 52 52
52 55 0.061756 52 61 -0.839861 52 62
53 54 0.027912 53 55 -0.011106 53 56
54 54 2.912177 54 55 -0.487531 54 56
54 58 -0.501667 54 59 0.032961 54 61
55 55 2.027383 55 56 -0.003007 55 57
55 59 -0.559957 55 60 0.027703 55 61
56 56 2.912174 56 57 -0.487529 56 59
56 61 0.011649 56 62 -0.491836 57 57
57 59 -0.559960 57 60 -0.500007 57 61
58 58 2.273606 59 59 2.339827 60 60
61 62 0.076993 62 62 1.088884 -1 0

0.006692 41 56
0.035511 42 42

-0.050425 42 46
-0.007082 42 54

0.167503 43 44
0.100359 43 48

-0.058724 43 52
0.001018 43 56
0.015095 43 62

-0.435186 44 47
-0.058979 44 51

0.014095 44 55
-0.029216 44 62
-0.052326 45 48

0.036074 45 52
0.001279 45 57
0.011597 46 46
0.034311 46 54
1.000262 47 48

-0.140658 47 52
-0.001956 47 57

0.062021 48 48
-0.432806 48 52

0.040584 48 57
0.009350 49 49

-0.137681 49 53
-0.008763 49 57

0.081044 50 50
0.101564 50 54
1.002789 51 52

-0.008220 51 56
1.836649 52 53

-0.066696 53 53
-0.027912 53 57
-0.035927 54 57
-0.491836 54 62
-0.405595 55 58
-0.026538 55 62
0.032962 56 60
2.027379 57 58

-0.021795 57 62
2.273607 61 61
0.0

-0.008105

1.223993
0.105922
0.040672

-0.008533
-0.051854
0.032136
-0.012041
0.012397

-0.050779
0.022650

-0.751021
-0.023994
-0.048946
-0.066491
0.044849
1.008832

-0.752998
0.005239

-0.425911
0.010474
1.000258

-0.425910
-0.020972

0.169380
-0.048287
0.010499
1.002792

-0.746442
-0.423574
0.019590
0.035589
0.167539
0.011106

-0.003006
0.011649

-0.500009
-0.021795
-0.501668

0.027703
-0.026538

1.088884
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TABLE XLI

G MATRIX FOR 1,5-ANHYDRORIBITOL

1 1 0.145758 1 2 -0.027752 1 6 -0.023868

1 8 -0.027752 1 20 -0.071619 1 21 -0.071619
1 23 0.061579 1 24 0.061579 1 25 0.071619
1 27 -0.051530 1 29 0.024905 1 49 0.020297
1 51 0.020297 1 53 -0.040594 1 54 -0.037288
2 2 0.166512 2 3 -0.027752 2 7 -0.027752
2 9 -0.027752 2 10 -0.027752 2 20 0.063390
2 22 -0.055161 2 23 -0.071619 2 24 -0.071619
2 26 -0.071816 2 27 -0.055473- 2 28 0.027737
2 30 0.061677 2 31 0.053506 2 32 0.063645
2 34 0.028654 2 36 0.024953 2 53 0.027581
2 57 -0.012218 2 60 0.065968 2 61 0.051688
3 3 0.166512 3 4 -0.021099 3 9 -0.027752
3 12 -0.027752 3 13 -0.027752 3 22 0.024905
3 24 0.026625 3 26 0.061677 3 27 0.053506
3 29 -0.051540 3 30 -0.071816 3 31 -0.055473
3 33 -0.071816 3 34 -0.055473 3 35 0.030127
3 37 0.053678 3 38 0.046975 3 39 0.069130
3 41 -0.052872 3 43 0.025603 3 54 -0.049077
3 56 0.015012 3 59 0.070088 3 60 -0.065967
4 5 -0.027752 4 12 -0.027752 4 13 -0.027752
4 16 -0.027752 4 29 0.025603 4 30 0.027270
4 33 0.053678 4 34 0.046975 4 35 0.030127
4 37 -0.071816 4 38 -0.055473 4 39 0.069129
4 4i -0.055473 4 42 0.027737 4 43 -0.051540
4 45 0.053506 4 46 0.063645 4 47 -0.051530
4 49 0.024905 4 54 -0.015012 4 56 0.049077

4 58 0.065967 4 59 -0.070088 5 5 0.166512
5 15 -0.027752 5 16 -0.027752 5 18 -0.027752

5 36 0.024953 5 37 -0.051517 5 38 0.028654

5 41 0.053506 5 42 0.027737 5 43 -0.051539

5 45 -0.055473 5 46 0.063645 5 47 -0.071619
5 49 -0.055161 5 50 0.063390 5 51 0.063390
5 53 0.027581 5 55 0.012218 5 57 -0.046618

5 61 -0.062938 5 62 -0.051688 6 6 0.145758
6 19 -0.027752 6 20 -0.040594 6 21 0.020297
6 43 0.024905 6 44 0.026625 6 45 -0.051530
6 48 0.061579 6 49 -0.051539 6 50 -0.071619
6 52 0.071619 6 53 -0.040594 6 55 0.047860

7 7 1.075350 7 8 -0.027752 7 20 -0.055162
7 22 0.053350 i 23 -0.051540 7 24 0.061579

7 26 0.024905 7 27 0.026625 7 29 -0.051530
7 56 -0.015117 7 57 0.001053 8 8 1.075349
8 21 -0.055161 8 22 0.053350 8 23 0.061579

8 25 -0.071619 8 26 -0.051530 8 27 0.024905

8 53 0.027581 8 56 0.015117 8 57 0.046807
8 62 -0.062938 9 9 1.075350 9 10 -0.027752
9 23 0.024905 9 24 -0.051530 9 26 -0.051540
9 28 -0.055473 9 29 0.051539 9 30 -0.051540
9 32 -0.055473 9 33 0.027076 9 34 -0.051427
9 55 -0.045648 9 56 0.003613 9 57 -0.006349

10 11 -0.020834 10 22 -0.051530 10 23 0.026625
10 26 0.061678 10 27 -0.051540 10 28 -0.060751

1 7 -0.027752
1 22 -0.051540
1 26 0.026625
1 50 -0.040594
i 57 -0;047860
2 8 -0.027752
2 21 0.063390
2 25 0.071619
2 29 -0.051540
2 33 -0.051517
2 55 0.046618
2 62 0.062938
3 10 -0.027752
3 23 -0.051530
3 28 0.027737
3 32 0.063645
3 36 -0.052881
` 40 0.027270
3 55 -0.015809
4 4 0.166512
4 15 -0.027752
4 31 -0.052872
4 36 -0.052881
4 40 -0.071816
4 44 0.061677
4 48 0.026625
4 57 0.015810
5 6 -0.027752
5 19 -0.027752
5 40 0.061678
5 44 -0.071816
5 48 -0.071619
5 52 0.071619
5 58 -0.065968
6 i8 -0.027752
6 22 0.020297
6 47 0.061579
6 51 -0.071619
6 56 0.037288
7 21 0.063390
7 25 -0.071619
1 53 -0.055161
8 20 0.063390
8 24 -0.051540
8 29 0.026625
8 61 -0.051688
9 22 0.026625
9 27 0.053507
9 31 0.053507
9 36 0.026578

10 10 0.145758
10 24 0.024905
10 29 0.051539
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0.061678 10 31 -0.051539
0.022773 10 36 -0.051531
0.018567 11 11 1.054595
0.020823 11 32 -0.041645
1.075351 12 13 -0.033693
0.024440 12 33 -0.051540
0.047221 12 37 -0.05`540
0.027076 12 41 0.024441

-0.003398 12 56 0.001614
-0.020834 13 29 0.028654
0.067737 13 34 -0.051539
0.067736 13 38 -0.051539
0.022773 13 43 0.028654

-0.045438 13 57 -0.017515
-0.041645 14 38 0.022617
0.037090 15 15 1.075351
0.027076 15 38 -0.051427

-0.055473 15 43 0.051539
-0.055474 15 47 0.024905
-0.003613 15 55 0.006349
-0.020834 16 36 -0.051531
0.061678 16 41 -0.051539
0.061678 16 45 -0.051542
0.024905 16 49 -0.051530
0.000969 17 17 1.054595
0.020824 17 46 -0.041645
1.075351 18 19 -0.027752
0.026625 18 47 -0.051540

-0.055162 18 51 0.063390
0.015117 18 55 -0.001053

-0.051530 19 45 0.024905
0.053350 19 50 0.063390
0.027581 19 54 -0.015117
0.051688 20 20 1.002793

-0.432808 20 24 -0.140658
0.034237 20 29 0.024742

-0.005894 20 53 0.101564
0.057083 21 21 1.002789

-0.432807 21 25 -0.423573
-0.058724 21 49 -0.020203
-0.050782 21 54 -0.019590
0.085718 21 62 0.036697

-0.006124 22 25 -0.137681
-0.007082 22 29 -0.046659
0.034311 22 33 -0.004851
0.026097 22 50 -0.005894
0.008763 22 55 -0.010499

-0.014800 22 61 -0.081044
0.005239 23 25 -0.425911

-0.025321 23 29 0.100359
-0.059214 23 33 0.011937
0.023116 23 55 -0.010474
0.030622 23 61 -0.062021

-0.425909 24 26 0.105065
-0.051854 24 30 0.020537
-0.007086 24 34 0.028982
0.020972 24 56 -0.017660

-0.009350 24 62 -0.011385
-0.066491 25 29 0.032136
0.066696 25 62 0.839860

10 32 -0.071816
10 55 -0.000970
11 27 0.020823
11 56 0.038254
12 29 -0.051517
12 34 0.059128
12 38 0.059128
12 43 -0.051517
12 57 0.003398
13 30 -0.051427
13 35 -0.060750
13 39 -0.069656
13 54 0.045438
14 14 1.054595
14 39 -0.041645
15 16 -0.027752
15 40 -0.051540
15 44 -0.051540
15 48 -0.051530
15 57 0.045648
16 37 0.024440
16 42 -0.060750
16 46 -0.071816
16 54 0.018625
17 41 0.020823
17 54 -0.038254
18 43 -0.051530
18 48 0.061579
18 52 -0.071620
19 19 1.075349
19 47 0.061579
19 51 -0.055162
19 55 -0.046807
20 21 0.003973
20 25 -0.423575
20 49 -0.005894
20 54 0.010827
21 22 -0.009726
21 26 0.022650
21 50 -0.005894
21 56 -0.746438
22 22 0.169380
22 26 -0.052312
22 30 -0.057105
22 34 -0.022906
22 51 -0.020203
22 56 0.012880
22 62 -0.031005
23 26 -0.050779
23 30 0.036567
23 34 -0.006076
23 56 0.004780
23 62 -0.834169
24 27 -0.048946
24 31 -0.049706
24 36 -0.023899
24 57 -0.040584
25 25 1.836644
25 53 0.035588
26 26 1.005274

10 33 0.024440
10 56 -0.018625
11 28 -0.041645
11 57 -0.038254
12 30 0.027076
12 35 -0.053805
12 39 -0.053806
12 54 -0.001614
13 13 0.145758
13 31 0.022773
13 36 0.047221
13 40 -0.051427
13 55 0.017515
14 34 0.022617
14 55 -0.037090
15 36 0.026578
15 41 0.053507
15 45 0.053506
15 49 0.026625
16 16 0.145758
16 38 0.022773
16 43 0.051539
16 47 0.026625
16 55 -0.018567
17 42 -0.041645
17 55 0.038254
18 44 0.024905
18 49 0.053350
18 53 -0.05516i
19 43 0.026625
19 48 -0.051540
19 52 -0.071619
19 61 0.062938
20 22 -0.009726
20 26 -0.058979
20 50 0.011787
20 56 0.746442
21 23 -0.140658
2i 27 0.036074
21 51 0.026097
21 57 0.008220
22 23 -0.006123
22 27 0.097452
22 31 0.024312
22 36 0.030295
22 53 -0.048287
22 57 0.035081
23 23 1.000262
23 27 -0.052326
23 31 0.025394
23 36 -0.006397
23 57 0.001956
24 24 1.000258
24 28 0.032403
24 32 0.024904
24 53 -0.061199
24 60 -0.015822
25 26 0.034355
25 57 -0.061756
26 27 -0.005808

10 30
10 34
10 57
11 31
12 12
12 31
12 36
12 40
12 55
13 14
13 33
13 37
13 41
13 56
14 35
14 57
15 37
15 42
15 46
15 54
16 17
16 40
16 44
16 48
16 57
17 45
18 18
18 45
18 50

18 54
19 44
19 49
19 53
19 62
20 23
20 27
20 51

20 57
21 24
21 29
21 53
21 61
22 24
22 28
22 32
22 49
22 54
22 60
23 24
23 28
23 32
23 53
23 60
24 25
24 29
24 33
24 55
24 61
25 27
25 61
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26 28 0.023222
26 32 -0.435187
26 53 -0.025179
26 60 -0.842150
27 28 -0.050428
27 32 -0.010131
27 53 -0.007042
27 60 -0.022934
28 29 -0.051511
28 33 -0.026403
28 56 -0.040672
29 31 -0.016120
29 35 0.030852
29 39 0.023042
29 53 0.032221
29 57 0.009372
30 30 1.005272
30 34 0.101116
30 38 0.021894
30 43 -0.024637
30 57 0.019028
31 32 -0.010132
31 36 0.093746
31 40 -0.004130
31 55 0.003487
31 60 0.022933
32 36 0.034363
33 33 1.005276
33 37 -0.352561
33 41 0.038655
33 56 -0.004866
34 34 0.170341
34 38 -0.010148
34 43 -0.052250
34 57 0.020171
35 36 -0.051262
35 40 -0.004841
35 55 0.038469
36 37 -0.001012
36 41 0.093746
36 45 0.024266
36 49 0.030295
36 57 -0.026336
37 38 -0.014422
37 42 -0.026403
37 46 -0.058879
37 54 0.004866
37 58 0.030614
38 40 0.101116
38 44 0.017992
38 48 0.028982
38 56 -0.005182
39 39 1.016513
39 54 -0.057771
40 40 1.005276
40 44 -0.436831
40 48 0.020537
40 56 0.020146
41 41 0.170341
41 45 -0,019365

26 29
26 33
26 55
26 61
27 29
27 33
27 55
27 6l
28 30
28 34
28 57
29 32
29 36
29 40
29 54
29 59
30 31
30 35
30 39
30 54
30 59
31 33
31 37
31 41
31 56
32 32
32 55
33 34
33 38
33 43
33 57
34 35
34 39
34 54
34 59
35 37
35 41
35 56
36 38
36 42
36 46
36 54
36 58
37 39
37 43
37 47
37 55
37 59
38 41
38 45
38 49
38 57
39 40
39 55
40 41
40 45
40 49
40 57
41 42
41 46

-0.008532
0.034337

-0.009504
0.023994

-0.016120
0.027448

-0.044849
-0.011597

0.023222
0.032859
0.042737

-0.118197
-0.044953
-0.024637

0.012041
-0.017196
-0.005809
-0.004841
0.035649

-0.020146
-0.018315
-0.048055

0.038655
0.009105

-0.001409
1.008831
0.050166

-0.014423
-0.116795

0.021753
0.004744

-0.054773
-0.018905

0.005182
-0.030584

0.018646
-0.026011

0.012963
-0.009213
-0.007047
0.034363
0.032242

-0.014829
-0.479266

0.100379
0.011937

-0.004744
0.846830

-0.043100
-0.049681
-0.022906
-0.001731
0.035649

-0.730810
-0.005808
-0.118916
-0.057105
-0.038135
-0.050428
-0.010132

26
26
26
26
27
27
27
27
28
28
29
29
29
29
29
29
30
30
30
30
30
31
31
31
31
32
32
33
33
33
33
34
34
34
34
35
35
35
36
36
36
36
36
37
37
37
37
38
38
38
38
38
39
39
40
40
40
40
41
41

30 -0.436830
34 0.017992
56 -0.014095
62 0.029216
30 -0.118916
34 -0.049681
56 0.017391
62 -0.014120
31 -0.050428
36 -0.007047
29 0.167503
33 0.100380
37 0.021753
41 -0.004975
55 -0.037436
61 -0.012397
32 -0.435187
36 -0.050307
40 0.028768
55 0.038135
60 0.842150
34 -0.043100
38 0.030356
43 -0.004975
57 -0.028150
33 -0.058879
56 0.752995
35 0.018646
39 -0.479268
54 0.060664
59 -0.846828
36 -0.009213
40 0.021894
55 0.001730
60 0.017028
38 -0.054773
43 0.030852
57 -0.038468
39 -0.117627
43 -0.044953
47 -0.006397
55 0.026335
60 0.014829
40 -0.055230
44 0.034337
48 -0.007085
56 -0.060664
38 0.170341
42 0.032859
46 0.027395
54 -0.037503
58 -0.017028
41 -0.058691
56 0.057771
42 0.023222
46 -0.435188
54 0.751590
58 -0.842151
43 -0.016120
47 0.025394

26 31
26 36
26 57

27 27
27 31
27 36
27 57
28 28
28 32
28 55
29 30
29 34
29 38
29 43
29 56
29 62
30 33
30 37
30 41
30 56
31 31
31 35
31 39
31 54
31 59
32 34
32 57
33 36
33 40
33 55
33 60
34 37
34 41
34 56
35 35
35 39
35 54
36 36
36 40
36 44
36 48
36 56
37 37
37 41
37 45
37 49
37 57
38 39
38 43
38 47
38 55
38 59
39 43
39 57
40 43
40 47
40 55
40 59
41 44
41 48

-0.118916
-0.057114
0.751018
0.170341

-0.019366
0.024266

-0.001279
1.223996
0.105922
0.034460

-0.008532
-0.053723
-0.052250

0.029612
-0.003296
-0.0150945
-0.055230
-0.060409
-0.004131
-0.751588
0.170341

-0.026011
-0.058691

0.008105
0.035511
0.027395
-0.749989
-0.001012
-0.060409
0.792845

-0.030615
-0.116795

0.030356
0.037503
1.223991
0.109762

-0.012963
0.161767

-0.050307
-0.057114
-0.023899
-0.032242
1.005275

-0.048055
0.027448

-0.004851
-0.792846
-0.018905
-0.053723
-0.006076
-0,020171
0.030584
0.023042
0.730810

-0.008532
0.036567

-0.019028
0.018315

-0.118916
-0.049706
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TABLE XLI (Continued)

49 0.024312
57 -0.003487
43 -0.051511
47 -0.025321
55 -0.042737
45 -0.016120
49 -0.046659
53 0.032221
57 0.037436
44 1.005275
48 0.105065
52 0.034355
57 0.009504
45 0.170341
49 0.097452
53 -0.007042
58 0.022933
47 -0.059214
55 0.749991
49 -0.006124
53 0.023116
58 -0.030622
49 -0.006123
53 -0.061199
58 0.015822
50 -0.009726
54 -0.012881
58 0.014800
51 0.003973
55 -0.057083
53 -0.050782
61 -0.036697
55 0.061756
54 0.027912
54 2.912177
58 -0.501667
55 2.027388
59 -0.559958
56 2.912174
61 0.011649
59 -0.559963
58 2.273606
62 0.076993

41
41
42
42
42
43
43
43
43
44
44
44
44
45
45
45
45
46
46
47
47
47
48
48
48
49
49
49
50
50
51
51
52
53
54
54
55
55
56
56
57
59
62

54 0.001409
58 -0.022933
44 0.023222
48 0.032403
57 -0.034460
46 -0.118197
50 0.024742
54 0.003296
59 0.017196
45 -0.005808
49 -0.052312
53 -0.025179
58 0.842152
46 -0.001031
50 0.034237
54 -0.017391
61 0.014120
48 0.024903
57 -0.050166
50 -0.432808
54 -0.004780
61 0.834169
50 -0.140658
54 0.017661
61 0.011385
51 -0.009726
55 -0.035081
61 0.031005
52 -0.423575
56 -0.010827
54 0.746439
62 -0.085718
61 -0.839861
55 -0.011106
55 -0.467614
59 -0.032961
56 -0.008054
60 0.027703
57 -0.467611
62 -0.491836
60 -0.500007
59 2.339830
62 1.088884

41
41
42
42
43
43
43
43
43
44
44
44
44
45
45
45
45
46
47

47
47
47
48
48
48
49
49
49
50
51
51
52
52
53
54
54
55
55
56
57
57
60
-1

55 0.028149 41 56 -0.008i05
59 -0.035511 42 42 1.223993
45 -0.050425 42 46 0.105922
49 -0.007082 42 54 0.040672
43 0.167503 43 44 -0.008533
47 0.100359 43 48 -0.051854
51 -0.058724 43 52 0.032136
55 -0.009372 43 56 -0.012041
61 0.015095 43 62 0.012397
46 -0.435186 44 47 -0.050779
50 -0.058979 44 51 0.022650
54 0.014095 44 55 -0.751020
61 -0.029216 44 62 -0.023994
47 -0.052326 45 48 -0.048946
51 0.036074 45 52 -0.066491
55 0.001279 45 57 0.044849
62 0.011597 46 46 1.008832
49 0.034311 46 54 -0.752998
47 1.000262 47 48 0.005239
51 -0.140658 47 52 -0.425911
55 -0.001956 47 57 0.010474
62 0.062021 48 48 1.000258
51 -0.432806 48 52 -0.425910
55 0.040584 48 57 -0.020972
62 0.009350 49 49 0.169380
52 -0.137681 49 53 -0.048287
56 -0.008763 49 57 0.010499
62 0.081044 50 50 1.002792
53 0.101564 50 54 -0.746442
51 1.002789 51 52 -0.423574
55 -0.008220 51 56 0.0o9590
52 1.836649 52 53 0.035589
62 -0.066696 53 53 0.167539
56 -0.027912 53 57 0.011106
56 -0.035927 54 57 -0.008054
61 -0.491836 54 62 0.011649
57 -0.405599 55 58 -0.500009
61 -0.026538 55 62 -0.021795
59 -0.032962 56 60 -0.501668
57 2.027386 57 58 0.027703
61 -0.021795 57 62 -0.026538
60 2.273607 61 61 1.088884
0 0.0

41
41
42
42
42
43
43
43
43
44
44
44
44
45
45
45
45
46
46
47
47
47
48
48
48
49
49
49
50
50
51
51
52
53
54
54
55
55
56
56
57
58
61



TABLE XLII

G MATRIX FOR 1,5-ANHYDRO-L-ARABINITOL

1 1 0.145758 1 2 -0.027752 1 6 -0.023868 1 7 -0.027752
I 8 -0.027752 1 20 -0.071619 1 21 -0.071619 1 22 -0.051540
1 23 0.061579 1 24 0.061579 1 25 0.071619 1 26 0.026625
1 27 -0.051530 1 29 0.024905 1 49 0.020297 I 50 -0.040594
1 51 0.020297 1 53 -0.040594 1 54 -0.037288 1 57 -0.047860
2 2 0.166512 2 3 -0.027752 2 7 -0.027752 2 8 -0.027752
2 9 -0.027752 2 10 -0.027752 2 20 0.063390 2 21 0.063390
2 22 -0.055161 2 23 -0.071619 2 24 -0.071619 2 25 0.071619
2 26 -0.071816 2 27 -0.055473 2 28 0.027737 2 29 -0.051540
2 30 0.061677 2 31 0.053506 2 32 0.063645 2 33 0.028654
2 34 -0.051517 2 36 0.024953 2 53 0.027581 2 55 0.046618
2 57 -0.012218 2 60 0.065968 2 61 0.051688 2 62 0.062938
3 3 0.166512 3 4 -0.021099 3 9 -0.027752 3 10 -0.027752
3 12 -0.027752 3 13 -0.027752 3 22 0.024905 3 23 -0.051530
3 24 0.026625 3 26 0.061677 3 27 0.053506 3 28 0.027737
3 29 -0.051540 3 30 -0.071816 3 31 -0.055473 3 32 0.063645
3 33 -0.071816 3 34 -0.055473 3 35 0.030127 3 36 -0.052881
3 37 0.053677 3 38 0.046975 3 39 0.069130 3 40 -0.052872
3 41 0.027270 3 43 0.025603 3 54 -0.049077 3 55 0.015809
3 56 0.015012 3 59 -0.070088 3 60 -0.065967 4 4 0.166512
4 5 -0.027752 4 12 -0.027752 4 13 -0.027752 4 15 -0.027752
4 16 -0.027752 4 29 0.025603 4 30 0.027270 4 31 -0.052872
4 33 0.053677 4 34 0.046975 4 35 0.030127 4 36 -0.052881
4 37 -0.071816 4 38 -0.055473 4 39 0.069129 4 40 -0.071816
4 41 -0.055473 4 42 0.027737 4 43 -0.051540 4 44 0.061678
4 45 0.053506 4 46 0.063645 4 47 -0.051530 4 48 0.026625
4 49 0.024905 4 54 0.015012 4 56 0.049077 4 57 -0.015809
4 58 -0.065967 4 59 0.070089 5 5 0.166512 5 6 -0.027752
5 15 -0.027752 5 16 -0.027752 5 18 -0.027752 5 19 -0.027752
5 36 0.024953 5 37 0.028654 5 38 -0.051517 5 40 0.061678
5 41 0.053506 5 42 0.027737 5 43 -0.051539 5 44 -0.071816
5 45 -0.055473 5 46 0.063645 5 47 -0.071619 5 48 -0.071619
5 49 -0*055161 5 50 0.063390 5 51 0.063390 5 52 0.071619
5 53 0.027581 5 55 -0.017805 5 57 -0.046618 5 58 0.065968
5 61 -0.062938 5 62 -0.051688 6 6 0.145758 6 18 -0.027752
6 19 -0.027752 6 20 -0.040594 6 21 0.020297 6 22 0.020297
6 43 0.024905 6 44 -0.051530 6 45 0.026625 6 47 0.061579
6 48 0.061579 6 49 -0.051539 6 50 -0.071619 6 51 -0.071619
6 52 0.071619 6 53 -0.040594 6 55 0.047860 6 56 0.037288
7 1 1.075350 7 8 -0.027752 7 20 -0.055162 7 21 0.063390
7 22 0.053350 7 23 -0.051540 7 24 0.061579 7 25 -0.071619
7 26 0.024905 7 27 0.026625 7 29 -0.051530 7 53 -0.055161
7 56 -0.015117 7 57 0.001053 8 8 1.075349 8 20 0.063390
8 21 -0.055161 8 22 0.053350 8 23 0.061579 8 24 -0.051540
8 25 -0.071619 8 26 -0.051530 8 27 0.024905 8 29 0.026625
8 53 0.027581 8 56 0.015117 8 57 0.046807 8 61 -0.051688
8 62 -0.062938 9 9 1.075350 9 10 -0.027752 9 22 0.026625
9 23 0.024905 9 24 -0.051530 9 26 -0.051540 9 27 0.053507
9 28 -0.055473 9 29 0.051539 9 30 -0.051540 9 31 0.053507
9 32 -0.055473 9 33 -0.051427 9 34 0.027076 9 36 0.026578
9 55 -0.045648 9 56 0.003613 9 57 -0.006349 10 10 0.145758
10 11 -0.020834 10 22 -0.051530 10 23 0.026625 10 24 0.024905
10 26 0.061678 10 27 -0.051540 10 28 -0.060751 10 29 0.051539
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10 30 0.061678 10
10 34 0.024440 10
10 57 0.018567 11
11 31 0.020823 11
12 12 1.075349 12
12 31 0.022773 12
12 36 0.047221 12
12 40 0.022773 12
12 55 0.003398 12
13 14 -0.020834 13
13 33 0.067737 13
13 37 0.067736 13

13 41 0.027077 13
13 56 0.001614 13
14 35 -0.041645 14
14 57 -0.037090 15
15 37 0.022773 15
15 42 -0.055473 15
15 46 -0.055474 15
15 54 0.003613 15
16 17 -0.020834 16
16 40 0.061678 16
16 44 0.061678 16
16 48 -0.051530 16
16 57 0.045648 17
17 45 0.020823 17
18 18 1.075351 18
18 45 0.024905 18
18 50 -0.055162 18
18 54 0.015117 18
19 44 0.024905 19
19 49 0.053350 19
19 53 0.027581 19
19 62 0.051688 20
20 23 -0.432808 20
20 27 0.034237 20
20 51 -0.005894 20
20 57 0.057083 21
21 24 -0.432807 21
21 29 -0.058724 21
21 53 -0.050782 21
21 61 0.085718 21
22 24 -0.006124 22
22 28 -0.007082 22
22 32 0.034311 22
22 49 0.026097 22
22 54 0.008763 22
22 60 -0.014800 22
23 24 0.005239 23
23 28 -0.025321 23
23 32 -0.059214 23
23 53 0.023116 23
23 60 0.030622 23
24 25 -0.425909 24
24 29 -0.051854 24
24 33 0.028982 24
24 55 0.020972 24
24 61 -0.009350 24
25 27 -0.066491 25
25 61 0.066696 25

TABLE XLII (Continued)

31 -0.051539 10 32 -0.071816
36 -0.051531 10 55 -0.000970
11 1.054595 11 27 0.020823
32 -0.041645 11 56 0.038254
13 -0.033693 12 29 0.028654
33 -0.051539 12 34 0.059128
37 -0.051539 12 38 0.059128
41 -0.051427 12 43 0.028654
56 -0.045438 12 57 -0.003398
29 -0.051517 13 30 0.027076
34 -0.051539 13 35 -0.060750
38 -0.051539 13 39 -0.069656
43 -0.051517 13 54 -0.001614
57 0.017515 14 14 1.054595
38 0.022617 14 39 -0.041645
15 1.075349 15 16 -0.027752
38 0.024440 15 40 -0.051540
43 0.051539 15 44 -0.051540
47 0.026625 15 48 0.024905
55 -0.003555 15 57 0.000969
36 0.026578 16 37 -0.051427
41 -0.051539 16 42 -0.060750
45 -0.051540 16 46 -0.071816
49 0.026625 16 54 -0.018625
17 1.054594 17 41 0.020823
46 -0.041645 17 54 0.038254
19 -0.027752 18 43 -0.051530
47 -0.051540 18 48 0.061579
51 0.063390 18 52 -0.071620
55 -0.001053 19 19 1.075349
45 -0.051530 19 47 0.061579
50 0.063390 19 51 -0.055162
54 -0.015117 19 55 -0.046807
20 1.002793 20 21 0.003973
24 -0.140658 20 25 -0.423575
29 0.024742 20 49 -0.005894
53 0.101564 20 54 0.010827
21 1.002789 21 22 -0.009726
25 -0.423573 21 26 0.022650
49 -0.020203 21 50 -0.005894
54 -0.019590 21 56 -0.746438
62 0.036697 22 22 0.169380
25 -0.137681 22 26 -0.052312
29 -0.046659 22 30 -0.057105
33 -0.022906 22 34 -0.004851
50 -0.005894 22 51 -0.020203
55 -0.010499 22 56 0.012880
61 -0.081044 22 62 -0.031005
25 -0.425911 23 26 -0.050779
29 0.100359 23 30 0.036567
33 -0.006076 23 34 0.011937
55 -0.010474 23 56 0.004780
61 -0.062021 23 62 -0.834169
26 0.105065 24 27 -0.048946
30 0.020537 24 31 -0.049706
34 -0.007086 24 36 -0.023899
56 -0.017660 24 57 -0.040584
62 -0.011385 25 25 1.836644
29 0.032136 25 53 0.035588
62 0.839860 26 26 1.005274

10 33 0.022773
10 56 -0.018625
11 28 -0.041645
11 57 -0.038254
12 30 -0.051427
12 35 -0.053805
12 39 -0.053805
12 54 0.045438
13 13 0.145758

13 31 0.024440
13 36 0.047221
13 40 0.024440
13 55 -0.017515
i4 34 0.022617
14 55 0.037090
15 36 -0.05153i
15 41 0.05350i
i5 45 0.053507
15 49 -0.051530
i6 16 0.145758
16 38 0.027076
16 43 0.051539
16 47 0.024905
16 55 0.021360
17 42 -0.041645
17 55 -0.038254
18 44 0.026625
i8 49 0.053350
18 53 -0.055161
19 43 0.026625
19 48 -0.051540
19 52 -0.071619
19 61 0.062938
20 22 -0.009726
20 26 -0.058979
20 50 0.011787
20 56 0.746442
21 23 -0.140658
21 27 0.036074
21 51 0.026097
2i 57 0.008220
22 23 -0.006123
22 27 0.097452
22 31 0.024312
22 36 0.030295
22 53 -0.048287
22 57 0.035081
23 23 1.000262
23 27 -0.052326
23 31 0.025394
23 36 -0.006397
23 57 0.001956
24 24 1.000258
24 28 0.032403
24 32 0.024904
24 53 -0.061199
24 60 -0.015822
25 26 0.034355
25 57 -0.061756
26 27 -0.005808
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TABLE XLII CContinued)

0.023222 26
-0.435187 26
-0.025179 26
-0.842150 26
-0.050428 27
-0.010131 27
-0.007042 27

-0.022934 27
-0.051511 28
0.032859 28

-0.040672 28
-0.016120 29
-0.006033 29

0.033908 29
0.032221 29

-0.001018 29
1.005272 30

-0.053237 30
-0.052394 30

-0.024637 30
0.007961 30
-0.010132 31
0.093746 31
0.009105 31

-0.001951 31
0.022933 32
0.034363 32
1.005272 33

-0.352559 33
0.019658 33
0.040848 33
0.170341 34

-0.010148 34
0.023615 34

-0.008365 34
-0.051263 35

-0.025244 35
-0.038469 35
-0.001011 36
-0.048351 36
-0.049648 36
0.030295 36
0.000565 36

-0.014423 37
-0.004221 37

0.038319 37
-0.036973 37
0.017028 37
-0.048054 38
0.037025 38

-0.007086 38
-0.049708 38

1.016509 39
-0.051394 39

1.005276 40
-0.436831 40
-0.057419 40
-0.008105 40

0.170341 41
-0.019365 41

29 -0.008532
33 0.017992
55 -0.009504
61 0.023994
29 -0.016120
33 -0.049681
55 -0.044849
61 -0.011597
30 0.023222
34 -0.026403
57 0.042737
32 -0.118197
36 -0.044953
40 -0.004975
54 0.012041
59 0.017196
31 -0.005809
35 0.031276
39 0.025009
54 -0.020146
59 0.018315
33 -0.044776
37 0.040356
41 -0.004130
56 -0.001409
32 1.008831
55 0.050166
34 -0.014423
38 -0.116795
43 -0.060013
57 0.007062
35 -0.054773
39 -0.018905
54 0.049708
59 0.030584
37 0.018646
41 0.031276
56 0.034611
38 -0.009213
42 0.031986
46 0.022863
54 0.035617
58 0.014829
39 -0.479265
43 -0.055832
47 -0.006076
55 -0.018687
59 -0.846827
41 -0.051244
45 0.024953
49 -0.004851
57 0.001731
40 -0.058917
55 0.730806
41 -0.005808
45 -0.118916
49 0.022606
57 0.001879
42 -0.050428
46 -0.010132

26 30
26 34
26 56
26 62
27 30
27 34
27 56
27 62
28 31
28 36
29 29
29 33
29 37
29 41
29 55
29 61
30 32
30 36
30 40
30 55
30 60
31 34.

31 38
31 43
31 57
32 33
32 56
33 35
33 39
33 54
33 59
34 36
34 40
34 55
34 60
35 38
35 43
35 57
36 39
36 43
36 47
36 55
36 60
37 40
37 44
37 48
37 56
38 38
38 42
38 46
38 54
38 58
39 41
39 56
40 42
40 46
40 54
40 58
41 43
41 47

-0.436830 26 31 -0.118916
0.034337 26 36 -0.057114

-0.014095 26 57 0.751018

0.029216 27 27 0.170341
-0.118916 27 31 -0.019366
0.027448 27 36 0.024266
0.017391 27 57 -0.001279
-0.014120 28 28 1.223996
-0.050428 28 32 0.105922
-0.007047 28 55 0.034460
0.167503 29 30 -0.008532

-0.055832 29 34 0.096587
-0.060013 29 38 0.023615
-0.024637 29 43 0.029612
-0.034803 29 56 -0.003296
-0.012397 29 62 -0.015095
-0.435187 30 33 0.104902
-0.050307 30 30 0.019657
-0.004131 30 41 0.028768
0.040940 30 56 -0.751588
0.842150 31 31 0.170341

-0.046255 31 35 -0.025244
0.028779 31 39 -0.058917
-0.004975 31 54 0.008105
-0.006692 31 59 -0.035511
0.027395 32 34 -0.058879
0.752995 32 57 -0.749989
0.018646 33 36 -0.001012

-0.479267 33 40 0.040356
0.012675 33 55 -0.792841
0.846825 33 60 0.017028

-0.009213 34 37 -0.116795
0.028779 34 41 -0.052394

-0.001730 34 56 -0.004747
-0.030615 35 35 1.223994
-0.054773 35 39 0.109763
-0.006033 35 54 -0.034611
0.038468 36 36 0.161767
-0.117627 36 40 0.097539
-0.044953 36 44 0.022549
-0.006397 36 48 -0.023899
-0.010688 36 56 -0.032242
0.014829 37 37 1.005272

-0.046453 37 41 0.101116
-0.057685 37 45 0.020535
0.028982 37 49 -0.022906
-0.012675 37 57 0.792842
0.170341 38 39 -0.018905

-0.025086 38 43 0.096587
-0.059267 38 47 0.011937
-0.002220 38 55 0.029265
-0.030615 38 59 -0.030584
0.025009 39 43 0.033908
0.051394 39 57 -0.730805
0.023222 40 43 -0.008532
-0.435188 40 47 0.034813
-0.751590 40 55 -0.007252
0.842152 40 59 0.035511
-0.016120 41 44 -0.118916
0.027021 41 48 0.022624

26 28
26 32
26 53
26 60
27 28
27 32
27 53
27 60
28 29
28 33
28 56
29 31
29 35
29 39
29 53
29 57
30 30
30 34
30 38
30 43
30 57
31 32
31 36
31 40
31 55
31 60
32 36
33 33
33 37
33 41
33 56
34 34
34 38
34 43
34 57
35 36
35 40
35 55
36 37
36 41
36 45
36 49
36 57
37 38
37 42
37 46
37 54
37 58
38 40
38 44
38 48
38 56
39 39
39 54
40 40
40 44
40 48
40 56
41 41
41 45
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TABLE XLII (Continued)

41 49 -0.049645
41 57 -0.037580
42 43 -0.051511
42 47 -0.026180
42 55 0.039945
43 45 -0.016120
43 49 -0.046659
43 53 0.032221
43 57 0.034803
44 44 1.005276
44 48 -0.050779
44 52 -0.066491
44 57 0.055072
45 45 0.170341
45 49 -0.050352
45 53 -0.025179
45 58 -0.022933
46 47 -0.058961
46 55 -0.756398
47 49 -0.006124
47 53 0.023116
47 58 0.030622
48 49 -0.006123
48 53 -0.061199
48 58 -0.015822
49 50 -0.009726
49 54 -0.002777
49 58 -0.014800
50 51 0.003973
50 55 -0.057083
51 53 -0.050782
51 61 -0.036697
52 55 0.061756
53 54 0.027912
54 54 2.912177
54 58 -0.501668
55 55 2.029649
55 59 -0.559957
56 56 2.912174
56 61 0.011649
57 59 -0.559960
58 58 2.273607
61 62 0.076993

41
41
42
42
42
43
43
43
43
44
44
44
44
45
45
45
45
46
46
47
47
47
48
48
48
49
49
49
50
50
51
5i
52
53
54
54
55
55
56
56
57
59
62

54 -0.001409
58 0.022933
44 0.023222
48 -0.005793
57 -0.012133
46 -0.118197
50 0.024742
54 -0.024583
59 -0.017196
45 -0.005808
49 0.101245
53 -0.007042
58 -0.842152
46 -0.010131
50 -0.058979
54 0.028034
61 -0.029216
48 0.036156
57 -0.056744
50 -0.432808
54 -0.025685
61 0.834169
50 -0.140658
54 0.028462
61 0.011385
51 -0.009726
55 -0.038449
61 0.031005
52 -0.423575
56 -0.010827
54 0.746439
62 -0.085718
61 -0.839861
55 -0.011106
55 -0.487909
59 0.032961
56 -0.003007
60 0.027703
57 -0.487529
62 -0.491836
60 -0.500007
59 2.339827
62 1.088884

41
41
42
42
43
43
43
43
43
44
44
44
44
45
45
45
45
46
47
47
47
47
48
48
48
49
49
49
50
51
51
52
52
53
54
54
55
55
56
57
57
60
-1

55 -0.021699 41
59 -0.018315 42
45 -0.050428 42
49 0.031973 42
43 0.167503 43
47 0.100359 43
51 -0.058724 43
55 0.028897 43
61 0.015095 43
46 -0.435187 44
50 0.034237 44
54 -0.003451 44
61 0.014120 44
47 -0.048946 45
51 0.022650 45
55 0.001563 45
62 -0.023994 46
49 0.022805 46
47 1.000262 47
51 -0.140658 47
55 0.005013 47
62 0.062021 48
51 -0.432806 48
55 0.036984 48
62 0.009350 49
52 -0.137681 49
56 -0.008763 49
62 0.081044 50
53 0.101564 50
51 1.002789 51
55 -0.008220 51
52 1.836649 52
62 -0.066696 53
56 -0.027912 53
56 -0.035927 54
61 -0.491836 54
57 -0.386683 55
61 -0.026538 55
59 0.032962 56
57 2.027379 57
61 -0.021795 57
60 2.273607 61

0 0.0

56
42
46
54
44
48
52
56
62
47
51
55
62
48
52
57
46
54
48
52
57
48
52
57
49
53
57
50
54
52
56
53
53
57
57
62
58
62
60
58
62
61

0.020146
1.223995
0.105922

-0.040672
-0.008533
-0.051854

0.032136
-0.012041

0.012397
-0.054286

0.036074
0.754891
0.011597
0.101272
0.034355
0.002570
1.008832
0.752997
0.005239

-0.425911
0.010474
1.000258

-0.425910
-0.020972
0.169380

-0.048287
0.010499
1.002792

-0.746442
-0.423574

0.019590
0.035589
0.167539
0.011106

-0.009311
0.011649

-0.503330
-0.021795
-0.501668
-0.027703
-0.026538

1.088884
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up of 1,326 elements (independent elements), which may be reduced to 682 ele-

ments for 1,5-AX and 1,5-AR by introducing symmetry coordinates. The SVQFF

for the 1,5-AP models is seen to be greatly reduced in size from the GQFF.
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TABLE XLIII

Z MATRIX FOR 1,5-ANHYDROXYLITOL

1 1 1.000000
8 9 1.000000

53 26 1.000000
8 10 1.000000

23 28 1.000000
29 29 1.000000
10 7 1.000000
30 28 1.000000
36 29 1.000000
13 7 1.000000
37 28 1.000000
43 29 1.000000
16 7 1.000000
44 28 1.000000
49 27 1.000000
49 24 1.000000
7 3 1.000000
25 30 1.000000
25 30 1.000000
30 30 1.000000
27 24 1.000000
11 6 1.000000
33 30 1.000000
14 12 1.000000
39 23 1.000000
16 9 1.000000
16 2 1.00000
45 24 1.000000
18 3 1.000000
52 30 1.000000
52 30 1.000000
23 33 1.000000
22 34 1.000000
22 14 1.000000
27 42 1.000000
24 36 1.000000
29 48 1.000000
27 43 1.000000
27 34 1.000000
27 18 1.000000
32 34 1.00000
29 20 1.000000
34 42 1.000000
32 33 1.000000
31 18 1.000000
36 42 1.000000
36 34 1.000000
35 50 1.000000
35 19 1.000000
37 34 1.000000

1
1
2
2
2
3
3
3
4
4
4
5
5
5
6
6

7
8
9
9

10
11
12
13
14
15
16
16
18
19
20
20
21
22
22
23
24
24
26
27
28
29
29
30
31
32
33
34
35
36

2 7
20 23

2 5
9 10

24 28
3 5

12 10
31 27
4 5
15 10
38 27
5 5

18 10
45 27
6 1

50 23
8 11
8 3
9 4

32 30
28 31
28 32
37 30
34 24
14 6
40 30
17 12
46 23
19 11
19 3
20 13
25 55
24 33
23 34
29 41
25 56
24 15
29 49
29 34
28 50
28 19
30 34
36 41
33 47
32 34
32 21
37 37
36 38
38 50
38 38

1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000

1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.00000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000

1
1
2
2
2
3
3
3
4
4
4
5
5
5
6
6
7
8
9

10
10
12
12
13
14
15
16
17
18
19
20
20
21
22
22
23
24
25
26
27
28
29
30
30
31
33
33
34
35
36

6
21
3

10
26

4
13
33
5

16
40

6
19
47
18
51
20
21
10
10
31
12
39
35
35
44
41
17
47
48

21
53
25
24
53
26
25
25
30
29
31
31
30
34
33
33
39
38
39
40

8
23

7
7

28
7
7
28
7
7

28
7

10
28
9

23
30
30

9
2
24
4

30
31
32
30
24
6

30
30
35
39
55
34
41
46
56
16
37
38
50
38
17
43
43
17
33
38
51
49

1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.00000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000

1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000

1 7
1 22
2 7
2 22
2 27
3 9
3 29
3 34
4 12
4 36
4 41
5 15
5 43
5 48
6 19
6 53
7 23
8 24
9 26

10 11
10 32
12 13
13 13
13 38
15 15
15 46
16 42
17 42
18 50
19 51
20 22
21 21
21 53
22 26
23 23
23 27
24 26
26 26
26 32
27 31
28 32
29 33
30 31
30 36
31 34
33 34
34 34
34 39
36 36
36 41

9
24
10
27
27
10
29
27
10
29
27
10
29
28

9
26
30
30
30
12
23

9
2

24
4

30
31
32
30
30
34
13
40
43
15
43
47
17
33
38
51
49
34
49
41
34
18
34
20
42

1.000000
1.000000
1.000000
1.000000
1.000000
1.00000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1. 000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000

1
I
1
2
2
2
3
3
3

4
4
5
5
5
6
7
7

9
10I
11
12
13
13
15
16
16
18
18
19
20
21

22
22
23

23
24
26
27
27
29
29
30
31
31
33
34
35
36

�
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TABLE XLIII (Continued)

43 41 1.000000
40 47l .000000
39 34 1.000000
39 21 1.000000
44 37 1.000000
43 38 1.000000
45 50 1.000000
45 38 1.000000
44 17 1.00000
48 47 1.000000
47 43 1.000000
47 15 1.000000
52 56 1.000000
52 56 1.000000
53 41 1.000000
53 39 1.00000
52 16 1.00000
56 52 1.000000
60 53 1.000000

37
37
38
40
40
41
42
43
44
44
45
47
48
49
50
51
53
57
61

37
41
40
40
46
45
46
47
45
49
48
48
48
49
50
51
53
57
61

17
43
43
17
33
38
51
48
34
43
43
36
15
14
13
13
22
52
54

1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000

37
37
38
40
41
41
43
43
44
45
45
47
48
49
50
51
54
58
62

38
43
41
41
41
46
43
48
46
45
49
49
49
50
51
52
54
5.8
62

34
49
41
34
18
34
20
49
33
18
42
34
34
34
35
55
52
53
54

1.000000
1.000000
1.000000
1.000000
1. 00000
1.000000
1.000000
1.000000
1.000000
1.000000
l.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.00000
1.000000

37
38
38
40
41
42
43
43
44
45
46
47
48
49
50
51
55
59

39 33
38 18
43 42
43 34
42 50
42 19
44 34
49 41
47 46
46 34
46 21
50 33
51 33
51 34
52 55
53 40
55 52
59 53

1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
l.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000

TABLE XLIV

Z MATRIX FOR 1,5-ANHYDRORIBITOL

1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000

1 2
1 20
2 2
2 9
2 24
3 3
3 12
3 31
4 4
4 15
4 38
5 5
5 18
5 45
6 6
6 50
7 8
8 8
9 9
9 32

10 28
11.28
12 37
13 34
14 14
15 40
16 17

7
23

5
10
28

5
10
27

5
10
27

5
10
27
1

23
11

3
4

30
31
32
30
24

6
30
12

1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
i.000000
i.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000

168
1 21 23
2 3 7
2 10 7
2 26 28
347
3 13 7
3 33 28
4 57
4 16 7
4 40 28
5 6 7
5 19 10
5 47 28
6 18 9
6 51 23
7 20 30
8 21 30
9 10 9

10 10 2
10 31 24
12 12 4
12 39 30
13 35 31
14 35 32
15 44 30
16 41 24

1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1,.00000000
i.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1. 000000
1.000000
1.000000
1.000000
i.000000

1
1
2
2
2
3
3
3
4
4
4
5
5
5
6
6
7
8
9

10
10
12
13
13
15
15
16

7 9 1.000000
22 24 1.00000
7 10 1.000000

22 27 1.000000
27 27 1.000000

9 10 1.000000
29 29 1.000000
34.27 1.000000
12 10 1.00000
36 29 1.000000
41 27 1.000000
15 10 1.000000
43 29 1.000000
48 28 1.000000
19 9 1.000000
53 26 1.000000
23 30 1.000000
24 30 1.00000
26 30 1.000000
11 12 1.000000
32 23 1.000000
13 9 1.000000
13 2 1.000000
38 24 1.000000
15 4 1.000000
46 30 1.000000
42 31 1.000000

36
37
38
39
40
41
42
43
44
44
45
47
47
48
49
50
52
56
60

1
1
1
2
2
2
3
3
3
4
4
4
5
5
5
6
7
7
8
9

10
11
12
13
13
15
16

1
8

53
8
23
29
10
30
36
13
37
43
16
44
49
49

7
25
25
30
27
11
33
14
39
16
16

1
9

26
10
28
29

7
28
29

7
28
29

7
28
27
24

3
30
30
30
24

6
30
12
23

9
2
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TABLE XLIV (Continued)

16 45 24
18 18 3
18 52 30
19 52 30
20 23 33
21 22 34
22 22 14
22 27 42
23 24 36
23 29 48
24 27 43
26 27 34
27 27 18
27 32 34
29 29 20
29 34 41
30 32 33
31 31 18
31 36 42
33 36 34
34 35 50
35 35 19
36 37 34
36 43 41
37 40 46
38 39 34
39 39 21
40 44 37
41 43 38
42 45 50
43 45 38
44 44 17
44 48 47
45 47 43
47 47 15
47 52 56
48 52 56
49 53 41
50 53 39
52 52 16
56 56 52
60 60 53

1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
i.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.0000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000

16 46 23 1.000000
18 19 11 1.000000
19 19 3 1.000000
20 20 13 1.000000
20 25 55 1.000000
21 24 33 1.000000
22 23 34 1.000000
22 29 41 1.000000
23 25 56 1.000000
24 24 15 1.000000
24 29 49 1.000000
26 29 34 1.0000000
27 28 50 1.000000
28 28 19 1.000000
29 30 34 1.000000
29 36 41 1.000000
30 33 46 1.000000
31 32 34 1.000000
32 32 21 1.000000
33 37 37 1.000000
34 36 38 1.000000
35 38 50 1.000000
36 38 38 1.000000
37 37 17 1.0000000
37 41 43 1.000000
38 40 44 1.000000
40 40 17 1.000000
40 46 33 1.000000
41 45 38 1.000000
42 46 51 1.000000
43 47 48 1.000000
44 45 34 1.000000
44 49 43 1.000000
45 48 43 1.000000
47 48 36 1.000000
48 48 15 1.000000
49 49 14 1.000000
50 50 13 1.000000
51 51 13 1.000000
53 53 22 1.000000
57 57 52 1.000000
61 61 54 1.000000

17 17 76
18 47 30
19 48 30
20 21 35
20 53 39
21 25 55
22 24 34
22 53 41
23 26 46
24 25 56
25 25 16
26 30 37
27 29 38
28 31 50
29 31 38
30 30 17
30 34 44
31 33 43
33 33 17
33 39 33
34 38 38
35 39 51
36 40 49
37 38 34
37 43 48
38 41 41
40 41 34
41:41 18
41 46 34
43 43 20
43 48 49
44 46 33
45 45 18
45 49 42
47 49 34
48 49 34
49 50 34
50 51 35
51 52 55
54 54 52
58 58 53
62. 62 54

1.000000 17 42 32
1.000000 18 50 30
1.000000 19 51 30
1.000000 20 22 34
1.000000 21 21 13
1.000000 21 53 40
1.000000 22 26 43
1.000000 23 23 15
1.000000 23 27 43
1.000000 24 26 47
1.000000 26 26 17
1.000000 26 32 33
1.000000 27 31 38
1.000000 28 32 51
1.000000 29 33 48
1.000000 30 31 34
1.000000 30 36 49
1.000000 31 34 41
1.000000 33 34 34
1.000000 34 34 18
1.000000 34 39 34
1.000000 36 36 20
1.000000 36 41 42
1.000000 37 39 33
1.000000 38 38 18
1.000000 38 43 41
1.000000 40 43 34
1.000000 41 42 50
1.000000 42 42 19
1.000000 43 44 34
1.000000 43 49 41
1.000000 44 47 46
1.000000 45 46 34
1.000000 46 46 21
1.000000 47 50 33
1.000000 48 51 33
1.000000 49 51 34
1.000000 50 52 55
1.000000 51 53 40
1.000000 55 55 52
1.000000 59 59 53
1.000000

1.000000
1. 000000
1.00000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.00000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000



TABLE XLV

Z MATRIX FOR 1,5-ANHYDRO-L-ARABINITOL

1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
i.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000.
1.000000
1.000000

1.000000
1.000000
1.000000
1.000000
1.000000
1.00000
1.000000
1.000000
1.000000
1.000000
1.000000
.000000

1.00000
i.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000

1 2
1 20
2 2
2 9
2 24
3 3
3 12
3 31
4 4
4 15
4 38
5 5

5 18
5 45
6 6
6 50
7 8
8 8
9 9
9 32
10 28
11 28
12 37
13 34
14 14
15 40
16 17
16 46
18 19
19 19
20 20
20 25
21 24
22 23
22 29
23 25
24 24
24 29
26 29
27 28
28 28
29 30
29 36
30 33
31 32
32 32
33 37
34 36
35 38
36 38

7
23
5

10
28

5
10
27
5

10
27
5

10
27

1
23
11
3
4

30
31
32
30
24
6

30
12
23
11
3

13
55
33
34
41
56
15
49
34
50
19
34
41
47
34
21
37
38
50
38

1.000000
1.000000
1.000000
1.000000
1.'000000
1,000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
i.00000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000

1..000000
1.000000
1.000000
1.00000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000

1 6 8
1 21 23
237
2 10 7
2 26 28
3 4 7
3 13 7
3 33 28
4 5 7
4 16 7
4 40 28
567
5 19 10
5 47 28
6 18 9
6 51 23
7 20 30
8 21 30
9 10 9

10 10 2
10 31 24
12 12 4
12 39 30
13 35 31
14 35 32
15 44 30
16 41 24
17 17 6
18 47 30
19 48 30
20 21 35
20 53 39
21 25 55
22 24 34
22 53 41
23 26 46
24 25 56
25 25 16
26 30 37
27 29 38
28 31 50
29 31 38
30 30 17
30 34 43
31 33 43
33 33 17
33 39 33
34 38 38
35 39 51
36 40 48

1.000000
1.000000
1.0000000
1.000000

1.000000
1.000000
1.000000
1.000000
1.000000
1.00000
1.000000
1.000000
1.000000
1.000000
1.000000
1.00000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000

1 7

1 22
2 7
2 22
2 27
3 9
3 29
3 34
4 12
4 36
4 41
5 15
5 43
5 48
6 19
6 53
7 23
8 24
9 26

10 11
10 32
12 13
13 13
13 38
15 15
15 46
16 42
17 42
18 50
19 51
20 22
21 21
21 53
22 26
23 23
23 27
24 26
26 26
26 32
27 31
28 32
29 33
30 31
30 36
31 34
33 34
34 34
34 39
36 36
36 41

9
24
10
27
27
10
29
27
10
29
27
10
29
28
9

26
30
30
30
12
23
9

2
24
4
30
31
32
30
30
34
13
40
43
15
43
47
17
33
38
51
49
34
49
41
34
18
34
20
41

1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1 000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.00000
1.000000
1.000000
1.000000
1.000000
1.0,0000
1.000000
1. 00000
1.000000
1.00000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.0000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000

1
1
1
2
2
2
3
3
3
4
4
4
5
5
5
6
7
7
8
9

10
11
12
13
13
15
16
16
18
18
19
20
21
22
22
23
23
24
26
27
27
29
29
30
31
31
33
34
35
36

1
8

53
8

23
29
10
30
36
13
37
43
16
44
49
49
7
25
25
30
27

11
33
14
39
16
16
45
18
52
52
23
22
22
27
24
29
27
27
27
32

29
34
32
31
36
36
35
35
37

1
9

26
10
28
29
7

28
29
7
28
29

7
28
27
24
3

30
30
30
24

6
30
12
23

9
2

24
3

30
30
33
34
14
42
36
48
43
34
18
34
20
42
33
18
42
34
50
19
34
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TABLE XLV (Continued)

1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000

37
37
38
40
40
41
42
43
44
44
45
47
48
49
50
51
53
57
61

37
41
40
40
46
45
46
47
45
49
48
48
48
49
50
51
53
57
61

17
44
43
17
33
38
51
48
34
44
44
36
15
14
13
13
22
52
54

1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.00000
1.000000

37
37
38
40
41
41
43
43
44
45
45
47
48
49
50
51
54
58
62

38
43
41
41
41
46
43
48
46
45
49
49
49
50
51
52
54
58
62

34
49
41
34
18
34
20
49
33
18
41
34
34
34
35
55
52
53
54

1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000

37 39
38 38
38 43
40 43
41 42
42 42
43 44
43 49
44 47
45 46
46 46
47 50
48 51
49 51
50 52
51 53
55 55
59 59

33
18
42
34
50
19
34
41
46
34
21
33
33
34
55
40
52
53

1.000000
1.000000
1.000000
1.,00000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000

36
37
38
39
40
41
42
43
44
44
45
47
47
48
49
50
52
56
60

43 41
40 46
39 34
39. 21
44 37
43 38
45 50
45 38
44 17
48 46
47 43
47 15
52 56
52 56
53 41
53 39
52 16
56 52
60 53
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APPENDIX IV

TERMINATION OF THE LINEAR LEAST SQUARES REFINEMENT

The criterion normally employed to judge when the force constant refine-

ment has "converged" is to examine the corrections to the force constant param-

eters, |A.il, after each iteration. When all the corrections are less than or

equal to an arbitrary constant (0.008 in FADJ), the refinement is terminated

and said to have "converged."

The weighted sum of squares of the residuals computed for each iteration

is compared with the value computed for the previous iteration. If the

weighted sum of squares increases for two consecutive iterations, the refine-

ment is terminated and said to have "diverged."

EVALUATION OF TRANSFERABLE FORCE CONSTANTS

One method of introducing additional constraints is to assume that force

constants may be transferred between related molecules. That is, one wishes to

refine a set of force constants to give the best fit to a series of molecules.

Suppose 4 is the set of force constants for a series of molecules. One can then

partition the perturbation equations and write them in the form



where A-) and J Z-) are the matrices for a single molecule or factored

block. The combined equations for a series of large molecules become very

large and taxes the memory of even the largest digital computer. However, it

follows from Equation (163) that the normal equations for the combined molecules

are given by the sum of the normal equations for the individual molecules, thus

This relation makes it possible to consider one molecule at a time in high-speed

storage and to use magnetic tape or disk to collect the normal equations which

are then summed as they are read back into the computer. The determined

from Equation (164) are by definition transferable among the molecules used in

the refinement, and the "goodness of fit" is a measure of the degree of transfer-

ability.

POTENTIAL ENERGY DISTRIBUTION IN TERMS OF THE FORCE CONSTANTS

The potential energy distribution among the elements of % for each normal

mode can be calculated as

P.E. = A'1JZ. C165)

ERROR ANALYSIS

The theory of least squares can be applied to estimate the uncertainties in

the calculated force constants. The force constant moment matrix is

where o2 = (S)'P(-A)/d and d is the number of degrees of freedom. The diagonal

elements of M(F) give the uncertainties in the calculated force constants, and
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the off-diagonal elements give the correlation between the errors in the force

constants. One must be cautious about attaching great significance to the un-

certainties for several reasons. First, if the number of degrees of freedom is

small, the statistical analysis is in doubt. Second, the errors may not be

normally distributed due to anharmonicity. Finally, because the force constants

and frequency parameters are assumed to be linearly related over the range of

errors considered.

However, the analysis does give some indication of the consistency of the

data and of the sensitivity of the force constants to the data. For example,

if CZ'J'PJZ) is nearly singular, certain force constants will have a large un-

certainty indicating that they are not sensitive to the data.

MULTIPLE SOLUTIONS

In many problems, there are a number of distinct solutions to the force

field which will fit the data to within acceptable errors. The various solutions

represent alternate minima in the hypersurface of the quantity (AX'PA-) as a

function of the force constants, A, and correspond to alternate assignments of the

vibrational frequencies. The various minima can be reached by starting the calcu-

lation with different initial F matrices. Some of the minima are much higher than

others and can be eliminated because of the poorer fit to the data. In other

cases, a solution may be unacceptable because the force constants are physically

unreasonable. However, in some situations there will be no method of deciding

which is the best solution without having some additional data.



MULTIPLE REGRESSION ANALYSIS

Suppose one has a force field defined by a constraint matrix, Z, for

which the determinant of (Z'J'PJZ) is too small to obtain a convergent solution.

One then wishes to adjust as many of the force constants in the set T as

possible to obtain a least squares fit between the observed and calculated

frequencies. One starts with a force field containing the most important force

constants. These constants are then refined by the perturbation technique,

while holding all other force constants fixed at zero.. One then enters a

multiple regression analysis in which all the possible interaction constants

are added to the normal equations, one at a time, in the order which gives the

greatest estimated improvement in the fit between the observed and calculated

X's, as measured by the variance of X, VX,

VX (167)

This procedure is continued until the estimated standard error of the next

force constant to be added becomes lower than some preset level. A convenient

point to stop the regression is the point at which the. standard error in X begins

to increase, that is, the decrease in the variance, V,, due to the addition of

the next force constant does not compensate for the decrease in d, the number of

degrees of freedom. The standard error in X is defined by

This corresponds to the point at which the next force constant to be added to the

force field will have an estimated standard error larger than the value of the

constant itself and indicates that the determinant of (Z'J'PJZ) is becoming small.

When the regression is completed, the perturbation cycle is once more entered,
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and the force field including those constants selected as significant by the

regression is refined. Because the process is iterative, JZ is a function of

the force constants, and it may be desirable to again enter the regression after

refining the constants to obtain the modified JZ matrix. This process is based

on least squares theory and is subject to three criticisms. First, the errors

in X may not be random due to anharmonicity. Second, if the number of degrees

of freedom is small, least squares does not apply. Third, if the A$. are large,

the linear approximation is poor, and the variance estimates, VX, will reflect

this error.

The method does, however, give one a systematic procedure for selecting a

subset of force constants that will give a well-behaved perturbation. In

addition, the final estimates of the standard errors in will give some indi-

cation of the approximations involved in the regression.

In the stepwise regression, a force constant that may be significant at an

early stage may become insignificant after the addition of other force constants.

The insignificant force constant is removed from the regression equation before

adding additional force constants.

The normal equations are a set of simultaneous linear algebraic equations

in A~ and are solved by the Gaussian elimination method, that is,

where Y = (JZ)'PAX and S = (JZ)'P(JZ). For convenience, the normal equations

are normalized to unity as follows:
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where a = t[X)'PCX)] 2 . The matrix C is the correlation matrix and C 1 is the

variance-covariance matrix. An F level (Fin) for entering a force constant and

an F level (F o t ) for removing a force constant are entered with the input data.-out

The C matrix at any stage in the regression is partially inverted, that is, the

matrix can be partitioned into a matrix for the variables in the regression cor-

responding to C - 1 and into a matrix for the variables not in the regression cor-

responding to C. The variance increase due to the deletion of a variable, j,

is estimated by

for variables in the regression, and if the minimum V., V in satisfies

the variable corresponding to V is removed. If no variable is to be removed,

the variance reduction due to the addition of the variables not in the regression

is estimated by

and if the largest .V, Vmx, satisfies the condition

V d/a C - Vax) > F. (175)max max in

the variable corresponding to V is added to the regression.
-max

It must be emphasized that the regression is a statistical test and is

carried out at some intermediate point in the force constant refinement.
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NONCONVERGENCE

The refinement procedure is not infallible as may be testified to by several

investigators who have reported difficulties, for example, (106-115). There are

two conditions which will lead to nonconvergent problems. First, if the initial

F matrix is a poor approximation, X will be large and AF will contain large

elements. In this case, the linear approximation given by Equation (101) in the

text will be poor. This will be true also if the normal coordinates are very

sensitive to certain force constants, causing the elements of J to change

drastically on each cycle. This will lead to oscillations because the corrections

will tend to overshoot. This can be seen by examining Equation (99) in the main

text. This difficulty can sometimes be overcome by finding a better initial F

matrix, or by selectively scaling down the large values in AF in the first few

cycles of the refinement. In effect, one must guide the calculations into a

region where the linear approximation is valid. If the force field is not

adequate, that is, if an important interaction constant is missing, it may not be

possible to do this and the force field must be modified.

The second cause of nonconvergence is singularity or near-singularity in the

normal equations, that is, the determinant of the matrix (Z'J'PJZ) is very small

compared with the product of the diagonal terms,

(CZ'J'PJZ)kk. (17 76)

In this case, the calculations will diverge rapidly or converge very slowly to

an ill-defined solution. This problem arises when the frequencies are nearly

independent of one or more force constants or if two or more force constants are

strongly correlated. In the first situation, one finds that [cL6)i.L o)ki Z ]
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is very small for all values of i and that any reasonable value of AF k will
jk

give an acceptable fit to the frequencies. In order to make the calculations

converge, this variable must be fixed and eliminated from the normal equations.

A = JZA. . (177)

If two or more force constants are strongly correlated, one finds that the

corresponding columns of the JZ matrix will be linearly related. In order to

cure this cause of singularity, some of the constants of the related set must be

fixed or one must use some model to obtain a relation between the two that can be

used as a further constraint in the Z matrix.

In some situations, the difficulties caused by oscillation of successive

values of P., slow convergence, singularity or near-singularity of the normal.

matrix (Z'J'PJZ), and the existence of multiple solutions can be overcome by

making the following modification in Equation (111) in the text. This equation

may be rewritten as Equation (178) where a and b are constants and E is a unit

matrix.

The first term, a, is a scaling factor by which all of the adjustments are

multiplied. This factor was mentioned in the above paragraph, and it ensures

that A' does not produce force constants which lie outside the range over which

the force constant-frequency relationships are approximately linear. This device

is particularly useful in the first few iterations when "overshooting" is most

likely to occur. This device has been employed successfully by a number of

workers, for instance, Long and Gravenor (116).
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The second term, b, represents additions to the diagonal terms of the

normal matrix. Inclusion of this factor in the refinement has been labeled

"damped least squares" by workers in the field, among them, Schachtschneider

(89). The use of this factor in convergence problems was first suggested by

Levenberg (117) and later, independently, by Marquardt (118). Marquardt has

shown that if a large enough positive value of b is used, convergence must occur.

However, in many refinement problems convergence readily occurs without the use

of a and/or b, and in these cases, the rate of convergence is inhibited by b,

often quite seriously.

Adams and Churchill (119) have offered methods by which the appropriate

values for a and b can be determined.

In summary, if the "damped least squares" procedure does not succeed, in

order to obtain a stable solution the indeterminant and strongly correlated

constants must be eliminated from the normal equations until the determinant

assumes an acceptable value. This is equivalent to eliminating rows and columns

from the matrix (Z'J'PJZ).

The elimination procedure may be carried out by trial and error by repeating

the perturbation calculation with various force constants constrained equal to

zero or a constant value until one obtains a convergent solution that gives an

acceptable fit to the observed data and reasonable uncertainties on all the

force constants. This is time consuming, so it is convenient to use the stepwise

multiple regression technique previously described to select the most significant

subset of force constants out of a set of possible constants.
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APPENDIX V

This appendix contains the user instructions, flow diagrams, and listings

for the computer programs employed in the normal coordinate analyses of the

1,5-anhydropentitol compounds. These programs form a package of programs which

are available on tape from the Computer Center at The Institute of Paper

Chemistry, Appleton, Wisconsin 54911 (Code No. IPCTHOOl).

CART

The computer program CART computes the cartesian coordinates of the atoms

in a molecule from the bond distances and bond angles. If desired, the program

will also compute the center of mass, moments of inertia, principal moments of

inertia, and principal cartesian coordinates. As a check on the computation of

the cartesian coordinates, the distances between each atom and every other atom

are tabulated. The principal moments of inertia and the coordinate transforma-

tion are obtained by diagonalizing the moment of inertia tensor. This is accom-

plished by the subroutine, HDIAG, which uses the Jacobi method of diagonalization.

At the option of the user, the standard cartesian coordinates and/or the princi-

pal cartesian coordinates are punched onto cards in the proper format for use

in the programs GMAT and EIGV.

The program was written by J. H. Schachtschneider (89) and modified for

use in this thesis. CART is coded in FORTRAN IV. The program may be used with

the IBM 360/44 RAX operating system.

A flow diagram of CART is given in Fig. 36 and the listing in Table XLVI.
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Read Problem
Control Card

I

Check Problem
ID Number

IND=-09

Read Information
Cards

Read First Three
Atom Def. Cards

NOAT=3

Write First Three
Atom Def. Cards

Write Standard Coord.

NOPT=1 or -1

.

Calculate Atom
Distance Check

IND=
999 Call

Exit

DO Loop

I

IND=-06

Read Mass ID Card

30=0 NISO=1

Transform Std. to
Principal Coord.

Write Principal
Moments and Transfor.

Call HDIAG

Calculate Center
of Mass Coordinates

Figure 36. The Flow Diagram of CART

Read Isotopic Masses

Write and Punch
Prin. Coord. (format)

Read Atom Def. Card
Write Atom Def.
Calculate Transfor-
mation Matrix, T,
and Apply to Coord.

Write and Punch
Stand. Coord. (form)

Calculate Elements
of Moment of Iner-
tia Tensor

Write Atom Distance
Check

Calculate Total
Mass of the Molec

Start



-254-

TABLE XLVI

LISTING OF CART

C CART SD-4063
C CARTESIAN COORDINATE PROGRAM
C SCHACHTSCHNEIDER 9/15/63 REVISED 4/15/64
C MODIFIED FOR RAX BY L J PITZNER 3/15/71
C THIS PROGRAM COMPUTES THE CARTESIAN COORDINATES OF THE ATOMS IN
C A MOLECULE FROM THE BOND DISTANCES AND BOND ANGLES AND IF DESIRED
C WILL CALCULATE THE PRINCIPAL MOMENTS OF INERTIA AND THE PRINCIPAL
C CARTESIAN COORDINATES.

DIMENSION RECORD(36),COR(50,3),W(50),X(50,3),VBA13),VCA(3),

2 RT(50),NR(150),NCO(l50),DATI150)DI50),RR(3),E21(3),E23(3.,
3E13(3)
COMMON COR , X , CAR , NR , NCO , OAT
COMMON O
CON=.174532925E-01

C READ PROBLEM ID CARD
92 READ(5,2)IND
2 FORMAT(II3)

91 IF19+IND)900,90,900
900 IF(IND-999) 92,901,92
901 CALL EXIT

C READ PROBLEM CONTROL CARD
90 READ (5,4) IND,NOAT,NISO,NOPT,IFPUN

4 FORMAT(13,314,12)
C THE PROBLEM CONTROL CARD CONTAINS THE FOLLOWING INFORMATION
C .INOD=-09 IDENTIFYING THE CONTROL CARD. PUNCHED IN COLUMNS 1-3.
C 2.NOAT, THE NUMBER OF ATOMS IN THE MOLECULE. LESS THAN 51.
C PUNCHED IN COLUMNS 5-7.
C 3.NSO, THE NUMBER OF ADDITIONAL ISOTOPICALLY SUBSTITUTED

C PUNCHED IN COLUMNS 9-11.
C 4.NOPT, PUNCH AND MOMENT OF INERTIA OPTION CONTROL.
C IF NOPT=-1 BOTH THE RAW CARTESIANS AND THE PRINCIPAL CARTESIANS
C ARE PUNCHED ONTO CARDS.
C IF NOPT=O ONLY THE PRINCIPAL CARTESIANS ARE PUNCHED ONTO CARDS.
C IF NOPT=1 THE PRINCIPAL MOMENTS OF INERTIA ARE NOT EVALUATED
C IF NOPT=1 THE PRINCIPAL MOMENTS OF INERTIA AND PRINCIPAL AXES
C COORDINATES ARE NOT EVALUATED AND ONLY THE RAW CARTESIANS ARE
C PUNCHED ONTO CARDS.
C NOPT IS PUNCHED IN COLUMNS 14 AND 15

C BE PUNCHED ON CARDS. IFPUN PUNCHED IN COLUMN 17.
C READ TWO PROBLEM INFORMATION CARDS.

READ (5,6)(RECORD(I).I=1,36)
6 FORMATI18A4)

C INPUT DATA FOLLOWS, ONE CARD DEFINING EACH ATOM.
C ATOM DEFINITION CARDS CONTAIN
C DATA COLUMNS
C NO NUMBER OF ATOM DEFINED 1-3
C NA NUMBERS OF ATOMS DEFINING 4-6
C NB ATOM NO 7-9
C NC I.E. ATOMS A,B, AND C 10-12
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TABLE XLVI (Continued)

C R DISTANCE NO-NA 13-24 (F12.6)
C TE ANGLE NO-NA-NB 25-36 (F12.6)
C PH DIHEDRAL ANGLE NO-NA-NB-NC 37-42 (F12.6)
C WT MASS OF ATOM NO 49-60 (F12.6)
C ATOM DEFINITION CARDS MUST BE IN ORDER OF NO=1,l,2,3 ETC. AND
C NA,NB, AND NC MUST BE LESS THAN NO.
C IF TE=O.O THE ANGLE WILL BE TAKEN TO BE TETRAHEDRAL.
C NO=1 DEFINES THE ORIGIN
C THE LINE NO=1 TO NO=2 DFINES THE *X AXIS.
C ATOMS NO=ItNO=2,NO=3 DEFINE THE XY PLANE
C FOR A RIGHT HANDED COORDINATE SYSTEM DIHEDRAL ANGLES ARE DEFINED
C BY VEIWING THE CONFIGURATION FROM THE NC DIRECTION ALONG NB-NA
C AXIS OR THE NA-NB AXIS DEPENDING ON WHETHER ATOM C IS BONDED TO
C TO ATOM B OR A. THE ANGLE IS DEFINED POSITIVE FOR A CLOCKWISE
C ROTATION OF ATOM C INTO THE PLANE OF N-A-B.

JOKE=O
100 WRITE (6,50)(RECORDII),t=1,36)
50 FORMAT(23H1 CARTESIAN COORDINATES /(1X,18A4»1

READ (5,10)NONA,NB,NCtR,TEPHWT
10 FORMAT(413,4F12.6)

19 FORMAT(2H 414,4F12.6)
W(NO)=WT

COR(NO,2)=O.0

110 READ (5,10)NO,NA,NB,NC,R,TE,PH,WT

COR(NO,I)=R

COR(NO,3)=O.O

116 READ (5,10)NO,NA,NB,NC,R,TE,PH,WT

W(NO)=WT

118 CS=-0.33333333
SS= 0.94280907
GO TO 121

SS=SIN(CON*TE)

GO TO 129

129 COR(N0,2)=R*SS

IF (NOAT-3) 92,161,130

WRITE (6t,9)NO,NANB»NC,R,TEPHWT
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TABLE XLVI (Continued)

IP(TE)133,132,133
132 CS=-0.33333333

SS= 0.94280907
GO TO 135

133 CS=COS(CON*1E)
SS=SIN(CON*TE)

135 OSQ=O
DO 138 M=1,3
VBA(M)=CORINB,M)-COR(NA,M)
VCAtM)=COR(NC,Ml-COR(NA,M)

138 DSQ=DSQ+VBA(M)**2
RAB=SQRT(DSQI
SCALE=O.O
DO 142 M=1,3
TRANS(M,t)=VBA(M) / RAB

142 SCALE=SCALE+ TRANSIM,1)*VCA(M)
DSQ=0.O
DO 146 M=1,3
RJA(M)=VCA(M)-SCALE*TRANS(M,1)

146 DSQ=DSQ+RJA(M)**2
RAJ=SQRT(DSQ)
00 148 Ml,3

148 TRANSIM,2)=RJA(M) / RAJ
TRANS(1,3)=TRANS(2,1)*TRANS(3,2)-TRANS(3,l)*TRANS(2,2}
TRANS 2,3)=TRANS(3,1)*TRANS 1,2)-TRANS(,1 )*TRANS(3,2)
TRANS(3,3)=TRANS(1,1)*TRANS(2,2)-TRANS(2,l)*TRANS(I,2)
PRC( )=R*CS
PRC2 )=R*SS*COS(CON*PH)
PRC(3)=R*SS*SINICON*PH)
DO 160 M=I,3.
COR(NO,M)=COR(NA,M)
DO 160 K=1,3

160 COR(NO,M)=COR(NO,M)+TRANS(M,K)*PRC(K)
161 WRITE(6,60000)

60000 FORMAT(IHO,' '1
WRITE.(6,60)

60 FORMAT(55HO ATOM NO. X Y 2 MASS)
DO 164 I=1,NOAT

164 WRITE (6,62)I,(COR(II,M,M=l,3),W(I)
62 FORMAT(4X,13,3X,3F12.6,Fl3.6»

IFINOPT) 165,1230,165
C PUNCH STANDARD CARTESIANS
165 NX=O

DO 1225 I#1,NOAT
DO 1225 M=1,3
IF(O.000005-ABS(COR(I,M)))1220,1220,1224

1220 NX= NX+l
NR(NX)=M
NCO(NX)=I
DAT(NX)=COR(I,M)
GO TO 1225

1224 COR(I,M)= 0.0
1225 CONTINUE



TABLE XLVI (Continued)

NX=NX+1
NR(NX)=-1
NCO(NX) =O.O
DAT(NX)=O.0

1228 WRITE (7,70)IND,NOAT,NX,(RECORD(I),I=l,12)
1229 WRITE (7,72)(NR(I),NCO(I),DAT(I),I=1,NX)
1230 WRITE (6,681(RECORD(I),I=1,36)
68 FORMAT(21H1 ATOM DISTANCE CHECK/(IXi18A4)})

DO 1236 I=1,NOAT
DO 1234 J=1,NOAT
DSQ=O.0
DO 1233 M=l,3
RR(M)=COR(J,M)-COR(I,M)

1233 DSQ=DSQ+RR(M)*RR(M)
1234 D(J)=SQRTIDSQ)
1236 WRITE (6,69)I,(D(JlDJ=1,NOAT)

69 FORMAT(5HOATOMI3/( 7F10.6))
IF(NOPT)168,168,92

C FIND CENTER OF MASS
168 WT=0.0

DO 170 I=1,NOAT
170 WT=WT+WtI)

DO 180 M=1,3
CM(M)=O.O
DO 179 I=1,NOAT

179 CM(M)=CM(M)+W(I)*COR(I,M)
180 CM(M)=CM(M)/ WT

DO 185 I=1,NOAT
RT(I)=0.0
DO 185 M=1,3
X(I,M)=COR(I,M)-CM(M)

185 RT(I)=RT(I)+(X(IM))**2
DO 190 1=1,3
DO 190 J=1,3
DNER(I,J)=O.O
DO 190 K=1,NOAT
IF(I-J)189,187,189

187 DNER(I,J)=DNER(I,J-)+W(K)»*(RT(K)-X(K,I)*X(K,l)I
GO TO 190

189 DNER(I,J)=DNER(I,J) -W(K)* X(KI)*XiK,J)
190 CONTINUE

WRITE (6,80)(RECORD(Il,I=l,12),WT,(CM(M),M=1,3)
80 FORMAT(27H1 MOMENT OF INERTIA TENSOR.,12A4/13HO TOTAL MASS=F12.6,
116HCENTER OF MASS=3F12.6)
DO 192 1=1,3

192 WRITE (6,82)(DNER(I,J),J=1,3)
82 FORMAT(1H03F12.6)

N=3
IEGEN=O

C FIND TRANSFORMATION TO PRINCIPAL AXES.
CALL HDIAG(DNERN,IEGEN,TRNR)

200 WRITE (6.84)(DNER(I,I),I=1,3)
84 FORMAT(20HO PRINCIPAL MOMENTS 3F12.6,20H AND TRANSFORMATION.)
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TABLE XLVI (Continued)

201 DO 202 1=1,3
202 WRITE (6,82)ITR(I,J),J=1,3)

C ROTATE TO PRINCIPAL AXES.
DO 210 I=lNOAT
DO 210 J=1,3
CAR(I,J)O.O
DO 210 K=I,3

210 CAR(IJ)=CAR(I,J)+TRiK,J)*XII,K)
WRITE (6,86)(RECORDII),t=1,36)

86 FORMAT(34HO PRINCIPAL CARTESIAN COORDINATES/(IX,18A4)!
WRITE (6t60)
DO 215 I=1,NOAT

215 WRITE (6,62)1,(CAR(I,M),M-1,3),{W(I
NX=O

C PUNCH PRINCIPAL CARTESIANS
IF(IFPUN2240,240,220

220 00 225 I=1,NOAT
DO 225 M=l,3
IF00.000005-ABS(CARII,M)))221,221,224

221 NX=NX+I
NR(NXI)=M
NCO(NX)=I
DATINX)=CAR(I,M)
GO TO 225

224 CAR(IM)=O.O
225 CONTINUE

NX=NX+l
NR(NX)=-l
NCO(NX)=O.O
DAT(NX)=0.O

236 WRITE (7,70)IND,NOAT,NX,(RECORD(I).I=l,121)
70 FORMAT(13,6H NOAT=13,4H NX=14,12A4)

238 WRITE (7,721(NR(I),NCO(II)DAT(l),I=lNX)
72 FORMAT 213,F12.6,213,Fl2.6.213,F12.6,213,F12. 6 )

240 IF(NISO)92,92,242
C READ MASS ID CARD FOR NISO GREATER THAN ZERO
C -06 IN COLUMN 1-3 ALPHA-NUMERIC INFORMATION ON REMAINDER

242 READ (5,20)IND,(RECORD(I)I,11,15)
20 FORMAT(I3,15A4)

IF(6+IND)92,243,92
C READ ISOTOPIC MASSES NOAT OF THEM IN ORDER 1-NOAT (6F12.6)

243 READ 15,22)(W(I),I=1,NOAT)
22 FORMAT(6F12.6)

GO TO 168
END
SUBROUTINE HDIAG (H,NIEGEN,U,NR)

C MIHDI3,FORTRANIV DIAGONALIZATION OF A REAL SYMMETRIC MATRIX BY
C THE JACOBI METHOD.
C PROGRAMMED BY CORBATO AND M. MERWIN OF MIT
C CALLING SEQUENCE FOR DIAGONALIZATION
C CALL HDIAG( H, N, IEGEN, U, NRI
C WHERE H IS THE ARRAY TO BE DIAGONALIZED.
C N IS THE ORDER OF THE MATRIX, H.
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TABLE XLVI (Continued)

C IEGEN MUST BE SET UNEQUAL TO ZERO IF ONLY EIGENVALUES ARE TO BE
C COMPUTED.
C IEGEN MUST BE SET EQUAL TO ZERO IF EIGENVALUES AND EIGENVECTORS
C ARE TO BE COMPUTED.
C U IS THE UNITARY MATRIX USED FOR FORMATION OF THE EIGENVECTORS.
C NR IS THE NUMBER OF ROTATIONS.
C A DIMENSION STATEMENT MUST BE INSERTED IN THE SUBROUTINE.
C DIMENSION H(N,N), U(N,N), X(N), IQIN)
C COMPUTER MUST OPERATE IN FLOATING TRAP MODE
C THE SUBROUTINE OPERATES ONLY ON THE ELEMENTS OF H THAT ARE TO THE
C RIGHT OF THE MAIN DIAGONAL. THUS, ONLY A TRIANGULAR
C SECTION NEED BE STORED IN THE ARRAY H.

DIMENSION H(3,3),U(3,3),X(3),IQ(3)
EQUIVALENCE (IItIPIV),(JJJPIV)
IF (IEGEN) 15,10,15

10 DO 14 I=1,N
DO 14 J=l,N
IF( I-J12,11,12

11 U(I,J)=1.0
GO TO 14

12 U(l,J)=O.O
14 CONTINUE
15 NR = 0

IF (N-1) 1000,1000,17
C SCAN FOR LARGEST OFF DIAGONAL ELEMENT IN EACH ROW
C X(I) CONTAINS LARGEST ELEMENT IN ITH ROW
C IQ(I) HOLDS SECOND SUBSCRIPT DEFINING POSITION OF ELEMENT

17 NMII=N-1
DO 30 I=1,NMI1
X(I) = 0.0
IPLl=I+ -
DO 30 J=IPL1,N
IFIX(II)-ABS( H(l,J))» 20,20,30

20 X(I)=ABS(H(I,J))
IQ(I)=J

30 CONTINUE
C SET INDICATOR FOR SHUT-OFF.RAP=Z**-27,NR=NO.OF ROTATIONS

RAP=.745058059E-08
HDTEST=1.OE38

C FIND MAXIMUM OF X(l) S FOR PIVOT ELEMENT AND
C TEST FOR END OF PROBLEM

40 DO 70 I=1,NMIl
IF (1-1) 60,60,45

45 IFIXMAX-XII)) 60,70,70
60 XMAX=X(I)

IPIVzI
JPIV=IQII)

70 CONTINUE
C IS MAX. X(I) EQUAL TO ZERO, IF LESS THAN HDTEST,REVISE HDTEST

IF (XMAX) 1000,1000,80
80 IF( HDTEST) 90,90,85
85 IF (XMAX - HDTEST) 90,90,148
90 HDIMIN = ABSI H (1,1) 1

DO 110 1=2,N
IF (HDIMIN - ABS( H (1,1))) 110,110,100
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TABLE XLVI (Continued)

100 HDIMIN=ABSIHlI,I)
110 CONTINUE

HOTEST = HDIMIN*RAP
C RETURN IF MAX.H(I,JILESS THANI2**-27)ABSF(HIKK)-MIN)

IF IHDTEST-XMAX) 148,1000,1000
148 NR= NR+l

C COMPUTE TANGENT, SINE AND COSINE,HII,)0,HI,JIJ
XDIF=H(IPIVIPIV)-HIJPIVJPIVI
XO=SIGNI2.0,XDIF)*H(IPiVJPIVI
XS=XDIF**2+4.0*H(IPIVJPIV)**2

150 TANG=XO / (ABS(XOIF) + SQRT(XS))
COSINE=1O0/SQRTI 1.0TANG**2)
SINE=TANG*COSINE
HII=H(IPIV,IPIV)
H(IIII)=COSINE**2*IHII+TANG*(2.0*HIIIJJI+TANG*HIJJJJ)})
H(JJ,JJ)=COSINE**2*IHIJJ,JJ)-TANG*(2.0*H(llJJI-TANG*HtI)I
HIIPIV,JPIV}=0.0

C PSEUDO RANK THE EIGENVALUES
C ADJUST SINE AND COS FOR COMPUTATION OF H(IK) AND UIIK)

IF ( H(IPIV,IPIV) - HIJPIVJPIV)) 152t153,153
152 HTEMP = HIIPIVIPIV)

H(IPIVIPIV) - H(JPIVJPIV)
H(JPIV,JPIV) =HTEMP

C RECOMPUTE SINE AND COS
HTEMP = SIGN(1.0, -SINEl * COSINE
COSINE =ABS(SINE)
SINE -HTEMP

153 CONTINUE
C INSPECT THE IQS BETWEEN 1+1 AND N-l TO DETERMINE
C WHETHER A NEW MAXIUM VALUE SHOULD BE COMPUTE SINCE
C THE PRESENT MAXIMUM IS IN THE I OR J ROW.

00 350 I=1,NMII
IF( I-IPIV)210,350,200

200 IF II-JPIV) 210,350,210
210 IFIIQII)-IPIV) 230,240,230
230 IF(IQ(II-JPIV) 350,240,350;
240 K=IQII)
250 HTEMP=HII,K)

H(I,K)O.O
IPL1=I+1
XII) t0.0

C SEARCH IN DEPLETED ROW FOR NEW MAXIMUM
00 320 J=IPL1,N
IF ( XII) -ABS( H(I,J)) t 300,300,320

300 X(I) = ABS(H(I,J))
IQ(I)=J

320 CONTINUE
HI.IK)=HTEMP

350 CONTINUE
X(IPIV) =0.0
XIJPIV) =0.0

C CHANGE THE ORDER ELEMENTS OF H
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TABLE XLVI (Continued)

DO 530 I=1,N
IF (I-IPIV) 370,530,420

370 HTEMP = H(I,IPIV)
H(I,IPIV)= COSINE*HTEMP + SINE*HII,JPIV)
IF ( X(l) - ABS( H'(,IPIV)) )380,390,390

380 X(I) = ABS(HI(IPIV))
IQlI) = IPIV

390 H I,JPIV) = - SINE*HTEMP + COSINE*H(I,JPIV)
IF ( X(I) - ABS( H(I,JPIV)) ) 400,530.530

400 X(I) = ABS(H(IJPIV))
IQ(1) = JPIV
GO TO 530

420 IF(I-JPIV) 430,530,480
430 HTEMP = H(IPIVI)

H(IPIV,I) = COSINE*HTEMP + SINE*H(IJPIV)
IF ( X(IPIV) - ABSIHIPIV,I)} ) 440,450,450

440 X(IPIV) = ABS(H(IPV,II))
IQ(IPIV) =

450 H(I,JPIV) - SINE*HTEMP + COSINE*H(ItJPIV)
IF iX(I) - ABS( H(I,JPIV)) ) 400,530,530

480 HTEMP = H(IPIV,I)
HIIPIV,I) = COSINE*HTEMP * SINE*HiJPIVI)
IF ( X(IPIV) - ABS4 H(IPIV,I)) ) 490,500,500

490 X(IPIV) = ABS(H(IPIV,I))
IQ(IPIV) = I

500 HiJPIVI) = - SINE*HTEMP + COSINE*HIJPIV»I)
IF ( X(JPIV) - ABS( H(JPIV,I)) 1510,530,530

510 XIJPIV) = ABS(H(JPIV,I))
IQ(JPIV) =-1

530 CONTINUE
TEST FOR COMPUTATION OF EIGENVECTORS
IFIIEGEN) 40,540,40

540 DO 550 I=1,N
HTEMP=U(I,IPIV)
U(I,IPIV)=COSINE*HTEMP+SINE*U(I,JPIV).

550 U(I,JPIV)= -SINE*HTEMP+COSINE*U(I,JPIV)
GO TO 40

1000 RETURN
END
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INSTRUCTIONS FOR PROGRAM USE

With the RAX operating system, the program deck is preceded by an /ID

card and a /JOB GO card. The program deck is followed by the input data deck.

The following input data are required for each problem.

1. Problem ID Card. The first card to be read is the problem ID card.
This card should contain a -09 in Columns 1-3 (FORMAT 13).

2. Problem Control Card. The next card is the problem control card con-
taining the following information.

a. IND, which identifies the problem control card, must be a -09 and
punched in Columns 1-3 (FORMAT I3).

b. NOAT is the number of atoms in the molecule, currently limited to
50 or less, and punched in Columns 4-7 (FORMAT I4).

c. NISO is the number of additional isotopically substituted molecules.
In this case, the geometry will be the same for the substituted
molecules; however, the masses of the isotopes will be different.
NISO is punched in Columns 8-11 (FORMAT I4). If there are to be no
isotopically substituted molecules to be included, a zero may be
punched in Column 11 or left blank.

d. NOPT is the punch and moment of inertia option control. If NOPT =
-1, both the standard and principal cartesian coordinates are com-
puted and punched on cards (the principal cartesian coordinates
will be punched on cards only for IFPUN = 1). If NOPT = 0, both
the standard and the principal cartesian coordinates are punched
on cards (i.e., if IFPUN = 1, otherwise neither the principal or
standard cartesian coordinates will be punched onto cards). If
NOPT = 1, only the standard cartesian coordinates are computed,
and they are punched on cards. NOPT is punched in Columns 14-15
(FORMAT I2).

e. IFPUN controls the card punching of the principal cartesian coor-
dinates. IFPUN must equal 1 for the cards to be punched. IFPUN
is punched in Column 17 (FORMAT I2).

3. Problem Information Cards. The next two cards are the problem informa-
tion cards. These cards contain any alphanumeric information about the
problem that the user may wish to include. The data may fill the first
72 columns of each card with the first three columns left blank (FORMAT
18A4).

Warning: These cards may be left blank, but they must be included with
the input.
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4. Atom Definition Cards. The next set of cards contains the atom
position information. There is one card for each atom in the mole-
cule, i.e., NOAT cards. The following data must appear on each card
(this information appeared earlier in the text).

a. NO, the number of the atom being defined, punched in Columns 1-3
FORMAT I3).

b. NA, the number of atom A, punched in Columns 4-6 (FORMAT I3).

c. NB, the number of atom B, punched in Columns 7-9 (FORMAT I3).

d. NC, the number of atom C, punched in Columns 10-12 (FORMAT I3).

e. R, the distance between atom NO and atom NA, i.e., the bond length
NO-NA, punched in Columns 13-24 (FORMAT F12.6).

f. TE, the angle between atoms NO, NA, and NB, i.e., the bond angle
NO-NA-NB, punched in Columns 25-36 (FORMAT F12.6).

Note: If TE is left blank or assigned a 0, the angle is assumed
to be tetrahedral.

g. PH, the dihedral angle between atoms NO, NA, NB, and NC, punched
in Columns 37-48 (FORMAT F12.6).

Note: The sign convention given in the text must be followed.
The convention is reversed for angles less than 90 degrees.

h. WT is the mass of atom NO. This information is only required if
the center of mass is to be computed. WT is punched in Columns
49-60 (FORMAT F12.6).

Warning: The atom definition cards must be in the order of NO =
1,2,3,... etc., and NA, NB, and NC must be less than NO.

5. Mass ID Card. If NISO is greater than zero, the mass ID card for each
isotopically substituted molecule must follow the atom definition cards.
The mass ID card contains a -06 in Columns 1-3 (FORMAT 13) and may con-
tain descriptive alphanumeric information in Columns 4-63 (FORMAT 15A4).

6. Atom Mass Cards. The masses of the atoms in the isotopically substituted
molecule follow the mass ID card in the order 1,2,3,..., NOAT with six
masses per card (FORMAT 6F12.6).

7. Data Termination Card. The last card in the input deck designates the
end of the input data. This card has a 999 punched in Columns 1-3
FORMAT 13).

Note: If another problem is to be included, the problem ID card for the
next data deck is placed at this point instead of the data termination
card. This arrangement permits the stacking of problems.
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With the RAX system, the input deck is preceded with a /DATA card and ended

with a /END card.

OUTPUT INFORMATION

At the option of the user, the following information will be printed out.

1. The atom definition cards.

2. The standard cartesian coordinates.

3. The atom distance check.

4. The moment of inertia tensor and center of mass coordinates.

5. The principal moments and the transformation from standard coordinates.

6. The principal cartesian coordinates.

The following information may be punched onto cards at the request of the

program user.

1. The standard cartesian coordinates in the sequence NR, NCO, and DAT,

four per card [FORMAT 4(I2,F12.6)].

a. NR designates the x, y, or z coordinate by a 1, 2, or 3, respectively
(FORMAT 12).

b. NCO is the atom number (FORMAT I2).

c. DAT is the numerical value for the x, y, or z coordinate of atom
NCO. The row number following the last element is set equal to -1.

2. The principal cartesian coordinates with the same format as for the

standard cartesian coordinates [4(I2,F12.6)].

GMAT

This program calculates the Wilson G matrix (i.e., the vibrational inverse

kinetic energy matrix) for polyatomic molecules. Input includes the cartesian
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coordinates and masses for the atoms in the molecule, the numbers of the atoms

defining a complete set of internal valence coordinates, and the symmetry

transformation, if desired. The program computes the B matrix (i.e., the

transformation from cartesian coordinates to internal coordinates), G matrix,

and factored G matrix, if the transformation to symmetry coordinates is included.

At the option of the user, the program will punch each of the above matrices on

cards in a format suitable for input to FADJ, FLPO, or EIGV. (Only those B and

G matrix elements whose absolute value is greater than 0.00005 are considered

significant and retained by the program.)

The program was written by J. H. Schachtschneider (89) and modified for use

in this thesis. GMAT is coded in FORTRAN IV and may be used with the IBM 360/44

RAX operating system.

A flow diagram of GMAT appears in Fig. 37 and the listing in Table XLVII.

INSTRUCTIONS FOR PROGRAM USE

If isotopically substituted molecules are included in the computation, two

scratch tapes must be employed. With the RAX system, the program deck is preceded

by a /ID and a /JOB GO card followed by two /FILE cards if scratch tapes are

required. The program deck is followed by the input data which is comprised of

the information below.

1. Problem ID Card. The first card of the input deck is the problem ID
card. This card contains a -09 punched in Columns 1-3 (FORMAT I3).

2. Problem Control Card. The problem control card follows the problem ID
card with the information given below.

a. IND, indicating the start of a problem. IND = -09 which is punched
in Columns 1-3 (FORMAT I3).

b. NOPROB, the problem number punched in Columns 4-9 (FORMAT I6).
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Start

-F

Figure 37. The Flow Diagram for GMAT
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TABLE XLVII

LISTING OF GMAT

C GMAT SD-4064 SCHACHTSCHNEIDER
C CODED IN FORTRAN IV REVISED 4/1/64
C MODIFIED FOR RAX BY L J PITZNER 3/22/71
C G MATRIX EVALUATION PROGRAM FOR IBM-360/44
C PROGRAM USES TAPE 1 AND TAPE 2 FOR SCRATCH TAPES OUTPUT IS DIRECT
C THIS PROGRAM EVALUATES G AND B MATRIX ELEMENTS FOR UP TO 100
C INTERNAL COORDINATES FOR MOLECULES CONTAINING UP TO 25 ATOMS.
C THE G MATRIX MAY BE SYMMETRIZED.
C G AND B ARE PUNCHED ONTO CARDS IN A FORM SUITABLE FOR INPUT
C TO THE VIBRATIONAL SECULAR EQUATION PROGRAMS.
C THE PROGRAM EVALUATES G AND B MATRIX ELEMENTS FOR 5 TYPES OF
C INTERNAL COORDINATES,(I)BOND STRETCHING.(2)VALENCE ANGLE
C BENDING,(3)OUT OF PLANE WAGGING,(4)TORSION,15)LINEAR VALENCE
C BENDING.
C INPUT DATA ARE THE MASSES AND CARTESIAN COORDINATES OF THE ATOMS
C IN AN ARBITRARY REFERENCE FRAME, AND A U MATRIX IF DESIRED.

DIMENSION NR( 900),NC( 900),B( 900),NRG1900),NCG(1900),DG(1900),
I NRU(300),NCU(300),DU(300),X(3,25),WT(25),W(100),BB(100),
2 G(100),GU(I100)NRS(1O1),'NCS(1O1),GS(O11)*NROW(4),NCOL(4),DAT(4),
3 NE('4),NCOD(4),NI(4),NJ(4),NK(4),NL(4),NX(4),NY(4),RECORD(36),
4 REC(18)tNB(20)t,U(OOl,UG(1OO),DA(100)
EQUIVALENCE(NRG(I),X(l,l)),(NCG(1),WT(i)),(NRG(100),NR(l))i
1(NCGO1001),NC(I1)),DGIlOO1),B(1),(BBIl),GU(I))

C READ PROBLEM CONTROL CARD
90 READ(5,11)IND
11 FORMAT(13)
91 IF(9+IND)92,94,92

92 IF(IND-999)90,93,90
93 CALL EXIT
94 READ(5,12) IND,NOPROBNOATNQ,INTC,NISO,IFBNCON
12 FORMAT(13,16,614)

C RECONVERT PROBLEM CONTROL CARD CONTAINING THE FOLLOWING INFORMATIO
C 1.INOD-09,INDICATING THE START OF A PROBLEM.IN COLUMNS 1-3.
C 2.NOPROB, THE PROBLEM NUMBER IN COLUMNS 4-9.
C 3.NOAT, THE NUMBER OF ATOMS IN THE MOLECULE. COLUMNS 11-13.
C 4.NQ, THE NUMBER OF INTERNAL COORDINATES. PUNCHED IN COLUMNS 15-1
C 5.INTC. COLUMNS 18-21. A I WILL CAUSE THE UNSYM. G MATRIX TO BE
C PUNCHED ON CARDS.
C 6.NISO=O OR 1 FOR ADDITIONAL ISOTOPIC MOLECULES. COLUMN 25.
C 7.IFB, B MATRIX OUTPUT OPTIONS. FOR IFB=l B IS PUNCHED.
C FOR IFB=O B IS NOT PUNCHED. IFB IS PUNCHED IN COL. 29.
C 8.NCON, PRINTOUT SUPPRESSION OPTION. IF NCON 0 ,NO SUPPRESSION
C OCCURS, IF NCON - 1, THE PRINTER OUTPUT OF THE X-MATRIX,
C B-MATRIX,UNSYMMET. G-MATRIX,U-MATRIX,AND CARD PUNCH OUTPUT
C OF THE SYMMET.G-MATRIX ARE SUPPRESSED. PUNCHED IN COL. 33.
C INPUT DATA FOLLOWS PROBLEM CONTROL CARD IN THE ORDER
C 1.TWO PROBLEM INFORMATION CARDS. COLUMNS 1-3 BLANK
C 2.THE CARTESIAN COORDINATES
C 3.INTERNAL COORDINATE DEFINITIONS AND THE CARTESIAN COORDINATES
C OF THE POINTS GIVING THE ORIENTATIONS OF THE LINEAR BENDING
C COORDINATES. ONE POINT FOR EACH LINEAR BEND AS DEFINED
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C 5.ISOTOPE CONTROL CARD FOR ISOTOPE 1
C 6.MASSES FOR ISOTOPE I

C 7.U MATRIX FOR ISOTOPE 1.
C 8.SYMMETRY BLOCK INFORMATION FOR ISOTOPE 1.
C IF NISO=l ITEMS 6,7, AND B ARE REPEATED FOR EACH ADDITIONAL
C ISOTOPIC MOLECULE AS DESIRED.

READ (5,14)IRECORDII),I=1l36)
14 FORMAT(18A4)

NA=3*NOAT
WRITE (6.50)NOPROBNOATNQ,(RECORD(I),I=1,36)

50 FORMAT(19H1 G MATRIX PROBLEM17, 7H. NOAT=14,16,22H INTERNAL COORD
IINATES./ (1X,18A4))
IF(NCON)97576,97576,43125

97576 WRITE(6,1551)
1551 FORMAT(O1HO X-MATRIX)

JOKER=O
C READ X MATRIX, THE CARTESIAN COORDINATES OF THE ATOMS.
C THE X MATRIX IS PUNCHED IN 18 COLUMN FIELDS,4 PER CARD. THE
C FIRST THREE COLUMNS GIVE THE ROW NUMBER IDENTIFYING THE
C CARTESIAN AXES, COLUMNS 4-6 GIVE-THE COLUMN NUMBER OF THE X
C MATRIX,THE ATOM NUMBERAND COLUMNS 7-18 GIVE THE ELEMENT WITH
C THE DECIMAL POINT BETWEEN COLUMNS 12-13 OR PUNCHED.THE
C ROW NUMBER FOLLOWING THE LAST ELEMENT IS SET EQUAL TO -1.
43125 00 102 z1=,3

00 102 J=1,NOAT
102 X(I,J)-O.O
104 READ (5,16 (NROW(L),NCOLILI.DAT(LI L=t14)
16 FORMAT(41213,Fl2.6»)

IF(NCON)53351,53351,62197
53351 WRITE(6,1221)(NROW(L),NCOLIL),DAT(L)eL=1,4
1221 FORMAT1tH ,4(213,F12.6))

62197 DO 110 L=1,4
IF(NROW(L)11i2,110,105

105 I=NROW(L)
J=NCOL(L)
X(IIJ)=DATIL)

110 CONTINUE
GO TO 104

112 IF(1+NROWIL))600,115,600
115 NOB=O

NOINT=O
IF(NCON)55773,55773,118

55773 WRITE (6,51)
51 FORMAT(34HI INTERNAL COORDINATE DEFINITIONS/42HO NO. CODE I

1 J K L IX JX)
C READ INTERNAL COORDINATE VECTORS
C A VECTOR OF 8 NUMBERS NINCOD,Nl,N2,N3,N4,N5,N6 GIVING THE NO.
C ASSINGED TO THE INTERNAL.COORDINATENI, THE CODE 1DENTFYING
C THE TYPE OF COORDINATENCOD,-AND THE NUMBERS OF THE ATOMS
C DEFINING THE COORDINATE.
C INTERNAL COORDINATES MUST BE DEFINED IN ORDER I TO NO.
C IF NI=O THE DEFINED B ROW IS ADDED TO JHE B ROW FOR THE PREVIOUS
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C COORDINATE.
C TYPE CODE NI N2 N3. N4 N5 N6
C STRETCHING I I J
C BENDING 2 1 J K IX JX
C OUT PLANE WAG 3 1 J K L IX JX
C TORSION 4 I J K L IX JX
C LINEAR BEND 5 N02 I J K IX JX PAIR
C LINEAR BEND 6 I J K IX JX
C IX AND JX GIVE ATOM NUMBERS DEFINING A DISTANCE BY WHICH
C THE ANGULAR COORDINATES ARE WEIGHTED. IF IX AND JX ARE ZERO THE
C ANGLES ARE NOT WEIGHTED..
C NOTE THAT FOR LINEAR BENDING TYPE 5 A PAIR OF COORDINATES ARE
C DEFINED AND THAT Nl=NO2 THE NUMBER OF THE BENDING COORDINATE
C PERPENDICULAR TO NI. N02 MUST BE N+l.
C THE INTERNAL COORDINATE VECTOR IS PUNCHED IN 24 COLUMN FIELDS,
C 3 COLUMNS FOR EACH OF THE 8 ELEMENTS IN THE ORDER NI,NCOD,NI
C N2,N3,N4,N5,N6. THERE ARE I TO 3 FIELDS PER CARD
C THE CARTESIAN COORDINATES OF POINT GIVING THE DIRECTION OF
C THE LINEAR BENDING COORDINATE MUST FOLLOW THE CARD ON WHICH THE
C COORDINATE IS DEFINED. FORMAT(3F12.6) GIVING X,Y, AND Z
C COORDINATE DEFINITION CARDS ARE FOLLOWED BY A CARD WITH -02
C IN COLUMNS 1-3.

118 READ (5,18)(NE(L),NCOD(LINI(L),NJ(L),NK(L),NL(L),NX(L),NY(L),L=1
1,3)

18 FORMAT(24I3)
120 DO 180 L=l,3

IF(NEIL))182,122,124
122 IF(NCOD(L))180,180,125
124 NOINT=NOINT+l
125 IF(6-NCOD(L)1605,126,126
126 MX=NCOD(L)

NI=NI(L)
N2=NJ(L)
N3=NK(L)
N4=NL(L)
N5=NX(L)
N6=NY(LI
IF(NCON 11235,11235,61407

11235 WRITE (6,53)NOINT,MX,NI,N2,N3,N4,N5,N6
53 FORMAT(1H ,215,16,515)

61407 GO TO(130,140,150,160,170,172),MX
C STRETCHING SUBROUTINE

130 CALL BOST(NR,NC,B,X,NRG,NRU,NCGNCU,DG,DU,INDNOPROB,NOAT,NQ,
IINTC,NISOIFB,NOINTN02,Nl,N2,N3,N4,N5,N6,MX,JOKER,NOB,NA)
GO TO 174

C BENDING SUBROUTINE
140 CALL BEND(NR,NC,B,X,NRG,NRU,NCG,NCUDG,DU,IND,NOPROBNOAT,NQ,

IINTC,NISOIFB,NOINT,N02,Nl,N2,N3,N4,N5,N6,MX,JOKER,NOBNA»
GO TO 174

C OUT OF PLANE WAGGING SUBROUTINE
150 CALL OPLA(NR,NC,B,X,NRG,NRU,NCG,NCU,DG,DU, INDNOPROBNOAT,NQ,

IINTC,NISO,IFBNOINTN02,NlN2,N3,N4,N5,N6,MX,JOKER,NOB.NA)
GO TO 174
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C TORSION SUBROUTINE
160 CALL TORS(NR,NC,BX,NRG,NRUNCG,NCU,OG,OU,INDNOPROB,NOAT,NQ,

IINTC,NISOIFB,NOINT,N02,NltN2,N3,N4,N5,N6,MX,JOKER,NOB,NA,MAP)
GO TO 174

170 N02=NOINT*1
C LINEAR BENDING SUBROUTINE

CALL LIBE(NR,NC,B,X,URNC,B,X,NRG,NRU,NCG,NCU,DG,DU,IND,NOPRO8,NOAT,NQ,
IINTC,NISO,IFB,NO,INT,NO2,N1,N2,N3,N4,N5,N6,MX,JOKER,NOB,NA)
NOINT=NOINT+1
GO TO 174

172 CALL LIBE(NR,NC,B,X,NRG,NRU,NCG,NC,U,DG,DU IND,NOPROB,NOAT,NQ,
1INTCNISOIFBNOINT,N02,NI,N2,N3,N4tN5,N6,MXJOKERNOBNA»

174 IF(JOKER)180,180,605
180 CONTINUE

GO TO 118
182-NIB=NOB+1

NR(NIB)=-5
NC(NIB)sO
B(NIB)=0.O
M=l
LL=I
00 26541 L=INOINT
00 36751 K=LL,NIB
IF(NRIK)-L)26119,36751.26119

36751 CONTINUE
26119 JJ=K-2

LL=K
NN=K-3
00 55000 MM=1,NN
00 50000 J=M,JJ
IF(NC(J+1)-NC(J))6000050000,500 005

60000 D=NC(J)
C=B(J)
NC(J)=NC(J+I)
B(JI=B(J+1)
NCIJ+1)=D
B(J+1)=C

50000 CONTINUE
55000 CONTINUE

M=J+2
26541 CONTINUE

IF(NCON)87653,87653,23123
87653 WRITE(6,2314)
2314 FORMAT(lOHl B-MATRIX)

23123 IF(lFB)200,19500,19000
C PUNCH B
19000 IF(NCON)190.190,200

190 WRITE (7,54)INDNOB,(RECORD)(I),I= l.15
54 FORMAT(13,5H NOB=14,15A4)

192 WRITE (7,56)(NR(K),NC(K),B(K)K=1,NIB)
56 FORMAT( 213,F12.6,213,Fl2.6,213,F12.6,213,F12.6)

C WRITE B
19500 IFINCON)195, 95,200
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195 WRITE (6,55)NOB,(RECORD(I),I=l,15)
55 FORMAT(6HO NOB=I4,15A4)

WRITE (6,57)(NR(K),NC(K),B(K),K=l,NIB)
57 FORMAT(IH , 6(214,F1.6))

200 IFNISH)210,210,202
202 REWIND I

WRITE(1,11I)(NR(K)NC(K),B(K),.K-lNIB)
END FILE 1

111 FORMAT (214,Fl1.61
C READ ISOTOPE CONTROL CARD CONTAINING THE FOLLOWING INFORMATION
C l.IN=-06 IDENTIFYING CARD IN COLUMNS 1-3.
C 2.IFU. U MATRIX READ OPTION CONTROL
C IFU=O IF U MATRIX IS NOT INCLUDED. G NOT SYMMETRIZED.
C IFU=1 THE U MATRIX IS ENTERED.
C IFU=-l U IS NOT INCLUDED WITH INPUT AND G IS SYMMETRIZED
C WITH U FROM PREVIOUS ISOTOPIC MOLECULE.
C IFU PUNCHED IN COLUMN 5-6
C 3. NSB, THE NUMBER OF FACTORED BLOCKS + 1. COLUMNS 7-9.
C 4.NS , THE NUMBER OF SYMMETRY COORDINATES. COLUMNS 10-12.
C NAME OF MOLECULE MAY BE PUNCHED ON REST OF CARD.

210 READ (5,20)IND,IFU,NSB,NS,(REC(I),I=1,14)
20 FORMAT(413,14A4)

IF(IND+6)91,212,91
212 IF(NCON)57896,57896,66888

57896 WRITE(6.9559) IND,IFUNSBNS
9559 FORMAT(1HO0,IND= '13,5X,'IFU= ',13,5X,'NSB= ',13,5X,*NS= *,13)

C READ MASSES . SIX PER CARD IN ORDER I THROUGH NOAT.
C FORMAT 16F12.6)
66888 READ (5,22)(WT(L),L=1,NOAT)

22 FORMAT(6F12.6)
IF(NCON)33543,33543,31457

33543 WRITE 16,67) 4REC(I),1=1,14)t(WT(J),J=INOAT)
67 FORMATI17Hl UNSYMMETRIZED G,14A4/11H FOR MASSES/(9F12.6))

31457 NG=O
NT= 1
NUB - I
DO 216 L=l,NOAT
DO 216 M=1,3
K=3*(L-I)+M
WIK)=1.0 / WTIL)

216 BB(K)=0.0
DO 218 I=1,NQ

218 G(I)=O.O
IF(NISO)220,220,219

219 REWIND 1
READI,lll) (NR(K),NC(K),B(K),K=1,NIB)

220 DO 250 K=1,NIB
221 IF(NRIK)-NT)382,240,382
382 DO 226 L=NUB,NOB

I=NR(L)
J=NC(L)
G(I)=G(I)+BB(J)*W(J)*B(L)

226 CONTINUE
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DO 232 I=NTNQ
IF(ABS(G(I))-0.00005)232,232,229

229 NG=NG+l
NRG(NG)=NT

NCG(NG)=
OG(NG)=G(I)

232 CONTINUE
1F(NR(KI 252,252,234

234 NT=NT+1
NUB=K

DO 238 I=NT,NQ

238 G(l)=O.O
DO 239 I=1,NA

239 BB(l)O.O
GO TO 221

240 JX=NC(K)
BB(JX)=BB(JXI+B(K)

250 CONTINUE
252 NOG=NG+1I

NRG(NOG)=-1
NCGtNOG)=O
DG(NOG)=O.O
IF(IFU)253,254,253

253 IFI(FB)260,25801,25400
C PUNCH G
25801 IF(INTC)25800,25800,25400
25400 IFINCONI254,254,260

254 WRITE (7,58)INDNG.(REC(I),I=1.14)
58 FORMAT(I3,5H NG=t4,14A4)
256 WRITE (7,56)(NRG(L),NCGIL),DG(L),L»1.NOG)

C WRITE G
25800 IF(NCON)258,258,260

258 WRITE 16,59)NG,(REC(I).I=1,14)
59 FORMAT(5HO NG=I4,14A4)

WRITE(6,57)1NRGIL),NCG(L),OG(L),L=1lNOGI
260 IFl FU)261,210.263
261 REWIND 2

READ(2,333)(NRUIK).NCU(K),DUtK),KIeNOU)
333 FORMATI2I4,Fll.6)

GO TO 282
C READ U MATRIX.
C THE U MATRIX IS PUNCHED IN 18 COLUMN FIELDS,1 TO 4 PER CARD
C SIMILAR TO THE X MATRIX, THE ROW NO. FOLLOWING THE LAST ELEMENT
C IS SET EQUAL TO -3. ZERO ELEMENTS NEED NOT BE ENTERED.
C U MUST BE ENTERED IN ROW ORDER. NEED NOT BE NORMALIZED.

263 NOU=O
JX=1
DSQ=O.0
IF(NCON)65653.65653,264

65653 WRITE(6,7557)
7557 FORMAT(1OHI U-MATRIX)
264 READ (5.16)(NROW(L).NCOL(L)( DAT(L),L=1,4)

DO 274 L=1,4
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IF(NROW(L))276,274,266
266 IF(NS-NROW(L»)615,267,267
267 IF(NROW(L)-JX)615,270,268
268 DA(JX)=1.O / SQRT(DSQ)

JX=JX+1
DSQ=O.O
GO TO 267

270 OSQ=DSQ +DAT(L)**2
NOU=NOU+
NRU(NOU)=NROW(L)
NCU(NOU)=NCOL(L)
DU(NOU)=DAT(L)

274 CONTINUE
GO TO 264

276 IF(3+NROW(L))615,277,615
277 DA(JX)=1.O / SQRT(DSQ!

IF(NS-JX)615,278,615
278 00 279 I=1,NOU

J=NRU(I)
279 DU(II=OA(J)*OUI)

NOU=NOU+1
NRU(NOU)=-3
NCU(NOU)=O
DU(NOU)=O.O
IF(NCON)81985,81985,36631

81985 WRITE(6,4884)(NRUIL)tNCU(L),DU(L),L=1,NOU)
4884 FORMAT(1H ,6(213,F12.6))
36631 IF(NISO)282,282,280

280 REWIND 2
WRITE(2,333)(NRU(I),NCU(I)DU(I),I=I,NOU)
END FILE 2

C READ SYMMETRY BLOCK INFORMATION. NUMBERS OF FIRST ROW OF EACH
C FACTORED BLOCK. LAST NUMBER IS NS+1. PUNCHED IN 24 THREE COLUMN
C FIELDS. I.E. FORMAT(2413)

282 READ (5,18)(NB(I),I=«,NSB)
NU=NOU-I
JL=I
JX=2
NUT*1
NUB=1
IX=1

290 WRITE (6,60)IND,JL,(REC(I),I=1,14)
IF(NCON)65987,65987,89981

65987 WRITE 17,71)INDJL,(RECII),I=l,14)
C PUNCH SYM. G

60 FORMAT(1HOI3,12H SYM.G.BLOCK13,14A4)
71 FORMAT(13,12H SYM.G.BLOCKI3,14A4)

89981 NT=NBIJX)
NP=NBIJL)
NEL=O

300 00 302 I=1,NQ
GU(I)=O.O

302 U(I)=0.0
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303 00 320 K=NUB,NOU
IF(NRU(K)-IX)306,315,306

306 DO 312 L=1,NG
l=NRG(L)
J=NCG(L)

309 GU(I)=GU(I)+U(J)*DG(L)
IF(I-J)310,312,310

310 GU(J)=GU(J)+U(I)*DG(L)
312 CONTINUE

75391 GO TO 322
315 JU=NCU(K)
320 U1JU)=DU(K)
322 NUB=K

D0 324 I=IXNS
324 UG(1)=O.O

JAK=O
DO 335 L=NUT,NU
IF(JAK)332.330,332

330 IF(NRU(L)-IX)331,332,331
331 NWY=L

JAK = 1
332 I=NRUIL)

J=NCU(L)
335 UG(I)UGfl)+DU(L)*GU(J)

NUT=NWY
00 350 J=IX,NS
IFIO.00005-ABS(UGiJ)H)342,350,350

342 IF(NT-J)343,343,344
343 WRITE 16,72)IX,J
72 FORMAT(40H ERRORERRORERROR- G NOT FACTORING.ROWI4»7H COLUMNI4)

344 NEL=NEL*+
IF(101-NEL)34500,34500,347

34500 IF(NCON)88979,345,68996
345 WRITE (7,56)(NRS(I),NCS(I),GS(I=l1,l00)

68996 WRITE (6.57)(NRS( I)NCS(I )GS(I ).1=1100)
88979 NEL=1

347 NRS(NEL)=IX-NP+1
NCS(NELI=J-NP+1
GS(NEL)=UG(J)

350 CONTINUE
IX=IX1+
IFINT-IX)354,354,300

354 NEL=NEL+l
NRS(NEL)=-l
NCS(NEL)=O
GS(NEL)=0.0
IF(NCON)35427,358,89765 -

358 WRITE (7,56)(NRS(I),NCS(I),GS(I)l,I1,NEL)
89765 WRITE (6,57)(NRS(I),NCS(I),GS(I),1=1,NEL)
35427 JL=JL*1

JX=JX+1
360 IF(NSB-JX)210,290,290
600 WRITE (6,80)NOPROB,L,NROW(L),NCOL(Lt,DAT(L)
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80 FORMAT(24H X MATRIX ERROR PROBLEMI7,6H FIELDI3,6H READS214,F12.6)
GO TO 210

605 WRITE (6,82)L,NE(L),NCOD(L),NI(L) NJ(LJNKIL),NL.L), NX(L),NY(L)
I,JOKER

82 FORMAT(33H INTERNAL COORDINATE ERROR.FIELDI3,6H READS8I4, 8H JOKE
1R =13)
GO TO 210

615 WRITE (6,84)NOPROBL,NROW(L).NCOL(L),DAT(L)
84 FORMAT(24H U MATRIX ERROR PROBLEMI7.6H FIELDI3,6H REAOS214,F12.6)

GO TO 210
END
SUBROUTINE BOSTtNRNC,B,X,NRGNRUNCG,NCU.DGDU, INDNOPROBNOAT,
INQINTCNISO,IFB,NOINT,N02,NiN2,N3,N4tN5,N6,MXJOKERNOB,NA)

C THIS SUBROUTINE COMPUTES THE B MATRIX ELEMENTS FOR A BOND STRETCH
C AS DEFINED BY WILSON.

DIMENSION NR( 900),NC( 900),B( 900),NRG(1900),NCG(1900»,DG(1900),
I NRU(300),NCU(300),DU(300),X(3,251,
2RIJ(3)

100 IFIN61130,101,130
101 IF(N5)130,102,130
102 IF(N4)130,103,130
103 IF(N31130,104,130
104 IF(NOAT-N2)130,105,105
105 IF(NOAT-N1»130,106,106
106 I=Nl

J=N2
DIJSQ=0.0

109 00 112 M=1,3
RIJ(M)=X(MJ)-X(M, I

112 DIJSQ=DIJSQ+RIJ(M)*RIJIM)
114 DO 120 M=1,3

IF(ABS(RIJ(M))-0.00005)120,120,115
115 NOB=NOB+1

NRINOBI=NOINT
NC(NOB)=3*(I-1)+M
BINOBI--RIJ(M) /SQRT(DIJSQ)
NOB=NOB+1
NR(NOB)=NOINT
NC(NOB)=3*IJ-I»+M
B(NOB)= RIJIM) / SQRTIDIJSQ)

120 CONTINUE
GO TO 132

130 JOKER=I
132 RETURN

END
SUBROUTINE BEND(NRNC,B,X,NRG,NRU.NCGNCU,DG,DU,INODNOPROB»NOAT,
1NO,INTC,NISO,IFB,NOINTtN02,NI,N2,N3,N4,N5,N6,MX,JOKER,NOB,NAI

C THIS SUBROUTINE COMPUTES THE B MATRIX ELEMENTS OF A VALENCE
C ANGLE BENDING COORDINATE AS DEFINED BY WILSON.
C I AND K ARE THE NUMBERS OF THE END ATOMS.
C J= THE NUMBER OF THE CENTRAL ATOM

DIMENSION NR( 900),NC( 900),B( 900),NRGI1900),NCG(1900),DG(1900),
I NRU(300)tNCU(300),DU(300),X(3.25),
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2RJ113),RJK(3),RIXJX(3),EJ1(3),EJK13),
100 IF(NOAT-N6)150,10ll01
101 FI NOAT-N5 150,102,102
102 IFIN4)150,103,150
103 IFINOAT-N3)150,104,104
104 IFINOAT-N21150,105,105
105 IFINOAT-NI)150,106,106
106 I=Nl
107 J=N2

K=N3
IX=N5
JX=N6
IF IX)}10,110,l12

110 IX=I
JX=1

112 DJISQ=O.0
DJKSQsO.0
OXSQ-O.0

115 00 122 M=i,3
RJI(M)=X(M,I)-X(M,J)
RJK(M)=X(M,K)-X(M,J)
RIXJXIMI=X(M,JX)-XIM,IX)
DJISQ0DJISQ+RJI(M)*RJI(M)
DJKSQ=DJKSQ+RJK(M)*RJK(M)

122 DXSQ=OXSQ+RIXJX(M)*RIXJX(M)
123 DJI=SQRT(DJISQ)

DJK=SQRTIDJKSQ)
DX=SQRT(DXSQ)
IF(DX)128,127,128

127 DX=1.0
128 OOTJ=0.0
129 DO 132 M=1,3

EJI(M=RJIIM)/DJi
EJK(M)=RJK(M)/DJK

132 DOTJ=DOTJ+EJI(M)*EJK(MI
lF1 ( -ABS(DO'TJ) 152.152, 34

134 SINJ=SQRT( .0-DOTJ*DOTJ)
136 00 144 M=l,3

SMIt(OX*(DOTJ*EJIIM)-EJK(M)))/ (DJI*SINJ)
IF(ABS(SMI)-0.00005)138,138,137

137 NOB=NO+1
NR(NOB)=NOINT
NC(NOB)=3*( 1-1)+M
B(NOBI=SMI

138 SMK= lDX*(DOTJ*EJK(M)-EJIIMI))/ IDJK*SINJ)
IF(ABS(SMK)-0.00005)140,140,139

139 NOB=NOB+1
NR(NOB)=NOINT
NC(NO8)=3*(K-1)+M i
B(NOB)=SMK

140 SUM=SMIfSMK
IF(ABS(SUM)-0.000051144,144,142

142 NOBaNOB+1
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NR(NOB)=NOINT
NC(NOBI=3*(J-I)+M
B(NOB)=-SUM

144 CONTINUE
GO TO 154

150 JOKER=1
GO TO 154

152 JOKER=2
154 RETURN

END
SUBROUTINE OPLA(NRNC,BX,NRGNRUNCGNCU,DGDUINDNOPROBNOAT,
1NQ,INTCNISO,IFB,NOINT,N02,N1,N2,N3,N4,N5»N6,MXJOKERNOB,NA)

C THIS SUBROUTINE COMPUTES THE B MATRIX ELEMANTS FOR AN OUT OF
C PLANE WAGGING COORDINATE AS DEFINED BY WILSON.
C I = THE END ATOM
C J= THE APEX ATOM
C K AND L = THE ANCHOR ATOMS.

DIMENSION NR( 900),NC 900),B(900),NRG(1900),NCG(1900),DG(1900),
1 NRU(300),NCU(300),DU(300),X(3,25),
2RJI(3),RJK(3),RJL(3),RIXJX(3),EJI(3),'EJK(3),EJL(3),C1(3),C2(31,
3C3(3)

100 IF(NOAT-N6)170,101,101
101 IF<NOAT-N5)170,102,102
102 IF(NOAT-N4)170,103,103
103 IF(NOAT-N3)170,104,104
104 IF(NOAT-N2)170,105,105
105 IF(NOAT-NI)170,106,106
106 I=N1

J=N2
K=N3
L=N4
IX=N5
JX=N6
IF( IX)110,110,112

110 IX=1
JX=l

112 DJISQ=O.0
DJKSQ=O.0
DJLSQ=O.0

115 DXSQ=O.0
116 00 124 M=1,3

RJI(M)=XIM,I)-XIM,J)
DJISQ=DJISQ+RJI(M)*RJI(M)
RJK(MI=X(M,K)-XIM,J)
DJKSQ=DJKSQ+RJK(M)*RJKIMI
RJL(M)=XIM,L)-X(M,J)
DJLSQ=DJLSQ+RJL(M)*RJLI}M
RIXJX(M)=X(M,JX)-X(MIX)

124 DXSQ=DXSQ+RIXJX(M)*RIXJX(M)
126 DJI=SQRT(DJISQ)

OJK=SQRT(DJKSQ)
DJL=SQRT(DJLSQ}
DX=SQRTIDXSQ)
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130 IF(OX)132,131,132
131 OX=1.0
132 DO 136 M=1,3

EJuIIMIRJI(M)/DJI
EJK(M)IRJK(M)/DJK

136 EJL(M)tRJL(M)/DJL
137 CIl1 )EJK(2)*EJL(3)-EJK(3»*EJL(2)

CIl2J=EJK(3)*EJL(II-EJK(1)*EJL(31
C1 3)=EJKI )*EJL(2)-EJK(2)*EJL(1l
C2(1) EJL 2)*EJI(3)-EJL(3)*EJI(2)
C2(2)=EJL(3)*EJI()I-EJL()*EJ.1(3)
C2(31)EJL(Il*EJI(2I-EJL(2)*EJI( I
C3(l}=EJII2)*EJK(3)-EJI(31*EJK(2)
C312)=EJ 1 3)*EJK (1-EJ[tI)*EJK(3,)

139 C3(3)=EJI( 11*EJK(2)-EJI(2)*EJK(1}
140 OET=EJI(lI*Cl( l+EJa112*Cl(2)+EJIl3)*C1(31

DOTI=O.0
142 DO 143 M=l,3
143 DOTI=DOTI+EJK(M)*EJLIM)
144 lF(1.0-ABS(DOTI)i172,172,146
146 SINI=SQRTIl.0-DOTI*DOTII
147 SINT=OET/SINI
148 lF l.O-ABS(SINT)ll74,174,149
149 COST=SQRT(1.O-SINT*SINT)
150 TANT=SINT/COST
155 00 168 M=1,3
157 SMI =((C1(MI/(COST*SINIII-(TANT*EJI(MI))/DJI

IF(ABSISMI1-0.00005)1606060,158
158 NOB=NOB+1

NR(NOB)=NOINT
NC(NOB)=3*(I-lI+M
BINOB)=DX*SMI
COMPI = SINI*SINI

160 SMK=( C2(M)/(COST*SINI))-l(TANT*(EJKtM)-DOTI*EJLIMI) ICOMPli))DJK
IF(ABS(SMK)-0.00005)163,163,161

161 NOB=NOB+1
NR(NOBI=NOINT
NC(NOB)=3*(K-l)+M
BINOB)=DX*SMK

163 SML=((C3(M)/(COST*SINII)-((TANT*IEJL(M)-DOTI*EJK(M)I)/COMPII)/OJL
IFIABS(SML)-0.00005)166,166.164

164 NOB=NOB+1
NR(NOB)=NOINT
NC(NOB)=3*(L-1I+M
BtNOBI=DX*SML

166 SUM=SMI+SMK+SML
IF(ABS(SUM)-0.000051 16868,68167

167 NOB=NOB+l
NR(NOBl=NOINT
NC(NOB3*(J-1)+M
BINOB=)-DX*SUM

168 CONTINUE
GO TO 178
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170 JOKER=I
GO TO 178

172 JOKER=2
GO TO 178

174 JOKER=3
178 RETURN

END
SUBROUTINE TORS(NRNC,B,XNRGNRUNCG,NCU,DGDU,IND,NOPROBNOAT,
1NQtINTC,NISO,IFB,NOINT,N02,NI,N2,N3,N4,N5,N6,MXtJOKERNOB,NA,MAPI

C THIS SUBROUTINE COMPUTES THE B MATRIX ELEMENTS FOR THE TORSION
C AS DEFINED BY WILSION.
C I AND L = THE END ATOMS . I NEARER OBSERVER.
C J AND K = THE CENTRAL ATOMS. J NEARER OBSERVER.

DIMENSION NR( 900),NC( 900),B( 900),NRG(t900),NCG(1900),DG(19001,
1 NRU(300),NCU(300),DU(300),X(3,25),
2RIJ43),RJK(3),RKL(3),RIXJX(3),EIJ(31,EJKI3),EKL(3),CRI(3),CR2(13

100 IFINOAT-N6)180,101,101
101 IF(NOAT-N6)180,102,102

102 IF(NOAT-N4)180,103,103
103 IFINOAT-N3)180,104,104
104 IF(NOAT-N2)180,105,105
105 IF(NOAT-NI)180,106,106
106 I=NI

J=N2
K=N3
L=N4
IX=N5
JX=N6
IFIIX)110,110,112

110 IX=l
JX=1

112 DIJSQ=O.O
DJKSQ=O.O
DKLSQ=O.0

115 DXSQ=O.0
116 DO 124 M=1,3

RIJ(M)=X(M,J)-XiM,I!
DIJSQ=DIJSQ+RIJ(M)*RIJ(M!
RJK(M)=X(M,K)-X(M,J)
DJKSQ=DJKSQ+RJK(M)*RJKIM)
RKL(M)=X(M,L)-XtM,K)
DKLSQ=DKLSQ+RKLIMI*RKLIMl
RIXJX(M)=X(M,JX)-X(M,IX)

124 DXSQ=DXSQ+RIXJX(M)*RIXJXtM)
126 DIJ=SQRT(DIJSQ)

DJK=SQRT(DJKSQ)
OKL=SQRT(OKLSQ)
DX=SQRT(DXSQ)

130 IF(DX)132,131,132
131 OX=1.O
132 DO 136 M=1,3

EIJ(M)=RIJ(M)/DIJ
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TABLE XLVII (Continued)

EJK(MI=RJK(M)/OJK
136 EKLIMI=RKL(M)/DKL
138 CRL(1)=EIJ(2)*EJK(3)-EI[J3)*EJK(2)

CR12)=EIJ13)*EJK 1)-EIJIl1)EJK(3)
CRL13)=EIJ(l)*EJK(2)-EIJ(2)*EJK(1)
CR211)=EJK12)*EKLl3)-EJK(3)*EKL(21
CR2(2)=EJK(3)*EKL{ I-EJK1()*EKL(3)

142 CR213)=EJK(l)*EKL(2)-EJK(2)*EKLII1
143 0OTPJ=0.O

DOTPKrO.O
145 DO 147 M=l,3

DODOT=DOTPJ-EIJ(IM)EJKIM)
147 DOTPK=DOTPK-EJK(M)*EKL(M!
148 lF(1.0-ABS(DOTPJ))182,l82,149
149 IF(l.O-ABS(DOTPK))182.182d150
150 SINPJ=SQRT(1.O-DOTPJ*DOTPJ)

SINPK=SQRT(1.0-DOTPK*OOTPK)
152 00 164 M=1,3

SMI=-CR1(M)/I(DJ*SINPJ*SINPJ)
IF(ABS(SMI)-0.00005)156,156,154

154 NOBsNOB+1
NR(NOB)=NOINT
NCINOB)=3*(I-1)+M
B(NOB =DX*SMI

156 Fl1(CRI(MJ)(DJK-DIJ*DOTPJ))/(DJK*DIJ*SINPJ*SINPJ)
F2=(DOTPK*CR2(M))/(DJK*SINPK*SINPK)
SMJ-F1-F2
IF(ABS(SMJI-0.00005)158,158,157

157 NOB=NOB+1
NR(NOB)=NOINT
NC(NOB)=3*(J-1)+M
BINOB)=DX*SMJ

158 SML= CR2(MI/(OKL*SINPK*SINPK)
IF(ABS(SML)-O.00005)161660,159

159 NOB=NOB+1
NRINOB)=NOINT
NC(NOB)=3*(L-1)+M
BtNOB)=OX*SML

160 SUM=SMI+SMJ+SML
IF(ABS(SUM)-0.00005)164,164,162

162 NOB=NOB1+
NR(NOB)=NOINT
NC(NOB)=3*IK-l)+M
BINOBI=-DX*SUM

164 CONTINUE
GO TO 186

180 JOKER=1
GO TO 186

182 JOKER=2
186 RETURN

END
SUBROUTINE LIBE(NR,NC,B,XNRG,NRUNCGNCUDG,DU, IND,NOPROBNOAT,
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TABLE XLVII (Continued)

INQ,INTC,NISO,IFB,NOINT,N02,N1,N2,N3,N4,N5,N6,MX,JOKER,NOB,NA)
C THIS SUBROUTINE COMPUTES THE B MATRIX ELEMENTS FOR A LINEAR BEND
C OR FOR A PAIR OF PERPENDICULAR LINEAR BENDS.
C NL=N02 THE NUMBER OF THE SECOND COORDINATE.
C I AND K = THE END ATOMS.
C J= THE CNTRAL ATOM.
C A GIVES THE CARTESIAN COORDINATES OF A POINT IN SPACE, SUCH
C THAT THE VECTOR FROM ATOM J TO POINT A IS PERPENDICULAR TO
C THE LINE I-J-K AND SERVES TO ORIENT THE COORDINATES IN SPACE.

DIMENSION NR( 900),NC( 900),B( 900),NRG(1900),NCG(1900)DG(1900),
1 NRU(300),NCU(300),DU(300),XI3,25),
2A(3),RJI(3),RJKI3),RIXJX(3),UNI3),UNIT(3),UPI3),EJI(3).EJK(3)
JSTOP=O

100 IF(NOAT-N6)160,101,10t
101 IFINOAT-N5)160,102,102
102 IF(NOAT-N4)160,103,103
103 IF(NOAT-N3)160,104,104
104 IF(NOAT-N2)160,105,105
105 READ (5,24)(Alll,1=1,3)
24 FORMAT(3FI2.6)

IF(N4)160,109,108
108 I=N2

J=N3
K=-N4
JSTOP=t
GO TO 110

109 I=N1
J=N2

K=N3

110 IX=N5
JX=N6
IFiIX)111,111,112

111 IX=1
JX=l

112 OJISQ=0.0
DJKSQ=O.0
DXSQ=0.0

116 DAJSO=O.O0
117 DO 124 M=1,3

RJI(M)=X(M,I)-X(M,J)
DJISQ=DJISQ+RJI(M)*RJI(M)
RJK(M)=XIM,K)-X(M,J)
DJKSO=DJKSQO+RJK(M)*RJK(MI
RIXJX(M)=X(M,JX)-X(M,IX)
DXSQ=DXSQ+RIXJX(M)*RIXJX(M)
UN(M)=A(M)-X(M,J)

124 DAJSQ=DAJSQ+UN(M)*UN(M)
126 DJI=SQRT(DJISQ)

DJK=SQRT(DJKSQ)
DX=SQRT(DXSQ)
DAJ=SQRT(DAJSQ)

130 IF(OX)132,131,132
131 DX=1.O
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TABLE XLVII (Continued)

132 0OTJ=0.0
DOTP=0.0

134 DO 140 M=l,3
EJI(M)=RJI(M)/DJI
EJK(M)=RJK(M)/DJK
UNIT(M)=UNtM)/DAJ
DOTJ=DOTJ+EJI(M)*EJK(M)

140 DOTPDOOTP+EJI(M41*UNIT M)
TEST=IABS(DOTJ)-1.0)
IF(O.OO1-ABS(TEST))162,142,142

142 IF(0.00005-ABS-IDOTP))162,143,143
143 UP(I)=EJKi2)*UNIT(3)-EJK(3)*UNIT(2)

UP(2)=EJK(3)*UNIT(l)-EJK(l)*UNIT(3)
UP(3)=EJKII)*UNIT(2)-EJK(2)*UNIT(I)

146 DO 149 Ml1,3
IF(ABSIUNIT(M))-0.00005)149,149t,47

147 NOB=NOB+1
NR(NOBrINOINT
NC(NOB)l3*(I-1)+M
B(NOB)=-DX*UNIT(M)/ DJ[
NOB=NOB+1
NR(NOB)=NOINT
NC(NOBl=3*(K-l)+M
B(NOB)=-DXDUNIT(M)/ DJK
NOB=NOB+l
NR(NOB)=NOINT
NC(NOB)=3*(J-1)+M
B(NOB)=DX*1.O0/ OJI +I.O/DJK)*UNITIM)

149 CONTINUE
IF(JSTOP)164,164,150

150 DO 158 M=1,3
IF(ABS(UP(M))-0.00005)158,158,151

151 NOB=NOB+
NR(NOB)=N02
NC(NOB)=3*1I-1)+M
B(NOB)=-DX*UP(M)/ OJI
NOB=NOBl
NRINOB)=N02
NC(NOB)=3*(K-l1+M

B(NOBI=-DX*UP(M) / DJK
NOB=NOB+1
NR(NOB)=N02
NCINOB)=3*(J-1)+M
B(NOB)=DX*(1.0/DJI + 1.0/DJK)*UP(M)

158 CONTINUE
GO TO 164

160 JOKER=l
GO TO 164

162 JOKER=2
164 RETURN

END
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c. NOAT, the number of atoms in the molecule. NOAT punched in
Columns 11-13 (FORMAT I4).

Note: The maximum number of atoms permitted is 25.

d. NQ, the number of internal coordinates, punched in Columns 14-17
(FORMAT I4).

e. INTC, must be a 1 for the unsymmetric G matrix to be punched on
cards. INTC is punched in Column 21 (FORMAT I4).

f. NISO, the number of isotopically substituted molecules punched in
Columns 22-25 (FORMAT I4).

g. IFB, may be 1, 0, or -1. IFB is the B matrix suppression option.
For IFB = -1, the B and G matrices are not printed or punched onto
cards. For IFB = A, theB matrix is printed, but not punched onto
cards if NCON = 0, and the printing and punching of the G matrix
depends on the values of INTC and-NCON. For IFB = 1, the B matrix
and G matrix are printed and punched onto cards for NCON -=0. IFB
is punched in Columns 26-29 (FORMAT I4).

h. NCON is the output suppression option. If NCON = 1, all output, both
printer and card punch, is suppressed, except the printout of the
symmetric G matrix. There is no suppression for NCON = 0. NCON is
punched in Column 33 (FORMAT I4).

3. Problem Information Cards. The problem control card is followed by two
problem information cards. These cards may contain any desired alpha-
numeric information about the problem. The data can be punched in any
column of the card except 1-3, which should be left blank, through
Column 72 (FORMAT 18A4).

Warning: These two cards must be included with the input data even if
they are left blank.

4. Cartesian Coordinates. The next set of cards contain the cartesian
coordinates, standard or principal, obtained as output data from CART
[FORMAT 4(2I3,F12.6)]. The row number following the last element should
be -1. This should have been accomplished by CART already.

5. Internal Coordinate Definition Cards. The next set of cards defines the
internal coordinates. There are three internal coordinate "vectors"
describing the internal coordinates per card. Each internal coordinate
"vector" is denoted by eight numbers: NI, NCOD, Nl, N2, N3, N4, N5, and
N6. NI gives the number assigned to the internal coordinate, NCOD is the
code number identifying the type of internal coordinate, and N1, N2, N3,
N4, N5, and N6 are the numbers of the atoms defining the coordinate. A
description of the internal coordinate coding system was presented earlier
in this text which may also be found in Schachtschneider's manual (89)
(FORMAT 24I3). The internal coordinate definition cards are followed by
a card with -02 in Columns 1-3 which designates the end of the internal
coordinate information.

Warning: The internal coordinates must be defined in the order 1
through NQ.
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Note: If NI = 0, the defined B matrix row is added to the B matrix
row for the previous coordinate, i.e., the internal coordinate becomes
a linear sum of the two defined coordinates.

6. Isotope Control Card. There must be one of these cards for each
molecule in the problem. The following information is contained on
this card.

a. IN, identifies the isotope control card. IN = -06 which is punched
in Columns 1-3 (FORMAT 13).

b. IFU, the U matrix read option control. (The U matrix is the trans-
formation from internal coordinates to symmetry coordinates.) IFU
may be a 1, 0, or -1. IFU = 0, the U matrix is not included with
the input and the G matrix is not symmetrized. IFU = 1, the U
matrix is entered and the G matrix is symmetrized. IFU = -1, the U
matrix is not entered with the input, but the G matrix is symmetrized
with the U matrix from the previous isotopically substituted molecule.
IFU is punched in Columns 4-6 (FORMAT I3).

c. NSB is the number of factored blocks or symmetry species plus 1
which is punched in Columns 7-9 (FORMAT I3).

d. NS is the number of symmetry coordinates which is punched in Columns
10-12 (FORMAT 13).

Note: The rest of the isotope control card through Column 68 may be
used for descriptive alphanumeric information (FORMAT 14A4).

Warning: The isotope control card must be included with the input
data even though there may not be any isotopically substituted
molecules included in the problem.

7. Atomic Masses. The atomic masses, six per card, follow the isotope
control card. The masses must follow in the order 1 through NOAT
(FORMAT 6F12.6).

8. U Matrix. If IFU = 1, the U matrix must be included next. The U matrix
is punched in 18 column fields, 1 to 4 per card, in a manner similar to
the cartesian coordinates. The row number following the last element
is set equal to -3. [See Schachtschneider (89) for a description of the
U matrix.] The zero elements of the U matrix need not be included and the
matrix does not have to be normalized. The row elements must be entered
in order [FORMAT 4(2I3,F12.6)].

9. Symmetry Block Information. If IFU = 1, the U matrix is followed by a
symmetry block information card giving the numbers of the first row of
each factored block with the last number being NS + 1. These numbers
are punched in 24 three column fields (FORMAT 24I3).

10. Data Termination Card. The data are followed by a card denoting the
end of the problem. This card consists of 999 punched in Columns 1-3.
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Note: If another problem is to be included with the input data, the
problem ID card of the next set of data is placed at this point instead
of the data termination card.

Warning: The B matrix is limited to 900 elements and the G matrix to
1900 elements.

Warning: If the G matrix does not factor, a user error is signified.

With the RAX system the input deck is preceded by a /DATA card and ended

with a /END card.

OUTPUT INFORMATION

At the option of the program user, the following data will be printed out.

1. The cartesian coordinates (X matrix).

2. The internal coordinate definition "vectors."

3. The B matrix.

4. The atomic masses.

5. The unsymmetrized G matrix.

6. The normalized U matrix.

7. The symmetrized G matrix.

The data below will be punched on cards if desired by the user.

1. The B matrix in the format row, column, and numerical value [FORMAT
4(2I3,F12.6)]. The row number following the last element is set
equal to -5.

2. The G matrix in the format row, column, and numerical value [FORMAT
4(2I3,F12.6)]. The row following the last element is set equal to -1.

3. The symmetrized or factored G matrix [FORMAT 4(2I3,F12.6)]. The row
number following the last element is set equal to -1.
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UBZM

This program is designed to evaluate the transformation, Z, from force

constant space to internal coordinate space. The program is specifically de-

signed to calculate the SVQFF or UBFF which were described earlier in this

text. The use of the program to compute the Z matrix for a Urey-Bradley force

field will not be discussed here, but the reader will find a detailed descrip-

tion in Schachtschneider's manual (89). The employment of UBZM shall instead

be oriented toward the computation of a simplified valence quadratic force

field. The input data to UBZM consists of a specification of the Z matrix in

terms of the position of the F matrix elements by row and column number and the

number of the corresponding force constant parameters. The program then punches

the Z matrix on cards in a form suitable for use as input to ZSYM, FADJ, FLPO,

and EIGV.

The program was written by J. H. Schachtschneider (89) and modified for use

in this thesis. The program may be run with the IBM 360/44 RAX operating system.

A flow diagram of UBZM is presented in Fig. 38 and a listing in Table XLVIII

[the UBFF subroutines are not included, see (89)].

INSTRUCTIONS FOR PROGRAM USE

The program deck must be preceded by a /ID and a /JOB GO card when the

program is run with the RAX operating system.

Warning: If this program is to be required to compute the F matrix, the
array F(I,J) in the dimension statement must be changed to (50,50) which
will permit the evaluation of F up to 50 force constants.
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Start
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TABLE XLVIII

LISTING OF UBZM

C UBZM SD-4080 CODED IN FORTRAN IV FOR THE IBM-360/44 RAX
C SCHACHTSCHNEIDER 9/1/60 REVISED 10/1/63
C MODIFIED FOR RAX BY L J PITZNER 4/1/71
C THIS PROGRAM EVALUATES THE TRANSFORMATION FROM UREY-BRADLEY
C SPACE TO INTERNAL COORDINATE SPACE FOR THREE TYPES OF
C CONFIGURATIONS GIVEN THE CARTESIAN COORDINATES OF THE ATOMS.
C THE CONFIGURATIONS ARE l.GEM,2.TETRA,AND 3. CIS.

DIMENSION D( 57,57 ),NC1( 800),NC2( 800),NFO) 800),DATINZ( 800),
1X(3, 25),NA(5),KOOOFX(1O),NFOR(700)NINT(700)NFNI(700),N2(700),
2NROWX(4},NCOLX(4),DATINX4),RECORD(36),UBF(100) ,R(3)Fl 1, 1)-
INTEGER PUNCH
EQUIVALENCE IDI l1,NC1(I)),)(D 810),NC2(1)II(D(1620),NFO(l))l
1(DI2430),DATINZ(1))

C READ CONTROL CARD
C CONTROL CARD CONTAINS THE FOLLOWING INFORMATION
C I.IND=-09,INDICATING THE START OF A PROBLEM. IN COLUMNS 1-3.
C 2.NOPROB, THE PROBLEM NUMBER, COLUMNS 4-9.
C 3.NOAT, THE NUMBER OF ATOMS. IN COLUMNS 10-12. LESS THAN 25.
C 4.NCOR, THE NUMBER OF INTERNAL COORDINATES. IN COLUMNS 13-15.
C 5.NF, THE NUMBER OF FORCE CONSTANTS.IF COLUMNS 16-18.
C 6.IFF1,IlF THE VALUES OF THE FORCE CONSTANTS ARE INCLUDED WITH
C THE INPUT.
C IFF=O,IF NOT. PUNCHED IN COLUMN 20.
C 7.NOFF, THE NUMBER OF NON UREY-BRADLEY CONSTANTS TO BE FILLED
C IN. IN COLUMNS 21-23
C 8.INFRA=l, IF THE INTERMEDIATE GEM,TETRA AND CIS MATRICES ARE
C TO BE WRITTEN.
C INFR=O IF NOT.
C PUNCHED IN COLUMN 25.
C 9.PUNCH =1, IF THE PUNCHING OF THE Z-MATRIX IS TO BE SUPRESSED.
C OTHERWISE PUNCH =0. IN COL. 27.
C 10.NOX, IF NOX=1, THE X-MATRIX IS NOT READ iN AND THE ATOM
C DISTANCE CHECK IS NOT COMPUTED. THIS OPTION APPLYS TO THE VFF
C ONLY. NOX IS PUNCHED IN COLUMN 29.

90 READ(5,4) INDNOPROBNOAT,NCOR,NFIFFNOFFINFRA*PUNCH,NOX
4 FORMAT(13,16,313,12,13,I2,12,12)

91 IF(IND+9)94,92,94
94 IF(IND-999)90,95,90
95 CALL EXIT
92 CONTINUE

C INPUT DATA FOLLOWS CONTROL CARD IN THE ORDER
C l.PROBLEM INFORMATION CARDS. 2 CARDS
C 2.THE X MATRIX, IF NOX =0.
C 3.THE NUMBERS OF THE DIAGONAL FORCE CONSTANTS.
C 4.NUMBERS FOR THE NON UB OFF DIAGONAL ELEMENTS.
C 5.CONFIGURATION VECTORS
C 6.THE VALUES OF THE FORCE CONSTANTS.
C 7.FOLLOW DATA WITH TWO BLANK CARDS.
C READ PROBLEM INFORMATION CARDS

100 READ (5,6)(RECORDtI),1=1,36)
6 FORMAT(18A4)
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TABLE XLVIII (Continued)

102 WRITE (6,50)NOPROB,(RECORD(I),1=1,36)
50 FORMAT(22HI Z MATRIX PROBLEM NO.I8/(12X,18A4)

C READ X MATRIX
IF(NOX)8175,8175,130

8175 WRITE(6,3773)
3773 FORMAT(IOHO X-MATRIX)
105 DO 107 1=1,3

DO 107 J=1,NOAT
107 X(l,J)=O.O
110 READ (5,8)(NROWX(L),NCOLX(L),DATINX(L),L=t,4)

WRITE(6t2772)(NROWX(L),NCOLX(L) DATINX(L)L=1,4)
2772 FORMATIlH ,41213,F12.6))

8 FORMAT(4(213,F12.61)
112 DO 118 L=1,4

IF(NROWXIL))120,605,114
114 IF(3-NROWX(L))605,115,115
115 IF(NOAT-NCOLXIL))605.116,116
116 I=NROWX(LI

J=NCOLXIL)
118 X(I,J)=DATINX(L)

GO TO 110
120 IF(1+NROWX(L)605,130,605
130 READ (5,10)(NINT(J),NFORIJ),J=1,NCOR)
10 FORMAT(2413)

WRITE(6,1771)
1771 FORMAT(34HO DIAGONAL VALENCE FORCE CONSTANTS)

WRITE(6,7557)(NINT(J),NFOR(J),J=1,NCOR)
7557 FORMATIEH ,2413)
132 NZ=O
140 DO 145 K=1,NCOR

IF(NCOR-NINT(K))610,142,142
142 IF(NF-NFOR(K))610,143,143
143 NZ=Nl+

NCI (NZ)=NINTK)
NC2(NZ)=NINT(K)
NFO(NZ)=NFOR(K)

145 DATINZ(NZ)l.O0
150 IF(NOFF)170,170,152
152 READ (5,10)(Nl(l),N2(I),NFOR(I),I=lNOFF)

WRITE(6,9339)
9339 FORMAT(37HO VALENCE FORCE INTERACTION CONSTANTS)

WRITE(6,7557)(Nl(I),N2(1),NFORII),I=1,NOFF)
160 DO 168 K=1,NOFF

IF(NCOR-N2(K))610, 162,162
162 IF(N2(K)-Nl(K))610,163,163
163 IF(NF-NFORIK))610,164,164
164 NZ=NZ+l

NCI(NZ)=Nl(K)
NC2(NZ)=N2(K)
NFO(NZ)=NFOR(K)

168 DATINZ(NZ)=1.O
170 JOKE=O
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TABLE XLVIII (Continued)

172 READ 15 9 10)NOPTNCOD,(NA(I),I=1,5),(KOOOFX(JI,J=I,101, (NFOR(
1K).K=,113)

WRITE (6,80)NCOD,NOPT(NA(I),I=I,5)
80 FORMAT(24HO SUBCONFIGURATION CODEI4,8H, OPTIONI3/14H ATOM NUMBER

IS/1H 514)
WRITE (6,81)(KOOOFX(J),J=1,10)

81 FORMAT(29H INTERNAL COORDINATE NUMBERS/IH 1014)
WRITE 16,82)(NFOR(K),K=1,13)

82 FORMAT(25H FORCE CONSTANT NUMBERS /1H 13141
174 IF(NOPT)400,400,180
180 IFINCOD)615,615,181
181 IF(4-NCOD)615,182,182
182 DO 184 1=1,5

IF(NA(I1)6159183»183
183 IF(NOAT-NA(I))615,184,184
184 CONTINUE
186 00 189 l=1l10

IF(KOOOFX(I)1615.188,188
188 IF(NCOR-KOOOFXfI))615,189,189
189 CONTINUE
190 00 193 I=1,13

IF(NFORI11)615,192,192
192 IF(NF-NFOR(11)615,193,193
193 CONTINUE
200 MX=NCOD

GO TO (210.220,230»240),MX.
210 CALL EVGEM (DNC 1NC2,NFO,DATINZ,X,NAKOOOFX,NFOR NOPT INFRA,

INOPROBJOKE,NOATNFNZ1
IF(JOKE) 72, 172,620

220 CALL ETETRA(DNCI,NC2,NFODATINZtXNAKOOOFXtNFORtNOPTINFRA,
1NOPROB,JOKEtNOATNFNZ)

IF(JOKE)1721172,620
230 CALL EVCIS (D,NC1,NC2,NFODATINZtXNAKOOOFXNFOR,NOPTINFRA,

INOPROBJOKE,NOAT.NF,Nt)
IF {JOKE)172,172,620

240 CALL EVCISP(DNC1,NC2,NFO,DATINZtX,NA,KOOOFXNFORtNOPT,INFRA,
1NOPROB,JOKE,NOAT,NF,NZ)

IF(JOKE)172.172.620
400 WRITE (6,53)IND,NO,PROB,NZ

53 FORMAT(IHI13,17H Z MATRIX PROBLEMIB,5H NZ=I6)
IF(NOPT163631,63631,11443

63631 NUM=l
KK=1

11554 DO 96315 J=1,NZ
ITEM=NCI(J)
IF(ITEM-NUM)96315,88887,96315

88887 NFOR(KK)=ITEM
NINT(KK)=NC2(J)
N1(KK)=NFO(J)
KK=KK+1

96315 CONTINUE
NUM=NUM+l
IF(NUM-NCOR)11554,11t55412021
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TABLE XLVIII (Continued)

12021 DO 87635 1=1,NZ
NC1(I)=NFOR(I)
NC2(I)=NINT(I)
NFOII)=N1(I)

87635 CONTINUE
11443 IF(PUNCH)89735,89735,402,
89735 WRITE(7,5335)INDNOPROB,NZ
5335 FORMAT(I3,17H Z MATRIX PROBLEMI8,5H NZ=16)
402 WRITE (6,54)(NC1(I),NC2(I),NFOII) ,DATINZ(I),I=)lNZ)

54 FORMATI1H 313,F9.6,313,F9.6,313,F9.6,313,F9.6,313,Fg9.6,33,F9.6)
IF(PUNCH)63571,63571,420

63571 WRITE(7,2992) (NCl(I),NC2(I),NFOII),DATINZ(I),1=1tNZI
2992 FORMAT(313tF9.6t313,F9.6,313tF9.6,313,F9.6)

420 IF(IFF)462,462,421
421 IF(50-NCOR)462,422,422
422 READ 15,14)(UBF(I),tI=1NF)
14 FORMAT(6F12.6)

424 DO 426 I=1,NCOR
DO 426 J=i,NCOR

426 FII,J)=0.0
428 DO 434 K=1,NZ

I=NC1(KK
J=NC2(K)
M=NFO4K)

434 F(IJ)=F(IJ)+DATINZ(K»*UBF(M)
NX=O

436 DO 444 I=1,NCOR
DO 444 J=1,NCOR

438 IFIO.O001-ABS(F(I,J)})439,439,444
439 NX=NX+1

NC2(NX)=I
NFO(NX)=J
DATINZ(NX)=F(I,J)

444 CONTINUE
NX=NX+1
NC2(NX)=-2
NFO(NX)=O
DATINZ(NX)=0.0

448 WRITE (6,57)INDNOPROB,NX
57 FORMAT(2Hl 1317H F MATRIX PROBLEMI8,5H NO=16)

450 WRITE (6,58)(NC2(I),NFO(I),DATINZ(I),I=I,NX)
58 FORMAT(2H 213,F12.6.2t3,F12.6,213,Fl2.6,213,F12.61

462 IF(NOX)88462,88462,90
88462 DO 470 I=I»NOAT

DO 470 J=l,NOAT
DSQ=0.0

466 DO 468 M=1,3
R(M» =X(MJ)-X(MI)

468 OSQ=DSQ+R(M)*R(M)
470 D(IJ)=SQRTIDSQ)
471 WRITE (6,60)NOPROB
60 FORMAT(28H1ATOM DISTANCE CHECK PROBLEMI8)

472 DO 474 I=1,NOAT
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TABLE XLVIII (Continued)

474 WRITE (6,62)I,(D(I.JjJ=1.NOAT)
62 FORMAT(5HOATOMI3/(IOF12.6))

GO TO 90
605 WRITE (6,701NOPROB
70 FORMAT(24HO X MATRIX ERROR PROBLEMI8)

GO TO 90
610 WRITE 16,72)NOPROB
72 FORMAT(38HODIAGONAL FORCE CONSTANT ERROR PROBLEMI18

GO TO 90
615 WRITE (6,74)NOPROB,NOPTNCODI
74 FORMAT(14HOERROR PROBLEMI8,5H NOPTI3,5H CODEI3,3H 1I13)

GO TO 90
620 WRITE (6,76)NOPROB,NOPT,NCODJOKE,(NAl().I=1,5),(KOOOFX(Ji,J=l,10)

1,(NFOR(KI,K=1,13)
76 FORMAT(28HOERROR IN SUBROUTINE PROBLEMI8,5H NOPTI3,5H CODEI3,5H JO

lKE13/28I3)
GO TO 90
END
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The data deck follows the program deck with the following information.

1. Problem Control Card. The problem control card is the first card in the
data deck. This card contains the information given below.

a. IND, indicates the start of a problem. A -09 must be punched in
Columns 1-3 (FORMAT I3).

b. NOPROB is the problem number punched in Columns 4-9 (FORMAT I6).

c. NOAT, the number of atoms, punched in Columns 10-12 (FORMAT 13).

Note: The number of atoms must be less than or equal to 25.

d. NCOR, the number of internal coordinates. NCOR is punched in
Columns 13-15 (FORMAT I3).

e. NF, the number of force constants, punched in Columns 16-18
(FORMAT I3).

Note: The number of force constants must be 100 or less, except in
those cases where F is to be evaluated, then the number of force
constants must be 50 or less. (Force constant is used here to mean,

more specifically, force constant parameter.)

f. IFF, a 1 signifies that the force constants are included with the
input and that the F matrix is to be evaluated. IFF is punched in
Column 20 or is left blank (FORMAT I2).

g. NOFF is the number ofnon-Urey-Bradley constants to be specified or
the number of SVQFF interaction constants. NOFF is punched in

Columns 21-23 (FORMAT I3).

h. INFRA, a 1 will cause the intermediate GEM, TETRA, and CIS matrices
(UBFF) to be written out. INFRA is punched in Column 25 or left
blank (FORMAT I2).

i. PUNCH, a 1 will suppress the card punching of the Z matrix. PUNCH
is placed in Column 27 (FORMAT I2).

j. NOX, if NOX = 1, the cartesian coordinates are not read in, and the
atom distance check is not computed. NOX is punched in Column 29
(FORMAT I2).

Warning: This option is available for the SVQFF only; the cartesian.
coordinates must be included for the UBFF.

2. Problem Information Cards. Two problem information cards follow the
problem controlcard. These cards contain any desired alphanumeric
information about the problem or may be left blank. The data may be

punched in any column through 72, but Columns 1-3 should be left blank
(FORMAT 18A4).

Warning: The problem information cards must be included with the input

data, even if they are left blank.



3. The Cartesian Coordinates. If NOX = 0, the cartesian coordinates
must be included at this point in the data deck. The cards should
have been punched in proper format by CART, and the last row number
should be a -1 [FORMAT 4(2I3,F12.6)].

4. Diagonal Force Constants. The position of the element (row or column
number) and force constant parameter number of the diagonal elements
of the UBFF or SVQFF are punched on cards in 24 fields of three
columns each (FORMAT 2413).

5. Interaction Force Constants. The row, column, and force constant
parameter number for each of the off-diagonal elements of the SVQFF
or for eachnon.Urey-Bradley interaction constant (FORMAT 2413).

6. Two Blank Cards. For the computation of a UBFF, the configuration
"vectors" are placed at this point [see Schachtschneider (89) for
details] (FORMAT 2413) followed by two blank cards. For a SVQFF one
only needs the two blank cards at this point in the data deck.

7. Force Constant Parameters. If IFF = 1, i.e., the F matrix is to be
evaluated, the force constant parameters are included in the data deck,
six constants per card (FORMAT 6F12.6).

Warning: In this case, the number of force constants must not exceed
50. Also, the dimension statement must be modified so that one has
F(50,50).

8. Data Termination Card. The data are followed by a card denoting the
end of the problem. This card must have a 999 punched in Columns 1-3
(FORMAT 13).

Note: If another problem is to be included in the data deck, it may be
placed at this point with the problem control card replacing the data
termination card which then goes to the end of the second problem.

In the RAX operating system, the data deck is preceded by a /DATA card and

the deck ended with a /END card.

OUTPUT INFORMATION

The following data are printed out at the option of the user.

1. The Cartesian coordinates, if included with the input.

2. The diagonal elements of the Z matrix.

3. Thenon-Urey-Bradley interaction elements or the SVQFF off-diagonal
elements.
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4. The Urey-Bradley configuration "vectors."

5. The intermediate GEM, TETRA, and CIS matrices.

6. The Z matrix.

7. The F matrix.

8. The atom distance check, if the cartesian coordinates are included with
the input data.

The Z matrix is punched on cards, if requested, in a form suitable for use

in ZSYM, FADJ, FLPO, and EIGV. The data are arranged in the order of row,

column, force constant number, and numerical value of Z matrix element [FORMAT

(6 3I3,F9.6)].

ZSYM

This program symmetrizes the Z matrix by transforming the internal coordi-

nates to symmetry coordinates. Input to ZSYM includes the Z matrix elements and

the U matrix (the transformation matrix from internal coordinates to symmetry

coordinates). ZSYM can be used to factor the Z matrix for the UBFF, SVQFF, VFF,

and other constrained force fields. The resulting factored Z matrix is punched

onto cards in the proper format for input to FADJ, FLPO, and EIGV.

The program was written by J. H. Schachtschneider (89) and modified for use

in this investigation. The program may be used with the IBM 360/44 RAX operating

system.

A flow diagram for ZSYM is presented in Fig. 39 and the program listing in

Table XLIX.
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Start
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TABLE XLIX

LISTING OF ZSYM

C ZSYM SD-4082 Z SYMMETRIZE POLYMER OPTION
C CODED IN FORTRAN IV FOR THE IBM-360/44 SCHACHTSCHNEIDER
C MODIFIED FOR RAX BY L J PITZNER 4/2/71
C THIS PROGRAM SYMMETRIZES A Z MATRIX. F MATRIX ELEMENTS IN
C VALENCE FORCE SPACE ARE SPECIFIED BY AN ARRAY Z(I,J,K) WHERE
C I IS ROW NUMBER OF F MATRIX ELEMENT
C J IS COLUMN NUMBER OF F MATRIX ELEMENT
C K IS THE NUMBER OF AN INDEPENDENT FORCE CONSTANT
C THE ELEMENT F(I,J) IS DEFINED AS ZlI,J,K)*VALUE OF FORCE CONSTANT

DIMENSION NR(1500),NC41500),NFO(1500),DZ(1500),NRU( 150),
I NCU( 150),DU( 150),NRI( 150),NCI( 150),DUI( 150),NRZ1250»,
2NCZ1250),Z(250),NBL(101),NRS(10i),NCS(10l),NFC( 101,FS(IOI),

3NBI(1500),DA(250),U1250),FUi250),UF1250),RECORD(36),NB{20),NRO(4),
4NCO(4),NPI(4),DAT(4)
EQUIVALENCEIDA(ll),U(),UF(li),(NBli(),NRZ(1),(NB1(251lNCZ(I)),
l(NB1(502),Z([1)

C RECONVERT PROBLEM CONTROL CARD CONTAINING FOLLOWING INFORMATION
C 1.IND=-09 INDICATING THE START OF A PROBLEN IN COLUMNS 1-3.
C 2.NQ, THE NUMBER OF INTERNAL COORDINATES, LESS THAN 601. PUNCHED

C IN COLUMNS 4-7.
C 3.NF, THE NUMBER OF FORCE CONSTANTS IN COLUMNS 8-11.
C 4.NS, THE NUMBER OF SYMMETRY COORDINATES IN COLUMNS 12-15.
C 5.NSB, THE NUMBER OF FACTORED BLOCKS+l IN COLUMNS 16-19.

C 6.IFSK, POLYMER CONTROL OPTION
C IFSK=O, NORMAL MOLECULE READ ONE U MATRIX.
C IFSK=1, POLYMER READ Ul AND U2.
C IFSK PUNCHED IN COLUMN 23.
C 7.IFREP, REPEAT OPTION CONTROL
C FOR IFREP=I ONLY NEW Z MATRIX IS READ AND U FROM PREVIOUS
C PROBLEM IS USED TO SYMMETRIZE.
C IF IFREP=O NEW PROBLEM
C PUNCHED IN COLUMN 27.
C 8.NST, STARTING INDEX FOR DO LOOP ON FORCE CONSTANTS FOR

C IFREP=1. NST IS PUNCHED IN COLUMNS 28-31.
C 9.FPUN, CARD-PUNCH SUPPRESSION OPTION FOR THE SYMMET.Z-MATRIX.
C IF FPUN =1 CARD-PUNCHING OF THE Z-MATRIX IS SUPPRESSED. IF FPUN

C =0 THERE IS NO SUPPRESSION. PUNCHED IN COL. 35.
C READ PROBLEM CONTROL CARD

90 READ ( 5,12)IND,NQ,NF,NS,NSB,IFSK,IFREP,NST,FPUN
12 FORMAT(I3,814)

1F(IND+9)90,92,94
C INPUT DATA FOLLOWS IN ORDER
C I.TWO PROBLEM INFORMATION CARDS.
C 2.Z MATRIX ELEMENTS
C 3.U MATRIX(U) FOLLOWED BY U2 FOR IFSK=l)
C 4.SYMMETRY BLOCK INFORMATION

94 IF(IND-999)90,96,90
96 CALL EXIT
92 CONTINUE

READ (5,14)(RECORD(I) I=1,36)
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TABLE XLIX (Continued)

GO TO 141
145 DSQ=DSQ+DAT(L ) **2

NOU=NOU+1
NRU(NOU)=NRO(L)
NCU(NOU)=NCO(L)
DU(NOU)=DAT(L)

150 CONTINUE
GO TO 130

152 IF(3+NRO(L))605,154,605
154 DA(NX)= 1.0 / SQRT(DSQ)

IF(NS-NX)605,156,605
156 WRITE(6,13352)NOU

13352 FORMAT(1H ,*NOU= ',I4)

DO 158 1=1,NOU
J=NRU(I)

158 DU(.I)DA(J)*DU(1)
NOU=NOU+1
NRU(NOU)=-3
NCU(NOU)=O
OU(NOU)=0.O
WRITE (6,75875)

75875 FORMAT(IHO,*NORMALIZED U-MATRIX')
WRITE(6,18)(NRU(I),NCU4(I),DU(I)tI=1NOU)
IF(IFSK)180,180,160

160 NU=O
NX=l

C READ U2 (SAME FORMAT AS Ul)
162 READ (5,18)(NRO(L)tNCO(L),DAT(L),L=1,4)

DO 174 L=1,4
IF9NRO(LI)176,174,164

164 IF(NS-NRO(L))605,165,165
165 IF(NRO(L)-NX)605,168,166
166 NX=NX+1

GO TO 165
168 NU=NU+I

NRIINU)=NX
NCI(NU)=NCO(L)
DUl(NU)=DATlL)*DA(NX)

174 CONTINUE
GO TO 162

176 IF(3+NRO(L1»605,75812,605
75812 WRITE(6,37812)NU
37812 FORMAT(IH ,'NU s ,141

GO TO 185
180 NU=NOU-1

DO 184 K=l,NU
NRI(K)= NRUIK)
NCIIK)=NCU(K)

184 DU1(K)=DU(K)
C READ SYMMETRY BLOCK INFORMATION. ROW hUMBERS OF THE BEGINNING OF
C EACH FACTORED BLOCK. LAST ELEMENT IS NS+1. PUNCHED IN 3 COLUMN
C FIELDS 24 PER CARD.
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TABLE XLIX (Continued)

185 READ (5,20)(NB(I),1=1,NSB)
20 FORMAT(2413)

NO=1
186 NZ=O

DO 190 K=1,NOZ
IFINO-NFOIK))190,188,190

188 NZ=NZt+
NRZINZ)=NRIK)
NCZ(NZI=NC(KI
Z(NZ)=DZ(K)

190 CONTINUE
WRITE(6,998531NONZ

99853 FORMAT(1H ,'NO = ',I4.4XINZ = ',14)
63521 IF(N)b600,192,220

192 NO=NO+1
IFINO-NF)186,186,295

220 NL=1
NX=2
NUT=1
NUB=l
NJ=1

230 NP=NBINL)
NT=NB(NX)

236 DO 238 I=1,NQ
FUII)=O.O

238 U(I)=O.0
DO 250 K=NUB,NOU
IF(INRU(K)-NJ)240,248,240

240 DO 246 L=1,NZ
I=NRZ(L)
J=NCZ(L)
FU(I)=FU(I)+ZIL)*U(J)
IF(I-J)244,246,244

244 FU(J)=FU(J)+Z(L)*U(I)
246 CONTINUE

GO TO 252
248 JU=NCU(K)
250 UIJU)=DUIK)
252 NUB=K

88971 DO 254 I=NJ,NS
254 UF(I)0=.O

LL = 0
41411 DO 265 L=NUTNU

IF(LL1262,262,264
262 IF(NRL(L)-NJ)605,264,263
263 LL = I

NWY=L
264 I=NR1(L)

J=NC(L)
265 UF(I)=UF(I)+DU1(L)*FU(J)

NUT=NWY
DO 280 J=NJ,NS
IF(O00o005-ABS(UF(J))1270.280.280
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TABLE XLIX (Continued)

270 IF(NT-J)271,271,272
271 WRITE (6,72)NJ,J
72 FORMAT(40HO ERRORERROR,ERROR- Z NOT FACTORING.ROW14,7H
272 NE=NE+1

IF(101-NE)273,273,274
273 WRITE(1)(NBL(I),NRS(I),NCS(I),NFC(I)tFS(I),I=1,100)

NREC=NREC+L
NE=t

274 NRS(NE)=NJ-NP+1
NCS(NE)=J-NP+1
NBL(NEI=NL
NFC(NE)=NO
FS(NE)=UF(J)

280 CONTINUE
NJ=NJ+l
IF(NT-NJ)284,284,236

284 NL=NL+1
NX=NX+1
IF(NSB-NX)290,230,230

290 NO=NO+1
IF(NF-NO)295,186,186

295 IF(NREC)296,296,298
296 NOZ=O

GO TO 321
298 WRITE(l)(NBL(1),NRS(I),NCS(I),NFCtl),FS(I),I=1,NE)
300 END FILE 1

REWIND 1

302 DO 312 L=1,NREC
READ tII)NBL(I),NRS(I),NCS(I),NFCIl),FStI).I=1,100)
DO 312 K=1,100
NZ=100*(L-1)+K
NB1(NZt=NBL(K)
NR(NZ)=NRS(K)
NC(NZ)=NCS(K)
NFO(NZ)=NFC(K)

312 DZ(NZl=FS(K)
NOZ=NZ

315 IF4NE)330,330,320
320 READ (1)(NBL(I),NRS(I),NCS(I),NFCII),FSII),I=1,NE)
321 DO 324 K=1,NE

NZ=NOZ+K
NBI(NZ)=NBL(K)
NR(NZ)=NRS(K)
NC(NZ)=NCS(K)
NFO(NZ)=NFCIK)

324 DZ(NZ)=FS(K)
330 NSO=I
331 NT=O

NX=O

332 WRITE (6,64)IND,NSO,(RECORD(I),I91,12)
IF(FPUN)87551,87551,75571

87551 WRITE (7,9119)IND,NSO,(RECORDlI)}I=1,12)

COLUMNi4)
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TABLE XLIX (Continued)

64 FORMATIIHOI3,15H Z MATRIX BLOCKI3,12A4)
9119 FORMAT(I3,15H Z MATRIX BLOCKI3,12A4)
75571 DO 340 I=1,NZ

IF(NSO-NBI(I) 340,336,340
336 NX=NX+1

IF(101-NX)337,337,338
337 WRITE (6,66)(NRSIL),NCS(LNNFC(L),FS(L),L=1,lOO)

IF(FPUN)52151,52151,37751
52151 WRITE (7,7131)INRS(L),NCS(L),tNFC(L),FS(L),L=1,1001

66 FORMAT(1H 313,F9.6,313,F9.6,313,F9.6,313,F9.6,313,F9.6,313,F9.6)
7131 FORMAT(313,F9.6,313,F9.6,313,F9.6,313,F9.6»
37751 NT=NT+100

NX=1
338 NRS(NX)=NR(I)

NCS(NX)=NC(I)
NFC(NX)=NFO(I)
FS(NX)=DZII)

340 CONTINUE
IFINX)344,344,342

342 WRITE (6,66)(NRS(IL,NCS(L),NFC(L),FS(L),L=1,NX)
IF(FPUNS8888,58888,63333

58888 WRITE (7,7131}{(NRS(L)tNCS(L),NFC(L),FS(L),L=1,NX)
63333 NT=NT+NX

344 WRITE (6,76)NT
IF(FPUN)85851.85851,99887

85851 WRITE 17,1211)NT
76 FORMAT(1HO,5H NOZ=I4)

1211 FORMAT(15H NOZ=14)
99887 NSO=NSO+1

IFINSB-NSO)90,90,331
600 WRITE (6,56)L,NRO(L),NCO(L).NPI(L),DAT(LI
56 FORMAT(23HO Z MATRIX ERROR FIELDI3,6H READS314,F12.6)

GO TO 90
605 WRITE (6,58)L,NRO(LlNCO(L),DAT(L)
58 FORMAT(23HO U MATRIX ERROR FIELOI3,6H REAOS2I4,F12.61

GO TO 90
END
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INSTRUCTIONS FOR PROGRAM USE

ZSYM requires the use of a scratch tape. If the program is being used

with the RAX system, the program deck is preceded by /ID, /JOB GO, and /FILE

cards.

The program deck is followed by the input data which consist of the

following information.

1. Problem Control Card. This is the first card of the data deck.
following data are punched on each problem control card.

The

a. IND, indicates the start of a problem. IND must be set equal to
-09 and is punched in Columns 1-3 (FORMAT I3).

b. NQ is the number of internal coordinates, punched in Columns 4-7
(FORMAT I4).

c. NF is the number of force constant parameters, punched in Columns
8-11 (FORMAT I4).

d. NSB, denotes the number of factored blocks plus 1 and is punched
in Columns 16-19 (FORMAT I4).

e. IFSK is the polymer control option. For a
IFSK = 0 and only one U matrix is read in.
IFSK = 1 and two U matrices,Ul, and U2 , are

punched in Column 23 (FORMAT 14).

normal molecule,
For a polymer,
read in. IFSK is

f. IFREP is the repeat option control. If a new problem is to be
started, IFREP = 0, and new Z and U matrices are read in. If
IFREP = 1, a new Z matrix is read in, but the U matrix from the
previous problem is used for symmetrization. YFREP is punched in
Column 27 (FORMAT I4).

g. NST is the starting index for the DO loop on force constants. This
constant must be entered when IFREP = 1, otherwise, NST = 0 or is
left blank. NST is punched in Columns 28-31 (FORMAT I4).

h. FPUN is the card punch suppression option.
factored Z matrix is not punched on cards.
Column 35(FORMAT I4).

If FPUN = 1, the
FPUN is positioned in
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2. Problem Information Cards. Two problem information cards follow the
control card. These cards contain whatever alphanumeric information
about the problem may be desired by the user. The information may be
punched in any of the columns through Column 72 except that Columns
1-3 should be left blank (FORMAT 18A4).

Warning: These cards must be included in the data deck even if they
are left blank.

3. Z Matrix. The Z matrix, punched in the proper format by UBZM, follows
the problem information cards in the data deck. There are four Z
matrix elements per card; each element consists of row number, column
number, force constant parameter number, and numerical Z matrix element
[FORMAT 4(3I3,F9.6)]. The row number after the last element must be -2.

4. U Matrix. The U matrix follows with the form: row, column, and U
matrix element FORMAT 4(2I3,F12.6)]. The row number after the last
element must be -3.

Note: The zero elements need not be included or the matrix normalized.

5. U2 Matrix. If IFSK = 1, the second U matrix, U2, must follow the first
U matrix. The format is the same for the first matrix.

6. Symmetry Block Information Card. This card contains the row numbers of
the beginning of each factored block. The last element is NS + 1.
These data are punched in 3 column fields of which there are 24 per
card (FORMAT 24I3).

7. Data Termination Card. This card is placed at the end of the data deck
and is used to denote the end of the input data for the problem(s) to be
worked. The data termination card is marked by a 999 punched in Columns
1-3 (FORMAT 13).

Note: If another problem is to be included with the input data, the
problem control card for the next problem is placed at this point in the
deck, and the data termination card is placed at the end of the second
problem.

Warning: Failure of the Z matrix to factor most often indicates a user
error.

With the RAX system, the data deck is preceded by a /DATA card and terminated

by a /END card.

OUTPUT INFORMATION

The factored Z matrix is printed out and at the user's option, punched on

cards in the proper format.
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FADJ

This program solves the vibrational secular equation by the method of

successive orthogonalization followed by diagonalization. The diagonalization

is performed by the subroutine HDIAG which employs the Jacobi method. This

program will also refine an initial set of force constants to give a linear

weighted least squares "fit" between the calculated and observed frequencies.

(This program is based on the Gauss-Newton-Raphson method.) At the user's

option, a regression analysis is performed by the subroutine, REGRS, which may

aid in the selection of the proper force field.

This program was written by J. H. Schachtschneider (89) and modified for

this investigation. The program may be used with the IBM 360/44 OS operating

system. FADJ employs a phase overlay procedure for the subroutines and is

permanently stored on disk at the Institute.

A flow diagram of FADJ is given in Fig. 40 and 41. A listing of the JCL

cards for the stored version of FADJ are listed in Table L. These cards are to

be placed in front of the data deck and replace the program deck which is stored

on disk in compiled form. A listing of FADJ appears in Table LI.

INSTRUCTIONS FOR PROGRAM USE

FADJ requires two scratch tapes or disks. (Two scratch disks have been

allotted for the stored version of FADJ.) The following data comprise the

input information.

1. Problem ID Card. This card designates the start of a new problem.
This card must have a -09 punched in Columns 1-3 (FORMAT I3).

2. Problem Control Card.
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TABLE LI (Continued)

C 1.IND=-09, INDICATING THE START OF A PROBLEM IN COLUMNS 1-3.
C 2.NOPROB, THE PROBLEM NUMBER. IN COLUMNS 4-9.
C 3.NMOL, THE NUMBER OF MOLECULESIN COLUMNS 10-12.
C 4.NF, THE NUMBER OF FORCE CONSTANTS IN COLUMNS i3-15.
C LESS THAN 71
C 5.NPMAX, THE MAXIMUM NUMBER OF PERTURBATIONS DESIRED,COLUMNS
C 16-18. (LESS THAN 20)
C 6.NCZ, THE NUMBER OF FORCE CONSTANTS TO BE HELD FIXED,IN COLUMNS
C 19-21. (LESS THAN 71)
C 7.IFREP=1, IF ONLY A NEW SET OF FI(I),AND NCF(I) ARE TO BE
C READ IN. DE,P,W,U,Z,AND G FROM PREVIOUS PROBLEM ARE USED.
C IFREP=O, IF A NEW PROBLEM IS TO BE STARTED.
C IFREP=-1, FINAL FI(I) FROM PREVIOUS PROBLEM ARE USED AS INTIAL
C FIlIl. NEW NCF(I) ARE READ. ZS FROM PREVIOUS PROBLEM MAY BE
C RENUMBERED. PUNCHED IN COLUMNS 22-23.
C 8.IFER=-3,-2,-1,0,I PUNCHED IN COLUMNS 24-25
C FOR IFER=l PER IS READ IN AND USED AS A FRACTIONAL ERROR
C FOR IFER=O PER= 0.005 USED AS A FRACTION
C FOR IFER=-1 ESTIMATED ERRORS ARE READ IN FOR EACH OBS.FREQ.
C INPUT FOLLOWS OBS.FREQ.
C FOR IFER=-2 ERROR IN ALL FREQ. ASSUMED TO BE PER CM-1
C FOR IFER=-3 PER=1.O CM-1 FOR ALL OBS. FREQ.
C 9.PER AN ERROR TO BE ASSUMED FOR ALL OBS.FREQ.
C A FRACTION IF IFER=l IN CM-1 IF IFER=-2
C PUNCHED IN COLUMNS 26 TO 33 WITH DECIMAL BETWEEN COL.
C 27 AND 28 OR PUNCHED

CONTINUE
C 10. DMX, A FRACTIONAL FACTOR TO BE APPLIED TO THE FORCE
C CONSTANT PERTURBATION ON EACH CYCLE I FOR DAMPING OSCILATION)
C PUNCHED IN COLUMNS 34 TO 41 WITH THE DECIMALBETWEEN COLUMNS
C 37 AND 38 OR PUNCHED.
C 11.IFREG PUNCHED IN COLUMNS 42 AND 43
C IFREG=O FOR NO REGRESSION
C IFREG=-1 FOR REGRESSIONON CYCLE 4.
C IFREG=l FOR REGRESSION ON CYCLE 1
C 12.NDIAG, THE NUMBER OF FORCE CONSTANTS TO BE INCLUDED IN
C ALL REGRESSIONS. PUNCHED IN COLUMNS 44 THROUGH 46.
C 13.[NO, THE NUMBER OF FORCE CONSTANTS TO BE RENUMBERED.
C PUNCHED IN COLUMNS 47-49.
C 14.NIP PUNCHED IN COLUMNS 50 THROUGH 52.
C SPACING BETWEEN REGRESSIONS EQUALS 3-NIP. NIP MAY BE NEGATIVE.
C 15.DAMP, DAMPING FACTOR FOR DAMPED LEAST SQUARES. FOR DAMP GREATER
C THAN ZERO DAMP*MAX(S(I,I1) IS ADDED TO THE DIAGONAL TERMS OF
C THE NORMAL EQUATIONS ON EACH PERTURBATION CYCLE. A VALUE OF
C DAMP=0.001 WILL USUALLY CAUSE VERY ILL-CONDITIONED PROBLEMS TO
C CONVERGE. DAMP IS PUNCHED IN COLUMNS 53-58 WITH THE DECIMAL
C BETWEEN COLUMNS 53 AND 54 OR PUNCHED.
C 16.RAP, THE CUT-OFF FACTOR FOR THE JACOBI DIAGONALIZATION.
C THE JACOBI ROTATIONS ARE STOPPED WHEN MAX(H(I,J)) IS LESS
C THAN RAP*MIN(H(1,I)). IF RAP IS NOT ENTERED IT IS TAKEN EQUAL
C TO 0.5E-2. ON THE THE FINAL CYCLE RAP IS SET EQUAL TO
C 0.5E-3 GIVING EIGENVALUES TO 6 SIGNIFICANT FIGURES AND EIGEN-
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C VECTORS TO 3 OR 4 FIGURES.
C RAP IS PUNCHED IN COLUMNS 59-63 WITH THE DECIMAL BETWEEN
C COLUMNS 59 AND 60 OR PUNCHED.

CONTINUE
C 17.FRAC, A FRACTIONAL FACTOR FOR DECREASING RAP ON EACH CYCLE.
C AFTER EACH PERTURBATION RAP IS SET EQUAL TO FRAC*RAP.
C IF FRAC IS NOT ENTERED IT IS TAKEN EQUAL TO 0.9.
C FRAC IS PUNCHED IN COLUMNS 64-67 WITH THE DECIMAL BETWEEN
C COLUMNS 64 AND 65 OR PUNCHED.
C l8.CUTOF, THE NUMBER OF PERTURBATIONS AFTER WHICH DMX SET = 0.0
C PUNCHED IN COLUMNS 68-72.

90 READ05,96001)IND
96001 FORMAT(13)

IF(9+IND)901,91,901
901 IF(IND-999)90,9020,90

9020 CALL EXIT
91 READ ( 5,41INONOPROBINMOLNFNPMAXNCZlIFREPtIFERPERC, DMXIFREG

INDIAG,INO»NIPDAMP,RAP,FRACCUTOF
4 FORMAT(13,I6,413,212,F8.6,F8.4,I2,I3,13,t3,F6.5,F5.4tF4.3,1I5

REWIND 1
REWIND 2

93 IF IFREP)800, 802800
800 IFIJOK190,801,90
801 IFI INO)805805,803
802 PER"PERC
803 00 804 1=1,70
804 NOM(I)=I
805 NP=0

NX=I
ER=O.OERP0.0
ERP=O.O

DO 806 11,950
NPN( )=0

806 NPL(I =0
NCIS=NCt
NCYC=1
LIMIT=2*(NF-NCZ)
NOVAR=NF+l
NOVMI=NF
IF(RAP 807t807,808

807 RAP0O.5E-2
808 DO 810 I=1,NF
810 NFX(I)=O

IFIFRAC)t811811,812
811 FRAC=0.9
812 JOK=O

JET=O
IF(IFREG)94,94,95

94 IF(NPMAX}94099429940
940 JOKERaO

GO TO 96.
942 JOKER=l
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GO TO 96
95 JOKER=-l

C READ PROBLEM INFORMATION CARDS. 3 CARDS CONTAINING INFORMATION
C ABOUT THE PROBLEM. CARDS MUST BE INCLUDED EVEN IF BLANK.

96 READ (5,6)(RECORUII},I=1,54)
6 FORMAT(18A4)

WRITE (6,8)NOPROB,NMOL,NF,NPMAX,NCZ,(RECORD(ItlI=1,54)
8 FORMAT(13H1 PROBLEM NO.18,6H NMOL=14,4H NF=14t7H NPMAX=I.4,5H NCZ=I
14/(12X,18A4))

C READ PRINT-OUT OPTION CARD
C A VALUE OF 0 FOR IXX CAUSES PRINT-OUT OF THE INFORMATION IXX
C CONTROLS.
C A VALUE OF I FOR IXX WILL SUPRESS THE PRINT-OUT OF THE INFORMATION
C CONTROLLED BY IXX.
C IXX IS OF FORMAT II.-

C THE PRINTED INFORMATION CONTROLLED BY THE VARIOUS IXX ARE DEFINED
C BELOW
C IXX CONTROLS THE PRINT-OUT OF
C 1I. 101 THE Z MATRIX.
C 2). 102 THE EIGEN VALUES AND EIGENVECTORS.
C 3). 103 THE JX MATRIX.
C 4). 104 THE POTENTIAL ENERGY MATRIX.
C 5). 105 THE CORRELATION MATRIX.
C 6). 106 THE VARIANCE-COVARIANCE MATRIX.
C 7). 107 THE ERROR DISTRIBUTION
C 8). 108 A I CAUSES PRINT-OUT OF FINAL SET OF FORCE CONSTANTS.
C 9). 109 A 1 CAUSES BYPASS OF TEST FOR UNREASONABLE EIGENVALUES.

READ15,90041)101,102,103,104,105,106,10t7,108,'109
90041 FORMATI 911)

IF(IFREP)9602,9601,9601
C READ INTIAL FORCE CONSTANTS
C THE FORCE CONSTANTS ARE PUNCHED IN 12 COLUMN FIELDS 6 PER CARD
C WITH THE DECIMAL BETWEEN COLUMNS 6 AND 7 OR PUNCHED. IN ORDER
C I THROUGH NF.
9601 READ (5,20)(FI(1),1=1,NF)

20 FORMAT(6F12.6)
9602 WRITE (6,61)NP,(I,FI(I),I=1,NF)

61 FORMAT(23HO FORCE CONSTANTS AFTERI4,15H PERTURBATIONS./(16,F12.6))
90042 IF(INO)9610,9610,9603
C READ FORCE CONSTANT RENUMBERING
C NFl(I)=OLD NUMBER - NF2(1)= NEW NUMBER
9603 READ (5,7) (NFi(I),NF2(I),I=1,INO)

7 FORMAT(2413)
DO 9605 I=1,INO
JX=NF1 I)

9605 NOM(JX)=NF2(I)
90002 WRITE (6,9) (NF1(I),NF2(I),I=1,INO)

9 FORMAT(14HO Z RENUMBERED / 116,4H TO 13))
9610 IF(NCZ)9614,9614,9612
C READ NUMBERS OF FORCE CONSTANTS TO BE HELD FIXED
C THESE NUMBERS ARE USED TO ELIMINATE. ROWS AND COLUMNS FROM
C THE PERTURBATION MATRIX S:..
C PUNCHED IN 3 COLUMN FIELDS 24 PER CARD. IF NCZ=O ALL FORCE
C CONSTANTS ARE ADJUSTED. ,
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9612 READ (5,71 (NCF(L),L=1,NCZ)
00 9613 I=1,NCZ
JX=NCFII)

9613 NFX(JX')-1
9614 IF(NDIAG)9615,9615,9620
9615 NDIAG=NF-NCZ

NIO-0
DO 9617 I=1,NF
IFINFX(1t)9617,9616,9617

9616 NIO2NIO+1
NCON(NIO)1I

9617 CONTINUE
GO TO 9624

C READ NUMBERS OF FORCE CONSTANTS TO BE FORCED INTO REGRESSION.
C FORCE CONSTANTS IN THIS LIST ARE ENTERED INTO THE REGRESSION
C EQUATION WITHOUT REGARD TO TESTS FOR SIGNIFICANCE
C ON THE REGRESSION OPTION FORCE CONSTANTS IN THIS LIST
C ARE ADJUSTED ON EACH CYCLE.
9620 READ (5,71 (NCON(I)II=1,NDIAG)
90003 WRITE (6i,3} (NCON(IlI=-INDIAG)

13 FORMAT(47HO FORCE CONSTANTS ALWAYS INCLUDED IN REGRESSION/(1514))
9624 IF(NCZ)9630,9630,9625
9625 WRITE (6,25) (NCF(L),L=1,NCZ)

25 FORMAT(39HO NUMBERS OF FORCE CONSTANTS HELD FIXED/11514))
9630 NM=l

IFIIFREP)470,99,470
99 SUM=0.0

NDT=0
PTOTaO.
SCALE=1.0

C READ MOLECULE CONTROL CARD.CONTAINING THE FOLLOWING INFORMATION
C 1.IND=-06, IDENTFYING COTROL CARD. IN COLUMNS 1-3
C 2.NQ, THE DIMENSION OF THE SECULAR EQUATION, COLUMNS 4-6.
C 3.NDDTHE NUMBER OF NON-ZERO EXPERIMENTAL FREQUENCIES. IN
C COLUMNS 7-9.
C 4.NZZL THE NUMBER OF Z MATRIX ELEMENTS. IN COLUMNS 10-13.
C 5. IFU IN COLUMNS 14-15 IGNORED BY PROGRAM.
C 6.IFWIl OR -2, IF WEIGHTING ELEMENTS ARE INCLUDED WITH THE INPUT
C IFW=0,-1,OR-3, IFWEIGHTING ELEMENTS ARE NOT INCLUDED.COLS.16-17
C 7.ISKZ=O, IF A NEW Z MATRIX IS TO BE READ IN FOR THE MOLECULE.
C ISKZlt1 IF THE Z MATRIX FROM THE PREVIOUS MOLECULE IS TO BE
C USED. E.G. ISOTOPIC MOLECULES . PUNCHED IN COLUMN 19.

100 READ (5,14)INDOQ,QNDDtNZZ,IFU,IFW,ISKZ
14 FORMAT(313,14,312)

IF(IND+6)900,101.900
C INPUT DATA FOR EACH MOLECULE FOLLOW THE MOLECULE CONTROL
C CARD IN THE ORDER
C 1.MOLECULE INFORMATION CARD, I CARD CONTAINING THE NAME OF THE
C MOLECULE OR BLANK. (COLUMNS 1-3 MUST BE LEFT BLANK)
C 2.THE Z MATRIX
C 3.EXPERIMENTAL FREQUENCIES, NQ OF THEM FOR NDD GREATER THAN ZERO
C IF NDD=O NO FREQ. ARE ENTERED.
C 4.ESTIMATED ERRORS IN OBS.FREQ. FOR IFER=-1.
C 5.WEIGHTING ELEMENTS, IF IFW=l OR -2
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C 6. THE G MATRIX.
C READ MOLECULE INFORMATION CARD

101 READ (5,6) (RECMI},1=1,18)
ND=O
IFIISKZ)190,190,203

C READ Z MATRIX
C Z IS NOT STORED AS A MATRIX, BUT RATHER AS 4 ONE DIMENSIONAL
C ARRAYS NR GIVING THE ROW NUMBER OF THE F MATRIX ELEMENT, NC
C GIVING THE COLUMN NUMBER OF THE F MATRIX ELEMENT, NFO GIVING
C THE NUMBER OF THE DISTINCT FORCE CONSTANT AND Z GIVING THE Z
C MATRIX ELEMENT. NC MUST BE GREATER THAN OR EQUAL TO NR
C ONLY NON-ZERO ELEMENTS ARE ENTERED.
C THE Z ELEMENTS ARE PUNCHED IN 18 COLUMN FIELDS, 1 TO 4 PER CARD
C COLUMNS 1-3 GIVE NR , COLUMNS 4-6 GIVE NC , COLUMNS 7-9 GIVE NFO,
C AND Z IS PUNCHED IN COLUMNS 10-18 WITH THE DECIMAL BETWEEN
C COLUMNS 12 AND 13 OR PUNCHED.NROW=-2 AFTER LAST ELEMENT.
C TOTAL NUMBER OF Z MATRIX ELEMENTS MUST BE LESS THAN 651.

190 NOZ=O

191 READ 15,18) (NROWIL)tNCOL(L),NPOIL),DATIN(L),L=1,41
18 FORMAT(4(313,F9.6))

DO 196 L=l,4
IFINROWIL))198,196,192

192 IFINQ-NCOLLt))920,193,193
193 NOZ=NOZ+1

NR(NOZ)}NROW(L)

NC(NOZ)=NCOL(L)
IXX=NPO(L)
NFO(NOZ)=NOM(IXX)

Z(NOZ)=DATINIL)
196 CONTINUE

GO TO 191
198 IF(NROWIL)+2)920,203,920
203 IFI 650-NOZ)920,204,204
204 IFINDD)205,205,207

205 DO 206 I=1,NQ
DXlI)=0.0

206 PII)=O.O
GO TO 270

C READ OBSERVED FREQUENCIES. IF NDD IS GREATER THAN ZERO.
C PUNCHED IN 12 COLUMN FIELDS 6 PER CARD, DECIMAL BETWEEN COLUMNS
C 6 AND 7 OR PUNCHED. ENTERED IN DECREASING ORDER IN EACH FACTORED
C BLOCK. IF THE FREQUENCIES ARE UNKNOWN OR UNCERTIAN, OR ZERO
C (REDUNDANCIES) ENTER A ZERO,FOR DEGENERATE ROOTS ENTER ONE
C FREQUENCY AND THE REST ZERO. ANY FREQUENCY MAY BE GIVEN ZERO
C WEIGHT IN THE PERTURBATION BY ENTERING A ZERO INSTEAD OF THE
C ACTUAL FREQUENCY. FREQUENCIES ARE ENTERED IN WAVENUMBERS.
C A TOTAL OF NQ ENTRIES, ND OF THEM MUST BE NON-ZERO.

207 READ (5,20) (DE(I),I=1,NQ)
C COMPUTE THE FREQUENCY PARAMETERS FROM THE FREQUENCIES

DO 209 I=1,NQ
IFIDE I)i209,209,208

208 ND=ND+1

209 DX( I)=5.88852E-7*DE(I}*DE(II)
N1=0
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C WEIGHT =E(I) / FREQ.PAR. FOR IFW=1
241 DO 248 I=1,NQ

IF(DX( l)247,247,242
242 N1=N+l1

P(l)=E(Nl! / (DXIII)
PTOT=PTOT+P(I)
IF(P(1)»248,248,246

246 N2=N2+1
GO TO 248

247 P(I)=O.O
248 CONTINUE

NDT=NDT+N2
GO TO 260

C WEIGHT =1.0 FOR IFW=-1
250 DO 254 I=1,NQ

IF(DX(I)22 5253,251
251 P(i)=l.O

PTOT=PTOT+l.O
GO TO 254

253 P(I)O.O
254 CONTINUE

NDT=NDT*ND
GO TO 260

C WEIGHT= 1/ FREQ. PAR. FOR IFW=O
255 DO 259 11,NQ

IF(DX(I)»258,258,256
256 P(I)=I.O / DXiI)

PTOT=PTOT+P( I

GO TO 259
258 P(l)=O.O
259 CONTINUE

NDT=NDT+ND
260 N1=O

DO 266 I=1,NQ
IF(DX(l))266,266,262

262 NI=Nl+1
DCS=DC(NI)*DC(NI)
SUM=SUM+DX(I)*DX(I)*P(I1*DCS*(DCS+4.0*DC(Nl)+4.0)

266 CONTINUE
IFiND-NL)925,270,925

270 WRITE (1)NQ,NDNOZ
WRITE (11) RECII),I=l,18)
WRITE (1) (NRIK),NC(K),NFO(KI,Z(K),K=1,NOZ)

C READ G MATRIX
C READ NON-ZERO G MATRIX ELEMENTS .G(I,J).
C G ELEMENTS ENTERED IN 18 COLUMN FIELD I TO 4 PER CARD GIVING
C COLUMNS ITEM
C 1-3 NROW=I (ROW NO.)
C 4-6 NCOL=J ICOLUMN NO.) (I LESS THAN OR=J}
C 7-18 DATIN=G(IJI (DECIMAL BETWEEN 12-13 OR PUNCHED)
C NROW IS SET =-1 AFTER LAST G ELEMENT.
C SINCE THE G MATRIX IS SYMMETRIC ONLY DIAGONAL ELEMENTS AND THE
C ELEMENTS ABOVE THE DIAGONAL ARE ENTERED. THAT IS, COLUMN NO.
C GREATER THAN OR EQUAL TO THE ROW NO.
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140 DO 142 11INQ
DO 142 J«I,NQ

142 GII,J)=O.0
144 READ (5,16)(NROW(L),NCOL(L),DATIN(L),L=1,41

16 FORMAT(4(213,FI2.6))
DO 150 L=1,4
IF(NROW(L))152,150,146

146 IF(NCOL(L)-NROW(L))910,147,147
147 IF(NQ-NCOL(L))910,148,148
148 I=NROWIL)

J=NCOL(L)
G(I,J)=DATIN(L)

150 CONTINUE
GO TO 144

152 IF(1+NROW(L))910,154,910
C SCHMIDT ORTHOGONALIZATION OF G
C STORE INVERSE TRANSFORMATION IN LOWER TRIANGLE OF G

154 NO=l
NL=2

155 GD=1.0 /GINONO)
00 156 J=NLINQ

156 G(J,NO)=G(NO,J)*GD
IF(NL-NQ1158,158,170

158 DO 160 I=NL,NQ
DO 160 J=INQ

160 GIl,J)=G(I,J)-(G(NOI)*G(NO,J)*GD)
161 NO=NO+1

NL=NO+1
163 IF(G(NOUNO)-O.000001)464,164,155
164 IFINL-NQ)165,165,170
165 DO 166 J=NL,NQ
166 G(JNO)=G(NOJ)

GO TO 161
170 DO 175 I=1,NQ

IF(GII,II-0.00005)173,173,172
172 DGII)=SQRT(G(I,I))

GO TO 174
173 DG(I)=O.O
174 G(I,I)=O1.

DO 175 J=i,NQ
175 GIJ,I)=G(J,I)*DG(I)

DO 178 J=1,NQ
178 WRITE (1) (G(I,J),I=JNQ)

WRITE (11 (DGII),I=1,NQ)
WRITE (1) (DX(I),I=1,NQ)
WRITE (1) (P()III=INQ)
NM=NM+l
IF(NMOL-NM)286,100,100

286 END FILE 1
REWIND I
IF(NDT)287,287,288

287 JOKER=l.
FREQ=NF
SCALE=1.0
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GO TO 470
288 FREQ=NDT

SCALE=FREQ/ PTOT
SUM=SCALE*SUM

470 CALL CYCLE
IFI2-JOK)90,901,90

900 WRITE (6,81)NOPROB,NM
81 FORMAT(40HO ERROR IN MOLECULE CONTROL CARD.PROBLEMI8,4H.NM=I3)

IF(NM-1)902,902,903
902 JOK=l

GO TO 90
903 NMOL=NM-L

JOK=2
GO TO 286

910 WRITE (6,85)NMNOPROBL,NROW(L),NCOL(L),DATIN(L)
85 FORMAT(25HO G MATRIX ERROR MOLECULEI3,8H PROBLEMI8,6H FIELDI3,6H R

IEADSI4,14,F12.6)
JOK=l
GO TO 90

920 WRITE (6,87)NM,NOPROB,NOZ,NROW(L),NCOL(L),NPO(L),DATIN(L)
87 FORMAT(25HO Z MATRIX ERROR MOLECULEI3,8H PROBLEMI8,8H ELEMENTI4,6F

1 READSI4,14tI4tF9.6)
JOK=1
GO TO 90

925 WRITE t(688)NM,NOPROB,Nl
88 FORMAT(27HO EIGENVALUE ERROR MOLECULEI3,8H PROBLEMI8,4H ND=13)

JOK=I
GO TO 90
END
SUBROUTINE CYCLE
DIMENSION St 84,84 )tEIG(66,66),NR( 650),NC( 650),NFO( 650),

1 ZI 650),BZ(66,71) ,G(66,66),INDEX( 71),DX(71),DE(71),DG(71t)
2 NFX( 71),FF( 71),SIt 71),ECt71),Y( 71),NFI( 71),NF21 71),0D( 71),
3 COENI 71),SIGMCOI 71),NOMt 71),EX( 71),PE( 71),E( 71),DV(71),
4 DC( 11),FI( 71),NCON( 71),NCF( 71),NPL(50),NPN(50),RECORDO54),
5 REC(18),P(71),NROW(4),NCOL(4),NPO(4),DATIN(4),SUMDD(20)
EQUIVALENCE (S,EIG),(S(4365),NR),(S(5020),NC),tS(5675),NFO),
1 (S(6330),Z)t(BZ,G),(BZ(4360),INDEXDX),(BZ(4440),DE,DG),
2 (BZ(4520),NFX,FF, EC),(BZ(4600),Y,NF1),(SIGMCO,NOM),
3 ICOEN,NF2,DD),(EXPE),t-EDV)
COMMON SBZSIGMCO,COEN,EXEDCFINCONtNCFNPLNPNtRECORD,REC,
IPSUMDONROWNCOLNPO,OATIN,NFNCZtNCZSNDTDETJOKER,JOKtDMX,
2 DEFR,FR,JETNXNPNONON,NOSTEPNOVARNOVMIEFOUTEFIN,NCYC,
3NOPROBNOtZNQ,LIMITTOLNDIAGNPMAXIFREG,PRODFREQERPOERODAMP,
4RAPFRACtTIMEPERINOIFREPIFERtNIPNMOL,INDSCALEtERERPPTOT,
5 NMNMlNDtNDOOSUMt011,02,103,104,l05tI06,OI07,lO8tlO9CUTOF
INTEGER CUTOF

470 REWIND I

REWIND 2
NM*l
NMI=O

480 READ (1) NQNDNOZ
READ (1) (REC(I)l,-1,18)
READ (1) (NR(K),NC(K),NFO(K),Z(K),K=1,NOZ)
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IF(IFREP)484,490,484
484 IF(INO)490,490,485
485 DO 488 K=INOZ

I=NFO(K)
488 NFO(K)=NOM1I)
490 IF(JOKER)300,300,492
492 RAP=0.5E-3

I( 101)300,90005,300
90005 WRITE (6,80)NM,(RECIK),K=I,181,NQ,NO,NOZ

80 FORMAT(23HI t MATRIX FOR MOLECULEI4.3X,18A4/16,12H COORDINATESI3,
125H EXPERIMENTAL FREQUENCIES18,19H Z MATRIX ELEMENTS.)
WRITE (6,81) (NR(I),NC(I),NFO(I) Z(I )I=1,NOZ)

81 FORMAT(4114,213,F9.6)}
300 DO 301 J=I,NQ
301 READ Itl (G(IfJ),I=J,NQ)

READ (1) IDG(lIII=1,NQ)
READ (1) (DX(1),1=1,NQ)
READ (1) (P(I),I1l,NQ)
IF(N D304,304,306

304 IF(JOKER)468,468.306
C COMPUTE TRANSFORMED F MATRIX AND STORE IN UPPER TRIANGLE OF G.

306 DO 328 J=1,NQ
PtJ)=SCALE*P(J)
DO 308 1=1,NQ

308 DD(l)=0.O
00 320 K=l,NOZ
IX=NR(K)
IF(IX-J)320,312.312

312 JX=NCIK)
LX=NFO(K)
DD(IX)=D00DIX)+FI(LXI*ZIK)*GIX,J}
IFIIX-JX)318,320,318

318 DD(JX)»DD(JX)+FIILX)*Z(K)*G(IX,J)
320 CONTINUE

DO 324 K=J,NQ
DC(K)=0.O
00 324 L=KNQ

324 DCIK)=DC(K)+G(LK)*DD(L)
DO 328 K=J,NQ

328 G(J,K)=DC(K)
NR2=O
IEGEN=O

C DIAGONALIZE TRANSFORMED F MATRIX BY JACOBI METHOD
CALL HDIAG(GNQtlEGENEIGNR2,RAP)

C COMPUTE EIGEN VECTORS
DO 330 I=1,NQ
DC(I) G(I,I)

330 G(I.l)=OG(I)
00 335 IaI,NQ
00 333 Jt1,NQ
DD(J)=O.O
DO 333 K=1,J

333 DOIJ)=DD(J}+G(J,K)*EIG(KI)
DO 335 J=LNQ
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335 EIG(J,I)=DD(J)
C ORDER EIGENVALUES AND EIGENVECTORS

II=NQ-1
DO 340 J=l,II
LOW=J*+
DO 340 K-LOWNQ
IF(DC(J)-DCIK) 337,340,340

337 TEM=DC(JI
DCIJ)=OC(K)
DC(KI=TEM
DO 338 IzNQ

338 DD(IIEIG(IJ)
DO 339 I1=,NQ
EIG(I,J)=EIG(I,K)

339 EIG(I,K)=OD(I)
340 CONTINUE

C COMPUTE EIGENVALUE ERRORS
341 DO0 350 I=1,NQ

IFIDX(I11348,348,344
344 DIII)=ODX(I)-DC(I)

SUMDD(NX)=SUMDODINX)+DD(II'*OD(I)*P(l)
GO TO 350

348 00111=O.O
350 CONTINUE
352 WRITE (6,24)NM,NP,NR2,RAP,(DC(I),1=1,NQ)
24 FORMAT(37HO EIGENVALUES AND ERRORS FOR MOLECULEI4,6H AFTERI3,15H P

1ERTURBATIONS.15,11H ROTATIONS./6H RAP=EI24/(1IH t9F8.5))
WRITE (6,26)(DD(J),J=1,NQ)

26 FORMAT(8HO ERRORS/(1H ,9F8.5))
90007 IFIJOKER)354,354,364
C TEST FOR UNREASONABLE EIGENVALUES

354 IF(109161712,61712,91919
61712 DO 359 J1l,NQ

IFIDCIJ)+0.001)360,3550,3550
3550 IF(DC(J))3552,3552,355
3552 IF(P(J))355,355,360
355 IF(9.0-OCIJ))360,360,356
356 IF(2.5-DC(J))357,357,358
357 IF(0.8-ABS(OD(J)J)360,360,359
358 IF(0.4-ABS(DD(J)))360,360,359
359 CONTINUE

91919 CONTINUE
IF(JOK1468,400,400

360 JOK=-l
WRITE 16,741NM,NP

74 FORMAT(26HO EIGENVALUES FOR MOLECULEI4,31H NOT REASONABLE ON PERTU
IRBATIONI4)

GO TO 468
C OUTPUT FOR FINAL CYCLE

364 ERO=0.O
ERPOs0.0
DO0 368 I=l,NQ
DE(II=SQRTIDX(I)/5.88852E-71
DVI IlSQRT4OC(II/5.88852E-7)
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IF(DE(1)}365,365,366

365 EC(I=O.O
EX( 1=0.0
GO TO 368

366 EXIII=DE(I)-DVII)
EC(Ilt0OO.O*EX(I}/DE(II
IF(PlII)368,368,367

367 ERO=ERO+ABS(EX(I))
ERPO=ERPO+ABS(EC(I))

368 CONTINUE
ER=ER+ERO
ERP-ERP+ERPO
ERO=ERO / FLOAT(ND)
ERPO=ERPO / FLOAT(NO)

90008 WRITE (6,28)NMSCALE,(REC(I),I=1»18}
28 FORMATI75H1 OBSERVED AND CALCULATED FREQUENCIES AND FREQUENCY PARA

IMETERS FOR MOLECULEI3/26H SCALE FACTOR FOR WEIGHTS=FO0.6/12X,18A4)
369 WRITE (6,29)(IDE(I),DV(I),EXII),EC(II) P(II)DX(IlDC(I),I=1,NQ)

29 FORMAT195H0 OBS.FREQ. CALC.FREQ. DIFFERENCE PERCENT ERROR
I WEIGHT OBS.FREQ.PAR. CALC.FREQ.PAR. /6Xt6H(CM-1,'6Xt6H(CM-I
2»,7X,6H(CM-l)/(I4,F9.1,4X,F8.1,4X,F6.1,7X,F7.3,6X,F9.4,FlO.5,F14.5

3})
WRITE (6,31) ERO,ERPO

31 FORMAT(17HO AVERAGE ERROR=F6.2,10H CM-I ,OR F6.3,8H PERCENT)

90009 DO 3680 I=1.50
K=51-I
TES=FLOAT(K)-0.5
00 3680 J=1,NQ
IF(DX(J))3680,3680,3670

3670 IF(TES-ABS(EX(J)))3672,3680,3680
3672 IF(EX(J))3673,3680,3674

3673 NPN(K}=NPN(K)+l
GO TO 3675

3674 NPL(K)=NPL(K)+1

3675 EX(J)=O.O

3680 CONTINUE
370 IF(102)400,90010,400

90010 WRITE (6,30)NOPROB,NM,NP,(REC(I),I=1,18)

30 FORMAT(37HIEIGENVALUES AND EIGENVECTORS PROBLEMI8,9H MOLECULE13,13

1H PERTURBATIONI4/12X,18A41

DO 372 J=1,NQ
372 WRITE (6,32)J,DV(J),(EIG(I,J),I=l,NQ)

32 FORMAT(IOHOFREQUENCYI3,2H =F8.1,5H CM-1,20H EIGENVECTOR FOLLOWS/

11IH ,9F8.4))
C COMPUTE THE JZ MATRIX ( CALLED BZ)

400 DO 421 K=1,NQ

DO 410 N=l,NF
410 BZ(K,N)=O.o

DO 420 L=iNOZ

I=NR(L}
J=NC(L)
MsNFO(L)

IF(I-J}418,416,418
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416 BZIK,M)=BZ(K,M)+EIGII,K I*EIGIJ,K )*lIL)
GO TO 420

418 BZIK,M)=BZIK,M)+2.0*EIG(I,K )*EIG(J,K )*Z(L)
420 CONTINUE
421 CONTINUE
422 IF(JOKER)438,438,424
424 IF(103)90012,90011,90012

90011 WRITE (6,38)NP,NM,(REC(I),I=1,18)
38 FORMAT(28HI THE JZ MATRIX PERTURBATIONI4,9H MOLECULEI4/12X,18A4)

DO 426 I=1,NQ
426 WRITE 16,41)I,DC(I),DD(I),P(I),(BZ(I,J),J=1,NF)
41 FORMAT(IIHO FREQ.PAR.13,2H =F12.6,7H ERROR=FI2.6,8H WEIGHT=FI2.6/(

1 9F8.4))
90012 IF(104)90014,90013,90014
90013 WRITE (6,42)(REC(1),11,18)

42 FORMAT(31H1 POTENTIAL ENERGY OISTRIBUTION/3X,18A4)
90014 DO 435 1=1,NQ

IF(DC(I)-0.0001)435,435,430
430 DO 432 J=l,NF
,432 PEIJ)=(BZ(I,J)*FIIJ))/ DCII)

IF 104)435,90015,435
90015 WRITE (6,45)I,DV(I),(PE(JlJ=1,NF)

45 FORMAT(IIHO FREQUENCYI3,2H =F6.l,5H CM-1/(IH ,9F8.4))
435 CONTINUE

C COMPUTE S
438 DO 442 I=1,NQ

P( I)=SQRTIP I )
BZ(I,NOVAR)=DD(I)
DO 442 J=I,NOVAR

442 BZ(l,J)=P(I)*BZ(I,J)
DO 458 I=1,NOVAR
DO 456 J=INOVAR
Sl(J)=O.0
DO 456 K=1,NQ

456 SI(J)=SI(J)+BZ(K,I)*BZ(K,J)
458 WRITE (2) (SII(J),J=tNOVAR)
463 NMI=NMI+l
468 NM=NM+*

IF(NMOL-NM)600,480,480
600 IF(JOK)601,602,602
601 JOK=l

JOKER=1
GO TO 470

602 CONTINUE
END FILE 2
REWIND 2
FR=NDT-NF+NCZ
DO 604 I=l,NOVAR
DO 604 J=1,NOVAR

604 S(I,J)=O.O
NM=l

C READ AND SUM S MATRICES
608 00 610 I=l,NOVAR

READ I2) (Sl(J),J=IlNOVAR)
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DO 610 J=I,NOVAR
610 S(I,J)=S(I9,J+SI(J)

NM=NM+1
IF(NMI-NM)612,608,608

612 IF(NP)613,613,620
613 DO 618 I=1,NF

IFtSI,i,11614,614,618
614 IF(NCZ)617,617,615
615 00 616 J=l,NCZ

IFI1-NCFiJ))616.618,616
616 CONTINUE
617 NCZ=NCZ+1

NCZS=NCZ
NCF(NCZ)l=
WRITE 6,1 )1

1 FORMAT(l6HO FORCE CONSTANTI3.42H NOT A FUNCTION OF FREQ.,FIXED ON
ICYCLE 1.)

618 CONTINUE
DO 6185 I=lNDIAG
KXaNCON(I)

6185 NFX(KX)=1
IFINCZ)6189,6189,6186

6186 DO 6187 I=lNCZ
KX=NCFII)

6187 NFX(KX)I-1
6189 DO 6192 I=lNF

IF(NFX(11)6192,6190,6192
6190 NCZS=NCZS+l

NCFINCZS)=I
6192 CONTINUE
620 PROD=1.O

IF(DAMP)62062076206201
6201 IF(JOKER)6262062026207
6202 SMAX=S(l,l»

DO 6205 I=2,NF
IF(S(II)-SMAX)6205,6205,6203

6203 SMAX=S(II)
6205 CONTINUE

DB=DAMP*SMAX
WRITE (6,43) DAMPDB

43 FORMAT(37HO DAMPED LEAST SQUARES.DAMPING FACTORF8.4l11H*S(II)MAX=
1F8.4)
GO TO 621

6207 DB=0.O
621 CONTINUE

DO 628 IlI,NOVAR
IF(S(I1,1)622,622,623

622 EX(I)=I.O
GO TO 628

623 S(III)S(tI,IlDB
EX(I)=SORT(S(l,I))

628 CONTINUE
C COMPUTE CORRELATION MATRIX

00 630 IllNOVAR
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DO 630 J=I,NOVAR
S(II,J=S(I,J»/ (EX(I)*EX(J))

630 S(J,t)=S(IJ)
IF(JOKER)631,634,631

631 IF(105)634,90016,634
90016 WRITE (6,53)NP,(RECORD(I),I=1,54)

53 FORMAT(29HI CORRELATION MATRIX ON CYCLEI3/(3X,18A4))
00 632 I=1,NOVAR

632 WRITE (6,40) I,(SII,J),J=1,NOVAR)
40 FORMAT(4HOROWI3/I1H ,9F8.41)

WRITE (6,63) (EXII),I=1,NF)
63 FORMAT(61HO SQUARE ROOTS OF THE DIAGONAL TERMS OF THE NORMAL EQUAT

lIONS./(IH ,9F8.4))
C ELIMINATE ROWS AND COLUMNS FROM CORRELATION MATRIX

634 IFIJOKER)635,636,636
635 NVO=NCZ

GO TO 637
636 NVO=NCZS
637 IF(NVO)642,642,638
638 DO 640 I=1,NVO

K=NCF(I)
DO 639 J=1,NOVAR
S(K,J)=0.0

639 S(JK)»=O.O
640 S(KtK=1.0
642 DEFR=FREQ

C CALL REGRES TO SOLVE PERTUBATION EQUATIONS OR REGRESSION
CALL REGRES
NFA=NF-NCZS
00 700 I=1,NDIAG
KX=INOEX(Il
PROU=PROO*EX(KX)*EX(KX)

700 FF(I)=FI(KX)
IF(JOKER)702,710,702

702 IF(II06)710,90017,710
90017 WRITE (6,52)DET,NFA,NDT,(RECORD(I),1=1,54)

52 FORMATI43H1 VARIANCE-COVARIANCE MATRIX. DETERMINANT= E12.4/I8,32H
IFORCE CONSTANTS ADJUSTED TO FITI5,l3H FREQUENCIES./(3X,18A4))
DO 704 I1-,NOVAR

704 WRITE (6,40) I,IS(I,J),J=1,NOVAR)
710 CONTINUE

90018 WRITE (6,61)NP, DETPROD,RAP,IINDEXII),FF(I),COEN(I),
ISIGMCO(I),I=1,NDIAG)

61 FORMATI23H1 FORCE CONSTANTS AFTER13,14H PERTURBATIONS /15H
1 DETERMINANT =E12.4,19H PRODUCT OF S(I,I)=E12.4/5H RAP=E14.4/
252H I FORCE CONSTANT(I DELTAII) EST.DISPERSION/
3(I4,4X,F12.6,F14.6,F16.6))

90019 IF(NCZS)715,715,712
712 WRITE (6,66) (NCF(I),I=1,NCZS)
66 FORMAT(28HO FORCE CONSTANTS HELD FIXED/(2413))
715 IF(JOKER)718,718,780
718 DO 720 I=1,NDIAG

IF(2.0-ABS(COEN(I)))722,722,720
720 CONTINUE
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GO TO 735
722 CMAX=ABS(COENII))

MAX=I+l
LX=I
DO 724 I=MAX,NDIAG
IF(CMAX-ABSICOENII)))723,724,724

723 CMAX=ABSICOEN(i))
LX=I

724 CONTINUE
NFIX=INDEX(LX)

90021 WRITE (6,17)NFIX,COEN(LX),SIGMCO(LXI
17 FORMAT(16H0 FORCE CONSTANTI3,13H FIXED.DELTA= FO1.6,8H SIGMCO=FlO.

161
90022 DO 726 11,NCZS

JX=NCZS-I+l
LX=JX+I

726 NCF(LXI=NCF(JX)
NCFI1)=NFIX
NCZ=NCZ+l
NClZSNCZS+l
NLC=0
DO 728 I=l,NDIAG
IF(INDEXIII-NFIX)727,728,727

727 NLC=NLC+1
NCON(NLC)=INDEX(I)

728 CONTINUE
NDIAG=NLC
SUMDD(NXI=0.0
IF(NDOIAG)729,729,470

729 JOKER-=
NPMAX=l
GO TO 470

735 DO 736 I=1,NDIAG
IF(O.008-ABS(COENIII))738,738,736

736 CONTINUE
NPMAX=0
GO TO 751

738 IF(DMXI750,742,739
739 DO 740 I=1,NDIAG
740 COEN(I)=DMX*COEN(I)

IF(CUTOF-NP)63152,63152t91516
63152 DMX=0.0
91516 GO TO 750

742 DO 746 I=1,NDIAG
IFIl.0-ABS(COEN(I)))743,744,744

743 COENtI»)0.7*COEN(I)
744 IF(0.5-ABS(COEN(Il1)745,746,746
745 COEN(Il)=0.8*COEN(I)
746 CONTINUE
750 IF(NPMAX)758,751,751
751 DO 753 I=1,NDIAG

JX=INDEX(I)
753 FI(JX)=FIUJX)+COEN(I)

IFINP)758,758,754
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754 IF(SUMOD(NP)-SUMDD(NX))756,756,758
756 JET-JET+l

IF(2-JET)757,757,758
757 WRITE (6,51INOPROB,NP
51 FORMAT19HO PROBLEMI7,14H DIVERGING NP=13)

NPMAX=O
758 NP=NP*+

NX=NP+I
NCYC=NCYC+I
SUMDD(NX)=O.O
RAP=FRAC*RAP
IF(NPMAX-NP)762,762,765

762 JOKER=I
GO TO 470

765 IF(IFREG)770,470,770
770 IF(NIP+3-NCYC)771,470,470
771 JOKER=-1

GO TO 470
780 IF(NCZS)802t802,800
800 00 801 I=l,NCZS

K=NCF(I)
801 S(KKI=O.O
802 E3=SQRT(SUMDD(NX)/DEFR)

E4=SQRT(SUM / DEFRI
D00 810 I=1,NF
TEM=ABS(S(I,I))
EIIl)E4*SQRT(TEM)/ EX(I)

810 Y(I)=E3*SQRT(TEM)/ EX(I)
815 WRITE (6,55)NOPROB,(RECORD(I),l=1,54)
55 FORMAT(IH1,5Xt8H PROBLEMI8/(t2X,18A4))

816 WRITE (6,60)NP,(I,FI(I),Y(I),EIII,I=-lNFI
60 FORMAT(44HO FORCE CONSTANTS AND ESTIMATED ERRORS AFTERI4,15H PERTU

IRBATIONS.//47H I FORCE CONSTANT(l) ERROR * ERROR **/(14,
23X,F12.6,5X,F9.6,5X,F8.6))

90024 FR=DEFR
NAD=NF-NCZS
IF108)817,817,99887

99887 WRITE(7,2ll21X(FI(I),I=l,NF)
21121 FORMAT(6F12.61

817 WRITE (6,62)SUMDDINX),E3,SUM,E4
62 FORMAT(33HO * STANDARD ERROR ESTIMATED FROM/54H SUMDD=SUM((LAMB

IDA(l)OBS.-LAMBDA(I)CALC.)**2)*P(I)=El3.6/47H STANDARD ERROR IN
2LAMBDA - SQRT(SUMDD/ FR)=E13.6 //33H ** STANDARD ERROR ESTIMATED F
3ROM/39H SUMD=SUMIDELTA LAMBDA(I1)**2e*P(II=E13.6/19H SQRT(SU
4MD/ FR)E1L3.6/37H WHERE DELTA LAMBDA ESTIMATED FROM/
549H l.IFER=-3,DELTA FREQ(I)=1.O CM-1 FOR ALL 1/
649H 2.IFER=-2,DELTA FREQII)=PER CM-I FOR ALL If
745H 3.IFER-l,ODELTA FREQ(I) READ IN (CM-I)/
848H 4.IFER= 0,DELTA FREQ(I)=0.005*OBS.FREQ(I)/
946H OR 5.IFER= 1,DELTA FREQII)=PER*OBS.FREQ(I))

90026 IF(NDOT825,825,820
820 WRITE 46,64)IFERPER,NF,NAD,ND[,FR,(SUMDD(I),I=1,NX)
64 FORMAT(iOH IFER=13, 9H AND PER=F8.4/ 16,17H FORCE CONSTANTS.16

1,16H AOJUSTED TO FITI6,13H FREQUENCIES./ 2X,F5.1,41H DEGREES OF FR
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2EEDOM. SUMDD FOR EACH CYCLE /(5E13.6))
90028 CON=FREQ

E5=ER/CON
E6=ERP/CON

90029 WRITE (6,65)E5EE6
65 FORMAT(30HOAVERAGE ERROR IN FREQUENCIES=F7.1,9H CM-I OR F8.4,9H PE

1RCENT.)
90030 NZER=NDT

DO 824 1=1,50
824 NZER=NZER-NPN(I)-NPLII)

90031 IFII07)26261,2261,825
26261 WRITE 16,55)NOPROBI(RECORD(I),1=1,541

WRITE (6,82)NDTNMOLNZER,(I,NPL(I),NPNII),I=I,50)
82 FORMAT124HO ERROR DISTRIBUTION FORI5,13H FREQUENCIES.14,I1H MOLECU

iLES./20H 0.5 TO-0.5 CM-1 =18/26H CM-1 PLUS MINUS/
2116,2110))

825 RETURN
END

/*

SUBROUTINE REGRES
C MODIFICATION OF A PROGRAM FOR STEPWISE MULTIPLE
C REGRESSION PROGRAMED BY M.A. EFROYMSON OF ESSO RESEARCH
C THE SUBROUTINE IS ALSO USED FOR MATRIX INVERSION AND FOR
C SOLVING THE LINEAR EQUATION ON CYCLES NOT USING THE REGRESSION
C TECHNIQUE

DIMENSION S( 84,84 ),EIG(66,66),NR( 650),NC( 650),NFO( 650),
1 ZI 650),BZ(66,71) ,G(66,66),INDEX( 71),DX7i1),DE(71),DG(71),
2 NFX( 71),FF( 71),SI( 71),ECI71),YI 71),NFI( 7l),NF2( 71),DD( 71))
3 COENI 71),SIGMCO( 711),NOM( 711,EXI 71),PE( 7i),E( 71),DV(71),
4 OC( 711,FI( 71),NCONI 7l),NCF( 71),NPL(50),NPN(50O)RECORDS54),
5 RECI18),P(71),NROW(4),NCOL(4),NPO(4),DATIN14),SUMDD(20)
EQUIVALENCE (SEIG),(S14365),NR),{S(5020),NC),(S(5675),NFO),
1 IS16330),Z),IBZG),(BZ(4360),INDEX,DX),(BZ14440),DE,DG),
2 (BZ(4520).NFX,FF, EC),(BZ(4600).YNFI).(SIGMCO,NOM),
3 (COEN,NF2,DD),(EX,PE),(E,DV)
COMMON SBZtSIGMCOCOENtEXEDCFINCONNCFNPLNPNtRECOROREC,
IP,SUMDDNROWNCOLNPODATINNFNCZtNCZSNDTDETtJOKERJOKDMX,
2 OEFRtFRJET,NXNPNOINtNOSTEPANOVARNOVMIEFOUTEFINNCYC,
3NOPROBNOZ,NQ,LIMIT,TOLNDIAGNPMAXIFREGPRODtFREQERPOEROOAMP,
4RAPFRAC,TIME,PERINOtIFREP,IFER,NIPNMOLINODSCALEERERPPTOT,
5NMNMl,ND,NDD,SUM,101,102,103,104,105t,06
DET=1.O
NOIN=O
DO 650 I1=,NF

650. NFX(I)=
IFIJOKER)656,699,699

656 WRITE (6,22)
22 FORMATI35HI CONSTANTS FORCED INTO REGRESSION.)

VAR=0.0

NOSTEP=-1
IFSTEP=O
TOL=O.001
NIN=O
ASSIGN 1320 TO NUMBER
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C ENTER FORCE CONSTANTS IN THE LIST NCON(I),I=1,NDIAG INTO
C THE REGRESSION EQUATIONS WITHOUT REGARD TO THE STATISTICAL
C TESTS. THIS LIST SHOULD INCLUDE ALL DIAGONAL FORCE CONSTANTS
C PLUS ANY KNOWN LARGE INTERACTION CONSTANTS.

699 IX=l
ASSIGN 710 TO NOI

700 DEFR=DEFR-1.0
JX=NCON(IX)
NFXIJX)=1
K=JX

GO TO 1400
710 NOIN=NOIN+1

INDEX(NOIN)=JX
IXIX+1
IF(NDIAG-IX)711,700,700

711 FLEVEL=0.0
SIGY=EX(NOVAR)*SQRT(S(NOVARNOVAR)/ DEFR)
DO 720 I=I,NOIN
KX=INDEX(I)
COENII)=S(KX,NOVAR)*EX(NOVAR)/ EX(KX)

720 SIGMCO(I)=(SIGY/EX(KX))*SQRT(S(KX,KX))
IF(JOKER)721,200,200

721 WRITE (6,70)FLEVELSIGY,(INDEX(J)tCOEN(J),SIGMCO(J),J=1,NOIN)

722 IF(IFREG)1730,723,730
723 EFIN=2.0

EFOUT=I.O
GO TO 731

730 READ (5,20) EFIN.EFOUT

20 FORMAT(2F12.6)

731 WRITE (6,26) EFINEFOUT
26 FORMAT(3bHO REGRESSION, F LEVEL FOR ENTERING =F10.6,23H F LEVEL FO

IR REMOVING =F10.6)
790 DEFR=DEFR+1.0
799 ASSIGN 1000 TO N01

AO=l
NOMIN=0
NOMAX=O

NOENT=0
K=O

1000 NOSTEP=NOSTEP+1

IF(NOSTEP-LIMIT)1001,3001,3001
3001 WRITE (6,3005)
3005 FORMAT(36HOTO0 MANY STEPS, PROBLEM TERMINATED )

JOKER=Il
GO TO 1381

1001 IF(S(NOVAR,NOVAR))1002,1002,1010

1002 NSTPM1=NOSTEP-1

WRITE (6,1004)NSTPMI

1004 FORMAT(IH037HY SQUARE NON-POSITIVE,TERMINATE STEP 15)

GO TO 1381

1010 SIGY=EX(NOVAR)*SQRT(S(NOVAR,NOVAR)/DEFR)
1015 DEFR=DEFR-AO
1016 IF(DEFR) 1017,1017,1020
1017 WRITE (6,1019)NOSTEP
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1019 FORMATIIH029H NO MORE DEGREES FREEDOM STEP 15)

GO TO 1381
1020 VMIN=O.0
1030 VMAXO0.O
1035 NOIN=O
1040 DO 1050 I-1,NOVMI

IF(NFXI) )1041,104t,1080
1041 IFIS(II))1046,1050,1060
1043 WRITE (6,1044)1,NOSTEP
1044 FORMATl1HOIOH SQUARE S-15,17H NEGATIVE. SOLONG 15,6H STEPS)

GO TO 1381
1046 IF(S(I,1)+TOL)1043,1050,1050
1060 IF(S(I,I)-TOL) 1050,1080,1080
1080 VAR=S(INOVAR)*S(NOVARI)/ S(,IIl
1090 IF(VAR1100,1050,1110
1100 NOIN=NOIN+1
1120 INOEX(NOIN)=l
1130 COENINOIN)=S(I,NOVAR)*EX(NOVARI/EX(I)
1140 SIGMCO(NOIN)=(SIGY/ EX(I))* SQRTIStII,))

IF(NFX(l)11150,1150,1050
1150 IFIVMIN)1160,1170,904
904 WRITE 16,906)
906 FORMATI24H ERROR,VMIN PLUS,SOLONG I

GO TO 900
1170 VMIN=VAR
1180 NOMIN=l
1190 GO TO 1050
1160 IF(VAR-VMIN)1050,1050,1170
1110 IFIVAR-VMAX)1050,1050,1210
1210 VMAX=VAR
1220 NOMAX=I
1050 CONTINUE
1230 IF(NIN)903,1240,1300
903 WRITE (6,907)
907 FORMAT(26H ERROR,NOIN MINUS, SOLONG )

GO TO 900
1240 WRITE (6,65)SIGY

65 FORMAT139HO START REGRESSION.STANDARD ERROR OF Y=F12.6)
NIN=l
GO TO 1.350

1300 IF(IFSTEP)900,1310,1320
1310 IFINOENT) 1311,1311,1313
1311 WRITE (6,91)NOSTEP,K

91 FORMAT19HOSTEP NO.15/19H VARIABLE REMOVED 18)
1312 GO TO 1314
1313 WRITE (6,92)NOSTEP,K

92 FORMAT(9HOSTEP NO.I5/20H VARIABLE ENTERING 18)
1314 WRITE 16,70)FLEVELSIGY,(INDEX(J),COEN(J,SIGMCO(J},J=1,NOIN)

70 FORMAT112H F LEVEL -F12.6/24H STANDARD ERROR OF Y =FI2.6/47H
I CONSTANT PERTURBATION STANDARD ERROR/(17,8X,FIO.6,8X,F10
2.6))

1315 GO TO NUMBER,(1320,1580)
1320 FLEVEL=VMIN*DEFR/ S(NOVARNOVAR)
1330 IFIEFUUT+FLEVEL)1350,1350,1340
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1340 K=NOMIN
1345 NOENT=O

AO=-1.0
GO TO 1391

1350 FLEVEL=VMAX*DEFR/ IS(NOVAR,NOVAR)-VMAX)
AO=1.0

1360 IFIEFIN-FLEVEL)1370,1361,1380
1361 IFIEFIN)1380,1380,1370
1370 K=NOMAX
1390 NOENT=K
1391 IF(K) 1392,1392,1400
1392 WRITE l6,1395)
1395 FORMAT(12H K=O. STEP 16,7H SOLONG)

GO TO 900
1400 DO 1410 1=1,NOVAR
1420 IF(I-K) 1430,1410,1430
1430 DO 1440 J=lNOVAR
1450 IF(J-K) 1460,1440,1460
1460 S(IJ)=S(I,J)-(S(I,K)*SIK,JI/S(KK))
1440 CONTINUE
1410 CONTINUE

DET=S(K,K)*DET
1470 DO 1480 I=1,NOVAR
1490 IF(I-K) 1500,1480,1500
1500 S(I,K)t -S(I,K)/S(K,K)
1480 CONTINUE
1510 DO 1520 J=1,NOVAR
1530 IF(J-K)1540,1520,1540
1540 S(K,J)= S(K,J)/S(K,K)
1520 CONTINUE
1550 S(KK)= 1.0 / S(KK)
1560 GO TO NO1,(710,10001
1380 WRITE (6,75)NOSTEP

75 FORMAT(IOHOCOMPLETED 15,20H STEPS OF REGRESSION)
1381 IF(IFSTEP)900,1580,1570
1570 ASSIGN 1580 TO NUMBER
1571 GO TO 1310
1580 WRITE (6,1586)(LSIL,L),L=1,NOVAR)
1586 FORMAT122HO DIAGONAL ELEMENTS//20H VAR.NO.

1F16.6))
910 NCZS=NCZ

IF(NCZ)913,913,911
911 00 912 I=1,NCZ

K=NCF(II
912 NFX(KI=-1
913 DO 914 I=1,NOIN

K=INDEXII)
NCON(I)=K

914 NFX(K)I1
DO 916 I=lNF
IF(NFXII))916,915,916

915 NCZS=NCZS+1
NCF(NCZS)=I
IF(0.01-ABS(F Il1))916,916,917

VALUE //(IH I7,
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917 F( I }O.0
916 CONTINUE

NCYC=O
JOKER=O

200 NDIAG=NOIN
201 RETURN
900 JOKER=I

GO TO 201
END

/*

SUBROUTINE HOIAG(H,N,IEGEN,U,NRRAP)

Subroutine HDIAG has been presented earlier in Table xxxiv
and will not be repeated here because of space limitations.
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a. IND = -09 and indicates the start of a new problem. IND is punched
in Columns 1-3 (FORMAT i3).

b. NOPROB is the problem number, punched in Columns 4-9 (FORMAT I6).

c. NMOL, denotes the number of molecules included in the problem.
NMOL is punched in Columns 10-12 (FORMAT I3).

d. NF is the number of force constants, punched in Columns 13-15
(FORMAT I3).

Warning: NF must not exceed 71.

e. NPMAX, represents the maximum number of perturbations desired in the
refinement. The refinement will terminate when the number of
iterations exceeds NPMAX, even though the refinement may not have
converged. NPMAX is punched in Columns 16-18 (FORMAT I3).

Note: If NPMAX is set equal to zero or left blank, the force con-
stants will not be refined, and the frequencies will be calculated
for the initial set of force constants.

f. NCZ, refers to the number of force constants to be held fixed.
These force constants are not perturbed by the refinement. NCZ is
punched in Columns 19-21 (FORMAT I3).

g. IFREP is the problem repeat option. If IFREP = 0, a new problem
is to be started. For IFREP = 1, only a new set of force constants
and identification of those constants to be held fixed need be
entered; the remaining data are taken from the previous problem.
If IFREP = -1, the final set of force constants from the previous
problem are used as the initial set in the new problem:. IFREP is
punched in Columns 22-23 (FORMAT I2).

h. IFER is the error control. For IFER = 1, the fractional error, PER,
is read in. For IFER = 0, the fractional error, PER, is set equal
to 0.005. If IFER = -1, the estimated errors for each of the observed
frequencies are read in.

Note: These errors must follow the observed frequencies. For IFER
-2, the error in the observed frequencies in cm.-1 PER, is read in.
If IFER = -3, the error in the frequencies, PER, is set equal to 1
cm. - 1 IFER is punched in Columns 24-25 (FORMAT 12).

i. PER is the error referred to in above paragraph. If IFER = 1, PER
is a fraction. If IFER = -2, PER is in cm. - PER is punched in
Columns 26-33 (FORMAT F8.6).

j. DMX, a fractional factor which is multiplied by the force constant
perturbations to result in the "damped" perturbation. This factor
is used in those situations where the initial force constant cor-
rections are very large. DMX is punched in Columns 34-41 (FORMAT
F8.4).
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k. IFREG is the regression option control. IfIFREG = O, there is no

regression analysis. For IFREG = l, the regression is performed
on the first iteration. If IFREG = -1, the regression is
initiated on the fourth iteration. IFREG is punched in Columns
42-43 ( FORMAT I2).

l. NDIAG, represents the number of force constants to be included in
all the regressions, punched in Columns 44-46 (FORMAT I3).

m. INO is the number of force constants to be renumbered, punched in
Columns 47-49 (FORMAT I3).

n. NIP, represents the spacing between the regressions. The spacing
is 3 - NIP where NIP may be negative. NIP is positioned in

Columns 50-52 (FORMAT 13).

o. DAMP is the damping factor for "damped least squares." For DAMP
greater than zero, DAMP*MAX[S(I,I)] is added to the diagonal terms
of the normal equations on each perturbation cycle. Schachtschneider

(89) suggests using DAMP = 0.001. DAMP is punched in Columns 53-58
(FORMAT F6.5).

p. RAP is the cut-off factor for the Jacobi diagonalization. The

rotations are terminated when MAX[H(I,J)] is less than RAP*MIN[H(I,I)].
If RAP is not entered or left blank, it is assigned a value of 0.5E-2
in the program. On the final iteration, RAP is automatically set

equal to 0.5E-3 which gives eigenvalues to six significant figures
and eigenvectors to three or four significant figures. RAP is punched
in Columns 59-63 (FORMAT F5.4).

q. FRAC is a fractional factor for decreasing RAP after each iteration.
After each iteration, RAP is set equal to FRAC*RAP. If FRAC is not
entered, it is assigned a value of 0.9 by the program. FRAC is
punched in Columns 64-67 (FORMAT F4.3).

r. CUTOF is the number of iterations after which DMX is set equal to
zero, punched in Columns 68-72 (FORMAT I5).

3. Problem Information Cards. Three cards containing any alphanumeric in-
formation about the problem the user may wish to enter. The first three

columns, i.e., Columns 1-3, should be left blank. Therefore, the
alphanumeric information may be punched in Columns 4-72 on each of the
cards.

Warning: These three cards must always be included with the input data
even if left blank.

4. Printout Option Cards. A 1 in the appropriate column will suppress the
printout of the following information.

a. I01, the Z matrix suppression option, punched in Column 1.

b. I02, the eigenvalues and eigenvectors suppression option, punched

in Column 2.
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c. I03, the JZ matrix suppression option, punched in Column 3.

d. I04, the potential energy matrix suppression option, punched in
Column 4.

e. 105, the correlation matrix suppression option, punched in Column 5.

f. I06, the variance-covariance matrix suppression option, punched in
Column 6.

g. I07, the error distribution suppression option, punched in Column 7.

h. I08, a 1 will result in the final set of force constants being
punched onto cards in a format suitable for input to FADJ, FLPO, and
EIGV. I08 is punched in Column 8.

i. 109, a 1 will result in the test for unreasonable eigenvalues being
bypassed. This option is useful if the initial set of force constants
is not a good approximation. In this case, the refinement would
terminate on the first iteration if the eigenvalues are not considered
reasonable by the test built into the program. I09 is punched in
Column 9.

5. Initial Set of Force Constants. The initial set of force constant param-
eters are punched on cards in 12 column fields, six per card, in the order
1 through NF (FORMAT 6F12.6).

6. Force Constants to be Renumbered. If INO is greater than zero, the force
constants to be renumbered along with their new numbers must be included
in the data deck.. The format is: NFl(I) = the old force constant number
and NF2(I) = the new force constant number, where I = 1 through INO.
NFl(I) and NF2(I) each occupy three columns and they are punched in pairs.
There are 24 fields of 3 columns each per card (FORMAT 24I3).

7. Force Constants Held Fixed. If NCZ is greater than zero, the numbers of
the force constants to be held fixed, NCF(L), are punched on cards in 3
column: fields, 24 per card, for L = 1 through NCZ (FORMAT 24I3).

Note: These force constants do not enter the refinement, and their final
value is the same as their initial value.

8. Force Constants Forced Into the Regression. If NDIAG is greater than
zero, the numbers of the force constants forced into the regression,
NCON(I), must be included with the data. These numbers are punched in
3 column fields, 24 per card, for I = 1 through NDIAG (FORMAT 24I3).

Note: The force constants identified here are entered into the regression
equation without regard to the tests for significance.

9. Molecule Control Card.

a. IND = -06, identifies the molecule control card and is punched in
Columns 1-3 (FORMAT I3).
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b. NQ is the number of internal coordinates, punched in Columns 4-6
(FORMAT 13).

Warning: NQ cannot exceed 66.

c. NDD is the number of nonzero experimental frequencies to be in-
cluded with the input data. NDD is punched in Columns 7-9 (FORMAT
13).

Note: If no experimental frequencies are entered with the data,
NDD is set = 0 or left blank. This option may be used if one only
wishes to solve the secular equation to obtain the calculated
frequencies.

Warning: If NPMAX is greater than zero, so must be NDD.

d. NZZ, signifies the number of Z matrix elements, punched in Columns
10-13 (FORMAT I4).

Warning: NZZ cannot exceed 650.

e. IFU is ignored by the program. The Columns 14-15 may be left blank.

f. IFW, represents the weighting element option for the weighted least
squares refinement. If IFW = 1 or -2, the weighting elements, E(I),
are read in and must be included with the input data, one for each
nonzero experimental frequency. For IFW = -2, the weight(I) then
becomes = E(I). For IFW = 1, the weight(I) = E(I)/frequency param-
eter(I). If IFW = 0, the weight(I) = 1/frequency parameter(I). For
IFW = -1, the weight(I) = 1.0 and all frequencies are weighted
equally. Finally, if IFW = -3, the weight(I) = l/[frequency parameter-
I)] 2 . IFW is punched in Columns 16-17 (FORMAT 12).

g. ISKZ is the Z matrix repeat option. If ISKZ = 0, the Z matrix is
included in the input data. For ISKZ = 1, the Z matrix from the
previous problem is used and a new Z matrix is not included with the
data deck. ISKZ is punched in Columns 18-19 (FORMAT 12).

Note: This option is specifically suitable for isotopically sub-
stituted molecules.

10. Molecule Information Card. One card containing the name of the molecule
or other pertinent alphanumeric information. The first three columns
should be left blank with the Columns 4-72 open for the alphanumeric
data (FORMAT 18A4).

11. The Z Matrix. The constraint matrix from UBZM or ZSYM is placed at this
point in the data deck. The Z matrix elements are punched in 18 column
fields, 1 to 4 per card [FORMAT 4(313,F9.6)].

Warning: The row number following the last element must be -2.

12. Experimental Frequencies. If NDD is greater than zero, the experimental
frequencies, in wave numbers, must be included with the input data. The
frequencies are entered in decreasing order and are punched in 12 column
fields, 6 per card (FORMAT 6F12.6).



-335-

Note: If the frequencies are unknown or uncertain, enter a zero.
For degenerate roots, enter one frequency and zeros for the rest.
Any frequency may be given a zero weight in the refinement by entering
a zero instead of the actual value.

Warning: For NDD greater than zero, one must make NQ entries of which
NDD must be nonzero. A zero should be entered for each of the redun-
dancies. Blanks are read as zeros.

13. Estimated Errors in the Observed Frequencies. If IFER = -1, the
estimated errors in the observed frequencies, in cm. 1, must be in-
cluded with the input data, one for each nonzero frequency. The
estimated frequency errors must be entered in the same order as the
experimental frequencies, with zeros being entered corresponding to
zeros in the frequency list. The estimated errors are entered in 12
column fields, six per card (FORMAT 6F12.6).

Warning: There must be NQ error entries for IFER = -1, NDD of them
nonzero.

14. The Weighting Elements. If IFW = 1 or -2, the weighting elements are
read in, one element for each nonzero frequency. The weighting elements
are punched in 12 column fields, six per card (FORMAT 6F12.6).

Note: There are a total of NDD weighting elements arranged in the
same order as the nonzero experimental frequencies.

15. The G Matrix. The G matrix from GMAT is inserted in the data deck at
this point. The data are punched in 18 column fields, four per card
[FORMAT 4(2I3,F12.6)].

Warning: The row number after the last element must be -1.

16. Data Termination Card. This card designates the end of the data deck
by a 999 punched in Columns 1-3 (FORMAT I3).

Note: If another problem is to be included, the problem ID card is
placed at this position and the data termination is moved to the end of
the second problem data.

If the same set of force constants is to be used in the refinement for more

than one molecule, the data cards starting with the molecule control card through

the G matrix cards must be included, one set after another, for each molecule in

the refinement, i.e., NMOL sets of data. For symmetry factored blocks, NMOL must

be set equal to the number of factored blocks. The blocks are then treated as

separate molecules with the data handled in the manner just described for several

molecules.
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The data deck is terminated with a card having /* punched in Columns 1-2

with the OS system.

OUTPUT INFORMATION

The following information is printed out at the option of the user.

1. The initial set of force constants.

2. The renumbered force constants, old and new numbers.

3. The force constants to be held fixed.

4. The force constants to be forced into the regression.

5. The Z matrix.

6. The eigenvalues and errors for each cycle.

7. The force constant perturbations after each iteration.

8. The regression data.

9. The final set of calculated frequencies, frequency parameters, observed
frequencies, errors, and weighting information.

10. The eigenvalues and eigenvectors for the final set of force constants.

11. The final JZ matrix.

12. The potential energy distribution.

13. The correlation matrix.

14. The variance-covariance matrix.

15. The final set of force constants.

16. The estimated error in the final force constants.

17. The error distribution for the frequencies.

The final set of force constants is punched on cards, if desired.
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FLPO

This program solves the vibrational secular equation by the method of suc-

cessive orthogonalization followed by diagonalization. The diagonalization is

accomplished by the subroutine HDIAG which employs the Jacobi method. The

program will also refine an initial set of force constant parameters to provide

a linear or nonlinear (depending on the problem) weighted least squares "fit" of

the calculated frequencies to the experimental frequencies by the Fletcher-

Powell method (121).

This program was constructed by the author of this text during the investi-

gation of the 1,5-anhydropentitol spectra. FLPO was developed from sections of

FADJ (the section involving the solution of the secular equation) and from an IBM

subroutine, FMFP, (which is the basis of the Fletcher-Powell method) obtained

from their scientific subroutine package (122). The adaptation of the Fletcher-

Powell method is based on the paper by Gans (120). FLPO may be used with the IBM

360/44 OS operating system. The program requires a phase overlay procedure

available with OS. The current version of FLPO is stored on disk at the Institute's

computer center.

A flow diagram for FLPO appears in Fig. 42, 43, and 44. The JCL cards re-

quired to run the stored version of FLPO at the Institute are listed in Table

LII. These cards must precede the data deck. A listing of FLPO follows the JCL

cards in Table LIII.

INSTRUCTIONS FOR PROGRAM USE

The program, FLPO, requires a scratch tape or disk. This has already been

accounted for with the stored version of FLPO. The following information com-

prises the input data deck.
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TABLE LII

LISTING OF THE JCL CARDS NEEDED TO RUN THE
STORED VERSION OF FLPO

//FLPO JOB 94000110,LARMSGLEVEL=l
//JOBLIB DD OSN=LAR,VOL=SER=DLIB03,DISP»OLD,UNIT=SYSDA
// EXEC PGM=FLPO
//FT05F01 DD ODNAME'SYSIN
//FT06F001 DD SYSOUT=A
//FT07FOOI O SYSOUT=B
//FTOIFOO 0D UNIT=SYSDADSN=TAPEOIOISP=(NEW.DELETEI,
// VOL=SER=DLIBOI,
// SPACE=(CYL,(20,tl})DCB-(RECFM=VS,BLKSIZE=120O
//SYSIN DD *

TABLE LIII

LISTING OF FLPO

C PROGRAM FLPO. SOLUTION OF THE SECULAR EQUATION AND REFINEMENT
C OF A SET OF FORCE CONSTANTS BY THE METHOD OF LEAST SQUARES.
C SCHACHTSCHNEIDER 9/1/65
C MODIFIED FOR OS BY L J PITZNER 10/1/71
C MANY MOLECULE PERTURBATION USING FLETCHER-POWELL MINIMIZATION.
C THIS PROGRAM USES SUBROUTINE FMFP FROM IBM'S SCIENTIFIC SUB. PACK.
C THIS PROGRAM ADJUSTS UP TO 70 FORCE CONSTANTS FOR A
C LARGE NUMBER OF MOLECULES OR BLOCKS OF ORDER 70 OR LESS.
C CODED IN FORTRAN IV FOR USE WITH THE IBSYS SYSTEM.
C THE SECULAR EQUATIONS OF THE SYMMETRIC PROBLEMS ARE SOLVED BY
C A SHARE SUBROUTINE MIHDI3 PROGRAMED BY F.J.CORBATO AND M.MERWIN
C OF M.I.T.

C DISCS ARE USED INSTEAD OF SCRATCH TAPES
DIMENSION EIG(66,66),NRI650),NC(650),NFO(650)tZ(650),NCF(71),
ISI!71),SSI711),FF(71),EXI71),BZ(66,71),G(66,66),DX(71),DE(711,
2DGI71),EC(71),E(71T,DV(71),DD(71U,DC(71),FI(71),RECORO(54),
3REC(18),PI71),NFX(71),H(2734),NROW(4),NCOL(4),NPO(4),DATIN(4)
EQUIVALENCE(EIG(2640),NCF),(EIG(2720),SI),(EIG12880),FF),

2(EIG{2960),EX),(BZ,G),(BZ(4360),DX),(BZ(4440),DE,DG),
3(BZ(4520),EC),(EDV,SIS)
COMMON BZt,EIGDDtEtDCFIRECORDRECtP,NFXNROW,NCOLNPODATIN,
lNCZtNCZStNDTJOKER,JOK,EST,EPS,SUMDD,DEFRFR,NP,NOIN,NOPROBoNOZ,
2NFNQ,TOL,NPMAX,FREQ,ERPO,ERO,RAP,FRAC,PER,IFREP,IFER,NMOLIND,

3SCALE,ER,ERPPTOT,NM,NMI,ND,NDD,SUM,NVARJUMP,NOVAR,NR,NC,NFO,Z,Ht

4LEAP,CONV ,STUT,IFU,IFDEL,RATIO,WSROITERMNCOND

HN(A)=5.88852E-7*A*A
FNCI(BISQRT(B)

C READ PROBLEM CONTROL CARD
C PROBLEM CUNTROL CARD CONTAINS THE FOLLOWING INFORMATION
C l.IND=-09, INDICATING THE START OF A PROBLEM IN COLUMNS 1-3.

C 2.NOPROB, THE PROBLEM NUMBER. IN COLUMNS 4-9.

C 3.NMOL, THE NUMBER OF MOLECULES,IN COLUMNS 10-12.
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TABLE LIII (Continued)

C 4.NF, THE NUMBER OF FORCE CONSTANTS IN COLUMNS 13-15.
C LESS THAN 71
C 5.NPMAX, THE MAXIMUM NUMBER OF PERTURBATIONS DESIRED,COLUMNS
C 16-18.
C 6.NCZ, THE NUMBER OF FORCE CONSTANTS TO BE HELD FIXED,IN COLUMNS
C 19-21. (LESS THAN 7L)
C 7.IFREP=l IF ONLY A NEW SET OF FI(I),AND NCF(I) ARE TO BE
C READ IN. DE,PW,UZ,AND G FROM PREVIOUS PROBLEM ARE USED.
C IFREP=O, IF A NEW PROBLEM IS TO BE STARTED.
C IFREP=-1, FINAL FI(l) FROM PREVIOUS PROBLEM ARE USED AS INTIAL
C FI(I). NEW NCF(I) ARE READ. ZS FROM PREVIOUS PROBLEM MAY BE
C RENUMBERED. PUNCHED IN COLUMNS 22-23.
C 8.1FER=-3,-2,-1,0,1 PUNCHED IN COLUMNS 24-25
C FOR IFER=1 PER IS READ IN AND USED AS A FRACTIONAL ERROR
C FOR IFER=O PERa 0.005 USED AS A FRACTION
C FOR IFER=-1 ESTIMATED ERRORS ARE READ IN FOR EACH OBS.FREQ.
C INPUT FOLLOWS OBS.FREQ.
C FOR IFER-2 ERROR IN ALL FREQ. ASSUMED TO BE PER CM-I
C FOR IFER=-3 PER=I.O CM-1 FOR ALL OBS. FREQ.
C 9.PER AN ERROR TO BE ASSUMED FOR ALL OBS.FREQ.
C A FRACTION IF IFER=1 IN CM-1 IF IFER2-2
C PUNCHED IN COLUMNS 26 TO 33 WITH DECIMAL BETWEEN COL.
C 27 AND 28 OR PUNCHED

CONTINUE
C 10. EST, AN ESTIMATE OF THE MINIMUM FUNCTION VALUE.
C PUNCHED IN COLUMNS 34 TO 41 WITH THE DECIMALBETWEEN COLUMNS
C 37 AND 38 OR PUNCHED.
C 11. EPS, A TEST VALUE REPRESENTING THE EXPECTED ABSOLUTE ERROR.
C A REASONABLE CHOICE IS O.1E-05. PUNCHED IN COLUMNS 42-51.(RIGHT
C JUSTIFIED)
C 12.RAP, THE CUT-OFF FACTOR FOR THE JACOBI DIAGONALIZATION.
C THE JACOBI ROTATIONS ARE STOPPED WHEN MAX(HII,J)) IS LESS
C THAN RAP*MIN(H(I,I)l. IF RAP IS NOT ENTERED IT IS TAKEN EQUAL
C TO 0.5E-2. ON THE THE FINAL CYCLE RAP IS SET EQUAL TO
C O.5E-3 GIVING EIGENVALUES TO 6 SIGNIFICANT FIGURES AND EIGEN-
C VECTORS TO 3 OR 4 FIGURES.
C RAP IS PUNCHED IN COLUMNS 52-56 WITH THE DECIMAL BETWEEN
C COLUMNS 52 AND 53 OR PUNCHED.

CONTINUE
C 13.FRAC, A FRACTIONAL FACTOR FOR DECREASING RAP ON EACH CYCLE.
C AFTER EACH PERTURBATION RAP IS SET EQUAL TO FRAC*RAP.
C IF FRAC IS NOT ENTERED IT IS TAKEN EQUAL TO 0.9.
C FRAC IS PUNCHED IN COLUMNS 57-60 WITH THE DECIMAL BETWEEN
C COLUMNS 57 AND 58 OR PUNCHED.
C 14.LEAP, EITHER 1 OR 0. A 1 CAUSES THE PRINT OUT OF THE EIGEN-
C VALUES AND ERRORS, GRAD. VEC.,ARG. VEC., DIR. VEC.,ARG. DIFF.
C VEC., AND GRAD. DIFF. VEC. TO BE SUPRESSED. A ZERO WILL PERMIT
C THEIR PRINT OUT. LEAP IS PUNCHED IN COLUMNS 61 AND 62.
C 15.CONV, AN ARBITRARY CONSTANT USED TO JUDGE THE FORCE CONSTANT
C CORRECTIONS FOR SATISFACTORY CONVERGENCE. IF CONV. IS NOT
C ENTERED IT IS TAKEN TO BE 0.008 WHICH IS SCHACHTSCHNEIDER'S
C CHOICE FOR THIS CONSTANT. CONV IS PUNCHED IN COLUMNS 63-70.
C 16.1FDEL, A 1 WILL CAUSE THE PRINTOUT OF THE DIFFERENCE BETWEEN
C OBSERVED AND CALCULATED FREQUENCIES FOR EACH ITERATION.
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TABLE LIII (Continued)

C IFDEL PUNCHED IN COLUMNS 71-72.MAY BE USED ONLY WHEN NMOL=I.
90 READ(5,96001),IND

96001 FORMAT(13)
IF(IND.EQ.-9)GO TO 91

901 IF(IND.NE.999)GO TO 90
9020 CALL EXIT

91 READ I 5,4)IND,NOPROB,NMOL,NF,NP,MAX,NCZ,IFREP,IFER,PERC,EST,EPS,
1RAP,FRAC,LEAP,CONV,IFDEL

4 FORMAT(13,16,I413,212,F8.6,F8.4,Ei0.2,F5.4,F4.3,12,F8.6,12)
WSRO=1000.0
REWIND 1

93 IF(IFREP.EQ.O)GO TO 802
800 IF(JOK)90,805,90
802 PER=PERC
805 NP=O

NCOND=O
JUMP=a
NVAR = NF - NCZ
NX=l
ER=0.0
ERP=0.0
NCZS=NCZ
IF(CONV.GT.O.O)GO TO 51311
CONV=0.008

51311 NCYC=1
NOVAR=NF+1
IF(RAP.GT.O.O)GO TO 808

807 RAP=0.5E-2

808 DO 810 I=ltNF
810 NFX(I)=I

IF(FRAC.GT.O.O}GO TO 812
811 FRAC=0.9
812 JOK=O-
94 IF(NPMAX.EQ.O)GO TO 942

940 JOKER=O
GO TO 96

942 JOKER=I
C READ PROBLEM INFORMATION CARDS. 3 CARDS CONTAINING INFORMATION
C ABOUT THE PROBLEM. CARDS MUST BE INCLUDED EVEN IF BLANK.

96 READ (5,6)RECORD
6 FORMAT(18A4)

WRITE (6,8)NOPROB,NMOLtNF,NPMAX,NCZESTEPS
8 FORMAT(13HI PROBLEM NO.18,6H NMOL=14,4H NF=I4,7H NPMAX=14,5H NCZ=I
14,5H EST=F6.4,5H EPS=E10.2)
WRITE(6,8080)RECORD

8080 FORMAT(1H ,12X18A4)
IF(IFREP.LT.O)GO TO 9602

C READ INTIAL FORCE CONSTANTS
C THE FORCE CONSTANTS ARE PUNCHED IN 12 COLUMN FIELDS 6 PER CARD
C WITH THE DECIMAL BETWEEN COLUMNS 6 AND 7 OR PUNCHED. IN ORDER
C I THROUGH NF.
9601 READ (5,20)(FI(I),I=-1NF)

20 FORMAT(6F12.6»
9602 WRITE (6,61lNP,(I,FI(I),IS1,NF)
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TABLE LIII (Continued)

61 FORMAT(23HO FORCE CONSTANTS AFTERI4,15H PERTURBATIONS./(16,F12.611
9610 IF(NCZ.LE.O)GO TO 9614

C READ NUMBERS OF FORCE CONSTANTS TO BE HELD FIXED
C PUNCHED IN 3 COLUMN FIELDS 24 PER CARD. IF NCZ=O ALL FORCE
C CONSTANTS ARE ADJUSTED.
9612 READ (5,71 (NCF(L),L=1,NCZ)

7 FORMAT(2413)
00 9613 I=1,NCZ
JX=NCF(I)

9613 NFX(JXI=-1
9614 CONTINUE
9624 IF(NCZ.LE.O)GO TO 9630
9625 WRITE (6,25) (NCF(L),L=1,NCZ)

25 FORMAT(39HO NUMBERS OF FORCE CONSTANTS HELD FIXED/(15I4))
9630 NM=1

IFIIFREP.NE.O)GO TO 470
99 SUM=0.0

NDT=O
PTOT=O.O
SCALE=1.0

C READ MOLECULE CONTROL CARD.CONTAINING THE FOLLOWING INFORMATION
C 1.IND=-06, IDENTFYING COTROL CARD. IN COLUMNS 1-3
C 2.NO, THE DIMENSION OF THE SECULAR EQUATION. COLUMNS 4-6.
C 3.NDD,THE NUMBER OF NON-ZERO EXPERIMENTAL FREQUENCIES. IN
C COLUMNS 7-9.
C 4.NZZ, THE NUMBER OF Z MATRIX ELEMENTS. IN COLUMNS 10-13.
C 5.IFU, A I WILL CAUSE PRINTOUT OF THE FINAL H MATRIX. PUNCHED
C IN COLUMNS 14-15.
C 6.[IFW= OR -2, IF WEIGHTING ELEMENTS ARE INCLUDED WITH THE INPUT
C IFW=0,-1OR-3, IFWEIGHTING ELEMENTS ARE NOT INCLUDED.COLS.16-17
C 7.ISKZ=0, IF A NEW Z MATRIX IS TO BE READ IN FOR THE MOLECULE.
C ISKZ=l, IF THE Z MATRIX FROM THE PREVIOUS MOLECULE IS TO BE
C USED. E.G. ISOTOPIC MOLECULES * PUNCHED IN COLUMN 19.
C 8.STUT, THE VALUE FROM STUDENT'S T DISTRIBUTION NEEDED TO CALC-
C ULATE THE 95 PERCENT CONFIDENCE INTERVALS. STUT=T(N-P,.975)
C WHERE N=NO. OF NONZERO FREQ. AND P=NO. OF FORCE CONSTANTS
C BEING REFINED. PUNCHED IN COLUMNS 20-27.
C 9.RATIO, IF THE RATIO OF SUCCESSIVE WEIGHTED SUM OF SQUARES
C OF RESIDUALS IS = OR GT THIS VALUE, THE REFINEMENT WILL BE
C TERMINATED AND SAID TO HAVE CONVERGED. RATIO IS PUNCHED IN
C COLUMNS 28-35.
C 10.ITERM, NO. OF TIMES THE RATIO CONDITION FOR TERMINATION MUST BE
C MET BEFORE ACTUAL TERMINATION OF THE REFINEMENT. COLS.36-39.

100 READ (5,14)IND,NQNDD,NZZ,IFU,IFW,SKZSTUT,RATIO,lTERM
14 FORMAT(313,14,312,F8.4,F8.6,14)

IF(IND.NE.-6)GO TO 900
C INPUT DATA FOR EACH MOLECULE FOLLOW THE MOLECULE CONTROL
C CARD IN THE ORDER
C 1.MOLECULE INFORMATION CARD, I CARD CONTAINING THE NAME OF THE
C MOLECULE OR BLANK. (COLUMNS 1-3 MUST BE LEFT BLANK)
C 2.THE Z MATRIX
C 3.EXPERIMENTAL FREQUENCIESt NQ OF THEM FOR NOD GREATER THAN ZERO

C IF NDD=O NO FREQ. ARE ENTERED.
C 4.ESTIMATED ERRORS IN OBS.FREQ. FOR IFER=-1.
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C 5.WEIGHTING ELEMENTS, IF IFW=1 OR -2
C 6. THE G MATRIX.
C READ MOLECULE INFORMATION CARD

101 READ (5,6)REC
ND=O
IF(ISKZ.GT.O)GO TO 203

C READ Z MATRIX
C Z IS NOT STORED AS A MATRIX, BUT RATHER AS 4 ONE DIMENSIONAL
C ARRAYS NR GIVING THE ROW NUMBER OF THE F MATRIX ELEMENT, NC
C GIVING THE COLUMN NUMBER OF THE F MATRIX ELEMENT, NFO GIVING
C THE NUMBER OF THE DISTINCT FORCE CONSTANT AND Z GIVING THE Z
C MATRIX ELEMENT. NC MUST BE GREATER THAN OR EQUAL TO NR
C ONLY NON-ZERO ELEMENTS ARE ENTERED.
C THE Z ELEMENTS ARE PUNCHED IN 18 COLUMN FIELDS, I TO 4 PER CARD
C COLUMNS 1-3 GIVE NR , COLUMNS 4-6 GIVE NC , COLUMNS 7-9 GIVE NFO,
C AND Z IS PUNCHED IN COLUMNS 10-18 WITH THE DECIMAL BETWEEN
C COLUMNS 12 AND 13 OR PUNCHED.NROW=-2 AFTER LAST ELEMENT.
C TOTAL NUMBER OF Z MATRIX ELEMENTS MUST BE LESS THAN 651.

190 NOZ=O
191 READ (5,18) (NROW(L),NCOL(LI,NPO(LI,DATIN(L),L=1,4)
18 FORMAT(4(313,F9.6))

DO 196 L=l,4
IF(NROW(L))198,196,192

192 IF(NQ.LT.NCOL(L))GO TO 920
193 NOZ=NOZ*l

NRINOZ)=NROW(L)
NC(NOZ)=NCOL(L)
NFO(NOZ)=NPO(L)
Z(NOZ)=DATIN(L)

196 CONTINUE
GO TO 191

198 IF(NROW(L).NE.-2)GO TO 920
203 IF(NOZ.GT.650)GO TO 920
204 IF(NDD.GT.O)GO TO 207
205 DO 206 I=1,NQ

DXIll=O.0
206 P(I)=O.O

GO TO 270
C READ OBSERVED FREQUENCIES. IF NDD IS GREATER THAN ZERO.
C PUNCHED IN 12 COLUMN FIELDS 6 PER CARD, DECIMAL BETWEEN COLUMNS
C 6 AND 7 OR PUNCHED. ENTERED IN DECREASING ORDER IN EACH FACTORED
C BLOCK. IF THE FREQUENCIES ARE UNKNOWN OR UNCERTIAN, OR ZERO
C IREDUNDANCIES) ENTER A ZERO,FOR DEGENERATE ROOTS ENTER ONE
C FREQUENCY AND THE REST ZERO. ANY FREQUENCY MAY BE GIVEN ZERO
C WEIGHT IN THE PERTURBATION BY ENTERING A ZERO INSTEAD OF THE
C ACTUAL FREQUENCY. FREQUENCIES ARE ENTERED IN WAVENUMBERS.
C A TOTAL OF NQ ENTRIES, ND OF THEM MUST BE NON-ZERO.

207 READ (5,20) (DE(IIMI1,NQ)
C COMPUTE THE FREQUENCY PARAMETERS FROM THE FREQUENCIES

DO 209 I=L,NQ
TEM=DE(I)
IF(TEM.LE.O.O)GO TO 209

208 ND=ND+1
209 DX(I)=HN(TEM!
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N1=0
IF IFER+2 )210,211,1122

1122 IF(IFER)215,220,221
C CONSTANT ERROR OF 1 CM-1 IN EACH OBS.FREQ. FOR IFER=-3

210 PER=1.0
C CONSTANT ERROR OF PER CM-1 IN EACH OBS. FREQ. FOR IFER=-2

211 DO 212 I=1.NQ
212 EII)lPER

GO TO 217
C READ ESTIMATED ERRORS IN O8S.FREQ.IN CM-1. ONE FOR EACH
C NON-ZERO DEII), l.E. NQ ENTRIES, ND OF THEM NON-ZERO FOR IFER=-l.

215 READ 15,20)(EII)eI=lNQ)
217 00 219 I=l,NQ

TEMP=DE(l)
IF(TEMP 925,219,218

218 N1=N1+1
DC(Nl)=E(I)/TEMP

219 CONTINUE
GO TO 225

C CONSTANT FRACTIONAL ERROR OF 0.005 IN EACH OBS. FREQ. FOR
C IFER=O

220 PER0=.005
C CONSTANT FRACTIONAL ERROR =PER IN EACH OBS. FREQ. FOR IFER=1.

221 DO 222 I=l1ND
222 DC(I)=PER
225 IF(IFW+2)230,235,1311

1311 IF(IFW)250,255,235
C WEIGHT= 1.O/ (FREQ.PAR.)**2 FOR IFW=-3

230 DO 234 11,NQ
TEM=DX(I)
IF(TEM.LE.O.OIGO TO 232

231 PII).tO0/ITEM*TEM)
PTOT=PTOT+P(I
GO TO 234.

232 PlI)tO.0
234 CONTINUE

NDT=NDT+ND
GO TO 260

C READ WEIGHTING ELEMENTS ONE FOR EACH NON-ZERO OBS. FREQ. FOR
C IFW=1 OR IFW=-2

235 READ (5,20)(EII),I=1,ND)
Nl=O
N2=O
IF(IFW.GT.O)GO TO 241

C WEIGHT =E(I) FOR IFW=-2
236 00 240 I=1,NQ

IF(OX(II.LE.O.OIGO TO 239
237 NI=Nl'+

P(Il E(Nll
TEM - PIll
PTOT=PTOT+TEM
IFITEM.LE.O.O)GO TO 240

238 N2=N2+1
GO TO 240
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239 PII)=0.0
240 CONTINUE

NDT=NDT+N2Z
GO TO 260

C WEIGHT =E(II / FREQ.PAR. FOR IFW=l
241 DO 248 I=INO

TEM=OX(I)

IF(TEM.LE.O.O)GO TO 247
242 N1NIl+l

P(I)=E(Nl)/TEM
TEMP=P(I)
PTOT=PTOT+TEMP
IF(TEMP.LE.O.O)GO TO 248

246 N2=N2+1
GO TO 248

247 P(l)=O.O
248 CONTINUE

NDT=NDT+N2
GO TO 260

C WEIGHT =1.0 FOR IFW-1
250 DO 254 I11,NQ

IF(DX(I).LE.O.O)GO TO 253
251 P{I)=1.0

PTOT=PTOT+1.0
GO TO 254

253 P(I)=0.O
254 CONTINUE

NDT=NDT+ND
GO TO 260

C WEIGHT= 1/ FREQ. PAR. FOR IFW=O
255 DO 259 I=1,NQ

TEM=DX( I
IF(TEM.LE.O.O»GO TO 258

256 P(I)=1.0/TEM
PTOT=PTOT+P( I)
GO TO 259

258 P(I)=0.0
259 CONTINUE

NDT=NDT*+ND
260 N1=0

DO 266 I=1,NQ
TEMP=DX( I)
IF(TEMP.LE.O.O)GO TO 266

262 NI=Nl*1
TEM=DC(Ni)
DCS=TEM*TEM
SUM=SUM+TEMP*TEMP*P(I)*DCS*(DCS+4.0*TEM+4.0)

266 CONTINUE
IFIND-N1I925,270,925

270 WRITE l1)NQ,ND.NOZ
WRITE (I)(REC(I),I=1.18)
WRITE 11) (NR(K),NC(K),NFO(K),Z(K).K=i,NOZ)

C READ G MATRIX
C READ NON-ZERO G MATRIX ELEMENTS »G(I.J).

I
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C G ELEMENTS ENTERED IN 18 COLUMN FIELD I TO 4 PER CARD GIVING
C COLUMNS ITEM
C 1-3 NROW=1 (ROW NO.)
C 4-6 NCOL-J ICOLUMN NO.I (I LESS THAN OR=J)
C 7-18 DATIN=G(I,J) (DECIMAL BETWEEN 12-13 OR PUNCHED)
C NROW IS SET =-l AFTER LAST G ELEMENT.
C SINCE THE G MATRIX IS SYMMETRIC ONLY DIAGONAL ELEMENTS AND THE
C ELEMENTS ABOVE THE DIAGONAL ARE ENTERED. THAT IS9 COLUMN NO.
C GREATER THAN OR EQUAL TO THE ROW NO.

140 00 142 I=1,NQ
DO 142 J=INQ

142 G(IJ)=O.O
144 READ (5,16)(NROW(L),NCOL(L),DATNIL),L=1,4)
16 FORMAT(4(213,F12.61)

00 150 L=1,4
ITEM=NROW(L)
ITEMP=NCOL(L)
IF(ITEM)152,150,146

146 IFlITEMP.LT.ITEM)GO TO 910
147 IF(NQ.LT.ITEMPIGO TO 910
148 I=ITEM

J=ITEMP
G(I,J)=DATIN(L)

150 CONTINUE
GO TO 144

152 IF(ITEM.NE.-L)GO TO 910
C SCHMIDT ORTHOGONALIZATION OF G
C STORE INVERSE TRANSFORMATION IN LOWER TRIANGLE OF G

154 N0=l
NL=2

155 GD=l.O /G(NONO)
DO 156 J=NLNQ

156 G(JNO)=G(NOJ,)GD
IF(NL.GT.NQ)GO TO 170

158 DO 160 I=NLNQ
00 160 J=INQ

160 G(I,J)=G(I,J)-(G(NOI)*G(NO,JI*GD)
161 NO=NO+l

NL=NO+1
163 IFIG(NONO)-0.0000011164,164,155
164 IF(NL.GT.NQ)GO TO 170
165 00 166 J=NL,NQ
166 G(J,NO)IG(NOtJ)

GO TO.161
170 DO 175 Il1,NQ

TEM=G(Il)

IF(TEM.LE.0.00005)G O 173
172 DG(II)FNC(TEM)

GO TO 174
173 DG(I)=OO0
174 G(lIl)=I.O

DO 175 J=INQ
175 G(JI=IG(JI)*DG(I)

DO 178 J=1,NQ
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178 WRITE (1) (G(IJ)»,IJ,NQ)
WRITE (1) (DG(I),I=1,NQ)
WRITE (1) (DX(I),I=INQI
WRITE (1) (PI1),tllNQ)
NM=NM+I
IF(NMOL.GE.NM)GO TO 100

286 END FILE 1
REWIND 1
IFINDT.GT.O)GO TO 288

287 JOKER=l
FREQ=NF
SCALE=1.0
GO TO 470

288 FREQ=NDT
SCALE=FREQ/ PTOT
SUM=SCALE*SUM
DEFR = FREQ

470 CALL CYCLE
IF(2-JOK)990901,90

900 WRITE (6,81)NOPROBNM
81 FORMAT(40HO ERROR IN MOLECULE CONTROL CARD.PROBLEMI8,4H.NM=I3)

IF(NM.GT.l)GO TO 903
902 JOK=1

GO TO 90
903 NMOL=NM-1

JOK=2
GO TO 286

910 WRITE 16,85)NMNOPROB,L,NROW(L),NCOL(L),DATIN(L)
85 FORMAT(25HO G MATRIX ERROR MOLECULEI3,8H PROBLEMI8,6H FIELDI3,6H R

1EADSI4,14,F12.61
JOK=1
GO TO 90

920 WRITE (6t87)NMNOPROBeNOZ,NROW(L),NCOL(L},NPO(L),DATIN(L)
87 FORMAT(25HO Z MATRIX ERROR MOLECULEI3,8H PROBLEMI8,6H ELEMENT14,6H

I READSI4, 14,4,F9.6)
JOK=1
GO TO 90

925 WRITE 16,88)NM,NOPROB,NI
88 FORMAT(27HO EIGENVALUE ERROR MOLECULE13,8H PROBLEMI8*4H ND=I3)

JOK=1

GO TO 90
END
SUBROUTINE CYCLE
DIMENSION EIG(6666) ,NR(650),NC(650) ,NFO(650) ,Z(650),NCF(71),
1SI(71),SIS(71),FF(71),EX(71)tBZ(66,71),G166,66),DX(71),DE(71),
2DG(71),EC(71)tE(71),DV(71),DD(71)tDC(71,FI(7IT1),RECORD(54)»
3REC(18),P(71),NFX(71),H(2734),NROW(4),rNCOL(4)tNPO(4),OATIN(4)
EQUIVALENCE(EIG(2640),NCF),(EIG(2720),SI),(EIGt2880),FF),

2(EIG(2960),EX),(BZG),(BZ(4360),DX),.BZ(4440),DE,DG),
3(BZ(45201,EC),(E,DV,SIS)
COMMON BZEIG,OD,E,DC.FI,RECORD,RECP,NFXtNROWtNCOL,NPO,DATIN,

INCZtNCZStNDTJOKERJOK,EST,EPS,SUMDD,DEFR,FR,NP,NOIN,NOPROBNOZ,
2NF,NQ,TOLNPMAX,FREQ,ERPOtERORAP,FRAC»PERIFREP,IFERNMOLIND,
3SCALEER,ERPPTOT,NM,NMI1ND,NDD,SUM,NVAR.JUMP,NOVAR,NRNC,NFO,ZH,t
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4LEAP,CONV ,STUT,IFUIFDEL,RATIO,WSRO,ITERM,NCOND
FN(A)=SQRT(A/5.88852E-71
GN(A) A/ND

470 REWIND I
NM=1
SUMDD=0.0

480 READ (1) NQ,NDNOZ
READ (1) (REC(I),1I=118)
READ (1) (NR(K),NC(K),NFO(K),Z(K),Kl=,NOZ)

490 IF(JOKER.LE.O}GO TO 300
492 RAP=0.5E-3
300 00 301 J=l,NQ
301 READ (1 (G(l,J),I=J,NQI

READ (1) (OG(ItI=LtNQ)
READ (1) (DX(I),I=1,NQ)
READ (1) (PIIf)I=1,NQ)
IF(ND.GT.O)GO TO 306

304 IF(JOKER.LE.O)GO TO 468
C COMPUTE TRANSFORMED F MATRIX AND STORE IN UPPER TRIANGLE OF G.

306 DO 328 J=I,NQ
P(J)=SCALE*P(J)
DO 308 I=lNQ

308 DOD(l)0.0
DO 320 K=lNOZ
IX=NR(K)
IFIIX.LT.J)GO TO 320

312 JX=NCIK)
LX=NFO (K
TEM = Ft(LX)*tZKI
DD(IX)=DD(IXI+TEM*G(JXJ)
[F(IX-JX)318,320,318

318 DD(JXI=DDIJX)+TEM*G(IX,J)
320 CONTINUE

DO 324 K=J,NQ
DC(K)=0.0
00 324 L=K,NQ

324 DC(KI=DC(K)+G(L,K)*DD(L)
DO 328 K=JNQ

328 G(JtK)=DC(K)
NR2=0
IEGEN=O

C DIAGONALIZE TRANSFORMED F MATRIX BY JACOBI METHOD
CALL HDIAG(GNQIEGENEIGNR2,RAP)

C COMPUTE EIGEN VECTORS
DO 330 1=1,NQ
DCl I)G( i I)

330 G(I,I)=DG(I)
DO 335 I1lNQ
DO 333 J=1,NQ
DD0J)=O.O

DO 333 K=lJ
333 OD(J)=OD(J G( J,K1*EtG(K,.I)

DO 335 J=lNQ
335 EIG(JI)=DDO(J
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C ORDER EIGENVALUES AND EIGENVECTORS
II=NQ-1

DO 340 J=lII
LOW=J+l
DO 340 K=LOWNQ
IF(DCIJ)-DC(K) 337t340,340

337 TEM=DC(J)
DCIJ)=DC(K)
DC(K)=TEM

00 338 1=11NQ
338 DD(I)=EIG(I,J}

DO 339 I=1,NQ
EIG(IIJ=EIG(lIK)

339 EIG(IK)=DD(I)
340 CONTINUE

C COMPUTE EIGENVALUE ERRORS
341 DO 350 I=lNQ

IF(DX(I))348,348,344
344 DD(I)=DX(I)-DC(I)

SUMDD=SUMDD+DDII)*DDII)*P(I)
GO TO 350

348 DD11)=0.0
350 CONTINUE
352 IF(LEAP.NE.O)GO TO 63999

WRITE (6,24)NMNP,NR2,RAP,(DC(I),I=1,NQ)-
24 FORMAT(37HO EIGENVALUES AND ERRORS FOR MOLECULEI4,6H AFTERI3.15H P

IERTURBATIONS.I5,'1H ROTATIONS./6H RAP=E12.4/(1H ,9F8.5))
WRITE (6,26)(DD(J),J=1,NQ)

26 FORMAT(8HO ERRORS/11H ,9F8.5))
63999 WRITE(6,87787) SUMDD,NP
87787 FORMAT(26HO WEIGHTED SUM OF SQUARESEE14.6,6H AFTER1315H PERTURBAT

lIONS.)
IF(IFDEL.LE.O}GO TO 90007
WRITE(6,10l13)NP

10113 FORMAT{(HO,'THE DIFFERENCE BETWEEN OBS. AND CALC. FREQUENCIES AFTE
IR',14,2X,EPERTURBATIONS')
WRITE(6,21012}

21012 FORMAT(tHO,3X,lr ,5X,'DELTA FREQO.'
00 61531 J=1tNQ

61531 SIS(J)=0.0
DO 61532 J=1,NQ
IF(DX(J).LE.O.)GO TO 10011
TEMP1=FN(DX(J))
TEMP2=FN(OC(J))
SIS(J)=TEMPI-TEMP2

10011 WRITE(6t20022)JSIS(J)
20022 FORMAT(IH ,14,5XF12.6)
61532 CONTINUE
90007 IF(JOKER.GT.OIGO TO 364

354 CONTINUE
IF(JOK)468,400,400

C OUTPUT FOR FINAL CYCLE
364 ERO=0.0

ERPO=0.0
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DO 368 Isl,NQ
DE(II)FNIDXtl))
DV( l)=FIDC( I))
TEM=DEII)
IFITEM.LE.O.)GO TO 365
GO TO 366

365 EC(I =0.0

EX I)=O.0
DE( I=O.0
GO TO 368

366 EX( T)TEM-DVII)
EC( I)=10O.O*EXI /TEM
IF(P(I).LE.O.O)GO TO 368

367 ERO=EROAABSIEX(I))
ERPO=ERPO+ABSIEC I})

368 CONTINUE
81180 ER=ER+ERO

ERP-ERP+ERPO
ERO=GN(ERO)
ERPO=GN(ERPO)

90008 WRITE (6,28)NMSCALE.REC
28 FORMAT(75H1 OBSERVED AND CALCULATED FREQUENCIES AND FREQUENCY PARA

IMETERS FOR MOLECULE13/26H SCALE FACTOR FOR WEIGHTS-F1O.6/12X,18A4)
369 WRITE 16,29)( IDEII)tDVII )EX(I).EC(I , P( I DX'(I )DC I)o I=1NQ)
29 FORMAT(95HO OBS.FREQ. CALC.FREQ. DIFFERENCE PERCENT ERROR

I WEIGHT OBS.FREQ.PAR. 'CALC.FREQ.PAR. /6X,6HICM-1),6X,6H(CM-1
2),7X,6H(CM-l)/(t4,F9.1,4XtF8.1,4XtF6.1t7X,F7.3,6X,F9.4,FI0.5,Fl4.5
3)»
WRITE (6,31) EROERPO

31 FORMAT(17HO AVERAGE ERROR=F6.2,O1H CM-I ,OR F6.3,8H PERCENT)
SIGMA - SQRT(SUMDO/DEFR)
NM=NM*+
IF(NMOL-NM)825,480,480

C COMPUTE THE JZ MATRIX I CALLED BZ8
400 IF(NM.NE.1)GO TO 401

DO 19156 llNNQ
19156 SIS(I)=O.O

401 DO 421 K=t1NQ
DO 410 NaltNF

410 BZ(K*NI=O.O
DO 420 LltNOZ
tINRIL)
J=NCL)I
M=NFO(LI
TEM=EIG(I,K)*EIG(J,KI*Z(Ll
IFII.NE.J)GO TO 418

416 BZIKM)SBtl(KM)*TEM
GO TO 420

418 BZ(KM)t8Z(K,M)+TEM+TEM
420 CONTINUE
421 CONTINUE

C COMPUTE S
438 DO 442 1=1lNQ

Pil )SORT(P( I)

1
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BZII,NOVAR)=DD(I)
DO 442 J=1,NOVAR

442 BZ(1IJ)-=P(IIBZlI,J)
00 458 Il,NOVAR
DO 456 J=INOVAR
SI(J)0.0
00 456 K=l1NQ

456 SI(J)=SI(JiBBZ(KnI*BZ(K2J)
458 SIS(I)=SI(NOVAR» + SIS(I)
463 CONTINUE
468 NM=NM+l

IFINMOL.GE.NM)GO TO 480
RAP-FRAC*RAP

600 IF(JOK.GE.O»GO TO 602
601 JOK=1

JOKER=1
GO TO 470

602 FR=NDT-NF+NCZ
608 DO 610 I=1,NF

SIII)l-2.*SiSISl
610 CONTINUE
642 DEFR-FREQ

IF(NCZ.GT.O)GO TO 3286
9119 DO 47813 I=lNF

SISMI)=SI(I)
47813 FF(I)=FllIl

GO TO 31311
3286 NCN=1

DO 31444 I=1oNF
IF(NFX(II.LT.O)GO TO 31444

66222 FF(NCNI=FI(I)
SIS(NCN)=SI(I)
NCN=NCN+l

31444 CONTINUE
C CALL FMFP TO MINIMIZE WEIGHTED SUM OF SQUARES OF RESIDUALS.
31311 CALL FMFP(H,NVARFFSUMDD,SISESTEPSNPMAX, IERJUMPNPtNN2,NN3

IN31,OLDFtT,HNRGNMGNRMDDXFFYALFAAMBDA.FFXDDYZZDALFAWWLEAP,
ICONV.RATIOWSROlITERM.NCOND)
IF(NCZ.GT.O)GO TO 32121

11211 DO 26162 I=1,NF
26162 FI(It)FF(I)

GO TO 66871
32121 NCN=1

DO 81181 I-1,NF
IF(NFX(I1.LT.O)G O 81181

21381 FI()-FF(NCNl
NCN=NCN+1

81181 CONTINUE
66871 IF(JUMP.LT.5)GO TO 470

8887 IF(IERI101OI120202266666
10101 WRITE(6G81918)
81918 FORMATIHO5XW'ERRORS IN GRADIENT CALCULATION')

GO TO 90018
20202 WRITEE(672135)NP
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72135 FORMAT(1HO.'ONE OF THE CONDITIONS FOR TERMINATION WAS MET AFTER0'
113,' PERTURBATIONS.'e

GO TO 90018
66666 IF(IER.GT.1GGO TO 40404
30303 WRITEI(683562)
83562 FORMAT(1HO,5X,'NONE OF THE CONDITIONS FOR TERMINATION WERE MET IN

INPMAX ITERATIONS')
GO TO 90018

40404 WRITEI6#75321)
75321 FORMATl1HO,5Xt'LINEAR SEARCH TECHNIQUE INDICATES IT IS LIKELY NO

IMINIMUM EXITS')
90018 JOKER -1

GO TO 470
825 IF(NPMAX.EQ.0)GO TO 100

WRITE1(7554451 (FI( III=l1NF
55445 FORMATI6F12.6)

N -NVAR
N2N+N
N3=N2tN
N31=N3+1
KtN31
IFIIFU.LE.O0GO TO 10201
WRITEI6«203021

20302 FORMATI1H.S5Xt'THE FINAL H MATRIX')
KK-N31
KM=N3+N
00 30403 L1AN
WRITE(6,50404 (H(KJ) KJ=KKKM)

50404 FORMAT(H .,1OF12.6)
KK=KM l
KM=KM+N-L

30403 CONTINUE
10201 00 4000 J=1,NVAR

TEM=ABS(H(KI)
E(l)JlSQR[(2.*TEM)*SIGMA

.NJ=N-J
IF(NJ15000,5000,2000

2000 DO 3000 Lm1lNJ
KL-K+L

3000 CONTINUE
4000 K-KL41
5000 IF(NCZ.LE.OIGO TO 85361

NCN-1
DO 95959 J=l,NF
IFINFX(J).LT.0IGO TO 95958
ECIJ)=EINCN)
NCN'.= NCN + I
GO TO 95959

95958 ECaJI)0O
95959 CONTINUE

DO 85364 Iw1,NF
85364 E(II)ECII)*STUT

GO TO 95119
85361 DO 88711 Ms1,NF
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88771 E(M)tE(M)*STUT
95119 WRITEI6,73613)NP
73613 FORMAT(IH1,'FINAL SET OF FORCE CONSTANTS AFTER'.14,' ITERATIONS AN

ID APPROXIMATE 95 PERCENT CONFIDENCE INTERVALS FOR')
WRITE(6,11221)FRSTUT

11221 FORMAT(IH ,F5'.0' DEGREES'OF FREEDOM, T =',F8.4)
DO 72131 1-I,NF

72131 WRITE(6,82113)I,Fl(I),E(I)
82113 FORMATI1H ,2XI,3,5XF12.6,2X,'+ OR -',F9.6)

100 RETURN
END
SUBROUTINE FMFP(H,N,X,FGESTEPStLIMIT,IERJUMPKOUNTtN2tN3,N31,

IOLDF,THNRGNMGNRMDXFYtALFAAMBDAFXDYZtDALFA,W,LEAPCONVRATIO
2WSROITERM,NCOND)
DIMENSION H(2734),X(71),G(71)
R(A)=ABS(A)

C

C
C SUBROUTINE FMFP
C
C PURPOSE
C TO FIND A LOCAL MINIMUM OF A FUNCTION OF SEVERAL VARIABLES
C BY THE METHOD OF FLETCHER AND POWELL
C
C USAGE
C CALL FMFP(FUNCTNX,F,G,EST,EPStLIMIT,IER,H)
C
C DESCRIPTION OF PARAMETERS
C FUNCT - USER-WRITTEN SUBROUTINE CONCERNING THE FUNCTION TO
C BE MINIMIZED. IT MUST BE OF THE FORM
C SUBROUTINE FUNCT(N,ARGVAL,GRAD)
C AND MUST SERVE THE FOLLOWING PURPOSE
C FOR EACH N-DIMENSIONAL ARGUMENT VECTOR ARG,
C FUNCTION VALUE AND GRADIENT VECTOR MUST BE COMPUTED
C AND, ON RETURN, STORED IN VAL AND GRAD RESPECTIVELY

CONTINUE
N - NUMBER OF VARIABLES
X - VECTOR OF DIMENSION N CONTAINING THE INITIAL

ARGUMENT WHERE THE ITERATION STARTS. ON RETURN,
X HOLDS THE ARGUMENT CORRESPONDING TO THE
COMPUTED MINIMUM FUNCTION VALUE

F - SINGLE VARIABLE CONTAINING THE MINIMUM FUNCTION
VALUE ON RETURN, I.E. F=F(X).

G - VECTOR OF DIMENSION N CONTAINING THE GRADIENT
VECTOR CORRESPONDING TO THE MINIMUM ON RETURN,
I.E. G=G(X).

EST - IS AN ESTIMATE OF THE MINIMUM FUNCTION VALUE.
EPS - TESTVALUE REPRESENTING THE EXPECTED ABSOLUTE ERROR.

A REASONABLE CHOICE IS 10**(-6), I.E.
SOMEWHAT GREATER THAN 10**(-D1, WHERE D IS THE
NUMBER OF SIGNIFICANT DIGITS IN FLOATING POINT
REPRESENTATION.

LIMIT - MAXIMUM NUMBER OF ITERATIONS.

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
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C IER - ERROR PARAMETER
C IER = 0 MEANS CONVERGENCE WAS OBTAINED
C. IER . I MEANS NO CONVERGENCE IN LIMIT ITERATIONS
C IER m-! MEANS ERRORS IN GRADIENT CALCULATION
C IER - 2 MEANS LINEAR SEARCH TECHNIQUE INDICATES
C IT IS LIKELY THAT THERE EXISTS NO MINIMUM.
C H - WORKING STORAGE OF DIMENSION N*IN+7)/2.

CONTINUE
C CONV -ARBITRARY CONSTANT TO WHICH DELTA VALUES IN FORCE
C CONSTANTS ARE COMPARED TO CHECK FOR SATISFACTORY
C CONVERGENCE.
C
C REMARKS
C I) THE SUBROUTINE NAME REPLACING THE DUMMY ARGUMENT FUNCT
C MUST BE DECLARED AS EXTERNAL IN THE CALLING PROGRAM.
C 11i IER IS SET TO 2 IF , STEPPING IN ONE OF THE COMPUTED
C DIRECTIONS, THE FUNCTION WILL NEVER INCREASE WITHIN
C A TOLERABLE RANGE OF ARGUMENT.
C IER = 2 MAY OCCUR ALSO IF THE INTERVAL WHERE F
C INCREASES IS SMALL AND THE INITIAL ARGUMENT WAS
C RELATIVELY FAR AWAY FROM THE MINIMUM SUCH THAT THE
C MINIMUM WAS OVERLEAPED. THIS IS DUE TO THE SEARCH
C TECHNIQUE WHICH DOUBLES THE STEPSIZE UNTIL A POINT
C IS FOUND WHERE THE FUNCTION INCREASES.
C
C SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED
C FUNCT
C
C METHOD
C THE METHOD IS DESCRIBED IN THE FOLLOWING ARTICLE
C R. FLETCHER AND M.J.D. POWELL. A RAPID DESCENT METHOD FOR
C MINIMIZATION.
C COMPUTER JOURNAL VOL.6 ISS. 2, 1963, PP.163-16B.
C

CONTINUE
C PROGRAM TAKEN FROM IBM'S SCIENTIFIC SUBROUTINE PACKAGE.
C MODIFIED FOR USE WITH FLPO BY L.J.PITZNER 10/5/71
C
C
C ......

C DIMENSIONED DUMMY VARIABLES
C

WSRN=F
IF(WSRN.GT.WSROIGO TO 611T9
TEMPmWSRN/WSRO
WRITE(I680934)TEMP

80934 FORMAT(1HO,RATIO OF SUCCESSIVE WEIGHTED SUM OF SQUARES = ',F8.6)
IF(TEMP.LT.RATIOJGO TO 61179
NCONODNCOND+
WRITE46,12345)NCOND

12345 FORMAT(IHO* NCOND-* 14)
IF(NCOND.GT.ITERMIGO TO 55

61179 IF(LEAP.NE.OIGO TO 67761
WRITE(6,1010)
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1010 FORMATI(HO,5X,'N',6X,'FORCE CONSTANTS',4X,'GRADIENT VECTOR')
111 WRITE(6,52131)(I,X(I),G(I),tIN.)

5213 FORMAT(1H ,4X,12,7X.FIO.6,8XEl14.6)
67761 IF(JUMP-3)3333,1002,1003
3333 IF(JUMP.GT.1)GO TO 1001

C FUNCTION VALUE AND GRADIENT VECTOR FOR INITIAL ARGUMENT
C
C RESET ITERATION COUNTER AND GENERATE IDENTITY MATRIX
1000 WRITE<6,9991N.F,ESTEPSLIMIT,KOUNT,CONVRATIO,ITERM
999 FORMAT(3HON-12,3H F=El4.6,5H EST=FIO.6,5H EPS=E10.2,7H LIMIT-14,7H

I KOUNT=12,6H CONV-F8.6,7H RATIO=F8.6,7H ITERM1!4)
IER=O
KOUNTtO
N2zN+N
N3=N2+N
N31=N3+1

I K=N31
DO 4 J=1,N
H(K)=2.
NJ=N-J
IF(NJ)5,5,2

2 DO 3 L-1,NJ
KL=K+L

3 HIKL)=O.
4 K=KL+1

C
C START ITERATION LOOP

5 KOUNT=KOUNT +1
C
C SAVE FUNCTION VALUE, ARGUMENT VECTOR AND GRADIENT VECTOR

IF(LEAP.NE.O)GO TO 63331
WRITE1 6,121)

121 FORMAT{1HO,5X,'N'9 5X,'DIRECTION VECTOR')
63331 OLDF=F

DO 9 J=1,N
K=N+J
H(K)=GIJ)
K=K+N
H(K)=X(J)

C
C DETERMINE DIRECTION VECTOR H

K=J+N3
T=O.
DO 8 L=1,1
T=T-G(L)*H(K)
IF(L.GE.J)GO TO 7

6 K=K+N-L
GO TO 8

7 K=K+l
8 CONTINUE

H(J)aT
IF(LEAP.NE.O)GO TO 9
WRITE(6,965)J,H(J)

965 FORMAT11H ,4X,12,6X,E14.6)
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9 CONTINUE
C

C CHECK WHETHER FUNCTION WILL DECREASE STEPPING ALONG H.
DY=0O
HNRM-O.
GNRMIO.

C
C CALCULATE DIRECTIONAL DERIVATIVE AND TESTVALUES FOR DIRECTION
C VECTOR H AND GRADIENT VECTOR G.

DO 10 J=1,NN
TEMH(JI
TEMP=G(JI
HNRM=HNRM+R(TEM)
GNRM-GNRM+R(TEMP)

10 DY=DY+TEM*TEMP
WRITE(6,353)HNRM,GNRMDY

353 FORMAT(IHOt'MAG. OF DIR. VEC. = *,E14.6,4X,'MAG. OF GRAD. VEC.= *'
IE14.6,4X,'DIRECTIONAL DERIVATIVE= *'E14.6)

C
C REPEAT SEARCH IN DIRECTION OF STEEPEST DESCENT IF DIRECTIONAL'
C DERIVATIVE APPEARS TO BE POSITIVE OR ZERO.

IF(DY)11151,51
C
C REPEAT SEARCH IN DIRECTION OF STEEPEST DESCENT IF DIRECTION
C VECTOR H IS SMALL COMPARED TO GRADIENT VECTOR G.

11 IF(HNRM/GNRM-EPS)51,5112
C
C SEARCH MINIMUM ALONG DIRECTION H
C
C SEARCH ALONG H FOR POSITIVE DIRECTIONAL DERIVATIVE

12 FY=F
ALFA=2.*(EST-F/IOY
AMBDA 1.

C
C USE ESTIMATE FOR STEPSIZE ONLY IF IT IS POSITIVE AND LESS THAN
C 1. OTHERWISE TAKE 1. AS STEPSIZE

IF(ALFA.LE,00O)GO TO 15
13 IFIALFA.GE.AMBDAIGO TO 15
14 AMBOA-ALFA
15 ALFA»O0

C
C SAVE FUNCTION AND DERIVATIVE VALUES FOR OLD ARGUMENT

16 FX"FY
ODXDY
WRITE16,913261AMBOA

91326 FORMAT(1HO,'STEPSIZE - ',E14.6)
C
C STEP ARGUMENT ALONG H

WRITE(6,201)
201 FORMAT(1HOSX,'N',5X,'FORCE CONSTANTS'o9X,*DELTA')

DO 17 Il1,N
DELTA a AMBDA*H(I)
WRITEI6.951)1IX(I),DELTA

951 FORMAT(1H ,4X,12,4XF12.6,8X,F12.6)
17 X(I)=X(I)+DELTA

C
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C COMPUTE FUNCTION VALUE AND GRADIENT FOR NEW ARGUMENT
JUMP = 2
GO TO 56

1001 FY=F
C

C CHECK FOR SATISFACTORY CONVERGENCE
DO 96581 I=1,N
DELTA = AMBDA*H(I)
IF(R(DELTA).GToCONV)GO TO 75381

96581 CONTINUE
GO TO 55

C -COMPUTE DIRECTIONAL DERIVATIVE DY FOR NEW ARGUMENT. TERMINATE
C SEARCHt IF DY IS POSITIVE. IF DY IS ZERO THE MINIMUM IS FOUND.
75381. DYO.

DO 18 IlaN
18 DY=DY+GII)*HtI)

WRITEI6t752)DY
752 FORMAT(1HO,'THE DIRECTIONAL DERIVATIVE - teE14.6)

IFIDY)19,36,22
C
C TERMINATE SEARCH ALSO IF THE FUNCTION VALUE INDICATES THAT
C A MINIMUM HAS BEEN PASSED

19 IFIFY*GE.FX)GO TO 22
C
C REPEAT SEARCH AND DOUBLE STEPSIZE FOR FURTHER SEARCHES

20 AMBDA=AMBDA*ALFA
ALFA=AMBDA

C END OF SEARCH LOOP
C , ..

C TERMINATE IF THE CHANGE IN ARGUMENT GETS VERY LARGE,
CHARG = HNRM*AMBDA
WRITE{6, 94)CHARG

954 FORMAT(IHO,'CHANGE IN ARGUMENT VECTOR = ',E14.61
IFICHARG-1.E10)16,16,21

C
C LINEAR SEARCH TECHNIQUE INDICATES THAT NO MINIMUM EXISTS

21 IER2
JUMP = 5

RETURN
C
C INTERPOLATE CUBICALLY IN THE INTERVAL DEFINED BY THE SEARCH
C ABOVE AND COMPUTE THE ARGUMENT X FOR WHICH THE INTERPOLATION
C POLYNOMIAL IS MINIMIZED

22 T=O.
23 IF(AMBDA.EQ.O.O)GO TO 36
24 Z=3.*(FX-FY)/AMBDA+DX+DY

ALFA=AMAX1(R(Z)tR(DXIR(DY)I
DALFA=Z/ALFA
DALFA=DALFA*DALFA-DX/ALFA*DY/ALFA
WRITE(6,81351IDALFA

81351 FORMAT(IHO»ODALFA- *,E14.61
IF(DALFA.LT.O.O)GO TO 51

25 W=ALFA*SQRT(OALFAl
ALFA - DY-DX+W+W
IF(ALFA.EQ.O.O)GO TO 251



C
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250 ALFA «(DY-Z+WI/ALFA
GO TO 252

251 ALFA -(Z+DY-WI/(Z*DX+Z+DY)
252 ALFA a ALFA*AMBDA

WRITE16,201)
DO 26 I=1,N
DELTA =(T-ALFA)lHII)
WRITE(6,951)IX(lI)DELTA

26 X(ll)X(I).DELTA

TERMINATE, IF THE VALUE OF THE ACTUAL FUNCTION AT X IS LESS
THAN THE FUNCTION VALUES AT THE INTERVAL ENDS. OTHERWISE REDUCE
THE INTERVAL BY CHOOSING ONE END-POINT EQUAL TO X AND REPEAT
THE INTERPOLATION. WHICH END-POINT IS CHOOSEN DEPENDS ON THE
VALUE OF THE FUNCTION AND ITS GRADIENT AT X

JUMP a 3
GO TO 56

C CHECK FOR SATISFACTORY CONVERGENCE.
1002 DO 51131 =lrlN

DELTA(IT-ALFA)*H(II
IFIR(DELTA).GT.CONV)GO TO 61318

51131 CONTINUE
GO TO 55

61318 IF(F.GT.FX)GO TO 28
27 IF(F.LE.FY)GO TO 36
28 DALFA-O.

DO 29 I=IN
29 DALFA=DALFA+G(II)*H(I )

IF(DALFA.GE.O.O)GO TO 33
30 IFIF-FX)32,31 33
31 IF(OX.EQ.O.O)GO TO 36
32 FXF

OX*DALFA
T=ALFA
AMBDA=ALFA
GO TO 23

33 IFIFY.NE.F)GO TO 35
34 IF(DY.EQ.DALFA)GO TO 36
35 FY=F

DY=DALFA
AMBOA=AMBDA-ALFA
GO TO 22

C TERMINATEt IF FUNCTION HAS NOT DECREASED DURING LAST ITERATION
36 IFIOLDF-F+EPS)51,38,38

C
C COMPUTE DIFFERENCE VECTORS OF ARGUMENT AND GRADIENT FROM
C TWO CONSECUTIVE ITERATIONS

38 IF(LEAP.NE.OIGO TO 31113-
WRITE(6,100111

10011 FORMATMIHO,5X,'N*,'5XARG. DIFF. VEC.*,3X,'GRAD. DIFF. VEC.')
31113 00 37 J-1,N

KaN+J
H(K)IG(J)-H(K)
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K=N+K
H(K)=X(J)-H(K)
IF(LEAP.NE.O)GO TO 37
WRITE(6,97533)J,H(N+JIH(N+N+J)

91533 FORMAT{1H ,4XI,2t5XE14.6,5XEl4.6)
37 CONTINUE

C
C
C TEST LENGTH OF ARGUMENT DIFFERENCE VECTOR AND DIRECTION VECTOR
C IF AT LEAST N ITERATIONS HAVE BEEN EXECUTED. TERMINATE, IF
C BOTH ARE LESS THAN EPS

IER=O
IF(KOUNT.LT.N)GO TO 42

39 T=O.
Zt0.
DO 40 J-1,N
K=N+J
W=H(K)
K=K+N
TEM=H(K)
T=T+R(TEM)

40 Z=Z+W*TEM
WRITE46,893)TtZ

893 FORMAT(IHO,'LENGTH OF ARG. DIFF. VECTOR ',E14.6,LOX,'LENGTH OF 0
11IRECTION VECTOR = ',E14.6)
IF(HNRM.GT.EPS)GO TO 42

41 IF(T.LE.EPS)GO TO 56

TERMINATE* IF NUMBER OF
42 IF(KOUNT.GE.LIMIT)GO TO 50

PREPARE UPDATING OF MATR
43 ALFA=O.

DO 47 J1lN
K=J+N3
W*00
DO 46 L=1,N
KL-N+L
W=W+H(KL)*H(K)
IF(L.GE.JIGO TO 45

44 K=K+N-L
GO TO 46

45 K=K+1
46 CONTINUE

K=N+J
ALFA=ALFA+W*H(K)

47 H(JI=W

ITERATIONS WOULD EXCEED LIMIT

C
C REPEAT SEARCH IN DIRECTION OF STEEPEST DESCENT IF RESULTS
C ARE NOT SATISFACTORY

TEM =Z*ALFA
WRITE(6,96512)TEM

96512 FORMAT(IHO,@Z*ALFA* ',E14.6)
IF(TEM.EQ.O.O)GO TO I

C
C
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C
C UPDATE MATRIX H

48 K*N31
DO 49 L=IN
KL-N2+L
DO 49 JaL,N
NJ=N2*J
HIK)=H(K)*HIKL)*HlNJ)/tH( ) (L)*H(JIIALFA

49 K=K+l
GO TO 5

C END OF ITERATION LOOP
C
C NO CONVERGENCE AFTER LIMIT ITERATIONS

50 IER=a
JUMP = 5
RETURN

C
C RESTORE OLD VALUES OF FUNCTION AND ARGUMENTS

51 WRITE(6t20}
DO 52 J=l,N
DELTA = 0.0

K=N2+J
X(J)=H(KD

52 WR1TE(6,951)J,X(J),DELTA
JUMP = 4
GO TO 56

C
C REPEAT SEARCH IN DIRECTION OF STEEPEST DESCENT IF DERIVATIVE
C FAILS TO BE SUFFICIENTLY SMALL
1003 IFIGNRM.LE.EPS)GO TO 55

C
C TEST FOR REPEATED FAILURE OF ITERATION

53 IFIIER.LT.O)GO TO 59
54 IER=-I

GOTO I
55 IER=O
59 JUMP = 5
56 WSRODWSRN

RETURN
END
SUBROUTINE HDIAG(HtN,IEGEN,U«NRRAP)
A listing of the subroutine HDIAG was presented in Table

XXXIV and will not be repeated here because of space limita-
tions.
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1. Problem ID Card. This card identifies the beginning of a problem.
This card must have a -09 punched in Columns 1-3 (FORMAT I3).

2. Problem Control Card.

a. IND = -09, identifies the problem control card. IND is punched in
Columns 1-3 (FORMAT 13).

b. NOPROB is the problem number, punched in Columns 4-9 (FORMAT I6).

c. NMOL, designates the number of molecules, punched in Columns 10-12
(FORMAT 13).

d. NF, signifies the number of force constant parameters. NF is punched
in Columns 13-15 (FORMAT 13).

Warning: NF must not exceed 71.

e. NPMAX is the maximum number of desired iterations. The refinement
will terminate when NPMAX is exceeded, even if convergence has not
been reached. NPMAX is positioned in Columns 16-18 (FORMAT 13).

Note: If NPMAX is set equal to zero or left blank, there will be no
refinement of the force constant parameters, and the frequencies will
be calculated for the problem based on the initial set of parameters.

f. NCZ, represents the number of force constants to be held fixed. These
force constants do not enter the refinement, and their final value is
identical to their initial value. NCZ is punched in Columns 19-21
(FORMAT 13).

g. IFREP is the problem repeat option. For IFREP = 0, a new problem is
started. If IFREP = 1, only a new set of force constants and list
of those force constants to be held fixed are read in; the rest of
the problem information is taken from the previous problem. For
IFREP = -1, the final set of force constants from the previous problem
are used as the initial set in the new problem; the rest of the problem
data must be included with the input data. IFREP is punched in Columns
22-23 (FORMAT I2).

h. IFER is the error option control. For IFER = 1, the fractional error
in the experimental frequencies, PER, is read in. If IFER = 0, the
fractional error, PER, is assumed to be 0.005. For IFER = -1, the
estimated errors in the frequencies, in cm.1 ! are read in. For IFER =
-3, the error is assumed to be PER = 1.0 cm. IFER is punched in
Columns 24-25 (FORMAT I2).

i. PER is the error in the frequencies described in the above paragraph.
If PER is not needed, it may be left blank. PER is punched in
Columns 26-33 (FORMAT F8.6).

j. EST is the estimate of the value of the weighted sum of squares of
the residuals at the minimum. If a value cannot be estimated for
EST, one may set it equal to 0.0. EST is punched in Columns 34-41
(FORMAT 8.4).
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k. EPS is a test value representing the expected, absolute error.
A reasonable choice for EPS is 0.1E-05. EPS is punched in
Columns 42-51 CFORMAT E10.2).

Warning: EPS must be right justified.

1. RAP, the cutoff factor for the Jacobi diagonalization. The plane
rotations are terminated when MAX[H(I,J)] is less than RAP*MIN[H(I,I)].
If RAP is not entered, the program assigns a value of 0.5E-2. On the
final cycle, RAP is set equal to 0.5E-3 which results in eigenvalues
significant to 6 figures and eigenvectors significant to 3 or 4
figures. RAP is punched in Columns 52-56 CFORMAT F5.4).

m. FRAC is a fractional factor for decreasing RAP on each cycle. After
each perturbation, RAP is set equal to FRAC*RAP. If FRAC is not
entered, it is assigned a value of 0.9 by the program. FRAC is
punched in Columns 57-60 (FORMAT F4.3).

n. LEAP is a printer output suppression option. A 1 will result in the
printer suppression of the eigenvalues and errors, gradient vector,
argument vector, direction vector, argument difference vector, and
gradient difference vector for each perturbation. LEAP is punched in
Columns 61-62 (FORMAT 12).

o. CONV is the convergence criterion. The refinement will terminate when
the corrections to the force constant parameters are all less than or
equal to CONV (i.e., the absolute value). CONV is punched in Columns
63-70 (FORMAT F8.6).

Note: Schachtschneider (89) suggests a value of 0.008 for CONV;
however, the author suggests a value of 0.0001 for a more rigorous
criterion.

p. IFDEL, a 1 will cause the printout of the difference between the
calculated and observed frequencies for each perturbation. If
IFDEL is left blank the difference will not be printed. IFDEL is
punched in Columns 71-72 (FORMAT I2).

Warning: IFDEL can be set equal to 1 only when NMOL = 1.

3. Problem Information Cards. Three cards containing alphanumeric informa-
tion about the problem. The first three columns of each card should be
left blank, so that the alphanumeric information may be punched in any
column, 4-72 (FORMAT 18A4).

Warning: These cards must be included in the data deck even if they are
left blank.

4. Initial Set of Force Constant Parameters. The force constants are
punched in 12 column fields, six per card, in the order 1 through NF
(FORMAT 6F12.6).

5. Force Constants to be Held Fixed. If NCZ is greater than zero, the
numbers of the force constants to be held fixed are punched on cards in
3 column:fields, 24 per card, up to NCZ entries (FORMAT 24I3).



-365-

Note: The force constants designated on these cards are not entered
into the refinement and their final values are identical to their
initial values.

6. Molecule Control Card.

a. IND = -06, identifies the molecule control card. IND is punched in
Columns 1-3 (FORMAT 13).

b. NQ is the number of internal coordinates, punched in Columns 4-6
(FORMAT 13).

Warning: NQ cannot exceed 66.

c. NDD is the number of nonzero experimental frequencies included with
the input data. NDD is punched in Columns 7-9 (FORMAT 13).

Note: If one wishes to solve the secular equation to obtain the
calculated frequencies, but no refinement, the experimental
frequencies need not be included so that NDD = 0 or left blank.

d. NZZ, the number of Z matrix elements, punched in Columns 10-13
(FORMAT I4).

Warning: NZZ cannot exceed 650.

e. IFU, a 1 will result in the final H matrix being printed out,
punched in Columns 14-15 (FORMAT I2).

f. IFW is the weighting element option for the weighted least squares
refinement. If IFW = 1 or -2, the weighting elements, E(I), are
read in, one for each nonzero experimental frequency. For IFW = -2,
the weight(I) = E(I), and for IFW = 1, the weight(I) = E(I)/frequency
parameter(I). If IFW = 0, the weight(I) = 1/frequency parameter(I).
For IFW = -1, the weight = 1.0 for all the frequencies. Finally, if
IFW = -3, the weight(I) = 1/[frequency parameter(I)]2. IFW is punched
in Columns 16-17 (FORMAT 12).

g. ISKZ is the Z matrix repeat option. If ISKZ = 0, the Z matrix is
included with the input data. For ISKZ = 1, the Z matrix from the
previous problem is used so that a new Z matrix does not need to be
included with the input data. ISKZ is punched in Columns 18-19
(FORMAT 12).

Note: This option is useful for isotopically substituted molecules.

h. STUT is the value from Student's t distribution needed to compute the
95% confidence intervals for the final set of force constants. STUT =
t(n-p,0.975) where n = NDD, the number of nonzero experimental
frequencies, and p = NF - NCZ, the number of force constant parameters
being refined. STUT is punched in Columns 20-27 (FORMAT F8.4).

Note: If STUT is set equal to 1.0, the standard errors in the force
constants are printed instead of the 95% confidence intervals.
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i. RATIO, establishes another criterion to judge the convergence of
the refinement and upon which to base termination of the refinement.
When the ratio of successive weighted sum of squares is equal to or
greater than RATIO, the force constant refinement will be terminated
and said to have converged if the condition has been met previously
ITERM times. RATIO is punched in Columns 28-35 (FORMAT F8.6).

Note: A reasonable choice for RATIO is 0.995.

j. ITERM is the number of times that RATIO must be equaled or exceeded
before the refinement is actually terminated. ITERM is punched in
Columns 36-39 (FORMAT I4).

Note: The refinement is terminated when RATIO has been equaled or
exceeded ITERM + 1 times. This device is a check against premature
termination.

7. Molecule Information Card. One card containing the name of the molecule
or other alphanumeric information. The first three columns should be
left blank with the alphanumeric data following in any of the columns
through 72 (FORMAT 18A4).

Warning: This card must be included with the input data even if left
blank.

8. The Z Matrix. The programs UBZM and ZSYM punch the Z matrix in the
proper format for use in this program. The Z elements are punched in 18
column fields, 1 to 4 per card [FORMAT 4(313,F9.6)].

Warning: The row following the last Z matrix element must be set equal
to -2.

9. The Experimental Frequencies. If NDD is greater than zero, the experi-
mental frequencies, in cm. 1, are included with the input data. The
frequencies are entered in decreasing order being punched in 12 column
fields, 6 per card (FORMAT 6F12.6).

Note: If the frequencies are unknown, uncertain, or zero (redundancies),
one should enter a zero. For degenerate roots, one should enter one
frequency and set the rest equal to zero. Any frequency may be given
zero weight in the refinement by entering a zero instead of the actual
frequency.

Warning: For NDD greater than zero, one must make NQ frequency entries,
NDD of which must be nonzero. Blanks are read as zeros.

10. The Estimated Errors in the Experimental Frequencies. If IFER = -1,
the estimated errors in the observed frequencies, in cm. 1, must be in-
cluded with the input data, one for each nonzero frequency. The
estimated errors are entered in the same order as the experimental
frequencies, with zeros or blanks positioned properly corresponding to
zeros in the list of experimental frequencies. The estimated errors are
entered in 12 column fields, six per card (FORMAT 6F12.6).

Warning: There must be NQ error entries, NDD of the nonzero for IFER = -1.



11. The Weighting Elements. If IFW = -2 or 1, the weighting elements must
be included with the data deck, one element for each nonzero frequency.
The weighting elements are punched in 12 column fields, six per card
(FORMAT 6F12.6).

Note: There are NDD weighting elements which must be arranged in the
same order as the nonzero experimental frequencies.

12. The G Matrix. The G matrix from GMAT is included at this point in the
data deck. The information is punched in 18 column fields, four per
card [FORMAT 4(2I3,F12.6)].

Warning: The row number following the last G matrix element must be set
equal to -1.

13. Data Termination Card. This card must have a 999 punched in Columns 1-3
(FORMAT I3) and designates the end of the data.

Note: If another problem is to be included in the data deck, the problem
ID card for the next problem should be placed at this point and the data
termination card moved to the end of the second problem.

If the same set of force constants is to be refined for more than one molecule,

the data cards starting with the molecule control card and going through the G

matrix cards must be included, one set after another, for each molecule in the

refinement, i.e., NMOL sets of data. For symmetry factored blocks, NMOL must be

set equal to the number of factored blocks. Each of the factored blocks may be

treated as separate molecules and the data cards from the molecule control card

through the G matrix cards included, one set after another, for all the factored

blocks in a manner similar to the refinement for several molecules simultaneously.

With the OS operating system, a /* must be punched in Columns 1-2 on a card

which is placed at the end of the data deck and follows the data termination card.

OUTPUT INFORMATION

The following information is printed out at the option of the user.

1. The initial set of force constants.

2. The force constants being held fixed.

3. The eigenvalues and errors for each perturbation.
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4. The gradient vector for each perturbation.

5. The direction vector for each perturbation.

6. The force constant corrections for each perturbation.

7. The calculated and experimental frequencies and frequency parameters
along with the differences, weights, and percent error.

8. The final H matrix.

9. The final set of force constants along with the 95% confidence intervals.

At the user's option, the final set of force constants are punched on cards

with the proper format for use in FADJ, FLPO, and EIGV.

Warning: If the data output is terminated before completion because of an error,

namely, the attempt to take the square root of a negative number, an error or

errors in the refinement, usually user induced, are indicated. Such an error may

be generated when the refinement has caused one of the diagonal F matrix elements

to become negative (usually elements of normally small magnitude, such as the

torsional elements). This error may also be generated if a calculated frequency

parameter becomes small compared to the accuracy of the computation. If such an

error message should occur after the interrupted printout of data, the user should

examine the set of refined force constants and set of calculated frequencies and

frequency parameters for unusual values. Extraordinary values for these items may

signal errors in the F and G matrix.

EIGV

This program solves the vibrational secular equation by the method of succes-

sive orthogonalization followed by Jacobi diagonalization. The eigenvalues and

eigenvectors are computed, the latter computation at the request of the user.

The L matrix and potential energy distribution among the diagonal elements of F

may be computed by EIGV if the user so specifies. If the B matrix is included
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with the input data, the cartesian displacement coordinates and mean square

amplitudes for each normal mode may also be computed. In addition, EIGV has

been modified to permit the computation of the "squared amplitudes" of vibration

for each of the internal coordinates for each normal mode. The discussion of the

"squared amplitudes" appeared earlier in this text. The cartesian coriolis

coupling coefficients may also be calculated with EIGV.

This program was written by J. H. Schachtschneider (89) and modified for use

in the investigation of the 1,5-anhydropentitol vibrational spectra. EIGV may be

used with the IBM 360/44 OS operating system. A flow diagram of EIGV appears in

Fig. 45 and a listing in Table LIV.

INSTRUCTIONS FOR PROGRAM USE

EIGV requires three scratch tapes or disks for normal operation. The disks

are favored over tapes because of the faster operation of the disks during data

input/output. If the user wishes to exercise the option to write the potential

energy distribution and "squared amplitudes" on tape, an additional scratch

tape must be provided. This option results in the potential energy distribution

and "squared amplitudes" being written on tape with the proper format to be used

as input data to SASORT.

The following information embodies the data deck which is included after

the program deck.

1. Problem ID Card. This card indicates the start of a new problem. The
problem ID card must have a -09 punched in Columns 1-3 (FORMAT I3).

2. Problem Control Card.

a. IND = -09, identifies the problem control card. IND is punched
in Columns 1-3 (FORMAT I3).

b. NOPROB is the problem number, punched in Columns 4-9 (FORMAT I6).
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TABLE LIV

LISTING OF EIGV

C EIGV SCHACHTSCHNEIDER 7/19/65
C MODIFIED FOR OS BY L.J.PITZNER 1/5/72
C THIS PROGRAM SOLVES THE WILSON GF VIBRATIONAL SECULAR EQUATION
C BY AN ORTHOGONALIZATION OF THE BASIS OF G FOLLOWED BY A JACOBI
C DIAGONALIZATION OF THE TRANSFORMED F MATRIX. INPUT INCLUDES THE G
C MATRIX AND THE POTENTIAL ENERGY IN THE FORM OF THE Z MATRIX.
C F MATRIX ELEMENTS F(.lJ) ARE DEFINED AS THE SUM OVER K OF
C (Z(IJ,K)*FI(KI) WHERE FII(K GIVES THE VALUE OF FORCE CONSTANT
C NUMBER K. THE SYMMETRIC MATRICES ARE DIAGONALIZED BY SUBROUTINE
C HDIAG IMIHD13) PROGRAMED BY F.J. CORBATO AND M. MERWIN OF MIT.
C RAPO0.5E-3 UNLESS SPECIFIED.
C UNDER NORMAL OPERATION THIS PROGRAM COMPUTES EIGENVALUES AND
C EIGENVECTORS. AT THE OPTION OF THE USER ONLY THE EIGENVALUES
C ARE COMPUTED.
C AT THE OPTION OF THE USER THE CARTESIAN COORDINATES OF THE ATOMS
C THE MASSES AND THE B MATRIX ARE READ IN AND THE CARTESIAN
C DISPLACEMENT COORDINATES AND MEAN SQUARE AMPLITUDES FOR EACH
C NORMAL MODE ARE CALCULATED

DIMENSION GI 66 66)tD( 66, 66),NR( 650),NC( 650),NFOI 650),
lZI 650),FI( 71),NOL171),NEW(71),DG( 71),FF( 7l),DEI 71),

2DC( 71),DV( 71lD0( 71),HJ( 71),DJ( 71)XO22,3),X(22,31,WT(22),
3W(71)tNRO(4),NCO(4)tNPO(4),DAT(4) REC(18)tPE( 71),T(3),TT(22),
4TSUM(22),NIP( 71),TEMP(5),DEL( 71),RECORD(54),ASQ(7l),DES(72),
1XDIFF(22,3)
EQUIVALENCE (DNR),(DI 661),NC),(D(1321),NFOt),ID1971),Z)t
1 (DD,XO),(DEX),(DCNOL),(DVINEW),(DG,DEL,(FFW)
COMMON G,D

C RECONVERT PROBLEM CONTROL CARD CONTAINING THE FOLLOWING DATA
C 1.INDO-09 INDICATING THE START OF A PROBLEM AND IDENTIFYING
C CONTROL CARD. PUNCHED IN COLUMNS 1-3.
C 2.NOPROB, THE PROBLEM NUMBER IN COLUMNS 4-9.
C 3.NMOL, THE NUMBER OF MOLECULES IN COLUMNS 10-12.
C 4.NF, THE NUMBER OF FORCE CONSTANTS IN COLUMNS 13-15. (71 MAX).
C 5.INO, THE NUMBER OF FORCE CONSTANTS TO BE RENUMBERED IN THE
C Z MATRIX. PUNCHED IN COLUMNS 16-18. (INO LESS THAN 1001
C 6.IEG, FOR EIGENVALUES ONLY SET IEG=1. PUNCH IN COLUMNS 19-21.
C 7.IFF , FOR F MATRIX OUTPUT SET EQUAL TO 1 COL. 22-24.
C 8.RAP, INDICATOR FOR SHUT-OFF IN HDIAG. PUNCHED IN COLUMNS 25-34.
C WITH THE DECIMAL BETWEEN COL.25 AND 26 OR PUNCHED.
C JACOBI DIAGONALIZATION STOPS WHEN MAX(HlIJ)) LESS THAN
C RAP*MIN(H(I,II)) IF COL.25-34 ARE BLANK RAP IS SET EQUAL .0005
C READ PROBLEM CONTROL CARD

REWIND 4
90 READ (5,2)IND
2 FORMAT(13)

91 IF(9+IND)90O092,900
900 IF(IND-999)90,901,90
901 END FILE 4

REWIND 4
CALL EXIT

92 READ ( 5,4)INDNOPROBNMOLNFINOIEGIFFRAP
4 FORMAT(I316,513,F10.9)

I
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IF(RAP)93,93,94
93 RAPO0.5E-3
94 IF( EG)96,96,95
95 IEGEN=I

RAP0.5E-2
GO TO 97

96 IEGEN=O
C READ 3 PROBLEM INFORMATION CARDS. (COLUMNS 1-3 MUST BE BLANK)

97 READ (5»6)RECORD
6 FORMAT(18A4)

C READ FORCE CONSTANTS IN ORDER I TO NF PUNCHED IN 12 COLUMN FIELDS
C 6 PER CARD WITH DECIMAL BETWEEN COL.6 AND 7 OR PUNCHED.

READ (5,8) (FI(I),ItINF)
8 FORMATI6F12.61

NM=O
WRITE (6,50)NOPROB,NMOL.RAPRECORD

50 FORMAT139HI VIBRATIONAL SECULAR EQUATION. PROBLEMI6,10H,NO.MOL. I1

13,5H RAP=E14.6/(18A4))
WRITE (6,52)NF,(IFI(I),I=1,NF)

52 FORMAT14HO i3,16H FORCE CONSTANTS/17H .- FI(II/(16,F12.6
1))
DO 98 I1l171

98 NIP(I)=I
IF(INO)110,110,99

C READ NUMBERS FOR RENUMBERING FORCE CONSTANTS IN Z MATRIX.
C NOL(I),NEW(I),I=lINO NOL GIVES OLD FORCE CONSTANT NO. AND
C NEW GIVES NEW FORCE CONSTANT NUMBER. PUNCHED IN 6 COLUMN FIELDS
C 12 PER CARD . COL. 1-3 GIVE NOL AND COL.4-6 GIVE NEW.

99 READ 45,10) (NOL(I),NEW(I),I=1,INO)
10 FORMAT(2413)

WRITE (6,53)(NOL(I),NEW(I)1,=1,INO)
53 FORMAT(40HO FORCE CONSTANTS RENUMBERED IN Z MATRIX/(16,4H TO 13))

DO 100 1I=INO
IX=NOL(I)

100 NIP(IX)-NEW(I)
C READ MOLECULE CONTROL CARD GIVING THE FOLLOWING DATA
C I.IND=-06 IDENTIFYING CARD IN COLUMNS 1-3.
C 2.NQO THE DIMENSION OF THE SECULAR EQUATION. LESS THAN 101.
C PUNCHED IN COLUMNS 4-6.
C 3.NDO OBS.FREQ.REAO CONTROL. FOR ND=O NO FREQ. ARE READ.
C FOR ND GREATER THAN ZERO FREQ. ARE ENTERED. COLUMNS 7-9.
C 4.NZ, THE NUMBER OF Z MATRIX ELEMENTS(LESS THAN 650) PUNCHED IN
C COLUMNS 10-13. NZ IS NOT USED BY THE PROGRAM AND COL. 10-13
C MAY BE LEFT BLANK.
C 5.IFUsA 1 WILL SUPRESS PRINTOUT OF THE Z MATRIX. COLUMNS 14-15.
C 6.IFW, A I WILL SUPRESS PRINT OUT OF THE L MATRIX AND P.E. DIST.
C PUNCHED IN COLUMNS 16-17. A -1 WILL RESULT IN L MATRIX ONLY.
C 7.ISKZ, Z MATRIX READ OPTION. PUNCHED IN COLUMN 19.
C FOR ISKZ=O A Z MATRIX IS ENTERED.
C FOR ISKZ=1 THE Z MATRIX FROM THE PREVIOUS MOLECULE IS USED.
C 8.IFINV, INVERSE COMPUTATION CONTROL. PUNCHED IN COLUMN 21.
C FOR IFINV=1 THE INVERSE EIGEN VECTORS ARE CALCULATED.
C FOR IFINV=O INVERSE NOT EVALUATED.
C 9.1FMAo A I WILL SUPRESS PRINT OUT OF L INVERSE MATRIX.



-373-

TABLE LIV (Continued)

C PUNCHED IN COLUMNS 22-23.
C 1O.IFB, CARTESIAN NORMAL COORDINATE CONTROL. PUNCHED IN COL.25.
C FOR IFB1l THE B MATRIX AND MASSES ARE ENTERED AND CARTESIAN
C NORMAL COORDINATES ARE CALCULATED. IFINV MUST=I FOR IFB=l
C FOR IFB=O CARTESIAN NORMAL COORDINATES ARE NOT CALCLATED.
C 11.NOAT, THE NUMBER OF ATOMS. MUST BE ENTERED FOR IFB=1

C PUNCHED IN COLUMNS 27-28. 122 MAX).
C 12.IFCOR, A I WILL CAUSE CALCULATION OF THE INTERNAL MEAN SQUARE
C AMPLITUDE MATRIX. PUNCHED IN COLUMNS 29-30.

CONTINUE
C 13.NOTEP, NO. OF TEMPERATURES FOR WHICH MEAN SQ. AMP. CALC. IS
C TO BE CALCULATED FOR. IF NOTEMP = 0 CALC. FOR ROOM TEMP.
C PUNCHED IN COLUMNS 31-32.
C 14.SCALE, SCALE FACTOR FOR CARTESIAN DISPLACEMENTS. PUNCHED IN COL
C 33-38 WITH DECIMAL BETWEEN 37-38 OR PUNCHED.
C IF COLUMNS 33-38 ARE LEFT BLANK SCALE IS SET EQUAL TO 2.0.
C 15. ICAR, A I WILL SUPRESS PRINT OUT OF CARTESIAN DISPLACEMENT
C COORDINATES. PUNCHED IN COLUMNS 39-40.
C 16. IMSC, Al WILL SUPRESS PRINTOUT OF THE CARTESIAN MEAN SQUARE
C AMPLITUDES. PUNCHED IN COLUMNS 41-42.
C 17. ICOR,.A I WILL CAUSE CALCULATION OF THE CARTESIAN CORIOLIS
C COEFFICIENTS. PUNCHED IN COLUMN 44.

CONTINUE
C 18. ITEMP, INTERNAL MEAN SQUARE AMP. CALCULATED FOR 0 DEG K IF
C ITEMP=O. IF ITEMPt1, THE INTERNAL MEAN SQ. AMP. IS CALC. FOR
C ABST DEG K. ITEMP PUNCHED IN COLUMN 46.
C 19. ABST9 IF ITEMP =1, ABST IS THE TEMP IN DEG K FOR WHICH THE
C INTERNAL MEAN SQUARE AMP. IS TO BE CALC. PUNCHED IN COLUMNS
C 47-56.
C 20. [CD, IF ICD=l, ONE MAY ENTER THE DESCRIPTION OF THE INTERNAL
C COORDINATES (4 CHAR.) TO BE PRINTED WITH THE INTERNAL MEAN
C SQ. AMP. (A**2). ICD PUNCED IN COL. 58.
C 21. IPUN, IF IPUN=1 THE MEAN SQ. AMP. AND PE DISTR. FOR INTERNAL
C COORDINATES WILL BE WRITTEN ON TAPE. IPUN PUNCHED IN COL. 60.
C 22. IFL, A I WILL CAUSE THE L MATRIX TO BE WRITTEN ON TAPE BY
C COLUMNS. PUNCHED IN COLUMN 62.
C

110 READ (5,12)IND,NQ,NDO,NZZ,IFU,IFW,ISKZIFINV,IFMA,IFB,NOATIFCOR,
INOTEPSCALEICARIMSCICOR,ITEMP,ABST,ICDIPUNIFL

12 FORMAT(313,14,612,13,212,F6.1,412,F10O.2,3121
IF( IND+6)91, 112291

C INPUT DATA FOR EACH MOLECULE FOLLOWS IN THE ORDER
C 1.MOLECULE INFORMATION CARD (COL.1-3 BLANK)
C 1'. INTERNAL COORDINATE DESCRIPTION IF ICD=1.
C 2.Z MATRIX (FOR ISKZ=0)
C 3.OBSERVED FREQ. (FOR NO GREATER THAN ZERO)
C 4.G MATRIX
C 5.X MATRIX 4I.E. CARTESIAN COORD. OF ATOMS IN EQUILBRIUM CONFIG)
C 6.MASSES
C 7.B MATRIX
C ITEMS 5-7 ENTERED ONLY FOR IFB=l
C READ MOLECULE INFORMATION CARD

112 READ (5,6)REC
IF<ICD)39539,39539,66661
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66661 READI5,7771)(DESIJJ=lNQ)
7771 FORMAT(18A4)

WRITEI6,8881)
8881 FORMAT(1HI,'INTERNAL COORDINATE DESCRIPTION')

WRITE(6t9991H)(IDES(I),IsIl NQ)
9991 FORMAT(IH ,16,4XA4)

39539 REWIND I
REWIND 2
REWIND 3
NM=NM+l
IF(SCALE)113,113,114

113 SCALE=2.0
114 IF(ISKZ)115,1151t34

C READ NON-ZERO Z MATRIX ELEMENTS Z(I,JK) ENTERED AS FOUR ONE
C DIMENSIONAL ARRAYS tINR(L)NC(L)tNFO(L)tZ(L),L=INZ WHERE NR(L)=[I
C NCIL)=J.NFO(L)=K, AND Z(L)=Zl(IeJK NZLNO. OF NON-ZERO Z ELEMENTS
C ENTERED IN 18 COLUMN FIELDS I TO 4 PER CARD GIVING
C COLUMNS ITEM
C 1-3 NR(LI=I
C 4-6 NC(L)=J II LESS THAN OR EQUAL TO JA
C 7-9 NFO(L)=K (NO. OF FORCE CONSTANT)
C 10-18 Z(L)-Z(IJ,K) (DECIMAL BETWEEN COL.12 AND 13 OR
C PUNCHED)
C NR IS SET - -2 AFTER LAST-ELEMENT.

115 NOZ=O
116 READ 15,16) (NRO(L),NCO(L),NPO(L),DAT(L),La1,41
16 FORMAT(4(3I3,F9.6)»

DO 120 L=1,4
IF(NRO(LI1122,120,11.7

117 NOZ=NOZ+l
NR(NOZ)=NRO(L)
NC(NOZ)=NCO(L}
INPO(L)
NFO(NOZI=NIP(I)
IFIDAT(L)1118,119,118

118 Z(NOZ)=DAT(L)
GO TO 120

119 l(NOZ)}l.O
120 CONTINUE

GO TO 116
122 If(NRO(L)+2)605,127,605
127 REWIND 2

WRITE (2)INR(I)tNC(I),NFO(I).Z(I),I=1,NOZI
END FILE 2
IFIIFU)128,3511,128

3511 WRITE (6,68}NMNOZREC
68 FORMAT(19HI Z MATRIX MOLECULEI3,6H NOZ=I4/(18A4)1

WRITE (6,69)(NR(I),NC(I),NFO(I),Z(I),I-lNOZI
69 FORMAT(4(14,213,F9.61)

128 DO 130 Il1,NQ
DO 130 J=1,NQ

130 G(I,JI=0.O
DO 132 K=1,NOZ
I=NR(K)



-3Y 5-

TABLE LIV (Continued)

J3NC(K)
LX=NFO(KI

132 G(IJ)=G(I,J)+FI(LX)*Z(K)
IF(IFF) 1136,113691128

1128 WRITE (6,70)NM,RECORD
70 FORMAT(19H1 F MATRIX MOLECULEI3/(18A4))

1136 00 133 I=1,NQ
FF(I)=G(IIt)
IF(IFF)133,133,1133

1133 WRITE (6,56)1,iG(IJ),J=1,NQ)
56 FORMAT(SHO ROWI3/(9F8.41)
133 CONTINUE

GO TO 136
134 REWIND 2

READ (2) (NR(I)tNC(I),NFO(I),Z(1),I=1.NOZ)
136 IF(NDD)137,137,139
137 00 138 I=INQ
138 DE(I)-0.O

GO TO 140
C READ OBSERVED FREQ. IN ORDER 1 TO NQ PUNCHED IN 12 COLUMN FIELDS
C 6 PER CARD WITH DECIMAL BETWEEN COL.6 AND 7 OR PUNCHED.
C CALC. FREQ. ARE IN DECREASING ORDER WITHIN EACH FACTORED
C (ENTER ZEROS FOR UNKNOWN FREQ. AND REDUNDANCIES)IN CM-1

139 READ (5,81 (DEII),I=1,NQ)
140 DO 141 11,NQ

00 141 JuI,NQ
141 G(I,J)O.O

C READ NON-ZERO G MATRIX ELEMENTS ,G(I,J).
C G ELEMENTS ENTERED IN 18 COLUMN FIELD I TO 4 PER CARD GIVING
C COLUMNS ITEM
C 1-3 NRO =I (ROW NO.)
C 4-6 NCO =J (COLUMN NO.) (I LESS THAN OR=J)
C 7-18 DAT=GItlJ) (DECIMAL BETWEEN 12-13 OR PUNCHED)
C NRO IS SET -- l AFTER LAST G ELEMENT.

142 READ (5,14) (NRO(L),NCO(L),DATi(L,L=1.4)
14 FORMAT(4(213,F12.6))

DO 146 L1,4
IF(NRO(L))148,146,144

144 I=NRO(L)
J=NCO(L)
G(IIJ)=DAT(L)

146 CONTINUE
GO TO 142

148 IF(NRO(L)+1)600,150,600
C SCHMIDT ORTHOGONALIZATION OF G
C STORE INVERSE TRANSFORMATION IN LOWER TRIANGLE OF G.

150 NRED=O
NO=l
NL=2

154 GD=I.O/ G(NONO!
DO 156 J=NLNQ

156 G(JNO)=GINOJ)*GD
IF(NL-NQ)158,158,170

158 DO 160 I=NLNQ
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00 160 J=I,NQ
160 G(IIJ)G( I,J)-G(NOI}*GINOIJI*GD
161 NO=NO+1

NL=NO+I
163 IF(G(NONOI-0.000001)164,164,154
164 NRED=NREO+1

IF(NL-NQ 165,165»110
165 00 166 JzNL,NQ
166 G(JNO)=G(NOJ)

GO TO 161
170 00 175 I=1,NQ

IF(G( 1,I-0.00005)173,173,172
172 DG(I)=SQRT(G(II )

GO TO 174
173 DG(=-O.O
174 G(I,I=1l.O

DO 175 J"INQ
175 G(JI)=G(J,I)*DG(I)

C COMPUTE TRANSFORMED F MATRIX AND STORE IN UPPER TRIANGLE OF G
00 200 J=1,NO
00 178 =1tINQ

178 OJ {)=OoO
00 190 K=l,NOZ
IX=NR(KI
IF IX-J)190,182,182

182 JX=NC(K»
LX=NFOIK)
DJ(IX.)=DJ(IX)+FI(LX)*Z(KI*G(JX,J)
IF(IX-JX)186,190.186

186 DJ(JX)=DJ4JX)+FI(LX)*Z(K)*G(IX,J)
190 CONTINUE

00 196 K=JtNQ
HJIK)=O.O
00 196 L=KNQ

196 HJIK)=HJIK)+G(LK)tDJ(L)
DO 200 K=J,NQ

200 GiJ,K)=HJIK)
IF(IFF)203,203,201

201 WRITE 16,61) RECORD
61 FORMAT(22HI TRANSFORMED F MATRIX/(18A41)

00 202 I=IeNQ
202 WRITE (6,56)I,(G(I,JIJ=1,NQ)
203 CONTINUE

C DIAGONALIZE TRANSFORMED F MATRIX BY JACOBI METHOD
NR2'O
CALL HDIAG(GNQIEGENONR2,RAP)
WRITE 16,62) NM,NR2,RECORO

62 FORMAT(9H1MOLECULEI3,21H NUMBER OF ROTATIONS=I6/(1H ,18A4))
Nl»0
PT=O.0
SUM-0.0
DO 204 IINNQ
DC( I)=G(, I
GIll9I-OG(It



-377-

TABLE LIV (Continued)

204 HJ(I)IDCII)
C FOR COMPARISON WITH OBS. FREQ. THE CALC. FREQ. ARE ORDERED HIGH
C TO LOW.

II-NQ-1
DO 206 =1,I11
LOWt+I*
DO 206 J=LOWNQ
IF(HJ(I)-HJ(J))205,206,206

205 TEM=HJ(I)
HJ(I»=HJ(J)
HJ(J)=TEM

206 CONTINUE
DO 209 IlNNQ
DV(I)=SQRTIHJ(I)/5.88852E-7)
IFIDE(II)207,207,208

207 DD(I)O.O
DJ(I)O0.0
GO TO 209

208 DD(I)=DE(I)-DV(I)
DJII)=00O.O*DODI)/DE(I)
NI=N1+1
PT=PT+ABS(DJ(I))
SUM=SUM+ABSIDD(l))

209 CONTINUE
IF(NI)211,211,210

210 SUM=SUM/ FLOATINI)
PT=PT/ FLOAT(Nl)

211 WRITE (6,76)REC,(JDE(J)DVIJ),DD(J),DJIJ),HJIJ)tJ=1,NQ)
76 FORMATI37HO OBSERVED AND CALCULATED FREQUENCIES/ 18A4 /71HO OBS

1.FREQ. CALC.FREQ. DIFFERENCE PERCENT ERROR CALC.FREQ.PAR./6X
26H(CM-1),7X,6H(CM-I)e5Xe6H(CM-1)/ (I4,F9.14X.F8.1,4XF6.1 t7XF7.3
3,9XtF9.5))
WRITE (6,77)SUM,PT

77 FORMAT(17HO AVERAGE ERROR=F5.1,9H CM-I OR PF5.299H PERCENT.)
IF(IEGEN)5001212.500

212 DO 2121 I=1,NQ
2121 DV(I)=SQRT(DC(I)/5.88852E-7)

IF(IFW)63154,12111,63154
12111 WRITE (6,63)NM,NR2,RECORD

63 FORMAT(56H1 L MATRIX BY COLUMNS AND POTENTIAL ENERGY DISTRIBUTION
1/41H AMONG DIAGONAL ELEMENTS OF F. MOLECULEI3,14H NO.ROTATIONS=I
26/(18A4))

63154 DO 220 I=1,NQ
IF(DCII)-O.000501220220,213

213 IF(ITEMP)2631,2631,4444
4444 C2=(O.7193392/ABST)*DV(I)

ET=(16.8612/DVII))/TANH(C2)
GO TO 65316

2631 ET=16.8612/DVII)
65316 DO 215 J=1,NQ

HJ(J)-O.O

00 214 K=1,J
214 HJ(JImHJ(J)+G(JK)*D(KIl)

ASQIJI=ET*HJ(J)*HJ(J)
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215 PE(J)IFFIJ)*HJ(J)*HJ(JI / OC(I)
IF(IFL216,216,23475

23475 WRITE(4,86378)(HJIJ),J=1,NQ)
86378 FORMAT(6F12.6)

216 WRITE (1) (HJ(J)lJ=1,NO)
IFPIFW)217,217,22002

217 WRITE 16,64)DV(I),(HJ(J).OES(J),J1,.NQ)
64 FORMAT13HO FREQUENCY =F8.2,6H(CM-19O10H L COLUMN/(8(F8.4,IXA4)!

1)
22002 IFlIPUN)21888,21888,66543
66543 WRITE(4,231511IDV(l)
23151 FORMATII3,F8.21

WRITE(4,11114)lPE(J»,J=1,NQ)
11114 FORMAT(9F8.4)

WRITE(4,22224)IASQ(J)»J=1,NQ)
22224 FORMAT16EI2.4)
21888 IF(IFW)220,218,220

218 WRITE (6,66) (PE(J)iJ=I1NQ)
66 FORMATII8H POTENTIAL ENERGYI/9F8.4))

IF(ICD5357753 57,53586586
86586 WRITE(6,93999)ABST,(ASQ(J),DES(J),J=1,NQI
93999 FORMAT(26H MEAN SQUARE AMP. (A**2) F8.2,7H DEG.

1))
GO TO 220

75357 WRITE(6,75321)ABST, ASQ(J).J*1,NQ)
75321 FORMAT(26H MEAN SQUARE AMP. (A**21 F8.2t7H DEG.

220 CONTINUE
END FILE 1
IF(IFINV)400,400,230

C INVERT ORTHOGONALIZATION MATRIX AND STORE ITS TR
C UPPER TRIANGLE OF G

230 00 234 I=1,NQ
IF(OG(t1)234,234t232

232 DGiI)-' 1.0/ DG(I)
00 233 J=I,NQ

233 G(J,I)=G(J,I)*DG(II
234 CONTINUE

00 240 K=1,NQ
NX=K*l
DO 240 I=NXNQ
LIM=I-1
00 240 J=K,LIM

240 G(KI)=G(K,II-G(1IJ)*G(KJ)
DO 244 l=t,NQ
DO 244 J=INQ

244 GlIJ)=G(IJ)*DGIJI
C COMPUTE L INVERSE

DO 250 It1,NQ
DO 248 J=1,NQ
HJ(Jl=O.
DO 248 K=JNQ

248 HJIJ)"HJIJ)+G(JtK*D(Ktl)
00 250 J=1,NQ

250 O(JtI)HJ(J)

K/(6(E12.4,2XA4)

K/(9E12.4))

ANSPOSE IN
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TABLE LIV (Continued)

IFIIFMA)21315,61611,21315
61611 WRITE (6,67)RECORD

67 FORMAT(26H1 INVERSE L MATRIX BY ROWS/(18A4))
DO 260 J=1,NQ

260 WRITE (6,E65J,DV(Jl,(DlI,J),I=1,NQ)
65 FORMAT IIHO FREQUENCYI3,2H =F8.1,6H(CM-1l/(1H ,9F8.41»

21315 IF(IFB)400,400,300
300 DO 320 I=l,NOAT

DO 320 J=1,3
320 XO(I,J)sO.O

C READ NON-ZERO X MATRIX ELEMENTS PUNCHED IN 18 COLUMN FIELDS I TO 4
C PER CARD GIVING
C COLUMNS ITEM
C 1-3 NRO =1 (Iz1,2,OR 3 FOR X,Y,OR Z RESPT.l
C 4-6 NCO 5J (ATOM NUMBER)
C 7-18 DAT=X(I,J) (DECIMAL BETWEEN 12-13 OR PUNCHED)
C NRO SET -1I AFTER LAST X ELEMENT.

322 READ (5,141 (NRO(LlNCO(L),DAT(L),L=1,41
DO 330 L=l,4
IFINROILI)332,330,324

324 I-NCO(L)
J=NRO(L)
XOII,J)=DAT(L)

330 CONTINUE
GO TO 322

332 IF(NROI(LI1)615,314,615
314 NA=3*NOAT

C READ MASSES IN ORDER I TO NOAT PUNCHED IN 12 COLUMN FIELDS 6 PER
C CARD WITH DECIMAL BETWEEN COL.6-7 OR PUNCHED.

READ (5,8) (WT(I),tI=1NOAT)
DO 316 I=1,NOAT
DO 316 M=1,3
L«3*(I1-1.+M

316 W(L)I1.0 / WIT(I
C READ B MATRIX

DO 302 I1=1NQ
00 302 J=1,NA

302 G(IJ)=O.O
C READ NON-ZERO B MATRIX ELEMENTS ,B(I,J1.
C B ELEMENTS ENTERED IN 18 COLUMN FIELD 1 TO 4 PER CARD GIVING
C COLUMNS ITEM
C 1-3 NRO =1 (ROW NO.)

C 4-6 NCO «J (COLUMN NO.)
C 7-18 DAT=BII,J) (DECIMAL BETWEEN 12-13 OR PUNCHED)
C NRO IS SET =-5 AFTER LAST B ELEMENT.

304 READ (5,14) (NRO(L),NCO(L),DAT(L)*,L1,4)
DO 310 L=1,4
IF(NROIL)1312,310,306

306 I=NRO(L)
J=NCO(L)
G( IIJDATILl

310 CONTINUE
GO TO 304

312 IF(NROILI+51610,334,610



TABLE LIV (Continued)

334 IF(ICAR)61836,20102,61836
20102 WRITE (6,721 NMRECORO

72 FORMAT443HIEQUILIBRIUM CARTESIAN COOROINATES.MOLECULEI3/(18A41)
WRITE (6,731

73 FORMAT(5X,39H ATOM MASS X Y Z)
61836 DO 336 L=l,NOAT

TSUM(L)s0.0
IF(ICAR)336,5155,336

5155 WRITE (6,74)L,WT(L),XOIL,1IXOiL,2),XO0L,3)
336 CONTINUE

REWIND 3
74 FORMATIIH ,5X,14,F9.4tF9.4,FI0.4,F10.41

C COMPUTE CARTESIAN DISPLACEMENT COORDINATES AND THE MEAN SQUARE
C AMPLITUDE FOR EACH ATOM IN EACH NORMAL MODE 0 DEG. K

DO 360 I11,NQ
IF(DC(I)-0.000050)360,360,350

350 ET=16.8612/DV(I)
DO 353 Jl1,NOAT
TT(J)=O.O
DO 352 M=l,3
L=3*(J-1)+M
T(M)I0.0
DO 351 K=1,NQ

351 T(M)IT(M»+G(K,L)*D(K,II*W(L)
HJ(L)=TIM)
TT(JI-TT(JI+ET*TIMI*T(M)
X(J,MI)XOIJ,M)ISCALE*T(M)

352 XDOFF(J,M)=SCALE*T(M)
353 TSUM(J)=TSUM(J)+TT(J)

IFIICAR)6352,8888,6352
8888 WRITE (6,75)SCALEtIlDV(I)ET.REC

75 FORMAT(46HO CARTESIAN COORDINATES FOR ATOMS DISPLACED BYF6.1,21H U
INITS OF NORMAL MODEI3/13H FREQUENCY=FIO.2,7H DELTA=El2.4/18A4)
WRITE (6,781

78 FORMAT(IH ,4X,' ATOM MASS X Y z MEAN
ISQUARE AMP.(A**2) 0 K DELTA X DELTA Y DELTA Z')

359 WRITE (6,79) (J,WT(J),X(Jt).X(J,2),X(J,31,TT(J),XDIFF(Jll),
1XDIFF(J,21,XDIFFIJ,3),J=1,NOAT)

79 FORMAT(IH ,5X,14,F9.4,F9.4,FlO.4,FIO.4,7XEl2.4,12X,3F10.4)
6352 WRITE (3) IHJIJ),J=1,NA)
360 CONTINUE

END FILE 3
DO 362 J-1,NOAT

362 TT(JI=SQRT(TSUM(J))
IF(IMSC)400,6355,400

6355 WRITE (6,84) (J,TSUM(J),TT(J),J=l,NOAT)
84 FORMAT(49HOMEAN AMP. FOR ATOMS SUMMED OVER ALL NORMAL MODES/5X,44H

1 ATOM MEAN SQUARE ROOT MEAN SQUARE/(1H ,5X,14,6XE12.4,
26X.E12.4))

400 IF(NOTEP)401,401,403
401 NOTEP="

TEMP(11=298.16
GO TO 405

403 READ (5,8) (TEMP(I1,Il1,NOTEP)
405 IF(IFCOR)500,500,406
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TABLE LIV (Continued)
406 REWIND 1

REWIND 3
NUM = I
NII=NO
WRITE (6,54)REC

54 FORMAT(56H1INTERNAL COORDINATE MEAN SQUARE AMPLITUDE MATRIX(X 100)
1/3Xl18A4)

407 DO 412 I=1,NQ
IFIDCII)-0.000050)410,410,408

408 READ (NUM) (HJ(L),L=1,NII)
DO 409 L=1,NII

409 G(LI)=HJ(L)
GO TO 412

410 DO 411 L=1,NII
411 G(L,I)=O.O
412 CONTINUE

C1=16.8612*100.0
00 429 L=1,NOTEP
C2=0.7193392 / TEMPIL)
WRITE (6,551 TEMP(L)

55 FORMAT(15HO TEMPERATURE=F10.2,6H DEG.Kl
DO 418 I=1,NQ
IFIO.01-ABSIDV(I)))415,416,416

415 DEL(I)=Cl /(TANH(C2*DV(I))*DV(I))
GO TO 418

416 DEL(I)=O.O
418 CONTINUE

DO 420 I=1,NII
DO 420 J=I,NII
D(I,Jl=0.0
DO 420 K=1,NQ

420 DIIJ)=D(I,J)+GI,K)*ODEL(KI*G(J.K)
DO 426 1=1,NII
DDII)=SQRT(D(I,I1)/10.0
DO 426 J=I,NII

426 D(J,I)=DII,J)
00 427 I=1,NII

427 WRITE (6,56)1,IDII,J),J=I,NII)
WRITE (6,571 TEMP({L,REC.IJ,DD(JI,J=1,NII)

57 FORMAT(IHO,22H ROOT MEAN AMPLITUDES.,F10.2,6H DEGK/3X,18A4/5X,33H
ICOORDINATE ROOT MEAN AMPLITUDE/(9X,13,9X,F9.71)

429 CONTINUE
430 IF(IFB)450,500,431
431 IFB--1

NII=NA
NUM - 3
WRITE (6,85)REC

85 FORMAT147HI CARTESIAN MEAN SQUARE AMPLITUDE MATRIX(X 100)/3X,18A4)
GO TO 407

450 IF(ICOR1500,500,452
452 IFIIFB)453,500,500
453 DO 455 I=1,NA

W(I)-SQRT(1.0 / W(IIII
DO 455 J=1,NQ
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c. NMOL, the number of molecules in the problem, punched in Columns
10-12 (FORMAT 13).

d. NF is the number of force constants, punched in Columns 13-15

(FORMAT 13).

Warning: NF may not exceed 71.

e. INO, designates the number of force constants to be renumbered.
INO is punched in Columns 16-18 (FORMAT 13).

f. IEG, a 1 will result in the termination of the problem after the
secular equation has been solved and the eigenvalues determined.
IEG is punched in Columns 19-21 CFORMAT 13).

g. IFF, a 1 will result in the printout of the F matrix.

h. RAP is the cutoff factor for the Jacobi diagonalization. The plane

rotations are terminated when MAX[H(I,J)] is less than RAP*MIN[H(I,I)].
If RAP is left blank, a value of 0.5E-3 is assumed. RAP is punched in
Columns 25-34 (FORMAT F10.9).

3. Problem Information Cards. Three cards containing alphanumeric information
about the problem. The first three columns of each card should be left
blank with the alphanumeric information following in any of the Columns
4-72 (FORMAT 18A4).

Warning: These three cards must be included with the input data, even if
they are left blank.

4. The Force Constants. The force constants are read in order 1 through NF
and are punched in 12 column fields, six per card (FORMAT 6F12.6).

5. The Force Constants to be Renumbered. If INO is greater than zero, the
force constants to be renumbered are entered with the old force constant
number listed first followed by the new number. There are INO sets of
numbers, each number punched in a 3 column field of which there are 24
per card (FORMAT 24I3).

6. Molecule Control Card.

a. IND = -06, identifies the molecule control card, punched in Columns
1-3 (FORMAT 13).

b. NQ is the number of internal coordinates, punched in Columns 4-6
(FORMAT I3).

Warning: NQ must not exceed 66.

c. NDD is the number of nonzero experimental frequencies entered with
the data. For NDD = 0 or blank, no frequencies are entered. NDD
is punched in Columns 7-9 (FORMAT I3).
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p. IMSC, a 1 will result in the suppression of the printout of the
cartesian "squared amplitudes'! of vibration, punched in Columns
41-42 (FORMAT 12).

q. ICOR, a 1 will result in the calculation of the cartesian coriolis
coefficients being bypassed, punched in Columns 43-44 (FORMAT I2).

r. ITEMP is the temperature option control for the internal "squared
amplitudes" of vibration. If ITEMP = 0, the computations are com-
pleted for a temperature of 0°K. If ITEMP = 1, the internal
"squared amplitudes" are calculated for a temperature of ABST OK.
ITEMP is punched in Columns 45-46 (FORMAT 12).

s. ABST is the temperature in °K for which the internal "squared
amplitudes" are to be computed. ABST is punched in Columns 47-56
(FORMAT F10.2).

Note: ABST need only be entered in those instances when ITEMP = 1.

t. ICD is the internal coordinate description code control. If ICD = 1,
a description code identifying the internal coordinates must be
entered with the data. These four character codes are printed next
to the corresponding "squared amplitudes," potential energy component,
or L matrix element to simplify their identification. ICD is punched
in Columns 57-58 (FORMAT 12).

u. IPUN, for IPUN = 1, the "squared amplitudes" and potential energy
distribution are written on tape in the proper format for use as
input to SASORT. IPUN is punched in Columns 59-60 (FORMAT I2).

Warning: If IPUN = 1, an additional tape (Number 4) must be provided.

v. IFL, if IFL = 1, the L matrix will be written on tape by columns. IFL
is punched in Columns 61-62 (FORMAT I2).

Warning: If IFL = 1, an additional tape (Number 4) must be provided.

Warning: Both IFL and IPUN should not be set = 1 in the same problem
because the data format will not be correct for use with SASORT.

7. Molecule Information Card. This card contains the name of the molecule
or any other alphanumeric data pertinent to the problem. The first
three columns of the card should be left blank with the alphanumeric
information following in any of the Columns 4-72 (FORMAT 18A4).

Warning: This card must be included with the input data even if it is
left blank.

8. Internal Coordinate Identification Cards. If ICD = 1, four character
alphanumeric codes must be entered which identify the internal coordinates.
The codes must appear in the same order as the internal coordinates which
they are representing. The codes are punched in four column fields, 18
per card (FORMAT 18A4).
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9. The Z Matrix. The Z matrix elements are read in as four one-dimensional
arrays and are punched in 18 column fields, 1-4 per card [FORMAT
4(3I3,F9.6)]. The Z matrix is punched in the proper format by UBZM or
ZSYM.

Warning: The row after the last element must be set equal to -2.

10. The Experimental Frequencies. If NDD is greater than zero, the experi-
mental frequencies must be entered with the input data. The frequencies
are entered in decreasing order 1 through NQ, of which NDD are nonzero.
For frequencies which are uncertain, unknown, or redundant a zero is
entered. The frequencies are punched in 12 column fields, 6 per card
(FORMAT 6F12.6).

Warning: There must be NQ frequency entries, NDD of these entries must
be nonzero.

11. The G Matrix. The nonzero G matrix elements are entered as three arrays
and are punched in 18 column fields, four per card [FORMAT 4(2I3,F12.6)].
The G matrix is punched in proper format by GMAT.

Warning: The row number after the last element must be set equal to -1.

12. The Cartesian Coordinates. If IFB = 1, the cartesian coordinates must be
entered with the input data. The nonzero cartesian coordinates are
described by three arrays. The elements are punched in 18 column fields,
four per card [FORMAT 4(213,F12.6)]. The cartesian coordinates are
punched in the proper format by CART.

Warning: The row number after the last element must be = -1.

13. The Masses. If IFB = 1, the atomic masses must be entered with the input
data in the order 1 through NOAT. The masses are punched in 12 column
fields, six per card (FORMAT 6F12.6).

14. B Matrix. If IFB = 1, the B matrix must be entered with the input data.
The B matrix elements are entered as three arrays, punched in 18 column
fields, four per card [FORMAT 4(213,F12.6)]. The B matrix is punched in
the proper format by GMAT.

Warning: The row number following the last element must be set equal to -5.

15. Data Termination Card. The data termination card designates the end of
the input data. This card must have a 999 punched in Columns 1-3 (FORMAT
13).

Note: If another problem is to be included in the data deck, the problem
ID card of the next problem should be placed at this point and the data
termination card moved to the end of the second problem.

With the OS operating system, a card with a/* punched in Columns 1-2 must

be placed at the very end of the data deck, after the data termination card.



-387-

OUTPUT INFORMATION

At the option of the user, the following information is printed out.

1. The set of force constants.

2. The force constants to be renumbered.

3. The Z matrix.

4. The F matrix.

5. The calculated and observed frequencies and their difference.

6. The L matrix.

7. The potential energy distribution among the diagonal F elements.

8. The internal "squared amplitudes" of vibration.

Note: These elements are improperly labeled mean square amplitudes in
the printout; however, this title is immediately followed by (A**2) which
should lessen the confusion.

9. The L- 1 matrix.

10. The equilibrium cartesian coordinates.

11. The cartesian displacement coordinates and the cartesian "squared
amplitudes" of vibration.

Note: These latter elements are also improperly labeled mean square
amplitudes, but are followed by the designation (A**2) which should
reduce the confusion.

12. The cartesian mean amplitudes for the atoms summed over all the normal
modes and the root mean squares.

13. The internal coordinate root mean square amplitudes.

14. The internal coordinate mean square amplitude matrix.

15. The cartesian mean square amplitude matrix.

16. The cartesian coriolis coupling coefficients.

At the option of the user, the internal coordinate "squared amplitudes" of

vibration and the potential energy distribution for the normal modes are written

on tape in a format suitable for input to SASORT. The L matrix may also be

written on tape by columns.
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PAMOLE

This program employs the Calcomp 110 digital plotter to draw three dimen-

sional "ball and stick" representations of molecules from any viewpoint at any

reasonabledistance away and is based on the cartesian coordinates of the atoms.

This program was written by P. G. Adamson (90) and modified at the Institute

for use on our IBM 360/44 computer. The program may be used with the IBM 360/44

OS operating system. A version of PAMOLE is stored on disk at the Institute. A

listing of the JCL cards required to run the stored version of PAMOLE appears in

Table LV. These cards are placed in front of the data deck. A listing of

PAMOLE cannot be included in this text because of space considerations. However,

a sample data input to PAMOLE is presented in Table LVI.

INSTRUCTIONS FOR PROGRAM USE

The following information is required to complete the data deck for PAMOLE.

1. Problem Definition Card.

a. IND = -09, identifies the problem definition card, punched in
Columns 1-3 (FORMAT 13).

b. NOAT is the number of atoms in the molecule. NOAT is punched
in Columns 4-7 (FORMAT 14).

c. NVW, designates the number of views to be drawn for this molecule,
punched in Columns 8-11 (FORMAT I4).

d. ITITLE, a 1 will permit alphanumeric information describing the
drawing to be written on plotter output, punched in Columns 12-15
(FORMAT I4).

Warning: For more than one view of a molecule with or without a
label, the plotter should be manually zeroed to the right after
each drawing.

e. XSTAR is the desired starting position along the x-axis, in inches
from the origin, for the alphanumeric lettering. XSTAR is punched
in Columns 16-21 (FORMAT F6.2).

Note: If ITITLE = 0, XSTAR may be left blank.
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TABLE LV

JCL CA2DS REQUIREiD TO RUN THE STORED
VERSION OF PAMOLE

//PAMOLE JOB 94000110,LJP,MSGLEVEL-1
//JOBLIB DD DSN-PAM,VOLtSERODLIB03,DISP=OLDUNITSYSDA
// EXEC PGM=PAMOLE
//FT05FOO1 OD DODNAME=SYSIN
//FT06F001 00 SYSOUT=A
//FT07FOO1 OD SYSOUT=B
//PLOTPLOT OD UNI TPLOTTER
//SENSE DO UNIT=AFF=PLOTPLOT
//SYSIN OD *

TABLE LVI

SAMIPLE INPUT DATA TO PAMIOLE

-9 19 1
1 5-ANHYDROXYLITOt

SCALE 1.2
SIZES C
01 0.000
C2 1.423
C3 -0.543
C4 1.931
C5 -0.074
C6 1.446
H7 1.788
.H8 1.788
H9 -1.638
H10 -0.205
HII -0.394
012 -0.635
H13 -0.350
H14 1.770
015 1.885
H16 1.563
H17 1.550
018 3.345
H19 3.683
VIEW 5.
999
le

.290 .27H .12
0.000 0.000 C2
0.000 0.00001
1.315 0.000 01
0.718 1.244C2

2.059 1.244 C3
2.162 1.230 C4
-1.033 0.OOC2
0.517 -0.895 C2
1.258 0.000 C3
1.850 -0.895 C3
1.515 2.136 CS
3.358 1.256 CS
3.840 0.465 012
2.646 0.305 C6
2.818 2.404 C6
2.337 3.183 015
0.214 2.136 C4
0.696 1.256 C4
1.143 0.465 018
5. -5.

C3
H7
H9
C6
C6
C5

H8
H10
018
Hll
H14

C4
C5
H17
012
015

H13

H16

H19
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f. YSTAR is the desired starting position along the y-axis, in inches
from the origin, for the alphanumeric lettering. YSTAR is punched
in Columns 22-27 (FORMAT F6.2). YSTAR is left blank if there is
to be no labeling of the drawing.

g. LHGT is the desired lettering height in inches, which must be an
integer multiple of 0.07. LHGT is punched in Columns 28-33 (FORMAT
F6.2).

Note: LHGT is left blank if there is to be no label on the drawing.

2. Alphanumeric Information. If ITITLE = 1, the alphanumeric labeling to
appear on the drawing must be punched on a card in any of the Columns
1-80 and must be included with the input data (FORMAT 20A4).

Note: This card must be included with the input data even if blank and
ITITLE = 0. In this case the alphanumeric information will appear only
with the printer output.

3. BIG. This card requests that the wide paper (291'") be used. If this card
is omitted, the more commonly used narrow paper (10l") is required. The
characters BIG are punched in Columns 1-3 (FORMAT A4,A2,3F4.b)..

4. SCALE XXXX. This card indicates the scale factor to be used in the
drawing. If this card is omitted, a scale factor of 1 is assumed. SCALE
is punched in Columns 1-6 and the numerical scale factor in Columns 7-10
(FORMAT A4,2;3F4.0).

Note: The scale factor punched in Columns 7-10 may be decimal and the
F'ormat F4.0 will be overruled, e.g., SCALE 1.2.

5. ANGLES a,B,y. This card supplies the angles between the coordinates
(if not rectangular) where a is the angle between the Y- and z-axes, B
is the angle between the x- and z-axes, and y is the angle between the
x- and y-axes. If this card is omitted, rectangular axes are assumed.
ANGLES is punched in Columns 1-6, a in Columns 7-10, B in Columns 11-14,
and y in Columns 15-18 (FORMAT A4,A2,3F4.0).

Note: If decimal angles are entered, the Format F4.0 is overruled.

6. SIZES name r name r ..... . This card indicates the general atom names
(name), e.g., C, H, 0, C1, Br, etc., and the corresponding radius of the
"ball" representation (r) in atomic units. There can be up to 10 atom
names. SIZES is punched in Columns 1-6, the atom name in Columns 7-10,
and the atom radius in Columns 11-13 with the next atom names and radii
following in groups of 4 columns and 3 columns through 10 atom names
[FORMAT 6X,10(4A1,F3.2)].

Warning: The atom names must be left justified.

7. CELL x,y,z. This card indicates the fractional coordinates for the
atom positions, and is optional. This option is used when the coor-
dinates are x-ray crystallographic fractional coordinates. The unit
cell dimensions are specified in atomic units. If this card is in-
cluded with the input data, all subsequent atom coordinates will be
assumed fractional. CELL is punched in Columns 1-4, x in Columns 5-11,
y in Columns 12-18, and z in Columns 19-25 (FORMAT 4A1,3F7.3).
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8. Name x y z namel name2 ..... The next set of cards specify individual
atoms, up to 100. Each card refers to one atom giving its name with up
to four characters in Columns 1-4; its position in space by the cartesian
or fractional coordinates (x is punched in Columns 5-11, y in Columns
12-18, and z in Columns 19-25); and the names of the atoms connected to
it, up to 8 atoms, punched in four column fields with a blank separating
each entry [FORMAT 4A1,3F7.3,8(4Al,lX)].

Note: There should be NOAT cards in this group. The program checks for
duplicate names. The order of the drawing of atoms is the same as the
order of their specification on the data cards.

Note: The first one or two columns of the atom names should contain the
general atom name as it appears on the SIZES card. The remaining two or
three columns should contain an atom numbering code or some other identifi-
cation code to distinguish the individual atoms in the molecule. (For an
example, see Table LVI.)

Warning: The atom names should be left justified.

9. VIEW x,y,z. This card(s) specifies the coordinates of the viewpoint(s)
desired. The view is drawn from a point looking down the line joining
the viewpoint to the center (i.e., the average of the extremities) of the
molecule. VIEW is punched in Columns 1-4 with Columns 5-6 left blank.
Then x is punched in Columns 7-10, y in Columns 11-14, and z in Columns
15-18 (FORMAT 6X,3F4.0). There should be NVW viewpoint cards in this
section.

10. Data Termination Card. This card indicates the end of the data deck and
has a 999 punched in Columns 1-3 (FORMAT I3). If another problem is to be
included in the data deck, the problem definition card for the next problem
should be placed at this point in the deck and the data termination card
moved to the end of the second problem.

The data termination card is followed by a card with a /* punched in Columns

1-2 if the OS operating system is being used.

Warning: For best results, the plotter should be manually zeroed, i.e., the pen

moved to the extreme right, after each drawing is completed.

OUTPUT INFORMATION

Besides the plotter drawing, the following information is written out by the

printer.

1. Alphanumeric information about the drawing (if this card is not blank).

2. Scale factor.
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3. Sizes of atoms.

4. Cartesian coordinates (fractional coordinates if specified) and bond
information.

5. Viewpoint coordinates.

6. Listing of those atoms hidden from view in the drawing.

PESORT AND SASORT

These programs read the potential energy and "squared amplitude" data from

tape, arrange the information in decreasing order, and label the numerical data

with an identifying code.

These programs were written by the author during the investigation of the

1,5-anhydropentitol spectra to arrange the potential energy and "squared ampli-

tude" data in a more convenient way. PESORT sorts the potential energy data in

terms of the force constants in decreasing order. The data is read from the out-

put tape from NFAD which is a simplified version of FADJ. PESORT reads four

character codes, one for each force constant, which identify the force constants.

These force constant codes are then printed beside the corresponding potential

energy element when the ordered distributions are printed out by PESORT. PESORT

also converts the fractional elements to percent. SASORT reads the potential

energy data in terms of the internal coordinates (diagonal F matrix elements) and

"squared amplitude" data for internal coordinates from the output tape from EIGV.

These data are then arranged in decreasing order and labeled with a four character

code that identifies the internal coordinates.

Both PESORT and SASORT may be used with the IBM 360/44 RAX operating system.

A listing of PESORT is presented in Table LVII and a listing of SASORT in Table

LVIII.
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TABLE LVII

LISTING OF P"3SORT

DIMENSION DESI100),PE(100),DUM(100 ,INDEX(I00),REC(18)
C PROGRAM PESORT
C DESIGNED TO RUN ON RAX AND READ PE DISTRIBUTION OFF TAPE FROM
C PROGRAM NFAD.
C PESORT SORTS THE PE DISTRIBUTION DATA FOR EACH CALCULATED FREQ.
C AND ARRANGES THE DATA IN DESCENDING ORDER.
C A DESCRIPTION OF THE FORCE CONSTANTS IS READ IN FROM CARDS
C AND IS REPRODUCED ALONG WITH THE OUTPUT. (FORMAT A4).
C PESORT WAS WRITTEN BY L.J.PITZNER 1/13/72
C
C READ PROBLEM CONTROL CARD
C NOTE EACH PROBLEM CONTROL CARD IS PRECEDED BY A CARD WITH -09 IN
C COLUMNS 1-3.
C
C 1). IND=-09 PUNCHED IN COLUMNS 1-3.
C 2). NOPROB= PROBLEM NUMBER PUNCHED IN COLUMNS 4-9.
C 3). NF= THE NUMBER OF FORCE CONSTANTS PUNCHED IN COLUMNS 10-12.
C 4). NFR= THE NUMBER OF FREQUENCIES PUNCHED IN COLUMNS 13-15.
C

REWIND 1
4 READ(5,IIIND
1 FORMAT(13)

IF( IND+92,3, 2
2 IF(IND-999)4,5,4
5 REWIND 1

CALL EXIT
3 READ(5t6)INONOPROB,NFNFR
6 FORMAT(I3,16,213)

C READ PROBLEM INFORMATION CARD.
READ(St18)REC

18 FORMAT(I18A4
WRITE6,919)NOPROB,REC

19 FORMAT(IHl,'APPROXIMATE POTENTIAL ENERGY DISTRIBUTION FOR PROBLEM',
116/I1H ,12X,18A4))

C READ FORCE CONSTANT DESCRIPTION CARDS
READ(5,7)(DES(J).J=1,NF)

7 FORMAT(18A4)
DO 15 J=1,NFR
READ11t70)NUMFREQ

70 FORMATI13,F8.2)
READI1,80)(PE(L),L=1,NFI

80 FORMAT(9F8.4)
DO 66 I=l,NF

66 INDEX(I)=1
MU=t
NU= 2

9 DO II K=NU,NF
IF(PEI(K-PE(MU))11,11,lO

10 TEM=PE(K)
PE(KI=PE(MUI
PE(MU)=TEM
ITEM=INDEX(K)



TABLE LVII (Continued)

INDEX(K)=INDEX(MU)
INDEX(MU)=ITEM

11 CONTINUE
MU=MU+1
NU=MU +
IF(MU-NFD9,200,200

200 DO 13 JJ=1,NF
KK=INDEX(JJ)

13 DUM(JJ)=DES(KK)
DO 14 [=1,NF

14 PE(I)=100.*PE(I)
WRITEI6,21)NUM,FREQ
WRIrE(6,22)(PE(L),DUM(L),L=lINF)

21 FORMAT(1HO,'FREQUENCY',13,' =',F6.1,' CM-I')
22 FORMAT(1H ,8(F8.2,2X,A4))
15 CONTINUE

GO TO 4
END

/DATA
-09
-09 5009 56 51

1,5-ANHYDROXYLITOL CORRECTED TETRAHEDRAL STRUCTURE.
COR CO ACH CH CC OHCCCOCOCOCOCHCCCHCHCHCOOHHCORCCORAHGCHCH' HCC CCO
COH CCC HCOCORC SB8 SB2 SB3 SB4 SB5 SB6 SB7 SB8 SB9SBlO BB1 BB2 BB3 BB4
BB5 BB6 BB7 BB8 BB9BBIOBBIlBB12BB13BB14BB15BB16BB17BB18BB19 TCC TCOTCOR
BBOBB20

-09
-09 5009 56 51

1,5-ANHYDRORIBITOL CORRECTED TETRAHEDRAL STRUCTURE.
COR CO ACH CH CC OHCCCOCOCOCOCHCCCHCHCHCOOHHCORCCORAHCCHCH' HCC CCO
COH CCC HCOCORC SB1 SB2 SB3 SB4 SB5 SB6 SB7 S88 SB9SB10 BBl BB2 BB3 BB4
BB5 BB6 BR7 BB8 BB9BBO1BB1IBB12BB13BB14BB15BB16BB17BB8BBB19 TCC TCOTCOR
BBOBB20

-09
-09 5009 56 51

1,5-ANHYDRO-L-ARABINITOL CORRECTED TERAHEDRAL STRUCTURE.
COR CO ACH CH CC OHCCCOCOCOCOCHCCCHCHCHCOOHHCORCCORAHCCHCH' HCC CCO
COH CCC HCOCORC SB1 SB2 SB3 SB4 SB5 SB6 SB7 SB8 SB9SB10 BB1 BB2 BB3 BB4
BB5 BB6 BB7 BB8 BB9BBIOBBIBB12BB13BB14BB15BB16BB17BB18BB19 TCC TCOTCOR
BBOBB20

999



TABLE LVIII

LISTING OF SASORT

DIMENSION DES(100),PE(100),ASQIIOO),DUM(100)INDEX(100),REC(18)
C PROGRAM SASORT

DESIGNED TO RUN ON RAX AND READ PE DISTRIBUTION OFF TAPE FROM
PROGRAM EIGV. THE MEAN SQ. AMP. (A**2) IS ALSO READ FROM TAPE.

C SASORT SORTS THE PE AND MEAN SQ. AMP. DATA FOR EACH CALC. FREQ.
C AND ARRANGES THE DATA IN DESCENDING ORDER.
C A DESCRIPTION OF THE INTERNAL COORDINATES IS READ IN FROM CARDS
C AND IS REPRODUCED ALONG WITH THE OUTPUT. (FORMAT A4).
;C SASORT WAS WRITTEN BY L.J.PITZNER 1/13/72
C
C NOTE EACH PROBLEM CONTROL CARD IS PRECEDED BY A CARD WITH -09 IN
C COLUMNS 1-3.
C

C 1). IND=-09 PUNCHED IN COLUMNS 1-3o
C; 2). NOPROB= PROBLEM NUMBER PUNCHED IN COLUMNS 4-9.
C 3). NQ= THE NUMBER OF INTERNAL COORDINATES PUNCHED IN COLUMNS 10-12.
C 4). NFR= THE NUMBER OF FREQUENCIES PUNCHED IN COLUMNS 13-15.
C READ PROBLEM CONTROL CARD
C

REWIND 1
4 READ(5,1 IND
1 FORMAT(13)

IF( IND+9)2,3,2
2 .IF(IND-999)4.5,4
5 REWIND 1

CALL EXIT
3 READ(5,6)IND,NOPROBNQNFR
6 FORMATI13,16,213)

C READ PROBLEM INFORMATION CARD.
READI5,18)REC

18 FORMAT(18A4)
WRITE(6,19)NOPROB,REC

19 FORMAT(IH1,'APPROXIMATE PE AND MEAN SQ. AMP. DISTRIBUTION FOR PROBLEM'
1',16/(IH 12X,tl8A4))

C READ INTERNAL COORDINATE DESCRIPTION
READ(5,7)(DES(J),J=lNQ)

7 FORMATI18A4)
DO 15 J=1,NFR
READ(l170)NUMFREO

70 FORMAT(I3,F8.2)
READ(1,80)(PE(L),L=INQ)

80 FORMAT(9F8.4)
READ(1,90)(ASQ(K),K=l,NQ)

90 FORMAT(6El2.4)
400 NUM = J

DO 66 I=1tNQ
66 INDEX(I)=I

MU=1
NU=2

9 DO 11 K=NUNQ
IF(PE(K)-PE(MU))llllO,10

10 TEM=PE(K)
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TABLE LVIII(Continued)

PEIK)=PE(MU)
·Pt:IMU)=TEM .

ITEM=INDEX(K)
INDEX(K)=INDEX(MU)
INDEX(MU)=ITEM

11 CONTINUE
MU=MU+1
NU=MU+1
IF(MU-NQ)9,200,200

200 DO 13 JJ=1,NQ
KK=INDEX(JJ)

13 DUM(JJ)IDES(KK)
DO 14 I=I,NQ

14 PE(I)=100.*PE(Il
WRITE( 6,21)NUMFREQ.

21 FORMAT(IHO,'FREQUENCY',1
3,' =',F6.l,' CM-I')

WRITE(6,30)
MRITE(6,31)(PE(L),DUMIL),L=1,NQ)

30 FORMAT(1H ,'POTENTIAL ENERGY DISTRIBUTION'I

31 FORMATdtH ,8(F8.2,2XA4))
DO 50 I=ltNQ

50 INDEX(I)=
MU=1
NU=2

39 D0041 K=NUNQ
IF(ASQ(Kl-ASQ(MU))41,41,40

40 TEM=ASQ(K)
ASQ(K)=ASQ(MU)
ASQ(MU)=TEM
ITEM=INDEX(K)
INDEX(K)=INDEX(MU)
INDEX(MU.I)ITEM

41 CONTINUE
MU=MU+1
NU=MU+1
IF(MU-NQ)39,300,300

300 DO 43 JJ=1,NQ
KK=INDEXKJJ)

43 DUM(JJ)tOES(KK)
WRITE(6,51)

WRITE(6,52)(ASQ(L),DUM(L),L=1,NQ)
51 FORMAT(1H ,'MEAN SQ. AMP. IA**2)')

52 FORMAT(1H ,6(E12.4,2XA4) )

15 CONTINUE
GO TO 4
END
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INSTRUCTIONS FOR PROGRAM USE

The input data appear on tape which is the output from EIGV or NFAD.- The

following information embodies the data deck. The program deck, which precedes

the data deck, must be started with a /ID card, a /JOB GO card, and a /FILE card

with the RAX system. The data deck is preceded by a-/DATA card.

1. Problem ID Card. This card indicates the start of a problem. A -09 is
punched in Columns 1-3 (FORMAT 13).

2. Problem Control Card.

a. IND = -09, identifies the problem control card, punched in Columns
1-3 CFORMAT 13).

b. NOPROB is the problem number, punched in Columns 4-9 (FORMAT I6).

c. NF (in PESORT) or NQ (in SASORT), NF is the number of force constants
and NQ the number of internal coordinates, punched in Columns 10-12
CFORMAT 13).

d. NFR is the number of nonzero calculated frequencies, punched in

Columns 13-15 (FORMAT 13).

3. The Force Constant Identification Codes (PESORT) or The Internal Coordi-
nate Identification Codes (SASORT). These four character alphanumeric
codes should provide easy identification of the force constants or
internal coordinates. They are punched in four column fields, 18 per
card, in order 1 through NF (PESORT) or 1 through NQ (SASORT) (FORMAT
18A4).

4. Data Termination Card. This card indicates the end of the problem and
is characterized by a 999 in Columns 1-3 (FORMAT I3). If another problem
is to be included, the problem ID card for the next problem is placed at
this point. The data termination card is then moved to the end of the
second problem.

With the RAX operating system, the data deck is terminated by a /END card.

Printer output for PESORT includes the sorted potential energy distribution (in

decreasing order) in terms of the force constants. Printer output for SASORT in-

cludes the sorted (in decreasing order) potential energy distribution in terms of

the diagonal F matrix elements and the internal coordinate "squared amplitudes."

In both cases, the data are labeled with the identifying code characters.
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NFAD

This program is a condensed version of FADJ. NFAD solves the secular deter-

minant and computes the potential energy distribution in terms of the force

constants; however, the force constants are not refined. NFAD will write the

potential energy distribution on tape in the proper format for input to PESORT.

NFAD may be used with the IBM 360/44 OS operating system. NFAD will not be

listed in this text because of the similarity to FADJ which has been discussed

earlier in this appendix.
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APPENDIX VI

CALCULATED FREQUENCIES FOR BOTH CONFORMERS OF THE
1,5-ANHYDROPENTITOL MODELS

This appendix contains the listings of the calculated frequencies for the

1,5-AP models for both conformers and is based on the set of force constant

parameters listed in Table XX in the main text. The calculated frequencies

for 1,5-AX, 1,5-AR, and 1,5-ALA follow in Tables LIX, LX, and LXI, respectively.
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TABLE LIX

CALCULATED FREQUENCIES FOR BOTH CONFORMERS OF THE
1,5-ANHYDROXYLITOL MODEL BASED ON THE FORCE

CONSTANTS IN TABLE XX

Stable Conf.,
V, cm.1

3356
3356
3356
2982
2979

2946
2926
2911
2882
2880

1468
1460
1437
1410
1388

1363
1347
1345
1329
1298

1292
1272
1257
1207
1201
ll41

Alternate Conf.
V, cm.

3356
3356
3356
2980
2976

2930
2924
2923
2881
2880

1469
1463
1389
1382
1382

1350
1328
1328
1319
1303

1289
1253
1239
1224
1213
1162

Stable Conf.,
v, cm.

1131
1110
1096
1095
1049

1014
950
927
901
882

655
563
533
467
429

420
368
318
297
278

241

230
228
200
131

Alternate Conf.,
, cm.-1

1133
1108
1076
1028

971

956
948
903
854
815

795
596
572
539
458

434
365
310
286
241

238
230
199
170
131



TABLE LX

CALCULATED FREQUENCIES FOR BOTH CONFORMERS OF THE
1,5-ANHYDRORIBITOL MODEL BASED ON THE FORCE

CONSTANTS IN TABLE XX

Stable Conf.,
V, cm. '

3356
3356
3356
2982
2979

2931
2925
2921
2882
2880

1468
1460
1418
1412
1393

1367
1344
1320
1317
1295

1289
1265
1255
1233
1220
1155

Alternate Conf.,
v, cm.

3356
3356
3356
2980
2976

2930
2924
2922
2881
2880

1469
1461
1373
1371
1365

1353
1329
1324
1302
1284

1283
1272
1240
1222
1214
1139

Stable Conf.,
V, cm.-

1131
1106
1096
1042
1024

1010
981
926
876
850

676
641
599

463
446

413
342
308
283
255

240
227
220
202
137

Alternate Conf.,
V, cm.

1136
1089
1059
1037
994

963
946
889
865
809

786
666
601
470
451

433
354
301
297
258

239
230
226
170
132
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TABLE LXI

CALCULATED FREQUENCIES FOR BOTH CONFORMERS OF THE
1,5-ANHYDRO-L-ARABINITOL MODEL BASED ON THE FORCE

CONSTANTS IN TABLE XX

Stable Conf.,
V, cm. 1

3356
3356
3356
2981
2978

Alternate Conf.,
;v, cm. 1

3356
3356
3356
2981

2977

2940
2926

2915
2882
2880

1469
1461
1419
1395
1378
1372

1341
1326
1313
1304
1284

1263
1251
1234
1199
1163

2929

2925
2921
2881
2880

1469
1460
1391
1383

1377
1348

1333
1320
1303
1295
1278

1255
1232
1230
1220
1149

Stable Conf.,
V), cm. 1

1130
1108

1097
1074
1061

Alternate Conf.,
v, cm. 1

1122
1093
1086
1045
1018

988

941

931
873
851

743
637
540
487
441
403

978
947
929
874
831

720
640
548
518
451
419

387
313
288
243
238

380
302
285
260
237

236
236
222
185
132

238
228
214
190

135


