
An IP Traceback Technique against Denial-of-Service Attacks

Zhaole Chen, Moon-Chuen Lee
Computer Science & Engineering Department, the Chinese University of Hong Kong

{zlchen, mclee}@cse.cuhk.edu.hk

Abstract

Reflector attack [9] belongs to one of the most serious
types of Denial-of-Service (DoS) attacks, which can
hardly be traced by contemporary traceback techniques,
since the marked information written by any routers
between the attacker and the reflectors will be lost in the
replied packets from the reflectors. We propose in this
paper a reflective algebraic marking scheme for tracing
DoS and DDoS attacks, as well as reflector attacks. The
proposed marking scheme contains three algorithms,
namely the marking, reflection and reconstruction
algorithms, which have been well tested through extensive
simulation experiments. The results show that the marking
scheme can achieve a high performance in tracing the
sources of the potential attack packets. In addition, it
produces negligible false positives; whereas other current
methods usually produce a certain amount of false
positives.

1. Introduction

A Denial-of-Service (DoS) attack is characterized by
an explicit attempt by an attacker to prevent legitimate
users of a service from using the desired resources [10].
While launching their attacks, the attackers normally
generate a huge volume of packets directed to the target
systems known as victims, causing a network traffic
congestion problem. Thus the legitimate users would be
prevented from gaining access to the systems being
attacked. This paper focuses on using an innovative
marking scheme to defend against DoS attacks. We
propose a methodology, based on a packet marking
technique, to trace DoS attacks, especially reflector
attacks.

Reflector attacks belong to the category of the most
serious DoS attacks. Unlike other DoS attacks, the number
of attack packets sent out by a reflector attacker would be
amplified many times, flooding the victim’s network. The
attack packets reaching the victim are not directly from the
attacker; they are actually generated by some hosts known
as reflectors. When such reflectors receive the packets
from a reflector attack, they would create many times
more packets with a destination address of the victim. A

detail description of reflector attack is presented in section
2. This type of attack is more difficult to trace and almost
all previous traceback techniques cannot handle it.

The rest of this paper is organized as follows. We
introduce reflector attacks and related traceback
techniques proposed in the literature in section 2 and
section 3 respectively. Section 4 describes our traceback
algorithm. Section 5 analyses the backward compatibility
of our marking scheme. After showing the experiment
results in section 6, we conclude this paper in section 7.

2. Reflector attacks

A reflector is any IP host that will return a packet if
sent a packet [9]. A reflector attack is an indirect attack in
that intermediary nodes (routers and various servers),
better known as reflectors, are innocently used as attack
launchers [11]. Some major reflector attacks such as
smurfing, SYN flooding, RST flooding, ICMP flooding
and DNS reply flooding are summarized in [11]. We use
smurfing, a typical reflector attack, as an example to
introduce how a reflector attack is launched.

With IP spoofing as an intermediate step, the launch of
a smurfing attack involves spoofing a number of ICMP
echo (ping) packets with the victim’s IP address as the
source address and a directed broadcast address as the
destination. This kind of attack can consume a lot of
network and host resources with relatively few spoofed
packets. There are three major components constituting a
reflector attack—the attacker, the amplifying subnet (i.e.
reflectors), and the victim. The attacker sends ICMP echo
packets with the victim’s IP address as the source address
to the broadcast address of an amplifying network as the
destination address. So the packets appear to have been
sent by the victim. Since they are sent to a broadcast
address of a local network, all the hosts, except those
whose configuration has been specified not to respond to
ICMP broadcast packets, in the local network will respond
to each of the packets. Therefore, smurf is a kind of
amplified DoS attack. Because of this amplifying effect,
an individual reflector attacker can send the packets at a
much lower rate compared to the packet rates created by
ordinary DoS attackers who flood the victim directly. In
practice, a smurf attacker can first compromise a set of
hosts called slaves, and then it instructs each slave to send
ICMP echo packets to a number of amplifying networks.

Proceedings of the 19th Annual Computer Security Applications Conference (ACSAC 2003)

1063-9527/03 $17.00 © 2003 IEEE

Therefore, the attack can be considered as a kind of
distributed DoS attack.

There is another type of reflector attacks which doesn’t
exploit the amplifying power of subnets. The attacker will
locate a large number of reflectors to launch its attack.
Therefore, the attacker has to send request packets to each
of the reflectors. As long as the number of reflectors is
large enough, the attacker can flood the victim. In a direct
ICMP ping flooding attack, around 5000 reflectors are
needed to flood a victim’s T1 link if each reflector sends a
query every second [11]. This category of reflector attacks
is more difficult to trace than the “amplifying reflector
attacks” since the traffic volume from each link may be
smaller, however, such attacks are much more difficult to
launch. Therefore, in this paper we focus on the reflector
attacks which exploit the amplifying effect of subnets.

 There are some traditional solutions to defend against
the reflector attacks. For example, to defend against
smurfing attack: One solution is disabling the translation
of layer 3 broadcasts into layer 2 broadcasts at the border
router; that is, the router will filter any packet with a
broadcast source address. However this will disable many
useful services such as ARP, audio sharing and so on.
Another solution is configuring the host not to respond to
broadcast ping packets or to ignore all ping packets. This
will result in the loss of the ICMP functionality. So we
strongly recommend using IP traceback technique to
identify the attackers, and then take other measures to stop
the attacks.

While dealing with these types of DoS attacks, one
serious problem of the traditional marking schemes is that
the information marked by the routers between the
attacker and the reflectors is lost when the reflectors have
sent the “reply” packets to the victim after processing the
attack packets at application layer. Thus the existing
marking schemes cannot trace part of the attack path,
namely the sub-path from the reflector to the attacker.

3. Related work

Generally speaking, there are two major categories of
traceback techniques—one is to trace a single packet, and
the other is to use a large number of packets for tracing the
attacker. Hash-based traceback [7], based on the former
technique, digests and logs some particular information of
each packet on the routers. The victim can query its
upstream routers whether a certain packet has passed
through them. This method has two drawbacks: it requires
a large-scale database on each router to store and manage
the packets information; the queries must be done before
the relevant records in the database have been updated.
The scheme proposed in this paper belongs to the latter
technique. Different IP traceback methods, based on using
a large number of packets, have been proposed in the

literature; examples include link testing, ICMP traceback,
and some packet marking based methods. However, all of
these methods cannot trace the source of a reflector attack.

Dean and Franklin proposed an algebraic marking
scheme for IP traceback [1], which is based on the
mathematical theory of Linear Algebra and coding theory.
The main drawback of this algebraic marking scheme is
that it is not effective in dealing with multiple attacks. In
addition, it cannot traceback reflector attacks. Motivated
by Dean’s idea, we propose in this paper a Reflective
Algebraic Marking Scheme, which can effectively deal
with DoS attacks including reflector attacks. Our approach
has low network and router overheads similar to the
algebraic marking scheme; in addition, it can efficiently
perform IP traceback even in the presence of multiple
attacks including reflector attacks.

4. Reflective marking scheme

In this section, we introduce our reflective algebraic
marking scheme in detail. To provide the necessary
background for the presentation of the proposed method,
we give some definitions first, and then the basic
assumptions. Many of the definitions and assumptions
follow the work of Savage et al. [2].

4.1. Definitions

Figure 1 depicts an upstream routers map from the
view of the victim. We use V, R, and A to denote the
victim, router, and attacker respectively. An upstream
routers map is a map describing the topology of the
upstream routers of a single host. The upstream routers
map contains the IP addresses of the upstream routers.
Here upstream is used to describe routers viewed from the
victim. For example, R9 and R10 are the upstream routers
of A2. In this graph, there are two attack paths that are
represented by the dotted lines, one is (A1 R6 R3 R2 R1),

Figure 1. An upstream routers map as seen from the victim.
There are two attack paths indicated by the dotted lines.

R8 A1 R9

R5 R6 A2

R10

R7

R3 R4

R2

R1

V

Proceedings of the 19th Annual Computer Security Applications Conference (ACSAC 2003)

1063-9527/03 $17.00 © 2003 IEEE

and the other is (A2 R3 R2 R1). The distance between two
hosts means the number of routers in the attack path
between them. For example, in the attack path (A1 R6 R3 R2

R1), the distance between router R6 and the victim is 3. As
we know, some routers might be compromised by the
attacker and so the marked information in the packets may
be forged. Thus we limit the traceback problem to finding
a candidate attack path that contains a suffix of the real
attack path, and such suffix is called a valid suffix of that
path. For example, path (R6 R3 R2 R1) is a valid suffix of
the real attack path (A1 R6 R3 R2 R1). We say a traceback
scheme is robust if the attackers cannot prevent the victim
from finding the candidate paths containing the valid
suffixes of the attack paths. We call a router false positive
if it is in the reconstructed attack path and not in the real
attack path.

4.2. Assumptions

In order to make our marking scheme more practical
and effective, the following assumptions have been made
in devising our proposed IP traceback method.

1) Attackers are able to generate any packets
2) Multiple attack paths may exist
3) Packets may be reordered or lost
4) Routes between the attacker and the victim are fairly stable
5) The resources of the routers are limited so that the routers

cannot perform too much processing per packet.
6) Attackers might be aware that they are being traced
7) Attackers may send a large number of packets
8) Routers might be compromised; but the nearest routers

should not be compromised in big proportion.

The first five assumptions are quite easy to understand
with the knowledge of current network infrastructure. The
sixth one is a conservative evaluation of the abilities of the
attackers. The sophisticated attackers should be aware that
they are being traced and may send fake packets to make
the victim confused. So the traceback method proposed
must consider such an ability of the attackers. Like the
probabilistic marking scheme [2], our marking scheme
marks packets with a very low probability; so it requires a
certain number of packets, sent by the attacker, to
reconstruct the attack paths. If some routers are
compromised, we could only reconstruct the attack paths
to the corresponding relevant comprised routers since a
compromised router could tamper the information marked
by its upstream routers. Therefore, we will use a valid
suffix instead of the entire attack path to assess the robust
of a traceback technique. One thing to remind is that the
nearest routers should not be compromised; otherwise they
can tamper any messages the upstream routers have
marked, so that the victim might reconstruct totally wrong
paths.

4.3. Reflective Algebraic Marking Scheme

Given the basic definitions and assumptions, we
describe our specific marking scheme now. At first, we
introduce the basic mathematical theory, and then the
marking, reflection and reconstruction algorithm.

4.3.1. Basic mathematical theory:

The above equation is a matrix equation (or system of
equations) with Vandermonde matrix coefficient. In
Linear Algebra, there is a theorem stating that the above
matrix equation, with Ai’s unknown, has a unique solution
if and only if the xi’s are distinct [4]. By applying field
theory to the above theorem, we can obtain a similar
theorem over GF(p), where GF denotes Galios Field and p
is a prime number if the xi’s and yi’s are elements in GF(p)
[8].

4.3.2. Reflective algebraic marking scheme

Our reflective algebraic marking scheme consists of
three algorithms: marking, reflection, and reconstruction,
deployed on the routers, the reflectors and victim
respectively. The reflection algorithm is employed to
handle reflector attacks.

The information recorded in each marked packet
includes three integer values in the IP header: x, distance
and Fullpath; where x is a packet related value; distance is
the distance between the router which first marks this
packet and the victim. In light of the technique of Dean et
al.[1] for reducing the value of Fullpath, we split the IP
address of a router Ri into c identical fragments, and use
Ai,j (j = 1, 2, … , c) to denote the value of each fragment.
For example, if router R1’s IP is 137.189.89.101 and we
split it into 4 (c = 4) chunks, then A1,1 = 137, A1,2 = 189,
A1,3 = 89, A1,4 = 101. And the value of Fullpath can be
computed as follows:

,mod)

(
7

4,2
6

3,2
5

2,2

4
1,2

3
4,1

2
3,12,11,1

pxAxAxA

xAxAxAxAAFullpath

+++
++++=

where Ai,j’s (i =1, 2; j = 1, 2, 3, 4) form the IP addresses
of two adjacent routers, and p is the smallest prime
number larger than 255 (=28 – 1), i.e. 257. If the router is
adjacent to the victim, the last 4 terms of Fullpath should
be omitted. The purpose of “mod p” in the above

ny

y

y

...
2

1

−

−

−

12

1
2

2
22

1
1

2
11

...1

...............

...1

...1

n
nnn

n

n

xxx

xxx

xxx

nA

A

A

...
2

1

=

Proceedings of the 19th Annual Computer Security Applications Conference (ACSAC 2003)

1063-9527/03 $17.00 © 2003 IEEE

formulation is to reduce the value of Fullpath so that it
would occupy fewer bits in the IP header. Considering the
bits needed to store the Fullpath value and the attack paths
reconstruction time, letting c equal to 4 is an eclectic
choice. Figure 2 depicts the marking algorithm for c = 4
and we also use c = 4 in the following sections.

Marking procedure in router R
for each packet P {

generate a random number u [0, 1) ;
if (u ≤ q) {

/* q is the marking probability adopted by all the routers
and the victim */
P.distance = 0;
randomly select an integer x from 0 to 7;
P.x = x ;
Fullpath = (A1,1 + A1,2x + A1,3x

2 + A1,4x
3) mod p;

// each packet P is associated with a value x
}
else {

if (P.distance == 0) {
Fullpath = (Fullpath + A1,1x

4+ A1,2x
5

+ A1,3x
6 + A1,4x

7) mod p;
// x is recorded in the packet by an upstream router
P.distance = P.distance + 1;

}
else if (P.distance > 0) P.distance = P.distance + 1;
 else call error_handler;

}
}

Figure 2. Marking algorithm.

Figure 3 illustrates the marking procedure; F and d
denote Fullpath and distance respectively; v represents the
value of A1,1 + A1,2x + A1,3x

2 + A1,4x
3, where A1,i’s (i = 1, 2,

3, 4) are the 4 fragments of the relevant router’s IP
address. When router R receives a packet from its
upstream router R’, it first generates a random number u
and does the marking depending on u and the distance d
recorded in the packet. If u ≤ q, then let F = v, d = 0; if

u>q & d = 0, then let F = F + vx4, d = d + 1; if u > q & d >
0, then increment the distance d by 1. To make the
presentation concise in the diagram, we have omitted
applying “mod p” to F here.

To resolve the information loss problem caused by
reflection, we copy the marked information in each
incoming request packet to the outgoing reply packet; this
operation is carried out through the reflection procedure
by each reflector. Note that the number of request packets
and the number of reply packets are asymmetric. For
example, the number of packets in a GET request message
of FTP is small, but those in the reply message may be
large. For this reason, a simple copy operation for the
marked information may not work. One possible method is
to use a table to store the marked information; the reflector
simply collects the marked information in the table and
copies the relevant marked information to outgoing
packets.

Reflection algorithm:
let H be a hash table;
let mark be the tuple(Fullpath, distance, x);
//mark stands for marked information in a packet
let entry in H be a tuple(address, mark, count);
/* address is for storing IP address and count is an integer
initiated as 0, H is sorted by address, then distance, and then x */
Storing marked information at Reflector Rf:
for each incoming request packet w

if H doesn’t contain (w.source, w.mark, _)
insert into H (w.source, w.mark.distance, 0);
// source is for storing the source IP address of packet w

Copy operation at Reflector Rf:
for each outgoing reply packet w
 if H contains (w.destination, _, _) {

select an entry e of the form (w.destination,_,_) in H
whose count is the smallest and distance is the smallest;

write e.mark into w.mark;
increase e.count by 1;
if (count == bound) delete e1;
// bound = ln(32)/(p(1-p)31)

 }

Figure 4. Reflection algorithm.

Figure 4 outlines the reflection algorithm. It consists of
two procedures for storing marked information and
copying marked information to reply packets. These two
procedures share statistics of a hash table H. The storing
procedure keeps an incoming request packet’s marked
information in the table H with the source address as a key.
Packets with identical marked information are stored only
once. The copy procedure copies the marked information
to an outgoing reply packet from the record in H whose
address matches the packet’s destination address. The
copy operation is carried out only when the count of the
record to be copied is less than a certain upper bound,

Fullpath(F), distance(d)

F = v, d = 0

R’

RF += vx4, d += 1

d +=1

packet P:

(u ≤ q)

(u > q & d = 0)

(u > q & d >0)

Figure 3. Marking illustration. F and d denote Fullpath and
distance respectively, v = A1,1 + A1,2x + A1,3x2 + A1,4x3, R’ is an
upstream router of R.

Proceedings of the 19th Annual Computer Security Applications Conference (ACSAC 2003)

1063-9527/03 $17.00 © 2003 IEEE

since the number of packets X required for the victim to
reconstruct a path of length d has the following bounded
expectation [2]:

.
)1(

)ln(
)(

1−−
<

dpp

d
XE

As analyzed in section V, we can set the maximum value
of d as 32. Therefore, the upper bound can be set as:

.
)1(

)32ln(
31pp

bound
−

=

We also set an expiration time parameter T for the
maintenance of table H. If all records of a certain IP
address have not been visited in the past period T, it can
be assumed that all the relevant packets replied to that
address have been sent out and we therefore delete them.
The value of T shall be set according to the configuration
of specific reflector.

In this algorithm, it is necessary to distinguish request
and reply packets, which requires connection tracking
technique [12]. Most existing filtering architectures
provide such connection tracking feature, which will not
be elaborated here.

When 8 (or 4) packets with distinct x’s arrive at the
victim, the victim can solve the relevant matrix equation in
section 4.3.1 to obtain the IP addresses (or address) of two
adjacent routers (or the nearest router to the victim) in the
attack path. Therefore, we use a set of 8 distinct x’s (0-7)
to do the marking. The mandatory increment of the
distance field is used to avoid spoofing by an attacker,
thus ensures the robustness of our scheme. For attack
paths reconstruction, we use a method similar to edge
sampling [7] to reconstruct the attack path hop by hop.
However, we are not sure about how to group the packets
coming from the same path. It will certainly involve a high
computation if we check all possible combinations of the
marked packets similar to the probabilistic marking
scheme [7]. Therefore, we resort to using an upstream
routers map of the victim to simplify paths reconstruction.
As pointed out by Song and Perrig, it is quite easy to
obtain and maintain such an upstream routers map [9].
After receiving enough packets, the victim can reconstruct
all the attack paths by the algorithm as outlined in Figure 5.

Reconstruction algorithm
let M denote the upstream routers map;
let G denote the reconstructed attack paths graph and be
initialized with only one node V for the victim;
group all marked packets by distance;
group each set of packets by x values;
let Pd denote the set of packets marked with distance d (0 ≤ d ≤
maxd) and Xk denote the packet subset of Pd with x = k;
let maxd be the distance from the furthest attacker to the victim;
for every direct upstream router R of V in M {

count = 0; k = 0;

while (count <4 and k < 8 and (8-k+count) < 4) {
/* “8-k+count < 4” implies count will not be 4 after exiting
this while loop */
select a packet from Xk of P0, which has not been selected

before in this while loop;
path = (A1,1 + A1,2x + A1,3x

2 + A1,4x
3) mod p

// A1,j (j = 1, 2, 3, 4) form the IP address of R
// x and Fullpath are from the selected packet
if (path == Fullpath) count = count + 1;
if ((all packets in Xk have been visited)or(path==Fullpath))

k = k + 1;
}
if (count == 4) insert R into G next to V;

}
for d = 1 to maxd

for every router R inserted into G in the last loop {
for every upstream router R’ of R in M or R itself {

k = 0;
while (k < 8){

select a packet from Xk of Pd which has not been
selected before in this while loop;

path = (A1,1 + A1,2x + A1,3x
2 + A1,4x

3 + A2,1x
4

+ A2,2x
5 + A2,3x

6 + A2,4x
7) mod p

// A1,j (j = 1, 2, 3, 4) form the IP address of R’
// A2,j (j = 1, 2, 3, 4) form the IP address of R
if (path == Fullpath) k = k + 1;
if (all packets in Xk have been visited)

quit this while loop;
}
if (k == 8) insert R’ into G next to R;

}
}

output the reconstructed attack paths from graph G

Figure 5. Attack paths reconstruction algorithm.

Figure 6. Packet set Pn .

The initial stage of the attack paths reconstruction starts
from the routers adjacent to the victim. The algorithm first
identifies the nearest routers in layer 1 (whose distance to

d F x

n F01 x0

… … …X0

n F0a x0

n F11 x1

… … …X1

n F1b x1

… … … …

n F71 x7

… … …X7

n F7h x7

Pn

Proceedings of the 19th Annual Computer Security Applications Conference (ACSAC 2003)

1063-9527/03 $17.00 © 2003 IEEE

the victim is 0). The table in Figure 6 depicts the packet
set Pn. The routers in layer 1 can be identified using only
the packet set P0 since we have grouped the packets by
distance d. For each adjacent upstream router of V in the
upstream routers map M, and for each packet in Xi (i = 0,
1, … , 7), the value for path is computed as follows (x and
Fullpath are obtained from the packet):

.mod)(3
4,1

2
3,12,11,1 pxAxAxAApath iii +++=

If path is equal to Fullpath, we move to another packet
set Xi+1. If each of the 4 packet sets has at least one packet
yielding path equal to Fullpath, we can conclude that the
selected router is on one of the attack paths and insert it
into the reconstructed attack paths graph.

Now the victim will identify the routers in other layers
after finding the routers in the first layer. Suppose an
attack path has been reconstructed from the victim to
router Rn in layer n (whose distance to the victim is n-1).
Now, we need to identify Rn’s upstream router Rn+1 in
layer n+1 by using the packet set Pn. For each router next
to Rn in M, and for each packet in Xi (i = 0, 1, … , 7), the
value for path is computed as follows:

.mod)

(
7

4,2
6

3,2
5

2,2

4
1,2

3
4,1

2
3,12,11,1

pxAxAxA

xAxAxAxAApath

iii

iiii

+++
++++=

If path is equal to Fullpath, we move to another packet
set Xi+1. If no packet in Xi yields the same value for path
and Fullpath, we can declare that the selected router is not
on the attack paths of this layer (it could be on the paths of
other layers). If each of the 8 packet sets has at least one
packet yielding the same values, we can conclude that the
selected router is on one of the attack paths and insert it
into the reconstructed attack paths graph. Here we must
check whether a router has marked a single packet twice.
This case happens when a request packet has been marked
by a router of a reflector and then the reply packet goes
through the same router to the victim; so this router could
mark the packet again.

By this method, we can try different branches in the
upstream routers map to reconstruct all the attack paths.
We use 4 packets to identify one nearest router and 8
packets to identify two adjacent routers to make sure that
there are no collisions because the corresponding matrix
equations have a unique solution.

5. Backward Compatibility

Backward compatibility is the most important issue
concerning whether a proposal can be put into practice. As
our marking scheme requires writing some information to
the IP header of a packet, we should find out those bits in
the IP header which can be overwritten.

Version H.Len
Service
Type

Total Length

Identification (16-bit)
(1-bit) Flags
(total 3-bit)

Fragmentation
Offset

Time to Live Protocol Header Checksum

Source IP Address

Destination IP Address

Figure 7. IP header. The shaded fields (17 bits) are little used in
current network implementation

Figure 7 shows the structure of the IP header. The 16-
bit Identification field allows the destination host to
determine which datagram a newly arrived fragment
belongs to. Stoica and Zhang pointed out that less than
0.25% of the entire network traffic is fragments [6]; so the
bits for the identification field can be overloaded with the
marking information. In addition, one out of three bits in
the Flags field is of little use in the current version of IP
protocol [1]. Thus we can use up to 17 bits to store
marking information.

The total number of bits b needed to store the marking
information can be estimated as b = log2(p) + log2(d) +
log2(n). The first term estimates the bits needed to store
Fullpath, which has a value less than p. The second term
estimates the bits needed to store distance, and the third
term estimates the bits needed to store x. Letting c = 4, d =
32, p = 257, and n = 2c = 8, the above expression for b
can be computed to a value no more than 17. The reason
for setting n = 2c is that each Fullpath is related to 2c
fragments of two IP addresses; as long as we provide 2c
distinct values of x, the two IP addresses can be uniquely
identified. Thus 3 bits would be needed to store 8 distinct
values of x.

There is a tradeoff between the number of packets
required for reconstruction and the number of bits needed.
A smaller value for c implies a smaller number of packets
and a shorter reconstruction time. However, the total
number of bits in the IP header that can be used to store
the marking information is quite limited, so we eclectically
choose c = 4 in our implementation. In general, a packet
can reach its destination by passing no more than 32 hops
[5]. For reflector attacks, we can assume the distance field
of a packet is less than 64. Therefore, 6 bits would be
sufficient for the distance field. Then there would be only
8 (17 – 3 – 6) bits left for storing the Fullpath value,
which ranges from 0 to 256. Thus two of the values will
be in collision. In our implementation, if the Fullpath
value calculated by the router is 256, the router would
write 0 to the Fullpath field. While doing the attack paths
reconstruction, if the path value calculated by the victim is
256, the victim would convert it to 0. With this simple
technique employed to handle the collision of two
different values, the probability of reconstructing a false

Proceedings of the 19th Annual Computer Security Applications Conference (ACSAC 2003)

1063-9527/03 $17.00 © 2003 IEEE

positive would be extremely low. In our thousands of
attack paths reconstruction experiments, no false positives
were generated.

In summary, we have identified sufficient appropriate
bits in the IP header for storing the marking information;
therefore, the proposed marking scheme is backward
compatible with the current version of the IP protocol and
can be effectively put into practice.

6. Experiment results

We have performed a good number of simulation
experiments to examine the feasibility and evaluate the
performance of our marking scheme. The primary
objective of the experiments is to investigate some
parameters related to the marking scheme: the number of
false positives, minimum number of packets needed for
attack paths reconstruction, reconstruction time, etc.

In preparation for the simulation experiments, we
prepared an upstream routers map with over 200 routers.
The routers were then assigned some real IP addresses
obtained from the Internet by using the traceroute
technique. The attack paths are randomly chosen from the
paths in the map; and different number of packets are
generated and transmitted along each of these paths. Each
of the routers simulates marking the packets as defined in
the marking algorithm. With the pool of marked packets
collected, the victim simulates applying the proposed
reconstruction algorithm to reconstruct all the attack paths.

Figure 8: Tables of minimum number of packets needed for
reconstruction. Up: q = 0.04; Down: q = 0.01. q: marking probability;
Len1: length of the path from attacker to reflector; Len2: length of the
path from reflector to victim; nRf: the number of reflectors.

The experimental results show that our proposed
marking scheme is feasible and the performance is
satisfactory. They also confirm that the attack paths
reconstruction algorithm yields negligible false positives.

Figures 8 tabulates the results of the minimum number
of packets required to reconstruct paths of varying lengths
with 95% probability of success, and the marking
probabilities q are 4% and 1% respectively. In a reflector
attack, the attack path is composed of two parts, namely
the sub-path from the attacker to the reflectors, and the
sub-path from the reflectors to the victim. So the total path
length would be equal to the sum of the lengths of the two
parts. We set the number of reflectors nRf involved in the
reflector attacks equal to 30. For the two sets of
experiments presented in Figures 8, we varied the attack
path (from attacker to reflector) length parameter Len1
from 5 to 30, and the attack path (from reflector to victim)
length parameter Len2 from 0 to 30. Each data point in
each of the tables corresponds to an average of the data
values obtained from over 200 independent experiments.

�

���

����

����

����

����

����

����

� �� �� �� �� ��

�

�

��

��

��

��

��

Figure 9: Bar chart representation of minimum number of packets
needed for attack paths reconstruction (q = 0.01).

When the parameter Len2 is 0, the simulated attacks
would be the ordinary DoS attacks and not reflector
attacks. When compared with FMS [7], and scheme 1 of
the advanced marking scheme [9], our marking scheme
requires significantly less packets for attack paths
reconstruction. Our scheme is also slightly better than
scheme 2 with m>7 (for the case with a minimum number
of false positives), and not worse than scheme 2 with m>6
(for the case with a second minimum number of false
positives) of the advanced marking scheme [9]. In addition,
our scheme also outperforms other traceback schemes
based on the criterion of producing the least number of
false positives.

For the cases with Len2 not equal to 0, the simulated
attacks belong to reflector attacks. Figure 9 shows a bar
chart view of the minimum number of packets needed for
attack paths reconstruction with q = 0.01. The bar chart

 Len1
Len2

5 10 15 20 25 30

0 660 1070 1550 2080 2710 3190
5 610 1020 1470 1760 2350 2990

10 615 1030 1480 1780 2360 3000
15 620 1035 1490 1790 2370 3020
20 630 1040 1500 1800 2380 3030
25 640 1050 1515 1810 2400 3050
30 645 1055 1530 1825 2410 3060

 Len1
Len2

5 10 15 20 25 30

0 1900 2430 2970 3430 3870 4250
5 1830 2350 2820 3240 3720 4020

10 1840 2360 2830 3250 3730 4030
15 1845 2370 2840 3260 3740 4050
20 1850 2380 2850 3265 3750 4070
25 1860 2390 2860 3270 3760 4090
30 1870 2400 2870 3280 3770 4100

N
um

be
r

of

pa
ck

et
s

Len1

Proceedings of the 19th Annual Computer Security Applications Conference (ACSAC 2003)

1063-9527/03 $17.00 © 2003 IEEE

representation for q = 0.04 should look similar. From
Figure 9, it can be observed that the minimum number of
packets needed for paths reconstruction depends primarily
on the path (from the attacker to the reflector) length
parameter Len1. For each value of Len1, and let Len2 vary
from 5 to 30, the minimum number of packets varies by
only a small amount, no more than 70, for different values
of Len2. We can also see that for each value of Len1, a
non-reflector attack needs slightly more packets than does
a reflector attack. Such experimental results are as what
have been expected because any attack path from the
reflector to the victim usually involves an amplified
number of reflected packets which could be more than the
minimum number for reconstructing the path from the
victim to the reflector. Note that the number of packets
from the reflectors to the victim is nRf times the number of
packets from the attacker to the reflectors. Therefore, for a
given value of Len1, the minimum number of packets
varies only slightly for different values of Len2. We also
found that the number of reflectors has little effect on the
results as long as it is greater than ten. As for
reconstruction, there is little difference between the
reconstruction result of using 6000 packets and that of
using 60000 packets.

Concerning the speed of attack paths reconstruction,
our algorithm can reconstruct 50 distributed attack paths
with lengths ranging from 20 to 30 within 5 seconds. It is
obviously much faster than FMS [7]. A good portion of
the reconstruction time is spent on grouping the packets.
When the number of received packets becomes very large,
say, more than 300,000, the reconstruction time might be
somehow longer than the advanced marking scheme [9].
However, in practice, the number of marked packets is not
expected to be too large; moreover, if necessary, the
computation overhead on grouping the packets could be
much reduced by using a sophisticated sorting algorithm
and some advanced implementation techniques.

7. Conclusion

We have proposed in this paper a reflective algebraic
marking scheme for tracing the ordinary DoS attacks, as
well as reflector attacks. Similar to the advanced and
authenticated marking scheme [3], our proposed marking
scheme also makes use of an upstream routers map for
speeding up attack paths reconstruction. In coping with
reflector attacks, we copy marked information from
incoming request packets to outgoing replied packets. The
proposed marking scheme can be proved from theory and
have been shown through extensive experiments that it
would produce negligible false positives during attack
paths reconstruction. The huge number of experiments
carried out demonstrates that the marking scheme can
trace effectively both the general DoS and DDoS attacks,

including reflector attacks. Up to the present moment, we
have not come across any published methods capable of
tracing reflector attacks. When compared with other
methods in the literature, our marking scheme requires
relatively less packets for attack paths reconstruction.
Moreover, its attack paths reconstruction could be done
quite fast. We have also shown that the proposed marking
scheme could be put into practice.

The most fundamental disadvantage of the proposed
method is that the marked information is not authenticated.
Therefore, a compromised router might tamper the
information marked by its upstream routers and make the
victim reconstruct wrong paths. It limits our marking
scheme to reconstruct only a valid suffix of the real attack
path; however a compromised router could be regarded as
an attacker to a certain extent. In our future work, we shall
develop a technique to authenticate the marked data so
that the compromised routers could be identified. Another
disadvantage is that our scheme could have difficulty to be
applied to IPv6, where the IP header does not have the
Identification field and the IP address is 128 bits. This is a
inherited problem of any marking traceback technique.
We believe a feasible solution could be worked out before
IPv6 would become widely used.

References

[1] Drew Dean, Matt Franklin, and Adam Stubblefield, “An
Algebraic Approach to IP Traceback”, ACM Transactions on
Information and System Security, Vol .5 No.2, May 2002, pp.
119-137.
[2] S. Savage, D.Wetherall, A. Karlin, and T. Anderson,
“Practical Network Support for IP Traceback”, 2000 ACM
SIGCOMM Conference, Aug. 2000.
[3] D. Song and A. Perrig, “Advanced and Authenticated
Marking Schemes for IP Traceback”, Proc. IEEE INFOCOM
2001.
[4] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T.
Vetterling, “Numerical Recipes in FORTRAN: The Art of
Scientific Computing”, Cambridge University Press, 1992, pp.
83-84.
[5] Wolfgang Theilmann and Kurt Rothermel, “Dynamic
distance maps of the internet”, Proc. IEEE INFOCOM
Conference, Vol.1, Mar 2000, pp. 275-284.
[6] I Stoica and H. Zhang, “Providing guaranteed services
without per flow management”, ACM SIGCOMM ’99, pp. 81–
94, Cambridge, MA, 1999.
[7] Alex C. Snoeren, Craig Partridge, Luis A. Sanchez, Christine
E. Jones, Fabrice Tchakountio, Stephen T. Kent, and W.
Timothy Strayer, “Hash-Based IP Traceback”, Proc. ACM
SIGCOMM 2001, August 2001.
[8] Thomas W. Judson. “Abstract algebra: theory and
applications”, Boston, MA: PWS Pub. Co., c1994, pp. 379.”,
Boston, MA: PWS Pub. Co., c1994, pp. 379.
[9]. Vern Paxson, “An Analysis of Using Reflectors for
Distributed Denial-of-Service Attacks”, ACM Comp. Commun.
Rev., vol.31, no.3, July 2001, pp. 3-14.

Proceedings of the 19th Annual Computer Security Applications Conference (ACSAC 2003)

1063-9527/03 $17.00 © 2003 IEEE

[10]. Lau, F., Rubin, S.H., Smith, M.H., and Trajkovic, L,
“Distributed denial of service attacks” Systems, Man, and
Cybernetics, 2000 IEEE International Conference on , Volume:
3 , 2000, pp. 2275 -2280 vol.3.
[11]. Chang, R.K.C., “Defending against flooding-based
distributed denial-of-service attacks: a tutorial” IEEE
Communications Magazine, Volume: 40 Issue: 10 , Oct 2002,
pp. 42 -51.
[12]. Yamada, T., Nakamura, H., Nishimura, K., Ishizaki, T. and
Ogawa, K., “A flat-time-delay transversely coupled resonator
SAW filter comprising parallel connected filter tracks”,
Ultrasonics Symposium, 2000 IEEE , Volume: 1 , 22-25 Oct.
2000, pp. 121-124, vol.1.

Proceedings of the 19th Annual Computer Security Applications Conference (ACSAC 2003)

1063-9527/03 $17.00 © 2003 IEEE

