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Abstract 

Reflector attack [9] belongs to one of the most serious 
types of Denial-of-Service (DoS) attacks, which can 
hardly be traced by contemporary traceback techniques, 
since the marked information written by any routers 
between the attacker and the reflectors will be lost in the 
replied packets from the reflectors. We propose in this 
paper a reflective algebraic marking scheme for tracing 
DoS and DDoS attacks, as well as reflector attacks. The 
proposed marking scheme contains three algorithms, 
namely the marking, reflection and reconstruction 
algorithms, which have been well tested through extensive 
simulation experiments. The results show that the marking 
scheme can achieve a high performance in tracing the 
sources of the potential attack packets.  In addition, it 
produces negligible false positives; whereas other current 
methods usually produce a certain amount of false 
positives. 

1. Introduction 

A Denial-of-Service (DoS) attack is characterized by 
an explicit attempt by an attacker to prevent legitimate 
users of a service from using the desired resources [10]. 
While launching their attacks, the attackers normally 
generate a huge volume of packets directed to the target 
systems known as victims, causing a network traffic 
congestion problem. Thus the legitimate users would be 
prevented from gaining access to the systems being 
attacked. This paper focuses on using an innovative 
marking scheme to defend against DoS attacks. We 
propose a methodology, based on a packet marking 
technique, to trace DoS attacks, especially reflector 
attacks. 

Reflector attacks belong to the category of the most 
serious DoS attacks. Unlike other DoS attacks, the number 
of attack packets sent out by a reflector attacker would be 
amplified many times, flooding the victim’s network. The 
attack packets reaching the victim are not directly from the 
attacker; they are actually generated by some hosts known 
as reflectors. When such reflectors receive the packets 
from a reflector attack, they would create many times 
more packets with a destination address of the victim. A 

detail description of reflector attack is presented in section 
2. This type of attack is more difficult to trace and almost 
all previous traceback techniques cannot handle it.  

The rest of this paper is organized as follows. We 
introduce reflector attacks and related traceback 
techniques proposed in the literature in section 2 and 
section 3 respectively. Section 4 describes our traceback 
algorithm. Section 5 analyses the backward compatibility 
of our marking scheme. After showing the experiment 
results in section 6, we conclude this paper in section 7. 

2. Reflector attacks 

A reflector is any IP host that will return a packet if 
sent a packet [9]. A reflector attack is an indirect attack in 
that intermediary nodes (routers and various servers), 
better known as reflectors, are innocently used as attack 
launchers [11]. Some major reflector attacks such as 
smurfing, SYN flooding, RST flooding, ICMP flooding 
and DNS reply flooding are summarized in [11]. We use 
smurfing, a typical reflector attack, as an example to 
introduce how a reflector attack is launched.  

With IP spoofing as an intermediate step, the launch of 
a smurfing attack involves spoofing a number of ICMP 
echo (ping) packets with the victim’s IP address as the 
source address and a directed broadcast address as the 
destination. This kind of attack can consume a lot of 
network and host resources with relatively few spoofed 
packets. There are three major components constituting a 
reflector attack—the attacker, the amplifying subnet (i.e. 
reflectors), and the victim. The attacker sends ICMP echo 
packets with the victim’s IP address as the source address 
to the broadcast address of an amplifying network as the 
destination address. So the packets appear to have been 
sent by the victim. Since they are sent to a broadcast 
address of a local network, all the hosts, except those 
whose configuration has been specified not to respond to 
ICMP broadcast packets, in the local network will respond 
to each of the packets. Therefore, smurf is a kind of 
amplified DoS attack. Because of this amplifying effect, 
an individual reflector attacker can send the packets at a 
much lower rate compared to the packet rates created by 
ordinary DoS attackers who flood the victim directly. In 
practice, a smurf attacker can first compromise a set of 
hosts called slaves, and then it instructs each slave to send 
ICMP echo packets to a number of amplifying networks. 
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Therefore, the attack can be considered as a kind of 
distributed DoS attack. 

There is another type of reflector attacks which doesn’t 
exploit the amplifying power of subnets. The attacker will 
locate a large number of reflectors to launch its attack. 
Therefore, the attacker has to send request packets to each 
of the reflectors. As long as the number of reflectors is 
large enough, the attacker can flood the victim. In a direct 
ICMP ping flooding attack, around 5000 reflectors are 
needed to flood a victim’s T1 link if each reflector sends a 
query every second [11]. This category of reflector attacks 
is more difficult to trace than the “amplifying reflector 
attacks” since the traffic volume from each link may be 
smaller, however, such attacks are much more difficult to 
launch. Therefore, in this paper we focus on the reflector 
attacks which exploit the amplifying effect of subnets. 

 There are some traditional solutions to defend against 
the reflector attacks. For example, to defend against 
smurfing attack: One solution is disabling the translation 
of layer 3 broadcasts into layer 2 broadcasts at the border 
router; that is, the router will filter any packet with a 
broadcast source address. However this will disable many 
useful services such as ARP, audio sharing and so on.  
Another solution is configuring the host not to respond to 
broadcast ping packets or to ignore all ping packets. This 
will result in the loss of the ICMP functionality. So we 
strongly recommend using IP traceback technique to 
identify the attackers, and then take other measures to stop 
the attacks. 

While dealing with these types of DoS attacks, one 
serious problem of the traditional marking schemes is that 
the information marked by the routers between the 
attacker and the reflectors is lost when the reflectors have 
sent the “reply” packets to the victim after processing the 
attack packets at application layer. Thus the existing 
marking schemes cannot trace part of the attack path, 
namely the sub-path from the reflector to the attacker. 

3. Related work 

Generally speaking, there are two major categories of 
traceback techniques—one is to trace a single packet, and 
the other is to use a large number of packets for tracing the 
attacker. Hash-based traceback [7], based on the former 
technique, digests and logs some particular information of 
each packet on the routers. The victim can query its 
upstream routers whether a certain packet has passed 
through them. This method has two drawbacks: it requires 
a large-scale database on each router to store and manage 
the packets information; the queries must be done before 
the relevant records in the database have been updated. 
The scheme proposed in this paper belongs to the latter 
technique. Different IP traceback methods, based on using 
a large number of packets, have been proposed in the 

literature; examples include link testing, ICMP traceback, 
and some packet marking based methods. However, all of 
these methods cannot trace the source of a reflector attack. 

Dean and Franklin proposed an algebraic marking 
scheme for IP traceback [1], which is based on the 
mathematical theory of Linear Algebra and coding theory.
The main drawback of this algebraic marking scheme is 
that it is not effective in dealing with multiple attacks. In 
addition, it cannot traceback reflector attacks. Motivated 
by Dean’s idea, we propose in this paper a Reflective 
Algebraic Marking Scheme, which can effectively deal 
with DoS attacks including reflector attacks. Our approach 
has low network and router overheads similar to the 
algebraic marking scheme; in addition, it can efficiently 
perform IP traceback even in the presence of multiple 
attacks including reflector attacks.

4. Reflective marking scheme 

In this section, we introduce our reflective algebraic 
marking scheme in detail. To provide the necessary 
background for the presentation of the proposed method, 
we give some definitions first, and then the basic 
assumptions.  Many of the definitions and assumptions 
follow the work of Savage et al. [2]. 

4.1. Definitions 

Figure 1 depicts an upstream routers map from the 
view of the victim. We use V, R, and A to denote the 
victim, router, and attacker respectively. An upstream 
routers map is a map describing the topology of the 
upstream routers of a single host. The upstream routers 
map contains the IP addresses of the upstream routers. 
Here upstream is used to describe routers viewed from the 
victim. For example, R9 and R10 are the upstream routers 
of A2. In this graph, there are two attack paths that are 
represented by the dotted lines, one is (A1 R6 R3 R2 R1),

Figure 1. An upstream routers map as seen from the victim. 
There are two attack paths indicated by the dotted lines.
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and the other is (A2 R3 R2 R1). The distance between two 
hosts means the number of routers in the attack path 
between them. For example, in the attack path (A1 R6 R3 R2

R1), the distance between router R6 and the victim is 3. As 
we know, some routers might be compromised by the 
attacker and so the marked information in the packets may 
be forged. Thus we limit the traceback problem to finding 
a candidate attack path that contains a suffix of the real 
attack path, and such suffix is called a valid suffix of that 
path.  For example, path (R6 R3 R2 R1) is a valid suffix of 
the real attack path (A1 R6 R3 R2 R1). We say a traceback 
scheme is robust if the attackers cannot prevent the victim 
from finding the candidate paths containing the valid 
suffixes of the attack paths. We call a router false positive 
if it is in the reconstructed attack path and not in the real 
attack path. 

4.2. Assumptions 

In order to make our marking scheme more practical 
and effective, the following assumptions have been made 
in devising our proposed IP traceback method. 

1) Attackers are able to generate any packets 
2) Multiple attack paths may exist 
3) Packets may be reordered or lost 
4) Routes between the attacker and the victim are fairly stable 
5) The resources of the routers are limited so that the routers 

cannot perform too much processing per packet.  
6) Attackers might be aware that they are being traced 
7) Attackers may send a large number of packets 
8) Routers might be compromised; but the nearest routers 

should not be compromised in big proportion. 

The first five assumptions are quite easy to understand 
with the knowledge of current network infrastructure. The 
sixth one is a conservative evaluation of the abilities of the 
attackers. The sophisticated attackers should be aware that 
they are being traced and may send fake packets to make 
the victim confused. So the traceback method proposed 
must consider such an ability of the attackers. Like the 
probabilistic marking scheme [2], our marking scheme 
marks packets with a very low probability; so it requires a 
certain number of packets, sent by the attacker, to 
reconstruct the attack paths. If some routers are 
compromised, we could only reconstruct the attack paths 
to the corresponding relevant comprised routers since a 
compromised router could tamper the information marked 
by its upstream routers. Therefore, we will use a valid 
suffix instead of the entire attack path to assess the robust 
of a traceback technique. One thing to remind is that the 
nearest routers should not be compromised; otherwise they 
can tamper any messages the upstream routers have 
marked, so that the victim might reconstruct totally wrong 
paths. 

4.3. Reflective Algebraic Marking Scheme 

Given the basic definitions and assumptions, we 
describe our specific marking scheme now. At first, we 
introduce the basic mathematical theory, and then the 
marking, reflection and reconstruction algorithm. 

4.3.1. Basic mathematical theory: 

The above equation is a matrix equation (or system of 
equations) with Vandermonde matrix coefficient. In 
Linear Algebra, there is a theorem stating that the above 
matrix equation, with Ai’s unknown, has a unique solution 
if and only if the xi’s are distinct [4]. By applying field 
theory to the above theorem, we can obtain a similar 
theorem over GF(p), where GF denotes Galios Field and p
is a prime number if the xi’s and yi’s are elements in GF(p)
[8].

4.3.2. Reflective algebraic marking scheme 

Our reflective algebraic marking scheme consists of 
three algorithms: marking, reflection, and reconstruction, 
deployed on the routers, the reflectors and victim 
respectively. The reflection algorithm is employed to 
handle reflector attacks. 

The information recorded in each marked packet 
includes three integer values in the IP header: x, distance
and Fullpath; where x is a packet related value; distance is 
the distance between the router which first marks this 
packet and the victim. In light of the technique of Dean et
al.[1] for reducing the value of Fullpath, we split the IP 
address of a router Ri into c identical fragments, and use 
Ai,j (j = 1, 2, … , c) to denote the value of each fragment. 
For example, if router R1’s IP is 137.189.89.101 and we 
split it into 4 (c = 4) chunks, then A1,1 = 137, A1,2 = 189, 
A1,3 = 89, A1,4 = 101. And the value of Fullpath can be 
computed as follows: 

,mod)
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where Ai,j’s (i =1, 2; j = 1, 2, 3, 4) form the IP addresses 
of two adjacent routers, and p is the smallest prime 
number larger than 255 (=28 – 1), i.e. 257. If the router is 
adjacent to the victim, the last 4 terms of Fullpath should 
be omitted. The purpose of “mod p” in the above 
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formulation is to reduce the value of Fullpath so that it 
would occupy fewer bits in the IP header. Considering the 
bits needed to store the Fullpath value and the attack paths 
reconstruction time, letting c equal to 4 is an eclectic 
choice.  Figure 2 depicts the marking algorithm for c = 4 
and we also use c = 4 in the following sections. 

Marking procedure in router R 
for each packet P { 

generate a random number u [0, 1) ; 
if (u ≤ q ) {

/* q is the marking probability adopted by all the routers 
and the victim */ 
P.distance = 0; 
randomly select an integer x from 0 to 7; 
P.x = x ; 
Fullpath = (A1,1 + A1,2x + A1,3x

2 + A1,4x
3) mod p;

// each packet P is associated with a value x
}
else { 

if (P.distance == 0) { 
Fullpath = (Fullpath + A1,1x

4+ A1,2x
5

+ A1,3x
6 + A1,4x

7) mod p;
// x is recorded in the packet by an upstream router 
P.distance = P.distance + 1;  

}
else if (P.distance > 0) P.distance = P.distance + 1; 
      else call error_handler; 

}
}

Figure 2. Marking algorithm. 

Figure 3 illustrates the marking procedure; F and d
denote Fullpath and distance respectively; v represents the 
value of A1,1 + A1,2x + A1,3x

2 + A1,4x
3, where A1,i’s (i = 1, 2, 

3, 4) are the 4 fragments of the relevant router’s IP 
address. When router R receives a packet from its 
upstream router R’, it first generates a random number u
and does the marking depending on u and the distance d
recorded in the packet. If u ≤ q, then let F = v, d = 0; if 

u>q & d = 0, then let F = F + vx4, d = d + 1; if u > q & d > 
0, then increment the distance d by 1. To make the 
presentation concise in the diagram, we have omitted 
applying “mod p” to F here. 

To resolve the information loss problem caused by 
reflection, we copy the marked information in each 
incoming request packet to the outgoing reply packet; this 
operation is carried out through the reflection procedure 
by each reflector. Note that the number of request packets 
and the number of reply packets are asymmetric. For 
example, the number of packets in a GET request message 
of FTP is small, but those in the reply message may be 
large. For this reason, a simple copy operation for the 
marked information may not work. One possible method is 
to use a table to store the marked information; the reflector 
simply collects the marked information in the table and 
copies the relevant marked information to outgoing 
packets. 

Reflection algorithm: 
let H be a hash table; 
let mark be the tuple(Fullpath, distance, x);
//mark stands for marked information in a packet 
let entry in H be a tuple(address, mark, count);      
/* address is for storing IP address and count is an integer 
initiated as 0, H is sorted by address, then distance, and then x */ 
Storing marked information at Reflector Rf:
for each incoming request packet w

if H doesn’t contain (w.source, w.mark, _) 
insert into H (w.source, w.mark.distance, 0); 
// source is for storing the source IP address of packet w

Copy operation at Reflector Rf:
for each outgoing reply packet w
    if H contains (w.destination, _, _) { 

select an entry e of the form (w.destination,_,_) in H
whose count is the smallest and distance is the smallest;  

write e.mark into w.mark; 
increase e.count by 1; 
if (count == bound) delete e1;
// bound = ln(32)/(p(1-p)31)

    } 

Figure 4. Reflection algorithm. 

Figure 4 outlines the reflection algorithm. It consists of 
two procedures for storing marked information and 
copying marked information to reply packets. These two 
procedures share statistics of a hash table H. The storing 
procedure keeps an incoming request packet’s marked 
information in the table H with the source address as a key. 
Packets with identical marked information are stored only 
once. The copy procedure copies the marked information 
to an outgoing reply packet from the record in H whose 
address matches the packet’s destination address. The 
copy operation is carried out only when the count of the 
record to be copied is less than a certain upper bound, 

Fullpath(F), distance(d)

F = v, d = 0

R’

RF += vx4, d += 1

d +=1

packet P:

(u ≤ q)

(u > q & d = 0)

(u > q & d >0)

Figure 3. Marking illustration. F and d denote Fullpath and 
distance respectively, v = A1,1 + A1,2x + A1,3x2 + A1,4x3, R’ is an 
upstream router of R.
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since the number of packets X required for the victim to 
reconstruct a path of length d has the following bounded 
expectation [2]: 

.
)1(

)ln(
)(

1−−
<

dpp

d
XE

As analyzed in section V, we can set the maximum value 
of d as 32. Therefore, the upper bound can be set as: 

.
)1(

)32ln(
31pp

bound
−

=

We also set an expiration time parameter T for the 
maintenance of table H. If all records of a certain IP 
address have not been visited in the past period T, it can 
be assumed that all the relevant packets replied to that 
address have been sent out and we therefore delete them. 
The value of T shall be set according to the configuration 
of specific reflector.  

In this algorithm, it is necessary to distinguish request 
and reply packets, which requires connection tracking
technique [12]. Most existing filtering architectures 
provide such connection tracking feature, which will not 
be elaborated here. 

When 8 (or 4) packets with distinct x’s arrive at the 
victim, the victim can solve the relevant matrix equation in 
section 4.3.1 to obtain the IP addresses (or address) of two 
adjacent routers (or the nearest router to the victim) in the 
attack path. Therefore, we use a set of 8 distinct x’s (0-7) 
to do the marking. The mandatory increment of the 
distance field is used to avoid spoofing by an attacker, 
thus ensures the robustness of our scheme. For attack 
paths reconstruction, we use a method similar to edge 
sampling [7] to reconstruct the attack path hop by hop. 
However, we are not sure about how to group the packets 
coming from the same path. It will certainly involve a high 
computation if we check all possible combinations of the 
marked packets similar to the probabilistic marking 
scheme [7]. Therefore, we resort to using an upstream 
routers map of the victim to simplify paths reconstruction. 
As pointed out by Song and Perrig, it is quite easy to 
obtain and maintain such an upstream routers map [9]. 
After receiving enough packets, the victim can reconstruct 
all the attack paths by the algorithm as outlined in Figure 5. 

Reconstruction algorithm 
let M denote the upstream routers map; 
let G denote the reconstructed attack paths graph and be 
initialized with only one node V for the victim; 
group all marked packets by distance;
group each set of packets by x values; 
let Pd denote the set of packets marked with distance d (0 ≤ d ≤
maxd) and Xk denote the packet subset of Pd with x = k;
let maxd be the distance from the furthest attacker to the victim;  
for every direct upstream router R of V in M { 

count = 0; k = 0; 

while (count <4 and k < 8 and (8-k+count) < 4) { 
/* “8-k+count < 4” implies count will not be 4 after exiting 
this while loop */ 
select a packet  from Xk of P0, which has not been selected 

before in this while loop; 
path = (A1,1 + A1,2x + A1,3x

2 + A1,4x
3) mod p

// A1,j (j = 1, 2, 3, 4) form the IP address of R
// x and Fullpath are from the selected packet 
if (path == Fullpath ) count = count + 1; 
if ((all packets in Xk have been visited)or(path==Fullpath))

k = k + 1; 
}
if (count == 4) insert R into G next to V;

}
for d = 1 to maxd

for every router R inserted into G in the last loop { 
for every upstream router R’ of R in M or R itself { 

k = 0; 
while (k < 8){ 

select a packet from Xk of Pd which has not been 
selected before in this while loop; 

path = (A1,1 + A1,2x + A1,3x
2 + A1,4x

3 + A2,1x
4

+ A2,2x
5 + A2,3x

6 + A2,4x
7) mod p

// A1,j (j = 1, 2, 3, 4) form the IP address of R’
// A2,j (j = 1, 2, 3, 4) form the IP address of R
if (path == Fullpath ) k = k + 1; 
if (all packets in Xk have been visited) 

quit this while loop; 
}
if (k == 8) insert R’ into G next to R;

}
}

output the reconstructed attack paths from graph G

Figure 5. Attack paths reconstruction algorithm. 

Figure 6. Packet set Pn . 

The initial stage of the attack paths reconstruction starts 
from the routers adjacent to the victim. The algorithm first 
identifies the nearest routers in layer 1 (whose distance to 

d F x

n F01 x0

… … …X0

n F0a x0

n F11 x1

… … …X1

n F1b x1

… … … …

n F71 x7

… … …X7

n F7h x7

Pn
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the victim is 0). The table in Figure 6 depicts the packet 
set Pn. The routers in layer 1 can be identified using only 
the packet set P0 since we have grouped the packets by 
distance d. For each adjacent upstream router of V in the 
upstream routers map M, and for each packet in Xi (i = 0, 
1, … , 7), the value for path is computed as follows (x and 
Fullpath are obtained from the packet):

.mod)( 3
4,1

2
3,12,11,1 pxAxAxAApath iii +++=

If path is equal to Fullpath, we move to another packet 
set Xi+1. If each of the 4 packet sets has at least one packet 
yielding path equal to Fullpath, we can conclude that the 
selected router is on one of the attack paths and insert it 
into the reconstructed attack paths graph.

Now the victim will identify the routers in other layers 
after finding the routers in the first layer. Suppose an 
attack path has been reconstructed from the victim to 
router Rn in layer n (whose distance to the victim is n-1). 
Now, we need to identify Rn’s upstream router Rn+1 in 
layer n+1 by using the packet set Pn. For each router next 
to Rn in M, and for each packet in Xi (i = 0, 1, … , 7), the 
value for path is computed as follows: 

.mod)

(
7

4,2
6

3,2
5

2,2

4
1,2

3
4,1

2
3,12,11,1

pxAxAxA

xAxAxAxAApath

iii

iiii

+++
++++=

If path is equal to Fullpath, we move to another packet 
set Xi+1. If no packet in Xi yields the same value for path
and Fullpath, we can declare that the selected router is not 
on the attack paths of this layer (it could be on the paths of 
other layers). If each of the 8 packet sets has at least one 
packet yielding the same values, we can conclude that the 
selected router is on one of the attack paths and insert it 
into the reconstructed attack paths graph. Here we must 
check whether a router has marked a single packet twice. 
This case happens when a request packet has been marked 
by a router of a reflector and then the reply packet goes 
through the same router to the victim; so this router could 
mark the packet again. 

By this method, we can try different branches in the 
upstream routers map to reconstruct all the attack paths. 
We use 4 packets to identify one nearest router and 8 
packets to identify two adjacent routers to make sure that 
there are no collisions because the corresponding matrix 
equations have a unique solution. 

5. Backward Compatibility 

Backward compatibility is the most important issue 
concerning whether a proposal can be put into practice. As 
our marking scheme requires writing some information to 
the IP header of a packet, we should find out those bits in 
the IP header which can be overwritten. 

Version H.Len
Service 
Type 

Total Length 

Identification (16-bit) 
(1-bit) Flags 
(total 3-bit) 

Fragmentation
Offset 

Time to Live Protocol Header Checksum 

Source IP Address 

Destination IP Address 

Figure 7. IP header. The shaded fields (17 bits) are little used in 
current network implementation 

Figure 7 shows the structure of the IP header. The 16-
bit Identification field allows the destination host to 
determine which datagram a newly arrived fragment 
belongs to. Stoica and Zhang pointed out that less than 
0.25% of the entire network traffic is fragments [6]; so the 
bits for the identification field can be overloaded with the 
marking information. In addition, one out of three bits in 
the Flags field is of little use in the current version of IP 
protocol [1]. Thus we can use up to 17 bits to store 
marking information. 

The total number of bits b needed to store the marking 
information can be estimated as b = log2(p) + log2(d) + 
log2(n). The first term estimates the bits needed to store 
Fullpath, which has a value less than p. The second term 
estimates the bits needed to store distance, and the third 
term estimates the bits needed to store x. Letting c = 4, d = 
32, p = 257, and n = 2c = 8, the above expression for b 
can be computed to a value no more than 17. The reason 
for setting n = 2c is that each Fullpath is related to 2c
fragments of two IP addresses; as long as we provide 2c
distinct values of x, the two IP addresses can be uniquely 
identified. Thus 3 bits would be needed to store 8 distinct 
values of x.

There is a tradeoff between the number of packets 
required for reconstruction and the number of bits needed. 
A smaller value for c implies a smaller number of packets 
and a shorter reconstruction time. However, the total 
number of bits in the IP header that can be used to store 
the marking information is quite limited, so we eclectically 
choose c = 4 in our implementation. In general, a packet 
can reach its destination by passing no more than 32 hops 
[5]. For reflector attacks, we can assume the distance field 
of a packet is less than 64. Therefore, 6 bits would be 
sufficient for the distance field. Then there would be only 
8 (17 – 3 – 6) bits left for storing the Fullpath value, 
which ranges from 0 to 256. Thus two of the values will 
be in collision. In our implementation, if the Fullpath
value calculated by the router is 256, the router would 
write 0 to the Fullpath field. While doing the attack paths 
reconstruction, if the path value calculated by the victim is 
256, the victim would convert it to 0. With this simple 
technique employed to handle the collision of two 
different values, the probability of reconstructing a false 
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positive would be extremely low. In our thousands of 
attack paths reconstruction experiments, no false positives 
were generated.  

In summary, we have identified sufficient appropriate 
bits in the IP header for storing the marking information; 
therefore, the proposed marking scheme is backward 
compatible with the current version of the IP protocol and 
can be effectively put into practice. 

6. Experiment results 

We have performed a good number of simulation 
experiments to examine the feasibility and evaluate the 
performance of our marking scheme. The primary 
objective of the experiments is to investigate some 
parameters related to the marking scheme: the number of 
false positives, minimum number of packets needed for 
attack paths reconstruction, reconstruction time, etc. 

In preparation for the simulation experiments, we 
prepared an upstream routers map with over 200 routers.  
The routers were then assigned some real IP addresses 
obtained from the Internet by using the traceroute
technique.  The attack paths are randomly chosen from the 
paths in the map; and different number of packets are 
generated and transmitted along each of these paths. Each 
of the routers simulates marking the packets as defined in 
the marking algorithm. With the pool of marked packets 
collected, the victim simulates applying the proposed 
reconstruction algorithm to reconstruct all the attack paths. 

Figure 8: Tables of minimum number of packets needed for 
reconstruction. Up: q = 0.04; Down: q = 0.01. q: marking probability; 
Len1: length of the path from attacker to reflector; Len2: length of the 
path from reflector to victim; nRf: the number of reflectors. 

The experimental results show that our proposed 
marking scheme is feasible and the performance is 
satisfactory. They also confirm that the attack paths 
reconstruction algorithm yields negligible false positives. 

Figures 8 tabulates the results of the minimum number 
of packets required to reconstruct paths of varying lengths 
with 95% probability of success, and the marking 
probabilities q are 4% and 1% respectively. In a reflector 
attack, the attack path is composed of two parts, namely 
the sub-path from the attacker to the reflectors, and the 
sub-path from the reflectors to the victim. So the total path 
length would be equal to the sum of the lengths of the two 
parts. We set the number of reflectors nRf involved in the 
reflector attacks equal to 30. For the two sets of 
experiments presented in Figures 8, we varied the attack 
path (from attacker to reflector) length parameter Len1
from 5 to 30, and the attack path (from reflector to victim) 
length parameter Len2 from 0 to 30. Each data point in 
each of the tables corresponds to an average of the data 
values obtained from over 200 independent experiments. 

�

���

����

����

����

����

����

����

� �� �� �� �� ��

�

�

��

��

��

��

��

Figure 9: Bar chart representation of minimum number of packets 
needed for attack paths reconstruction (q = 0.01).  

When the parameter Len2 is 0, the simulated attacks 
would be the ordinary DoS attacks and not reflector 
attacks. When compared with FMS [7], and scheme 1 of 
the advanced marking scheme [9], our marking scheme 
requires significantly less packets for attack paths 
reconstruction. Our scheme is also slightly better than 
scheme 2 with m>7 (for the case with a minimum number 
of false positives), and not worse than scheme 2 with m>6 
(for the case with a second minimum number of false 
positives) of the advanced marking scheme [9]. In addition, 
our scheme also outperforms other traceback schemes 
based on the criterion of producing the least number of 
false positives. 

For the cases with Len2 not equal to 0, the simulated 
attacks belong to reflector attacks. Figure 9 shows a bar 
chart view of the minimum number of packets needed for 
attack paths reconstruction with q = 0.01. The bar chart 

   Len1
Len2 

5 10 15 20 25 30 

0 660 1070 1550 2080 2710 3190
5 610 1020 1470 1760 2350 2990

10 615 1030 1480 1780 2360 3000
15 620 1035 1490 1790 2370 3020
20 630 1040 1500 1800 2380 3030
25 640 1050 1515 1810 2400 3050
30 645 1055 1530 1825 2410 3060

  Len1
Len2 

5 10 15 20 25 30 

0 1900 2430 2970 3430 3870 4250
5 1830 2350 2820 3240 3720 4020

10 1840 2360 2830 3250 3730 4030
15 1845 2370 2840 3260 3740 4050
20 1850 2380 2850 3265 3750 4070
25 1860 2390 2860 3270 3760 4090
30 1870 2400 2870 3280 3770 4100
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representation for q = 0.04 should look similar. From 
Figure 9, it can be observed that the minimum number of 
packets needed for paths reconstruction depends primarily 
on the path (from the attacker to the reflector) length 
parameter Len1. For each value of Len1, and let Len2 vary 
from 5 to 30, the minimum number of packets varies by 
only a small amount, no more than 70, for different values 
of Len2. We can also see that for each value of Len1, a 
non-reflector attack needs slightly more packets than does 
a reflector attack. Such experimental results are as what 
have been expected because any attack path from the 
reflector to the victim usually involves an amplified 
number of reflected packets which could be more than the 
minimum number for reconstructing the path from the 
victim to the reflector. Note that the number of packets 
from the reflectors to the victim is nRf times the number of 
packets from the attacker to the reflectors. Therefore, for a 
given value of Len1, the minimum number of packets 
varies only slightly for different values of Len2. We also 
found that the number of reflectors has little effect on the 
results as long as it is greater than ten. As for 
reconstruction, there is little difference between the 
reconstruction result of using 6000 packets and that of 
using 60000 packets. 

Concerning the speed of attack paths reconstruction, 
our algorithm can reconstruct 50 distributed attack paths 
with lengths ranging from 20 to 30 within 5 seconds. It is 
obviously much faster than FMS [7]. A good portion of 
the reconstruction time is spent on grouping the packets. 
When the number of received packets becomes very large, 
say, more than 300,000, the reconstruction time might be 
somehow longer than the advanced marking scheme [9]. 
However, in practice, the number of marked packets is not 
expected to be too large; moreover, if necessary, the 
computation overhead on grouping the packets could be 
much reduced by using a sophisticated sorting algorithm 
and some advanced implementation techniques. 

7. Conclusion

We have proposed in this paper a reflective algebraic 
marking scheme for tracing the ordinary DoS attacks, as 
well as reflector attacks. Similar to the advanced and 
authenticated marking scheme [3], our proposed marking 
scheme also makes use of an upstream routers map for 
speeding up attack paths reconstruction. In coping with 
reflector attacks, we copy marked information from 
incoming request packets to outgoing replied packets. The 
proposed marking scheme can be proved from theory and 
have been shown through extensive experiments that it 
would produce negligible false positives during attack 
paths reconstruction. The huge number of experiments 
carried out demonstrates that the marking scheme can 
trace effectively both the general DoS and DDoS attacks, 

including reflector attacks. Up to the present moment, we 
have not come across any published methods capable of 
tracing reflector attacks. When compared with other 
methods in the literature, our marking scheme requires 
relatively less packets for attack paths reconstruction. 
Moreover, its attack paths reconstruction could be done 
quite fast. We have also shown that the proposed marking 
scheme could be put into practice. 

The most fundamental disadvantage of the proposed 
method is that the marked information is not authenticated. 
Therefore, a compromised router might tamper the 
information marked by its upstream routers and make the 
victim reconstruct wrong paths. It limits our marking 
scheme to reconstruct only a valid suffix of the real attack 
path; however a compromised router could be regarded as 
an attacker to a certain extent. In our future work, we shall 
develop a technique to authenticate the marked data so 
that the compromised routers could be identified. Another 
disadvantage is that our scheme could have difficulty to be 
applied to IPv6, where the IP header does not have the 
Identification field and the IP address is 128 bits. This is a 
inherited problem of any marking traceback technique. 
We believe a feasible solution could be worked out before 
IPv6 would become widely used. 
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