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An inviscid model for the vortex-street wake 

By P. G. SAFFMAN AND J. C. SCHATZMAN 

Applied Mathematics, California Institute of Technology, Pasadena, California 91 125 

(Received 13 August 1981 and in revised form 21 December 1981) 

An inviscid model for the Karman vortex street, containing vortices of uniform 
vorticity surrounded by irrotational fluid, is related to the wake behind a bluff body 
by a global analysis requiring the conservation of momentum, energy and vorticity. 
Some comparison is made with experimental results reported in the literature. A 
qualitative procedure is proposed whereby the slow evolution of the wake through 
viscous effects is approximated. Some comments are made regarding the relevance 
of the stability properties of the inviscid street. Some calculations are made for the 
‘ secondary vortex street ’ that is observed after breakdown and rearrangement, and 
comparison is made with experiment. 

1. Introduction 

I n  previous papers (Saffman & Schatzman 1981, 1982; Schatzman 1981), a model 
for the Karman vortex street was described which is similar to  von Karman’s point 
vortex model (von Karman 1911, 1912; von Karman & Rubach 1912), except that  
the vortices were assumed to be of finite area and uniform vorticity. Numerical 
solutions of the Euler equations for this model were obtained and properties of the 
street were calculated. 

I n  this paper, the equations are derived that permit relating the properties of the 
street (vortex strength, size, and spacing) to three parameters describing the local 
behaviour of the flow in the vicinity of a blunt body producing the street. The first 
parameter is the drag, the second specifies the rate of shedding of vorticity from the 
body that ends up in the wake, and the third describes the energy loss through viscous 
dissipation in the near wake. It is observed that values of these parameters more or 

less in agreement with experiment lead to predictions of the model which are also 
compatible with observations. Further, by permitting these parameters to  vary 
slowly with time, i.e. by allowing a slow loss of vorticity and energy of the wake, the 
evolution of the vortex street through viscous effects is simulated. Some comments 
are also made regarding the relevance of the stability properties of the inviscid street, 
rough calculations are made describing the ‘secondary vortex street ’ that  is observed 
after breakdown and rearrangement, and comparison is made with experimeht. 

Similar semi-empirical calculations have been done by Roshko (1954) and Weihs 
(1973). However, both researchers used the point-vortex approximation and assumed 
von Karman’s value for the spacing ratio, K = 028055. While the former approxi- 
mation is probably reasonable (as will be discussed later), the latter assumption is 
probably not, and it is certainly not compatible with a slqw evolution of the street. 
Weihs claims to have modelled the vortex pairing observed by Taneda (1959) and 
others, but the analysis assumes constant wake frequency (Strouhal number) and is 
hence apparently not relevant to this phenomenon. 

It is recognized that a purely inviscid model such as the one proposed is not 
completely adequate for making accurate predictions for the real-fluid phenomena. 
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Nevertheless, the purpose of this paper is to study, in some detail, the characteristics 
of the approximating inviscid flow in order to see to what extent the properties of 
the real flow can be reproduced and predicted. 

In $2, we derive expressions for the momentum, energy, and vorticity flux in an 
inviscid uniform vortex street of finite-area vortices placed in a uniform stream of 
velocity U,. These are expressed in terms of the strength and size of the vortices, 
the distance between them, and U,,. These fluxes are related to the drag on the body, 
the amount of kinetic energy that is lost in the near wake by dissipation, and the 
amount of vorticity that is shed by the body. In this way, closed equations are 
obtained for the properties of the street in terms of quantities determined by the flow 
field close to the body. These equations are solved numerically in $ 3  and the predicted 
street properties are shown to correspond reasonably well with observations. 

In $4, the slow evolution of the street is considered by allowing for slow dissipation 
of energy and annihilation of vorticity. In this way, predictions are made for 
variations of the spacing ratio, again in reasonable agreement with experiment. 

The question of the street stability is considered in $5.  It is shown that the initially 
small growth rates of infinitesimal disturbances become large as the street evolves, 
and this can account for the observed instability of the street after some number 
of periods. Finally, in $6, we consider to what extent the inviscid model can predict 
or is consistent with the sometimes-observed rearrangement. 

2. Conservation equations 

The assumptions of the model are that the flow is incompressible, inviscid, 
two-dimensional, spatially periodic in the streamwise direction, and irrotational 
outside vortices of uniform vorticity which lie in the well-known KBrman vortex-street 
pattern. The inherent assumption that the street does not evolve with time, and 
therefore that the fully infinite vortex-street model is applicable, permits an 
analytical analysis of momentum and energy conservation in the flow past a body. 
The method is to consider the conservation equations for the fluid contained in a large 
box surrounding the body and cutting the wake far downstream (see figure I ) ,  to let 
the box expand to infinity, and to  time-average the equations over one period of the 
wake oscillation. The details of the analysis follow. 

Momentum conservation may be studied in a manner similar to that employed for 
the point vortex street (see e.g. Goldstein 1938). A slightly different argument 
proceeds as follows: Consider a co-ordinate system fixed with respect to the street, 
as in figure 1 ,  in which the unsteady motion is concentrated in the vicinity of the 
body (which travels upstream with speed U,- Us)  and the speed at infinity is Us. 
The effect of the body on the flow field can be modelled by an equivalent distribution 
of forces, concentrated in the body, so that the equation of motion can be written 
(with unit fluid density) 

aU 
- + u . V U  = - V p - F .  
at 

This equation is valid throughout space (including the region of fictitious fluid in 
which the body lies), where F = 0 outside of the body region, and where the integral 
of F over the body region gives the force on the body. The vorticity o then satisfies 
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U. 

FIGURE 1. Sketch of the flow configuration in a co-ordinate system fixed relative to the street. 
Flow is most unsteady near the body. 

A fixed region C is considered that encloses the body and part of the street. Then 

a 3 ],(x x o) da = J',(. x 2) da = - j,x x (V x F) d a  - x x (u . V )  o da, (2.3) 

on using (2.2). This can easily be shown to equal the time rate of change of momentum 
within C in the limit as Z extends to infinity in all directions. Some identities are 
employed, easily verified, that in two dimensions, for F of finite extent, incompressible 
fluid and w zero on the boundary of C. 

x x (V x F)da = 

u x o d a = - j , x x ( u . V o ) d a =  [+u2n-u(u.n)]ds. 

Further, we write 

so that u' denotes the velocity relative to the free stream. Then (2.3) gives 

u' = u-u , ,  us = u,t, 

where 
F 

D = [+den- u'(u' . n)] ds, k 
and it is to be remembered that the boundary must not pass through regions 
containing vorticity. Furthermore, in the limit as the region X extends to infinity, 
it is easily seen that the integral may be taken over only the downstream boundary 
of C and the velocity field u' = (u', v) may be taken to be that due to a fully infinite 
vortex street. 

The next step is to take the streamwise component of (2.7) and average over one 
period of the wake oscillation. The last term does not contribute as it is transverse 
to the stream. The x-component of D can be written, since u'-iv is an analytic 
function of z = x + iy, 

1 +iw 

D' = --Im (u'-iv)2dz, (2.9) 
2 JLw 
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where the contour is any path going from below to above the street which does not 
pass through a vortex. 

Over one period of the wake oscillation, i.e. over time I / (  Uo- Us) ,  the body travels 
upstream distance 1 and two more vortices are created inside C; by assumption, the 
flow in C remains otherwise the same. This gives an additional x-component 
contribution to the integral on the left-hand side of (2.7) of amount -Th, where h 
measures the y-separation of the centres of vorticity of the two rows, and r is the 
strength of the vortices. Hence, the average over one period gives 

x x o d r = -  ”( -Th) .  (2.10) 
1 

Thus, the x-component of the drag, averaged over one period (and omitting special 
symbols for average quantities), is given by 

(2.11) 

where the integral is obtained from the fully infinite vortex street, and the contour 
passes between neighbouring vortices (it is independent of path, subject to this 
condition). 

This result relating the drag on the body to properties of the infinite street is well 
known for point vortices, and our object here is to show that it remains correct for 
vortices of finite size. Note that the argument does not work for the fluctuating lift 
on the body, which according to (2.7) depends crucially on the fluctuations of 
circulation and hence on the detailed flow near the body. It was pointed out to us 
by Professor A. Roshko that a relation between the properties of the street and the 
fluctuating lift cannot exist because there can be no lift on a flat plate normal to an 
inviscid flow (assuming the flow separates smoothly at the edges) but there can be 
a fully developed vortex-street wake. 

An extension to (2.11) deals with the case where the street is slowly varying. In  
(2.6), pick Us to be the value in the vicinity of the downstream boundary of C; then 
(2.7) holds exactly. It is assumed that the variation in vortex spacing and size is 
sufficiently gradual that a t  each point in the street, far downstream of the body, the 
propagation velocity Us and the integral (2.9) for D’ are given to arbitrary accuracy 
by the corresponding quantities for the steady uniform street. It may be of use to 
consider a piecewise uniform street where the downstream boundary of Z is far from 
the edges of the uniform section in which i t  lies. To this approximation, (2.8) still 
leads to (2.9). Furthermore, since the street is assumed to ‘age’ at  a uniform rate, 
(2.10) also holds, where the quantities on the right-hand side are those for the 
downstream boundary of 2,  and hence (2.11) is still approximately correct. The 
condition that the right-hand side of (2.11) be constant throughout the wake is thus 
approximately equivalent to the condition that momentum be conserved in the wake. 

We now derive a second relation by considering the energy balance between the 
kinetic energy of the flow in the street and the work done by the body. Multiplying 
(2.1) by u and integrating gives 

(2.12) 
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Substituting u = u’+Us, this becomes 

. (2.13) 

It follows from integrating (2.1) that the right-hand side of (2.13) is zero. 
The Bernouilli equation, valid outside the vortices, gives 

p+&l’2+u’.Us+-= 84 0.  
at 

Substituting for P + & U ’ ~  in (2.13) and observing that 

(2.14) 

(2.15) 

in the limit of large Z, since the integrand vanishes inside the wake and each term 
is at most O(r-l)  outside the wake, where the effect of the body is that of a moving 
source fed by the wake inflow, the following result is obtained: 

DUO = %Jz#’2du+Us a .$Jid2n-u’(u’ . n ) ] d s .  

Combining (2.11) and (2.16) then gives 

(2.16) 

(2.17) 

In one period, the kinetic energy inside X is increased by T1, where T is the average 
kinetic energy per unit length over streamwise distance 1 for the fully infinite street, 
so that 

(2.18) 

With (2.17) this gives the relation 

(2.19) 

For point vortices, T = 00, and the relation is meaningless. This, of course, is one 
of the objections to using a street of point vortices as a model of the wake. Schlayer 
(1928) and Kaufmann (1951) used (2.19) without the last term (i.e. they just assumed 
D = T) to estimate the size of the vortices, but we are unaware of other attempts 
to use energy conservation, and the relation (2.19) appears to be new. However, it 
does depend on the assumption that all the energy of the flow near the body does 
go into the street and that none is lost by viscous dissipation. It is perhaps more 
realistic to suppose that a fraction E of the work done by the body on the fluid is 
lost. Then D in (2.12) is replaced by (1 -s)D, and repeating the argument consistently 
gives, instead of (2.19), 

(2.20) 

Note that viscous dissipation does not affect the momentum-balance equation (2.1 1 )  
or the vanishing of the right-hand side of (2.13) as momentum is still conserved in 

Th 

1 
D = T-- Us.  

Th  

1 
( 1 - ~ ) 0 =  T--Us .  
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the absence of boundaries at  rest. The effects of dissipation in the far downstream 
wake would produce a small contribution to a$/at in (2.15), but this contribution is 

neglected, although this approximation may not be good. For this reason, the later 
calculations of vortex area based on (2.20) are somewhat suspect when applied to a 
slowly varying street. 

A third relation between the street and the body comes from requiring that the 
vorticity generated and shed at the surface of the body is convected into the wake. 
In principle, an unsteady inviscid model might provide some quantitative information 
regarding the shedding of vorticity (which, incidentally, could then be used for 
estimates of the fluctuating lift). This possibility is not pursued here; instead, it is 
chosen to put 

(2.21) 

where 6 is essentially the fraction of vorticity in the shear layers that ends up in the 
fully developed vortices times the square of the ratio of the velocity at the edge of 
the shear layer to the velocity of the free stream (see Roshko 1954). Assuming that 
all shed vorticity ends up in the vortices, the Kirchhoff free-streamline theory 
predicts S = 1,  but, as pointed out by Roshko (1954), in the real flow vorticity is shed 
at a considerably faster rate and values of S in the vicinity of 1.75 would be more 
realistic. However, owing to annihilation, not all of the shed vorticity ends up in the 
vortices; indirect experimental observations indicate that only about 60 yo (Fage & 
Johansen 1927), 43% (Roshko 1954), 67 % (Bloor & Gerrard 1966), or 25% (Davies 
1976) of the vorticity survives, and theoretical estimates that have been given are 
50 % by Prandtl (see Birkhoff 1953), 85 yo (Clements 1973), and 85 % (Sarpkaya 1975) 

(the last two results are based on inviscid models and are probably too large). 
Multiplying 1.75 by a fraction of this order gives a value for 6 in the vicinity of unity 
(probably slightly less). 

Finally, the three relations (2.1 l) ,  (2.20), and (2.21) may be non-dimensionalized, 
giving 

(2.22 a )  

r 
- ( U 0 - U s )  =@U,", 
1 

KO," 

28 
- CD = K(  00- os) + B', 

(2.223) 

(2.22c) 

Here b is the 'breadth ' of the body which is used in the definition of drag coefficient 
C,. Note that os, B', and P are functions of K and a E All2 alone (where A is the 
dimensional vortex area), and are properties of the street, which for the uniform 
vorticity model were given numerically in Saffman & Schatzman (1981) and 
Schatzman (1981). This data has been curve-fit; the results are presented in the 
appendix. Using (2 .22~)  to eliminate oo, and plugging in the known functions 
os(~ ,  a), B'(K, a), and P(K, a), two simultaneous equations for K and a result, with 
C,/B, E and 6 as parameters. Note that since (2 .22~)  is quadratic in 0, there are in 
general two solutions. 
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3. Numerical results 

Given values for C,//?, E and 6, which are expected to be functions of the shape 
of the body and the Reynolds number, all the remaining quantities (which completely 
describe the street properties) can be determined. Quantities of particular interest 
are K ,  a, the Strouhal number 

and the dimensionless vortex strength 

The quantities K ,  a, S/?, f//? have been plotted in figures 2-5 as functions of C,//?, 
for each of the two branches of solutions of (2.22a-c), for E = 0, and for values of 6 
ranging from 0 6  to 1-2 (figures 2 (a)-5(a) correspond to the larger solution for Oa and 
figures 2(b)-5(b) correspond to the smaller value). It should be noted that the 
solutions shown in figures 2(a)-5(a) have very small area votices, and hence the 
a proximation of circular vortices is a good one (see Schatzman 1981). In  this case, 
4 and B' are independent of a, and the only effect of increasing E is to increase a, 
all other parameters discussed above (except the energy) remain virtually unchanged. 
The solutions shown in figures 2 (b)-5 (b) have much larger area vortices. However, 
as will be pointed out, the parameters other than vortex area for these solutions do 
not agree with experiment. For 6 > 1, there is no solution for C,/p smaller than a 

certain positive critical value (the solution branches as plotted terminate, but if the 
two branches were plotted together, the limit-point behaviour would be obvious). To 
obtain reasonable values of C,//?, 6 must certainly be less than 1.5, and values closer 
to 1.0 are more reasonable. On the other hand, for 0 < 6 < 1, there are solutions for 
all C,//? greater than a certain negative value. 

According to calculations, the independence (of quantities other than a) on 
variations in B holds even for quite large areas a. The main effect of large values of 
E is to terminate the solution branches when the area becomes larger than the 
maximum for which a steady configuration exists (for the uniform vorticity model, 
depending on K ,  the maximum a ranges from about 025 to 0.35; see Saffman & 
Schatzman 1981). This places a lower limit on K and S/? and an upper limit on f//?; 
for E = 0.8, roughly K > 0.1, S/? > 01,  f//? < 35, and for E = 0 9 ,  roughly K > 0.2, 
S/? > 017, f//? < 2.5 for 6 between 0 6  and 1.2. Near this cut-off point, the change 
from figures 2 ( a ) d  (a) is very small. For the second branch of solutions (figures 2b-5 b),  
increasing E has a similar effect, except that since the solutions a for E = 0 are already 
quite large, there is only a gradual effect on a. There does not appear to be available 
any experimental data that would provide an estimate of E ,  but to show the effect 
on a in figure 3(a) the corresponding quantities with E = 0.8 have been plotted in 
figure 6. 

For comparison, some numerical values for /?, 6, K ,  a, S/?, and f'/B that have been 
obtained experimentally by other researchers are listed in table 1 and have been 
indicated in figures 2, 4, and 5. As has been pointed out by Hooker (1936), T' imme 
(1957), Schaefer & Eskinaze (1959), Berger (1964), Gerrard (1965), Davies (1976) and 
other authors, the typical hot-wire measurements (which give the best data currently 
available) are subject to certain systematic errors. These workers have tried to 
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0 0.25 0.5 0.75 1.0 1.25 1.5 1.75 2.0 

CD 18 

FIGURE 2. Spacing ratio of the street as a function of drag coefficient for various shedding fractions 
6. Solutions represented by (a) have the larger root 0, and those by (b )  have the smaller. Symbols 
indicate experimental data listed in table 1. 

improve the results, most recently by attempting to fit the observed data to specific 
vortex-street models (e.g. a street of Hamel-Oseen vortices) and in this indirect way 
determine the quantities of interest. It is our opinion that hot-wire measurement 
techniques, with the attendant problems of nonlinearity, noise and poor frequency 
response, are still inadequate to determine accurately the vorticity distribution 
within the street, and hence reported values of vortex strength, size, and transverse 
spacing all are subject to serious doubt. As pointed out by Gerrard (1965), the 
phenomena are also very sensitive to turbulence of the free stream, but in our opinion, 
better experimental techniques need to be developed before the discrepancies 
between the various experimental results can be satisfactorily explained and this 
matter conclusively settled. 
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FIGURE 3. Vortex area aa a function of drag coefficient for various shedding fractions 8. 
Solutions represented by (a)  have the larger root 0, and those by ( b )  have the smaller. 

It should be noted that mean velocity profiles 

(3.3) 

can be obtained from the published figures of shapes in Saffman t Schatzman (1981) 
and Schatzman (1981) by using the relation 

where [(y) is the fraction of line y = const that intersects the vortices of positive sense 
minus the corresponding fraction for vortices of negative sense. Unfortunately, the 
available experimental data on mean profiles are not adequate to make this 

16 PLY I22 
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0 

FIGURE 4. Wake frequency as a function of drag coefficient for various shedding fractions 8. 
Solutions represented by (a) have the larger root 0, and those by ( b )  have the smaller. Symbols 
indicate the experimental data listed in table 1 .  

comparison useful. Also, i t  is likely that comparisons based on the uniform vorticity 
model will not be as satisfactory as those for models based on more realistic vorticity 
distributions as in Hooker (1936), Timme (1957), Schaefer & Eskinaze (1959), Berger 
(1964) and Davies (1976). 

Assuming that the published experimental work is not far wrong, then it  is 
apparent from figures 2 (b)-5 (b) that  this class of solutions of the conservation 
equations gives values of spacing ratio K and vortex strength f that  are too large, 
and values of Strouhal number S that are too small. The configurations corresponding 
to figures 2 (a)-5 (a), however, are in rough agreement for these three quantities. This 
tends to  indicate that i t  is the first class of solutions that correspond to the real 
phenomena. However, the corresponding vortex areas are smaller than the experi- 
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8 t (b)  

FIQURE 5. Vortex strength as a function of drag coefficient for various shedding fractions IS. 
Solutions represented by (a) have the larger root 0, and those by (b)  have the smaller. Symbols 
indicate the experimental data listed in table 1.  

ments indicate. This suggests that there is significant energy dissipation in the real 
flow;. this seems reasonable since laminar streets are observed only for Reynolds 
numbers less than roughly 150 (based on the full breadXhof the body), where viscous 
effects still have importance in fairly large regions of the flow, and for larger Reynolds 
numbers the resulting turbulence probably has a significant effect in extracting 
energy from the flow (and hence permitting expansion and weakening of the vortices). 
However, the quantity 8, which is really the only parameter in this model that is 
intended to simulate directly some of the effects of viscosity, does not have much 
effect except on the calculated vortex area. Therefore, it seems reasonable that figures 
2(a),  4(a) and 5 ( a )  represent an adequate approximation of the real flow, but the 
present determination of vortex area is quite indefinite. The areas may also be 
sensitive to the assumption of uniform vorticity. 
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CD /fl 

FIQURE 6. Vortex area as a function of drag coefficient for various shedding fractions 6. Similar 
to figure 3(a), except that E = 0 8  instead of E = 0. Note that there are no solutions for C, greater 
than certain critical values. 

Cylinder 

Source R shapet f i  6 K OL sfi cD/8$ 
Hooker (1936) 324 e 1.35 0.40 031 011 029 070 089 0 
Timme (1957) 200 c 095 0.9 021 012 017 2-6 1.3 
Schaefer & 62 c 2.00 0685 031 0507 028 1.23 069 (D 
Eskinaze (1959) 94 C 1.30 - 024 0212 033 - 0.99 e 

118 C 1.34 - 027 0114 035 - 094 €T3 
Berger (1964) 151 C 1.39 0785 028 0152 , 0238 1.65 1.0 0 
Davies (1976) 7x105- d 1-26 0624 0.21 0084 0165 1.9 1.0 A 

4 x 10-5 

t c = Circular cylinder, d = Semicircular cylinder, flat surface normal to free stream and facing 
upstream, e = Elliptical cylinder, major axis aligned with free stream. 

$ The data for C ,  were not provided by the researchers cited, but is appropriate data obtained 
from Tritton (1959) and Roshko (1961). 

TABLE 1. Calculated vortex-street parameters based on published experimental data. Data 
pertaining specifically to wake were taken at the estimated point downstream where the vortex 
street was first fully formed. 

4. Slow evolution of the street 

Despite the assumptions of the analysis of $2 in the derivation of (2.19) that the 
vortex street does not evolve, it is perhaps instructive to examine how the model 
might be used to approxim'ate a slowly varying (pseudo-steady) wake. Along with 
the viscous diffusion of the vortices, in the real flow there is an accompanying energy 
dissipation and annihilation of vorticity. Hence, i t  would seem reasonable to observe 
the effect of increasing e and decreasing 6. Figures 7-9 were calculated for fixed C, 
(as pointed out in $2, this corresponds to fixed momentum flux in the wake) and e = 0 
by specifying the initial value of /3 (i.e. fixing the initial width of the street), solving 
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(2.22), and thereafter allowing /3 to change while 6 is decreased and S is held constant. 
This last condition is necessary so that vortices be conserved as the wake evolves, 
since the number of vortices per unit time passing a point in the wake fixed relative 
to the body is ( U,- Us) / l  and S = [( 17,- Us)/l] [b /U, ] .  Note that for the physically 
reasonable class of solutions of (2.22) E has essentially no effect save on the vortex 
area. Thus, under these changes, the model would predict a change in the configuration 
of the street as indicated in figures 7-9 for C ,  = 1, 1.35, 1.7 due to decreasing 6 (with 
8 = 0), along with an additional increase in area a due to increasing 6, which is not 
taken into account. Presumably, the corresponding increase in E to describe the real 
flow adequately would be sufficient to result in a net increase of a, although a 
quantitative study of the relationship between E and 6 would be helpful in completing 
this analysis. This approximate evolution model is very crude, but figures 7-9 do 
clearly show the increase in transverse spacing /3 and spacing ratio K that is remarked 
in practically every experimental report on the Ktirrnan vortex street at low Reynolds 
number (see Hooker 1936). The model also predicts the nearly constant streamwise 
vortex spacing I that is observed (see e.g. Schaefer & Eskinaze 1959). Lacking 
complete and accurate experimental results, and lacking a theory to predict values 
of E and 6 during the evolution, a more serious comparison is not possible at this time. 

5. Street stability 

An important question is whether or not the stability properties of the steady 
vortex street model are relevant. Since von Karman first studied the stability of the 
point vortex street (von KBrmh 1911), much use has been made by researchers of 
his result that the spacing ratio K = 0.28055. . .gives the least unstable configuration 
(linearly neutral). It is our belief that the stability properties of the steady street 
either are not relevant to the formation process of the real street or at least any 
connection is still obscure. A more reasonable hypothesis is that the stability 
properties have some relevance to the slow street-evolution process, after the street 
has fully developed. The observed rearrangement process for the laminar case, below 
Reynolds number about 160 (see Taneda 1959; Matsui & Okude 1980), bears a strong 
resemblance in its initial stages to the normal modes from the linear stability analysis. 
The hypothesis is that the evolution process is slow enough that the properties of 
periodic wakes are of good approximation, and that a street which at first lies within 
the band of stability (see Saffman & Schatzman (1982) for a discussion of the stability 
for the uniform vorticity model) becomes unstable as the vortex area a and spacing 
ratio K change. Quantitative verification of this hypothesis using data such as 
presented in figures 7-9 is not feasible, since the calculated vortex areas for these 
configurations are too small (as commented upon above). However, the uniform 
vorticity model does predict that a stable configuration will become unstable as K 
is increased much above 035, independent of the vortex area. 

The stability calculation describes disturbances proportional to ed ,  where u is 
non-dimensionalized by P/r, which is not a convenient scale. A more useful measure 
of growth rate is the growth in one period of the oscillatory motion of the wake (i.e. 
time I/( U, - Us)). Then 

The exponential growth rates u* have been plotted versus K for several different 
vortex areas in figure 10. It has been assumed that f/P= 1-5 and S/3 = 025 
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FIGURE 7. Model results for the slow evolution of the street as vorticity is lost (6 decreases) for 
C, = 1, S = 0222. This configuration corresponds to Reynolds number about loo0 (see Roshko 
1961). 
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FIGURE 8. Model results for the slow evolution of the street as vorticity is lost (6 decreases) for 
CD = 1.35, S = 0172. This configuration corresponds to Reynolds number about 120 (see Roshko 
1961). 

independent of K (these are typical experimental values). For comparison, note that 
a value cr* = 1 implies that a small disturbance will grow by a factor of 10 in 2-3 
wavelengths of the motion. 

These theoretical considerations are compatible with the experimental observations 
of Taneda (1959) and Matsui & Okude (1980). In particular, the latter researchers 
found rearrangement of the street at Reynolds number 140 beginning about 12 
wavelengths downstream of the body, where K was observed to have grown to about 
0 5 ,  and the rearrangement was complete around 16 cycles later. Of course, the linear 
stability analysis cannot predict the rearrangement beyond its initial stages, but these 
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FIQURE 9. Model results for the slow evolution of the street as vorticity is lost (6 decreases) for 
C, = 1.7, S = 0124. This configuration corresponds to Reynolds number about 50 (Roshko 1961). 

numbers do make it seem reasonable that the linear stability growth rates are large 
enough to result in rearrangement at the point where it is observed. 

It may well be that this pseudo-steady approximation, in which properties of the 
evolving street are approximated at  each stage of evolution by those of corresponding 
periodic streets, is not good. However, the qualitative behaviour of this model does 
tend to support the hypothesis that the observed features of the rearrangement of 
the vortex street may in part be explained by hydrodynamic stability. 

6. Rearrangement 

An important and as-yet inconclusively answered question is whether pairing is 
an adequate description of the rearrangement process which the vortex street is 
observed to undergo. If the rearrangement process is pairing, then the wake freqhency 
(i.e. Strouhal number) must be exactly halved. The experimental work of Taneda 
(1959) and Matsui & Okude (1980) includes measurements of the ratio of streamwise 
spacing of the vortices before and after the rearrangement. Taneda does not report 
vortex frequencies, but the others report frequencies of the secondary vortex street 
which are not half that of the primary vortex street. The reported ratio of frequencies 
ranges from about 0 5  at Reynolds number R x 150 to about 0-23 at R x 110. If 
correct, this would indicate that the rearrangement process is not pairing, but a more 
general redistribution of vorticity . In  the following discussion the process is assumed 
to be pairing, and it should be kept in mind that this may only be accurate at the 
higher ranges of Reynolds number (around 140-160). However, because of the large 
quantitative discrepancy in the ratio of streamwise spacings between the results of 
these two sets of experiments, we believe that further experiments need to be 
conducted before this matter can be settled. 

The inviscid model may be used to predict the ratio of streamwise spacings as 

follows. As pointed out previously, the fact that the momentum flux in the wake must 
be constant implies that (2.1 1) is approximately invariant in the nearly uniform parts 
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FIGURE 10. Growth rate of small perturbations to the finite-area uniform-vorticity street (normalized 
by the wake frequency). f//? = 1.5 and S/? = 025 have been assumed. A value u* = 1 implies that 
there are disturbances that grow by a factor of 10 in 2 3  cycles of the wake. The behaviour of u* 
for a = 025 is uncertain below K = 0225 and near K = 0375. 

of the wake. Suppose that after rearrangement the vortices have streamwise spacing 
I' = AZ and strength r' = pr. The condition that (2.11) is invariant when the new 
Strouhal number is S' = 0.55 gives A as a function ofp, S, K ,  /3, a, and a'. To reasonable 
accuracy the circular-vortex approximation may be used (eliminating the dependence 
on a and a'). Invariance of (2.11) while U,, is held constant then implies 

where K' (the spacing ratio after rearrangement) is determined by the relation 

Equations (6.1) and (6.2) may be solved for K' and A as functions of p, S, K and 8. 
A typical set of solutions have been plotted as functions of K for several values of 
S and /3 = 2.5, p = 2, 1.5, 1 (no circulation loss, 25 % loss, and 50 yo loss, respectively) 
in figures l l ( a ,  b). It should be noted that in all cases the final spacing ratio K' is 
smaller than the initial, and this decrease can be very substantial. This indicates that 
vortex streets with K > 0 4 ,  which should be very unstable according to $5,  can 
rearrange themselves to form stable or more nearly stable configurations. The 
solution curves depend strongly on /3 (which is unknown except to rough approxi- 
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FIGURE 11. Ratio A of streamwise vortex spacings after to those before rearrangement and final 
spacing ratio K’ versus initial spacing ratio K for /3 = 25.  Curves A 4  have S = 012, D-F have 
S = 015, GI have S = 018, A, D ,  a have no vorticity loss; B, E,  H have 25 % loss; C,  F ,  I have 
50 % loss. Primed and unprimed letters denote the two soIutions of the equations for a given set 
of parameters. 

mation), but a comparison with experiment was attempted as follows. The ‘Roshko 
line ’ giving S as a function of Reynolds number for the circular cylinder (with which 
Matsui & Okude claim agreement) was assumed (see Roshko 1953). Figure 12 shows 
the larger solution resulting from this model for K = 04, 0 5 ,  0-6, /3 = 2-4, y = 2, 
together with the experimental data (curve fit) of the aforementioned researchers (for 
which K ,  p, and y are unknown). Decreasing y to 1 has a small effect on h in all cases 
(generally A decreases slightly). It is evident that the experimental data can be 
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FIGURE 12. The solution of larger h of the rearrangement equations versus Reynolds number for 
p = 2 (vorticity is conserved) and where the ‘Roshko line’ has been used to obtain the Strouhal 
number. Curves A-C have p = 2; &F have /? = 4 ;  A ,  D have K = 0 4 ;  B ,  E have K = 0 5 ;  C, F have 
K = 06.  Decreasing ,u to 1 (50% vorticity loss) has only a small effect. The experimental data of 
Taneda (1959) and Matsui & Okude (1980) are indicated. 

matched by picking reasonable values of ,u, K ,  and p which are functions of Reynolds 
number. The present model does not permit independent prediction of each of these 
three quantities, but only provides a semi-empirical relation between them. 
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Appendix 

The three functions O s ( ~ ,  a), B’(K, a), and T(K, a), representing the propagation 
velocity, part of the momentum, and the energy of the wake for the uniform vorticity 
model, were calculated numerically as described in Saffman & Schatzman (1981) and 
Schatzman (1981). The data was curve-fit for values of K between 01 and 08. Up 
to the largest-area solution calculated for K less than about 036 and up to the point 
where the dependence of a develops strong curvature (greater than 90% of the 
maximal area) for larger K ,  errors in the approximation are less than 1 yo. For a < 015, 
errors are typically less than 0.1 yo. The approximate results are : 

\ o s ( ~ , a )  = ~ t a n h n ~ + a , a ~ + a , a ~ + a , a ~ ,  

+a +c,a2+c2a4, 1 cosh n~ 

2n 
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\ 

I 

where 

a, = n2(tanh2 n~-$) sinh n~ sech3 n ~ ,  

( A 2 )  

120(tanh2n~-0412) 1-082 coshs nK ) =ch2 m ~ ,  a2 = - ( 1954 + C O S ~ '  ~ T K  

a, = 95(tanh2 ~ T K  - 035) cosh2 n~ cosh3 T K ,  

b, = -Y(tanh2nK-$)', 

b, = - y(tanh2 n~ - 026) 

c1 = g(tanh2 n ~ - $ ) ~ ,  c2 = tsech m. 
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