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ABSTRACT

Finding new and improved means of cooling small electronic packages are of great
importance to today's electronic packaging engineer. Thermal absorption through the use
of a material which changes phase is an attractive alternative. Taking advantage of the heat
capacity of a material's latent heat of fusion is shown to absorb heat away from the elec-

, tronics, thus decreasing the overall temperature rise of the system. The energy equation is
,. formulated in terms of enthalpy and discretized using a finite-difference method. A FOR-

TRAN program to solve the discretized equations is presented which can be used to ana-
l • lyze heat conduction in a rectangular region undergoing an isothermal phase change. An

analysis of heat transfer through a miniature radar electronic module cooled by a phase-
change reservoir is presented, illustrating the method's advantages over conventional heat
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INTRODUCTION

As microelectronic components continue to get smaller with the application of modern
technology, packaging gets denser and consequently heat fluxes rise. Since the author is a
mechanical engineer in the radar department at Sandia National Laboratories, this investi-
gation is directed toward finding improved cooling methods for these denser packages.

i

In designing packaging for radar systems, a mechanical engineer is concerned with
size, weight, geometric configuration, durability, and efficient heat transfer. Most of the
radars that are designed at Sandia are used in small airborne vehicles where space is limit-
ed. The radar (and radar antenna) is usually confined to a specific area in the vehicle as
well. Radars are also getting more complex, such as the state-of-the-art synthetic aperture
radar, which has increased both their size and power output. This increased power output
directly influences the heat generated by the electronics, thus increasing the total heat flow
rate.

A package for a synthetic aperture radar antenna has been designed at Sandia which
includes eighty plug-in miniature electronic modules. The modules are approximately 2.5
in. x 1.25 in. x .375 in. thick with electronic components mounted on both sides of a center

plate or web (See Fig. 1). Each module dissipates approximately 15 watts and is cooled in
actual operation by conducting the heat away from the electronics into the aluminum body
of the module. This module was designed for a specific application; however, this type of
plug-in electronic package will be used in a growing number of applications in the future,
such as a mapping satellite or other advanced radzu's Also as technology advances and
radars and other airborne electronic subsystems become even more complex, this type of
package will use more power and dissipate even more heat. Most modules of this type are
operated for a short time interval (10-20 seconds) and not in a steady state mode. Thus
when analyzing the heat flow, it is the transient heat transf,,r that is of concern to the
mechanical designer.

This paper investigates a method to improve the transient heat transfer away from the
electronics in this type of module. The module, as designed, has a cavity on each side of
the center web. After the electronic components are mounted on each side on the center
web, these two cavities are hermetically sealed to protect the sensitive electronics. The
only path currently used for heat transfer is conduction into and through the aluminum
center web. However, if one cavity was filled with a substance that would undergo a solid-
liquid phase change upon reaching a certain temperature, while the other cavity contained
the electronics, or if the phase-change material weresandwiched ina cavity between the
other two cavities, the heat transfer away from the electronics might be improved. Since
the module's operating time is typicaily short, taking advantage of a material's latent heat
of fusion should absorb the heat and keep the electronic components cooler than by con-
ducting the heat into the body of the module. This paper details the analysis of the
improvement in heat transfer effected by filling a cavity with a material that would under-
go a fusion phase change.
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Not____ge:Size of electronic components
has been exaggerated.

FIGURE 1.

Radar Electronic Module Design

Phase-change materials (PCM's) have just recently been considered for temperature
control of microelectronics [1,2] and, since the late 1960's, for thermal control in airborne
electronic subsystems [3, 4]. However, much research into heat transfer through a material
undergoing a fusion phase change has been conducted since the late 1950's [5]. (Ali refer-
ences to a phase-change material in this paper refer to a material that undergoes a solid-
liquid phase change.) Most early work was concerned with frozen food storage [6] and
metal solidification [7-9, 14].

Most early analysis neglected convective effects in the melted region of the PCM.
Heat transfer was thought to be mainly driven by conduction through the material [5, 6].
The .metallurgical industry first looked at convection in metal solidification. They were
concerned with how the metals were solidifying, lt was through these investigations that
the importance of including convection in the analysis of heat transfer in a PCM first came
to light [7-9, 14]. lt was found that although conduction was dominant at the onset and in
early stages of melting, convection heat transfer needed to be considered for longer melt
periods.

Much analytical and experimental determination of the heat transfer through a PCM
was done throughout the 1970's [9-22]and 1980's [22-38]. Some considered conduction
only [11-13, 15-17, 22, 25, 26, 30], and some included convective effects [14, 18-21,23,
24, 27-29, 31-38]. In considering conduction only, just the energy equation must be
solved. For convection, the continuity and momentum equations must also be satisfied. In
the momentum equations, the Boussinesq model which relates the density variation in the
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fluid to the temperature difference and considers density variation only as it contributes to
buoyancy, is utilized [18, 23, 24, 27-29, 31-36]. Then either a strong [10, 13, 18, 23, 24,
27-29, 31] or weak [11, 12, 15-17, 22, 25, 26, 30, 32-27] numerical formulation is used to
solve the equations.

NOMENCLATURE
t

a height of enclosure Qin heat input
A Area R thermal resistance for conduction

b width of enclosure Rto t total thermal resistance

c specific heat Ra ,Rayleigh number (based on

E, e internal energy height) [Prg[3ATa3/v2]

f aspect ratio (a/b) Ste Stefan number [cAT/L]

Fo dimensionless time [0_t/a2] t time

(Fourier number) At time increment

AFo dimensionless time step T temperature

[ff.At/a2] T i initial temperature
g acceleration due to gravity Tta melt temperature

h sensible enthalpy T1 temperature of liquid region

hm sensible enthalpy of solid Ts temperature of solid region
phase at Tm AT change in temperature

h* dimensionless sensible u velocity in x,direction

enthalpy [(h-hm)/c(Tm-Ti) v velocity in y-direction

H total enthalpy [h+AH] V volume

AH, L latent heat of fusion x,y coordinate directions
AH* dimensionless latent heat Ax control volume width in

[AH/c(Tm-Ti)] x-direction

k thermal conductivity Ay control volume width in

m node number in x-direction y-direction

n node number in y-direction oc thermal diffusivity [k/pc]

n unit vector normal to surface 13 thermal expansion coefficient

p time step counter [t=pAt] p density

P pressure _, rl dimensionless coordinates

Pr Prandtl number of liquid [v/ct] A_,Arl dimensionless control volume
• q" heat flux widths

q* dimensionless heat flux v kinematic viscosity

[q"Ax/k(Wm-Ti)]
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For the strong formulation, after an initial period when conduction dominates the heat
transfer, a marching solution employing a finite difference or finite element scheme is used
to solve the system of equations consisting of the continuity, momentum and energy equa-
tions. This approach is valid assuming that the convective flow is in a quasi-steady state at
each time step. Quasi-steady state in this context refers to a stationary melting front. For
the parameters commonly used (Pr =.50, Ra _ 108, Ste -_0.2), the velocity of the melting
front propagation is several orders of magnitude less than the fluid boundary layer veloci-
ties, which suggests that the convective flow is not strongly influenced by the movement
of the melting front. Therefore a quasi-steady state assumption for the convection process
can be made [29]. After a quasi-steady state solution is obtained, an energy balance is
done at the solid-liquid interface to determine the interface displacement so that the con-
vection equations can be solved at the next time step. The process is repeated until the
PCM is totally melted. To perform the energy balance, a deformed grid which follows the
shape of the melting front must be used at the interface, which complicates the numerical
formulation. The numerical procedure for the strong formulation is covered in detail in
[10, 39].

For the weak formulation, enthalpy reformulation of the energy equation is used,
which greatly simplifies the numerical scheme by ignoring the shape and exact location of
the phase-ch,,mge melting front [22, 25, 32]. As stated previously, the advantage of the
weak formulation is that it is not necessary to explicitly describe the solution at any singu-
larity; i.e. the melting front, and'if an analytical solution exists, it will also be a weak solu-
tion [16]. This allows the problem to be solved with a fixed grid approach using a finite
difference scheme to solve the entire system of equations simultaneously, thus simplifying
the numerical calculations in a multi-dimensional analysis. Once the solution is obtained,
the location of the melt front is known to an accuracy of the nodal spacing. Since the exact
location of the melting front is not a concern in the heat transfer analysis presented in this
paper, the enthalpy form of the energy equation was chosen as the best method of solution.

For electronic thermal control through the use of a PCM, normal paraffins (n-paraf-
fins) seem to be the best choice of material. In 1966, Northrop Corporation researched fus-
ible materials to be used for temperature control systems for N.A.S.A. [3]. They found
four n-paraffins that would be most suitable for this type of application; n-tetradecane
(C14H30), n-hexadecane (C16H34), n-octadecane (C18H38), and n-eicosane (C201-142).
They are inert and noncorrosive with very predictable thennophysical properties, have a
high heat of fusion, and it should be relatively simple to incorporate them into the module
package design. Ali properties of these four materials are very similar except for the melt-
ing temperature which is different in each case. A specific n-paraffin, n-octadecane, has
been studied in most previous experiments [20, 29, 31] and has a melt temperature of
28 °C. lt is widely used for thermal energy storage. Another n-paraffin, n-eicosane has a
melt temperature of 37 °C a_ldwill be considered, along with n-octadecane, in the applica-
tion section of this p_aper,Due to the sharp melting points, all phase change will be consid-
ered isothermal.

t
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THE GOVERNING EQUATIONS

+ The governing equations to be solved in a rectangular region undergoing a phase
change are:

For the liquid region

" i)u bv

b--x+ _ = 0 continuity

_u _U _u 1_P

b_ + u_-_+ v_-_ = - _ _x + agV2u x-momentum

Ov <gv Ov 1 OP

+ u_--x+ vx='oy= - + g_5(T- T.) + _V2v y-momentum

For the liquid and solid region

Dh+ff. AH+bh bh_ u_-_+ v_-_ = aV 2h . energy

The above enthalpy form of the energy equation is derived from first principles in Appen-
dix A and appears there as equation (10).

Ali the preceding equations must be satisfied when one is concemed not only with
conduction, but convection heat transfer as weil. However, it has been empirically shown
that a certain amount of time must elapse before convection currents are established to
dominate conduction heat transfer. BEnard, Gobin, and Martinez [29] determiner, through
experiments that the transition time, t0, for the boundary laye,r regime to establish in the
liquid region for the onset of convection is given by

( l)Pr Ps Ra-_-- • t

to = 4.59 _-e' PL

Using the properties of n-octadecane and n-eicosane, and the above equation with an
assumed A T used in the Rayleigh number, the transition time, t0, pertaining to the appli-
cation considered in this paper is approximately 35-40 seconds. (The assumed AT used in
the equation was conservatively estimated at 70 °C. However, as is evident in the applica-
tion section of this paper, actual AT's are much less which would increase the transition
time even more.) Since this is about twice as long as the 10-20 second operation time
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of the radar module to be studied, this paper will present a numerical procedure to solve
two-dimensional conduction with phase change* based on the enthalpy form of the energy
equation.

After nondimensionalizing, the enthalpy form of the energy equation without convective
terms becomes

OFo +_FoA/4* = (f) _ '" +_'2 •

This equation appears as equation (13) in Appendix A.

* The soluticm of heat conduction through a material undergoing a phase change is often

referred to as a Stefan problem, after J. Stefan who did some of the earliest analytical

work in this area in 1891 [411.
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THE NUMERICAL PROCEDURE

The Numerical Algorithm

Many numerical schemes for the solution of phase-change problems have been devel-
oped and written about in recent years [10-13, 15, 16, 22, 24, 30, 33]. Since the module

. geometry is rectangular and different geometries are not considered, a finite_difference
approach was chosen over finite-element for simplicity. A "control volume" finite-differ-
ence formulation as outlined by Patankar [10, 39] was chosen for the numerical solution.

Patankar refers to the nodal area or mesh element as a control volume.

This control volume approach uses central-difference approximations to the spatial
derivatives and backward-difference approximations to the time derivatives. The dimen-

sionless form of the energy equation was discretized in this manner (See Appendix B) and

a set of equations for all interior and boundary nodes was developed. This set of implicit

finite-difference equations is then solved in a FORTRAN program using the Gauss-Seidel
iteration method.

To handle the latent heat sink term in the discretized equations, the method outlined

by Voller [32, 33] is incorporated into the numerical code and is as follows (Also see

Figure 2 which is a flowchart of the method). Recall the enthalpy form of the energy equa-
tion;

Oh Oh Oh

+ _A H +_5 u_ + v_ = 0_V'h

where h = cT and the latent heat sink term for isothermal melting in a control volume is

,f L , (r>r.)

AHoy = F(T) IO<F(T) <L , (T= T.,) .0 , (T < T')

At the start of the algorithm, over one time step, the nod_ latent heats take on the value of
the previous time step (see step 1 in Figure 2). For each Gauss-Seidel iteration (see step 2),
the nodal equations for the sensible heat are solved. After solving, each node's sensible
enthalpy is added to that node's latent heat while the sensible enthalpy to initiate melting,
cT', is subtracted (see step 3), i.e.,

(AH,.,,,) ,;1 = (AH",.), + (h.,,.) ,- cT,,,.

A control volume is in the solid phase if (h.,,.) _< cT., and (AH.,..) _ = 0, and is in the
liquid phase if (h,.,.)i> cT,. and (AH,.,.)_ = L, Hence the following corrections (see
step 5) are made prior to the next iteration. If (AH",.) _+_< 0, set (AH_,,,) _+_ = 0, and

if (AH,,,,.)_+1 > L, set (AH.,,.)i+1 = L. If a control volume is changing phase, AH for
that node remains as determined by the above equation. This is continued until conver-
gence (see step 4), Convergence is achieved when (h,.,.) p+l _,+1_+1 - (h.,..) is less than a

THE NUMERICAL PROCEDURE 13



specified number. Upon convergence of the Gauss-Seidel iteration process, over one time

step, the nodal sensible enthalpies for those control volumes undergoing a phase change
will be equal to cTm with the latent heat in the range,0 < AH < L.

1 (A H,.,,,) p+I= (A H.,, ,,)p

2 Solve for (h,..) p. 1, i

p=p+ 1

3 (AH,.,.) p+1 = (AH,,,,,,) p+1+(h,.,.)_+l-cTmi+1 i

no
i=i+l '] 4 Converges ? yes "--1 p-=total time ?

(AH,.,,,) p.l = 0 (AH,,,,_) p.I <0 ? (solid)I+1 , 1+1

5

_+1 (A H_,.) p. 1> L ? (liquid)i+1

0< (AH,.,,,)P+1<L ? (changing phase)8+1

FIGURE 2,

Flowchart illustrating numerical updating of latent heat sink tenn.
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Algorithm Verification

In Voller's paper [33], solution of his algorithm for conduction onlyphase change is

compared to the analytical conduction heat transfer solution of one-dimensional solidifica-

tion in a semi-infinite region. Thus, to verify the melting algorithm, a FORTRAN program
was written to solve the problem shown in Figure 3 (A listing of this program, titled heat-

' code2.f, is included in Appendix D). This problem is identical to the problem in Voller's
paper except that this is a melting problem whereas his was a solidification problem,

,i

Y bT
--=0

,_: .,-._.__%_i!_i_,_'.._¢"_'_:_<-__".__ (1,1)
l!!ii!_!_!_ii_:....,.._._,.'._i_Ni_:_:'_" ..
•:'x.,:,.::..S:._[_:_<..:S'_-

I:_.'.::::::.::::_::::::::::._.:.::Z_.:_._._l_,_,_.._,g,. 11

k=0. O01 ,_,_:_:_._..'_,.__lli_%;"i_iii_"_:"__
c=1,0 l!i{it/l_ii__
p= 1.0 ......:_i_T = 0.5 Iii_._._:::i__ r = -0._
L=5.0 ii:i:i::_::::.?'.:i:._:'_iN_!_'.:'..:q_._"- .

:::_:._:_::::::::._"_Ti=-0.5 i:.::,...'.',,:_.'._ ::::..:.,..::::_.::.:._._'.&_._
:::}i_.::_:.-.:_:::_"_":_:.._:,:..._:_._L_"

Tm=0 /iNii.'Ni_
:::.:.:.:.:.:.'.._:::_::::::_...:..:..

____x
(0,0)

bT
_=0
by

F GUR3.
Algorithm Verification Problem

Figure 4 shows a comparison, at t=500 seconds, of the numerical code results of the
verification problem illustrated in Figure 3 and the analytical solution of one-dimensional
melting in a semi-infinite region, using the same properties and boundary conditions as
specified in Figure 3 except for x=l. The analytical solution was obtained by following the
procedure outlined in Ozisik [41] and is identical to the solidification problem except for a
sign change. Assuming that the liquid and solid material properties are equivalent, the
analytical solution yields the following equations for temperature in the liquid and solid
phases;

E '1, erf x/ (2 (_t) 2)
Tt (x, t) - T__-0

= liquid region
Tm-T,=o erf(Z,)

THE NUMERICAL PROCEDURE 15



= solid region
T,_-T_ ' erfc(_,)

where k is determined from

- t T.-Ti . e e _ kLat-_
'T.-T,,=0 erfc (_) ) erf(_,) c (T,- T,_o) '

B ,4 ................................ i .......................................

B.3

mr"a_r,,az_'r'al___ ..B ,1B,1B' 2B : _ I_ :

, i i!i!iiiiiii:iii'-8,3

-B ,4

-B ,5
B 5 18 15 2B Z5

NODE NUMBER

FIGURE 4,

Verification Problem Temperature Profile at t=500 s
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For the numerical run plotted in Figure 4, there were 21 nodal points in the x-direction
and the time step size was 1 second. The number of nodal points didn't affect the solution
niuch; however this time step produced a solution which agreed well with the analytical
solution. There is good agreement to t_.e analytical solution in the liquid region, however,
there is some divergence in the solid region due to the boundary condition at x=l. This is
due to a finite region (0 .<_x <1 ) being approximated by a semi-infinite region (0 <x < **).
If the plot of the analytical solution:was carried out farther in rbe x-direction, it would
asymptotically approach -0.5 as x -o o,. These results correspond well to Voller's results

• [33]. lt was determined from these results that the numerical procedure and computer
algorithm are fairly accurate in producing good results.

It shouk_ be noted, however, that the program is very sensitive to time step size, spatial
nodal spacing, convergence criteria._and even the material properties. All of these parame-
ters _ interrelated and when one or more is altered, the others must be modified until a
satisfacto_2! solution is obtained. For example, when this problem was run with a time step
larger than 1 second, the ::,olutionobtained in the liquid region did not match the analytical
solution quite as nicely. The slope of the temperature profile in the liquid region as shown
in Figure 4 tended to become lesssteep as the time step size increased, thus diverging
from the analytical solution. The time increment proved to be the most critical parameter.
For some time ;ncrement sizes, the solution never achieved convergence at the start of the
program while, for other time increment sizes_convergence was achieved after only one
iteration, Variations in the other parameters, such as node spacing and convergence crite-
ria, changed the solution slightly, but the temperature profiles varied by only about one
degree per node. The nodal spacing can be any value, however the convergence criteria
must be adjusted for each change in nodal spacing or time step. For the verification prob-
lem, the numerical solution matched the analytical solution best if convergence on the first
time step was achieved between 50 and 80 iterations. Therefore, after finding an appropri-
ate time increment and achieving convergence, the temperature profiles obtained cma be
considered accurate enough tor the purpose of this paper. For this verification problem,
agreement with the analytical solution gives an indication of the appropriate time step
size. When the computer code is altered to handle different boundary conditions, as in the
application problem which follows, additional checks are added to the code to assure
accuracy. This is covered in detail in the following section.

THE NUMERICAL PROCEDURE 17



APPLICATION: A RADAR MODULL

The Model

To compare the transient heat transfer in a _,:_,allelectronic module containinga PCM

to one cooled by means of conduction alone, a sdghtly different moduL 3*',ometryfrom

the aforementioned radarelectronic module is rr,odelled. In the model a storage cavity
containing a PCM is located directly behind the eI,:ctronic components (See Figure 5).
This rectangular cavity is the area for the two-dimensional heat transfer analysis. A spa-

tially uniform heat flux, constant with time, ,s assumed at the left (electronic component)

boundary, and the r_mmnin_, three boundaries are assumed adiabatic (See Figure 6). The
boundary conditions shown in Fi3ure ,6are deduced frc,m the configuration of the modules

shown in Figure 5 ard simplified for l_urposesof numerical analysis. For the PCM model,

since the objective ts to remove the heat from the electxonics quickly by absorbing the

latent heat, the center web should be as thin as structurally feasible to minimize the ther-

mal resistance between the electronic heat sources and the PCM. The PCM will initially

bc in the solid phase with an ,dr gap at the top of the enclosure to allow:for expansion upon

melting. This air gap is assumed to be small enough to have little effect on the Solution and

will be ignored. To compare to a module without a PCM, the cavity is simply analyzed in
the same fashion assuming it is solid aluminum.

Area of

Electronic F AnalysisComponents

/

_.'.::_:-::_::::::: ?:_'.'::_::_::i':::

.:'.':!.,<..".'_:...;.'i..'.,:.;?i
-- i:_.._:!._:._?il]_ L [_il_="

-INN

I

:_::_..'.-:!_.:__.::| / |_$®_.,.':...1
-_:_:_._a _ !;.'?_:.'._."_i_.i_i_

,_ E-'."_;..'-!._i_itL [:_:._!_!il

_ ,,,

nd Vie_ I-'fEnd View]'-I-"[EndVbw)"-I

FIGURE 5.

PCM Model Module Configuration
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PCM Model Geometry

The Numerical Solution

The _:ORTRAN program written for the verification problem was modified to handle

the boundary conditions of the application problem and to accept either dimensional or
dimensionless input and output (A listing of this program, titled heatcode.f is also includ-

ed in Appendix D). To determine if the solution is approaching a true solution, a cumula-

tive energy balance is calculated ateach time step to compare with the known energy input

to the system. Therefore, when the program is runat different time step sizes, spatial nodal

spacings, and convergence criteria, this energy 'value also gives an indication of the accu-

racy of the solution in addition to comparison with engineering approximations of the

temperature history.

Numerical solutions were obtained using the properties of n-octadecane and

n-eicosane which are tabulated in Table 1. Since the code was not written to handle vary-

ing material properties, an average value was used (see Table 1). The two paraffins were

assumed to have the same properties, except for the melt temperature.

In addition to the material properties of the PCM, the heat flux along the left boundary

and an initial temperature are input to the code. For the radarmodule problem, the heat
flux associated with a 15 W module is 15000 W/m 2. This flux and twice the amount,
30000 W/m 2, were run for comparison of results. The PCM was initially in the solid phase

at 20 °C, assuming room temperature, and subjected to the flux. The cavity dimensions are

a=2.0 cm and b--0.5 cm with a unit depth of 1.0 m. For all numerical solutions presented,

there were 20 nodal points in the x-direction and 10 nodal points in the y-direction. A time

ttl'l-LML.,tll II../IY . iXI'ILIt'I.lX IVlt../L..,tt..ll._L',,, 17
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step size of 0.0005 seconds along with various convergence criteria was used in ali solu-
tions. The various convergence criteria were chosen by str,dying the energy balance at
each time step, which will be explained further in the next section.

Material Property Actual Average [
Value .......Value Used_]

Fusion Temperature- (°C)
n'octadecane 28.05 28
n-eicosane 37 37

Latent Heat (J kg"1) 241000 241000

Thermal Conductivity
fW m"1°C'1)
solid 13,390

liquid 0.157 0.230
Aluminum Enhanced 17.91

Specific Heat (J kg"1°C'l) I
solid _ 1900

liquid 2200 2050

Density (kg m3)
solid 815

liquid @ 30 °C 775 790

Kinematic Viscosity
(m2s -1)
@ 40 °C 4x10"6
@ 30 °C 5x10"6 4.5x10 ''6

TABLE 1.

Material Properties of n-Octadecane and n-Eicosanc, "
Obtained. from Bentilla, Sterrett and Karre [3], and B6nard, Gobin and Zanoli [31]

Results and Discussion

The computer model was first used to predict the performance of a module with just an
aluminum filled cavity, and the results are illustrated in Figure 7. Because of the boundary
conditions, the heat transfer was primarily one-dimensional, therefore azJ arbitrary slice
half way up the y-axis gives a good indication of the ter"',erature profile throughout the
PCM at any time. Ali temperature profiles presented in this report use that midpoint tem-
perature profile as representative of the system performance. Figure 7 shows that the max-
imum temperature occurs at x=0 and that the temperature profile across the aluminum
varies by only 1 °C which suggests that a lumped parameter model would be an appropri-
ate calculation to check the validity of the numerical results.

20 APPLICATION: 4 RADAR MODULE



A simple energy balance on the cavity yields the equation: Q_,, = p VcA T. With an
initial temperature of 20 °C and a heat flux of 15000 W/m 2, the final temperatures for 10
seconds and 20 seconds of operation respectively are 32 °C and 44 °C. Comparing the
results of the two methods shows good ageement of the predicted wall temperatures.

Note that the average temperatures from Figure 7 are not exactly the same as the
• lumped parameter results, lt was found that comparing the cumulative internal energy

change to the known cumulative energy input was a valuable aid in determining the appro-
• priatevalue for the convergence criteria. For example, the cumulative energy input for a

period of 10 seconds in Figure 7 with a heat flux of 15000 W/m 2 was 3000 J/m and the
cumulative energy absorbed was only 2818 J/m (a 6% error) which accounts for the slight-
ly lower average temperature. Setting more stringent values for the convergence criteria
resulted in unacceptably long computer runs, and, in the extreme, failure to converge.

Figure 8 shows temperature profiles, for both heat fluxes, at t=10 seconds with
n-eicosane as the PCM. As node 0 corresponds to x=0, it is evident that the temperature

fight behind the electronics is much higher in this case than with the aluminum heat sink.
It is also evident that doubling the heat flux more than doubles the temperature rise at the
left boundary. The sharp temperature rise frorn node 5 to node 0 is in the liquid region and
is due to the poor thermal conductivity of the paraffin. Clearly, to decrease this Sharp tem-
perature rise in the liquid region, the thermal conductivity of the PCM must be improved.
Duffy [4] proposed putting an aluminum honeycomb structure throughout the PCM cavity
to increase thermal conductivity into the PCM and empirically showed an improvement.
In order to estimate the performance of such a honeycomb structure, a composite thermal
conductivity has been used to reduce an essentially three-dimensional problem to a two-
dimensional problem. In Appendix C, a conservative estimate of increased thermal con-
ductivity is derived and the result is shown in Table 1 for an aluminum enhanced PCM.

Numerical solutions obtained for aluminum enhanced n-eicosane with a heat flux of

15000 W/m 2 are shown in Figure 9. Note that the temperature rise in the liquid region is
much less, due to the improved thermal conductivity. The solution indicates a temperature
of 37 °C after 10 seconds and only 37.7 °C after 20 seconds on the left boundary. This _
solution for 20 seconds of operation shows improvement over the aluminum heat sink (see
Figure 7 for t=20 s). Recall that n-eicosane has a melt temperature of 37 °C. Since n-octa-
decane has a melt temperature of 28 °C, results with it as the PCM should show a substan-
tial improvement.

Figures 10 and 11 show just that. Numerical solutions with aluminum enhance n-octa-
decane show improvement over an aluminum heat sink for both run times and for both
heat fluxes. Comparing results in Figure 10 with the final temperatures obtained, for the

' aluminum heat sink, illustrated in Figure 7, it is evident that improvement in cooling, evi-
• dent through a lower temperature excursion, increases with longer operation times.

Since the density of the n-paraffins is 1/3 to 1/4 that of aluminum, the weight of the
heat sink is considerably lighter. And since melting occurred in only about 1/4 of thetotal
cavity and little energy is stored in the solid, the PCM cavity could be designed consider-
ably smaller than the aluminum heat sink, thus producing an even greater weight savings.

APPLICATION: A RADAR MODULE 21



31.8 _ ! , : , _ ,

¢j : : :
'-' 31.7 .... i .......... i........... :........... i ........... :........... _........... i........... i ........... :...........

-"o ...........j31.6 .........................................................

,

_31.5 ..........................................
Cd ; ,
@q i ;

31.4 J, i I , L i ,
Z 4 6 B 19 1Z 14 16 IB 29

NODE NLJNBER

43.2 I

'_ 43 1 .................... : ......... ,,: ........... : ............ -,,,, ..,,,,,,., ,,.,,,,,.,. ,,,,,,,,,,,,,,,,,,,,,,.

c
, DG ; ' :

M
IL • :
Z 42.9 ...... :..........

4Z .0 i L _ j i i..... i
'2 4 6 B 10 12 14 16 19 29

MODE NUMBER

FIGURE 7.

Application Temperature Profiles, q"=15000 W/m 2, Aluminum

146 [

1_.B ..........................

_' 190 ..........................

a. HB

m_ q"=30BBO Ulm*'2

E

59

\
\
\

\
\

49 ........ \...

q"=ISBBB ' W/_ ^

ZO
5 11] 15 29

NODE NLIMI]ER

FIGURE 8.

Application Temperature Profiles at t=10 s, n-Eicosane

22 APPLICATION: A RADAR MODULE



38

37,8 ..................... :............................ '.......................................................

37,6 .............. , ..... !............. , .............. i............................ ! ..........................
i

37,4 ...................!..................................................................................

37 .Ze

_= 37 i t :2e s

36 B ........................................................., . .............. "_.,,.:.,.: ...........................E

36,6 ..................... i.......... '_''"< .......... :............................ !..........................

36,4 ..................... :............................ :..._..'_-.._................... ',..........................
! i "--... !
: i "- ' "" "-- L,.,.....

36,2 ..................... :......................................................... ,...... ,,"=,,"' ,'- .- ,._ ,._ _

36 .L . l
5 18 15 28

NODE NUMBER

FIGURE 9.

Application Temperature,Profiles, q"= 15000 W/m 2, Aluminum Enhanced n-Eicosane

i i , !
2B .8

28.6

2B .4
\

2B. 2 .... ,'_.................,, ,_.,,:........................... i............................ i ..........................

5 18 t5 28

NODE NUHBER

FIGURE lO,

Application Temperature Profiles, q"-15000 W/m 2, Aluminum Enhanced n-Octadecane

APPLICATION: A RADAR MODULE 23



II

3Z ,5 _--_,,
!

31.5 " .... i' ........................ .............

i

o....°--.,,"ill)iiiiil)iiiiili iii)iiiiiiiiiii:

_-8 i ,
lO 15 2B

J

i HODE HUMBER

/
_ FIGURE 11.

Application Temperature Profiles, q"=30000 W/m 2, Aluminum Enhanced n-Octadecane

Max, Temp. Max. Temp. Approx.
Material @ t=10 s @ t=20 s Weight

,, ,, ,,, ,, ,

Aluminum 31,7 °C 43.2 °C 277 g/m

n-Eicosane 70.0 °C - 79 g/m

Aluminum Enhanced

n-Eicosane 37.0 °C 37,7 °C 99 g/m

Aluminum Enhrmced

n-Octadecane 28.5 °C 29,1 °C 99 g/m '

TABLE 2.

Comparison of Results
(q"=15000 W/m2, cavity size equal in ali cases)
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CONCLUSIONS

It has been shown in this paperand summarized in Table 2 that, through the use of a
PCM, the heat transfer in a small electronic radar module can be improved. After 20 soc-

. onds of operation an aluminum heat sink weighing 277 g would have a maximum temper-
ature of 43.2 °C while an aluminum enhanced n-octadecane paraffin occupying the same
volume and weighing only 99 g would have a maximum temperature of only 29,1 °C and

' would have used only a third of its absorption capacity. The findings of this investigation
could also be applied to other electronic subsystems as Weil. As electronic systems get
smaller and dissipate more heat, unique cooling schemes such as PCM heat reservoirs
should become more commonplace.

The enthalpy form of the energy equation has proved to be an efficient means of
numerically analyzing the heat transfer in a material undergoing a phase change for the
type of application considered in this report. Since this equation governs both the liquid
and solid regions and knowledge of the exact location of the phase-change front is unnec-
essary, a fixed grid methodology may be employed, thus simplifying the numerical algo-
rithm.

Results obtained through the numerical algorithm outlined in this paper should by no
means be considered exact. The algorithm and especially the latent heat source term
updating procedure have just recently been developed and have not been substantiated by
experiments [32]. However, the numerical solutions, when checked with energy balances

. and against an existing analytical solution produce results with enough accuracy for most
design purposes. The results indicate that further sttidy, consideration, and experimental
work in using PCM's in radar packages is warranted. The FORTI'.AN programs listed in
the Appendix of this report should prove useful to anyone analyzing heat flow through a
material changing phase.

In studying the heat transferring capabilities of a PCM, it has been shown that, alone,

the n-paraffins have too low thermal conductivity to be useful. However, if the thermal
conductivity can be improved through "loading" with a higher thermal conductivity mate-
rial, or by using a honeycomb structure to disperse the heat more rapidly into the paraffin,
these materials show great promise for cooling electronics that operate for short time
intervals. The weight savings iri using a paraffin for a heat sink over the typical metal he_,_
sink is significant also. In airborne vehicles, such as the vehicle for which this radar
module is designed, weight is an important issue. Designers are constantly looking for

. ways to lighten their airborne electronic packages, and using PCM's for thermal control
offers just that.

More research, including experimental work, needs to be undertaken before PCM's
become a common means of cooling electronic packages. Development of PCM's with
higher thermal conductivity is needed and should be considered. In airborne vehicles and
in space systems where other cooling methods are impractical or impossible, thermal man-
agement through the use of a phase-change material looks extremely promising.
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APPENDIX

A. Derivation of r,lthalpy form of Energy Equation:

Conservation of energy may be expressed as

P_7= E_ov+P_coN_+ WNtr+_o (1)

where:

/_sr = Rate of energy stored= p_ (see note below)

Dh Dh

/_aov = Rate of energy advected by bulk fluid motion = -P (u_ + v_-_)

8CONZ_= Rate of energy conducted = kVET = -kwh , since h - cT
C

l'f'N_r= Rate of work done on fluid = • = 0 (viscous dissipation, neglected for
speeds lower than sonic flows)

_'G ,,= Rate of energy absorbed = Latent heat sink term

De Dh _tNote that internal energy may be expressed as e = h - Pv and _ = _ - Pr. Assum-
ing an incompressible fluid and negligible volume change upon melting, the second tez_n,

-°Pr is zero, therefore the internal energy may be expressed in terms of enthalpy.
cit

. Assuming constant material properties, equation (1) may be written as

Dh Dh Dh Eo
- + (zV2h (2)

Dt + u-ff-_+ V_y P i

k
where o_ = u.

pe
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Next,/_o, the latent heat source term, is d._',rived.

The total enthalpy can be defined as the sum of the sensible enthalpy, h, and the latent
heat, A H;

n = h + AH. (3)

Note that for isothermal melting, the value of the latent heat absorbed is

_,,

L , (T>T,,) !;,

AH = F (T) = {0 (r < T_,) ' (4) ',_:,

Taking an energy balance over a volume undergoing a phase change yields

S S

where u here is a general velocity term in all directions.

E,,

Applying the divergence theorem to equation (5)

DH{p_ +div(Hpu) -div(kVT) }dV = 0

or since V is arbitrary

_H

p_ +div(Hpu)-div(kVT) = 0. (6)

Substituting equation (3) into (6), assuming k and p are constant, noting that h = cT and
rearranging yields

___h+_AHz +div(hu) +div(AHu) -_V 2h = 0. (7)Jt o,

Expanding equation (7)

Dh _A _u _v Dh Dh)+ H+h (_--_+_-_) +u(_-_+_--_ +

Ov(AH) (_-x+_) +u( Alt+ AHl-etV2h = 9. (8)
I
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However, from continuity,

Ou N
_-_+_ = o.

Therefore equation (7) reduces to

0h 3__ (Oh Oh. _ +_yAH) otgah 0. (9). 0_+ AH+u 0x+_;_+.(AH - =

However, for isothermal phase change (the limiting case of phase change over a tempera-

ture range), u = 0 at the solid-liquid interface due to the no-slip condition where AH

changes from 0 to L. Equation (9) then reduces to

Oh _ Oh Oh "0--t+ AH + u_--_+ v_-_ = ctV2 h (10)

Comparing equation (10) to (2), the latent heat source term is

bAH. (11)_'c= -P_

Neglecting convection in equation (10) yields

Oh0_ + AH = o_V2h. (12)

This equation may be written as

1 Oh _ 02/1 02h

(_ +_A#) - _ +y---_
which in terms of dimensionless variables becomes

' '= 2 02h * 02h* 1
0 • + 0__o: = (f) + (13)
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B. Discretization of Enthalpy form Of Energy Equation:

Recall equation (11) from Appendix Part A

i)Fo + 0-_ A/-/* = (f) _-(/_2""+ _ ' (13)

Cent_-difference approximations to the spatial derivatives and backward,difference
appm×imations to the time derivatives are used to discretize equation (13). '

_ Ay
¢tAt A_ fax and Arl = _ , then

Let t =pAt , AFo - a2 , a a

the partial derivative approximations are:

o_ , h,,,n*p+1 h,,,,s*p

_-F-;hI -- ' AFo (14)
ms Ft

*p+l AH *P

_) AH*[ = AH,.,. -- .,,.
ikFo .,,,, AFo (15)

i *p+l 1 n_p+l
O____2h, h,..+1 + h,,,,._l*p'. - 2h.,,

0112 ,.,,,= ' (A_) 2 . (17)

Substituting equations (14), (15)_ (16), and (17) into (13) yields

(h.,.*'+'- h.,.*" an.,?,'_- An,.*,)KFo + AFo )

= (f) 2 h,.+l, *p+I +h.,,_l, -2h,.,
(A_) 2

( *t,+! h.,,,,_l*p+l h *P+')

h,,, ,,+1 + -2 ,.,.

+ (Aq) 2 . (18)

- 32 APPENDIX



Therefore, the implicit form of the finite-difference equation for an interior node m,n is

2 (f) 2AFo 2AFo

h_. *p = AHm,.*P+'-AH.,,.*P+,(I+ (A_) 2 + (Arl)2)h.,, *p+I

' Q)2AFo AFo

(A_) 2 (h,.+l, +hm__, ) (Arl)2(h.,,.+l +hre,,,_ 1 ), (19)

Finite-difference equations for the boundary nodes are derived in a similar fashion, and
are listed below and on the following page, Equations are included for both programs, For
more information see [39-41 ].

Boundary nodes at x=0 with boundary condition of the first kind (prescribed temperature):

hre,*p = C. (20)

Bounda_ nodes at x=0 With boundary condition of the second kind (constant heat flux):

2 (f) 2AFo 2AFo h *p+ l*p+l AH *P. (1 + +-'---5) ,,,,,,
h,,,.*p = AH,.,,, - ,.,. (A_)2 (AT1)

2 (f) 2AFo AFo *.+1 *p+l).
, (A_)_ (q*+h.+,,: '*') (All)_(h.,_+_ +h.,___ (21)

Boundary nodes at x=b with boundary condition of the second kind (insulated):

2 (f) 2AFo 2AFo h *p+ l*p+I_AH *P + (1+ +----_) ,.,_
h,,,,*p = AH,.,. m,. (A_) 2 (An)

2(f) 2AF° I) AFo +(A_)_ (h.__,*'+ *'_ *'._). (Arl)2(h,,.,,+1+ h,i.,_I . (22)

• Comer nodeatx---O,y=a withboundaryconditionsofthesecondkind(constantheatflux
atx---0andinsulatedaty=a):

2 (f)2AFo 2AFo
*'+ (1+ + ---_) h.,*_+_

h,,,.*_' = AH,.,,,*P+' -,AH ,. (A_)2 (An)

2 (f) 2AFo + 2AFo *.+1
(A_,) 2 (q, + h,,+l.fp 1) (AT1)2 (hre,._ 1 ). (23)
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Comer node at x=b, y=a with boundary conditions of the second kind (insulated at x=b
and insulated at y=a):

*p._l A *P 2(f) 2AFo _2AF° +
h,_,*p = AHm." - H_, + (1+ (A_) 2 + (Arl)2)h_*P

2(f) 2AF° *p+l) 2AFo *p+l
- (A_) 2 (h,._l.,. (ATI)2 (hre.,._1). (24)

The preceding finite-difference equations are expressed in a convenient form, however
prior to coding, they have been .rearranged to solve for hre* p+l.

For problems involving a boundary condition of the third kind, i.e. convection, the
boundary finite-difference equation may be discretized in the same manner and inserted
into the code. Thus, the FORTRAN programs listed on the following pages may be adapt-
ed to handle any sort of Stefan problem in a rectangular region.

C. Determination of Aluminum Enhanced PCM Thermal Conductivity:

Assuming that the aluminum honeycomb structure is aligned as fins in the direction of

heat flow, i.e. the x-direction, and that it occupies 10% of the total volume of the cavity,
the thermal conductivity for one-dimensional steady-state heat transfer may be determined

as two composite materials in parallel. Although the concern here is with transient heat

transfer, this approximation will be used to determine an enhanced thermal conductivity
and following is a discussion of 'why this approach is valid.

The thermal resistance for conduction in the cavity is defined as

b

R = k--A'

Therefore, the thermal resistances for aluminum and paraffin are

b
for aluminum RAt -

kAtAAt

b

and for paraffin R_, = /cpAp"

The total thermal resistance can now be defined as

1 1 1

R_ot - RAt + R'-pp
or

kto,A,ot = kAtAAt+ kpAp.

,,_ ,a
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Dividing both sides by the total area yields

= )

in which the total thermal Conductivity is a sum of each material's thermal conductivity

, multiplied by their respective area ratio which is the same as a volume percentage since
the lengths of the two materials are equal.

' Thus, withkAt = 177 W/m°C[40]andkp = 0.23 W/m°C,andassumingl0%ofthe
cross-sectional area is occupied with aluminum,

k,o, = (0.1) 177 W/m°C + (0.9)0.23 W/m°C = 17.91 W/m°C

This value appears in Table 1 under aluminum enhanced thermal conductivity.

Since this paper is a feasibility study for the use of PCM's in cooling electronic mod-
ules, this determination of improved thermal conductivity gives an approximation to be,

used with the developed numerical code. However, realistically, with aluminum fins
extending into the paraffin PCM, melting would occur around the fins and a distinct melt-
ing front would not propagate through the cavity as modelled. This phenomenon is three-
dimensional and its analysis is beyond the scope of this paper. In such a system, more
PCM should be melted quicker than without the honeycomb structure, thus absorbing
more heat in a shorter period. Since absorbing more heat faster would only reduce the tem-
perature excursion further, the author feels that the results presented in the application sec-
tion give a conservative indication of the advantages of using a PCM.

!
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[

D. Fortran Program Listings:

C pi.grim hc.ltctxt_2,f
C

C

C
*************************************************************************

* PROGRAMFORSOLUIlON OFA TWO-DIMENSIONALSTF.FANPROBLEMIN A *
* RECTANGULARCAVITY_,THt SPECIFICBOUNDARYCONDITIONS *

*BOUNDARYCONDITIONS:*

*LEFT BOUNDARY.-- CONSTANTTEMPERATURE='rA *
*TOP BOUNDARY ..... INSULATED*

*RIGHTBOUNDARY-- CONSTANTTEMPERA'IURE= TI *

* BOTTOMBOUNDARY- INSULATED*

*INITIALCONDITION:TEMPERATUREOF EN'HRECAVITY= TI>TM*

* PROGRAM BY KEITHW,SNYDER, 7/24/90 *
*M,S, PROJECT*

C

C

C
*************,

* VARIABLES*
***li*O*** *****

C

C

INTEGER I, J,K, KK, L, i.L, M,N, IOUTI, IOUT2

REALA, B, C, TCOND, ALPItA, ttF, TM, TA, 'II, IT, DELT,F

REAL DELFO,DSE, DLH, DELE, DELZ, CI, C'2,C3, CC, TEST
REAL tt(500,500), DELH(500,500), DELHP(500,500)

REAL DH(500,500), HP(500,500), I.,It(500,500), T(500,500)

REALDHP(500,500),_1_(._0,500),C_E(500,500)
REAL TF_TÁ,VCV, mE,IIO(500,500), DELHO(500,500)
C
C
C
************************

* VARIABLE DEFINITION*
************************

C

C

c I.J.K,L,KK
C LL,IOUT - COUNTERS AND CONTROL
C M - NUMBER OF NODES IN X-DIREfTI'ION
C N - NUMBER OF NODES IN Y-DIRECH'ION
C A - HEIGHTOF CAVrI'Y
C B - WIDTHOF CAVITY

C C- SPECIFICItEAT (CONS'IAN'I)
C TCOND - THERMAL CONDUCTIVITY

C ALPttA - THERMAL DIFFUSIVITY

C HF- HEAT OF FUSION (LA'IT2qTltEKI')
C TM - TEMPERATUREOF MELT
C TA - TEMPERATUREOF LEVI' BOUNDARY
C TI - TEMPERATURE OF RIGltT BOUNDARY AND INITIALTF2VlPERKFURE
C TI'- TOTALTIME OF PROCESS
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C DELT- TIME STEP
C F. ASPECTRA'IlO OF CAVITY
C DELFO - FINITE-DIFFERENCE FORM OF FOURIER NUMBER
C DSE,DSE2. INITIAL DIMENSIONLESS ENTHALPY
C DLH. DIMENSIONLESSLATENTttEAT

C DELE - DIMENSIONLESS X-COORDINATE(DELTA ETA)
C DELZ - DIMENSIONLESS Y-COORDINATE(DEUFAXI)
C CI,C2,C3. CONSTANTS

• C CC. coNVERGENCE CRITERION

C H. DIMENSIONLESS NODAL SENSIBLE ENTttALPY

C HO. DIMENSIONLESS NODAL SENSIBLE ENTHALPY (PREVIOUS 1TFJ_ATION)
• C HP. DIMENSIONLESS NODAL SENSIBLE ENTtIALPY (PREVIOUS TIME STEP)

C DELH. DIMENSIONLESSNODAL LATENTHEAT

C DELHO- DIMENSIONLESS NODAL LATt_NTHEAT(PREVIOUS ITERATION)
C DELHP. DIMENSIONLESS NODAL LATENTItEAT (PREVIOUS TIME STEP)
C T - NODAL TEMPERATURE
C DH. NODAL SENSIBLE ENTHALPY
C I2t - NODAL LATENTHEAT

C TEST - CONVERGENCE CHECK
C DttP - NODAL SENSIBLE ENTItALPY (PREVIOUS TIME STEP)
C LHP - NODAL LATENTHEAT (PREVIOUS TIME STEP)
C CIE- CHANGE IN INTERNAL ENERGY (CONTROL VOLUME)
C VCV - VOLUMEOF CON'IROL VOLUME

C TE. ENERGY INPUTTO SYSTEM
C

C

C
***************

* INPUT DATA*
* _*************

C
C
PRINT * 'ENTER VALUES IN CONSISTENT SI UNITS,,,'
PRINT *
PRINT * 'F_.NTERIIEIGHT OF CAVITY'
READ * A

PRINT*
PRINT * 'ENTER WIDI'I[ OFCAVITY'

READ * B

PRINT *

PRINT * 'ENTER SPECIFIC HEATOF PCM'
READ * C

" PRINT *
PRINT * 'F2qTERTltERMAL CONDUCTIVITY OF PCM'
READ " TCOND
PRINT *
PRINT * ',ENTERTItERMAL DIF],'USIVITYOF PCM'
READ * ALPIIA
PRINT *
PRINT * 'ENTER LATENT HEAT OF PCM'
READ *, ttF
PRINT *

PRINT *,'ENTER MELTT_MPERATURE OF PCM'
, READ * 'lM

PRINT *

PRINT * 'F_,NTERTEMPERATUREOF LEFT BOUNDARY'
READ *, TA
PRINT *

PRINT * 'ENTER TEMPERATUREOF RIGIIT BOUNDARY'

READ *, TI

PRINT *

PRINT * 'ENTERTOTAL'lIME OF PROCESS'

: READ * VI"

PRINT*
PRINT *, 'ENTER TIMEINCREMENT'
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READ _',DELT

PRINT *,' '

PRINT *,'ENTER NUMBER OF NODES IN X-DIRECTION °

READ *, M
PRINT*,' '

PRINT *,'ENTER NUMBER OF NODES IN Y-DIRECTION'

READ *, N
PRINT*"t
PRINT*,'CONVERGENCE C'PdTER1ON?'

READ *, cn '
PRINT*"

PRINT *,'PRINT OUT ENERGYINPIYFTO SYSTEM'
PRINT *,'EVERY _ TiME STEP?'

READ *, IOUTI

PRINT*,' '

PRINT *,'PRINT OUT ENTHALPY PROFILE'

PRINT*,'EVERY _ TIME STEP'/'

READ *, IOUT2
C
C
C
***********************************

* ASSIGN VARIABLESAND CONSTANTS *
***********************************

C
C
F=A/B

DELFO=ALPHA*DELT/A**2,
DLtt=HF/(C*(TM-TI))
DSE=(C*TI-C*TM)/(C*(TM.'II))
DSE2=(C*TA-C*TM)/(C* (TM-TI))
VCV=(A/(N.1))*_/(M-1))
TE---O,0

DELE=I,/(N-I)
DEI.Z_I,/(M-I)
CI=I,0+2,*F**2,*DELFO/DELZ**2,+2,*DELFO/DELE**2,
C2=F*'2,*DELFO/DELZ**2,
C3=DELFO/DELE**2,
C
C

C
*******************************

*INITIALIZE NODAL EQUATIONS*
*******************************

C
C
DO 10J=I,N
H(I,J)=DSE2
DELH(I J)=0,0
I0 CONTINUE
DO 15 I=2,M

DO 2OJ=I,N

H(I,J)=DSE
DELH(IJ)_.O
2OCONTINUE
15CONTINUE
C
C

C

* BEGIN TIME INCREMENTING *
****************************

C
C
COUNT=DELT
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L=I
KK'I
DO 23 WIIILE (COUNT, L'I;'I'F+DEI:I')
DO 24 I=I,M
DO 25J=I,N
DBLHP(I,J)=DELH(I,J)
HPta,D=H(I,J)
25 CONTINUE

' 24 CONTINUE
C

C

. C
*****************************

* FINITEDIFFERENCE SOLVER *
*****************************

C
C
K---O
LL=O
TEST---CC+1,

DO 27 WIIILE (TEST ,OT,CC)
C
C L.ATENTHEAT ADJUS'IWIENT
C
DO 30 I=1,M
DO 40J-,1,N
HO(_,J)=H(I,J)
DELHO_I,J)=DELII(I,J)
DELII(I,J)=DEI-,HO(I,J)+II(1,J)
IF (DELH(I,J) ,(DI;DLH) '11IEN
DELII(I,J)=DLtl
ELSE IF (DELl l(I,J),LI', 0,0) TIIEN
DELH(I,J)=O,O
ENDIF
40 CON'I1NUE
30 CONTINLIE
C
C TOP BOUNDARY NODES
C

DO 60 I=2,M-1
H(I)N)=(It(I,N)-DELH(I,N)+DELHP(I,N))/C 1+C2/CI*(H(I+ 1,N)+H(I. I,N)
I)+2,*C'3lC1*H(I,N-1)
60CONTINUE
C

C INTERIORNODES
C

DO 7OI=2,M-I
DO 80 J=2,N-I

H(I,J)=Ot(I,J)-DELtl (I,J)+DEI.t ll)(l,J))/C1+C2/C1*(H(I+1,J)+llO-1,
IJ))+C3/C1*(tt0,J+ 1)-+|1(l,J-1))
80 CONTINUE

70 CON'HNUE
C

. C BOqH'OMBOUNDARY NODES
C

DO 90 I=2,M-I
nta, 1)=(ti(1,1)-DEL,tRI,1)+DELl IF(I,1))/Cl+_/(:l *(H0+ 1,1)+H(I-l, l)
1)+2,*C3/C1'I-10,2)

90 CONTINUE

C
C
K--K+1
LL=LL+I

IF((KK,EQ, IOUTI),OR,(COUNVl',EQ, DEIT))TIIEN
IF (K ,EQ, I) THEN
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PRINT *,' '

PRINT '(IX, Al2, i4, AI, $)','H'ERKrION ,_ ', K, ','
ELSE IF (LL ,UF,11) 111EN

PRINT '(14,AI,$)',K,','
ELSE

PRINT '(IX,14,AI)',K,','
LI._-O
ENDIF
ENDIF
C

C CONVERGI3NCE CHECK
C

i

'rl_T_,0

DO I00I,_I,M
DO 110J,_I,N

TESTI =ABS(HOOj)-tI(I,J))
IF(TF_TI,GT,TESI')THEN
TF.,ST_'r_TI
ENDIF
1I0CONTINU E

100CONTINUE
27CONTIN UF.
C
C
C
*******t***

* OUTPUT *

C
C

IF (COUNT ,EQ,DEL1')TIIEN
p_r *,' '
PRINT *,' '

PRINT *,'OUTPUTVALUESARE EXPRESSED 1NSAME CONSISTENT'

PRINT *,'SI UNrI'S AS INPUT,,,,'
PRINT *,' '
PRINT *,' '
PRINT *,'INPUT VALUESFORTIIIS RUN:'

PRINT *,' '

PRINT 200, *tlEIGIrF = ', A, 'WIDTII = ', B
200 FORMAT (IX, A9, 09,4, T40, AS, G9,4)

PRINT 210, 'SPECIFIC HEKr = ', C, 'IATEWr HEAT= ', IlF
210 FORMAT (IX, AI6, G9,4, T40, Al4, G9,4)

PRINT 220, 'THERMAL CONDUCTIVITY = I, TCOND, 'TIIERMAL DIFFUSIVrr
IY = ', ALPHA
220 FORMAT (IX, A23, 09,4, 'I'40, A22, G9,4)
PRINT 230, 'MELT TEMP,= ', TM
230 FORMAT (1X, AI3, F9,4)

PRINT240, 'LEFTBOUNDARY TEMPERATURE= ', TA

240 FORMAT (IX, A28, F9,4)

PRINT 245, 'RIOHT BOUNDARY 'rEMP_(KrURI_ = ', TI
245 FORMAT(IX, A29, F9,4)

PRINT 250, 'TOTALTIMEOF PROC_qS = ', 'VI', 'TIME INCREMENT= ',
IDELT

250 FORMAT (IX, A24, G9,4, T40, AIT, G9,4)
PRINT *,' *

PRINT *,'CONVEROENCE cRrrEPdON = 4,CC
PRINT* "

PRINT *,'NUMBER OF NODES IN X-DIREUrlON = ', M
PRINT *,'NUMBER OF NODES IN Y-DIRECTION = ', N

PR_r*,' '
PRINT *,' '
ENDIF
KK=KK+1
IF (KK ,EQ, IOUTI +1) TIIEN
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PRINT *,' 'lIMB = °,COUNT
BNDIF

DO 3O0I=I,M
DO 310 J-'l ,N
DH(IJ)=II(Ij)*C*(TM.TI)+C*TM
DIIP(I,J)._HP(I,J)*C*(TM.TI)+C*TM
LII(I.I)=DBIAI(I,J)*C*(TM-TI)

, LHF(I,J)=DBIAIP(I,J)sC*(q'M-TI)

r(Ij)=DH(I,J)/C
n_(L,EQ,IOU'l_)'rlW.N
PRINT 320,'NODE ,, (',I,',',J,') H ,=',DH(I,J),'L = ',

' ILH(IJ),'T = ',T(IJ)
320FORMAT (IX,ASj2,A1,12,AS,E12,6,3X,A4,EI2,6,3X,A4,E12,6)
IF ((I ,BQ,M),AND, (J ,BQ,N)) L=0
BNDIF
3I0CON'IINUB
3OOCONTINUB
L=L+I
C
C
C

* CALCULATE CIIANflE IN INTERNAL ENI!RGY *

C
C
C _TER1OR CONTROL VOLUMES
C?

DO 400 I=2,M.I
DO 410J=2,N-I
CIB(I,J)=TCOND/(ALPIIA*C)*VCV* ((DII(IJ)-DIIP(I,J))
I+(LII(I:)-LIII)(I,J)))
4I0 CONTINUE
400 CONTINUE
C
C 'IDF BOUNDARY CONTROl. VOI.UMES
C

DO 420 I=2,M.I
CIE(I,N)=TCOND/(ALPI lA*C)*(VCV/2,)t ((DI I(I,N).DI IF(I,N))
I+(LII(I,N)-LHP(I,N)))

420 CONTINUE
C
C BOTIDM BOUNDARY CON'IROL VOI.UMES
C
DO 440 I=2,M-I
CIE(I, l )=TCOND/(ALFIlA*C)* (VCV/2,)*((DII(I, l ).DI1P(I,I ))
1+(LH0,1)-LHP_,_)))

44OCONTINUE
, C

C 'IOTAL CHANG E

C

DO 45Oi=I.M
, DO 460 J-1,N

Ti_TE+CIE(I,J)
460 CONTINUE
45OCONTINUE

DO 470J=2,N-I
TF:TB +'I'COND*(A/(N-1))*((TC2,J).T(1,J))/(B/(M-1))
I)*DELT
470 CONTINUE

TE=TE+TCOND*((A/(N-1))/2,)*(CI'(2,1)-T( 1,I))/(B/(M-1))
- I)*DELT

TE=TE+TCOND*((A/CN"1))/2,)*(CI'(2,N)-'I'(I,N))/(B/(M-1))
I)*DEI.,T
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DO 480J=2,N.1

TI_'m+TCOND* (AI(N.I))*((T(M.IJ).T(M,J))/(B/(M-I))
I)*DELT

480CONIINUB

TI_'I_I+TCOND*((A/(N.I))/2,)*((T(M.l,I).T(M,|))I(BI(M.1))
I)*DP.LT
T_'m+'rCOND*((,_(N.I))n,)*(c'r(M.I,Nyr(M,N))/(B/(M.t))
I)*DBLT

IF(KK ,BQ, IOUTI+I ) THEN
PRINT *,'BNEROY INPUq''lDSYSTF.M= ','111
PRI]_['*,_'
KK=I
BNDIF

C
C
C
,,,,,,,,,,,,,,,,,,,

* INCREMENT 111Vlll*
******************.

C

C

COUNT=COUNT+ DELT
23CONTINUE

C
C

C
************************

* PROORAM TERMINATION *
************************

C

C

PRINT*,' '

PRINT ',"
PR[WF *,'TIMF. OF PROCI_S COMI'LE'NiD.....PRO(]RAM TERMINATI".I),'
C
STOP

END

C program_ttcode,f
C
C
C

************************************************************************

**

* PROGRAM FORSOLUTION OF A qWO-DIMF.NSIONAI, S'IT,FANPROBLEM IN A *

*RECTANGULAR CAVITY WITll SPECIFIC BOUNDARY CONDITIONS *

************************************************************************

* BOUNDARY CONDITIONS: *
**

* LEFT BOUNDARY --- CONSTANTIlEAl' FLUX *
*qT)P BOUNDARY .... INSULA'I'ED*
* RIOHT BOUNDARY -- INSULATED *
* BOq'IDM BOUNDARY- INSULATED *

* INITIAL CONDITION: TBMPERKI'UIH!OF ENq_RECAVITY = TI>'IWI*
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* PROGRAM BY KEITII W, SNYDER, 7/27/90 *
* M,S, PROJECT* F

C

C
C

, * VARIABLES *

C
, C

IN'rEOER I, J, K, KK, L, LL, NTYI)E, M, N, IOUTI, IOU'I_
REAL A, B, C, TCOND, ALPHA, HI_ 'I'M, TI, QC, 'i'l; DEEr, F
REAl, DELFO, DSE, Q, DLII, DELE, DEll, CI, C'2,C3, CC, TEST

REAL I1(500,500))DELH(500,500), DELl 11)(5(XI,500)
RF.ALDrf(SO0,500), lIP(S00,50{}))LH(500,500))T(500,500)

REAL DItP(500,500), LHI)(500,500), CIE(500,500)
REAL 'VESTI, VCV, 'I'EIHO(5{X},500),DELl IO(500,500)
C
C
C
************************

* VARIABLE DEI"INI'IION *
************************

C
C

c l_;K,l,,
C LL,NTYFE,
C IOUTtKK-COUNTERS ANl)CONTROl.
C M •NUMBER OF NODIkqINX-DIRE(YI'ION
C N- NUMBER OF NODES INY-DIREUI'ION
C A -HBIGIITOF CAVITY
C B- WIDTIIOF CAVITY

C C- SPECIFICIlEAl'(CONSTANT)
C 'I_7OND -TIIERM AI,CONDUCl'IVI'I'Y
C ALFIIA-THERMAl. DIFI"2JSIVITY

C lIP-IIBATOF FUSION (I.A'I'ENTIII','A'I)
C T/Vl.TEMPERATURE OF MEIT
C TI- INlqlAL TEMI)ERATURE
C QC- HEAT FLUX ALONG LEVI' BOUNDARY
C TI'-TOTAL TIME OF PROCESS
C DEEr. TIME STEP
C F. ASI)ECTRATIO OF CAVITY
C DEf.,PO. IrtNTIq2-DIFFERENCEFORM OF FOURII!R NUMIII!I(
C DSE. INITIAL DIMENSIONLF.SSENTHAI.I)Y
C Q- DIMENSIONLESS IIEAT FLUX
C DIAl. DIMENSIONLESS LATENT IIEAT
C DELE. DIMENSIONLESS X-COORDINATE (DELTA ETA)
C DEll. DIMENSIONLESS Y.COORDINATE (DELTAXI)
C CI,C2,C3. CONSTANTS
C CC- CONVERGENCE CRITERION
C H. DIMENSIONLESS NODAL SENSIBLE F,NTIIALI)Y

, C 110.DIMENSIONL[_.SSNODAL SENSIBLE ENTIIALPY(PREVIOUSI'rFJI.ATION)
C HF. DIMENSIONLESS NODAL SENSIBLE ENTIIALFY(PREVIOUSTIME STEP)
C DELH. DIMENSIONLESS NODAL LATENT IIEAT

, C DELtlO - DIMENSIONLI_S NODAL LATENTIIEAT (I)REVIOUS I'I'FaRA'I_ON)
C DELtlP - DIMF.NSIGNI_.SS NODAL LATENTIIEAT (I)REVIOUS TIME STEP)
C T- NODAl. TEMPERATURE
C DH. NODAL SENSIBLE ENTtlALPY
C LH. NODAL LATF.NT IlEAl'
C 'IT..ST.CONVERGENCE ClIP.CK
C DIII)- NODAL SENSIBLE ENTtlALI)Y (I)REVIOUSTIME STEP)
C LIIF. NODAL LA'I_N'r IIEAT (1)REVIOUS TIME STEP)
C CIE. CIIANGE IN IN'Iq_RNAI_ENERCJY(CON'H_OLVOLUMI')
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C VCV- VOLUME OF CONTROL VOLUME
C 'lE-ENERGY INPUT TO SYSTEM
C

C

C

*INPUT DATA *
***************

C
C

PRINT *,'DIMENSIONALOR DIMENSIONLESS PARAMETERS?'
PRINT **'F2crER I OR2 .....'
PRINT *,' '
READ **NTYPE
I17(NTYFE,EQ,1)TItEN
C

C DIMENSIONALINPUT
C
PRINT* '
PRINT * 'ENTER VALUESIN CONSISTENT SI UNITS,,,'
PRINT* '
PRINT * 'ENTER HEIGHTOFCAVITY'
READ *,A

PRINT *

PRINT *,'ENTFAt WIDTH OF CAVITY'
READ * B

PRINT *,

PKINT *,'ENTER SPECIFICHEATOF PCM'
READ * C
PRINT *
PRINT * 'ENTER TtIERMAL CONDUC'HVI1Y OF PCM'
READ * TCOND
PRINT *
PRINT * 'ENTER _ITIERMALDIFFUSIVITY OF FCM'
READ * ALPHA
PRINT *

PRINT * 'ENTER LATENT tIEATOF PCM'
READ * HF
PRINT *
PRINT * 'ENTER MELT TEMPERATURE OF FCM'
READ * TM
PRINT *

PRINT * 'ENTER INITIAL TEMPF.RATURE OF PCM'
READ * TI
PRim'*
PR1]sVI"* 'ENTER CONSTM¢I' HEAT FLUX ALONG LEVF BOUNDARY'
READ * QC
PRINT *
PRINT * 'ENTER TOTAL "lIMEOF PROCESS'
READ * Tr
PRINT * '
PRINT * 'ENTER TIME INCREMENT'

READ * DELT
PRINT*'
ELSE

C
C DIMENSIONLESS INPUT
C

PRINT* '°t

PRINT *,'ENTER ASPECT RATIOOF CAVH'Y'
READ *, F
PRINT *,' '
PRIVF *,'F2qTER FOURIER NUMB'FR'
READ *, DELFO
PRINT *,' '
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PRINT * 'ENTER INITIAL DLMENSIONLESSSENSIBLE ENTttALPY'
READ * DSE

PRINT * '
PRINT * 'ENTER DIMENSIONLESS HEAT FLUX ALONG LEFT BOUNDARY'

READ*Q
PRINT* "
PRINT * 'ENTER 1/STF.FANNUMBER'

READ * DIAl
• PRINT* '_

PRINT * 'ENTER TOTAL TIMEOF PROCESS

READ *. "IT

ENDIF

PRINT *,'EN'YERNUMBER OFNODES IN X-DIRECTION'
READ*, M

PRINT*,' '

PRINT *,'ENTERNqJMBER OF NODFS IN Y-DIRECTION'
READ *,N
PRINT * ' '

PRINT*,'CONVERGENCE CRITERION?'
READ *,CC
PRLNT*,' '
PRINT* 'PRINT OUT ENI_RGY INPUT TO SYSTEM'

PRIN_ *,'EVERY _. TIMESTEP?'

READ *, IOUTI
PRINT* "
PRINT*,'PRL_r OUT ENTHALPYPROHLE'

PRINT*,'EVERY _ TIMESTE_'
READ *. IOUT2
C

C

C
************************************

• ASSIGN VARIABLESAN'DCONSTANTS *
***********************************

C

C

IF (NTYPE .EQ. I)TitF_N
Q=QC*(B/(M-])y(TCONDoffM:rl))
F=A/B
DELFO=ALPHA*DELT/A**2.
DIAI=HF/(C'(TM-TI))
DSE=(C*_n4:*n_)/(C,frM-11)}
,VCV=(AKN-]))*(B/(M-]))
TE=O.O
ENDIF

DELE=I./,_-I)
DELZ= 1J(M-I)
CI=1.0+2.*F**2,*DELFO/DELZ**2.+Z*DELFO/DELE**2.
C2=F**2,*DELFO/DELZ**2.

C3=DELFO/DF/_ _,2.
C
C
C

• _]_ NODAL EQUATIONS"
*******************************

C

C
DO 1OI=I ,bl

DO 20 J=I,N

H(Ij)=DSE
DELHOJ}=O.O
CIE(I6)=O,O

' 20 CONTINUE
10 CONI"INUE
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C
C
C
****************************

*BEGIN TIME INCREMEN'FING *
****************************

C
C

IF (NTYPE ,EQ, I) THEN
COUNT=DELT

ELSE
COUNT=DELFO
ENDIF
L_I

KK=I

DO 23WHILE (COUNT .LT.TF+DELT)

DO24X=l_
DO25J=1,N
DELHPG,J_DELH(I,._
HP(I_)=H(I_

, 25 CONTINUE
24CONTINUE
C

C

C
*****************************

* FINITE DIFFERENCE SOLVER *
*****************************

C
C
K--O
LL--O
TEST=CC+I.
DO 27 WHILE (TEST .GT. CC)

C
C LATENT HEATADJUSTMENT
C
DO 30 I=I,M
DO40J=IJ_
HO(IJ)=H(I,J)
DELHOO,J)=DELH(I,J)
DELH(IJ)=DELHOG,J)+1-](l,J_
IF (DELH(Ij) .GT. DLH) THEN
DELH(Ij)=DLH
ELSE IF (DELH(I,J) .LT,0.0) THEN
DELH(I,P..0.0
ENDIF
40 CONTINUE

30 CONTINUE
C

C LEFT BOUNDARY NODES
C
DO 50J=2,N-I
H(I,/)=(H (I,J)-DELH(1J)+ DELIIO(I,J))/CI+2.*C2/C1*(Q+H(2_I))+C3/C
I! *(H(I j+I)+H(IJ-I))

50 CONTINUE
C

C "FOP& BOTIOM LEFTCORNERNODES
C

H(I ,N)=(H(I ,N)-DELH(I,N)+DELHO(I ,N))/C1+2.*C2/C1*(Q+H(2.N))+2,*C3/

ICI*H(I,N-I)
H(I.I)=(H(I,I)-DELH(I,I)+ DELHO(I. I))/CI +2,*C2_1, (Q+H(2,1))+2.*C3/

ICI*H(I.2)
C
C TOP & BoTroM BOUNDARY NODES
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i

C

DO 60I=2,M-I

H(I_I)=0](I,N)-DELt] (I,N)+DELHO(I,ND)/C1+C2/C1*(II(I+1,N)+IICl.1,N)
I)+2.*C3/CI*H(I,N-I)

, H(I,I)=(II(I,I)-DELHCI,I )+DELHO(I;I))/CI +C2/C1' (H(I+1,1)+H(I-1,1)
I)+2,*C3_I 't]0,2)

6OCONTINUE
C

• C INTERIOR NODES
C

DO 70 I=2,M.I
•, DO 80 J=2.N-I

H(I,J)=(HCI,I).DELH(I,J)+DELHO(Ij))/C 1+C2/CI *0](I+ 1j)+H(I-I,
IJ))+CB/CI*0](I,J+I)+H(I,J-I))

80 CONTINUE
70CONTINUE
C

C TOP & BOT'I'OMRIGIIT CORNER NODES
C

H(M:N)=(II(M,N)-DELH(M,N)+DELHO(M,N))/C1+2.*C2_ 1*lt(M-1 AO+2.*C3/C1
I*tt(M,N-I)
H(M,1)=(H(M, 1)-DELit (M,1)-+DELHO(M, 1))/C1+2,*C2/C 1*H(M-1,1)+2,*C3/C 1

I*H(M,2)
C
C RIGHT BOUNDARY NODES
C
DO 9OJ=2,N-I
H(M,J)=(H(M,J).DELII(M,J)+DELItO(M,J))/C 1+2.*C2/CI *II(M-1,J)+C3/C1*

I(H(M,J+I)+H(M,J-I))
90 CONTINUE
C
C
K=K+ 1
LL=LL+I

IF ((KK .EQ. IOUTI).OR. (COUNT .EQ. DELT))TItEN
IF (K .EQ. 1) TIIEN
PRINT * ' 't

PRINT '(IX, Al2, I4, AI, $)','YFERATION = ', K, ','
ELSE IF (LL .LT. 11) THEN
PRINT '04, Al, $)', K, ','
ELSE

PRINT '(IX, 14,Al)', K, ','
LL--O
ENDIF

ENDIF
C
C CONVERGENCE CtIECK
C
TEST--O,0

DO 270 I=l,M
DO 280J=I.N
TESTI =ABSOtOO,I)-HCI,J))
IFO'EST1.GT.TEST)'DtEN

• TEST=TESTI
ENDIF
280CONTINUE

, 270CONTINUE
27CONTINUE
C
C

C

• OUTPUT *

C
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C
IF ((COUNT ,EQ.DELT),AND, (NTYPE .EQ, 1))THEN
PRINT *,' '
PRINT*"
PRINT *,'OUTPUT VALUES ARE EXPRESSED IN SAME CONSISTENT'

PRINT *,'Sl UNITS ASINPUT,,,,'
PRINT*"
PRINT* "!

PRINT *,'INPUT VALUESFOR THIS RUN:'
PRINT *,' '
PRINT 200, 'HEIGHT = ', A, 'WIDTH = ', B
200FORMAT (IX,Ag,G9.4,T40,AS,09.4)
PRINT 210,'SPECIFICHEAT --',C,'LA,TENTHEAT = ',IIF
210FORMAT (IX,A16,G9,4,T40,A14,G9.4)
PRINT 220,'THERMAL CONDUCTIVITY = ',TCOND, 'THERMAL DIFFUSIVIT
IY = ', ALPHA

220 FORMAT (IX, A23, G9.4, T40, A22, G9,4)
PRINT 230, 'MELT TEME = ', TM, 'INITIAL TEME = ', TI
230 FORMAT (IX, AI3, F9,4, T40, Al6, F9.4)
PRINT 240, 'CONSTANT HEATFLUX ALONG LEFT BOUNDARY = ', QC

240 FORMAT (IX, A41, G9,4)
PRINT 250, 'TOTAL TIME OF PROCESS = ', "IT, 'TIME INCREMEWF = ',
IDELT

250 FORMAT (1X, A24, G9.4, T40, A17, G9.4)
PRINT*,"
PRINT *,'CONVERGENCE CRHERION = ', CC
PRINT *,' '
PRINT *,'NUMBER OF NODES IN X-DIRECTION = ', M
PRINT *,'NUMBER OF NODES IN Y-DIRECTION = ', N
PRINT* "
PRINT* "
ELSE IF ((COUNT .EQ. DELFO) .AND. (NTYPE .EQ. 2)) THEN
PRINT * 'DIMENSIONLESS INPUT VALUESFOR TItlS RLIN:'
PRINT * ' '
PRINT * 'CAVITY ASPECT RATIO = ', F
PRINT * 'FOURIER NUMBFR = ', DELFO
PRINT * 'INITIAL DIMENSIONLESS SENSIBLE ENTItALPY = ', DSE
PRINT * 'I/STEFANNUMBER = ', DLIt
PRINT * 'TOTALTIMEOF PROCESS= ', "VI"

PRINT * ' '

PRINT * 'CONVERGENCE CRITERION = ', CC
PRINT * ' '
PRINT * 'NUMBER OF NODES IN X-DIRECTION = ', M
PRINT * 'NUMBER OF NODES IN Y.DIRECTION = ', N
PRINT* "
PRINT* "
ENDIF
KK=KK+1

IF (KK .EQ, IOUTI+I) THEN
PRINT *,' '
PRINT *,' TIME- ', COUNT
ENDIF
DO300 I=I,M

DO310J=I,N

IF (NTYPE .EQ. 1) THEN
DH(I.D=H(I.D*C*O'M-TI)+C*TM
DHP(I.F)=HP(I.])*C*(TM-TI)+C*TM
LH(LD=DELHflJ)*C*(TM-TI)
LHP(LI)=DELH P0,J)*C*(TM-TI)
T(I,J)=DH(I,J)/C
ENDIF

IF (L .EQ. IOUT2) THEN
IF (NTYPE .EQ, 1)THEN
PRINT 320,'NODE - (',I,',',J,') H = ',DH(Ij),'L = ',
ILH(IJ),'T = ',T0,J)
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320 FORMAT (1X,A8,I2,A1,12,A7,E12,6,2X,A4,E12,6,2X,A4,E12,6)
ELSE
PRINT3_,'H*(',{,','d,')= ',H(id)
330 FORMAT (IX, A3, I2, Al, 12,A4, E14,8)
ENDIF
IF ((I ,EQ, M),AND, (J ,EQ, N)) L=0
ENDIF
310 CONTINUE

' 300 CONTINUE

L=L+ 1
C

• C
C
****************************************

• CALCULATE CHANGE IN INTERNAL ENERGY *
****************************************

C

C

C INTERIOR CONTROL VOLUMES
C

IF(NTYPE ,EQ,1)_-IF.,N
DO 400 I=2,M- 1
DO 410 J=2_N-I
CIE(I,J)=TCOND/(ALPH A*C)*VCV*((DII(I,J)-DI IP(I,J))
I+(LH(IJ)-LIIP(IJ)))

410 CONTINUE
400 CONTINUE
C
C LEFT BOUNDARY CONTROL VOLUMES
C
DO 420 J=2,N-I
CIE(1 ,J)=TCOND/(ALPHA*C)*(VCV/2.)*((DI I(1,J).DHP(I ,J))
I+(LH(1d)-LHP(1 d)))

420 CONTINUE
C
C R/GIlT BOUNDARY CONTROL VOLUMES
C
DO 430 J=2,N-1
CIE(M,J)=TCOND/(ALP! IA *C)*(VCV/2.)*((DH(M,J)-DItP(M,J))
I+(LH(M,J)-I.,ttP(M,J)))

430 CONTINUE
C
C "fOP& BO'ITOM BOUNDARY CONTROL VOLUMES
C

DO 440 I=2,M-1
ClE(I,N)=TCOND/(A LPItA*C)*(VCV/2,)*((DIt(I,N)-DHI'(I,N))
I+(LH02_)-LHP_,N)))
CIE(I,1)=TCOND/(ALPHA*C)*(VCV/2,)*((Dtt(I,I)-DIIP(I,I))
I+CLH(I,I)-LHP(I, 1)))

440 CONTINUE
C
C CORNER CONTROL VOLUMES
C

' CIE({_O=TCOND/(ALPItA*C)*(VCV/4.)*((DtI(1,N)-DItP(I :_/))
I+(LH(1OND-LHP(I d_)))
CIE(MoN)=TCOND/(ALPItA*C)* (VCV/4.)*((DII(MoN)-DItP(MoN))

, I+(LH(M,N)-LHP(M,N)))
CIE(I,l)=TCOND/(ALPHA*C)*(VCV/4,)*((DH(I,I)-DIIP(I,I))
I+(LH(I,I)-LHP(1,1)))
CIE(M,1)=TCOND/(ALPItA*C)* (VCV/4,)*((DII(M,1).DIt P(M,1))
I+(LH(M,1)-LHP(M,1)))

C
C TOTAl. CHANGE
C
DO 450I=I.M
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T_TE+Cm(I,J)
46OCONTINUF.

45OCONTINUE

IF(KK ,EQ,IOUTI+I)THEN
PRINT*,'ENERGY INPUTID SYSTEM = ',TE

PRINT *,''
KK=I

ENDIF
ENDIF

C

C
C
**O****************

*INCREMENT TIME *
**********0********

C

C

IF(NTYPE .EQ.I)THEN

COUNT--COUNT+ DELT
ELSE

COUNT=COUNT+DELFO
ENDIF

23 CONTINUE
C
C

C
************************

* PROGRAM TERMINATION*
************************

C
C
PRINT* "
PRINT* "t
PRINT*,'TIMEOF PROCESSCOMPLETED.....PROGRAM TERMINKI'ED,'

C
STOP
END
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