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Chapter 1

From Nuclear Physics toL-Functions

In attempting to describe the energy levels of heavy nuclei ([Wig1, Wig3, Po, BFFMPW]), researchers
were confronted with daunting calculations for a many bodied system with extremely complicated in-
teraction forces. Unable to explicitly calculate the energy levels, physicists developed Random Matrix
Theory to predict general properties of the system.

In this chapter we give a brief introduction to classical Random Matrix Theory, Random Graphs, and
L-Functions. The goal is to show how diverse systems exhibit similar universal behaviors, and introduce
the techniques used in the proofs. In some sense, this is a continuation of the Poissonian behavior in-
vestigations of Chapter??. The survey below is meant to only show the broad brush strokes of this rich
landscape – detailed proofs will follow in later chapters. We assume familiarity with the basic concepts of
probability theory (Chapter??) and linear algebra (a quick review of the needed background is provided
in Appendix??).

While we assume the reader has some familiarity with the basic concepts in physics for the historical
introduction in §1.1, no knowledge of physics is required for the detailed expositions. For those interested
in learning more (as well as a review of recent developments), we conclude this chapter with a brief
summary of the literature.

1.1 Historical Introduction

A central question in mathematical physics is the following: given some system with observablest1 ≤
t2 ≤ t3 ≤ . . . , describe how theti are spaced. For example, we could take theti to be the energy levels
of a heavy nuclei, or the prime numbers, or zeros ofL-functions, or eigenvalues of real symmetric or
complex Hermitian matrices (or as in Chapter?? the fractional parts{nkα} arranged in increasing order).
If we completely understood the system, we would know exactly where all theti are; in practice we try
and go from knowledge of how theti are spaced to knowledge of the underlying system.
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1.1.1 Nuclear Physics

In classical mechanics, it is possible to write down closed form solutions to the two body problem: given
two points with massesm1 andm2 and initial velocities~v1 and~v2 and located at~r1 and~r2, describe how
the system evolves in time, given that gravity is the only force in play. The three body problem, however,
defies closed form solutions (though there are known solutions for special arrangements of special masses,
three bodies in general position is still open). See [Wh] for more details.

Imagine how much harder the problems are in understanding the behavior of heavy nuclei. Uranium,
for instance, has over200 protons and neutrons in its nucleus, each subject to and contributing to complex
forces. If the nucleus were completely understood, one would know the energy levels of the nucleus.
Physicists were able to gain some insights into the nuclear structure by shooting high-energy neutrons
into the nucleus, and analyzing the results; however, a complete understanding of the nucleus was, and
still is, lacking. Later, when we study zeros ofL-functions from number theory, we will find analogues of
high-energy neutrons!

One powerful formulation of physics is through infinite dimensional linear algebra. The fundamental
equation for a system becomes

Hψn = Enψn, (1.1)

whereH is an operator whose entries depend on the physical system and theψn are the energy eigenfunc-
tions with eigenvaluesEn. Unfortunately for nuclear physics,H is too complicated to write down and
solve; however, a powerful analogy with Statistical Mechanics leads to great insights.

1.1.2 Statistical Mechanics

For simplicity, considerN particles in a box, where the particles can only move left or right, and each
particle’s speed isv.
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If we want to calculate the pressure on the left wall, we need to know how many particles strike the
wall in an infinitesimal time. Thus we need to know how many particles are close to the left wall, and
moving towards it. Without going into all of the physics (see for example [Re]), we can get a rough idea of
what is happening. The complexity, the enormous number of configurations of positions of the molecules,
actually helps us. For each configuration we can calculate the pressure due to that configuration. We then
averageover all configurations, and hope that a generic configuration is, in some sense, close to the system
average.

Wigner’s great insight for nuclear physics was that similar tools could yield useful predictions for
heavy nuclei. He modelled the nuclear systems as follows: instead of the infinite dimensional operator
H whose entries are given by the physical laws, he considered collections ofN × N matrices where the
entries were independently chosen from some probability distributionp. The eigenvalues of these matrices
correspond to the energy levels of the physical system. Depending on physical symmetries, we consider
different collections of matrices (real symmetric, complex Hermitian). For any given finite matrix, we
can calculate statistics of the eigenvalues. We then averages over all such matrices, and look at the limits
asN → ∞. The main result is that the behavior of the eigenvalues of an arbitrary matrix is often well
approximated by the behavior obtained by averaging over all matrices. This is reminiscent of the Central
Limit Theorem (§??). For example, if we average over all sequences of tossing a fair coin2N times, we
obtainN heads, andmostsequences of2N tosses will have approximatelyN heads.

Exercise 1.1.1.Consider2N identical, indistinguishable particles, which are in the left (right) half of the
box with probability1

2
. What is the expected number of particles in each half? What is the probability that

one half has more than2N
3
4 particles than the other half? AsN

3
4 ¿ N , most systems will have similar

behavior.

1.1.3 Random Matrix Ensembles

The first collection of matrices we study areN×N real symmetric matrices, with the entries independently
chosen from a fixed probability distributionp. Given such a matrixA,

A =




a11 a12 a13 · · · a1N

a12 a22 a23 · · · a2N
...

...
...

.. .
...

a1N a2N a3N · · · aN


 = AT , (1.2)

the probability density of observingA is

Prob(A)dA =
∏

1≤i≤j≤N

p(aij)daij. (1.3)
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We may interpret this as giving the probability of observing a real symmetric matrix where the probability
of theij th entry lying in [aij, aij + daij] is p(aij)daij.

Example 1.1.2.For a 2× 2 real symmetric matrix we would have

A =

(
a11 a12

a12 a22

)
, Prob(A) = p(a11)p(a12)p(a22)da11da12da22. (1.4)

A real symmetric matrix is determined by specifyingN(N+1)
2

entries: there areN entries on the main
diagonal, andN2 − N off-diagonal entries (for these entries, only half are needed, as the other half
are determined by symmetry). We say such a matrix hasN(N+1)

2
degrees of freedom. Becausep is a

probability density, it integrates to 1. Thus,
∫

Prob(A)dA =
∏

1≤i≤j≤N

∫ ∞

aij=−∞
p(aij)daij = 1; (1.5)

this corresponds to the fact that we must choose some matrix.
For convergence reasons, we often assume that the moments ofp are finite. We mostly studyp(x)

satisfying

p(x) ≥ 0∫ ∞

−∞
p(x)dx = 1

E[xk] =

∫ ∞

−∞
xkp(x)dx < ∞. (1.6)

The last condition ensures that the probability distribution isn’t too spread out (i.e., there isn’t too much
probability near infinity). Many times we normalizep so that the mean (first moment) is 0 and the variance
(second moment if the mean is zero) is 1.

Exercise 1.1.3.For
∫
R xkp(x)dx to exist, we often require

∫
R |x|kp(x)dx < ∞; if this does not hold, the

value of the integral could depend on how we approach infinity. Find a probability functionp(x) and an
integerk such that

lim
A→∞

∫ A

−A

xkp(x)dx = 0 but lim
A→∞

∫ 2A

−A

xkp(x)dx = ∞. (1.7)

Exercise 1.1.4.Let p be a probability density such that all of its moments exist. Ifp is an even (odd)
function, show all the odd (even) moments vanish.
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Exercise 1.1.5.Let p be a continuous probability density onR. Show there exist constantsa, b such that
q(x) = a · p(ax + b) has mean 0 and variance 1. Thus, in some sense, the third and the fourth moments
are the first “free” moments (as the above transformation is equivalent to translating and rescaling the
initial scale).

Exercise 1.1.6.It is not necessary to choose each entry from the same probability distribution. Let the
ij th entry be chosen from a probability distributionpij. What is the probability density of observingA?
Show this also integrate to1.

Definition 1.1.7 (Ensembles).A collection of matrices, along with a probability density describing how
likely it is to observe a given matrix, is called anensembleof matrices (or arandom matrix ensemble).

Example 1.1.8.Consider the ensemble of2 × 2 real symmetric matricesA where for a matrixA =(
x y
y z

)
,

p(A) =

{
1
4π

if x2 + y2 + z2 ≤ 1

0 otherwise.
(1.8)

Note the entries are not independent.

In this introduction, we confine ourselves to real symmetric matrices, although many other ensembles
of matrices are important. Complex Hermitian matrices (the generalization of real symmetric matrices)
also play a fundamental role in the theory. Both of these types of matrices have a very important property:
their eigenvalues are real; this is what allows us to ask questions such as how are the spacings between
eigenvalues distributed.

In constructing our real symmetric matrices, we have not said much about the probability densityp. In
Chapter?? we show for that some physical problems, additional assumptions about the physical systems
forcep to be a Gaussian. For many of the statistics we investigate, it is either known or conjectured that
the answers should be independent of the specific choice ofp; however, in this method of constructing
random matrix ensembles, there is often no unique choice ofp. Thus, for this method, there is no unique
answer to what it means to chose a matrixat random.

Remark 1.1.9 (Advanced).We would be remiss if we did not mention another notion of randomness,
which leads to a more natural method of choosing a matrix at random. LetU(N) be the space ofN ×N
unitary matrices, and consider its compact subgroups (for example, theN × N orthogonal matrices).
There is a natural (canonical) measure, called theHaar measure, attached to each of these compact
groups, and we can use this measure to choose matricesat random. Further, the eigenvalues of unitary
matrices have modulus1. They can be written aseiθj , with theθj real. We again obtain a sequence of
real numbers, and can again ask many questions about spacings and distributions. This is the notion of
random matrix ensemble which has proven the most useful for number theory.

Exercise 1.1.10.Prove the eigenvalues of real symmetric and complex Hermitian matrices are real.
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1.2 Eigenvalue Preliminaries

Our main tool to investigate the eigenvalues of matrices will be the Eigenvalue Trace Formula. Recall the
trace of a matrix is the sum of its diagonal entries:

Trace(A) = a11 + · · ·+ aNN . (1.9)

For2× 2 matrices we have

A =

(
a11 a12

a21 a22

)
, Trace(A2) = a11a11 + a12a21 + a12a21 + a22a22. (1.10)

In general one has

Theorem 1.2.1.LetA be anN ×N matrix. Then

Trace(Ak) =
N∑

i1=1

· · ·
N∑

ik=1

ai1i2ai2i3 · · · aik−1ikaikai1 . (1.11)

For small values ofk, instead of usingi1, i2, i3, . . . we often usei, j, k, . . . .

Exercise 1.2.2.Show Theorem 1.2.1 is consistent with(1.10).

Exercise 1.2.3.Prove Theorem 1.2.1.

1.2.1 Normalizations

Before we can begin to study fine properties of the eigenvalues, we first need to figure out what is the
correct scale to use in our investigations. For example, the celebrated Prime Number Theorem (Theorem
??) states thatπ(x), the number of primes less thanx, satisfies

π(x) =
x

log x
+ Lower Order Terms. (1.12)

Remark 1.2.4. If we don’t specify exactly how much smaller the error terms are, we do not need the full
strength of the Prime Number Theorem – Chebyshev’s arguments (Theorem??) are sufficient to get the
order of magnitude of the scale.

The average spacing between primes less thanx is about x
x/ log x

= log x, which tends to infinity as
x →∞. Asking for primes that differ by 2 is a very hard question: asx →∞, this becomes insignificant
on the “natural” scale. Instead, a more natural question is to inquire how often two primes are twice the
average spacing apart.

If we fix a probability densityp, how do we expect the sizes of the eigenvaluesλi(A) to depend on
N as we varyA? A good estimate falls out immediately from the following formula; this formula will be
exploited numerous times in the arguments below, and is essential for all investigations in the subject:
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Theorem 1.2.5 (Eigenvalue Trace Formula).For any non-negative integerk, if A is anN × N matrix
with eigenvaluesλi(A), then

Trace(Ak) =
N∑

i=1

λk
i (A). (1.13)

The importance of this formula is that it relates theeigenvaluesof a matrix (which is what wewant to
study) to theentriesof A (which is what wechooseat random).

Sketch of the proof.The casek = 1 follows from looking at the characteristic polynomialdet(A−λI) =
0. For higherk, note any matrixA can be conjugated to an upper triangular matrix:M−1AM = T where
T is upper triangular. The eigenvalues ofA equal those ofT and are given by the diagonal entries ofT .
Further the eigenvalues ofAk equal those ofT k. If λi(A) andλi(A

k) are the eigenvalues ofA andAk,
noteλi(A

k) = λi(A)k. The claim now follows by applying thek = 1 result to the matrixAk:

Trace(Ak) =
N∑

i=1

λk
i (A) =

N∑
i=1

λk
i (A). (1.14)

We give a heuristic for the eigenvalues of ourN × N ensembles of matrices being roughly of size√
N . Fix a matrixA whose entriesaij are randomly and independently chosen from a fixed probability

distributionp with mean 0 and variance 1. By Theorem 1.2.1,

Trace(A2) =
N∑

i=1

N∑
j=1

aijaji =
N∑

i=1

N∑
j=1

a2
ij. (1.15)

From our assumptions onp, we expect eacha2
ij to be of size1. By the Central Limit Theorem (Theorem

??), we expect

N∑
i=1

N∑
j=1

a2
ij ∼ N2 · 1 (1.16)

with high probability, with an error of size
√

N2 = N (eacha2
ij is approximately of size 1, there areN2

of them, so their sum should be approximately of sizeN2). Thus

N∑
i=1

λ2
i (A) ∼ N2, (1.17)
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which yields
N · Ave(λ2

i (A)) ∼ N2 (1.18)

or
|Ave(λi(A))| ∼

√
N. (1.19)

Thus it is natural to guess that the correct scale to study the eigenvalues of anN×N real symmetric matrix
is c
√

N , wherec is some constant independent ofN . This yields normalized eigenvaluesλ̃1(A) = λi(A)

c
√

N
;

choosingc = 2 leads to clean formulas. One could of course normalize the eigenvalues byf(N), with
f an undetermined function, and see which choices off give good results; eventually one would find
f(N) = c

√
N .

Exercise 1.2.6.Prove all the claims used in the proof of the Eigenvalue Trace Formula. IfA is real
symmetric, one can use the diagonalizability ofA.

Exercise 1.2.7.Consider realN × N matrices, with entries independently chosen from a probability
distribution with mean 0 and variance 1. How large do you expect the average eigenvalue to be?

1.2.2 Eigenvalue Distribution

We quickly review the theory of point masses and induced probability distributions (see §?? and §??).
Let δx0 represent a a unit point mass atx0. We define its action on functions by

δx0(f) :=

∫ ∞

−∞
f(x)δ(x− x0)dx = f(x0). (1.20)

δx0, called theDirac delta functional atx0, is similar to our approximations to the identity – there is finite
mass (its integral is 1), the density is 0 outsidex0 and infinite atx0. As its argument is a function and not
a complex number,δx0 is a functional and not a function. To eachA, we attach a probability measure
(theeigenvalue probability distribution ):

µA,N(x)dx =
1

N

N∑
i=1

δ

(
x− λi(A)

2
√

N

)
dx. (1.21)

At each normalized eigenvalueλi(A)

2
√

N
, we have placed a mass of weight1

N
; there areN masses, thus we

have a probability distribution. Ifp(x) is a probability distribution, then
∫ b

a
p(x)dx is the probability of

observing a value in[a, b]. For us,
∫ b

a
µA,N(x)dx is the percent of normalized eigenvalues in[a, b]. We can

calculate the moments ofµA,N(x).

Definition 1.2.8. LetE[xk]A denote thekth moment ofµA,N(x). We often denote thisMN,k(A).
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The following corollary of the Eigenvalue Trace formula is the starting point of many of our investi-
gations; we see in remark 1.3.12 why it is so useful.

Lemma 1.2.9.MN,k(A) = Trace(Ak)

2kN
k
2 +1

.

Proof.

MN,k(A) = E[xk]A =

∫
xkµA,N(x)dx

=
1

N

N∑
i=1

∫

R
xkδ

(
x− λi(A)

2
√

N

)
dx

=
1

N

N∑
i=1

λk
i (A)

(2
√

N)k

=
Trace(Ak)

2kN
k
2
+1

. (1.22)

Exercise 1.2.10.Let A be anN × N real symmetric matrix with|aij| ≤ B. In terms ofB,N and k,
bound|Trace(Ak)| andMN,k(A).

1.3 Semi-Circle Law

1.3.1 Statement

A natural question to ask concerning the eigenvalues of a matrix is:What percent of the normalized
eigenvalues lie in an interval[a, b]? Let µA,N(x) be the eigenvalue probability distribution. For a given
A, the answer is ∫ b

a

µA,N(x)dx. (1.23)

How does the above behave as we varyA? We have the following startling result, which is almost
independent of the underlying probability densityp we used to choose the entries ofA:

Theorem 1.3.1 (Semi-Circle Law).Consider the ensemble ofN × N real symmetric matrices with
entries independently chosen from a fixed probability densityp(x) with mean 0, variance 1, and finite
higher moments. AsN →∞, for almost allA, µA,N(x) converges to the semi-circle density2

π

√
1− x2.
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Thus, the percent of normalized eigenvalues ofA in [a, b] ⊂ [−1, 1], for a typicalA asN →∞, is
∫ b

a

2

π

√
1− x2dx. (1.24)

Later we discuss what happens if the higher moments are infinite.

1.3.2 Moment Problem

We briefly describe a needed result from Probability Theory: the solution to the Moment Problem. See
[Du], page 110 for details.

Let k be a non-negative integer; below we always assumem0 = 1. We are interested in when the
mk determine a unique probability distributionP whosekth moment ismk. If the mk do not grow too
rapidly, there is at most one continuous probability density with these moments. A sufficient condition is
that

∑∞
j=1 m

−1/2j
2j = ∞.

For us, the numbersmk arise from averaging the momentsMN,k(A) of theµA,N(x)s and taking the
limit asN →∞. Let

MN,k =

∫

A

MN,k(A)Prob(A)dA, mk = lim
N→∞

MN,k. (1.25)

For eachN , the momentsMN,k yield a probability distributionPN , and limN→∞ MN,k = mk. If the
mk grow sufficiently slowly, there is a unique continuous probability densityP with kth momentmk. It
is reasonable to posit that as for eachk, limN→∞ MN,k = mk, then “most”µA,N(x) converge (in some
sense) to the probability densityP (x).

Remark 1.3.2 (Warning). For eachN , considerN numbers{an,N}N
n=1 defined byan,N = 1 if n is even

and−1 if N is odd. ForN even, note the average of thean,Ns is 0, but each|an,N | = 1; thus, no element
is close to the system average. Therefore, it is not always the case that a typical element is close to the
system average. What is needed in this case is to consider the variance of the moments (see exercise
1.3.4).

Remark 1.3.3. While it is not true that every sequence of numbersmk that grow sufficiently slowly
determines a continuous probability density (see exercise 1.3.7), as ourmk arise from limits of moments
of probability distributions, we do obtain a unique limiting probability density.

Exercise 1.3.4.Let {bn,N}N
n=1 be a sequence with meanµ(N) = 1

N

∑N
n=1 bn,N and varianceσ2(N) =

1
N

∑N
n=1 |bn,N − µ(N)|2. Assume that asN → ∞, µ(N) → µ andσ2(N) → 0. Prove for anyε > 0 as

N →∞ for a fixedN at mostε percent ofbn,N are not withinε of µ. Therefore,if the mean of a sequence
convergesandwe have control over the variance,thenwe have control over the limiting behavior ofmost
elements.
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In this text, we content ourselves with calculating the average momentsmk = limN→∞
∫

A
MN,k(A)dA.

In many cases we derive simple expressions for the probability densityP with momentsmk; however,
we do not discuss the probability arguments needed to show that asN → ∞, a “typical” matrix A has
µA,n(x) close toP . The interested reader should see [CB, HM] for an application to moment arguments
in random matrix theory.

Some care is needed in formulating what it means for two probability distributions to be close. For
us,µA,N(x) is the sum ofN Dirac delta functionals of mass1

N
. |P (x) − µA,N(x)| is large for individual

x. For example, ifP (x) is the semi-circle distribution, then|P (x)− µA,N(x)| will be of size 1 for almost
all x ∈ [−1, 1]. We need to refine what it means for two probability distributions to be close.

One natural measure is the Kolmogoroff-Smirnov discrepancy. For a probability distributionf(x), its
Cumulative Distribution Function Cf (x) is defined to be the probability of[−∞, x]:

Cf (x) =

∫ x

−∞
f(x)dx. (1.26)

If our distribution is continuous, note this is the same as the probability of[−∞, x); however, for distri-
butions arising from Dirac delta functionals like ourµA,N(x), there will be finite, non-zero jumps in the
cumulative distribution function at the normalized eigenvalues. For example, forµA,N(x) we have

CµA,N
(x) =

1

N

∑
λi(A)

2
√

N
< x

1, (1.27)

which jumps by at least1
N

at each normalized eigenvalue. For two probability distributionsf and
g, we define theKolmogoroff-Smirnov discrepency of f and g to be supx |f(x) − g(x)|. Note as
N →∞, each normalized eigenvalue contributes a smaller percentage of the total probability. Using the
Kolmogoroff-Smirnov discrepancy for when two probability distributions are close, one can show that as
N →∞,“most” µA,N(x) are close toP .

Remark 1.3.5. It is not true that all matricesA yieldµA,N(x) that are close toP ; for example, consider
multiples of the identity matrix. All the normalized eigenvalues are the same, and these real symmetric
matrices will clearly not haveµA,N(x) close toP (x). Of course, asN → ∞, the probability ofA being
close to a multiple of the identity matrix is zero.

Exercise 1.3.6.Fix a probability distributionp, and considerN×N real symmetric matrices with entries
independently chosen fromp. What is the probability that a matrix in this ensemble has all entries within
ε of a multiple of theN ×N identity matrix? What happens asN →∞ for fixedε? How does the answer
depend onp?

Exercise 1.3.7.Let mk be thekth moment of a probability densityP . Showm2m0 −m2
1 ≥ 0. Note this

can be interpreted as
∣∣ m0 m1

m1 m2

∣∣ ≥ 0. Thus, ifm2m0 − m2
1 < 0, themk cannot be the moments of a

probability distribution. Find a similar relation involvingm0, m1, m2,m3 andm4.
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Exercise 1.3.8.If p(x) = 0 for |x| > R, show thekth moment satisfiesmk ≤ Rk. Hencelimj→∞ m
1/2j
2j <

∞. Therefore, if a probability distribution haslimj→∞ m
1/2j
2j = ∞, then for anyR there is a positive

probability of observing|x| > R. Alternatively, we say suchp has unbounded support. Not surprisingly,
the Gaussian moments (see exercise 1.3.9) grow sufficiently rapidly so that the Gaussian has unbounded
support.

Exercise 1.3.9 (Moments of the Gaussian).Calculate the moments of the Gaussiang(x) = 1√
2π

e−x2/2.
Prove the odd moments vanish and the even moments arem2k = (2k − 1)!!, wheren!! = n(n − 2)(n −
4) · · · . This is also the number of ways to match2k objects in pairs. Show the moments grow sufficiently
slowly to determine a unique continuous probability density.

1.3.3 Idea of the Proof

We give a glimpse of the proof of the Semi-Circle Law below; a more detailed sketch will be provided in
Chapter 2. We use Moment Method from §1.3.2.

For eachµA,N(x), we calculate itskth-moment,MN,k(A) = E[xk]A. Let MN,k be the average of
MN,k(A) over allA. We must show asN → ∞, MN,k converges to thekth moment of the semi-circle.
We content ourselves with just the second moment below, and save the rest for §2.1. By Lemma 1.2.9,

MN,2 =

∫

A

MN,k(A)Prob(A)dA

=
1

22N
2
2
+1

∫

A

Trace(A2)Prob(A)dA, (1.28)

We use Theorem 1.2.1 to expand the Trace(A2) and find

MN,2 =
1

22N2

∫

A

N∑
i=1

N∑
j=1

a2
ij Prob(A)dA. (1.29)

We now expand Prob(A)dA by (1.3):

MN,2 =
1

22N2

∫ ∞

a11=−∞
· · ·

∫ ∞

aNN=−∞

N∑
i=1

N∑
j=1

a2
ij · p(a11)da11 · · · p(aNN)daNN

=
1

22N2

N∑
i=1

N∑
j=1

∫ ∞

a11=−∞
· · ·

∫ ∞

aNN=−∞
a2

ij · p(a11)da11 · · · p(aNN)daNN ; (1.30)
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we may interchange the summations and the integrations as there are finitely many sums. For each of the
N2 pairs(i, j), we have terms like

∫ ∞

aij=−∞
a2

ijp(aij)daij ·
∏

(k,l)6=(ij)
k<l

∫ ∞

akl=−∞
p(akl)dakl. (1.31)

The above equals1. The first factor is 1 because it is the variance ofaij, which was assumed to be 1.
The second factor is a product of integrals where each integral is 1 (becausep is a probability density).
As there areN2 summands in (1.30), we findMN,2 = 1

4
(so limN→∞ MN,2 = 1

4
), which is the second

moment of the semi-circle.

Exercise 1.3.10.Show the second moment of the semi-circle is1
4
.

Exercise 1.3.11.Calculate the third and fourth moments, and compare them to those of the semi-circle.

Remark 1.3.12 (Important). Two features of the above proof are worth highlighting, as they appear
again and again below. First, note that we want to answer a question about theeigenvaluesofA; however,
our notion of randomness gives us information on theentriesof A. The key to converting information on
the entries to knowledge about the eigenvalues is having some type of Trace Formula, like Theorem 1.2.5.

The second point is the Trace Formula would be useless, merely converting us from one hard problem
to another, if we did not have a good Averaging Formula, some way to average over all randomA. In this
problem, the averaging is easy because of how we defined randomness.

Remark 1.3.13. While the higher moments ofp are not needed for calculatingMN,2 = E[x2], their
finiteness comes into play when we study higher moments.

1.3.4 Examples of the Semi-Circle Law

First we look at the density of eigenvalues whenp is the standard Gaussian,p(x) = 1√
2π

e−x2/2. We
calculate the density of eigenvalues for 500400× 400 such matrices, and note a great agreement with the
semi-circle.
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Distribution of eigenvalues−−Gaussian, N=400, 500 matrices

What about a density where the higher moments are infinite? Consider the Cauchy distribution,

p(x) =
1

π(1 + x2)
. (1.32)

Now we see the following behavior:

−300 −200 −100 0 100 200 300
0

500

1000

1500

2000

2500

 
The eigenvalues of the Cauchy
distribution are NOT semicirular. 

Note: the eigenvalues are now unbounded; for graphing purposes, we have put all eigenvalues greater
than 300 in the last bin, and less than -300 in the first bin.

Exercise 1.3.14.Prove the Cauchy distribution is a probability distribution by showing it integrates to
1. While the distribution is symmetric, one cannot say the mean is 0, as the integral

∫ |x|p(x)dx = ∞.
Regardless, show the second moment is infinite.

1.3.5 Summary

Note the universal behavior: though the proof is not given here, the Semi-Circle Law holds for all mean
zero, finite moment distributions. The independence of the behavior on the exact nature of the underlying
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probability densityp is a common feature of Random Matrix Theory statements, as is the fact that as
N → ∞ mostA yield µA,N(x) that are close (in the sense of the Kolmogoroff-Smirnov discrepancy)
to P (whereP is determined by the limit of the average of the momentsMN,k(A)). For more on the
Semi-Circle Law, see [Bai, BK].

1.4 Adjacent Neighbor Spacings

1.4.1 GOE Distribution

The Semi-Circle Law (when the conditions are met) tells us about the density of eigenvalues. We now ask
a more refined question:

Question 1.4.1.How are the spacings between adjacent eigenvalues distributed?

For example, let us write the eigenvalues ofA in increasing order; asA is real symmetric, the eigen-
values will be real:

λ1(A) ≤ λ2(A) ≤ · · · ≤ λN(A). (1.33)

The spacings between adjacent eigenvalues are theN − 1 numbers

λ2(A)− λ1(A), λ3(A)− λ2(A), . . . , λN(A)− λN−1(A). (1.34)

As before (see Chapter??), it is more natural to study the spacings between adjacent normalized eigen-
values; thus, we have

λ2(A)

2
√

N
− λ1(A)

2
√

N
, . . . ,

λN(A)

2
√

N
− λN−1(A)

2
√

N
. (1.35)

Similar to the probability distributionµA,N(x), we can form another probability distributionνA,N(s) to
measure spacings between adjacent normalized eigenvalues.

Definition 1.4.2.

νA,N(s)ds =
1

N − 1

N∑
i=2

δ

(
s− λi(A)− λi−1(A)

2
√

N

)
ds. (1.36)

Based on experimental evidence and some heuristical arguments, it was conjectured that asN →∞,
the limiting behavior ofνA,N(s) is independent of the probability densityp used in randomly choosing
theN ×N matricesA.

Conjecture 1.4.3 (GOE Conjecture:).AsN → ∞, νA,N(s) approaches a universal distribution that is
independent ofp.
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Remark 1.4.4.GOE stands for Gaussian Orthogonal Ensemble; the conjecture is known ifp is (basically)
a Gaussian. We explain the nomenclature in Chapter??.

Remark 1.4.5. The universal distribution isπ
2

4
d2Ψ
dt2

, whereΨ(t) is (up to constants) the Fredholm deter-

minant of the operatorf → ∫ t

−t
K ∗ f , with kernelK = 1

2π

(
sin(ξ−η)

ξ−η
+ sin(ξ+η)

ξ+η

)
. This distribution is well

approximated bypW (s) = π
2
s exp

(
−πs2

4

)
.

Exercise 1.4.6.ProvepW (s) = π
2
s exp

(
−πs2

4

)
is a probability distribution with mean 1.

We study the case ofN = 2 andp Gaussian in detail in Chapter??.

Exercise 1.4.7 (Wigner’s surmise).In 1957 Wigner conjectured that asN → ∞ the spacing between
adjacent normalized eigenvalues is given by

pW (s) =
π

2
s exp

(
−πs2

4

)
. (1.37)

He was led to this formula from the following assumptions:

• Given an eigenvalue atx, the probability that another one liess units to its right is proportional to
s.

• Given an eigenvalue atx andI1, I2, I3, . . . any disjoint intervals to the right ofx, then the events of
observing an eigenvalue inIj are independent for allj.

• The mean spacing between consecutive eigenvalues is1.

Show these assumptions imply(1.37). Hint: Fix s and a large integerm and let Ij = [ j−1
m

s, j
m

s] for
1 ≤ j ≤ m. The first assumption gives an extremely simple (approximate) formula for the probability of
observing an eigenvalue inIj (in terms of an unknown proportionality constanta). Now the probability of
a gap of size abouts is equal to the probability thatI1, . . . , Im−1 contain no eigenvalues butIm contains
an eigenvalue. Letm → ∞ to find a formula for the eigenvalue spacing in terms ofa and use the unit
mean spacing condition to determine the value ofa.

1.4.2 Numerical Evidence

We provide some numerical support for the GOE Conjecture. In all the experiments below, we consider a
large number ofN ×N matrices, where for each matrix we look at a small (small relative toN ) number
of eigenvalues in thebulk of the eigenvalue spectrum(eigenvalues near0), not near theedge(for the
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semi-circle, eigenvalues near±1). We do not look at all the eigenvalues, as the average spacing changes
over such a large range, nor do we consider the interesting case of the largest (smallest) eigenvalues.
We study a region where the average spacing is approximately constant, and as we are in the middle of
the eigenvalue spectrum, there are no edge effects. These edge effects lead to fascinating questions (for
random graphs, the distribution of eigenvalues near the edge is related to constructing good networks to
rapidly transmit information; see for example [DSV, Sar]).

First, we consider 5000300 × 300 matrices, with entries independently chosen from the uniform
distribution on[−1, 1].

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5

2

2.5

3

3.5
x 10

4

 

The local spacings of the central 3/5 of the eigenvalues
of 5000 300x300 uniform matrices, normalized in batches
of 20. 

Notice that even withN as low as 300, we are seeing a good fit between conjecture and experiment.
What if we takep to be the Cauchy Distribution? In this case, the second moment ofp is infinite,

and the alluded to argument for semi-circle behavior is not applicable. Simulations showed the density of
eigenvalues did not follow the Semi-Circle Law, which doesn’t contradict theory as the conditions of the
proof were not met. What about the spacings between adjacent normalized eigenvalues of real symmetric
matrices, with the entries drawn from the Cauchy distribution?

We study 5000100 × 100 and then 5000300 × 300 Cauchy matrices. We note good agreement with
the conjecture (and asN increases, the fit improves).
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The local spacings of the central 3/5 of the eigenvalues
of 5000 100x100 Cauchy matrices, normalized in batches
of 20. 
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The local spacings of the central 3/5 of the eigenvalues
of 5000 300x300 Cauchy matrices, normalized in batches
of 20. 

We give one last example. Instead of using continuous probability distribution, we investigate a dis-
crete case. Consider the Poisson Distribution:

p(n) =
λn

n!
e−λ. (1.38)

We investigate 5000300 × 300 such matrices, first withλ = 5, and then withλ = 20, noting again
excellent agreement with the GOE Conjecture.
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The local spacings of the central 3/5 of the eigenvalues
of 5000 300x300 Poisson matrices with lambda=5
normalized in batches of 20. 
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The local spacings of the central 3/5 of the eigenvalues
of 5000 300x300 sign matrices, normalized in batches    
of 20.                                                  

1.5 Thin Sub-families

Before moving on to connections with number theory, we mention some very important subsets of real
symmetric matrices. The subsets will be large enough so that there are averaging formulas at our disposal,
but thin enough so that sometimes we see new behavior.

As motivation, consider as our initial set all even integers. LetN2(x) denote the number of even
integers at mostx. We seeN2(x) ∼ x

2
, and the spacing between adjacent integers is2. If we look at

normalizedeven integers, we would haveyi = 2i
2

, and now the spacing between adjacent normalized even
integers is 1.

Now consider the subset of even squares. IfN2(x) is the number of even squares at mostx, then
N2(x) ∼

√
x

2
. For even squares of sizex, sayx = (2m)2, the next even square is at(2m+2)2 = x+8m+4.

Note the spacing between adjacent even squares is about8m ∼ 4
√

x for m large.
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Exercise 1.5.1.By appropriately normalizing the even squares, show we obtain a new sequence with a
similar distribution of spacings between adjacent elements as in the case of normalized even integers.
Explicitly, look atN consecutive even squares, each square of sizex, with N ¿ x.

Remark 1.5.2. A far more interesting example concerns prime numbers. For the first set, consider all
prime numbers. For the subset, fix an integerm and consider all prime numbersp such thatp + 2m is
also prime; ifm = 1, we sayp and p + 2 are a twin prime pair. It is unknown if there are infinitely
many elements in the second set for anym, though there are conjectural formulas (using the techniques
of Chapter [?]). It is fascinating to compare these two sets; for example, what is the spacing distribution
between adjacent (normalized) primes look like, and is that the same for normalized twin prime pairs?
See Research Project??.

1.5.1 Random Graphs: Theory

A graph G is a collection of points (theverticesV ) and lines connecting pairs of points (theedgesE).
While it is possible to have an edge from a vertex to itself (called aself-loop), we study the subset of
graphs where this does not occur. We will allow multiple edges to connect the same two vertices (if there
are no multiple edges, the graph issimple). Thedegree of a vertexis the number of edges leaving (or
arriving at) that vertex. A graph isd-regular if every vertex has exactlyd edges leaving (or arriving).

For example, consider the graph below:
   1

2
3

4

The degrees of vertices are 2, 1, 4 and 3, and vertices 3 and 4 are connected with two edges.
To each graph withN vertices, we can associate anN×N real symmetric matrix, called theadjacency

matrix , as follows: First, label the vertices of the graph from1 to N (see exercise 1.5.3). Letaij be the
number of edges from vertexi to vertexj. For the graph above, we have

A =




0 0 1 1
0 0 1 0
1 1 0 2
1 0 2 0


 (1.39)

For eachN , consider the space of alld-regular graphs. To each graphG we associate its adjacency
matrixA(G). We can build the eigenvalue probability distributions (see §1.2.2) as before. We can investi-
gate the density of the eigenvalues and spacings between adjacent eigenvalues. We are no longer choosing
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the matrix elements at random – once we have chosen a graph, the entries are determined. Thus, we have
a more combinatorial type of averaging to perform: we average over all graphs, not over matrix elements.

One application of knowledge of eigenvalues of graphs is to network theory. For example, let the
vertices of a graph represent various computers. We can transmit information between any two vertices
that are connected by an edge. We desire a well-connected graph so that we can transmit information
rapidly through the system. One solution, of course, is to connect all the vertices and obtain thecomplete
graph. In general, there is a cost for each edge; if there areN vertices in a simple graph, there are
N(N−1)

2
possible edges; thus the complete graph quickly becomes very expensive. ForN vertices,d-

regular graphs have onlydN
2

edges; now the cost is linear in the number of vertices. The distribution
of eigenvalues (actually, the second largest eigenvalue) of such graphs provide information on how well
connected it is. For more information, as well as specific constructions of such well-connected graphs,
see [DSV, Sar].

Exercise 1.5.3.For a graph withN vertices, show there areN ! ways to label the vertices. Each labeling
gives rise to an adjacency matrix. While a graph could potentially haveN ! different adjacency matrices,
show all adjacency matrices have the same eigenvalues, and therefore the same eigenvalue probability
distribution.

Remark 1.5.4. Fundamental quantities should not depend on presentation. Exercise 1.5.3 shows that the
eigenvalues of a graph do not depend on how we label the graph. This is similar to the eigenvalues of an
operatorT : Cn → Cn do not depend on the basis used to representT . Of course, the eigenvectorswill
depend on the basis.

Exercise 1.5.5.If a graph hasN labelled vertices andE labelled edges, how many ways are there to
place theE edges so that each edge connects two distinct vertices? What if the edges are not labelled?

Exercise 1.5.6 (Bipartite graphs).A graph is bipartite if the verticesV can be split into two distinct
sets,A1 andA2, such that no vertices in anAi are connected by an edge. We can construct ad-regular
bipartite graph with#A1 = #A2 = N . LetA1 be vertices1, . . . , N andA2 be verticesN + 1, . . . , 2N .
Letσ1, . . . , σd be permutations of{1, . . . , N}. For eachσj andi ∈ {1, . . . , N}, connect vertexi ∈ A1 to
vertexN + σj(i) ∈ A2. Prove this graph is bipartite andd-regular. If d = 3, what is the probability (as
N →∞) that two vertices have two or more edges connecting them? What is the probability ifd = 4?

Remark 1.5.7.Exercise 1.5.6 provides a method for sampling the space of bipartited-regular graphs, but
does this construction sample the space uniformly (i.e., is everyd-regular bipartite graph equally likely to
be chosen by this method)? Further, is the behavior of eigenvalues ofd-regular bipartite graphs the same
as the behavior of eigenvalues ofd-regular graphs? See [Bol], pages 50-57 for methods to sample spaces
of graphs uniformly.

23



1.5.2 Random Graphs: Results

The first result, due to McKay [McK], is that while the density of states isnot the semi-circle, there is a
universal density for eachd.

Theorem 1.5.8 (McKay’s Law). Consider the ensemble of alld-regular graphs withN vertices. As
N →∞, for almost all such graphsG, µA(G),N(x) converges to Kesten’s measure

f(x) =

{
d

2π(d2−x2)

√
4(d− 1)− x2 |x| ≤ 2

√
d− 1

0 otherwise
(1.40)

Exercise 1.5.9.Show that asd → ∞, by changing the scale ofx, Kesten’s measure converges to the
semi-circle distribution.

Below is a comparison of theory and experiment ford = 3 and6.

The idea of the proof is that locally, almost all of the graphs almost always look like trees, where
it is easy to calculate the eigenvalues. One then does a careful book-keeping. Thus, this sub-family is
thin enough so that a new, universal answer arises. Even though all of these adjacency matrices are real
symmetric, it is a very thin subset. It isbecauseit is such a thin subset that we are able to see new behavior.

Exercise 1.5.10.Show a general real symmetric matrix hasN(N+1)
2

independent entries, while ad-regular
graph hasdN

2
non-zero entries.
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What about spacings between normalized eigenvalues? Surprisingly, the resultdoesappear to be the
same as that from all real symmetric matrices. See [JMRR].

0.5 1. 1.5 2. 2.5 3.
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3-Regular,2000 Vertices
Graph courtesy of [JMRR].

1.6 Number Theory

We assume the reader is familiar with the material and notation from Chapter??. For us, anL-function
is given by aDirichlet series (which converges if<s is sufficiently large), has anEuler product , and the
coefficients have arithmetic meaning:

L(s, f) =
∞∑

n=1

an(f)

ns
=

∏
p

Lp(p
−s, f)−1, <s > s0. (1.41)

The Generalized Riemann Hypothesisasserts that all non-trivial zeros have<s = 1
2
; i.e., they are on

thecritical line <s = 1
2

and can be written as1
2

+ iγ, γ ∈ R.
The simplest example isζ(s), wherean(ζ) = 1 for all n; in Chapter?? we saw how information

about the distribution of zeros ofζ(s) yielded insights into the behavior of primes. The next example we
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considered were DirichletL-functions, theL-functions from Dirichlet charactersχ of some conductorm.
Herean(χ) = χ(n), and these functions were useful in studying primes in arithmetic progressions.

For a fixedm, there areφ(m) Dirichlet L-functions. This provides our first example of afamily
of L-functions. We will not rigorously define a family, but content ourselves with saying a family of
L-functions is a collection of “similar”L-functions.

The following examples shall be considered families: (1) all DirichletL-functions with conductor
m; (2) all Dirichlet L-functions with conductorm ∈ [N, 2N ]; (3) all Dirichlet L-functions arising from
quadratic characters with prime conductorp ∈ [N, 2N ]. In each of the cases, eachL-function has the
same conductor, similar functional equations, and so on. It is not unreasonable to think they might share
other properties.

Another example comes from elliptic curves. We commented in §?? that given a cubic equation
y2 = x3+Afx+Bf , if ap(f) = p−Np (whereNp is the number of solutions toy2 ≡ x3+Afx+Bf mod p),
we can construct anL-function using theap(f)s. We construct a family as follows. LetA(T ), B(T )
be polynomials with integer coefficients inT . For eacht ∈ Z, we get an elliptic curveEt (given by
y2 = x3 + A(t)x + B(t)), and can construct anL-functionL(s, Et). We can consider the family where
t ∈ [N, 2N ].

Remark 1.6.1. Why are we considering “restricted” families: DirichletL-functions with a fixed conduc-
tor m, or m ∈ [N, 2N ], or elliptic curves witht ∈ [N, 2N ]? The reason is similar to our random matrix
ensembles: we do not consider infinite dimensional matrices: we studyN×N matrices, and take the limit
asN → ∞. Similarly in number theory, it is easier to study finite sets, and then investigate the limiting
behavior.

Assuming the zeros all lie on the line<s = 1
2
, similar to the case of real symmetric or complex

Hermitian matrices, we can study spacings between zeros. We now describe some results about the
distribution of zeros ofL-functions. Two classical ensembles of random matrices play a central role: the
Gaussian Orthogonal EnsembleGOE (the Gaussian Unitary EnsembleGUE), the space of real symmetric
(complex Hermitian) matrices where the entries are chosen independently from Gaussians; see Chapter
??. It was observed that the spacings of energy levels of heavy nuclei were in excellent agreement with
those of eigenvalues of real symmetric matrices; thus, the GOE became a common model for the energy
levels. In §1.6.1 we see there is excellent agreement between the spacings of normalized zeros ofL-
functions and those of eigenvalues of complex Hermitian matrices; this led to the belief that the GUE is a
good model for these zeros.

1.6.1 n-Level Correlations

In an amazing set of computations starting at the1020th zero, Odlyzko [Od1, Od2] observed phenom-
enal agreement between the spacings between adjacent normalized zeros ofζ(s) and spacings between
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adjacent normalized eigenvalues of complex Hermitian matrices. Specifically, consider the set ofN ×N
random Hermitian matrices with entries chosen from the Gaussian distribution (the GUE). AsN → ∞,
the limiting distribution of spacings between adjacent eigenvalues is indistinguishable from what Odlyzko
observed!

His work was inspired by Montgomery [Mon], who showed that for suitable test functions, the pair
correlation of the normalized zeros ofζ(s) agree with that of normalized eigenvalues of complex Hermi-
tian matrices. Let{αj} be an increasing sequence of real numbers,B ⊂ Rn−1 a compact box. Define the
n-level correlation by

lim
N→∞

#
{(

αj1 − αj2 , . . . , αjn−1 − αjn

) ∈ B, ji ≤ N ; ji 6= jk

}

N
(1.42)

For example, the2-level (or pair) correlation provides information on how often two normalized zeros
(not necessarily adjacent zeros) have a difference in a given interval. One can show that if all then-level
correlations could be computed, then we would know the spacings between adjacent zeros.

We can regard the boxB as a product ofn− 1 characteristic functions of intervals. Let

Iai,bi
(x) =

{
1 if x ∈ [ai, bi]

0 otherwise.
(1.43)

We can represent the conditionx ∈ B by IB(x) =
∏n

i=1 Iai,bi
(xi). Instead of using a boxB and its

functionIB, it is more convenient to use an infinitely differentiable test function (see [RS] for details). In
addition to the pair correlation and the numerics on adjacent spacings, Hejhal [Hej] showed for suitable
test functions the3-level (or triple) correlation forζ(s) agrees with that of complex Hermitian matrices,
and Rudnick-Sarnak [RS] proved (again for suitable test functions) that then-level correlations ofany
“nice” L-function agree with those of complex Hermitian matrices.

The above work leads to theGUE conjecture: the spacing between zeros ofL-functions is the same
as that between eigenvalues of complex Hermitian matrices. In other words, the GUE is a good model of
zeros ofL-functions.

Even if true, however, the above cannot be the complete story.

Exercise 1.6.2.Assume that the imaginary parts of the zeros ofζ(s) are unbounded. Show that if one
removes any finite set of zeros, then-level correlations are unchanged. Thus, this statistic is insensitive to
finitely many zeros.

The above exercise shows that then-level correlations are not sufficient to capture all of number
theory. For manyL-functions, there is reason to believe that there is different behavior near the central
points = 1

2
(the center of the critical strip) than higher up. For example, theBirch and Swinnerton-Dyer

conjecture (see §??) says that ifE(Q) (the group of rational solutions for an elliptic curveE; see §??)
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has rankr, then there arer zeros at the central point, and we might expect different behavior if there are
more zeros.

Katz and Sarnak [KS1, KS2] proved that then-level correlations of complex Hermitian matrices are
also equal to then-level correlations of theclassical compact groups(unitary, symplectic and orthogonal
matrices with Haar measure). What this means is thatmanydifferent ensembles of matrices have the same
n-level correlations – there is not one unique ensemble with these values. This led to a new statistic which
is different for different ensembles, and allows us to “determine” which matrix ensemble the zeros follow.

Remark 1.6.3 (Advanced).Consider the classical compact groups:U(N), USp(2N), SO, SO(even)
andSO(odd) with their Haar measure. Fix a group, and choose a generic matrix element. Calculating
then-level correlations of its eigenvalues, integrating over the group, and taking the limit asN → ∞,
Katz and Sarnak prove the resulting answer is universal, independent of the particular group chosen. In
particular, we cannot use then-level correlations to distinguish GUE behavior,U(N), from the other
classical compact groups.

1.6.2 1-Level Density

In then-level correlations, given anL-function we studied differences between zeros. It can be shown
that any “nice”L-function has infinitely many zeros on the line<s = 1

2
; thus, if we want to study “high”

zeros (zeros very far above the central points = 1
2
), eachL-function has enough zeros to average over.

The situation is completely different if we study “low” zeros, zeros near the central point. Now each
L-function only has a few zeros nearby, and there is nothing to average: wherever the zeros are, that’s
where they are! This led to the introduction of families ofL-functions. For example, consider DirichletL-
functions with characters of conductorm. There areφ(m) suchL-functions. For eachL-function we can
calculate properties of zeros near the central point, and then we canaverageover theφ(m) L-functions,
taking the limit asm →∞.

Explicitly, let h(x) be a continuous function of rapid decay. For anL-functionL(s, f) with non-trivial
zeros1

2
+ iγ

(j)
f (assuming GRH,γ(j)

f ∈ R), consider

Df (h) =
∑

j

h
(
cfγ

(j)
f

)
. (1.44)

Herecf is theanalytic conductor; basically, it rescales the zeros near the central point. Ash is of rapid
decay, almost all of the contribution to (1.44) will come from zeros very close to the central point. We
then average over allf in a familyF . We call this statistic the1-level density:

DF(h) =
1

|F|
∑

f∈F
Df (h). (1.45)
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Katz and Sarnak conjecture that the distribution of zeros near thecentral point s = 1
2

in a family of
L-functions should agree (in the limit) with the distribution of eigenvalues near 1 of a classical compact
group (unitary, symplectic, orthogonal).Whichgroup depends on underlying symmetries of the family;
the important point to note is that the GUE is not the entire story: other ensembles of matrices naturally
arise. These conjectures, for suitable test functions, have been verified for a variety of families: we sketch
the proof for DirichletL-functions in Chapter??.

Remark 1.6.4. Why does the central points = 1
2

correspond to the eigenvalue1? As the classical
compact groups are subsets of the unitary matrices, their eigenvalues can be writteneiθ, θ ∈ (−π, π].
Hereθ = 0 (corresponding to an eigenvalue of1) is the center of the “critical line”. Note certain such
matrices have forced eigenvalues at1 (for example, anyN × N orthogonal matrix withN odd); this is
expected to be similar toL-functions with forced zeros at the central point.

Exercise 1.6.5.U is a unitary matrix ifU∗U = I, whereU∗ is the complex conjugate transpose ofU .
Prove the eigenvalues of unitary matrices can be written aseiθj for θj ∈ R. Hint: let ~v be an eigenvector
of U and consider(U~v)∗(U~v).

Remark 1.6.6 (Advanced).In practice, one takesh in (1.44) to be a Schwartz function whose Fourier
transform has finite support (see §??). Similar to then-level correlations, one can generalize the above
and studyn-level densities. The determination of which classical compact group can sometimes be cal-
culated by studying the monodromy groups of function field analogues.

We sketch an interpretation of the 1-level density. Again, the philosophy is that, to each family ofL-
functionsF , there is an ensemble of random matricesG(F) (whereG(F) is one of the classical compact
groups), and to eachG(F) is attached a density functionWG(F). Explicitly, consider the family of all
non-trivial DirichletL-functions with prime conductorm, denoted byFm. We study this family in detail
in Chapter??. Then for suitable test functionsh, we prove

lim
m→∞

DFm(h) = lim
m→∞

1

|Fm|
∑

χ∈Fm

∑
j

h
(
cχγ(j)

χ

) −→
∫ ∞

−∞
h(x)WG(F)(x)dx. (1.46)

We see that summing a test function of rapid decay over the scaled zeros is equivalent to integrating that
test function against a family-dependent density function. We can see a similar phenomenon if we study
sums of test functions at primes. For simplicity of presentation, we assume the Riemann Hypothesis to
obtain better error estimates, though it is not needed (see exercise 1.6.8).

Theorem 1.6.7.Let F, F ′ be continuously differentiable function of rapid decay; it suffices to assume∫ |F (x)|dx and
∫ |F ′(x)|dx are finite. Then

∑
p

log p

p log N
F

(
log p

log N

)
=

∫ ∞

0

F (x)dx + O

(
1

log N

)
. (1.47)
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Sketch of the proof.By the Riemann Hypothesis and partial summation (Theorem??), we have
∑
p≤x

log p = x + O(x
1
2 log2(x)). (1.48)

See [Da2] for how this bound follows from RH. We apply the integral version of partial summation
(Theorem??) to ∑

p≤x

log p · 1

p
. (1.49)

In the notation of Theorem??, an = log p if p is prime and0 otherwise, andh(x) = 1
x
. We find

∑
p≤x

log p

p
= O(1)−

∫ x

2

(u + O(u
1
2 log2 u))

−1

u2
du = log x + O(1). (1.50)

We again use the integral version of partial summation, but now onlog p
p
· F

(
log p
log N

)
wherean = log p

p
for

p prime andh(x) = F
(

log x
log N

)
. Let u0 = log 2

log N
. Then

∑
p≥2

log p

p
F

(
log p

log N

)
= −

∫ ∞

2

(log x + O(1))
d

dx
F

(
log x

log N

)
dx

=

∫ ∞

2

[
1

x
F

(
log x

log N

)
+ O

(
1

x log N

∣∣∣∣F ′
(

log x

log N

)∣∣∣∣
)]

dx

= log N

∫ ∞

u0

[
F (u) + O

(
1

log N
|F ′(u)|

)]
du

= log N

∫ ∞

0

[
F (u) + O

( |F ′(u)|
log N

)]
du + O(u0 log N max

t∈[0,u0]
F (t))

= log N

∫ ∞

0

F (u)du + O

(∫ ∞

0

|F ′(u)|du

)
+ O

(
u0 log N max

t∈[0,u0]
F (t)

)

= log N

∫ ∞

0

F (u)du + O(1), (1.51)

asu0 = log 2
log N

and our assumption thatF ′ is of rapid decay ensures that theF ′ integral isO(1). Dividing
by log N yields the theorem. Using the Prime Number Theorem instead of RH yields the same result, but
with a worse error term.

Exercise 1.6.8.Redo the above arguments using the bounds from §??, which eliminate the need to assume
the Riemann Hypothesis.
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The above shows that summing a nice test function at the primes is related to integrating that function
against a density; here the density is just1. The1-level density is a generalization of this to summing
weighted zeros ofL-functions, and the density we integrate against depends on properties of the family
of L-functions. For more on distribution of points, see §??.

Exercise 1.6.9.How rapidly mustF decay asx →∞ to justify the arguments above? IfF has compact
support (i.e., ifF (x) is zero if |x| > R for someR), F decays sufficiently rapidly, and this is often the
case of interest.

Exercise 1.6.10.Why is the natural scale for Theorem 1.6.7log N (i.e., why is it natural to evaluate the
test function atlog p

log N
and notp)?

Exercise 1.6.11.Instead of studying all primes, fixm andb with (b,m) = 1, and consider the set of primes
p ≡ b mod m (suchp are calledprimes in an arithmetic progression); see §??. Modify the statement and
proof of Theorem 1.6.7 to calculate the density for primes in arithmetic progression. If instead we consider
twin primes, and we assume the number of twin primes at mostx satisfiesπ2(x) = T2

x
log2 x

+ O(x
1
2
+ε) for

some constantT2, what is the appropriate normalization and density? For the conjectured value ofT2,
see definition??.

1.7 Similarities between Random Matrix Theory andL-Functions

The following (conjectural) correspondence has led to many fruitful predictions: in some sense, the zeros
of L-functions behave like the eigenvalues of matrices behave like the energy levels of heavy nuclei. To
study the energy levels of heavy nuclei, physicists bombard them with neutrons and study what happens;
however, physical constraints prevent them from using neutrons of arbitrary energy. Similarly, we want
to study zeros ofL-functions. We “bombard” the zeros with a test function, but not an arbitrary one
(advanced:the technical condition is the support of the Fourier transform of the test function must be
small; the test function’s support corresponds to the neutron’s energy). To evaluate the sums of the test
function at the zeros, similar to physicists restricting the neutrons they can use, number theorists can
evaluate the sums for only a small class of test functions.

Similar to our proofs of the Semi-Circle Law, we again have three key ingredients. The first is we
average over a collection of objects. Before it was the probability measures built from the normalized
eigenvalues, now it is theDf (h) for eachL-functionf in the family for a fixed test functionh. Second,
we need some type of Trace Formula. For matrices, we passed from sums over eigenvalues (which we
wanted to understand) to sums over the matrix elements (which we were given and could execute). For
number theory, using what is known as Explicit Formulas (see §??), we pass from sums over zeros in
(1.44) to sums over the coefficientsan(f) in the L-functions. Finally, the Trace Formula is useless if
we do not have some type of Averaging Formula. For matrices, because of how we generated matrices
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at random, we were able to average over the matrix elements; for number theory, one needs powerful
theorem concerning averages ofan(f) asf ranges over a family. We have already seen a special case
where there is an averaging relation: the orthogonality relations for Dirichlet characters (see Lemma??).

1.8 Suggestions for Further Reading

In addition to the references in this and subsequent chapters, we provide a few starting points to the vast
literature; the interested reader should consult the bibliographies of the references for additional reading.

A terrific introduction to classical random matrix theory is [Meh2], whose exposition has motivated
our approach (and many others). See also the original papers of Wigner [Wig1, Wig2, Wig3, Wig4, Wig5]
and Dyson [Dy1, Dy2]. For a more modern treatment via Haar measure, seeADD REF FORRESTER,
[KS2].

In Chapter 2 we sketch a proof of the Semi-Circle Law. See [CB] for a rigorous treatment (including
convergence issues and weaker conditions on the distributionp). For more information, we refer the reader
to [Bai, BK]. In Chapter??we investigate the spacings of eigenvalues of2× 2 matrices. For the spacings
of N × N matrices asN → ∞, see [Gau, Meh1, Meh2]. In Chapter?? we study the1-level density for
Dirichlet characters, and state that the answer agrees with the similar statistic for unitary matrices. This is
but one of many statistics where random matrices behave similarly asL-functions. We refer the reader to
[Con, CFKRS, Dia, FSV, ILS, KS1, KeSn, TrWi].
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Chapter 2

Random Matrix Theory: Eigenvalue Densities

In this chapter we study the eigenvalue densities for many collections of random matrices. We concentrate
on the density of normalized eigenvalues, though we mention a few questions regarding the spacings
between normalized eigenvalues (which we investigate further in Chapter??).

2.1 Semi-Circle Law

Consider an ensemble ofN × N real symmetric matrices, where for simplicity we choose the entries
independently from some fixed probability distributionp. One very important question we can ask is:
given an interval[a, b], how many eigenvalues do we expect to lie in this interval? We must be careful,
however, in phrasing such questions. We have seen in §1.2.1 that the average size of the eigenvalues grows
like

√
N . Hence it is natural to look at the density of normalized eigenvalues.

For example, the Prime Number Theorem states that the number of primesp ≤ x is x
log x

(plus lower
order terms). Thus the average spacing between primesp ≤ x is x

x/ log x
= log x. Consider two intervals

[105, 105 +1000] and[10200, 10200 +1000]. The average spacing between primes in the first is about11.5;
the average spacing between primes in the second is about460.5. We expect to find about87 primes in
the first interval, and about2 in the second. In order to obtain a universal answer, we instead look at the
density of normalized primes.

The appropriate question to ask is not what is the density of eigenvalues (or primes) in an interval
[a, b], but rather in an interval[a · (Ave Spacing), b · (Ave Spacing)].

Exercise 2.1.1.As x → ∞, how many numbers at mostx are square-free (m is square-freeif n2|m
impliesn = ±1)? What is the average spacing between square-free numbers?

33



2.1.1 Moments of the Semi-Circle Density

Consider

P (x) =

{
2
π

√
1− x2 if |x| ≤ 1

0 otherwise.
(2.1)

Exercise 2.1.2.Show thatP (x) is a probability density (show that it is non-negative and integrates to1).
GraphP (x).

We call P (x) the semi-circle density. We calculate the moments of the semi-circle. We prove for
k ≤ 3, thekth moment of the semi-circleC(k) equals the expectedkth moment ofµA,N(x) asN → ∞,
and sketch the proof for higher moments. We have

C(k) =

∫ ∞

−∞
xkP (x)dx =

2

π

∫ 1

−1

xk
√

1− x2dx. (2.2)

We note that, by symmetry,C(k) = 0 for k odd, andC(0) = 1 asP (x) is a probability density. For
k = 2m even, we change variables. Lettingx = sin θ,

C(2m) =
2

π

∫ π
2

−π
2

sin2m(θ) · cos2(θ)dθ. (2.3)

Usingsin2(θ) = 1− cos2(θ) gives

C(2m) =
2

π

∫ π
2

−π
2

sin2m θdθ − 2

π

∫ π
2

−π
2

sin2m+2 θdθ. (2.4)

The above integrals can be evaluated exactly. We constantly use

cos2(φ) =
1

2
+

1

2
cos(2φ)

sin2(φ) =
1

2
− 1

2
cos(2φ). (2.5)

Repeated applications of the above allow us to writesin2m(θ) as a linear combination of1, cos(2θ), . . . ,
cos(2mθ). Let

n!! =

{
n · (n− 2) · · · 2 if n is even

n · (n− 2) · · · 1 if n is odd
(2.6)

We find (either prove directly or by induction) that

2

π

∫ π
2

−π
2

sin2m(θ)dθ = 2
(2m− 1)!!

(2m)!!
. (2.7)
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Exercise 2.1.3.Show the above gives

C(2m) = 2
(2m− 1)!!

(2m + 2)!!
. (2.8)

CalculateC(2) andC(4).

To eachN ×N real symmetric matrixA we associate a probability distributionµA,N(x) (see §1.2.2).
We now sketch the proof that asN →∞, most of theµA,N(x) are close toP (x), the semi-circle density.

2.1.2 Moment Preliminaries

Definition 2.1.4. MN,k(A) is thekth moment of the probability measure attached toµA,N(x):

MN,k(A) =

∫
xkµA,N(x)dx =

1

N

N∑
j=1

(
λj(A)

2
√

N

)k

. (2.9)

As always, the starting point is Theorem 1.2.5, which says
∑

λj(A)k = Trace(Ak). By Lemma 1.2.9,

MN,k(A) =
1

2kN1+ k
2

Trace(Ak). (2.10)

We show that asN →∞, the expected value of the moments of theµA,N(x) converge to the moments of
the semi-circle. This does not prove Wigner’s Semi-Circle Law; we need some results from Probability
Theory to complete the proof (see §1.3.2 for an explanation of the needed technical arguments, and [CB]
for a rigorous derivation of the Semi-Circle Law).

See §1.3.3 for a review of notation. LetMN,k = E[MN,k(A)] be the average over allA (appropriately
weighted by the probability density) ofMN,k(A). Explicitly, the probability density of observing a matrix
A with entriesaij is

∏
1≤i,j≤N p(aij)daij, and averaging over all matrices gives the expected value of

MN,k(A) is

MN,k =

∫ ∞

a11=−∞
· · ·

∫ ∞

aNN=−∞
MN,k(A)

∏
1≤i,j≤N

p(aij)daij. (2.11)

As (see Theorem 1.2.1)
Trace(Ak) =

∑
1≤i1,...,ik≤N

ai1,i2ai2,i3 · · · aik,i1 , (2.12)

this and (2.10) yield

MN,k =
1

2kN1+ k
2

∑
1≤i1,...,ik≤N

E[ai1,i2ai2,i3 · · · aik,i1 ], (2.13)
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where

E[ai1,i2ai2,i3 · · · aik,i1 ] =

∫ ∞

a11=−∞
· · ·

∫ ∞

aNN=−∞
ai1,i2ai2,i3 · · · aik,i1

∏
1≤i,j≤N

p(aij)daij. (2.14)

(2.14) can be rewritten in a useful manner. In the productai1,i2ai2,i3 · · · aik,i1, groupaij together that have
the same subscripts; as the matrices are symmetric,aij = aji and we consider the pairs(i, j) and(j, i)
equal. Say we can write

ai1,i2ai2,i3 · · · aik,i1 = ar1
x1y1

· · · ar`
x`y`

, (2.15)

where all pairs(xj, yj) are distinct (remember, we consider the pairs(x, y) and(y, x) equal). We then
obtain

E[ai1,i2ai2,i3 · · · aik,i1 ] =

∫ ∞

a11=−∞
· · ·

∫ ∞

aNN=−∞
ar1

x1y1
· · · ar`

x`y`

∏
1≤i,j≤N

p(aij)daij.

(2.16)

As all entries areindependentlydrawn from thesamedistribution, this integral greatly simplifies. Letpk

be thekth moment ofp:

pk =

∫ ∞

a=−∞
akp(a)da. (2.17)

Then (2.16) becomes

Lemma 2.1.5.Letai1,i2ai2,i3 · · · aik,i1 = ar1
x1y1

· · · ar`
x`y`

, where all pairs(xj, yj) are distinct. Then

E[ai1,i2ai2,i3 · · · aik,i1 ] = pr1 · · · pr`
. (2.18)

Note we could also write

E[ai1,i2ai2,i3 · · · aik,i1 ] = E[ar1
x1y1

] · · ·E[ar`
x`y`

] = pr1 · · · pr`
. (2.19)

As we assumep has mean0, variance1 and finite higher moments, if anyrj = 1 then the above product
vanishes. If eachrj = 2 the above product is1.

Exercise 2.1.6.Prove Equations 2.12 and 2.13 and Lemma 2.1.5.

2.1.3 The First Few Moments

We use the expansions from §2.1.2 to calculate the first few moments. See §1.3 for a review of the
formulation of Wigner’s Semi-Circle Law. We must show thatlimN→∞ MN,k → C(k), whereC(k) is the
kth moment of the semi-circle distribution.
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Lemma 2.1.7.The expected value ofMN,0(A) = 1, thuslimN→∞ MN,0 = C(0).

Proof.

MN,0 = E [MN,0(A)] =
1

N
E [Trace(I)] =

1

N
E[N ] =

N

N
E[1] = 1. (2.20)

Lemma 2.1.8.The expected value ofMN,1(A) = 0, thuslimN→∞ MN,1 = C(1).

Proof.

MN,1 = E [MN,1(A)] =
1

2N3/2
E [Trace(A)]

=
1

2N3/2
E

[
N∑

i=1

aii

]

=
1

2N3/2

N∑
i=1

E[aii]. (2.21)

As eachaij is drawn from a probability distribution with mean zero, eachE[aii] = 0.

Lemma 2.1.9.The expected value ofMN,2(A) = 1
4
, thuslimN→∞ MN,2 = C(2).

Proof. By Theorem 1.2.1

Trace(A2) =
N∑

i=1

N∑
j=1

aijaji. (2.22)

As A is symmetric,aij = aji. Thus, the trace is
∑

i

∑
j a2

ij. Now

MN,2 = E [MN,2(A)] =
1

4N2
E

[
Trace(A2)

]

=
1

4N2
E

[
N∑

i=1

N∑
j=1

a2
ij

]

=
1

4N2

N∑
i=1

N∑
j=1

E[a2
ij]. (2.23)

EachE[a2
ij] = 1 because we have assumedp has mean 0 and variance 1 (which implies the second moment

of p is 1). There areN2 pairs(i, j). Thus, we have 1
4N2 · (N2 · 1) = 1

4
.
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Lemma 2.1.10.limN→∞ MN,3 = C(3) = 0.

Proof. By Theorem 1.2.1

Trace(A3) =
N∑

i=1

N∑
j=1

N∑

k=1

aijajkaki. (2.24)

Therefore

MN,3 = E [MN,3(A)] =
1

8N2.5
E

[
Trace(A3)

]

=
1

8N2.5
E

[
N∑

i=1

N∑
j=1

N∑

k=1

aijajkaki

]

=
1

8N2.5

N∑
i=1

N∑
j=1

N∑

k=1

E[aijajkaki]. (2.25)

There are three cases. If the subscriptsi, j andk are all distinct, thenaij, ajk, andaki are three independent
variables (in other words, these are three distinct pairs). Asp has mean zero, by Lemma 2.1.5

E[aijajkaki] = E[aij] · E[ajk] · E[aki] = 0. (2.26)

If two of the subscripts are the same (sayi = j) and the third is distinct, by Lemma 2.1.5

E[aiiaikaki] = E[aii] · E[a2
ik] = 0 · 1 = 0 (2.27)

becausep has mean zero and variance 1. If all three subscripts are the same, we have

E[a3
ii] (2.28)

This is the third moment ofp. It is the same for all pairs(i, i), equal top3 by Lemma 2.1.5. This is where
we use the assumption that the higher moments ofp are finite. There areN triples wherei = j = k.
Thus,

MN,3 = E [MN,3(A)] =
1

8N2.5
·Np3 =

p3

8N1.5
. (2.29)

LettingN →∞, we see the expected value of the third moment is zero in the limit.

Remark 2.1.11. Many of the above calculations are unnecessary. We are dividing byN2.5. There are
N3 triples aijajkaki. If i, j and k are distinct, we showed by Lemma 2.1.5 the contribution is zero. If
the indices arenot distinct, there are at most3N2 such triples, and as all moments ofp are finite, by
Lemma 2.1.5 each such triple contributes a bounded amount (independent ofN ). As we divide byN2.5,
the total contribution is at most some universal constant times1√

N
, which tends to zero asN →∞. This

illustrates a general principle: often order of magnitude calculations are sufficient to show certain terms
do not contribute in the limit.
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2.1.4 The Higher Moments

Lemma 2.1.12.For oddk, the expected value ofMN,k(A) asN →∞ is zero.

Exercise 2.1.13.Prove Lemma 2.1.12.Hint: write the tuple asai1i2ai2i3 · · · aiki1 = ar1
x1y1

· · · ar`
x`y`

. If any
pair (x, y) occurs only once, showE[ar1

x1y1
· · · ar`

x`y`
] = 0. Thus eachrj ≥ 2, and

∑
j rj = k. Show there

areo(N1+ k
2 ) such tuples, implying these terms do not contribute.

Therefore, we are left with calculating the limit of the averages ofMN,k(A) for k = 2m even.

Lemma 2.1.14.Notation as before, the only tuples which contribute asN → ∞ to the main term of the
average ofMN,2m(A) are those where eachrj = 2.

Exercise 2.1.15.Prove Lemma 2.1.14.Hint: any tuple with anrj = 1 contributes 0. Show there are at
mosto(N1+m) tuples where allrj ≥ 2 and at least onerj ≥ 3.

We are reduced to calculating the contributions to the average ofMN,2m(A) from tuples with each
rj = 2. By Lemma 2.1.5, a tuple

ai1i2 · · · ai2mi1 = a2
x1y1

· · · a2
xmym

(2.30)

contributes1m (because we have a product ofm second moments ofp, and the second moment ofp is 1).
The above arguments and (2.13) yield, up to lower order terms,

MN,2m = E[MN,2m(A)] =
1

2mN1+m

∑∗

1≤1i,...,i2m≤N

1, (2.31)

where
∑∗

means we restrict to tuples(i1, . . . , i2m) such that the correspondingrjs are all 2. The deter-
mination of the limits of the even moments is completed by showing

1

2mN1+m

∑∗

1≤1i,...,i2m≤N

1 = C(2m) = 2
(2m− 1)!!

(2m + 2)!!
. (2.32)

The solution of this counting problem involves the Catalan numberck = 1
k+1

(
2k
k

)
.NEED A BLURB ON

CATALAN See [Leh] for details.

Exercise 2.1.16.Prove(2.32).
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2.2 Non-Semi-Circle Behavior

In our investigations of randomd-regular graphs, we showed the density of normalized eigenvalues do not
converge to the semi-circle (Theorem 1.5.8). We give several more examples of ensembles of matrices
where the density of eigenvalues is provablynot given by the Semi-Circle Law. Thed-regular graphs are
combinatorial objects, and we are not constructing our matrices by choosing entries at random from a
fixed probability distributionp. Now we give several examples where we do choose the entries randomly,
but with additional structure (otherwise we would of course just have the ensemble of all real symmetric
matrices). A generic real symmetric matrix hasN(N+1)

2
independent entries. We now consider subsets

with far fewer independent entries, often of sizeN . The hope is that these thin ensembles might exhibit
new, interesting behavior.

2.2.1 Band Matrices

Definition 2.2.1 (Band Matrix (of with r)). We say a real symmetric matrix is a band matrix (of width
r) if aij = 0 whenever|i− j| > r.

A band matrix of width 0 is a diagonal matrix and of width 1 has non-zero entries only along the main
diagonal and the diagonals immediately above and below. In general the number of independent entries
is of size(2r + 1)N .

Exercise 2.2.2.Calculate exactly how many entries can be non-zero if the band width isr.

While band matrices are a subset of real symmetric matrices, they are a very thin subset forr ¿ N .
Do they obey the Semi-Circle Law? Is the spacing between adjacent eigenvalues the GOE?

If the band widthr = N − 1, then the matrix is “full”; in other words, every entry can be non-zero,
and the density of normalized eigenvalues converges to the semi-circle. What about the opposite extreme,
whenr = 0? ConsiderN×N real symmetric band matrices of width0, each entry which can be non-zero
is chosen randomly and independently from some fixed probability distributionp. For r = 0, we do not
need to assume anything about the moments ofp.

Theorem 2.2.3.The normalized eigenvalue density isnot the semi-circle; it is justp.

Proof. There is no need to normalize the eigenvalues. As we have a diagonal matrix, the entriesare the
eigenvalues! Asking how many eigenvalues are in[a, b] is equivalent to calculating the probability that an
aii ∈ [a, b], which is given by

∫ b

a
p(x)dx.

Exercise 2.2.4.LetA be anN×N band matrix of width 1 with real entries, but not necessarily symmetric.
Which entries can be non-zero inAT A?
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2.2.2 Toeplitz Matrices

We consider another ensemble of random matrices with far fewer independent entries than the ensemble
of all real symmetric matrices.

Definition 2.2.5. A Toeplitz matrixA is of the form

A =




b0 b1 b2 b3 · · ·
b−1 b0 b1 b2

.. .

b−2 b−1 b0 b1
.. .

b−3 b−2 b−1 b0
.. .

...
. .. . .. . .. .. .




(2.33)

That is,A is constant along its diagonals. Noteaij = bj−i.

We consider real symmetric Toeplitz matrices whose entries are chosen according to some distribution
p with mean 0 and variance 1. Thusbi−j = bj−i. It is convenient to normalize the eigenvalues of these
Toeplitz matrices by 1√

N
rather than 1

2
√

N
. Thus

µA,N(x) =
1

N

N∑
i=1

δ

(
x− λi(A)√

N

)
. (2.34)

Remark 2.2.6. As the main diagonal is constant, the effect of the main diagonal beingb0 is simply to
shift all eigenvalues byb0. For simplicity, we takeb0 = 0. Note there areN − 1 independent entries,
b1, . . . , bN−1.

Exercise 2.2.7.If B = A + mI, prove the eigenvalues ofB arem plus the eigenvalues ofA.

The eigenvalue distribution is again not the semi-circle. As long asp has mean 0, variance 1, and
finite higher moments, the answer is universal. It isalmosta Gaussian. Its moments are bounded by the
moments of the Gaussian. Its fourth moment is22

3
, while the Gaussian’s is3.

Exercise 2.2.8.ShowMN,1 = 0 andMN,2 = 1− 1
N

. Thus, asN →∞, the expected value of the first two
moments are 0 and 1, respectively. Recall the second moment of the semi-circle is1

4
.

Just becauselimN→∞ MN,2 6= 1
4

does not imply that the eigenvalue probability distribution does not
converge to a semi-circle; it only implies it does not converge to thestandardsemi-circle – we need to
examine the fourth moment. See exercise 1.1.5.

It turns out that it is not the semi-circle that this distribution is trying to approach, but rather the
Gaussian. The odd moments of the Gaussian vanish, and the even moments areG(2m) = (2m−1)!!. The
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limits of the average of the moments want to beG(2m); however, to calculate these moments involves
solving a system of Diophantine equations (see Chapter??). Obstructions to these equations arise (due to
the fact that the indices must be in{1, . . . , N}), and this prevents the limits from equalling the Gaussian’s
moments.

The fourth moment calculation highlights the Diophantine obstructions, which bound the moments
away from the Gaussian. Asaij = bj−i = bi−j, the trace expansion becomes

MN,4(A) =
1

N3

∑
1≤i1,i2,i3,i4≤N

E(bi1−i2bi2−i3bi3−i4bi4−i1). (2.35)

Let xj = |ij − ij+1|. If any bxj
occurs to the first power, its expected value is zero (since the mean ofp is

zero, and thebs are drawn fromp), and these tuples do not contribute. Thus, either thexjs are matched
in pairs (with different values), or all four are equal (in which case they are still matched in pairs). There
are 3 possible matchings; however, by symmetry (simply relabel), we see the contribution fromx1 = x2,
x3 = x4 is the same as the contribution fromx1 = x4, x2 = x3.

If x1 = x2, x3 = x4, we have

i1 − i2 = ±(i2 − i3) and i3 − i4 = ±(i4 − i1). (2.36)

Exercise 2.2.9.Show the number of tuples(i1, i2, i3, i4) satisfying the pair of equations in(2.36)isO(N2)
if a + sign holds in either equation. As we divide byN3, in the limit these terms do not contribute and the
main contribution arises when both equations have the minus sign.

If both signs are negative in (2.36), theni1 = i3 andi2 andi4 are arbitrary. We see there areN3 such
tuples. Almost all of these will havex1 6= x3, and contribute1; the rest will contribute a smaller term.
Explicitly, let p4 denote the fourth moment ofp. Given i1 and i2, N − 1 choices ofi4 yield x1 6= x3

(contributingE[b2
x1

b2
x3

] = 1), and one choice yields the two equal (contributingE[b4
x1

] = p4). Therefore,
this case contributes

1

N3

(
N2(N − 1) · 1 + N2(1) · p4

)
= 1− 1

N
+

p4

N
= 1 + O

(
1

N

)
. (2.37)

The case ofx1 = x4 andx2 = x3 is handled identically, and contributes1 + O
(

1
N

)
.

The other possibility is forx1 = x3 andx2 = x4. Non-adjacent pairing is what leads to Diophantine
obstructions, which decreases the contribution to the moment. We call this a non-adjacent pairing as the
neighbors ofx1 arex2 andx4, butx1 is paired withx3. Now we have

i1 − i2 = ±(i3 − i4) and i2 − i3 = ±(i4 − i1). (2.38)

Exercise 2.2.10.Show the number of tuples(i1, i2, i3, i4) satisfying the pair of equations in(2.38) is
O(N2) if a + sign holds in either equation. As we divide byN3, in the limit these terms do not contribute
and the main contribution arises when both equations have the minus sign.
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If both signs are negative in (2.38), then we have

i1 = i2 + i4 − i3, i1, i2, i3, i4 ∈ {1, . . . , N}. (2.39)

The fact that eachij ∈ {1, . . . , N} is what leads to the Diophantine obstructions. In the first case (when
x1 = x2 andx3 = x4), we saw we had three independent variables, andN3 + O(N2) choices that were
mutually consistent. Now it is possible for choices ofi2, i3 andi4 to lead to impossible values fori1. For
example, ifi2, i4 ≥ 2N

3
andi3 < N

3
, this forcesi1 > N , which is not allowed, which implies there are

at most(1− 1
27

)N3 valid choices. This is enough to show the Gaussian’s moment is strictly greater. The
following lemma shows this case contributes2

3
to the fourth moment.

Lemma 2.2.11.Let IN = {1, . . . , N}. Then#{x, y, z ∈ IN : 1 ≤ x + y − z ≤ N} = 2
3
N3 + 1

3
N .

Proof. Sayx + y = S ∈ {2, . . . , 2N}. For2 ≤ S ≤ N , there areS − 1 choices ofz, and forS ≥ N + 1,
there are2N − S + 1. Similarly, the number ofx, y ∈ IN with x + y = S is S − 1 if S ≤ N + 1 and
2N − S + 1 otherwise. The number of triples is therefore

N∑
S=2

(S − 1)2 +
2N∑

S=N+1

(2N − S + 1)2 =
2

3
N3 +

1

3
N. (2.40)

Collecting all the pieces, we have shown

Theorem 2.2.12 (Fourth Moment).MN,4 = 22
3

+ O
(

1
N

)
.

In [BDJ, HM] the Toeplitz ensemble is investigated and shown to be non-Semi-Circular and non-
Gaussian. See [HM] for upper and lower bounds for the moments of the new distribution that the densities
µA,N(x) converge to.

Remark 2.2.13.Similar to our previous arguments, one can show that the odd moments vanish, and the
main contribution to the even moments occur when thebxs are matched in pairs. For2m objects, there
are (2m − 1)!! ways to match in pairs. Each matching wants to contribute1 (and if they all did, then we
would have the Gaussian’s moments); however, not all matchings contribute1. For some matchings, a
positive percent of tuples are inaccessible. Explicitly, for each matching we divide byNm+1. It turns out
that of the2m indicesi1, . . . , i2m, oncem + 1 are specified the others are determined. If we could choose
m + 1 indices freely, we would haveNm+1 tuples for each matching, and a contribution of1. It is here
that the loss of a positive percent is felt. See [HM] for details.
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2.2.3 Truncated Cauchy Distribution

In §1.3.4 we saw that numerical simulations of eigenvalues of matrices with entries independently cho-
sen from the Cauchy distribution appeared not to satisfy the Semi-Circle Law. ForN × N matrices,
instead of choosing the entries from the Cauchy distribution, choose the entries from atruncatedCauchy
distribution, where the truncation depends onN . Explicitly, let

pN(x) =

{
AN

1
π(1+x2)

if |x| ≤ f(N)

0 otherwise,
(2.41)

whereAN is chosen to make
∫
R pN(x)dx = 1. By appropriately choosing the cutofff(N) and normalizing

the eigenvalues, one obtains a new distribution. See [Za] for complete statements and proofs, as well as
generalizations to other distributions.

2.3 Sparse Matrices

A common theme of some of the above problems (band matrices, random graphs) is that we are con-
sideringsparse matrices: real symmetric matrices where most entries are zero. Such matrices open up
fascinating possibilities to see new behavior. In general, the following heuristic principle is a good guide:
if you consider a very small subset of objects, you can see very special behavior. However, in mathemat-
ical proofs, we need to average over many similar objects. Thus, if we have too few objects, we cannot
perform the averaging; if we have too many objects, non-standard behavior (which occurs rarely) could
be washed away.

For example, as most matrices are not band symmetric of small width, even though they have different
eigenvalue statistics, this difference will not be noticed when we look at all symmetric matrices. The goal,
therefore, is to find an ensemble that is large enough so that we can do the averaging, yet small enough so
that new interesting behavior is still present.

The generalized coin toss matricesprovide another candidate. ForqN ∈ [0, 1
2
], let pN(1) = qN

2
,

pN(−1) = qN

2
, andpN(0) = 1 − qN . UsingpN to construct a real symmetric matrix, we expect to have

aboutqN · N(N+1)
2

non-zero entries. IfqN is small relative toN , these matrices are sparse, and there is the
possibility for new behavior. Note, of course, that ifqN is independent ofN then the standard proof of
the Semi-Circle Law is applicable. See [Liu] for more details.

2.4 Research Projects

Research Project 2.4.1 (Band Matrices).Investigate how the eigenvalue density depends on the band
width. When do we observe the transition fromp to the semi-circle? In other words, how large mustr
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be in order to see semi-circle behavior. Does this criticalr depend onp? It has been observed for many
systems that transitions occur around

√
N .

Research Project 2.4.2 (Band, Sparse,d-Regular). Compare the eigenvalue distributions and spacing
distributions (see Chapter??) of band matrices of widthr, generalized coin toss matrices, andd-regular
random graphs. If we chooser, q andd so that

(2r + 1)N − r(r + 1) ∼ qN(N + 1)

2
∼ dN

2
, (2.42)

are the distributions similar? All three ensembles have approximately the same number of non-zero
entries, but they differ greatly inwherethe non-zero entries may lie.

Research Project 2.4.3 (Self-Adjoint Matrices).Fix a probability distributionp and chooseall the
entries ofA randomly and independently fromp. Consider the matrixAT A. This matrix is real symmetric,
but hasN2 degrees of freedom. What is the density of its eigenvalues?

Research Project 2.4.4 (Weighted Random Graphs).Consider the space ofd-regular graphs. To each
graph we attach an adjacency matrix, and we can study the distribution of the eigenvalues. Consider the
following generalization: fix a probability distributionp. Let A be the adjacency matrix of ad-regular
graphG. Construct a matrixB as follows: ifaij = 1, choosebij randomly fromp; if aij = 0, setbij = 0.
How does the distribution of eigenvalues depend onp? The density of eigenvalues ofd-regular graphs
is not the semi-circle; however, is there a choice ofp that leads to semi-circular behavior? These are
called weighted graphs; one can regard these weights (especially ifp is positive) as encoding different
information about the system (for example, how far apart different vertices are, or how long or how
expensive it is to transmit information between vertices). See [QS] for more details.

Research Project 2.4.5 (Complex Hermitian).Investigate the eigenvalue densities for some of the en-
sembles for complex Hermitian rather than real symmetric matrices. For example, consider complex
Hermitian Toeplitz matrices.
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