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ABSTRACT

Finding new and improved means of cooling small electronic packages are of great
importance to today’s electronic packaging engineer. Thermal absorption through the use
of a material which changes phase is an attractive alternative. Taking advantage of the heat
capacity of a material’s latent heat of fusion is shown to absorb heat away from the elec-
tronics, thus decreasing the overall temperature rise of the system. The energy equation is
formulated in terms of enthalpy and discretized using a finite-difference method. A FOR-
TRAN program to solve the discretized equations is presented which can be used to ana-
lyze heat conduction in a rectangular region undergoing an isothermal phase change. An
analysis of heat transfer through a miniature radar electronic module cooled by a phase-
change reservoir is presented, illustrating the method’s advantages over conventional heat

sinks. MAS-[ER
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INTRODUCTION

As microelectronic components continue to get smaller with the application of modern
technology, packaging gets denser and consequently heat fluxes rise. Since the author is a
mechanical engineer in the radar department at Sandia National Laboratories, this investi-
gation is directed toward finding improved cooling methods for these denser packages.

In designing packaging for radar systems, a mechanical engineer is concerned with
size, weight, geometric configuration, durability, and efficient heat transfer. Most of the
radars that are designed at Sandia are used in small airborne vehicles where space is limit-
ed. The radar (and radar antenna) is usually confined to a specific area in the vehicle as
well. Radars are also getting more complex, such as the state-of-the-art synthetic aperture
radar, which has increased both their size and power output. This increased power output
directly influences the heat generated by the electronics, thus increasing the total heat flow
rate.

A package for a synthetic aperture radar antenna has been designed at Sandia which
includes eighty plug-in miniature electronic modules. The modules are approximately 2.5
in. x 1.25 in. x .375 in. thick with electronic components mounted on both sides of a center
plate or web (See Fig. 1). Each module dissipates approximately 15 watts and is cooled in
actual operation by conducting the heat away from the electronics into the aluminum body
of the module. This module was designed for a specific application; however, this type of
plug-in electronic package will be used in a growing number of applications in the future,
such as a mapping satellite or other advanced radars Also as technology advances and
radars and other airborne electronic subsystems become even more complex, this type of
package will use more power and dissipate even more heat. Most modules of this type are
operated for a short time interval (10-20 seconds) and not in a steady state mode. Thus
when analyzing the heat flow, it is the transient heat transfcr that is of concern to the
mechanical designer.

This paper investigates a method to improve the transient heat transfer away from the
electronics in this type of module. The module, as designed, has a cavity on each side of
the center web. After the electronic components are mounted on each side on the center
web, these two cavities are hermetically sealed to protect the sensitive electronics. The
only path currently used for heat transfer is conduction into and through the aluminum
center web. However, if one cavity was filled with a substance that would undergo a solid-
liquid phase change upon reaching a certain temperature, while the other cavity contained
the electronics, or if the phase-change material were sandwiched in a cavity between the
other two cavities, the heat transfer away from the electronics might be improved. Since
the module’s operating time is typicaily short, taking advantage of a material’s latent heat
of fusion should absorb the heat and keep the electronic components cooler than by con-
ducting the heat into the body of the module. This paper details the analysis of the
improvement in heat transfer effected by filling a cavity with a material that would under-
go a fusion phase change.
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FIGURE 1.
Radar Electronic Module Design

Phase-change materials (PCM’s) have just recently been considered for temperature
control of microelectronics [1, 2] and, since the late 1960’s, for thermal control in airborne
electronic subsystems [3, 4]. However, much research into heat transfer through a material
undergoing a fusion phase change has been conducted since the late 1950’s [5]. (All refer-
ences to a phase-change material in this paper refer to a material that undergoes a solid-
liquid phase change.) Most early work was concerned with frozen food storage [6] and
- metal solidification [7-9, 14].

Most early analysis neglected convective effects in the melted region of the PCM.
Heat transfer was thought to be mainly driven by conduction through the material (5, 6].
The metallurgical industry first looked at convection in metal solidification. They were
concerned with how the metals were solidifying. It was through these investigations that
the importance of including convection in the analysis of heat transfer in a PCM first came
to light [7-9, 14]. It was found that although conduction was dominant at the onset and in
early stages of melting, convection heat transfer needed to be considered for longer melt
periods.

Much analytical and experimental determination of the heat transfer through a PCM
was done throughout the 1970’s [9-22]and 1980’s [22-38]. Some considered conduction
only [11-13, 15-17, 22, 25, 26, 30], and some included convective effects [14, 18-21, 23,
24, 27-29, 31-38]. In considering conduction only, just the energy equation must be
solved. For convection, the continuity and momentum equations must also be satisfied. In
the momentum equations, the Boussinesq model which relates the density variation in the
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fluid to the temperature difference and considers density variation only as it contributes to
‘buoyancy, is utilized [18, 23, 24, 27-29, 31-36]. Then either a strong (10, 13, 18, 23, 24,

27-29, 31] or weak [11, 12, 15-17, 22, 25, 26, 30, 32-27] numerical formulation is used to
solve the equations.

NOMENCLATURE

a height of enclosure Qin  heat input

A Area ‘ R thermal resistance for conduction

b width of enclosure Ryot total thermal resistance

c specific heat Ra  Rayleigh number (based on

E,e internal energy height) [PrgBATa3/v?] |

f aspect ratio (a/b) Ste  Stefan number [cAT/L]

Fo dimensionless time [oct/az] t time
(Fourier number) At time increment

AFo  dimensionless time step T temperature
[Ay/a?] T; initial temperature

g acceleration due to gravity Ty, melt temperature

h sensible enthalpy Ty temperature of liquid region

hm sensible enthalpy of solid T temperature of solid region
phase at T, AT  change in temperature

h* dimensionless sensible u velocity in x-direction
enthalpy [(h-hy,)/c(Tp,-T)) \ velocity in y-direction

H total enthalpy [h+AH] \Y volume

AH, L Iatent heat of fusion X,y  coordinate directions

AH* dimensionless latent heat Ax  control volume width in
[AH/c(T,,-Tp)] x-direction

k thermal conductivity Ay  control volume width in

m node number in x-direction y-direction

n node number in y-direction o thermal diffusivity [k/pc]

n unit vector normal to surface B thermal expansion coefficient

P time step counter [t=p/At] p density

P pressure E,n dimensionless coordinates

Pr Prandtl number of liquid [v/a]  AE,An dimensionless control volume

q” heat flux widths

q* dimensionless heat flux \Y kinematic viscosity
[q"AX/K(Tr-T)]

INTRODUCTION 9




For the strong formulation, after an initial period when conduction dominates the heat
transfer, a marching solution employing a finite difference or finite element scheme is used
to solve the system of equations consisting of the continuity, momentum and energy equa-
tions. This approach is valid assuming that the convective flow is in a quasi-steady state at
each time step. Quasi-steady state in this context refers to a stationary melting front. For
the parameters commonly used (Pr = 50, Ra = 108, Ste =~ 0.2), the velocity of the melting
front propagation is several orders of magnitude less than the fluid boundary layer veloci-
ties, which suggests that the convective flow is not strongly influenced by the movement
of the melting front. Therefore a quasi-steady state assumption for the convection process
can be made [29]. After a quasi-steady state solution is obtained, an energy balance is
done at the solid-liquid interface to determine the interface displacement so that the con-
vection equations can be solved at the next time step. The process is repeated until the
PCM is totally melted. To perform the energy balance, a deformed grid which follows the
shape of the melting front must be used at the interface, which complicates the numerical
- formulation. The numerical procedure for the strong formulation is covered in detail in
[10, 39].

For the weak formulation, enthalpy reformulation of the energy equation is used,
which greatly simplifies the numerical scheme by ignoring the shape and exact location of
the phase-change melting front [22, 25, 32]. As stated previously, the advantage of the
weak formulation is that it is not necessary to explicitly describe the solution at any singu-
larity; i.e. the melting front, and if an analytical solution exists, it will also be a weak solu-
tion [16]. This allows the problem to be solved with a fixed grid approach using a finite
difference scheme to solve the entire system of equations simultaneously, thus simplifying
the numerical calculations in a multi-dimensional analysis. Once the solution is obtained,
the location of the melt front is known to an accuracy of the nodal spacing. Since the exact
location of the melting front is not a concern in the heat transfer analysis presented in this
paper, the enthalpy form of the energy equation was chosen as the best method of solution.

For electronic thermal control through the use of a PCM, normal paraffins (n-paraf-
fins) seem to be the best choice of material. In 1966, Northrop Corporation researched fus-
ible materials to be used for temperature control systems for N.A.S.A. [3]. They found
four n-paraffins that would be most suitable for this type of application; n-tetradecane
(C14H3p), n-hexadecane (CgHz34), n-octadecane (CygHs3g), and n-eicosane (CopHy)).
They are inert and noncorrosive with very predictable thermophysical properties, have a
high heat of fusion, and it should be relatively simple to incorporate them into the module
package design. All properties of these four materials are very similar except for the melt-
ing temperature which is different in each case. A specific n-paraffin, n-octadecane, has
been studied in most previous experiments [20, 29, 31] and has a melt temperature of
28 °C. It is widely used for thermal energy storage. Another n-paraffin, n-eicosane has a
melt temperature of 37 °C and will be considered, along with n-octadecane, in the applica-
tion section of this paper, Due to the sharp melting points, all phase change will be consid-
ered isothermal.

10 INTRODUCTION
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THE GOVERNING EQUATIONS

The governing equations to be solved in a rectangular region undergoing a phase
change are:

For the liquid region

ou  ov _
3—;+3; =0 | continuity

u  ou  ou 19P

=+ lUzs—+ Va— = — =x— +VV? | -
5 +uax+vay 5% u X-momentum

v, v ov _ 1P B )
5; U5t v—a; =55y +gB(T-T,) +D‘V‘ v y-momentum

For the liquid and solid region

oh 3 oh oh _ 2
E +§;AH+ u;—;‘*'\)'a-; =aVh. energy

The above enthalpy form of the energy equation is derived from first principles in Appen-
dix A and appears there as equation (10).

All the preceding equations must be satisfied when one is concerned not only with
conduction, but convection heat transfer as well. However, it has been empirically shown
that a certain amount of time must elapse before convection currents are established to
dominate conduction heat transfer. Bénard, Gobin, and Martinez [29] determineu through
experiments that the transition time, t;), for the boundary layer regime to establish in the
liquid region for the onset of convection is given by

_ Pr Ps -%
t0—4.59(S—te' P, Ra ).

Using the properties of n-octadecane and n-eicosane, and the above equation with an
assumed AT used in the Rayleigh number, the transition time, ty, pertaining to the appli-
cation considered in this paper is approximately 35-40 seconds. (The assumed AT used in
the equation was conservatively estimated at 70 °C. However, as is evident in the applica-
tion section of this paper, actual AT’s are much less which would increase the transition
time even more.) Since this is about twice as long as the 10-20 second operation time
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of the radar module to be studied, this paper will present a numerical procedure to solve
two-dimensional conduction with phase change* based on the enthalpy form of the energy
equation..

After nondimensionalizing, the enthalpy form of the energy equation without convective
terms becomes

9 a
éﬁ—h +5 AH* agzh +=2h

This equation appears as equation (13) in Appendix A.

* The solution of heat conduction through a material undergoing a phase change is often
referred to as a Stefan problem, after J. Stefan who did some of the earliest analytical
work in this area in 1891 [41].

12 THE GOVERNING EQUATIONS



THE NUMERICAL PROCEDURE

The Numerical Algorithm

Many numerical schemes for the solution of phase-change problems have been devel-
oped and written about in recent years [10-13, 15, 16, 22, 24, 30, 33]. Since the module
geometry is rectangular and different geometries are not considered, a finite-difference
approach was chosen over finite-element for simplicity. A “control volume” finite-differ-
ence formulation as outlined by Patankar [10, 39] was chosen for the numerical solution.
Patankar refers to the nodal area or mesh element as a control volume.

This control volume approach uses central-difference approximations to the spatial
derivatives and backward-difference approximations to the time derivatives. The dimen-
sionless form of the energy equation was discretized in this manner (See Appendix B) and
a set of equations for all interior and boundary nodes was developed. This set of implicit
finite-difference equations is then solved in a FORTRAN program using the Gauss-Seidel
iteration method. |

To handle the latent heat sink term in the discretized equations, the methed outlined
by Voller [32, 33] is incorporated into the numerical code and is as follows (Also see
Figure 2 which is a flowchart of the method). Recall the enthalpy form of the energy equa-
tion,;
oh . oh

oh 9 _ o
é—t+-a—t'AH+u'a;+V§-); =aVh

where h = ¢T and the latent heat sink term for isothermal melting in a control volume is

L, (T>T,)
AHg, = F(T) = {O<F(T)<L , (T=T,) .
0, (T<T,)

At the start of the algorithm, over one time step, the nodal latent heats take on the value of
the previous time step (see step 1 in Figure 2). For each Gauss-Seidel iteration (see step 2),
the nodal equations for the sensible heat are solved. After solving, each node’s sensible
enthalpy is added to that node’s latent heat while the sensible enthalpy to initiate melting,
cT,, is subtracted (see step 3), i.e., :

(AHm,n) = (AHm,n)."*' (hm.u)l"_CTm'

i+1
A control volume is in the solid phase if (4, ,),<cT, and (AH, ,), = 0,and is inthe
liquid phase if (A, ,),>cT, and (AH, ,), = L.Hence the following corrections (see
step 5) are made prior to the next iteration. If (AH, ,),,, <0,set (AH,,),,, = 0,and
if (AH,,),,,>L,set (AH,,),,, = L.1f acontrol volume is changing phase, AH for
that node remains as determined by the above equation. This is continued until conver-

gence (see step 4). Convergence is achieved when (h,, ) 7' = (h,, )7 *! isless thana

THE NUMERICAL PROCEDURE 13



specified number. Upon convergence of the Gauss-Seidel iteration process, over one time
step, the nodal sensible enthalpies for those control volumes undergoing a phase change
will be equal to c¢T,, with the latent heat in the range,0 <AH < L.

1 (AH, )" = (AH,,)*

g

2 Solve for (hm;n) pt1

l p=p+1

3 | (AH, )0 = (BH, )0+ ()it =T,

i+l
l no

. €S
i=i+1 4 Converges ?~—¥——-——> p=total time ?

l no yes
yes

@ (AH, )0 =0 (g (AH, )1 <0 7 (solid)

—— &
s
yes

w{ (AH, )0} =L la— (AH, )P?!>L ? (liquid)

i+1

-

0< (AH,, )7t <L 7 (changing phase)

+1

FIGURE 2.
Flowchart illustrating numerical updating of latent heat sink term.
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Algorithm Verification

In Voller’s paper [33], solution of his algorithm for conduction only phase change is
compared to the analytical conduction heat transfer solution of one-dimensional solidifica-
tion in a semi-infinite region. Thus, to verify the melting algorithm, a FORTRAN program
was written to solve the problem shown in Figure 3 (A listing of this program, titled heat-
code2.f, is included in Appendix D). This problem is identical to the problem in Voller’s
paper except that this is a melting problem whereas his was a solidification problem.

Eria
| 1,1
k=0.001
c=1.0
p=1.0 -
L=5.0 05
T;=-0.5
Tp=0
— X
0,0) a
-
FIGURE 3.

Algorithm Verification Problem

Figure 4 shows a comparison, at t=500 seconds, of the numerical code results of the
verification problem illustrated in Figure 3 and the analytical solution of one-dimensional
melting in a semi-infinite region, using the same properties and boundary conditions as
specified in Figure 3 except for x=1. The analytical solution was obtained by following the
procedure outlined in Ozisik [41] and is identical to the solidification problem except for a
sign change. Assuming that the liquid and solid material properties are equivalent, the
analytical solution yields the following equations for temperature in the liquid and solid
phases;

1

To-Tro erf (V) liquid region

THE NUMERICAL PROCEDURE 15



| !
T“, (x’ t) _Tl erfCI:X/(Z(at) 2) ]

where A is determined from

TEMPERATURE

solid region

Tm—Tl - (’TfC()\.)
(. TM_TI' e-—k2 ) e-xz - }\‘L*/;é
‘Tm"Tx=0 erfc(k) erf(}") C(Tm'_Txno) .
T Y
R 4
A Y R T T T T T T T N T T O I T O NI TP P S S A T -l
............................................................................. 4
: N @ . 1 aNaLYYICAL
.................... ................. !.!\...c,, ............... ...... P o
o (8]
R R R R R R R R e R R R Ry {5 -
1 1 i Lo
(] s 190 18 28 25

NODE NUMBER

FIGURE 4.
Verification Problem Temperature Profile at t=500 s
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For the numerical run plotted in Figure 4, there were 21 nodal points in the x-direction
and the time step size was 1 second. The number of nodal points didn’t affect the solution
much; however this time step producsd a solution which agreed well with the analytical
solution. There is good agreement to the analytical solution in the liquid region, however,
there is some divergence in the solid region due to the boundary condition at x=1. This is
due to a finite region (0 < x <'1) beiny approximated by a semi-infinite region (0 < x < oo).
If the plot of the analytical solution was carried out farther in the x-direction, it would
asymptotically approach -0.5 as x — ee. These results correspond well to Voller’s results
[33]. It was dercrmined from these results that the numerical procedure and computer
algorithm are fairly accurate in producing good results.

It shoulu be noted, however, that the program is very sensitive to time step size, spatial
nodal spacing, convergence criteria, and even the material properties. All of these parame-
ters are interrelated and when one or more is altered, the others must be modified until a
satisfactory solution is obtained. For example, when this problem was run with a time step
larger than 1 second. the ..olution obtained in the liquid region did not match the analytical
solution quite as nicely. The slope of the temperature profile in the liquid region as shown
in Figure 4 tended to become less steep as the time step size increased, thus diverging
from the analytical solution. The time increment proved to be the most critical parameter.
For some time ‘ncrement sizes, the solution never achieved convergence at the start of the
program while, for other time increment sizes, convergence was achieved after only one
iteration. Variations in the other parameters, such as node spacing and convergence crite-
ria, changed the solution slightly, but the temperature profiles varied by only about one
degree per node. The nodal spacing can be any value, however the convergence criteria
must be adjusted for each change in nodal spacing or time step. For the verification prob-
lem, the numerical solution matched the analytical solution best if convergence on the first
time step was achieved between 50 and 80 iterations. Therefore, after finding an appropri-
ate time increment and achieving convergence, the temperature profiles obtained can be
considered accurate enough for the purpose of this paper. For this verification problem,
agreement with the analytical solution gives an indication of the appropriate time step
size. When the computer code is altered to handle different boundary conditions, as in the
application problem which follows, additional checks are added to the code to assure
accuracy. This is covered in detail in the following section.

THE NUMERICAL PROCEDURE ‘ 17
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APPLICATION: A RADAR MODULL

The Model

To compare the transient )ieat transfer in a »:_.all electronic module containing a PCM
to one cooled hy means of conduction alone, a s.ightly different modui. ~eometry from
the aforementioned radar electronic module is modelied. In the model, a storage cavity
containing a PCM is located directly behind the el:ctronic components (Sec Figure S).
This rectangular cavity is the area for the two-dimensional heat transfer analysis. A spa-
tially uniform heat flux, constant with time, 1s assumed at the left (electronic component)
boundary, and the remainin,, three boundaries are assumed adiabatic (See Figure 6). The
boundary conditions shown in Fizure 6 are deduced frcan the configuration of the modules
shown in Figure 5 ard simplified for purposes of numericai analysis. For the PCM model,
since the objective is to remove the heat from the electtonics quickly by absorbing the
latent heat, the center web should be as thin as structurally feasible to minimize the ther- -
mal resistance between the electronic heat sources and the PCM. The PCM will initially
be in the solid phase with an air gap at the top of the enclosure to allow for expansion upon
meliing. This air gap is assumed to be small enough to have little effect on the solution and
will be ignored. To compare to a module without a PCM, the cavity is simply analyzed in
the same fashion assuming it is solid aluminum. |

Area of

Electronic
Components / | / Analysis
fl

Module Module r l 1 Module x l
(End Vléﬂ" (End View End View

FIGURE 5.
PCM Model Module Configuration
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PCM Model Geometry

The Numerical Solution

The *ORTRAN program written for the verification problem was modified to handle
the boundary conditions of the application problem and to accept either dimensional or
dimensionless input and output (A listing of this program, titled heatcode.f is also includ-
ed in Appendix D). To determine if the solution is approaching a true solution, a cumula-
tive energy balance is calculated at each time step to compare with the known energy input
to the system. Therefore, when the program is run at different time step sizes, spatial nodal
spacings, and convergence criteria, this energy value also gives an indication of the accu-
racy of the solution in addition to comparison with engineering approximations of the
temperature history.

Numerical solutions were obtained using the properties of n-octadecane and
n-eicosane which are tabulated in Table 1. Since the code was not written to handle vary-
ing material properties, an average value was used (see Table 1). The two paraffins were
assumed to have the same properties, except for the melt temperature.

In addition to the material properties of the PCM, the heat flux along the left boundary
and an initial temperature are input to the code. For the radar module problem, the heat
flux associated with a 15 W module is 15000 W/m?, This flux and twice the amount,
30000 W/m?, were run for comparison of results. The PCM was initially in the solid phase
at 20 °C, assuming room temperature, and subjected to the flux. The cavity dimensions are
a=2.0 cm and b=0.5 cm with a unit depth of 1.0 m. For all numerical solutions presented,
there were 20 nodal points in the x-direction and 10 nodal points in the y-direction. A time
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step size of 0.0005 seconds along with various convergence criteria was used in all solu-
tions. The various convergence criteria were chosen by studying the energy ba’lancc at
each time step, which will be explained further in the next section.

; S Actual | Average

Material Property Value Value Used
Fusion Temperature (°C)

n-octadecane 28.05 28

n-egicosane 37 37
Latent Heat J kg'1) 241000 241000
Thermal Conductmty

W mlect)

“solid ‘ 0790

liquid 0.157 0.230

Aluminum Enhanced 17.91
Specific Heat (J kg'! °C'h

solid 1900

liquid ’ 2200 2050
Density (kg m'3)

solid 815

liquid @ 30 °C 775 790
Kmemanc Viscosity

(m?s7

@ 40 °C 4x10°

@ 30 °C 5x10°0 4.5x106

TABLE 1.

Material Properties of n-Octadecane and n-Eicosane
Obtained from Bentilla, Sterrett and Karre [3], and Bénard, Gobin and Zanoli [31]

Results and Discussion

The computer model was first used to predict the performarce of a module with just an
aluminum filled cavity, and the results are illustrated in Figure 7. Because of the boundary
conditions, the heat transfer was primarily one-dimensional, therefore an arbitrary slice
half way up the y-axis gives a good indication of the temne¢rature profile throughout the
PCM at any time. All temperature profiles presented in this report use that midpoint tem-
perature profile as representative of the system performance. Figure 7 shows that the max-
imum temperature occurs at x=0 and that the temperature profile across the aluminum
varies by only 1 °C which suggests that a lumped parameter model would be an appropri-
ate calculation to check the validity of the numerical results.
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A simple energy balance on the cavity ylelds the cquatlon Qi = chAT With an
initial temperature of 20 °C and a heat flux of 15000 W/m?, the final temperatures for 10
seconds and 20 seconds of operation respectively are 32 °C and 44 °C. Comparing the
results of the two methods shows good agreement of the predicted wall temperatures.

Note that the average temperatures from Figure 7 are not exactly the same as the
lumped parameter results. It was found that comparing the cumulative internal energy
change to the known cumulative energy input was a valuable aid in determining the appro-
priate value for the convergence criteria. For example, the cumulatlve energy input for a
period of 10 seconds in Figure 7 with a heat flux of 15000 W/m? was 3000 J/m and the
cumulative energy absorbed was only 2818 J/m (a 6% error) which accounts for the slight-
ly lower average temperature. Setting more stringent values for the convergence criteria
~ resulted in unacceptably long computer runs, and, in the extreme, failure to converge.

Figure 8 shows temperature profiles, for both heat fluxes, at t=10 seconds with
n-eicosane as the PCM. As node O corresponds to x=0, it is evident that the temperature
right behind the electronics is much higher in this case than with the aluminum heat sink.
- Itis also evident that doubling the heat flux more than doubles the temperature rise at the
left boundary. The sharp temperature rise from node 5 to node O is in the liquid region and
. is due to the poor thermal conductivity of the paraffin. Clearly, to decrease this sharp tem-
perature rise in the liquid region, the thermal conductivity of the PCM must be improved.
Duffy [4] proposed putting an aluminum honeycomb structure throughout the PCM cavity
to increase thermal conductivity into the PCM and empirically showed an improvement,
In order to estimate the performance of such a honeycomb structure, a composite thermal
conductivity has been used to reduce an essentially three-dimensional problem to a two-
dimensional problem. In Appendix C, a conservative estimate of increased thermal con-
ductivity is derived and the result is shown in Table 1 for an aluminum enhanced PCM.

Numerical solutions obtained for aluminum enhanced n-eicosane with a heat flux of
15000 W/m? are shown in Figure 9. Note that the temperature rise in the liquid region is
much less, due to the improved thermal conductivity. The solution indicates a temperature
of 37 °C after 10 seconds and only 37.7 °C after 20 seconds on the left boundary. This
solution for 20 seconds of operation shows improvement over the aluminum heat sink (see
Figure 7 for t=20 s). Recall that n-eicosane has a melt temperature of 37 °C. Since n-octa-
decane has a melt temperature of 28 °C, results with it as the PCM should show a substan-
tial improvement.

Figures 10 and 11 show just that. Numerical solutions with aluminum enhance n-octa-
decane show improvement over an aluminum heat sink for both run times and for both
heat fluxes. Comparing results in Figure 10 with the final temperatures obtained for the
aluminum heat sink, illustrated in Figure 7, it is evident that improvement in cooling, evi-
dent through a lower temperature excursion, increases with longer operation times.

Since the density of the n-paraffins is 1/3 to 1/4 that of aluminum, the weight of the
heat sink is considerably lighter. And since melting occurred in only about 1/4 of the total
cavity and little energy is stored in the solid, the PCM cavity could be designed consider-
. ably smaller than the aluminum heat sink, thus producing an even greater weight savings.
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TEMPERATURE (C)

i‘ NODE NUMBER

' FIGURE 11.

Application Temperature Profiles, q”=30000 W/m?, Aluminum Enhanced n-Octadecane

Max. Temp] Max. Temp.| Approx.

Material @t=10s | @t=20s | Weight
Aluminum 31.7°C 432°C [277 g/m
n-Eicosane 70.0 °C - 79 g/m
Aluminum Enhanced
n-Eicosane 37.0°C 37.7°C 99 g/m
Aluminum Enhanced
n-Octadecane 28.5°C 29.1°C 99 g/m

TABLE 2.

Comparison of Results
(q"=15000 W/mz, cavity size equal in all cases)
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CONCLUSIONS

It has been shown in this paper and summarized in Table 2 that, through the use of a
PCM, the heat transfer in a small electronic radar module can be improved. After 20 sec-
onds of operation an aluminum heat sink weighing 277 g would have a maximum temper-
ature of 43.2 °C while an aluminum enhanced n-octadecane paraffin occupying the same
volume and weighing only 99 g would have a maximum temperature of only 29.1 °C and
would have used only a third of its absorption capacity. The findings of this investigation
could also be applied to other electronic subsystems as well. As electronic systems get
smaller and dissipate more heat, unique cooling schemes such as PCM heat reservoirs
should become more commonplace.

The enthalpy form of the energy equation has proved to be an efficient means of
numerically analyzing the heat transfer in a material undergoing a phase change for the
type of application considered in this report. Since this equation governs both the liquid
and solid regions and knowledge of the exact location of the phase-change front is unnec-
essary, a fixed grid methodology may be employed, thus simplifying the numerical algo-
rithm,

Results obtained through the numerical algorithm outlined in this paper should by no
means be considered exact. The algorithm and especially the latent heat source term
updating procedure have just recently been developed and have not been substantiated by
experiments [32]. However, the numerical solutions, when checked with energy balances
and against an existing analytical solution produce results with enough accuracy for most
design purposes. The results indicate that further study, consideration, and experimental
work in using PCM's in radar packages is warranted. The FORTI2AN programs listed in
the Appendix of this report should prove useful to anyone analyzing heat flow through a
material changing phase.

In studying the heat transferring capabilities of a PCM, it has been shown that, alone,
the n-paraffins have too low thermal conductivity to be useful. However, if the thermal
conductivity can be improved through “loading” with a higher thermal conductivity mate-
rial, or by using a honeycomb structure to disperse the heat more rapidly into the paraffin,
these materials show great promise for cooling electronics that operate for short time
intervals. The weight savings in using a paraffin for a heat sink over the typical metal hea
sink is significant also. In airborne vehicles, such as the vehicle for which this radar
module is designed, weight is an important issue. Designers are constantly looking for

~ways to lighten their airborne electronic packages, and using PCM’s for thermal control
offers just that.

More research, including experimental work, needs to be undertaken before PCM’s
become a common means of cooling electronic packages. Development of PCM’s with
higher thermal conductivity is needed and should be considered. In airborne vehicles and
in space systems where other cooling inethods are impractical or impossible, thermal man-
agement through the use of a phase-change material looks extremely promising.
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APPENDIX

A. Derivation nf " thalpy form of Energy Equation.
Conservation of energy may be expressed as

Eg = Expy+ Econp + Wygr + Eg (1)
where:
‘ ' oh bel
Esr = Rate of energy stored = p- (see note below)

E.py = Rate of energy advected by bulk fluid motion = —p (“ax + Vgh,)

 Econp = Rate of energy conducted = kV? T = %V’h ,since h = ¢T

Wyer = Rate of work done on fluid = @ = 0 (viscous dissipation, neglected for
- speeds lower than sonic flows)

E; = Rate of energy absorbed = Latent heat sink term .

Note that internal energy may be expressed as e = h— Pv and _a_e = g—h g—Pv. Assum-

ing an incompressible fluid and negligible volume change upon meltmg, the second term,
—aa-;Pv is zero, therefore the internal energy may be expressed in terms of enthalpy.

Assuming constant material properties, equation (1) may be written as

oh , oh  oh

—_ EG 2 |
a—t"}‘u"a—}'*‘\"a‘;— — +oVih | (2)

where o = —,f—
pc
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Next, Eg, the latent heat source term, is derived.

The total enthalpy can be defined as the sum of the sensible enthalpy, 4, and the latcnt

~ heat, AH;

H = h+ AH. (3)
Note that for isothermal melting, the value of the laient heat absorbed is

L , (T>T,)

0, (T<T.)’ )

AH = F(T) = {

Taking an energy balance over a volume undergoing a phase change yields

%prdv=J'—pH(u'n)dS+_[k(VT~n)dS (5
N §

where u here is a general velocity term in all directions,

Applying the divergence theorem to equation (5)

J'{pgé{+div(Hpu) —div(kVT)}dv = 0

or since V is arbitrary

pg—Herzv(Hpu) -div(kVT) = 0. (6)

- Substituting equation (3) into (6), assuming k and p are constant, noting that A = ¢T and
rearranging yields

gt: gAH+dzv(hu) +div(AHu) -OLVZh - 0 ' -

Expanding equation (7)

oh +9 au dv oh ah
a— aAH+h( a)+ (a a)+

(AH) (a“ g")+ (——AH-{—daAH) —aVih =0 @)
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Il

However, from continuity,

ou ov _

3§+B_§ = 0
Therefore equation (7) reduces to |
o, 9 oh _ dh _ -
5 aAH+ ( a)+ (a AH+-a—AH) ~aVih = 0. )

However, for isothermal phase change (thé limiting case of phase change over a tempera-
ture range), ¥ = 0 at the solid-liquid interface due to the no-slip condition where AH
changes from 0 to L. Equation (9) then reduces to

o, 3 3h ok -
3 aAH+ua +v§y—-th (10)

Comparing equation (10) to (2), the latent heat source term is

Eg = paiAH a1
Neglecting convection in equation (10) yields
| oh a 2
5 aAH = aV h | (12)
This equation may be written as
(ah aAH) 8h+ah
dy*
which in terms of dimensionless variables becomes
D e p o (e _a_
aFoh 3Fo z‘ §7) ath + . (13)
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B. Discretization of Enthalpy form of Energy Equation:

Recall eguation (11) from Appendix Part A

O p*4 0 2 8’*
e % AH* ma&} K. (13)

Central-difference approximations to the spatial derivatives and backward-difference
approximations to the time derivatives are used to discretize equation (13).

| aAt A A
Let t=pAt, AFo = — , At = fx ndAn:—aX,then

the partial derivative approxirnations are:

*p+1 *p
i * _ hm,n _hm,n
aFoh ‘M~ AFo a9
AH *p+l AHM n*p
aFoAH*I AFo (15
2 hm+ "*p+1+hm— n*p+1_2h n"‘p-ﬁl
_8_2* - 1, 1, i (16)
0§ (A€)
2| L mant T = 20, P a7
m* 1., | (An)z
Substituting equations (14), (15), (16), and (17) into (13) yields
(hm'”*p+l__hm'n*p+ AHM"*P'#]_AHM‘”*p
AFo AFo
- mz(hm+l,u*P+l+hm-l,n*P+]—2hm.u*P+l )
(AE)?
h . *p+l+ ' _*p+l__2 *p+1
‘+( mn+] hm.u 1 , hm.n ). (18)
(An)
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Therefore, the implicit form of the finite-difference equation for an interior node m,n is

2(N*AFo  2AFo _, 4.,

ho P = AH_ *PY - AH_ *P4 (14 + P, o
m, ma mn | ( (Ag)z (An)g) 5
‘AFo + + AFo '
.._-——-(f()Ag—)“z"‘ (h""*‘l,”*Pl 1+h’”"‘l,”*" 1) _ (An)i(hm'"+l*p+l+h”i'n-l*p+l) : (19)

Finite-difference equations for ‘the boundary nodes are derived in a similar fashion, and
are listed below and on the following page. Equations are included for both programs. For
more information see [39-41].

Bouhdary nodes at x=0 with boundary condition of the first kind (prescribed temperature):
hmn” = C, (20)
Boundary nodes at x=0 with boundary condition of the second kind (constant heat flux):

2()2AFo  2AFo

Bn? = AH Y"*'—AH_ *P+ (14 + ) by P
. TGy T
2(f)2AF0‘ * T % AFo * * ‘
e (G A b ) = Bpnsy P 4R, YY) (21
(Aﬁ)z (q m+1,n ) (An)z( LRS! ma-1 ) ( )

Boundary nodes at x=b with boundary condition of the second kind (insulated):

2(H*AFo N 2AFo
(AE)? (An)?

*p+i
)m,np

hpu'? = AH, *P* = AH *P4 (14

2(f)*AFo

- *p+1 AFO
(AE)

(hmern 7)) = am? CTITREALE'Y TN AL DR ¢7)

Corner node at x=0, y=a with boundary conditions of the second kind (constant heat flux
at x=0 and insulated at y=a):

2()2AFo  2AFo

*p = AH *P+l—'AH *p *p+1
™ = B me PO T RHT A e
2 (f)2AFo ... 2AFo .
_W(q* +hm+],n*F " - (Aﬂ)z( ,;',,I*F h. (23)
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Corner node at x=b, y=a with boundary conditions of the second kind (insulated at x=b
and insulated at y=a):

2(f)2AFo 2AFo

PE )

(AE) (An)*
xpe1y  2AFo0

(. "‘(ZW (VAL P (24)

)hm'n*p+]

hunt? = AH, ¥ —AH, P+ (14

_2(/)%AFo
(A€)?

~ The preceding finite-difference equations are expressed in a convenient form, however
prior to coding, they have been rearranged to solve for 4,, """,

‘For problems involving a boundary condition of the third kind, i.e. convection, the
boundary finite-difference equation may be discretized in the same manner and inserted
into the code. Thus, the FORTRAN programs listed on the following pages may be adapt-
ed to handle any sort of Stefan problem in a rectangular region.

- C. Determination of Aluminum Enhanced PCM Thermal Conductivity:

Assurning that the aluminum honeycomb structure is aligned as fins in the direction of
heat flow, i.e. the x-direction, and that it occupies 10% of the total volume of the cavity,
the thermal conductivity for one-dimensional steady-state heat transfer may be determined
as two composite materials in parallel. Although the concern here is with transient heat
transfer, this approximation will be used to determine an enhanced thermal conductivity
and following is a discussion of why this approach is valid.

The thermal resistance for conduction in the cavity is defined as

b
R = A
Therefore, the thermal resistances for aluminum and paraffin are

. b

for aluminum Ry = ——

Al kAIAAl

and for paraffin R, = b .
Pk,A

PP

The total thermal resistance can now be defined as

1 1 1
‘ = 4 —
Rror Al Rp

or.
kmlAlol = kAIAAI+kpAp'

(U} ]
£
h
=3
%3]
£

™)



Dividing both sides by the total area yields

A A
ko = k (_A) +k ('_F')
fof Al Awn P Atat
in which the total thermal conductivity is a sum of each material’s thermal conductivity
multiplied by their respective area ratio which is the same as a volume percentage since
the lengths of the two materials are equal.

Thus, with k4, = 177 W/m°C [40]and k, = 0.23 W/m°C , and assuming 10% of the
cross-sectional area is occupied with aluminum, ‘ ‘

ki, = (0.1)177 W/m°C + (0.9) 0.23 W/m°C = 17.91 W/m°C
This value appears in Table 1 under aluminum enhanced thermal conductivity.

Since this paper is a feasibility study for the use of PCM’s in cooling electronic mod-
ules, this determination of improved thermal conductivity gives an approximation to be
used with the developed numerical code. However, realistically, with aluminum fins
extending into the paraffin PCM, melting would occur around the fins and a distinct melt-
ing front would not propagate through the cavity as modelled. This phenomenon is three-
dimensional and its analysis is beyond the scope of this paper. In such a system, more
PCM should be melted quicker than without the honeycomb structure, thus absorbing
more heat in a shorter period. Since absorbing more heat faster would only reduce the tem-
perature excursion further, the author feels that the results presented in the application sec-
tion give a conservative indication of the advantages of using a PCM.
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D. Fortran Program Listings:

C program heatcode2 f
o}
C

C
LI AR R LI LI R RIS LR R TR I AL LI RS R AR LRI NI LI LR R I R LT L]
.

* PROGRAM FOR SOLUTION OF A TWO-DIMENSIONAL STEFAN PROBLEM IM A ¢

¥ RECTANCULAR CAVITY WITH SPECIFIC BOUNDARY CONDITIONS *

s )

CRRATEO ARG R R bR E RO RER AR R SR S SR bt
s

* BOUNDARY CONDITIONS: *

e ‘

* LEFT BOUNDARY --- CONSTANT TEMPERATURE = TA *

* TOP BOUNDARY ---- INSULATED *

* RIGHT BOUNDARY -- CONSTANT TEMPERATURE = 71 *

* BOTTOM BOUNDARY - INSULATED *
e ‘

~ * INITIAL CONDITION: TEMPER ATURE OF ENTIRE CAVITY = TI>TM *

&
L T T L T L L L e L LTIy
%

* PROGRAM BY KEITH W. SNYDER, 7/24/90 *
* M.S. PROJECT *

s

R T T T L LI L I It )
Cc

(o

C

T T T

* VARIABLES *

T T

(o

(o

INTEGER I, J, K, KK, L, LL, M, N, IOUT1, IOUT2

REAL A, B, C, TCOND, ALPHA, HF, TM, TA, T1, TT, DELT, F
REAL DELFO, DSE, DLH, DELE, DELZ, C1, C2, C3, CC, TEST
REAL H(500,500), DELH(500,500), DELHP(500,500)

REAL DH(500,500), HP(500,500), LH(500,500), T(500,500)
REAL DHP(500,500), LHP(500,500), CIE(500,500)

REAL TESTI, VCV, TE, HO(500,500), DELHO(500,500)

C

(o

C

SERRUARIS S HUIEE R IR bR NS

* VARIABLE DEFINITION *
VEESEROINGRURGE SRR RGeS

o

c

CIJKLKK -

CLL,IOUT - COUNTERS AND CONTROL
CM - NUMBER OF NODES IN X-DIRECTION
CN - NUMBER OF NODES IN Y-DIRECTION
C A - HEIGHT OF CAVITY

CB - WIDTH OF CAVITY

C C - SPECIFIC HEAT (CONSTANT)

C TCOND - THERMAL CONDUCTIVITY

C ALPHA - THERMAL DIFFUSIVITY

C HF - HEAT OF FUSION (LATENT HEAT)

C T™ - TEMPERATURE OF MELT

C TA - TEMPERATURE OF LEFT BOUNDARY
C TI - TEMPERATURE OF RIGHT BOUNDARY AND INITIAL TEMPERATURE
C TT - TOTAL TIME OF PROCESS
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C DELT - TIME STEP

C F- ASPECT RATIO OF CAVITY

C DELFO - FINITE-DIFFERENCE FORM OF FOURIER NUMBER

C DSE,DSE?2 - INITIAL DIMENSIONLESS ENTHALPY

C DLH - DIMENSIONLESS LATENT HEAT A

C DELE - DIMENSIONLESS X-COORDINATE (DELTA ETA)

C DELZ - DIMENSIONLESS Y-COORDINATE (DELTA XI)

C C1,C2,C3 - CONSTAN'TS

C CC - CONVERGENCE CRITERION

C H - DIMENSIONLESS NODAL SENSIBLE ENTHALPY

C HO - DIMENSIONLESS NODAL SENSIBLE ENTHALPY (PREVIOUS ITERATION)
C HP - DIMENSIONLESS NODAL SENSIBLE ENTHALPY (PREVIOUS TIME STEP)
C DELH - DIMENSIONLESS NODAL LATENT HEAT

C DELHO0 - DIMENSIONLESS NODAL LATENT HEAT (PREVIOUS ITERATION)
C DELHP - DIMENSIONLESS NODAL LATENT HEAT (PREVIOUS TIME STEP)
C T-NODAL TEMPERATURE .
C DH - NODAL SENSIBLE ENTHALPY

C LH - NODAL LATENT HEAT

C TEST - CONVERGENCE CHECK

C DHP - NODAL SENSIBLE ENTHALPY (PREVIOUS TIME STEP)

C LHP - NODAL LATENT HEAT (PREVIOUS TIME STEP)

C CIE - CHANGE IN INTERNAL ENERGY (CONTROL VOLUME)

C VCV - VOLUME OF CONTROL VOLUME

C TE - ENERGY INPUT TO SYSTEM

C

C

C

LEIERTIE RS LIT YL

* INPUT DATA *

LRA SRR Sl

c

C

PRINT * 'ENTER VALUES IN CONSISTENT SI UNITS...
PRINT *,'*

PRINT *,'ENTER HEIGHT OF CAVITY"

READ *, A

PRINT *,'*

PRINT *'ENTER WIDTH OF CAVITY'

READ *, B

PRINT *,'* |

PRINT */'ENTER SPECIFIC HEAT OF FCM’

READ *,C

PRINT +,'*

PRINT *,'ENTER THERMAL CONDUCTIVITY OF PCM’
READ *, TCOND

PRINT *,'*

PRINT *,'ENTER THERMAL DIFFUSIVITY OF PCM'
READ *, ALPIIA

PRINT *,'*

PRINT *,'ENTER LATENT HEAT OF PCM'

READ *, HF

PRINT *,'*

PRINT *,'ENTER MELT T&MPERATURE OF PCM'
READ *, T™

PRINT *,'*

PRINT *'ENTER TEMPERATURE OF LEFT BOUNDARY'
READ *, TA

PRINT *,'*

PRINT *,'ENTER TEMPERATURE OF RIGHT BOUNDARY'
READ *, Tl

PRINT *,"*

PRINT *ENTER TOTAL TIME OF PROCESS'

READ *, TT

PRINT *,'"

PRINT *,'ENTER TIME INCREMENT"
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READ ¥, DELT
PRINT *,'

PRINT *'ENTER NUMBER OF NODES IN X-DIRECTION'
KEAD *, M

PRINT *,' *

PRINT *,'"ENTER NUMBER OF NODES IN Y-DIRECTION'
READ* N

PRINT *,' *

PRINT *'CONVERGENCE CRITERION?'

READ ¥, CC

PRINT*," ¢

PRINT ¢,'PRINT OUT ENERGY INPUT TO SYSTEM'
PRINT *,'EVERY ___ TIME STEP?'

READ *,IOUT}

PRINT ¢

PRINT ¢ 'PRINT OUT ENTHALPY PKOFILE'

PRINT *'EVERY ___ TIME STEP"'

READ *, I0UT2

c

C

c

LA AL IR R AR L R TR T R I ]

* ASSIGN VARIABLES AND CONSTANTS *
T T e T T L L L L]

C

C
F=A/B

DELFO=ALPHA*DELT/A**2,

DLH=HF/(C*(TM-TI))

DSE=(C*TI-C*TM)/(C*(TM-TI))
DSE2=(C*TA-C*TM)/(C*(TM-TI))
VCV=(A/N-1)*(B/(M-1))

TE=0.0

DELE=1/(N-1)

DELZ=1./(M-1)

C1=1.0+2,*F*¥2 *DELFO/DELZ**2.42*DELFO/DELE**2,
C2=F**2*DELFO/DELZ**2,

C3=DELFO/DELE**2,

c

C

C

LA LA L DR T2 L R LR L R YT

* INITIALIZE NODAL EQUATIONS *
AR L L R R T T YT L)
C

C

DO 10J=1 N

H(1 J)=DSE2

DELH(1)=0.0

10 CONTINUE

DO 151=2.M

DO 20]=I N

H{A)=DSE

DELH([ J)=0.0

20 CONTINUE

15 CONTINUE

C

C

C

LIS LRI RS E L T Y ey Y]

* BEGIN TIME INCREMENTING *
(IR R AT R R TR TS T T2 aysy
C

c

COUNT=DELT
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L=i

KK=1

DO 23 WHILE (COUNT .LT. TT+DELD)
DO 24 1=\ M

DO 25 J=IN
DELHP())y=DELH({J)
HPQAD=H{ D)

25 CONTINUE

24 CONTINUE

C

C

C

L L L L L T
* FINITE DIFFERENCE SOLVER *

T T L L L I I IIIIIIL
Cc
Cc

K=0

LL=0

TEST=CC+1.

DO 27 WHILE (TEST .GT. CC)

C

C LATENT HEAT ADJUSTMEN'T

(o]

DO 30 I=1M

DO 40 J=1 N

HO(LJ)=H(lJ)
DELHOJJ)=DELH(L,J)
DELH{))=DELHO{I)+H(J)

IF (DELH(1,J) .GT. DLH) THEN
DELH({,J)=DLH

ELSE IF (DELH(1,J) .LT. 0.0) THEN
DELH(,J)=0.0

ENDIF

40 CONTINUE

30 CONTINUE
C
C TOP BOUNDARY NODES
C

DO 60 1=2M-1
HIN)=(HI,N)-DELHI N DELHP(IN)Y/C1+C2/C1* (H(I+ 1 N)+H{I-1,N)
1+2.*C3/C1*H(N-1)

60 CONTINUE

C
C INTERIOR NODES

C

DO 70 I=2 M-1

DO 80 J=2 N-1
HA)=(H{1J)-DELHAI X DELHPI H)/C1+C2/C1*(H(I+1 J)+H({-1,
UNHCI/CIHAJ+ 1+ HII-1))

80 CONTINUE

70 CONTINUE

c

C BOTTOM BOUNDARY NODES
c

DO 90 [=2 M-1
H{,1)=(H{1,1)-DELHI, 1+ DELHPI, ))Y/CH+C2/CT*(H A+, 1 )+ HI-1,1)
1)+2.«C3/C1*H(1,2)

90 CONTINUE

C

C

K=K+1

Ll=LL+1

IF (KK .EQ. IOUT1) .OR. (COUNT EQ. DELI)) THEN
IF (K .EQ. 1) THEN
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PRINT *,' *

PRINT {1X, A12, 14, A1, §)''TTERATION =, K, * '
ELSE TP (LL LT, 11) THEN

PRINT ‘(14, AL, $)' K, ')

ELSE

PRINT '(1X, I4, A1) K, !

LL=0 ‘

ENDIF

ENDIF

C

C CONVERGENCE CHECK

c

TEST=0.0

DO 1001=1 M

DO 110)=1,N
TEST1=ABS(HOD)-H(,J))

IF (TEST1 .GT. TEST) THEN
TEST=THST!

ENDIF

110 CONTINUE

100 CONTINUE

27 CONTINUE

C
C
(o

(AL L ET] 2

* OUTPUT *
LALI IR Y L]

c
c

IF (COUNT .EQ. DELT) THEN

PRINT *,'*

PRINT *,' *

PRINT * 'OUTPUT VALUES ARE EXPRESSED IN SAME CONSISTEN'T"
PRINT *,'ST UNITS AS INPUT....

PRINT #,'*

PRINT *,'

PRINT *,'INPUT VALUES FOR THIS RUN:"

PRINT #,' ¢

PRINT 200, ‘HEIGHT =, A, ‘WIDTH = *, B

200 FORMAT (1X, A9, G9.4, T40, A8, (19.4)

PRINT 210, ‘SPECIFIC HEAT = ', C, 'LATENT HEAT = , HF
210 FORMAT (1X, A16, 09.4, T40, A14, (G9.4)

PRINT 220, ‘THERMAL CONDUCTIVITY = *, TCOND, “THERMAL DIFFUSIVIT
Y =, ALPHA

220 FORMAT (1X, A23, 09.4, T40, A22, G9.4)

PRINT 230, 'MELT TEMP. = *, T™M

230 FORMAT (1X, A13, F9.4)

PRINT 240, 'LEFT BOUNDARY TEMPERATURE = *, TA
240 FORMAT (1X, A28, F9.4)

PRINT 245, ‘RIGHT BOUNDARY TEMPERATURE = ', 1
245 FORMAT (1X, A29, 19.4)

PRINT 250, *TOTAL TIME OF PROCESS = ', TT, “TIME INCREMENT = ',
IDELT

250 FORMAT (1X, A24, G9.4, T40, A17, G9.4)

PRIN"'I‘ “| +

PRINT *'CONVERGENCE CRITERION =, CC

PRINT *,' ¢

PRINT *,'NUMBER OF NODES IN X-DIRECTION = *, M
PRINT * 'NUMBER OF NODES IN Y-DIRECTION = *, N
PRINT #,"*

PRINT *,"*

ENDIF

KK=KK+1

IF (KK .EQ. IOUT1+1) THEN
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PRINT * !
PRINT *,' TIME = !, COUN'
BNDIV
DO 300 I=1,M
DO M0 J={ N
DHID=HAT)*C*(TM-TIHC*TM
DHPAD=HP({H*C*(IM-TI}+C*'IM
LHAN=DELH{ NH*C*(TM-T1)
LHP(LD)=DELHP{II)*C*(I'M-TI)
TA=DH(LIMC
'IF (L. .EQ. IOUT2) THEN
PRINT 320,'NODR - ('1,',' Y H = * DH(ID),'Li= ',
ILHQD), T = T
320 FORMAT (1X,A8,12,A1,12,A8,112.63X,A4,E12.6,3X,A4,1112.6)
IF ((1 .BEQ, M) .AND. (J EQ, N)) L=0
BNDIF
310 CONTINUR
300 CONTINUR
L=l+1
(o)
c
c

LA R L L T IR A AR LT LY

* CALCULATE CHANGE IN INTERNAL ENERQY *
T L L e T LT eI

C

C

C INTERIOR CON'TROL VOLUMLES

[oy}
DO 400 1=2 M-|

DO 410 J=2 N-1
CIE(L,N=TCOND/(ALPHA*C)*VCV*((DII(11)-DIP(,))
[+(LH(D)-LHP(LI))

410 CONTINUE

400 CONTINUR

C

C TOP BOUNDARY CONTROL VOLUMLES

C

DO 420 =2, M-1
CIE(I,N)=TCOND/(ALPHA*CY*(VCV/2.y* (DH(LN)-DHP,NY)
1+(LH{N)-LHPELN)))
420 CONTINUE
c
C BOTTOM BOUNDARY CONTROL VOLUMES
c
DO 440 [=2,M-1
CIR(I, 1)=TCOND/(ALPHA*C)* (VCV/2.)* ((DH(1, 1)-DHE(, 1)
I+(LHQ,1-LHR(Q, 1))
440 CONTINUE
C
C TOTAL CHANGE
c
DO 450 1=1,M
DO 460 J=1,N
TE=TE+CIE(L])
460 CONTINUE
450 CONTINUE
DO 470 J=2,N-1
TE=TE+TCOND*(A/(N-1))*((T2.1)-T(1 I))/(BAM-1))
)*DELT
470 CONTINUE
TE=TE+TCOND*((A/(N-1))/2.Y*((T(2,1)-T(1,1))(BAM-1))
I)*DELT
TE=TE+TCONDS ((A/(N-1))2.)* ((I2N)-T(1L NYB/M-1))
[*DELT
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DO 480 Ju2 N-1

TE=TE+TCOND*(A/(N- 1))*((T'(M-1,1)-T(M )/ (B/M-1))
1y*DELT
480 CONTINUR

TE=TR+TCOND* ((A/(N-1))/2.)*((T'(M-1,1)-T(M A YAB/(M-1))
1)*DELT ‘
TE=TB+TCOND*((A/(N-1))/2.)*((T(M-1 N)-T(M,N)/(B/(M-1))
1)*DBLT

IF (KK .EQ. IOUT141) THEN

PRINT *,' ENERQY INPUT TO SYSTEM = *, "I}

PRINT *,'*

KK=l

ENDIF

o}

. C

c

LALILIEI IR L LT LT ]

¢ INCREMENT TIME *
(LI AL TR Y Y]

c

c
COUNT=COUNT+DELT
23 CONTINUE

¢
c
c

LI A LR T I I YT

* PROGRAM TERMINATION *

L T T T R T TR Y T Y

C

Cc

PRINT ***

PRINT *'*

PRINT * 'TIME OF PROCESS COMPLETED....PROGRAM TERMINATED,'
(o

STOP

END

C program heatcode.f
C

(o
Cc

Ll T Y T L Y T T T T Y T LT T}
LA

* PROGRAM FOR SOLUTION OF A TWO-DIMENSIONAL STHFAN PROBLEM IN A *

* RECTANGULAR CAVITY WITH SPECIFIC BOUNDARY CONDITIONS *
'

BORGUPNRRARURNEEPO RN PR S U RGNS R AR AR RO IR R ARk
"

* BOUNDARY CONDITIONS: *

."

# LEFT BOUNDARY --- CONSTANT HEAT FLUX *

* TOP BOUNDARY ---- INSULATED *

¢ RIGHT BOUNDARY -- INSULATED *

* BOTTOM BOUNDARY - INSULATED *

.

* INITIAL CONDITION: THMPERATURE OF ENTIRE CAVITY = T1>TM *

L 2L N i

LA T I L L R L L Y Ly R T L YT TR Y]
[ ]
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* PROCRAM BY KEITH W, SNYDER, 72700 *

* M8, PROJICT * |

'y

T L L L L L L L L I L L L T T T T T T LT LT
c

c

c

(TIIAIT TR LTY ]

* VARIABLES *

T T T

C

Cc

INTEGER 1, J, K, KK, L, LL, NTYPE, M, N, IOUTY, 10U12
REAL A, B, C, TCOND, ALPHA, HE, T™, TT, QC, T'l, DELT, F
REAL DELFO, DSE, Q, DLH, DELE, DELZ, Cl, C2, C3, CC, TEST
REAL H(500,500), DELH(300,500), DELHP(500,500)

REAL DH(500,500), HP(500,500), LH(500,500), T(500,500)
REAL DHP(500,500), LHP(500,500), CIE(500,500)

REAL TEST1, VCV, TE, HO(500,500), DELHO(500,500)

c

c

c

(TR R LT LE R L LR

* VARIABLE DEFINITION *

L T L e

c

C .

CLJKL,

C LLNTYPE,

CIOUTKK - COUNTERS AND CONTROL

C M. NUMBER OF NODES IN X-DIRECTION

C N -NUMBER OF NODES IN Y-DIRECTION

C A - HEIGHT OF CAVITY

C B - WIDTH OF CAVITY

C C - SPECIFIC HEAT (CONSTANT)

€ TCOND - THERMAL CONDUCTIVITY

C ALPHA - THERMAL DIFFUSIVITY

C HF . HEAT OF FUSION (LATENT HEAT)

C ™ - TEMPERATURE OF MELT

C T1. INTTIAL TEMPERATURE

C QC - HEAT FLUX ALONG LEFT BOUNDARY

C TT - TOTAL TIME OF PROCESS

C DILT - TIME STEP

C '« ASPECT RATIO OF CAVITY

C DELFO - FINITE-DIFFERENCE FORM OF FOURIER NUMBLR
C DSE - INITIAL DIMENSIONLESS ENTHALPY

C Q - DIMENSIONLESS HEAT FLUX

C DLH - DIMENSIONLESS LATENT HEAT

C DELE - DIMENSIONLESS X-COORDINATE (DELTA ETA)

C DELZ - DIMENSIONLESS Y-COORDINATE (DELTA XI)

C C1,C2,C3 - CONSTANTS

C CC - CONVERGENCE CRITERION

C H - DIMENSIONLESS NODAL SENSIBLE ENTHALPY

C HO - DIMENSIONLESS NODAL SENSIBLE ENTHALPY (PREVIOUS ITERATION)
C HP - DIMENSIONLESS NODAL SENSIBLE ENTHALFY (PREVIOUS TIME STEP)
C DELH - DIMENSIONLESS NODAL LATENT HEAT

C DELHO - DIMENSIONLESS NODAL LATENT HEAT (PREVIOUS ITERATION)
C DELHP - DIMENSIONLESS NODAL LATENT HEAT (PREVIOUS TIME STEP)
C T-NODAL TEMPERATURE

C DH - NODAL SENSIBLE ENTHALPY

C LH - NODAL LATENT HEAT

C TEST - CONVERGENCE CHECK

C DHP - NODAL SENSIBLE ENTHALPY (PREVIOUS TIME STEP)
C LHP - NODAL LATENT HEAT (PREVIOUS TIME STEP)

C CIE - CHANGE IN INTERNAL ENERQY (CONTROL YOLUML)
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C VCV - VOLUME OF CONTROL VOLUME
C TE - ENERGY INPUT TO SYSTEM

o

Cc

(o]

HRROU R

¢ INPUT DATA *

LRI T LT T

c

c

PRINT *,'DIMENSIONAL OR DIMENSIONLESS PARAMETERS?'
PRINT *,'ENTER 1 OR 2....

PRINT #,'*

READ ¥, NTYPE

IF' (NTYPE .EQ. 1) THEN

c

C DIMENSIONAL INPUT

c

PRINT *,' '

PRINT *,'ENTER VALUES IN CONSISTENT SI UNITS...
PRINT *,'

PRINT *,'ENTER HEIGHT OF CAVITY*

READ %, A

PRINT *,' "

PRINT *'ENTER WIDTH OF CAVITY'

READ ¢, B

PRINT #,'

PRINT *'ENTER SPECIFIC HEAT OF PCM’
READ*,C

PRINT ,'

PRINT *,'ENTER THERMAL CONDUCTIVITY OF PCM'
READ *, TCOND

PRINT *,"

PRINT *,'ENTER THERMAL DIFFUSIVITY OF PCM'
READ *, ALPHA

PRINT *,'

PRINT *'ENTER LATENT HEAT OF PCM'

READ *, HF

PRINT #,'

PRINT *'ENTER MELT TEMPERATURE OF PCM’
READ *, T™M

PRINT *+,'*

PRINT * 'ENTER INITIAL TEMPERATURE OF PCM'
READ *,TI

PRINT *,'

PRINT * 'ENTER CONSTANT HEAT FLUX ALONG LEFT BOUNDARY"
READ *,QC

PRINT *,"*

PRINT *'ENTER TOTAL TIME OF PROCESS'
READ *, TT

PRINT *, *

PRINT * 'ENTER TIME INCREMENT"

READ *, DELT

PRINT *,'

ELSE
c
C DIMENSIONLESS INPUT
c

PRINT *,"

PRINT *,'ENTER ASPECT RATIO OF CAVITY'
READ *, F

PRINT *," "

PRINT *'ENTER FOURIER NUMBER'

READ *, DELFO

PRINT *,"*
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PRINT *,'ENTER INITIAL DIMENSIONLESS SENSIBLE ENTHALPY'
READ *, DSE

PRINT '

PRINT *,'ENTER DIMENSIONLESS HEAT FLUX ALONG LEFT BOUNDARY"
READ*,Q ‘ ‘ .
Pm .‘0 .

PRINT *'ENTER 1/STEFAN NUMBER'

READ *, DLH

PRINT *,'°

PRINT *,'ENTER TOTAL TIME OF PROCESS

READ*, TT

ENDIF

PRINT *,'ENTER NUMBER OF NODES IN X-DIRECTION®
READ* M .

PRINT *,"*

PRINT *,'ENTER NUMBER OF NODES IN Y-DIRECTION®
READ* N

PRINT *,' *

PRINT *,'CONVERGENCE CRITERION?'

READ *,CC

PRINT *,'*

PRINT *,'PRINT OUT ENERGY INPUT TO SYSTEM'
PRINT *'EVERY ____ TIME STEP?’

READ *, IOUTi

PRINT ' *

PRINT *,'PRINT OUT ENTHALPY PROFILE'

PRINT *'EVERY ___ TIME STEP?'

READ *,10UT2
C
C
C

OBV RSN U DS ER LIS PSSO RRBR LSRRGS

* ASSIGN VARIABLES AND CONSTANTS *
‘.“0“0".‘..'0.“0‘"..0.."!““
C
C

IF (NTYPE .EQ. 1) THEN
Q=QC*(B/M-1,¥(TCOND*(TM-TI))
F=A/B

DELFO=ALPHA*DELT/A**2.
DLH=HF/(C*(TM-TD))
DSE=(C*TI-C*TM)/(C*(TM-T1))
VCV=(A/N-1))*(B/(M-1))

TE=0.0

ENDIF

DELE=1./(N-1)

DELZ=1/M-1)

C1=1.0+2.#F**2 *DELFO/DELZ**2.+2.*DELFO/DELE**2.
C2=F**2.¢DELFO/DELZ**2.
C3=DELFO/DELE**2.
c
c
C

SO EBOLBLLEELIBERBECEROT ORI

* INTTIALIZE NODAL EQUATIONS *
SSBLCITEINBEOINESSLTSQLEIREN GRS
C

C

DO 10 =1 M

DO 20 J=IN

HQAJ)=DSE

DELH(LJ)=0.0

CIE(LJ)}=0.0
20 CONTINUE

10 CONTINUE
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C
C
Cc

[LIALITTT I I LI LRI Y Bl 2] )

* BEGIN TIME INCREMENTING *
LTI IIT I I TP I Y]

C

(o

IF (NTYPE .EQ. 1) THEN
COUNT=DELT

ELSE

COUNT=DELFO

ENDIF

L=1

KK=1

DO 23 WHILE (COUNT.LT. TT+DELT)’
DO AU 1=I M

DO 251=1 N

DELHP@ J)=DELH(1,J)
HP@J)=H{AJ)

- 25 CONTINUE

24 CONTINUE
C
C
Cc

SRERANEEEERIETER LS REE RS Rk RED Y

* FINITE DIFFERENCE SOLVER *
PR EIEIEE IR ROIEEE N RA SRR
C

C

K=0

LL=0

TEST=CC+1.

DO 27 WHILE (TEST .GT. CC)

C ‘

C LATENT HEAT ADJUSTMENT
(o)

DO 30 I=1 M

DO 40 J=1 N

HO(J)=H({)}

DELHO(I J)=DELH(,])

DELH( J)=DELHOQJ+H{.))

IF (DELHQ,J) .GT. DLH) THEN
DELK{J)=DLH

ELSE IF (DELM(1J) .LT. 0.0) THEN
DELHQN 0.0

ENDIF

40 CONTINUE

30 CONTINUE

C

C LEFT BOUNDARY NODES

(o)

. DO S0J=2N-1

HQ )=(H(13)-DELH(1 J}+ DELHO(1 )))/C1+2.*C2/C14(Q+ HRI)+C3/C
11*H(Q J+1)+H(1 J-1)) : ‘
50 CONTINUE
C
C TOP & BOTTOM LEFT CORNER NODES
C
H(1 N)=(H(1,N)-DELH(1 N}* DELHO(1 N))/C142.4C2/C1*(Q+H(2,N))+2.4C3/
ICI*H(1N-1)
HQL1)=(H(1,1)-DELH(1,1+ DELHO(1, 1))/C142.4C2/C1*(Q+H(2,1)}+2.*C3/
IC1*H(1,2)
C
C TOP & BOTTOM BOUNDARY NODES
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C
DO 60 1=2 M-1
HQAN)=HIN)-DELHAN}DELHO@,N))/C1+C2/C1*(HI+1N)+H(1-1,N)
1)4+2.*C3/CI*H(IN-1)
H{,1)=(H{,1)-DELH(1,1 #DELRO(,1))/C1+C2/C1*(H(I+1,1+H(-1,1)
1)+2.*C3/C1*H(1,2)
60 CONTINUE
C
C INTERIOR NODES
C .
DO 70 1=2 M-1
DO 80 J=2 N-1
HAD=HAIN-DELHIJ )+ DELHOQN)/C1+CY/CI*(H(I+1 J+H({-1,
N)+CI/CI1*HA,I+1)+HAJ-1))
80 CONTINUE
70 CONTINUE
C
C TOP & BOTTOM RIGHT CORNER NODES
C
HM N)=(HM,N)-DELH(M N*+DELHOM\,N))/C1+2.*C2/C1*H(M-1 N)+2.*C3/C1
I*H(MN-1)
HM,1)=(HM,1)-DELH(M,1)+DELHO(M,1))/C1+2.*C2/C1*H(M-1,1)+2.*C3/CI
1*HM,2) .
C
C RIGHT BOUNDARY NODES
Cc
DO 90 j=2N-1 i
HM J)=(H(M,J)-DELHM,J)+ DELHO(M,1))/C1+2.*C2/C1*H(M-1,J)+C3/C1*
I(HMJ+1)+HM J-1))
90 CONTINUE
C
C
K=K+1
LL=LL+!
IF ((KK .EQ.IOUTI1) .OR. (COUNT .EQ. DELT)) THEN
IF (K .EQ. 1) THEN
PRINT *'*
PRINT ‘(1X, A12,14, AL, $)' 'TTERATION = K, ‘.
ELSEIF (LL.LT. 11) THEN
PRINT ‘(14, A1, )", K, ')’
ELSE
PRINT ‘(1X, 14, A1)’ K,
LL=0 :
ENDIF
ENDIF
C
C CONVERGENCE CHECK
C
TEST=0.0
DO 270 1=1 M
DO 280 J=IN
TEST1=ABSHO(J)-H{1,J))
IF (TEST! .GT. TEST) THEN
TEST=TESTI
ENDIF
280 CONTINUE
270 CONTINUE
27 CONTINUE
C
C
C

CHENSEENANE

* OUTPUT *

SRR EERNLY

C
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C

IF ((COUNT .EQ. DELT) .AND. (NTYPE .EQ.1)) THEN

PRINT *'

PRINT *' ¢

PRINT *#,'OUTPUT VALUES ARE EXPRESSED IN SAME CONSISTENT"
PRINT *,'SI UNITS AS INPUT....'

PRINT *,*

PRINT *,' ¢ -

* PRINT *,'INPUT VALUES FOR THIS RUN:’

PRINT *," *

PRINT 200, ‘HEIGHT =, A, ‘WIDTH =", B
200 FORMAT (1X, A9, G9.4, T40, A8, G9.4)

PRINT 210, ‘SPECIFIC HEAT = *, C, ‘LATENT HEAT = *, HF
210 FORMAT (1X, A16, G9.4, T40, A14,G9.4)

PRINT 220, ‘THERMAL CONDUCTIVITY = *, TCOND, “THERMAL DIFFUSIVIT
1Y =, ALPHA :
220 FORMAT (1X, A23, (9.4, T40, A22, G9.4)

PRINT 230, ‘MELT TEMP. = *, TM, ‘INITIAL TEMP. = *, TI
230 FORMAT (1X, A13, F9.4, T40, A 16, F9.4)

PRINT 240, ‘CONSTANT HEAT FLUX ALONG LEFT BOUNDARY =, QC
240 FORMAT (1X, Ad1, G9.4)

PRINT 250, ‘TOTAL TIME OF PROCESS = *, TT, *TIME INCREMENT = ,
IDELT

250 FORMAT (1X, A24, G9.4, T40, A17, G9.4)

PRINT *," *

PRINT *'CONVERGENCE CRITERION = *, CC

PRINT *," *

PRINT *,'NUMBER OF NODES IN X-DIRECTION = *, M ’
PRINT *'NUMBER OF NODES IN Y-DIRECTION = *, N

PRINT *," *

PRINT *,' ¢

ELSE IF ((COUNT .EQ. DELFO) .AND. (NTYPE .EQ. 2)) THEN

PRINT *,'DIMENSIONLESS INPUT VALUES FOR THIS RUN:'

PRINT *,' *

PRINT * 'CAVITY ASPECTRATIO =, F

PRINT *,'FOURIER NUMBER = *, DELFO

PRINT *,'INITIAL DIMENSIONLESS SENSIBLE ENTHALPY = *, DSE
PRINT *,'1/STEFAN NUMBER = *, DLH

PRINT *,"TOTAL TIME OF PROCESS = *, TT

PRINT *," *

PRINT *,'CONVERGENCE CRITERION = *, CC
PRINT *," *

PRINT *,'NUMBER OF NODES IN X-DIRECTION = ‘, M
PRINT * 'NUMBER OF NODES IN Y-DIRECTION = *, N
PRINT *,'*

PRINT ®," *

ENDIF

KK=KK+1

IF (KK .EQ. IOUT1+1) THEN

PRINT *, *

PRINT ¢, TIME =, COUNT

ENDIF

DO 300 I=1 M

DO 310)=1 N

IF (NTYPE .EQ. 1) THEN
DH{J)=H{J)*C*(TM-TI+C*T™M
DHP(13)=HP(1,J)*C*(TM-TI}+C*TM
LH@J)=DELH(J)*C*(TM-TT)
LHP(I,J)=DELHP(,J)*C*(TM-TI)
TAN=DHAJ)C

ENDIF

IF (L .EQ. IOUT2) THEN

IF (NTYPE .EQ. 1) THEN

PRINT 320,'NODE - (*1,',')J,") H = * DH(IJ),'L =,
ILHAA,'T =", T(A)
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320 FORMAT (1X,A8,12,A1,12,A7,E12.6,2X,A4,1:12.6,2X,A4,E12.6)
ELSE
PRINT 330,'H*(*,1,',’ J,") = . H(1,J)
330 FORMAT (1X, A3, I2, A1, I2, A4, E14.8)
ENDIF
IF (1 .EQ. M) .AND. (J .EQ, N)) L=0

~ ENDIF
310 CONTINUE
300 CONTINUE
L=L+1
c
c
c .
“t‘t‘t‘tt“##t‘ﬁtt‘ﬂ‘#l‘i“‘t##‘****‘tt“
* CALCULATE CHANGE IN INTERNAL ENERGY *
(ITT RII PR I R PR RIS R 2RI SRR R Ty )
c
c
C INTERIOR CONTROL VOLUMES
C

IF (NTYPE .EQ. 1) THEN

DO 400 1=2,M-1

DO 410 J=2,N-1

CIE(L,J)=T'COND/(ALPHA *Cy*VCV*((DH(1J)-DHP(J))

1+ (LHIN)-LHP{T)))

410 CONTINUE

400 CONTINUE

C

C LEFT BOUNDARY CONTROL VOLUMES

c

DO 420 J=2N-1
CIE(1J)=TCOND/ALPHA*C)*(VCV/2.)*(DH(11)-DHP(1,J))
1+(LH(1J)-LHP(1 1))

420 CONTINUE

o

C RIGHT BOUNDARY CONTROL VOLUMES

c

DO 430 J=2N-1

CIE(M,J)=TCOND/(ALPHA *C)*(VCV/2.)*((DH(M,J)-DHP(M,J))
1+(LHM,D)-LHP(M,J)))
430 CONTINUE
c
C TOP & BOTTOM BOUNDARY CONTROL VOLUMES
C

DO 440 1=2,M-1
CIE(I,N)=TCOND/(ALPHA*C)*(VCV/2.)*(DH(N)-DHP(I,N))
1+(LHIN)-LHPAN)))
CIE(1,1)=TCOND/(ALPHA*C)*(VCV/2.)*(DH(L1)-DHP(, 1))

H+(LH(,1)-LHP(L, 1))
440 CONTINUE
c
C CORNER CONTROL VOLUMES
C

CIE(1 N)=TCOND/(ALPHA*C)*(VCV/4.)*((DH(1 N)-DHP(1,N))
1+(LH(1,N)-LHP(1 N)))
CIE(M,N)=TCOND/(ALPHA*C)*(VCV/4.)*((DH(M,N)-DHP(M,N))
+(LHM,N)-LHP(M N)))
CIE(1,1)=TCOND/(ALPHA*C)*(VCV/4.)* (DH(1,1)-DHP(1,1))
(LH(1,1)-LHP(1,1)))
CIE(M,1)=TCOND/(ALPHA*C)*(VCV/4.)*(DH(M,1)-DHP(M,1))
1+(LH(M,1)-LHP(M, 1))

c

C TOTAL CHANGE
C
DO 450 I=1.M
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DO 460 J=I N
TE=TE+CIE(,J)

460 CONTINUE

450 CONTINUE

IF (KK .EQ. IOUT1+!1) THEN
PRINT *,' ENERGY INPUT TO SYSTEM = *, TE
PRINT *,'* ‘
KK=1

ENDIF

ENDIF

Cc

(o

Cc

LA AL T T ST 1

* INCREMENT TIME *
ARSI T LTI L]
P

po ;

IF (NTYPE .EQ. 1) THEN
COUNT=COUNT+DELT
ELSE
COUNT=COUNT+DELFO
ENDIF

23 CONTINUE

c

c

c

LRI AT R T YT Ly 2y

* PROGRAM TERMINATION *

LA PR E I TR T L]

c

c

PRINT #," ¢

PRINT #,' ¢ |
PRINT *,'TIME OF PROCESS COMPLETED....PROGRAM TERMINATED.”
c

STOP

END

Lh

D









