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Epilepsy is a chronic neurological disorder with several di	erent types of seizures, some of them characterized by involuntary
recurrent convulsions, which have a great impact on the everyday life of the patients. Several solutions have been proposed in the
literature to detect this type of seizures and to monitor the patient; however, these approaches lack in ergonomic issues and in the
suitable integration with the health system.�is research makes an in-depth analysis of the main factors that an epileptic detection
andmonitoring tool should accomplish. Furthermore, we introduce the architecture for a speci
c epilepsy detection andmonitoring
platform, ful
lling these factors. Special attention has been given to the part of the system the patient should wear, providing details
of this part of the platform. Finally, a partial implementation has been deployed and several tests have been proposed and carried
out in order to make some design decisions.

1. Introduction

Epilepsy is a chronic neurological disorder characterized by
involuntary recurrent convulsions [1]. �ere are about 65
million people a	ected all around the world, with a high and
dramatic impact not only on the patient’s quality of life, but
also on the professional development and social behaviour;
the health system budget is highly a	ected as well.

�e illness anamnesis improves with the existing plat-
forms for patient monitoring and weblogs. �e main part
of these platforms has been developed for two di	erent
and most frequent kinds of epilepsy crisis: the generalized
tonic-clonic seizures and the typical absence seizures [2]. In
these two cases, the detection of a seizure can be e�ciently
faced using wearable sensors (WDs) including a triaxial
accelerometer (ACM) and/or a heart rate (HR) sensor: the
former type detection has been reported in [3], the latter one
has been characterized in [4], and an HR-based detection
system has been proposed in [5].

Another main aspect of the anamnesis process is where
the data is gathered. �e main part of the literature deals
with constrained spaces, that is, research laboratories or

hospital rooms [6], or even the patient’s house [7], but
without considering the normal everyday life [8, 9].We claim
that the data should be gathered in everyday life, allowing
the patient to freely decide what to do and how to do it.
�is is important because, 
rstly, the data is gathered from
normal activities performed before and a�er a seizure, and
secondly, the analysis and procedures should adapt to this
unconstrained world, making the whole detection process
much more di�cult.

A careful in-depth analysis of the seminal papers con-
cerning epilepsymonitoring platforms [10] andMobileCloud
Computing (MCC) [11–13] let us conclude that the current
available platform, either in the scienti
c literature or in
the market, lacks several main features that are not com-
prehensibly integrated. �ese include, among others, the
instantaneous data source problem, the ergonomic aspects
in the design, the deployment cost of the solution, and the
energy e�ciency of the approach.

�is study aims to solve some of these limitations; to do
so, a solution is proposed and an experimentation stage has
been performed in order to extract the suitable conclusions
for the epilepsymonitoring platforms. In the next section, the
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most relevant contributions in the literature are analyzed and
criticized, paying special attention to the published platforms;
the main concerns that remain unsolved are included as well.
Section 3 is devoted to explaining an architecture that solves
themain concerns found in the literature related to the design
of epilepsy monitoring platforms. �is section also describes
the MCC and discusses some design parameters. Finally, an
experimentation stage has been performed and the results
are included and discussed in Section 4, which allows us to
produce the 
nal conclusions. For the sake of readability,
Abbreviations includes the most relevant acronyms used
within the text.

2. Related Work

Several di	erent eHealth platforms have been released and
reported in the literature for the detection and/or monitoring
of illnesses in real time [14], even using WD and/or Body
Sensor Networks (BSN) [15, 16]. Typically, the WD are pro-
posed for data gathering, measuring biomedical variables, or
obtaining feedbacks from the users, either performing local
MCC processing [17, 18] or requesting Cloud Computing
(CC) services [19–21].Usually, theCC services are responsible
for processing and storing the sampled data from sensors,
as well as the model learning, and those computational
greedy tasks. Additionally, the CC services also provide the
presentation layer, in terms of user alarms to the patients or
medical sta	, noti
cations to the patient’s relatives, or even
performing graphics and data analytics for further studies.

Examples of such platforms include CoCaMaal,
ROCHAS, and AACMPE. CoCaMaal, the acronym for
A cloud-oriented context-aware middleware in ambient
assisted living [21], is specialized in the patient monitoring
and in the event control, either noti
cations or accidents.
�is platform restricts itself to fully controlled environments
as long as it suggests the deployment of BSN according to the
patient’s conditions. Variables such as electroencephalogram
(EEG), electrocardiogram (ECG), ACM,HR, and blood pres-
sure are considered to be placed on each patient; therefore,
the ergonomic aspects of this solution need checking.

A second interesting platform is ROCHAS (Robotics and
Cloud-assisted Healthcare System for Empty Nester) [22],
which proposes the monitoring of handicapped patients in
their own home, allowing them to live as independently
as possible by means of an assistance robot. Similarly, an
assistant platform for elderly people was proposed in a series
of studies in [19, 20, 23], where open so�ware platforms are
analyzed to work together.

AACMPE, short term for Allergy and Asthma Care
in the Mobile Phone Era [24], controls the allergies and
asthma evolution of the patients using MCC to determine
several variables: the peak exhalation �ow and the peak nasal
inhalation �ow and some breath parameters and sounds,
among others. �e Chinese CMTHC project, Children’s
medical treatment and healthcare system [25], has been
reported tomonitor unhealthy children bymeans of web logs
to be completed with sensor data, like body temperature, HR,
and so on. A further step has been proposed in AIWAC,
a	ective interaction through wearable computing and cloud

technology [26], which analyzes the a	ective needs of the
patients based on the measurements obtained from a WD.
Other platforms that propose open solutions for monitoring
illnesses introduce BSN in a more abstract way. Further work
on adapting them for epilepsy detection is needed [27, 28].

Concerning the epilepsy detection and monitoring, sev-
eral approaches have been reported in the literature.�emain
data source to do so is the EEG, measuring the electrical
activity of the brain to detect the epileptic seizures. Advances
in some issues have been published, like modelling the
recorded signals [29, 30] or the design of portable EEG
devices to deploy such models.

Some examples of these epilepsy speci
c platforms
include EpiCare, Sareen, or Bajwa. In EpiCare, a home
care platform based on Mobile Cloud Computing to assist
epilepsy diagnosis [7], portable EEG are used to detect the
seizures in controlled environments. Sareen gathers data
from EEC, using MCC and CC for storage and for sending
noti
cations to the relatives and medical sta	, including
location information [31, 32]. �e main di	erence between
Sareen and Bajwa is that the latter proposes CC only.

EEG aside, di	erent biometric signals have been pro-
posed for detecting the epileptic seizures [10, 33]: gyroscopes,
magnetometers, implanted advisory system, electromyogra-
phy, ECG, ACM, video detection systems, mattress sensor,
and audio classi
cation. BSN placed on the body together
with MCC has been proposed for epilepsy detection in [8];
more speci
cally, the BSN includes an ACM cap, a wrist
band including a temperature sensor and anACM, amoisture
sensor, and microphone. �e MCC layer analyzes the data
and detects the seizures; the relevant data is stored and
transmitted to the medical sta	 for further analysis.

Furthermore, solutions making use of CC services have
been also reported, mainly for the storage and modelling of
the gathered data. For instance, not all the platforms store the
data stream; on the contrary, themajority of them process the
data as it comes in order to generate the alarms and delete
them a�erwards: these solutions rely on previous research
stages thatwould have been performed to obtain the deployed
models [6, 8, 9, 34–38]. On the other hand, there are solutions
where the gathered data is stored for data analytics [39, 40] or
even for future use [41–44]. Finally, complete CC solutions
have been also tackled in the literature, including not only
the data storage and visualization but also the modelling and
classi
cation of the current state of a	airs [7, 31, 32, 45–48].

Soon a�er the study of Schulc et al. [36], ACM was
proposed for epileptic seizure detection; since then, plenty of
studies concerning with the detection of this type of seizure
have been published, focusing only on the machine learning
issues. For instance, a wrist band including an ACM con-
nected to a Smartphonewas proposed forMCC-based seizure
detection [3, 6, 49]; no further connection with CC services
was considered. ACM, gyroscopes, and magnetometers were
proposed in [9] as the BSN, taking advantage of the local
Smartphone for analyzing the data and sending e-mails to
themedical sta	with the patient position. Similar workswere
presented in [47, 48]. LabView has been used for developing
a solution as well [35] by using an Arduino ACM sensor to
generate alarms that are transmitted to the medical service.
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SmartMonitor� devices have been used for detection of limb
shaking, sending the alarms to a website linking theWDwith
a Smartphone [44]. ECG for detecting epileptic seizureswhile
sleeping has been reported in [39], while EEG hats have been
also e	ectively used in seizure detection [41, 50]; however
their ergonomic characteristics make them di�cult to use.
Further studies in this context of epileptic seizure detection
include BSN sending information to a computer in controlled
environments [42, 43]; ACM, temperature, and skin humidity
data gathered to computers [40]; ACM andHR [5]; or the use
of thresholds as a detection method when measuring the HR
linked to a Smartphone [38].

Finally, plenty of apps have been published in the
corresponding markets for the detection using either the
Smartphone sensors or external sensors, EpDetec [51] and
MyEpiPal [34], or for the web logging, facilitating the way a
patient records daily information concerning her/his epilep-
tic events, medication, and news, My Epilepsy Diary [52],
EpiDiary [53], Epilepsy Society [37], and Epi & Me [54]. A
readerwho is interested should refer to [55] for a performance
comparison of epilepsy related apps.

2.1. Remarkable Factors. A�er this thorough analysis of the
literature, we have found out that several remarkable factors
have not received enough attention from the research com-
munity concerning epilepsy seizure detection and patient
monitoring platforms.

Real Time Response. �e detection of seizures and the alarm
noti
cation should work almost immediately. �at means
that once a seizure sets in, in the smallest time lapse the
alarms should notify the relatives and the health services.
A balance between stand-alone solutions, that is, everything
computed in the mobile device, and the autonomy and the
battery life should be achieved: the higher the computation,
the shorter the battery life and thus the autonomy.�erefore,
some services must be declared as essential, while others
might be postponed, storing the information in a local
database. Furthermore, the features and capabilities for each
mobile device must be properly introduced in the system, so
a suitable ordering of the services can be generated.

Ergonomic Issues. �e solutions should be easy to wear
and unobtrusive: the better the wearable conditions, the
smaller the chances of 
nding a suitable excuse for not
using the solution. Ergonomic issues also include factors
like energy e�ciency and long battery life: the lack of them
forces frequent charging cycles of the devices and some
other annoyances. Besides, some examples of devices without
lacking in ergonomic issues are found in the main part of the
solutions; they are e�cient for their purpose, but their use
is uncomfortable though: using sensing caps [7, 8, 31, 32],
wrongly sized WD [36, 41], too many WDs [8], and so on.

Deployment Cost of the Platform. As for the ergonomic issues,
no further study has been considered about the cost of the
solution: are the WDs a	ordable? How much computation
would be needed? Can the solution be delivered as a general
service? Are tuning stages required? Is speci
c training of the

users needed? Are the solutions economically feasible? How
are they contributing to the health system and at what cost?
Unfortunately, these questions have been sparsely answered
in the published solutions.

CC Guaranteeing the Service Delivery. CC services should be
responsible for making all the services available to the users.
In spite of the distribution of the computational tasks among
all the available hardware, this CC layer should solve any task
that no other element within the infrastructure can a	ord.
Besides, complex tasks, such as extension mechanisms that
include on-demand model learning, need to be addressed
in this layer as well: learning algorithms need relatively
large datasets and high computational resources that by no
means can be faced on, for instance, mobile devices without
penalizing the battery life.�erefore, according to the current
scenario and user, there would be the need to store data from
the sensors within the CC layer. However, there could be
some learning tasks that can be distributed as well, such as
those related to active learning stages thatmight be employed.

All of these considerations lead back to web service
ontology development [56–58], where the di	erent services,
and tasks, were completely de
ned as well as the relation-
ships among them. �is knowledge representation allows a
mediator, or scheduler, to set out a plan and allocate the
tasks and services on the di	erent nodes. Extending such
ontologies with the actuators, the set of computational nodes
and devices, and their features would allow scheduling the
tasks for each scenario. Furthermore, new services, and tasks,
that extend the functionality of the platform can also be
described in ontology terms, so their use can be hot-deployed
without stopping and recon
guring the platform.

MCC Integration. When required, the Smartphone can take
the control of the sequence of tasks to perform. �is would
happen mainly when no Wi-Fi network is available for
sending the data; actually, this MCC might help in balanc-
ing the battery life and the networking load, reducing the
required 4G data limit and, thus, the fares to pay. With
MCC we understand a combination of CC services together
with mobile computing interconnected by means of wireless
networks [59–63]. However, we move one step forward
in the mobile computing part, introducing the concepts
suggested in [12, 64]: we propose the use of hybrid mobile
applications, where several services provided by the CC can
also be dynamically allocated and performed by the mobile
computation, provided there are resources available. In other
words, the mobile device can perform as a local cloudlet.

Con	gurable Services within the Apps. Instead of running all
the possible stack of services, it should be desirable that the
app adapts to the patient as much as possible, disabling those
services that are no longer needed while, at the same time,
including new added value services, such as web logging
capabilities and a	ective computing issues. Again, ontologies
can help in deploying these issues.

A comparison between the di	erent mentioned plat-
forms solutions is shown Table 1, paying attention to
those factors that have been considered relevant within the
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Table 1: Main epilepsy detection platforms and solutions published so far. A description with some concerns with respect to the relevant
factors is detailed. We suggest [10, 55] for further reading.

Ref. Description

[41]
An EEG sensory device linked to a Smartphone, which performs some processing of the data, is used together
with CC services. However, this is a very short communication and does not provide details of the solution.

[6]
�is is mostly a research study focused only on the detection of tonic-clonic epileptic seizures. A WD without
wireless communication stored data and some machine learning methods were performed for obtaining o�ine
models.

[7]

In EpiCare, the Android app runs on the Smartphone device, gathering data from a EEG electrodes cap. �is
hardware makes this solution very e�cient but rather uncomfortable. �e main thing is that the project is
focused on SUDEP; thus it is feasible to have a cap while sleeping. A mixture of CC and MCC solution is
proposed, suggesting that an intelligent task delivering and allocation should be performed but without
proposing any viable technique.

[34]

MyEpiPal is an app that monitors the patient, simpli
es the intercommunication between the caregiver and the
patient, and allows the self-management. �is means that although it makes use of the sensory within the
Smartphone, the main goal is to give support to the patient in everyday life. It is not an epilepsy detection
platform itself, although the measurements can help in the prediction of the occurrence of a seizure, which is
the reason that it is included in this comparison.

[39]

�is research details the design of an ad hoc epilepsy detection ECG wireless intelligent sensor, including several
detection algorithms, linked to a local computer connected to a network. Several relevant factors were analyzed,
the ergonomic issues and the battery life among them. �eWD communicates with the local computer in order
to deliver alarms, to receive con
guration commands, or to start/stop HR recording to be downloaded to the
computer. A very detailed explanation of the requirements and of the hardware decisions is included.

[31, 32]
An EEG cap linked to a Smartphone is arranged to send the gathered data to CC services. Whenever a seizure is
detected on the cloud, GPS locations are shared through the noti
cation system. Neither the ergonomic issues
nor the battery life and autonomy and the economic costs of the platform have been analyzed.

[37]
�e UK Epilepsy Society published an app for Android and iPhone as a Web-log of the seizures, medication
monitoring, and so on. �is solution is a standalone solution, and the data gathered with this tool is not shared
with any health service.

[38]

A standalone mobile solution is proposed using a commercial Smartwatch (MIO Alpha) linked to an Android
phone. �e app is responsible for gathering and processing the data, as well as the modules for the epileptic
seizure detection. �e solution does not consider intelligent modules, just some thresholds; this technique is by
no means valid in this type of detection.

literature: deployment cost of the platform, real time
response, ergonomic issues, MCC integration, multiple ser-
vices within the Apps, and, 
nally, CC online modelling.

As can be seen, the problem of designing a platform for
the speci
c problem of epileptic seizure detection and mon-
itoring has not been completely addressed in the literature.
Although some general design principles are still valid, some
of them need special care to propose a 
nal solution.�e next
section deals with the decisions for the design of an epileptic
monitoring and supervising platform, providing an abstract
architecture and the description of a prototype for the evalua-
tion of some of the above-mentioned factors.�ese decisions
include ontology driven tasks, dynamic data gathering and
modelling, and the integration of MCC and CC.

3. A Platform for Monitoring and Supervising
Epileptic Patients

�is study proposes a platform for monitoring and super-
vising epileptic patients, focused on the two main epilepsy
types: the focal myoclonic and the epileptic absence seizures.
�is platform aims to solve each of the most relevant factors
seen in the previous section, providing some extensibility to

future developments. �is section is devoted to describing
this platform as well as the developed prototype. �e next
subsection introduces some considered concept decisions
and requirements, while Section 3.2 describes the abstract
architecture. �e remaining part of the section, Section 3.3,
focuses on detailing the developed prototype.

3.1. Design Decisions and Requirements. �is study proposes
the use of noninvasive WD such as a sensory bracelet plus a
Smartphone to allow the patients to carry on with their own
life, performing their everyday activities without the need for
speci
c clothes or garments. In this study, a pair of a WD
linked by means of bluetooth 4.0 Low Energy to a Smart-
phone is called a patient’s kit (PK).�is solution enhances the
ergonomic issues of the solution while favouring the patients
to continue using the system. �e WD should include ACM
and HR sensors in order to detect the two focused types of
epileptic seizures. As mentioned in the related work section,
there are several studies for detecting the focal myoclonic
type of seizure, while further study is needed to detect the
second focused type. In order to detect the focal myoclonic
seizures, the research published in [3, 65] is proposed. Further
study is needed to solve the second type of seizures. �e
selection of those techniques has been taken due to two main
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reasons: (i) the obtained results and (ii) the simplicity of the
used models. �is simplicity would eventually allow them to

be implement so they can run on any available platform, the
Smartphones among them.

Taking advantage of the computational capacities of mid-
range Smartphones, this study proposes that, besides data
gathering and processing and perhaps simple thresholding,
theMCC services can be extended to incorporate local model
evaluation. To do so, incremental deployment/delivery of
trained/tuned models into the MCC kernel would allow
continuing themonitoring, providing real time response even
when the CC is totally unavailable through Wi-Fi networks.
Nevertheless, with the aim of extending the battery life as
much as possible, a mixture of MCC and CC together with a
suitable balancing algorithm to decide where the decisions or
calculations are shall be accomplished.�e study of balancing
MCC computation, decreasing the communication acts, and
the CC computation, decreasing the computation amount in
the Smartphone, is one of the contributions of this work, as
will be shown later.

Besides, ontology driven tasks and dynamic data gath-
ering personalization are required in order to extend the
system.With ontology driven tasks we refer to designing and
developing ontologies that describe every single task: from
sampling to alarming and notifying.�e concept of ontology
driven tasks facilitates extending the system, so new proce-
dures can be easily conceptually developed and distributed
and deployed in any of the available computation layers.
On the other hand, dynamic data gathering personalization
refers to marks for which patients data should be gathered.
For instance, developing new services, say, detecting a new
type of seizure, needs speci
c data to be gathered for further
processing and analysis. However, it is impossible to gather
data from every patient as long as the amount of data to store
grows unbounded. In addition, it is better to gather data only
for patients that might perform the desired event to detect or
identify. Actually, the development of ontology driven tasks
allows the dynamic data gathering to be implemented as the
latter can be viewed as a new task devoted for a speci
c group
of patients.

In addition, the CC services should be performed on low-
cost servers that can even be deployed in di	erent public sites,
in outpatient clinics, for instance, shi�ing the computation
resources to the endpoints.�ese servers on the far edgemust
be federated to avoid data losses and to enhance the perfor-
mance of the whole system. Furthermore, local nodes with
available unused computing resources, personal computers
or even personal servers, can be designated to become part of
the solution, enhancing the overall computational capacities
of each installationwhile keeping the low-cost pro
le. Clearly,
for this latter case, it might be advisable to sign a special
commitment between the user and the health system for
accomplishing data and privacy regulations.

Finally, some decisions should be taken regarding with
the data analysis and data monitoring and with the system
extension capabilities. On the one hand, the Exploiting and
Data Analytics module is needed. �is module tackles the
monitoring and tracking of the patients, showing the main

facts to the medical sta	. �is module also includes human-
machine interfaces; the main part of these interfaces should
be light clients, HTML5/REST clients or similar, based on
Bootstrap technology, so they keep the responsiveness. On
the other hand, an extension mechanism must be provided.
For instance, the data analysis should allow the medical unit
sta	 to perform a high level of machine learning experimen-
tation that might lead to models for detecting or enhancing
di	erent types of epileptic seizures. Intelligent interfaces,
similar to KEEL [66] or WEKA [67], should de
ne the
o�ine tasks, their outcomes, and reports. In addition, these
interfaces should also allow de
ning new sequences in the
ontology driven system outlined before. For sure, unless the
medical unit sta	s incorporatemultidisciplinary teams, these
extension mechanisms must be kept simple and elementary.

3.2. 
e System Abstract Architecture. Let us call a scenario
a concrete speci
cation of the computing devices that are
available for solving all the calculations needed to detect and
monitor a certain patient. Let us assume that a complete
ontology of services, tasks, computing devices, and scenarios
is obtained; this ontology could be based on that presented in
[56]. Let us assume aswell that this ontology is ful
lled for the
algorithms, tasks, and services involved in this project. Let us
also assume that the algorithms and tasks have been properly
implemented to run either on an app, on a server, or on both
and that all these varieties are re�ected in the ontology data.

According to [56], any sequence of tasks can be com-
pletely represented in the ontology, and amediator can locate
each of them on a concrete machine. In this approach, we
assume a mediator that assigns the tasks to be executed and
where they are to be carried out for each case. �erefore,
for each patient and scenario, a sequence of tasks can be
planned and allocated. In other words, we are able to de
ne
a speci
c plani
cation and task allocation for each patient
and scenario; both of them are made explicit in ontology
basis; and every single computing device, including the
Smartphones, has access to this information.

�e proposed abstract architecture is depicted in Figure 1
as a solution for this very speci
c epilepsy monitoring and
supervising platform. A PK is conformed with a WD plus a
Smartphone; the Smartphone includes a complete app that,
together with the ontology and the current scheduling, per-
forms the sensor sampling, and so on. Whenever available,
Wi-Fi networks are used to send data bunches to be stored
in the health service. Nevertheless, noti
cations and alarms,
when generated, should be delivered using the available con-
nectivity. In addition, some spaces can host speci
c hardware
performing as a federated CC server. In any case in which
Wi-Fi connectivity is available, the Smartphonemust delegate
on these systems in order to alleviate the computational
requirements for the sake of extending the battery life.

Besides, the health system services, both the CC services
and the data storage, perform all the data storage and the
computation that remain unsolved in the system, including
detection of seizures, alarm generation, and noti
cations,
as well as the reporting for the medical sta	. �e central
CC services, those re�ected in the DMZ zone, cope with
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Figure 1:�e architecture proposed in this study. Every single computing element has access to the ontology, the patient’s tasks planning, and
allocation for the current scenario.�e PK can work alone or using the available CC services. Whenever possible, the con
guration that leads
to longer battery life will be chosen. CC services on the health service or in the speci
c medical unit service perform the calculations and data
storage. Data visualization and report generation are typical in the data exploitation. Moreover, the medical unit should be able to perform
data analysis and modelling using intelligent interfaces that integrate the needed ontology information in order to distribute the tasks.

those services that are required for a suitable performance of
the epilepsy seizure detection and patient monitoring, while
those services and tasks devoted to extract new knowledge
should be carried out on speci
c servers belonging to the
corresponding medical unit.

�is abstract de
nition of the architecture needs comple-
tion: the ontology development and ful
llment, the infras-
tructure, the mediator implementation, and so on; however,
it cannot be successfully detailed in a single study due to its
own complexity. �e remainder of this study focuses on a
prototype developed that includes a MCC solution and the
PK because it is the minimum part required that allows us to
evaluate some parameters of the system. For this prototype,
neither the ontology nor the extending capabilities have been
introduced. However, this data gathering prototype is needed
in order to obtain real data from epileptic patients, allowing
us to develop the remaining modules.

3.3. 
e MCC and Monitoring Unit. As mentioned before,
the PK includes a WD and a Smartphone. �e sampling
frequency of the sensory system should depend on the
physical measurements: accelerometers need sampling fre-
quencies higher than 10Hz [3]; HR needs smaller sam-
pling frequencies. However, the majority of the commercial
Smartwatches or Smartbands do not allow apps to sample
data from the sensory system: they only allow access to
calculated transformations or induced variables. �e WD
manufacturers o	er their own SDK, which may or may not
allow reading the raw data from the sensor; in the majority
of the cases, the sampling frequency might not be 
xed.

�e majority of the products give access to a website where
the aggregate variables are available, for instance, the burnt
calories, but they do not store the instantaneous data. Besides,
the main part of the HR sensors allows downloading the
data but not by streaming, disabling the online process of
the signal. Further requisites for the WD include the use
of low energy consumption networking, such as bluetooth
4.0 Low Energy, and a valid battery duty cycle of about one
day long. To our knowledge, the single marketed solution
that was valid for this type of applications was Pebble;
unfortunately, the company was acquired and closed by a
competitor. Recently, Samsung’s Gear 2 devices got their
market price decreased, allowing them to be considered as
valid candidates; nevertheless, this fact has happened while
writing this study, so they have not been tested yet.�erefore,
currently available solutions are not suitable for the PK; thus,
in this study we proposed an ad hoc solution including
3DACMandHR; interested readers can getmore information
concerning this WD in Section 4.1.

�e structure of this current proposal for MCC is mainly
based on the challenges described in [13] for the de
nition
of MCCs. �e costs subsection is inspired by that of cost
analysis detailed in [12]. Figure 2 shows both the scheme of
the PK and the MCC architecture. �e architecture design
decision needs further detail; the next subsection gives
details concerning this MCC layer. From Section 3.3.2 to
Section 3.3.4, several design parameters are analyzed: the data
partitioning reliability, the platform’s privacy, the network
and the energy e�ciency, and the machine learning issues,
correspondingly.
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Figure 2: (a) �e PK scheme. (b) �e MCC architecture. In this study Android Smartphones have been used; therefore the SQLite database
management system is used.�e di	erent services refer to the capacity of the so�ware (i) to receive data from theWD and to send data to the
CC layer, (ii) to receive and send noti
cations and alarms, (iii) to process the received data from theWD, and so on.�e 1-second loops refer
to tasks that are scheduled periodically. �e so�ware update also induces changes in the database; for instance, a Decision Tree classi
er can
retrieve its rule from the database. �e changes in the so�ware refer, then, to the improvements in the algorithm implementation to enhance
the energy e�ciency.

3.3.1. 
eMCCArchitecture. Several di	erent approaches for
MCC architectures have been described in the literature,
from the most centralized approaches, focused on very light
clients and a powerful cloud part, like in the Centralized
Cloud [11, 68], to the hyperdistributed and high network
synchronization requirements, like cloudlet [69]. For the
purpose of this study, we claim that an ad hoc decentralized
solution (Mobile Ad Hoc NETworks, MANET [70]) is the
most suitable architecture.

�e MANET architecture provides a high level of auton-
omy, with the local storage capacity and data processing.
Moreover, requests to heavy and computational expensive
cloud services are allowed as well. Besides, the cloudlet
solution is not suitable because there is a single wearable
which might be connected to the MCC layer and, mainly,
the data from each patient are totally independent of one
another; this latter fact suggests that there is no need for
MCC synchronization among MCC layers, relaxing the
computational requirements of this layer.

Conversely, our proposal manages the Smartphone as a
service node, being responsible for storing the instantaneous
data and its transformations, performing low-medium com-
putation tasks, and so on. �erefore, this solution is highly
based on that of MANET Mobicloud [70], allowing dis-
tributed and collaborative CC services to o	er their solutions
when the network is available [71, 72].

Figure 2(b) shows the proposed architecture in detail.
Two main tasks, the Data Receiver and the Partitioning
tasks, are continuously dispatched by means of a timer.�ese

tasks are in charge of the communications with the outer
layers of the architecture and with the computer decision
models (Decision Modules). �e Data Receiver task gathers
the data received from the bracelet, using the SQLite database
for storing the data. �is task receives the block of the
measurements sampled in the bracelet during one second as
input; these blocks are securely stored in the SQLite database
or data repository.

�e Partitioning task is in charge of the o�oading as
well; its aim is to partition the data and request CC or MCC
services with either raw data or processed data. Whenever
there is unprocessed data, this task performs sliding win-
dows on the data, requesting services for computing data
transformations and for performing decision models based
on data. According to the energy e�ciency information, the
task will request services to the MCC or to the CC, storing
the intermediate data in the SQLite if needed. Besides, the
Partitioning task should be divided into two parts: one is
the windowing service and the other is just a job scheduling
task, responsible for the CC/MCC services request as well.
In parallel, an ontology of services should be developed and
deployed into the SQLite database.

Furthermore, the so�ware update task is responsible
for deploying any update in both the models and their
parameters and of the scheduling of new MCC services,
new decision models or data processing; it is performed on
demand of the CC layers. Coordination between this task and
the standard app updating would eventually be needed.
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Figure 3: State diagram for the partitioning algorithm.

3.3.2. Reliability Issues in the Partitioning. �is subsection
focuses on three particular issues that IoT platforms must
consider at least: the data delivery reliability, the data gath-
ering service recovery, and the data delivery latency.

When talking about the two 
rst issues, “reliability” refers
to partitioning the data and requesting some services with
the di	erent partitions where the delivery of the data to
the CC service must be guaranteed, while “recovery” deals
with the healing of the crushed CC services and retrying
the pending requests. Some of the solutions o	ered to cope
with the reliability and the recovery of the services in the
literature solve the problem at the expenses of the user
experience [71], while other proposals like the Avatar system
[73] suggest using a daemon that stays alive during network
crashes keeping track of those partitions for which no service
has been performed, retrying all the request just a�er the
network connection is recovered. In this study, we propose
an “Avatar”-like strategy, requesting the crashed services with
the network recovery.

“Latency” is measured as the time elapsed since the
request of a CC service on a partition until the answer or
acknowledgment is received by the MCC. �e performance
of the system varies according to the data bunch size, ranging
from 5 seconds to a few hours. Several factors have a great
impact on the latency, for instance, the database’s data storage
mechanisms and the level of granularity of the services. Each
of these factors needs further study in order to choose those
that best 
t the system performance in terms of real time
and online monitoring. �e experimentation in Section 4.2
analyzes the latency issue related to the MCC part.

MCC induces problems concerning theQuality of Service
[17, 18]; the o�oading techniques for partitioning are used to
solve those problems related to the partitioning. O�oading
varies from static partitioning of the data [74], aiming to
reduce the battery consumption, to the dynamic partitioning
[75, 76], where the partitioning is adjusted according to the
network availability and the computing capacity of themobile
device. A hybrid partitioning is proposed using two de
ned
data bunch sizes (NSRegular and NSDelayed). Each of them
is used according to the network availability and its cost:
if the WIFI networks are available then the NSRegular is
used; otherwise the data is processed in the Smartphone and
delivered in big bunches, of NSDelayed size, when the Wi-Fi
network is present again. If the amount of undelivered data

keeps growing up to MaxPendingData, then the data bunch
size increases when Wi-Fi networks are available in order to
deliver the data in the shortest period of time. Figure 3 shows
the state diagram for the proposed partitioning.

�e MCC computation and the data partitioning have a
great impact on the energy expenditure and on the battery
life: the smaller the computational e	ort in the Smartphone,
the higher the network consumption. �e reason for this
compromise is that no computation in the MCC means
delivering the instantaneous data to CC services; when
using sampling frequencies higher than 1Hz, the amount
of data increases and so does the required communication
bandwidth and complexity. Conversely, higher MCC com-
putation induces a high reduction in the data that need CC
delivery.�erefore, this research includes an energy e�ciency
experimentation to determine the best compromise in terms
of how much computation can be o	ered by the MCC layer
and how much are due to CC services.

�e partitioning algorithm is described in Algorithm 1
where six global variables are set (lines (1)–(6)): DelayedState
represents the state of working (initially it will be false),
NSamples denotes the number of samples to send in each data
bunch given the DelayedState, � is the delay time between
two sent bunches, PendingData represents the number of
samples to send, TempRepository is the local database,
and 
nally WD represents the wearable device (Table 2
includes the description of the variables and values used in
this algorithm). Two main tasks are scheduled (lines (7)-
(8)): DataReceiver and Partitioining with a frequency of
1 and � seconds, respectively. �e former deals with the
communications with the bracelet, while the latter is devoted
to the o�oading and the data partitioning, including the
partition type, RegularState or DelayedState. �e DataRe-
ceiver running frequency is 1 second since it is the maximum
frequency the WD can a	ord, while parameter � will be
analyzed in Section 4.3.

�e task DataReceiver (lines (10)–(19)) has to connect
to WD through Bluetooth 4.0 with a discovering delay of
TDiscovery seconds (line (16)). Once the connection is set,
the data will be streamed from the WD with a frequency of
one bunch per second. In parallel, the WD is sampling the
HR and ACM sensors with a frequency of 16Hz. In case the
connection crashes, the lost samples will be skipped until the
connection is recovered.
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(1) �������	
�
� ← ����
(2) �	����� ← �	�������
(3) �

DB
← ��������

(4) ���������
� ← 0
(5) �� ← �������
��
(6) ���������
��� ← []
(7) Launch TimerTask DataReceiver() each 1 secs
(8) Launch TimerTask Partitioining() each �

DB
secs

(9)
(10) function DataReceiver
(11) if WD is connected then
(12) 	����� ← ������
�����(��)
(13) ���������
� ← ���������
� + 1
(14) ���������
��� ← [TempRepository Sample]
(15) else
(16) 	����(�����V���)
(17) WD ← �������
ℎ����V���()
(18) end if
(19) end function
(20)
(21) function Partitioning
(22) if ���������
� > ������������
� and ������� == ���� then
(23) �	����� ← �	�������
(24) �

DB
← ������

(25) �������	
�
� ← 
���
(26) else
(27) if ���������
� < ������������
� and ������� == 
��� then
(28) �	����� ← �	�������
(29) �

DB
← ��������

(30) �������	
�
� ← ����
(31) end if
(32) end if
(33) if CurrentBatteryLevel < Battery�reshold then
(34) ����ℎ ← ���������
���[1 ⋅ ⋅ ⋅ �	�����]
(35) else
(36) ����ℎ ← !������������
���(���������
���[1 ⋅ ⋅ ⋅ �	�����])
(37) end if
(38) Launch ��
 ← SendData(����ℎ)
(39) if sent == true then
(40) ���������
� ← ���������
� − �	�����
(41) ���������
��� ← ����V�(���������
���, �	�����)
(42) end if
(43) end function
(44)
(45) function SendData(����ℎ)
(46) " ← ����
(47) ��
 ← ����
(48) while " < ���� and ��
 == ���� do
(49) ��
 ← 	�����
���!!(Bunch)
(50) if sent == false then
(51) Sleep(TRetry)
(52) end if
(53) return sent
(54) end while
(55) end function

Algorithm 1: Partitioning and o�oading algorithm.
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Table 2: Variables used in the partitioning algorithm.

Variable Description

TDiscovery �e timeout in the process of 
nding the bracelet Bluetooth device when the connection gets lost.

NSamples

�e number of samples to send in each data bunch depending on the state of working:
(i) NSRegular: the number of samples to send in each regular data bunch. A regular data bunch size is de
ned
with the samples to deliver, measured in seconds. For instance, if ACM and HR are sampled at 16 bits and 16Hz,
one sampled data includes the (a) 16 bits ∗3 axis = 6 bytes from the ACM, (b) the 16 bits (2 bytes) due to the
HR, and (c) 16 bits (2 bytes) reserved for future extension and the timestamp in 8 bytes; then the samples in a
second are 16 ∗ 18 = 288 bytes. If NSRegular is set to the samples for 60 seconds, the regular data bunch size is
60 ∗ 288 bytes.
(ii) NSDelayed: the number of samples to send in delayed state should be bigger than the NSRegular in order to
go back to the Regular state.

�
DB

�e time between two data bunches depending on the state of working:
(i) TRegular: the time between two regular bunches, that is, the time between launching SendData tasks for the
Regular state.
(ii) TDelay: the time between two delayed bunches, that is, the time between launching SendData tasks for the
Delayed state.

PendingData

Number of samples pending to send to the CC services:
(i) MaxPendingData: maximum number of data samples that have not been completely acknowledged by the
CC service, making the state change from Regular to Delayed.
(ii) MinPendingData: threshold to change from Delayed to Regular states.

NTry �e number of retries of the SendData task.

TRetry Time between two consecutive SendData task retries.

DelayedHours Time spent in Regular state, given in hours; a�erwards the process gets into the Delayed state.

�e task Partitioining (lines (21)–(43)) updates the
bunch size (NSamples) depending on the PendingData.
When this variable surpasses theMaxPendingData threshold,
the DelayedState is set to true and the related variables
are updated. When PendingData is below MinPendingData,
the DelayedState is set to false. Next, if CurrentBatteryLevel
exceeds Battery�reshold then the transformations of the

rst pending bunch in the TempRespository are calculated;
see Section 4.1; otherwise, it is the raw data that is sent instead
of its transformations (lines (33)–(37)). �e bunch is sent to
the CC services using the SendData function (line (38)) and
in this case only the process succeeds, the PendingData is
updated, and the bunch is removed from the TempRepository
(lines (39)–(42)).

�e auxiliary function SendData (lines (45)–(55)) will
try to send the bunch to the CC services NTry times with a
timeout of TRetry seconds (line (51)) between runs.

3.3.3. Security Issues within the Platform. Several ad hoc
frameworks have been reported in the literature concerning
interfaces between mobile devices and cloud services. To our
knowledge, these solutions are not suitable for the speci
c
problem focused on this research. Some of these frameworks,
through BNS and IoT ad hoc solutions, are not secure [71, 77];
furthermore, its focus is a general platform,making it di�cult
to be extended for speci
c solutions [11]. Other solutions, like
those in [70, 78], though being secure ad hoc frameworks,
make use of weblets; therefore, the increased computational
cost makes them fruitless [12]. Concerning the epilepsy
speci
c frameworks, those reported in the literature are either
very speci
c or closed solutions [7, 41], being isolated and
storing all the patients’ data in the Smartphone [32]. �us,

it was decided to develop our own framework to 
t the
speci
c needs of the problem, considering the extensibility
and enhancement issues to improve the development.

�e proposed architecture involves two kinds of vulnera-
ble wireless connections: a bluetooth connection between the
WD and the mobile phone and a wireless connection (Wi-Fi
or data) between the mobile phone and the CC based on the
REST protocol. �e security and privacy issues on wearable
communications are a challenging 
eld of study [79, 80] since
the computing capability and battery life of these devices
are quite limited. In this sense, one of the most popular
techniques for key generation/key agreement for wearable
devices is based on physiological print such as the interpulse
interval (IPI) [81]; however, our 
rst version of WD does not
include any kind of extra security issues since it will used in a
secure and controlled environment for the 
rst clinical tests.
Besides, the wireless connection between the mobile phone
and the CC is carried out using a RESTFul service together
with the HTTP communication protocol [82], since we know
the optimal solution would be an HTTPs connection.

3.3.4. Detection of Epileptic Seizures. Two di	erent types of
models are proposed for the detection of focal myoclonic
epileptic seizures: on the one hand, Genetic Fuzzy Finite State
Machines (GFFSM) applied to the epilepsy recognition [3]
and, on the other hand, a feature extraction using a Distance-
based Principal Component Analysis (DPCA) step followed
by a $-Nearest Neighbor (KNN) classi
er [65].

GFFSM de
nes two main fuzzy sets to describe the cur-
rent state (seizure or normal) and a set of four fuzzy rules (IF-
THEN fuzzy rules) whose output is the new fuzzy state. �e
ACM values are transformed to three new variables, Signal
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Table 3: Bracelet and Smartphone speci
cations.

Bracelet Smartphone

Microcontroller
SoC BTLE nRF51822 (32-bit
ARM Cortex M0 core)

256 kB RAM 32 kB FLASH

Platform and OS
32 bits, MediaTek MT6582,

Android Lolipop 5.1

Accelerometry sensor
3-axial, 2G AD
ADXL327BCPZ

CPU and core
1.3 Ghz Quad-Core ARM

Cortex-A7

Pulse monitor TI AFE4400RHAT GPU
ARMMali-400 MP2

500Mhz

Pulse sensor
LED verde OSRAM

SFH7050
RAM 1GB

Battery Ion-Lithium 425mAh Battery Li-Po 2150mAh

Antenna PCB 2.4GHz Storage 8GB

Magnitude Ratio (SMA), Amount of Movement (AoM), and
Time between Peaks (TbP), which are the input variables,
together with the current fuzzy State, to the fuzzy rule system.
Provided that a good variable fuzzy partitioning algorithm is
used [83], the GFFSM method produces highly generalized
models to cope with a wide population [3].

Besides, the method published in [65] makes use of the
ACM values, computing up to 23 di	erent transformations,
SMA, AoM, and TbP, among others, but transforms the
domain to another one using DPCA. DPCA hybridizes
Locally Linear Embedding (LLE) with Principal Component
Analysis: the distance matrix is used to perform the PCA
transformation instead of the covariance. In addition, the
number of desired features in the transformed domain is
given a priori, like in LLE; therefore high reduction in the
dimensionality can be obtained. Applying DPCA to the
dataset of all the known transformations for the ACM values,
23 features, and a�erwards a $-NN classi
er, with $ set to 3,
led to results similar to those obtained for GFFSM explained
above.

�ese two options represent two totally di	erent
approaches: the former, with a reduced set of rules and states,
stands for general models, valid for a wide population, that
introduces simple computations; thus they can be easily
performed in the MCC size. �e main drawback of this
method is the learning stage, which cannot be performed
in MCC; however, some tuning and active learning issues
can be considered in this context. On the other hand, DPCA
+ KNN introduces much more computation requirements
in the detection service, but the learning and updating are
absolutely a	ordable in terms of computational cost.

4. Numerical Results

�is section deals with the studies concerning the latency and
the energy e�ciency described in the previous section (see
Section 3).�e aim of this experimentation is twofold: on the
one hand, to determine the data bunch size for each of the
states bymeans of analyzing the induced latency; on the other
hand, the impact of MCC versus CC o�oading in the duty
cycle of the battery in a real context, so to choose the best
energy e�ciency balance.

�e organization of this section is as follows. Firstly,
the materials and methods used in this experimentation
are detailed. A�erwards, the latency study is included in
Section 4.2. Finally, the energy e�ciency issues are presented
in Section 4.3. In each of these subsections, a discussion on
the 
ndings is included.

4.1. Material and Methods. To carry on the experimentation,
part of the detailed PK has been developed using an ad hoc
bracelet; the core of the CC layer has also been implemented.
�e whole system is able to monitor the patient’s behaviour,
storing the data and performing transformations of the
measured and sampled physical variables.

�e ad hoc bracelet has been developed at the Instituto
Tecnológico de Castilla y León [84], though the whole team
participated in the design. It includes an Analog Devices
ACM sensor and a Texas Instruments green light LED HR
sensor; however, with the development of the wearable tech-
niques, new sensors would eventually be introduced as well,
extending the frontiers of the seizures and events to discover.

�is bracelet delivers the sampled data to the linked
Smartphone using bluetooth 4.0 Low Energy; the sampling
frequency for the ACM has been set to 16Hz, while the HR is
based on re�ected light and the measurements are gathered
on demand with at least 10 seconds between consecutive
estimations. �eWD includes a 420mA battery, which beats
plenty of the solutions in the market and allows a day-long
duty cycle �e MCC is implemented using a centralized
approach [11], which is depicted in Figure 4.

�e Smartphone is a mid-class Android mobile device,
with bluetooth 4.0 Low Energy capabilities. Obviously, the
mobile is also provided with a Wi-Fi connection. �e exper-
imentation has been performed in a laboratory including
two PKs, a Wi-Fi router, and a low-cost server located in
a di	erent laboratory, actually, in a another city, the two
laboratories connected to the Internet. Table 3 includes the
data speci
cations of the WD and the Smartphone, while
Table 4 shows the speci
cations of the deployed server.

�e MCC layer incorporates the Data Receiver and the
Partitioning tasks, makes use of the SQLite database, and can
accept requests to compute the ACM and HR de
ned trans-
formations. Whenever the battery level is under a prede
ned
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(a) WD frontal view

(b) HR sensor detail

Figure 4: (a) �e ad hoc developed WD is shown, while (b) the
green light LED on the bottom of the bracelet is shown.

Table 4: CC Server side speci
cations.

Server
HP ProLiant DL320 G4 2GB RAM

(Dual-Core Pentium D 900)

OS Scienti
c Linux 6.3

HTTP server Apache 2

REST services
framework

SlimPHP 0.9

Database storage QNAP TS412U, 4 × 1 TB HD, RAID1

Database server
MySQL 5.1.73, database on RAID1 with

granted access through NFS

threshold, the raw data will be stored in the local database,
requesting the further services when this condition is not
held anymore. �e CC layer can accept requests for storing
and for processing data. Besides, a data unit sent from the
bracelet to the Smartphone includes three axial components
from ACM, the HR, an extra 
eld, and the time stamp. All of
them except the time stamp are 16 bits long; the time stamp
is stored in 32 bits. �e prede
ned transformations used in
this experimentation include the SMA, theAoM, and theTbP,
computed as reported in [3].

Two possible scenarios will be considered: the 
rst,
sending the raw data from the MCC to the CC; the second,
performing the preprocessing in the MCC and sending the
transformations to the CC. In both cases, JSON messages
will be interchanged. Whenever raw data is interchanged
between the MCC and the CC layers the JSON message
is structured as shown in the upper part of Table 5, using
the integer representation of the sampled physical variables.

(1) .....
(2) while " < ���� and ��
 == ���� do
(3) ���� 
�� 
��
 ← %�
����������()
(4) ��
 ← 	�����
���!!(Bunch)
(5) ���� 
�� ��� ← %�
����������()
(6) &�
���� ← ���� 
�� ��� − ���� 
�� 
��

(7) if sent == false then
(8) Sleep(TRetry)
(9) end ifreturn sent
(10) end while
(11) .....

Algorithm 2: Excerpt from partitioning main algorithm with the
latency calculation speci
cation.

A data bunch including samples for periods of 30 seconds
long, therefore, will be of the size of 51,360 bytes.

Whenever the data sent from the MCC layer to the CC
layer includes the transformations, the JSON format is as
shown in the bottom part of Table 5. In this case, if a window
size of 2 seconds is used, the data bunch would include 2755
bytes.

Finally, two experiments have been carried out. �e
former is related to analyzing the latency in the two de
ned
states, RegularState and DelayedState, for di	erent data
bunch sizes when sending raw data from the MCC to
the CC, with the aim of 
nding the best balance. �e
latency is measured during the data transmission as stated in
Algorithm 2, which is an excerpt of the algorithm shown in
partitioning but extended to include the measurement of the
latency. Di	erent sizes have been tested: 6.80KB (samples for
5 seconds, a total of 80 raw samples), 13.59 KB (10 s, 160 raw
samples), 20.39 KB (15 s, 240 raw samples), 40.78KB (30 s,
480 raw samples), 81.56 K (1min, 960 raw samples), 407.81 KB
(5min, 4800 raw samples), 2446.88KB (30min, 28800 raw
samples), and 4893.75 KB (60min, 57600 raw samples). Ten
repetitions of the test have been run to obtain the statistical
performance.

Once the best data bunch size is found, the second
experiment aims to evaluate the best performance between
MCC preprocessing and CC preprocessing. In the former
case, theMCC layer computes the transformations and sends
them in data bunches, while in the latter raw data is sent. In
both cases, the same data bunch size is used: the one found
optimum in the 
rst experiment.�e PK performs its normal
operation from full charge to total discharge. Two series of
runs have been run: one sending raw data to the CC and
the other computing the transformations at MCC level and
sending these transformations. Again, ten runs for each series
have been performed. �e next two subsections show the
discussion on the obtained results for each experiment.

4.2. Discussion on the Results for the Latency Test. Results
are shown in Table 6 and in Figures 5 and 6. Table 6 shows
the obtained times of latency in milliseconds for each of
the 10 runs of the experiment and for each data bunch size.
Moreover, the mean and the standard deviation are also
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Table 5: JSON interchanged messages. �e upper message has been used when sending raw data, while the bottom one has been used when
sending the transformations.

[

{"IDPatient":"1","Time":1484912812,"HR":"0","RESERVE":"0","ACCX":"399","ACCY":"413","ACCZ":"456"},
{"IDPatient":"1","Time":1484912812,"HR":"0","RESERVE":"0","ACCX":"399","ACCY":"413","ACCZ":"456"},
{"IDPatient":"1","Time":1484912812,"HR":"0","RESERVE":"0","ACCX":"399","ACCY":"413","ACCZ":"456"},
..... ]

[

{"IDPatient":"1","Time":1484912812,"HR":"98","Oxigen":"0","SMA":"1.98","AoM":"3.23","TbP":"4.56"}
]

Table 6: Latency obtained results, measured in milliseconds, for each data bunch size and iteration. �e four bottom rows are the main
statistics, the mean and the standard deviation, the time between data bunches (�

DB
), and the ratio latency time versus �

DB
.

Number of samples 80 160 240 480 960 4800 28800 57600

KB 6.80 13.59 20.39 40.78 81.56 407.81 2446.88 4893.75

Iter

1 191 318 456 875 2082 8994 53234 105975

2 185 325 452 1116 2043 9973 52927 104775

3 155 305 467 1168 2057 9055 52594 110677

4 180 327 468 900 1967 9145 52296 105161

5 186 300 458 890 1844 9537 52585 106078

6 152 305 474 907 1965 9538 52619 105476

7 177 337 504 1154 1843 8916 52206 105004

8 182 565 464 1145 1956 8874 52413 104416

9 165 322 600 885 1825 8874 53141 104864

10 177 325 458 907 2083 8862 52312 104522

Mean 175,00 342,9 480,10 994,70 1966,50 9176,80 52632,7 105694,80

Std 13,28 78,90 44,61 130,97 100,75 379,17 340,15 1838,02

Latency/�
DB
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Figure 5:�e exponential relationship between the data bunch size,
�-axis, in KB, and themean latency time, �-axis, inmilliseconds, for
the CC processing mode.

calculated and shown for each size over the 10 runs. Finally,
the time between consecutive data bunches (�DB) and the
ratio of the latency time versus �DB are shown.

�e relationship between the mean of the latency time
and the data bunch size is shown in Figure 5, where it clearly
shows two sizes as candidates: 20.39KB, equivalent to 15 s
gathering 240 raw samples, and 40.78KB, equivalent to 30 s
gathering 480 raw samples, represent the best compromise
between the communication acts and the response time.
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0.025
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Figure 6:�e relationship between the data bunch size and the ratio
latency time versus the time between data bunch generation for the
CC preprocessing mode. Some smaller sizes exhibit a wide spread;
the higher the ratio, the narrower the variation in the performance.

Smaller sizes might introduce a shorter response but the
communication acts will have a high impact on the battery
life. Furthermore, the mean latency times, 480.10ms and
994.70ms, correspondingly, are still negligible compared to
the time between consecutive bunches, 15 s and 30 s, allowing
the recovery of connection lost events easily. More speci
-
cally, up to 14 retries can be securely done with a safe waiting
period of 0.5 s (1 s for the second option)without overlapping,
which can be considered enough in a real context.
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Table 7: Performance facts when comparingMCCwith CC services
for the two analyzed data bunch sizes, 20.39 KB and 40.78KB. For
the 20.39KB size, only the MCC has been performed as detailed in
the text.

Parameter
20.39 KB 40.78KB

MCC MCC CC

Battery life time (h) 28.998 32.232 31.600

MB of transferred
data

6.625 8.702 159.223

Latency time (h) 4.491 4.555 51.214

Computational time
(h)

1.041 1.395 0.000

Latency +
computation (h)

5.532 5.950 51.214

�ese 
ndings are also remarked in Figure 6. �is 
gure
shows the ratio latency time versus �DB for all the iteration
on each di	erent data bunch size. For the smaller sizes, a high
ratio variability is observed, which means that the reliability
of the data delivery is in compromise. Higher values induce
reduced risks, but at a cost of real time response. Considering
the previous results and the ratio in this latter table, the data
bunch size of 20.39KB represents the best compromise.

4.3. Battery Duty Cycle Test. �is test proposes putting the
PK into deployment in the two main cases: with MCC
computation and with all the computations carried out in the
CC layer. In the former case, the communication acts deliver
the transformation of the raw data, reducing the amount
of data to send; the latter case includes delivering the raw
data, reducing the computation at the expenses of increasing
the amount of data to deliver. Two data bunch sizes are
analyzed and used in this experimentation, those that found
the best solutions in the previous subsection: 20.39KB and
40.78KB. We performed the CC and MCC calculations for
40.78KB 
rst; according to the obtained results, only the
MCC calculations have been considered for the 20.39KB
case.

�e results for these performance tests are included in
Table 7 and Figures 7 and 8. Clearly, the main contribution
to the battery consumption is the communication acts:
the higher the computation in the Smartphone, the better.
�is conclusion only holds for those components that do
not include human-machine interface, like the touchscreen.
Besides, further analysis is required in order to evaluate the
complexity of the calculations that do not introduce extra
battery consumption. Finally, according to the evolution of
the battery duty cycle, the most interesting data bunch size is
40.78KB, as long as it provides the longest battery discharge
time, while performing similarly concerning the latency.
However, the 20.39KB size can be considered valid as well,
as no main di	erences have been found.

4.4. Deployment Cost of the Platform. �e whole approach
is based on relatively low-cost elements: a mid-range Smart-
phone plus a WD, the PK, worth less than 500 euros to the
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Figure 7: Comparison of the Smartphone’s battery discharge when
using the data bunch size of 20.39 KB for the two options: MCC
preprocessing versus CC preprocessing. �e continuous line stands
for the MCC preprocessing mode, while the dotted line stands for
the CC preprocessing mode. On the �-axis, the battery charge level
is in percentage. �e �-axis shows the time in hours.
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Figure 8: Comparison of the Smartphone’s battery discharges when
using the data bunch size of 40.78 KB for the MCC preprocessing.
On the �-axis, the battery charge level is in percentage. �e �-axis
shows the time in hours.

health system and even less if we consider that the majority
of the population already owns a valid Smartphone. �e
deployment of the CC services can be done either externally
or in their owndata center; the balance betweenMCCandCC
servicesmight help in reducing this deployment cost. Besides,
the cost of Smartphones with the minimum requirements
is normally 130 euros at the most. On the other hand, the
wristband used in this study is worth 300 euros, but this price
can be highly reduced; commercial Smartwatches integrating
the HR and ACM are available from 150 euros.

It is worth mentioning that one of the main concerns
with the wristband selection is the battery life: this parameter
must be higher than 24 hours. A smaller battery life could
lead to problems like a high number of charging cycles or
too short a working time between charges. In any case,
there is always the possibility of the battery running out, but
this risk gets higher with reduced battery life periods. And
this is something that can make the whole platform useless,
increasing its opportunity cost.

Moreover, the integration of federated CC servers in
outpatient clinics, even in family homes, with local servers
under 500 euros nowadays, will highly decrease the amount
of power required by the health system and outperforming
both the robustness and the real time response. Not related
to IoT but to eHealth, such a distributed solution has been
successfully used in GNU Health [85]. �is cost analysis
has been barely performed; and therefore, the main part of
the solutions is either expensive or uncomfortable, or even
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both at the same time. Each design decision has been taken
considering the cost analysis of the candidate solutions.

5. Conclusions

�is study analyzes the solutions in the literature describing
solutions for epilepsy tonic-clonic seizure detection and
monitoring. �e majority of the approaches lack several
remarkable factors: developing ergonomic approaches, sup-
porting everyday life, providing economical a	ordable solu-
tions, introducing storage of the sampled data and providing
intelligent CC services, introducing real time response, or
considering multiple services on the MCC size. �is study
addresses the design of an IoT platform for the epilepsy
seizure detection and monitoring considering each of these
factors.

�e solution is based on a WD to be located on a wrist
connected to a Smartphone, which in turns implements
MCC services and has access to CC services as well. �e
global goal is detecting the seizures, storing information
from the sensory system, generating alarms and noti
cations,
performingmachine learning techniques on the data to learn
the bestmodels to detect or to visualize the data, sharing data,
and providing processed information to the medical sta	,
among others. Special attention has been paid to the MCC
module, where some design decisions are discussed, leading
to the experimentation stage.

�e experimentation stage implemented part of theMCC
and CC modules, developing an ad hoc solution for the WD.
�e experimentation has been focused on determining the
best data bunch size and on drawing conclusions concerning
the criteria to choose when performing computation on the
MCC versus requesting services on raw data to the CC layer.
�e experimentation results show two possible data bunch
sizes (20.39 and 40.78KB) as the most suitable ones. Further-
more, the second stage of the experimentation suggests that
plenty of computation can be delivered on the Smartphones,
reducing the amount of networking. Furthermore, special
care should be taken to reduce the power consumption due
to some mobile components, such as touchscreens. �is
research is only in its early stages, and in the near future we
expect to complete the design, considering the integration of
this framework into publicly available open so�ware health
platforms, such as GNU Health.
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