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Abstract

Large-scale applications of Internet of things (IoT), which require considerable computing tasks and storage

resources, are increasingly deployed in cloud environments. Compared with the traditional computing model,
characteristics of the cloud such as pay-as-you-go, unlimited expansion, and dynamic acquisition represent different

conveniences for these applications using the IoT architecture. One of the major challenges is to satisfy the quality

of service requirements while assigning resources to tasks. In this paper, we propose a deadline and cost-aware
scheduling algorithm that minimizes the execution cost of a workflow under deadline constraints in the

infrastructure as a service (IaaS) model. Considering the virtual machine (VM) performance variation and acquisition

delay, we first divide tasks into different levels according to the topological structure so that no dependency exists
between tasks at the same level. Three strings are used to code the genes in the proposed algorithm to better

reflect the heterogeneous and resilient characteristics of cloud environments. Then, HEFT is used to generate

individuals with the minimum completion time and cost. Novel schemes are developed for crossover and mutation
to increase the diversity of the solutions. Based on this process, a task scheduling method that considers cost and

deadlines is proposed. Experiments on workflows that simulate the structured tasks of the IoT demonstrate that our
algorithm achieves a high success rate and performs well compared to state-of-the-art algorithms.
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1 Introduction
With the rapid development of science and technology,

the requirement of large-scale computing cannot be

separated from scientific applications or life services.

Due to the geometric growth of information and the

complexity of data processing, researchers in most dis-

ciplines face more challenges and opportunities than

ever [1]. Many science applications, such as the Inter-

net of things (IoT), gene sequencing, and earthquake

prediction, are becoming increasingly dependent on

high-performance computing and distributed storage.

In particular, the IoT, which depends on a reliable

computing environment, has been widely utilized in

various fields [2]. As an innovative application mode,

the IoT uses sensing technology, computing technol-

ogy, and communication technology to connect massive

devices to achieve interaction with the real world. How-

ever, in practical applications, the IoT obtains various

information through perception and realizes intelligent

management of different objects by sharing and ex-

changing data in real time. Due to its own capacity lim-

itations, such as CPU, memory, and battery capacity,

IoT applications face constraints in completing tasks

that require substantial computing resources and en-

ergy consumption at the device end [3]. At the same

time, analysis and decision-making based on big data at

the infrastructure level of the IoT are difficult.

Meanwhile, cloud computing, a new computing archi-

tecture, has been widely applied in recent years. Cloud

computing is a model that aims to provide a flexible

heterogeneous resource pool through the network, and
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users can rent different resources on demand. These

configurable computing resources are maintained by

cloud providers and can be rapidly provisioned and re-

leased [4]. Users procure and release computing re-

sources, which are usually virtual machines (VMs) with

different specifications, according to their own needs

within a certain time. As two new technologies based on

the Internet, the IoT and cloud computing are closely

related in terms of their roles. The IoT intelligently

manages equipment and digitalizes various information,

and cloud computing can be used as a carrier for high-

speed data processing, storage, and utilization. Cloud

computing has provided the advantages of speed, con-

venience, and security that the IoT lacks, and the tech-

nology makes the real-time dynamic management and

intelligent analysis of the IoT more reliable.

Based on the infrastructure as a service (IaaS) model

of cloud computing, this paper studies the task schedul-

ing of the IoT applications in the cloud environment.

In this paper, the data and processing requirements of

the IoT are expressed as different applications that are

usually represented as workflows that consist of

computing tasks and data edges generally organized as

directed acyclic graphs (DAGs) [5]. Although imple-

menting IoT applications in cloud computing has vari-

ous advantages, some issues remain to be addressed.

First, workflow scheduling is regarded as an NP-hard

problem [6]. In particular, workflow scheduling refers

to the assignment of tasks to virtual resources

according to execution sequence [7]. Second, when a

computing resource (VM) is leased or released, a

proper handoff takes time. Since cost is an important

indicator when applying workflows to cloud platforms

[8], the lease time of the VM must be considered be-

cause the time will affect the cost and deadline of the

workflow. Third, the performance of a VM can vary be-

cause of the virtualization and instability of hardware,

multiuser environment, and other reasons. The overall

CPU performance of a VM can be up to 24% in the

Amazon public clouds, and the performance variation

of a cloud can reach 30% in terms of makespan [9, 10].

The performance variation of VMs increases the execu-

tion makespan and cost of the workflow, leading to

violation of the quality of service (QoS) in the cloud.

In this paper, based on the advantages and issues

discussed above, we propose a deadline and cost-aware

genetic algorithm (DCGA) for workflow scheduling in

IoT applications. The presented solution improves the

meta-heuristic genetic algorithm (GA) [11] by using new

heuristic methods to schedule each task to execute on

an appropriate VM. First, the workflow scheduling

model in a cloud environment is constructed. Then, we

describe the optimization goal and major conceptual

definitions by formalizing definitions. Next, the proposed

algorithm is described in detail in different stages, and

the key links are illustrated with examples, such as en-

coding, crossover, and mutation. Finally, according to

the characteristics of VMs in Amazon cloud services, the

simulation platform is built to evaluate the performance

of the proposed algorithm.

The main contributions of this paper are as follows:

� Most characteristics of cloud are considered,

including on-demand acquisition, dynamic exten-

sion, heterogeneity, acquisition delay, performance

variation of VMs, and pay-as-you-go.

� Novel schemes are designed for population

initialization, selection, crossover, and mutation of

the genetic algorithm, which improve the search

performance in the solution space.

� A comparison of state-of-the-art algorithms and the

proposed algorithm is performed on the simulation

platform using different workflow specifications.

The remainder of this paper is organized as follows.

Section 2 surveys and analyses related work. Section 3

presents the structure of the platform and the problem

of scheduling. Then, the DCGA scheduling algorithm is

proposed in Section 4, and empirical studies are pre-

sented in Section 5. Finally, Section 6 concludes the

paper and discusses future work.

2 Related work

The workflow in IoT applications is usually represented

as a DAG, in which the vertexes of the graph represent

tasks and edges represent the relationship between two

tasks and data transmission. Moreover, workflow sched-

uling can be separated into two stages: task selection

and resource allocation. First, the task selection phase

aims to determine the sequence of tasks according to

the constraints in the workflow [12]. Tasks can be

grouped in different ways as long as successive depend-

encies are not violated. Therefore, the task execution

order can be arranged in many ways. Then, the resource

allocation phase aims to choose the number and type of

VMs to execute tasks [13]. In this phase, the number of

VMs in the cloud is regarded as unlimited: a task can

run on only one VM and a VM can run only one task at

a time.

Workflow scheduling in distributed systems has been

widely studied. Yu et al. [14] propose a cost-based work-

flow scheduling algorithm for utility grids. The algo-

rithm minimizes the cost of execution while meeting a

deadline. They use a Markov decision process approach

to schedule task and reschedule unexecuted tasks to

adapt to delays in service execution that may violate the

deadline constraints. In another work, Yu et al. [15] use

multi-objective evolutionary algorithms to obtain a set
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of feasible solutions after the user defines the deadline

and budget constraints. The main objective is to let the

user choose the best solution from multiple possible so-

lutions. In [16], Sakellariou et al. implement an algo-

rithm to schedule DAGs on heterogeneous machines

under budget constraints. The algorithm computes the

weight value of each task and machine via two ap-

proaches and then uses the weights to assign tasks to

machines in consideration of the cost and budget. Using

the concept of game theory and sequential coopera-

tive game, Duan et al. provide two algorithms (game-

quick and game-cost) to optimize performance and

cost in [17]. In addition, they design and implement a

novel system model with better controllability and

predictability of multi-workflow optimization prob-

lems in a grid environment. Chen et al. proposed an

ant colony optimization algorithm to schedule large-

scale workflows with three QoS parameters in a grid

computing scenario in [18]. The algorithm enables

users to specify two of the constraints and finds an

optimized solution for the third constraint while

meeting these parameters. These various algorithms

are designed for users in a distributed environment,

and the cost is usually based on all services used.

With the rise and development of cloud comput-

ing, research has increasingly turned to this field.

Unlike in grid and cluster computing, task schedul-

ing in cloud computing not only needs to consider

the makespan factor but also needs to reduce the

cost, which is based on the lease intervals. Hoffa

et al. [19] compare the performance of running the

Montage workflow on various types of resources, in-

cluding both physical and virtual environments. They

note that virtual environments can provide the ne-

cessary scalability, while local environments are suffi-

cient but are not a scalable solution. Byun et al. [20]

propose partitioned balanced time scheduling for

executing tasks on the minimum resources under a

given deadline. The algorithm associates the work-

flow management system with the resource provi-

sioning environment to minimize the execution cost

of a workflow. Their approach takes advantage of

the elasticity, but ignores the heterogeneity, of cloud

resources. Balanced time scheduling (BTS) is pro-

posed for estimating the minimum number of re-

sources needed to execute tasks under a deadline in

[21]. The BTS algorithm uses list scheduling tech-

nology to delay a task until reaching the latest exe-

cute time. According to the local optimal time of

each task, the tasks are allocated to the same host as

much as possible to achieve resource minimization

in workflow scheduling. However, the researchers

simply consider VMs of the same type in the cloud

environment, and the network contention influencing

the start time of the task is ignored. In [22],

Malawski et al. address the scheduling problem and

resource provisioning for workflows on IaaS. The al-

gorithms aim to maximize the number of workflows

executed under the QoS constraints, such as dead-

line and budget. However, the execution time of a

task on a VM is regarded as a constant. Abrishami

et al. [23] propose a static algorithm named IaaS

cloud partial critical path (IC-PCP) to schedule tasks

on IaaS. First, the algorithm calculates the latest finish

time of each task and then assigns tasks on a partial crit-

ical path to the least expensive VM instance that can

complete the tasks before deadlines. If the available VMs

cannot satisfy the deadline constraints, the algorithm gen-

erates a new VM instance that meets the conditions to

execute all the tasks. This process is repeated until all the

tasks are scheduled. However, the algorithm uses task-

level optimization instead of a global optimization and

may fail to generate a better solution without considering

the entire workflow structure and characteristics.

Due to the uncertainty in the number and scale of

tasks and resources in cloud computing, meta-

heuristic algorithms such as ant colony optimization

(ACO), particle swarm optimization (PSO), and GA

have been applied to scheduling problems. These

methods obtain near optimal solutions via iteration.

Although the complexity of these algorithms is more

than that of heuristic and traditional algorithms, the

methods have attracted substantial attention due to

their good performance. Pandey et al. [24] try to

achieve load balancing between VMs using a PSO-

based algorithm that can minimize the execution

cost of tasks. The researchers obtain the total cost

of a single workflow by changing the communication

and execution cost in the resource pool. However,

the makespan of the workflow, which is ignored in

the scheduling, may violate the deadline constraint

when using the cost-minimization policy. Yao et al.

[25] design an improved multi-objective PSO algo-

rithm called endocrine-based coevolutionary multi-

swarm for multi-objective optimization (ECMSMOO)

to schedule the workflow in the cloud. An evolution-

ary strategy inspired by the endocrine regulation

mechanism is designed for every particle to optimize

different objectives, such as cost, makespan, and en-

ergy. Then, the algorithm uses competition and co-

operation among swarms to avoid falling into a local

optimum. However, the experiments are based on a

limited set of VMs, which fails to take advantage of

the infinite extensibility of the cloud. In [26], a PSO-

based algorithm is established in the cloud comput-

ing. Based on the related theory of multi-core pro-

cessors, the proposed method assigns tasks to

processors via certain rules in a dynamic scheduling
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strategy. The algorithm focuses on the utilization

and bandwidth of resources in the cloud environ-

ment without considering the cost and deadline,

which are more important factors for users. Wu

et al. [27] propose two algorithms named ProLis and

L-ACO to minimize the execution cost under the

deadline constraint of workflow scheduling on the

cloud. The ProLis algorithm distributes a deadline to

each task, ranks the tasks, and sequentially allocates

each task to satisfy the QoS. Based on this, L-ACO

employs ACO to construct different task order lists

and to construct solutions that minimize the cost

under the deadline. However, the start-up time and

performance variation of VMs are not considered.

In recent years, increasing research has focussed on

the characteristics of the cloud environment, such as

indefinite quantity, heterogeneity, performance vari-

ation, and acquisition delay of VMs, and few of these

characteristics have been fully considered in previous

studies. Mao et al. [28] present a new auto-scaling

mechanism named scaling-consolidation-scheduling

(SCS) to allocate all workflow tasks to the most cost-

efficient VMs. The researchers consider the character-

istics of VMs, such as performance variation and ac-

quisition delay, but ignore the data transfer time

between tasks, which will affect the completion time

and total execution cost of the workflow. Rodriguez

et al. [29] propose a static cost-minimization and

deadline-constrained algorithm for workflow schedul-

ing in a cloud environment. Based on the main char-

acteristics of IaaS, the researchers merge and model

both resource provisioning and scheduling as an

optimization problem and use PSO to generate a so-

lution that minimizes the lease cost of VMs before

the deadline. However, the index of resources used to

encode particles does not include much information

about the type of VMs, so the algorithm cannot easily

produce the best global optimal solution when parti-

cles move to the individual best solution. Poola et al.

[30] propose robustness-cost-time (RCT), robustness-

time-cost (RTC), and weighted algorithms to schedule

workflow tasks on heterogeneous resources in the

cloud. These algorithms based on partial critical paths

(PCPs) provide a robust and fault-tolerant schedule

while minimizing the total makespan and cost. More-

over, the three policies have different objectives, ro-

bustness, time, and cost, and each objective has

different priorities in each algorithm. However, these

algorithms schedule the entire tasks of PCPs on VMs

and may affect the makespan of the workflow because

the performance variation of a VM will delay the

completion time of all the tasks assigned to it,

thereby affecting the start time of the tasks of the

other PCPs. Sahni et al. [31] propose a dynamic cost-

effective deadline-constrained heuristic algorithm called

just in time (JIT-C) for the workflow scheduling problem.

The algorithm aims to determine a feasible solution in

which the resources are provisioned immediately before

the tasks are ready to execute. Compared with the similar

methods in [23, 30], this algorithm consumes more time

for the pre-processing and monitoring control loop. To

address the characteristics of task allocation in the cloud,

Arabnejad et al. [32] introduce the budget deadline aware

scheduling (BDAS) algorithm to perform workflow

scheduling in IaaS clouds. A tunable cost-time tradeoff

is proposed to satisfy both budget and deadline con-

straints. The researchers use deadline bottom level

(DBL) and deadline top level (DTL) to allocate tasks to

different levels, and the budget and deadline are pro-

portionally distributed to each level. Then, the algo-

rithm assigns each task to an instance in consideration

of a tradeoff between makespan and cost. In the experi-

ments, the authors adopt a 97-s boot time for resource

allocation but ignore the performance variation of VMs,

which is one of the most important factors affecting the

deadline and cost.

According to these studies, the characteristics of

task allocation in the cloud have become an indispens-

able concern in scheduling problems. Meanwhile, the

meta-heuristic GA is often applied to the problem be-

cause of its time efficiency [33], and different improve-

ments of the GA to solve the workflow scheduling

problem have been studied in [34–37]. On the basis of

these studies, this paper proposes a DCGA for work-

flow scheduling in the cloud while considering the

characteristics of the cloud, such as on-demand acqui-

sition, dynamic extension, heterogeneity, acquisition

delay, and performance variation of VMs. The DCGA

uses a novel method for population initialization,

crossover, and mutation to minimize the total execu-

tion cost under a deadline constraint.

3 Problem definition

3.1 Application model

The workflow of an IoT application can be represented

as a DAG G = (T, E), where T = {t1, t2, t3, …, tn} is a set

of vertices representing the tasks and E = {eij ∣ ti, tj ∈ T}

is a set of edges denoting the control dependencies be-

tween tasks. Each task ti represents an indivisible trans-

action with a certain computation workload (wi). A

dependency eij with transfer data (dataij) is a precedence

constraint between task ti and task tj. This constraint

implies that the child task tj can start only after the par-

ent task ti is finished and all associated data are trans-

ferred to tj. Each task may have one or more parents

(predecessors) or children (successors), and a child task

cannot be executed unless all its parent tasks have been

completed and all the transfer data have been received.
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The workflow starts with the entry tasks and concludes

with the exit tasks. Thus, we add two dummy tasks with

zero execution and communication time to the DAG

when there is more than one entry or exit task. The two

tasks are represented as tentry and texit, respectively. In

addition, we define D as the deadline constraint to

complete the execution of the workflow, and an elastic

factor that will be introduced in the experimental section

is used to adjust the limit time bounded by D. More

details are provided in Section 4, and a sample workflow

is illustrated in Fig. 1.

For the workflow shown in Fig. 1, different task alloca-

tion schemes will lead to different execution times and

costs. For example, as shown in Fig. 2, this sample work-

flow is scheduled on three different VMs. In schedule

plan 1, the data transfer time delays the start time of t6
and t7, which causes more idle time of V2 and V3. Thus,

the total execution time and cost of the workflow are

both increased. In contrast, the strategy of assigning

tasks with large data transmission to the same VM can

effectively reduce the waiting time of tasks in schedule

plan 2. Thus, with improving the utilization of VMs, the

total execution time and cost of the workflow have been

greatly reduced.

It can be seen that the execution time and cost of

workflow will greatly differ due to the different schedul-

ing schemes. This situation will become more obvious

and complex with an increase of the number of tasks in a

heterogeneous cloud environment. Therefore, a feasible

workflow scheduling solution will not only reduce the

time and cost of the workflow but will also improve

resource utilization in the cloud environment.

3.2 System model

We adopt the IaaS cloud as the system model to

support workflow scheduling in this article. The IaaS

service model provides various computing resources

in the form of a set of VMs VM = {vm2
1; vm

3
2; vm

1
3;…

vmk
m } used to execute the tasks of the workflow.

The vmm in the VM set can be classified as a VM

type (vmk) provided by the cloud provider. These

VM types have different CPU types (processork) with

different costs (costvmk ) per time interval (time_inter-

val). Therefore, VM types with faster computing

performance usually have higher costs. The pricing

model is dependent on a pay-as-you-go billing scheme,

and the users are charged for the number of time intervals

within a VM leased period. Partial utilization is rounded

to a full unit time, that is, when 1 h is the minimum

time interval, the user has to pay for the entire hour

even if a VM is used for only a few minutes. More-

over, data transfer is free in most cloud environ-

ments, so the corresponding cost is not considered in

the model. Additionally, an unlimited number of VMs

is assumed to be leased by a workflow. The initial

boot time (init_time) is the VM acquisition delay

when a VM is leased before it is available to execute

a task. The performance variation (per_vary) of VMs,

which is caused by virtualization of resources, the

shared nature of the infrastructure, and other factors,

must also be considered. The shutdown time when a

VM is released is ignored because the time has a neg-

ligible impact on the workflow scheduling process.

The average bandwidth between VMs in a cloud is al-

ways assumed to be a fixed value. Furthermore, the

data transfer time between two tasks is calculated

based on the quantity of data transferred, and when

two tasks are assigned to the same VM, this time is

considered to be zero.

3.3 Problem formulation

Based on the models discussed above, we define some

notation in Table 1. The detailed descriptions are pre-

sented as follows.

Fig. 1 A sample workflow model
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1. Predecessors pred(ti) and successors succ(ti): the

immediate predecessors and successors of task ti are

defined as

pred tið Þ ¼ tpj∃epi∈E
� �

ð1Þ

succ tið Þ ¼ tsj∃eis∈Ef g ð2Þ

2. Estimated execution time ET(ti, vm
k) and data

transfer time TT(eij): when task ti is scheduled on a

VM of type vmk, the estimated execution time is

defined as

ET ti; vm
k

� �

¼
wi

processork
ð3Þ

Before a task is executed, all the transfer data

from its predecessors must be received. The data

transfer time between task ti and its parent task tp
is defined as

TT epi
� �

¼
0; if tp; ti are scheduled on the same VM

datapi

bandwidth
; otherwise

(

ð4Þ

3. Latest finish time LFT(ti) and latest start time

LST(ti): the latest finish time of task ti is the time

that ti can complete its execution on the fastest VM

type so that the makespan of workflow is no more

than the deadline D. The definition of the latest

start time is similar. The LFT(ti) and LST(ti) are

obtained as

LFT tið Þ ¼
D; if ti is the exit task texit
min

ts∈succ tið Þ
LST tsð Þ−TT eisð Þf g; otherwise

(

ð5Þ

LST tið Þ ¼ LFT tið Þ−ET ti; vm
fastest

� �

ð6Þ

4. Start time ST(ti) and finish time FT(ti): the start

time of task ti on VM vmk
m depends on the

finish time of all predecessors of ti, the data

Fig. 2 Schedules of the workflow from Fig. 1 with different task assignment strategies
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transfer time between ti and all its predecessors,

and the available time of vmk
m. The finish time is

influenced by the percentage of performance

variation per_vary of vmk
m. The recurrence

relations are

ST tið Þ ¼

0; if ti is the entry task tentry

max Avail vmk
m

� �

; max
tp∈pred tið Þ

FT tp
� �

þ TT epi
� �� �

� �

; otherwise

8

<

:

ð7Þ

FT tið Þ ¼ ST tið Þ þ
wi

1−per varyð Þprocessork
ð8Þ

5. Available time Availðvmk
mÞ: the available time of

VM vmk
m is the ready time to execute a new task.

Assume task ti is the last scheduled task on vmk
m.

The Availðvmk
mÞ will be updated to FT(ti). The

definition is the same as in Eq. (8). If the VM is

new and has no task assigned to it, its available time

is equal to the initial boot time (init_time).

6. VM lease start time VLSTðvmk
mÞ and VM lease finish

time VLFTðvmk
mÞ: the lease start time of VM vmk

m is

the time when vmk
m is ready to execute tasks, which is

equal to ST(ti) when task ti is the first executed task

on vmk
m. The VM lease finish time is the time at

which vmk
m is recovered by the cloud, which is equal

to FT(tj) when task tj is the last executed task on vmk
m.

7. Total execution time TET and total execution cost

TEC: the total execution time of the workflow is equal

to the finish time of task texit, and the total execution

cost is the total cost for all of the leased VMs.

Finally, the problem of workflow scheduling can be de-

fined as finding a feasible solution for the given work-

flow such that the TEC is minimized and the TET is no

greater than the deadline D. The problem is defined as

Minimize TEC Gð Þ ¼
XM

m¼1
costvmk�

VLFT vmk
m

� �

−VLST vmk
m

� �

time interval

� 	

Subject to TET Gð Þ ¼ FT texitð Þ≤D

ð9Þ

When deploying IoT applications to cloud computing,

in addition to the cost of the VMs leased, the need to

ensure that the results can be obtained within a specified

time should also be considered. Therefore, under the re-

striction of deadline D in formula (9), the workflow can

be guaranteed to meet the requirement of completion

time while reducing the execution cost.

4 The proposed DCGA algorithm

In this section, based on the GA, the proposed dead-

line and cost-aware optimization approach to achieve

the goal of Eq. (9) is described. The GA, a meta-

heuristic algorithm inspired by the ideas of natural

selection and genetic evolution, is frequently applied

to optimization problems. The basic idea of the GA is

to initialize a certain number of populations whose

individuals are called chromosomes that represent a

solution. The chromosome genes can be encoded by bits

0 and 1. Individuals with better evaluation values are

Table 1 Notation

Symbol Meaning

G = (T, E) G is the directed acyclic graph representing
a scientific workflow, T = { t1, t2, t3, …, tn } is
a set of tasks, and E = { eij ∣ ti, tj ∈ T } is a set
of edges, where n is the number of tasks in
the workflow

D The deadline of the workflow

wi The computation workload of task ti

dataij The transfer data between task ti and tj

VM = fvm2
1; vm

3
2;…; vmk

mg VM is the set of VMs in the cloud, where m
is the identifier of the VM and k is the VM
type

costvmk The cost of VM type vmk

time_interval Minimum time interval for billing when
leasing a VM

bandwidth The average bandwidth between VMs

init_time The acquisition delay of a VM

processork The CPU processing performance of
VM type vmk

per_vary Percentage of performance variation of a VM

pred(ti) List of all immediate predecessors of task ti

succ(ti) List of all immediate successors of task ti

ET(ti, vm
k) Estimated execution time of task ti scheduled

on a VM of type vmk

TT(epi) Data transfer time between task tp and ti

LST(ti) Latest start time of task ti

LFT(ti) Latest finish time of task ti

ST(ti) Start time of task ti on a VM

FT(ti) Finish time of task ti on a VM

LV(ti) The level number l associates a task to a BoT

BoT(l) A set of tasks that have the same level
number l

Availðvmk
mÞ The ready time of VM vmk

m to execute a
new task

VLSTðvmk
mÞ Lease start time of VM vmk

m

VLFTðvmk
mÞ Lease finish time of VM vmk

m

TEC Total execution cost of a workflow

TET Total execution time of a workflow
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selected for crossover to form new chromosomes, and

mutation is performed with a specified probability to vary

the diversity of the next generation. In this way, after mul-

tiple iterations or upon reaching the termination condi-

tion, the individual with the maximum/minimum

evaluation value is selected as the approximate optimal so-

lution. Based on the problem definition in Section 3, the

pseudocode of DCGA is shown in Algorithm 1, and the

relevant operations are presented as follows. Table 2 de-

fines the symbols used in these algorithms.

Compared to the traditional genetic algorithm, the pro-

posed algorithm not only improves the coding but also

reflects the topological structure between tasks, heterogen-

eity, and elasticity of the cloud environment through three

strings of chromosomes. In the population initialization

phase, the search scope can be reduced by adding specific

individuals. In addition, the proposed algorithm improves

the crossover and mutation operations to avoid the prema-

ture convergence problem of the traditional GA.

4.1 Task initialization

Tasks in the DAG have certain topological structures

and dependencies. To schedule tasks according to an

order, tasks are separated into a bag of tasks (BoT)

series according to their level l. That means each task

in the same BoT has the same level, and there is no

interdependence between them. The pseudocode is

shown in Algorithm 2.

We use depth-first search (DFS) [38] to generate

topological sorts of tasks and use the DBL [39] to

allocate tasks into different levels. The level of a

task represents the maximum number of edges

from it to the exit task. The level l can be defined

as

LV tið Þ ¼
1; i f ti is the exit task texit
max

ts∈succ tið Þ
LV tsð Þf g þ 1; otherwise

(

ð10Þ

All tasks are then grouped into a set of BoTs based on

their levels

BoT lð Þ ¼ tijLV tið Þ ¼ lf g ð11Þ

where l is a level integer in [1, LV(tentry)].

4.2 Encoding

Workflow scheduling in a heterogeneous cloud en-

vironment can usually be divided into three stages:

task execution order, task assignment to VM, and

VM type matching. Then, a solution to the schedul-

ing problem consists of three strings: the task order,

the assigned VM, and the matched type. These

strings represent the structure of the chromosomes

in the GA. In this paper, we use an encoding

method similar to that presented in previous

literature [34].

The lengths of the three strings are set as the

number of tasks. The first string is named Task-

Order, and the value represents the order in which

tasks are scheduled according to the topological

Table 2 The parameters of DCGA

Symbol Description

popSize The size of the population

maxIter The maximum number of iterations

i The number of iterations

crossRate The rate of crossover

mutateRate The rate of mutation

initPop The initial population

currentPop The current population

nextPop The next generation population

currentBest The best chromosome in the current population

globalBest The best chromosome in all iterations

Ma et al. EURASIP Journal on Wireless Communications and Networking        (2019) 2019:249 Page 8 of 19



structure of the DAG. Tasks in the string can

switch positions as long as their level numbers l are

equal. The next string, called Task-VM, denotes the

VM to which the corresponding task is assigned.

Similarly, the third string represents the type of the

corresponding VM and is called Type-VM.

Omitting the entry and exit task, Fig. 3 shows the

encoding of a possible schedule of the DAG in Fig. 1.

In this case, the task scheduling sequence is {t2, t1, t4,

t3, t5, t7, t6, t8} according to the Task-Order string.

Each task in the sequential list is scheduled on the

VM list { vm3
1; vm

4
5; vm

1
2; vm

3
3; vm

2
6; vm

1
4; vm

3
1; vm

1
2 }, in

which the type of each VM is presented in the Type-

VM string. For example, task t6 is assigned to vm1

with type vm3 after task t5 is assigned to vm6 with

type vm2. Meanwhile, tasks t2 and t6 are assigned to

the same VM vm3
1.

The method of representing the task order,

assigned VM, and VM type by three strings not only

reflects the topological structure of the workflow,

heterogeneity, and elasticity of the cloud environ-

ment, but also can generate different scheduling

schemes by adjusting each string. This coding

method is helpful to improve genetic operations

such as crossover and mutation to improve the effi-

ciency of finding the optimal solutions.

4.3 Population initialization

The scale of the workflow directly affects the solution

space of the scheduling problem. To reduce the

search scope and accelerate the convergence of the

solution, we propose a novel method of population

initialization to produce task sequences and VM allo-

cations that is different from those in [34–36]. In the

proposed DCGA, the following steps are used to gen-

erate an effective initial population and complete the

chromosome coding. The pseudocode is shown in

Algorithm 3.

Consider the workflow shown in Fig. 1. Each task

has a level value l and belongs to the set BoT(l). The

set of VM types is {v0, v1, v2, v3, v4, v5}, in which v0

is the slowest type and v5 is the fastest. The following

process is repeated to generate individuals.

First, tasks are randomly selected from each BoT to

form a task execution list and Task-Order strings, such

as 12543768 (lines 3–8).

Second, HEFT is used to generate individuals with the

minimum completion time and cost. For the individual

with the minimum completion time, we assign tasks on

Fig. 3 Encoding of a schedule of the DAG in Fig. 1
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the VMs with the fastest speed. The Task-VM strings are

set to different integers, such as 01234567, while the VM-

Type strings are set to the fastest VM type, such as

55555555 (lines 9–11). Notably, although this approach

does not take into account the data transmission time

between different VMs, it can still be considered as an

approximate alternative. Similarly, the latter process is to

assign all tasks on the same VM with the slowest speed, and

Task-VM and VM-Type are set to 0 (lines 12–14). These

two individuals account for only one-third of the total popu-

lation in order to achieve better optimization performance.

Finally, appropriate VMs are allocated for each task ac-

cording to the deadline and cost constraints. The VMs are

selected according to the following steps: (1) select the

VM with the lowest cost among the used VMs while

meeting the subdeadline LFT(ti) of the scheduling task

(lines 16–18), (2) create a new VM that has the lowest cost

while meeting LFT(ti) (lines 20–22), and (3) compare the

data transfer times TT(epi) between the scheduling task

and all its parent tasks and then select the VM on which

the parent task that has the maximum value (lines 24–26).

4.4 Fitness evaluation and selection

The fitness of each chromosome is determined by the

total execution time TET and total execution cost TEC.

First, tasks are selected and assigned to VMs according

to the three strings of a chromosome. The start time ST

and finish time FT of tasks are calculated by Eqs. (7) and

(8). Then, the lease start time LST and lease finish time

LFT of the VMs are updated. Finally, the TET and TEC

of the workflow can be calculated according to Eq. (9)

after all of the tasks are executed.

Based on the championship mode [11] and constraint

processes strategy [40], the select operation between two

chromosomes is implemented in the following order: (1) se-

lect the individual with the smallest TEC when the TET of

two individuals are both less than the deadline D, (2) select

the individual that has the TET that meets D when the TET

of another exceeds D, and (3) select the individual with the

smallest TEC when the TET of two individuals exceeds D.

4.5 Crossover

The GA generates offspring through the crossover oper-

ation, and the new individuals cannot violate the depend-

encies between tasks in a workflow. The definitions of l

and BoT are used to implement crossover between the se-

lected parents. The pseudocode is shown in Algorithm 4.

First, a BoT is randomly selected between 1 and the

number of BoTs. Two crossover values, cross_point and

cross_length, are also randomly produced, where cross_

point plus cross_length is less than the number of tasks in

the selected BoT (lines 2–5). One parent is divided into

Task_Seg1 and Remain_P1 by the crossover values, and

the other parent is divided into Task_Seg2 and Remain_P2

by the tasks of Task_Seg1 (lines 6–9). Subsequently, two

candidate individuals are formed according to Task_Seg2

and Remain_P1. The conflicts of different types on the

same VMs are resolved by updating the type of VM ac-

cording to the segments and the remaining parts. The dif-

ferent type in VM_Type of one candidate individual is

updated to the type in Task_Seg2 (lines 10–15), while the

VM_Type of another candidate individual is modified ac-

cording to Remain_P1 (lines 16–21). Finally, using the se-

lection method in Section 4.4, the candidate individual

with the best fitness is retained and added to the new

population (line 22). Another offspring is generated in a

similar manner, and the process is omitted in Algorithm 4.

Figure 4 is an example of a crossover operation that

randomly selects 3 as the level of BoT, 1 as the cross_

point, and 2 as the cross_length. After generating the

Task_Segs according to the parents (grey part), there are

type conflicts with v1 and v2 between Task_Seg2 and the

rest of P1. Thus, two candidate individuals, Candchild1

and Candchild2, are produced. In VM_Type of Cand-

child1, the number 3 of index 1 is updated to 4, and the

number 1 of index 8 is updated to 3. Similar changes

occur in Candchild2, and all of the updated values are

presented in italics. Finally, Candchild1 is selected as off-

spring Child1 due to its better fitness. Another offspring,

Child2, is produced in a similar manner.

4.6 Mutation

As in the crossover operation, the constraints between

tasks cannot be violated by the mutation operation. Two

mutation operations are used to increase the diversity of

the solutions. The pseudocode is shown in Algorithm 5.
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The first mutation operation is the exchange of the task

order. Two tasks in the same BoT are randomly selected;

then, the Task_Order is swapped while the values of Task_

VM and VM_Type are unchanged (lines 4–5).

The second mutation operation is the merging of VMs.

The least used VM is randomly changed to another used

VM. That is, the least frequent number in Task_VM is up-

dated to another existing number, and the number in

VM_Type is correspondingly changed (lines 7–10).

Figure 5 shows an example of the two mutation opera-

tions: exchange of task t4 and t5 and update of v45 to v12 .

In the VM merge operation, because several VMs, such

as v45 , v33 , v26; v
1
4; are used only once, v45 is updated to v12

in a random manner.

To avoid the deterioration of individual fitness caused

by mutation, the mutated individual and the original

individual are compared and the better individual is

selected according to the method in Section 4.4.

4.7 Complexity analysis

The overall computational complexity of the proposed

algorithm can be analysed in terms of the number of

initialization, selection, crossover, mutation, and fitness

Fig. 4 An example of the crossover operation
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evaluation operations. Consider a cloud in which the work-

flows have n tasks, the number of individuals in the popu-

lation is p, and the maximum number of iterations is g.

Task initialization is performed by a traversal through

each edge and a nested loop of tasks, so the time complexity

is O(n2). Then, for each individual in the initial population,

the task selection step has a complexity of O(n). The proced-

ure of mapping each task to an appropriate resource has a

maximum complexity of O(n2) when satisfying the deadline

and cost constraints. Therefore, the total time complexity of

population initialization is O(n+ n2)p. The time complexity

of the selection operation is O(p), and the time complexity

of the crossover and mutation operations are O(n2) and

O(n), respectively. The fitness evaluation for each individual

has a complexity of O(n2). Finally, the total time complexity

of selection, crossover, mutation, and fitness evaluation with

p individuals in the population and g iterations is O(pgn2).

Thus, the overall time complexity of DCGA is O(n2)

+ O(n+ n2)p + O(pgn2), which can be expressed as O(pgn2).

5 Experiments

This section presents the experiments implemented to

evaluate the performance of the proposed DCGA.

5.1 Experimental parameters

5.1.1 Workflows

Workflows can achieve service objectives via various con-

struction structures and have the characteristics of low

coupling and flexible operation [41]. In order to better

simulate IoT applications, the proposed algorithm was

evaluated on three real workflows: LIGO, Montage, and

Cybershake. These workflows, which have different struc-

tures and characteristics, can used to simulate various ap-

plications in the IoT environment. The multiple tasks of

LIGO require processing large amounts of data; therefore,

they can be regarded as data aggregation tasks, which re-

quire high computation power. The Montage does not

require a large amount of CPU resources, and it focuses on

intensive I/O operations. The Cybershake demands high

performance computing and has an I/O intensive charac-

teristic. A simplified structure of each workflow is shown

in Fig. 6, and a detailed description of these workflows is

presented in [42].

Synthetic workflows with similar structures are cre-

ated by a workflow generator1. The generated work-

flows are represented in the form of a DAG in XML

(DAX) format, which contains tasks, dependency

edges, transfer data and other information. Then, the

DAGs of the experimental workflows can be con-

structed as XML files.

5.1.2 Baseline algorithms

In our experiments, IC-PCP [23], PSO [29], and a nor-

mal GA are used as baseline algorithms to compare with

the proposed algorithm.

The IC-PCP algorithm is based on the concept of a partial

critical path (PCP), which is defined by unassigned parent

tasks and the latest transfer data time. The PCPs related to

the exit task are determined recursively, and the tasks on

each PCP are assigned to the least expensive available VM

or a new VM that can meet the latest start time of each task.

Then, the start time and schedule identifier of the tasks are

updated. This process is repeated until all tasks in the work-

flow have been scheduled on the appropriate VMs. There-

fore, the cost and makespan of the schedule are calculated

based on the lease time of the VMs. However, this algorithm

does not consider the characteristics of the VMs, such as ac-

quisition delay and performance variation.

The PSO algorithm is a heuristic optimization method

focussed on the deadline constraint for resource alloca-

tion. Particles are represented as tasks in the workflow,

and their positions represent the allocated resources. Be-

cause of the deficiency of VM types in encoding,

Fig. 5 An example of the mutation operation

1https://confluence.pegasus.isi.edu/display/pegasus/WorkflowGenerator
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particles move in different dimensions to the local opti-

mal solution. Furthermore, PSO has difficulty obtaining

a feasible solution when the deadline is tight.

The normal GA algorithm (GA_N) is used to analyse

the basic characteristics of GAs. The initial population is

randomly generated, and roulette wheel selection is used

to choose parents. In the crossover phase, tasks with the

same level number l are switched between parents. Ran-

dom mutation is used to create new individuals with dif-

ferent types of VM. The other parameters are similar to

the proposed algorithm.

These algorithms were applied in the same simulated

cloud environment, together with the DCGA proposed

in this paper. The parameters of the PSO algorithm were

set according to the experiments in [29].

5.1.3 Experimental setup

The experiments simulated a cloud environment with a

single datacenter and eight different VM types. The charac-

teristics of the VM types shown in Table 3 are based on the

Amazon cloud services2. The average bandwidth between

VMs is fixed to 20 MBps, and the transmission cost is as-

sumed to be zero. The processing capacity of each VM type

is estimated at one million floating point operations per sec-

ond (MFLOPS). In a real cloud environment, various factors,

such as hardware type, data transmission, and resource

allocation, can cause acquisition delay and performance vari-

ation of VMs. Therefore, an acquisition delay of 97 s, as pre-

sented in [43], and the performance of VMs, which was

diminished by at most 24% based on a normal distribution

with a mean of 12% and a standard deviation of 10%, as pre-

sented in [10], are adopted in our experiments.

To investigate the performance of these algorithms

under different deadlines, the method mentioned in

Section 4 is used to obtain the benchmark deadline DB.

DB can be approximately calculated as the finish time of

task texit when all tasks are allocated to different VMs of

the fastest type. The following formula is used to obtain

different deadlines:

D ¼ α�DB; 1≤α≤4 ð12Þ

where α is the deadline factor ranging from 1 to 4 with a

step size of 0.2. Three different levels of deadlines can be

classified as follows: (1) strict deadlines (1 ≤ α < 2), (2)

moderate deadlines (2 ≤ α < 3), and (3) relaxed deadlines

(3 ≤ α ≤ 4).

The parameters of the proposed DCGA are as follows:

the population size is 500, the maximum number of gen-

erations is 100, the crossover rate is 80%, and the muta-

tion rate is 20%. Initially, 500 solutions are created by

the methods presented in Sections 4.1 and 4.3. Then,

these initial chromosomes are evaluated, and the next

population is generated by selection, crossover, muta-

tion, and fitness evaluation. Finally, the feasible solution

with the minimum TEC under the deadline constraint D

in every generation is found.

5.2 Results and analysis

Under the different deadline constraints for the three

workflows, each experiment is executed ten times, and

Table 3 VM types used in the experiments

Type Compute unit Price ($)

t2.small 3.3 0.023

t2.medium 6.6 0.0464

t2.xlarge 12 0.1856

m5.2xlarge 20 0.384

m5.4xlarge 40 0.768

m5.12xlarge 120 2.304

m4.16xlarge 147.2 3.20

m5.24xlarge 240 4.6082https://aws.amazon.com/cn/ec2/pricing/

Fig. 6 The structures of the workflows
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the mean of the results is used for analysis. According to

the deadline and cost constraints, the experimental ana-

lyses are carried out with respect to three indicators:

success rate, execution makespan, and execution cost.

The definitions of these indicators are as follows:

1. Success rate: the ratio between the number of

simulations runs that satisfy the constraints and the

total number of simulations runs. The success rate

represents the effectiveness of the algorithm.

2. Execution time: the finish time of the last task texit
in a schedule, which can be calculated by Eq. (8).

Usually, a shorter execution time means better

performance of the algorithm.

3. Execution cost: the lease cost of all VMs used in a

schedule, which can be calculated by Eq. (9). The

execution cost of the algorithm can only be

meaningfully compared under the deadline

constraint.

5.2.1 Success rate

Table 4 shows the success rates of all the algorithms

under different deadline constraints. For the strict deadline

constraint, the success rate of IC-PCP is the lowest, which

means that the algorithm fails to obtain a feasible solution

in most cases. GA_N achieves a slight improvement over

IC-PCP on the Cybershake workflow. PSO achieves a

certain success rate for the strict deadline constraint, with

success rates of 72% on LIGO, 78% on Montage, and 80%

on Cybershake. With a mean success rate of 78%, DCGA

achieves the best performance. In terms of the success rate,

for LIGO, DCGA outperforms GA_N and IC-PCP by 74%

and outperforms PSO by 2%. For Montage, DCGA outper-

forms GA_N by 6% and outperforms IC-PCP and PSO by

2%. For Cybershake, DCGA outperforms IC-PCP by 80%

and outperforms GA_N by 8%.

The success rates of these algorithms are greatly im-

proved when the deadline is moderate or relaxed. Under a

moderate deadline, the success rate of GA_N is 22%, while

IC-PCP fails to obtain a feasible solution on LIGO. The

average success rate of PSO is increased to 99.3%, and that

of DCGA is 100%. For the relaxed deadline constraint on

LIGO, DCGA outperforms GA_N by 20% and outper-

forms IC-PCP by 55%. All four algorithms achieve their

highest success rate on Montage and Cybershake.

The results in Table 4 show that IC-PCP gives poor

performance, while DCGA gives the best performance

for each deadline constraint. Because IC-PCP does not

consider the performance variation and acquisition delay

of VMs, it is easy to prolong the finish time of tasks,

which will cause the makespan of workflow to exceed

the deadline. Because of the instability and randomness

of the original algorithm, GA_N also has poor per-

formance compared to that of PSO and DCGA. PSO

ignores more information of the VM on particle cod-

ing and fails to exploit the effect of VM type on task

execution cost, so the cost to obtain a higher success

rate is increased. The DCGA proposed in this paper

takes into account the main characteristics of the

cloud environment and searches for the best solution

through encoding, selection, crossover and mutation;

therefore, its performance is superior to that of the

other three algorithms.

5.2.2 Makespan and cost evaluation

To obtain more details about the performance of all the

algorithms, the average execution time and average exe-

cution cost are compared under strict, moderate, and re-

laxed deadline constraints. Figures 7, 8 and 9 show the

average makespan and average cost under these deadline

factors for different workflows.

1. Figure 7 shows the average makespan and average

cost results achieved on LIGO. With a long

makespan in most cases, GA_N and IC-PCP fail

to generate a feasible solution under strict and

moderate deadline constraints. GA_N has the

worst performance with the highest cost, while

the performance of IC-PCP is slightly better.

Although PSO is the least expensive, the algo-

rithm does not obtain valid solutions without

violating the deadline constraints. The proposed

DCGA has low execution cost under different

deadline constraints: the average cost is 89.83%

lower than that of GA_N, 38.8% higher than that

of IC-PCP, and 60.99% lower than that of PSO.

Thus, DCGA produces effective feasible solutions

and achieves the best performance with a smaller

cost than that of the other algorithms on the

LIGO workflow.

Table 4 Total success rates for workflows

Deadline constraint Algorithms LIGO Montage Cybershake

Strict deadline GA_N 0 74 72

IC-PCP 0 78 0

PSO 72 78 80

DCGA 74 80 80

Moderate deadline GA_N 22 100 100

IC-PCP 0 100 98

PSO 98 100 100

DCGA 100 100 100

Relaxed deadline GA_N 80 100 100

IC-PCP 45 100 100

PSO 100 100 100

DCGA 100 100 100
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2. The simulation results for the Montage workflow

are shown in Fig. 8. The average execution time

of the schedules generated by GA_N and IC-PCP

is less than that of PSO and DCGA. The average

cost of GA_N is the highest, while DCGA has

the lowest cost. The performance of PSO is

slightly improved compared to LIGO. However,

PSO fails to obtain a feasible solution when the

deadline factor is 1, so the cost is not shown in

the figure. The DCGA algorithm achieves better

average execution cost than that of IC-PCP but

has a larger makespan. For the Montage work-

flow under moderate deadline constraints, DCGA

obtains an average cost that is 98.45% lower than that

of GA_N, 52.07% lower than that of IC-PCP, and

92.16% lower than that of PSO. The average execu-

tion cost of schedules generated by the proposed al-

gorithm is minimized by using a large execution time

that satisfies the deadline constraint.

3. The average makespan and average cost results

obtained by the tested algorithms on Cybershake

are shown in Fig. 9. IC-PCP failed to obtain

valid solutions meeting the strict deadline constraint,

while GA_N slightly improved its performance.

Meanwhile, IC-PCP cannot obtain a feasible solution

when the deadline factor is less than 1.6, so the cost

Fig. 7 Makespan and cost of scheduling on LIGO under different deadline constraints
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is not shown in the figure. The same situation occurs

for PSO when the deadline factor is 1. The cost of

the proposed DCGA is 98.02% lower than that of

GA_N, 72.96% lower than that of IC-PCP, and

89.87% lower than that of PSO. Among the

compared algorithms, DCGA always achieves the

minimum execution cost while meeting the deadline

constraints.

5.3 Summary of scheduling algorithms performance

In general, the DCGA proposed in this paper can obtain

feasible solutions under different deadline constraints.

The proposed algorithm not only has a high success rate

but can also achieve the minimum execution cost under

deadline constraints. In particular, Figs. 7, 8, and 9 show

that DCGA performs better than the baseline algorithms

in terms of makespan and cost regardless of whether the

workflow is I/O intensive or computationally complex.

This good performance is due mainly to the following

reasons:

1. GA_N shows only the characteristics of GA without

considering the optimization of the population

initialization, selection, crossover, and other

Fig. 8 Makespan and cost of scheduling on MONTAGE under different deadline constraints
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operations. Because the initial population is randomly

generated, the search space is too large to converge

to the optimal solution. Although the algorithm can

sometimes obtain solutions that meet certain

conditions, the average execution cost is always

much higher than that of the other algorithms

because of the randomness and instability.

2. IC-PCP fails to take into account the actual

characteristics of the cloud environment. When a

task is assigned to a VM, the performance variation

and acquisition delay of VMs affect not only the

task and other tasks in the critical path but also

tasks on other critical paths of the workflow. Thus,

a missed subdeadline for a task extends the

makespan of the entire workflow, so the algorithm

fails to produce feasible solutions under the strict

deadline.

3. PSO does not provide sufficient VM information

through the encoding of particles. When the

velocity and position of particles are updated, the

insufficient consideration of VM types causes the

particles to tend toward the local optimum rather

than the global optimum. When the deadline is

tight, feasible solutions are difficult to obtain, which

Fig. 9 Makespan and cost of scheduling on Cybershake under different deadline constraints
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negatively affects the success rate of the algorithm.

Under moderate and relaxed deadline constraints,

PSO gives less consideration to the cost of different

VM types, thus affecting actual performance.

4. The proposed DCGA focuses on the main features

in the cloud environment. The matching of tasks

and VMs can be reflected by the appropriate coding

of chromosomes, which has good adaptability. Due

to the effective use of coding features, individuals

with better makespan and cost can be inherited to

generate the final optimized solution.

Therefore, DCGA has the best performance in terms

of producing cost-effective and feasible schedules under

deadline constraints.

6 Conclusions and further work

In this paper, the scheduling problem of the workflow of

IoT applications is studied, and a deadline and cost-

aware genetic optimization algorithm is proposed. With

the purpose of minimizing the cost under a deadline

constraint, the proposed algorithm focuses on the im-

portant features of the cloud, such as on-demand acqui-

sition, heterogeneous dynamics, acquisition delay, and

performance variation of VMs. Furthermore, the pro-

posed algorithm uses heuristic operations to assign tasks

to appropriate VMs. The experimental results demon-

strate that among state-of-art algorithms, our algorithm

not only exhibits the highest success rate but also

achieves low execution costs under various deadline

constraints.

In the future, we would like to consider other issues, such

as task reassignment and VM failure, because these factors

will affect the stability and reliability of the proposed

algorithm. The cost of communication among VMs in a

real cloud environment must also be considered. Further-

more, we intend to update the design of the population

initialization, encoding, and crossover of the proposed

algorithm to improve the performance and efficiency.
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IaaS: Infrastructure as a service; IC-PCP: IaaS cloud partial critical path;

IoT: Internet of Things; JIT-C: Just in time; MFLOPS: Million floating point

operations per second; PCP: Partial critical paths; PSO: Particle swarm
optimization; RCT: Robustness-cost-time; RTC: Robustness-time-cost;

SCS: Scaling-consolidation-scheduling; VM: Virtual machine
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