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An ISO-certified genomics workflow
for identification and surveillance of
antimicrobial resistance

Norelle L. Sherry 1,2,3, Kristy A. Horan1, Susan A. Ballard 1,
Anders Gonҫalves da Silva1, Claire L. Gorrie 3, Mark B. Schultz 1,
Kerrie Stevens1, Mary Valcanis1, Michelle L. Sait1, Timothy P. Stinear 3,
Benjamin P. Howden 1,2,3,4 & Torsten Seemann 1,3,4

Realising the promise of genomics to revolutionise identification and surveil-
lance of antimicrobial resistance (AMR) has been a long-standing challenge in
clinical and public health microbiology. Here, we report the creation and
validation of abritAMR, an ISO-certified bioinformatics platform for genomics-
based bacterial AMR gene detection. The abritAMR platform utilises NCBI’s
AMRFinderPlus, as well as additional features that classify AMR determinants
into antibiotic classes and provide customised reports. We validate abritAMR
by comparing with PCR or reference genomes, representing 1500 different
bacteria and 415 resistance alleles. In these analyses, abritAMR displays 99.9%
accuracy, 97.9% sensitivity and 100% specificity. We also compared genomic
predictions of phenotype for 864 Salmonella spp. against agar dilution results,
showing 98.9% accuracy. The implementation of abritAMR in our institution
has resulted in streamlined bioinformatics and reporting pathways, and has
been readily updated and re-verified. The abritAMR tool and validation data-
sets are publicly available to assist laboratories everywhere harness the power
of AMR genomics in professional practice.

Antimicrobial resistance (AMR) is an increasingly well-recognised
threat to global health1–3. A clear understanding of the genomic and
mechanistic basis for AMR is required to inform clinicians and public
health teams, from the level of individual patients through to
population-level surveillance4,5. By providing additional, timely data on
acquired AMR genes or gene mutations that confer resistance, geno-
mic sequencing has the potential to significantly enhance AMR sur-
veillance and inform patient treatment beyond conventional
phenotypic susceptibility testing methods6,7.

The use of genomics in the detection and surveillance of bacterial
AMR is lagging behind other applications of genomics, such as strain
typing and phylogenetic analysis. Contributors to the lack of uptake

include the fact that phenotypic testing can be performed more
rapidly than genotypic testing for many common pathogens, and the
correlation between genotype and phenotype can be variable due to
incomplete knowledge of AMR mechanisms that impact function4,8.
However, technological advances in whole genome sequencing (WGS)
means the process is becoming more cost-effective and the turn-
around time for sequencing a microbial genome is decreasing
significantly9.

A lack of international standards for genomic detection of AMR
mechanisms means it is difficult to compare results between
laboratories10,11. To facilitate implementation, the development of
standardised and extensive open-access AMR databases and the
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validation of bioinformatic analytical tools for the detection of AMR is
crucial4,12. Another hurdle to the acceptance and implementation of
AMR genomics is how the data can be meaningfully reported outside
of research or reference laboratory settings4. If the implementation of
WGS for AMR is going to be accepted for the detection of AMR resis-
tance, it is important to consider the way in which complex genomic
data is presented to clinicians, nurses, public health surveillance
teams, and other stakeholders with varying understanding of geno-
mics, and thus how to interpret findings13. This is a gap in the bioin-
formatic tools currently available for AMR, as outputs are not usually
tailored for clinical reports, or easily modifiable to suit local reporting
requirements.

In many countries, clinical and public health microbiology
laboratories are required to meet International Standards Organiza-
tion (ISO), or ISO-equivalent, standards to be accredited to operate14.
These standards require the implementation of standardised operat-
ing procedures, quality management systems, staff training and rig-
orous validationof all processes used to generate results and reports in
each laboratory15. Currently, the relevant standards for medical
laboratories (last released in 2012) are not designed to assess the
performance of bioinformatic tools, making validation to meet these
standards difficult for laboratories, in addition to the paucity of
publicly-available validation datasets4.

Here we design and validate a bioinformatic tool, abritAMR, a
wrapper for the NCBI AMRFinderPlus tool16 for the detection of AMR
determinants from whole genome sequencing data16, with outputs
adapted for clinical and public health microbiology reporting. We
envisage that this pipeline, extensive validation methods and

validation dataset could be adopted for use in public health and clin-
ical sequencing laboratories to assist those involved in AMR surveil-
lance and clinical applications.

Results
The abritAMR bioinformatics pipeline
abritAMR is a pipeline for characterisation and reporting of AMR
determinants from bacterial sequences, adapting the AMRFinderPlus
tool and database for use in clinical and public health microbiology.
Using the outputs from AMRFinderPlus, AMR mechanisms are further
classified by antimicrobial class and/or mechanism to suit clinical and
public health microbiology (CPHM) needs, and subsequently filtered
according to local reporting requirements, with results ready for
incorporation into sample reports (overview Fig. 1, outputs Fig. 2;
further details available in Methods and Supplementary Figure 1). An
additional module generates inferred susceptibility results (currently
validated for Salmonella spp.; output Fig. 2, reporting logic detailed in
Supplementary Figure 2).

Validation of the abritAMR pipeline: overview
To validate the abritAMR pipeline, we compared performance to PCR
results for key AMR genes, to AMRFinderPlus results on synthetic read
data from reference genomes, and to phenotypic data for Salmonella
spp. (Fig. 3).

abritAMR performed very well against the four validation panels,
with an overall accuracy of 99.9% (95% CI 99.9–99.9%), sensitivity
97.9% (97.5-98.4%), and specificity 100% (100-100%) (Table 1). Impor-
tantly, the abritAMR pipeline was reliable for the high-risk AMR gene
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Fig. 1 | Overview of abritAMR pipeline. Assembled bacterial genomic sequence
data (short- or long-read or hybrid assemblies, fasta format) are inputted in to the
abritAMR pipeline to identify acquired AMR genes and mutations. The pipeline
implements the AMRFinderPlus tool, identifying AMR genes (BLASTx search), and
optionally identifies mutations associated with AMR for specified species where
mutational data are available. Identified AMR genes + /−mutations are then binned
into functional AMR classes according to the classification database (Detailed

Report output, Fig. 2 and Supplementary Data 1). An additional step then applies
reporting logic tailored to local requirements to produce per-isolate reports with
acquired AMR genes, excluding common intrinsic AMR genes from being reported
in specific species (Final AMRGeneReport), and phenotypic inference for specified
species, where validated (Inferred Antibiogram Report, Fig. 2 and Supplementary
Data 1). AMR, antimicrobial resistance.

Article https://doi.org/10.1038/s41467-022-35713-4

Nature Communications |           (2023) 14:60 2



classes that are notifiable as part of our national critical antimicrobial
resistance surveillance system (CARAlert) in Australia17, with 99.9%
accuracy (95% CI 99.9–100%), 98.9% sensitivity (98.3–99.3%) and 100%
specificity (100–100%) across these classes (carbapenemases, 16 S
ribosomal methyltransferases, mobile colistin resistance genes, ESBLs
(including AmpCs), vancomycin resistance genes, and oxazolidinone
and phenicol resistance (optrA, cfr and poxtA genes)).

Validation results compared to PCR and Sanger sequencing
The abritAMR pipeline was highly accurate compared to PCR (carba-
penemase, ESBL, van and mec gene PCRs) with 1179/1184 (99.6%)
resistance genes correctly detected, and compared well to Sanger
sequencing (carbapenemase allele calling) with 355/356 (99.7%) alleles
correctly identified by WGS. After discrepancy resolution (including
repeat PCR and/or WGS, or examination of partial genes detected by
abritAMR), five discrepancies between PCR andWGS results remained,
including three potential false negatives (PCR positive, WGS negative)
consisting of one CTX-M and two CMY genes not detected by abri-
tAMR; at least one of thesewas due to the presence of a contig break in
the gene leading to smaller fragments not detected by AMRFinderPlus.
Additionally, two potential false positives (PCR negative, WGS posi-
tive)were identified, oneCMY-42 andone IMP-62, confirmedby repeat
PCR and sequencing; both genes were reported to be within the
inclusivity range of the assay as per the manufacturer’s instructions,
although this was validated by in silico PCR by the manufacturer (and
observed inourdataset). Alternatively, thesediscrepanciesmaybedue
to plasmid dropout in culture (which is commonly observed with

suspected CPE isolates such as these), as different colonies with and
without the ESBL/AmpC genemay have been picked for PCR andWGS,
potentially explaining these discrepancies. No discrepant results were
detected for mecA and van gene detection, and only one allele was
incorrectly assigned compared to Sanger sequencing (99.7% accuracy)
(Table 1 and Fig. 4). Overall performance of abritAMR against PCR
yielded 99.6% accuracy (95% CI 99.0-99.9%), 99.6% sensitivity (99.0-
99.9%) and 99.4% specificity (97.9-99.9%).

Identification of AMR genes from synthetic reads
Thepresenceor absenceof 415AMRgenes across 321 genomes (133215
alleles) was tested by running abritAMR on synthetic reads from
complete reference genomes, and comparing to the (native) AMRFin-
derPlus results on the complete genome, considered the ‘gold stan-
dard’ (Fig. 3).Overall accuracy of AMRgene detection byabritAMRwas
excellent, with 133127/133215 alleles called correctly, resulting in 99.9%
accuracy (95% CI 99.9-99.9%), 97.5% sensitivity (96.9-98.0%), and 100%
sensitivity (100-100%) (Fig. 5).Note that anydiscrepancies here include
differences in abritAMR performance compared to AMRFinderPlus, as
well as differences between complete genomes and (synthetic) short-
read data, which likely accounts for at least a proportion of the dis-
crepant results.

The majority of discrepancies were false negatives, with the ami-
noglycosideAMRgenes beingmost common (32/88, 36.4%), especially
the aac(6’)-Ib family, implicated in 18 false negatives, and specifically
the aac(6’)-Ib-cr5 allele (11/18). Some of these were detected as partial
genes at the site of contig breaks, possibly related to slightly higher GC

Fig. 2 | Examples of abritAMR pipeline outputs. This figure demonstrates abri-
tAMR features and outputs across four different species (genome sequence A,
Escherichia coli; genome sequence B, Klebsiella pneumoniae; genome sequence C,
Acinetobacter baumannii; genome D, Salmonella enterica). The horizontal lanes
represent the different output stages: top lane, raw AMRFinderPlus output; middle
lane, abritAMR Detailed Report output (aligned to and binned by Enhanced Sub-
class from abritAMR’s classification database); bottom lane, abritAMR’s Final AMR
Gene Report (genomes A-C) after application of tailored reporting logic to meet
local requirements, and Inferred Antibiogram Report (genome D), currently vali-
dated for Salmonella spp. Key features include: (i) simplification of mechanism or
drug class bins, (ii) identification and separation of high-priority AMR groups (such

as notifiable AMR mechanisms) from lower-priority groups, (iii) identification of
clinically-relevant AMR mechanisms within a drug class (e.g. separation of ESBLs
and AmpCs from genes encoding first-generation cephalosporin resistance;
separation of metallo-beta-lactamase (MBL) carbapenemases and other carbape-
nemases due to differences in patient treatment), and (iv) application of tailored
reporting logic to separate reportable and non-reportable genes according to local
requirements, thus de-cluttering the report for clinicians and public health teams.
Note, only ‘Exact’ matches (100% sequence identity and coverage) and ‘Close’
matches (90-<100% identity and 90-<100% sequence coverage) from the AMRFin-
derPlus tool are reported by abritAMR. Abbreviations: MBL, metallo-beta-lacta-
mase; ESBL, extended-spectrum beta-lactamase.
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content (leading to lower sequence coverage) in these genes. The
other major theme was difficulty resolving sequences with multiple
alleles of the same gene family, which were often collapsed into a
single gene detection by abritAMRormiscalled as a different allele. For
example, this included a sequence with CTX-M-3, CTX-M-14 and CTX-
M-65 identified by AMRFinderPlus, and called as CTX-M-3 and CTX-M-
24 by abritAMR. Four out of the five ‘false positive’ detections were
actually allele miscalls within the same gene family. Collapse of repe-
ated regions or duplicate alleles is often a feature of short-read
sequencing, hence the discrepancies here may be a feature of com-
paring (synthetic) short-read data to complete genomes, rather than a
feature ofabritAMR. Notably, use of alternative genomeassembly tools
(SKESA18 and SPAdes19) did not resolve the discrepancies, with similar
performance to Shovill20 (based on SPAdes; Supplementary Table 1).

Limit of detection and precision
The limit of detection of the abritAMR pipeline was assessed to
determine the minimum average sequencing depth for acceptable
accuracy of AMR gene detection (as required for clinical microbiology
validation and accreditation). Accuracy was found to be consistent
(99.9%) across the 40X to 150X range, with 40X being the minimum
coverage accepted by our accredited quality control (QC) pipeline.
Repeatability and reproducibility (precision) were assessed (replicates
within and across sequencing runs) and found to be 100% concordant.

Validation of inferred antibiogram (Salmonella spp.)
Validation of inferred phenotype against phenotypic AST data
demonstrated 98.9% accuracy (95% CI 98.7–99.1%), 98.9% sensitivity
(98.4–99.3) and 98.9% specificity (98.7–99.1%) overall (Table 1, Sup-
plementary Table 2 and Fig. 6). Accuracy of phenotypic inference was
≥98% for 11/13 antimicrobials (85%), with lower accuracy identified for
streptomycin (95.5%, 95% CI 93.7–96.9%) and ciprofloxacin (96.8%,
95% CI 95.4–97.8%), similar to previous findings using different
bioinformatic methods21.

A number of ‘false positive’ results were identified for strepto-
mycin (resistant genotype [AMR genes or mutations detected], sus-
ceptible phenotype; n = 30/716 (4.2%) isolates). The AMR genes
detected in phenotypically susceptible isolates were also detected in
non-susceptible isolates, although the non-susceptible isolates more
often had >1 AMR gene (1 AMR gene, 22% phenotypically resistant; 2 or
more AMR genes, 81.4% phenotypically resistant), suggesting that
these AMR mechanisms had small but additive effects on phenotype.
Evaluation of phenotype-genotype concordance for azithromycin
identified five ‘false negatives’ (susceptible phenotype, no AMR
mechanism detected) and two ‘false positives’ (AMR mechanism
detected but phenotypically susceptible; neither isolate carried the
dominant resistance mechanism for azithromycin in Salmonella spp.
(mph(A); one carriedmef(B), an efflux pump with variable activity, and
one carried ere(A), an esterase with lower affinity for azithromycin22).

A

Whole genome sequencing
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DNA extraction and 
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Conduct de novo 
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Detect AMR genes with AbritAMR
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Fig. 3 | Validation of abritAMR outputs compared to PCR and synthetic read
data. A Validation compared to PCR data – Assembled short-read sequence data
from bacterial isolates are run through the abritAMR pipeline and compared to
multiplex real-time PCR results for the same AMR genes. B Synthetic data – where
no validation dataset or PCR assay was available for comparison, synthetic read
data were generated from publicly-available closed reference genomes by frag-
mentationwith the art-illumina tool45 (using the errorprofile from local sequencing

platforms) to mimic library preparation from bacterial DNA. Synthetic reads then
underwent the same analytical processes as for usual usage (genome assembly and
input into abritAMR pipeline). These results were then compared to AMRFinderPlus
results on the complete bacterial reference genomes, minimizing the risk of dis-
cordant results due to disparities between AMR databases. Abbreviations: AMR,
antimicrobial resistance; PCR, polymerase chain reaction. Source data are provided
as a Source Data file.
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Similar to streptomycin, ciprofloxacin also had a number of
phenotype-genotype mismatches, likely due to low-level resistance
conferred by AMR mechanisms. Isolates with one AMR gene most
often had an intermediate phenotype (81.3% intermediate, 12.4%
resistant, 6.2% susceptible), whilst isolates with ≥2 AMR genes were all
phenotypically resistant. Despite these discordances, the best corre-
lation between genotype and phenotype (S/I/R) was determined
according to the number of AMR mechanisms detected (any type).
This was coded into the reporting logic: absence of AMRmechanisms,
‘susceptible’, one AMR mechanism, ‘intermediate’, two or more AMR
mechanisms, ‘resistant’. In this application, the use of an ‘intermediate’
category implies that MICs are likely to be borderline for these sam-
ples, i.e. may test susceptible or resistant on AST. Note that these
results are only used for epidemiologic purposes (not for patient
treatment), and hence over-calling resistance is more suitable for this
purpose than non-detection of AMR mechanisms.

Sample outputs and incorporation into microbiology report
Two different outputs are used in the abritAMR pipeline: (i) Detailed
Report output, whereAMRgenes ormutations are shownby enhanced
subclass, as classified by the abritAMR database, and (ii) Final AMR
Gene Report output (binned into reportable and non-reportable
genes) after reporting logic is applied (Fig. 2 and Supplementary
Data 1). An example of the output of the additional module incorpor-
ating mutational resistance and Inferred Antibiogram Report pheno-
type (currently validated for Salmonella spp.) is also shown in
Supplementary Data 1.

Implementation processes
After the validation process, implementation processes included
modifying report outputs, integration with the existing LIMS, and
documentation of the standard operating procedure (SOP). Multiple
groups were consulted on the proposed report outputs, including
reporting scientists with domain expertise (ensure results were easily
interpretable and met reporting obligations across different patho-
gens), quality management staff (ensure results met legal require-
ments), and end-users (public health teams and clinicians).
Subsequently, all staff involved in detection, reporting or interpreta-
tion of AMR results were trained in the use and interpretation of
abritAMR, and clients were educated about the change (although only
minimal differences were noticeable to clients, such as change in
report formats) before full implementation into routine workflows.
Implementation led to streamlined workflows, including rapid bioin-
formatic processing of large sequencing runs (AMRgene detection for
a 96-sample run completed in <3min with 256 CPUs), and less manual
re-classification of AMR gene results by laboratory scientists (e.g.
movinggenes between reportable andnon-reportablefields, removing
intrinsic AMR genes from reportable fields).

Discussion
Theuse of genomics in clinical andpublic healthmicrobiology (CPHM)
has increased substantially in the last decade, particularly in the fields
of pathogen typing and outbreak investigations5,7,23. Detection of AMR
from WGS data has somewhat lagged behind other applications of
WGS, likely due its inherent complexity in comparison to simple and
effective phenotypic AST4. This complexity is multi-faceted but
includes the vast array of resistance mechanisms for testing (a single
phenotypemay be encoded bymany different AMRmechanisms), and
the limitations of phenotype-genotype correlation, particularly for
less-common organisms and drug classes24,25. If not addressed sys-
tematically, these issues may render genomic AMR difficult to identify
comprehensively across all pathogens seen in a CPHM laboratory, and
difficult to communicate to clinicians and public health units13,26.

Globally, the paucity of highly accurate, reproducible bioinfor-
matic tools for detection of AMR mechanisms has been recognised asTa
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oneof themain limiting factors towider applicationof genomics in the
CPHMsetting4,27. Here,wehave designed and validated abioinformatic
platform for genomic detection of AMR determinants across bacterial
species focusing on reporting requirements for clinical and public
health microbiology, performed a rigorous validation, and imple-
mented it to achieve an ISO-ccertified genomicworkflow for AMR. This
was achieved by adapting an existing software tool and database
(AMRFinderPlus), and adding a modified classification step plus
reporting logic to produce tailored reports for a CPHM audience.

This platform relies heavily on the comprehensive, well-curated
and frequently updated AMR database behind AMRFinderPlus, as well
as the excellent software tool, which uses multiple search methods to
best identify AMR genes and mutations (with results annotated by the
type of ‘match’, to allow scientists and clinicians to understand the
degree of confidence behind each call)16. Notably, outputs for other
large AMR databases, such as CARD28 and ResFinder29, could be
modified to achieve similar tailored reports to abritAMR; our choice
was based on the ease of integration into our existing workflows and
reporting. abritAMR’s speed allows for rapiddetection of AMRgenes in
routine high-throughput workflows, with AMR gene detection com-
pleted on a 96-sample sequencing run within 3min. The addition of
mutations to AMRFinderPlus for an increasing number of species has
been very useful in our early applications, enabling our public health
laboratory to move to a fully-genomic workflow for Salmonella sur-
veillance, as all samples were sequenced for typing and phylogenetic
analysis (a sub-sample of isolates still undergo AST to ensure newAMR

mechanisms are detected). The capacity to include AMR genes or
mutations of local significance would be a welcome addition to AMR-
FinderPlus, further extending its utility.

When this work commenced, therewere no classifications of AMR
mechanisms into drug classes in the AMRFinderPlus database, hence
we created our own classification database, which has also evolved in
parallel with the great advances made by the AMRFinderPlus team.
There are (now) a small number of essential differences in the drug
class classifications that we feel are important to enhance its utility for
CPHM. Key examples include separating carbapenem resistance into
different groups based on their mechanisms; separating into ‘carba-
penemase’, ‘carbapenemase (MBL)’ and ‘carbapenemase (OXA-51
family)’ enables reporting each group separately, as antibiotic choices
differ with metallo-beta-lactamases (MBLs) compared to non-MBL
carbapenemases, and OXA-51 family carbapenemases are weak and
intrinsic to Acinetobacter spp. and routine reporting is not required
(coded as part of reporting logic). This combination of tailored clas-
sification and reporting logic allows the vast and complex array of AMR
mechanisms to be distilled into results and reports that can be
understood by scientists, clinicians and public health teams alike,
without a greatdealofprior knowledge. Futuredevelopmentwill focus
on restructuring the database to include different levels (classes,
subclasses) to take advantage of the higher resolution of classifications
now included in AMRFinderPlus.

Notably, the key limitations of AMRFinderPlus are also lim-
itations of both ResFinder30 and CARD-RGI31 tools in different
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ways; ResFinder classifies AMR determinants into a small number
of antimicrobial classes, but lacks the resolution needed for the
more difficult classes described above (particularly beta-lactams),
whilst CARD-RGI maintains an ontologic focus, where anti-
microbial targets and mechanisms are identified at varying levels,
but not grouped in a way that facilitates CPHM reporting and
clinician understanding. However, both tools offer the accessi-
bility of a graphical user interface (GUI) and the option of using
raw reads as inputs for analysis, which are particularly important
considerations for laboratories without dedicated bioinformatic
expertise. Ideally, all large AMR databases and tools should facil-
itate clinically-relevant reporting of AMR determinants through
‘interpretation’ of outputs for clinical needs, and modifiable
reporting logic to tailor outputs to reporting requirements, whilst

maintaining a balance between accessibility and accuracy to
enable validation and accreditation.

In aCPHMsetting, it is critical to validate any new test or analytical
process to ensure the veracity of results, and that the results (outputs
or reports in this case) are fit-for-purpose12. However, formal test
validation and accreditation procedures are based on wet-lab assays,
and not always easily transferable to newmethods such asWGS32. This
may require some creative thinking about different ways to validate a
new genomic test33, as demonstrated here with the use of synthetic
sequencing reads generated from complete reference genomes. Ide-
ally, a broad range of publicly-available reference datasets with geno-
typic andphenotypic datawouldbemade freely available to assistwith
validation and bench-marking for databases, tools and new pipelines
such as this, greatly advancing the development of AMR genomics4,34.
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Initiatives such as the NCBI National Database of Antibiotic Resistant
Organisms (NDARO)35 and PATRIC36 are promising, but currently lim-
ited in scale, and further global data sharing is required here to
advance phenotype-genotype correlations. Here, we have contributed

a dataset thatmay be used for validation of genomic detection of AMR
determinants against PCR results, and a method for validating against
synthetic genomic data, to assist other laboratories to validate their
own AMR workflows.
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Fig. 6 | Performance of inferred phenotype from abritAMR compared to anti-
microbial susceptibility testing (AST). Classification of genotype (AMR
mechanism detection) compared to the ‘gold standard’ phenotypic AST for each
isolate and antimicrobial. True positive, genotypic and phenotypic resistance; true
negative, no AMRmechanisms detected in phenotypically susceptible isolate; false
positive, AMR mechanism identified in phenotypically susceptible isolate; false

negative, no AMR mechanisms detected in phenotypically resistant isolate. For
ciprofloxacin, ‘true positive’defined as concordant intermediate or resistant results
(phenotype and genotype). Abbreviations: AST, antimicrobial susceptibility test-
ing; AMR, antimicrobial resistance; Trim-sulfa, trimethoprim-sulfamethoxazole.
Source data are provided as a Source Data file.

Article https://doi.org/10.1038/s41467-022-35713-4

Nature Communications |           (2023) 14:60 8



Aswith all attempts to validate newWGSpipelines andworkflows,
our study has limitations. The absence of a ‘gold-standard’ dataset to
compare results from our pipeline to means that wemust compare to
imperfect standards, such as existing testing methods with lower
resolution (PCR) anduse synthetic sequencingdata to compare targets
not covered by PCR in our laboratory. Until these issues are addressed
globally, laboratories will have to persist with these challenging com-
parisons, and rely on new initiatives such as proficiency testing pro-
grams (PTPs) for WGS (with participation being a requirement for test
accreditation in our setting) to start to standardise results across
laboratories and countries. Whilst abritAMR was highly accurate
overall, a small proportion of discrepant results were identified, of
which the majority were false negative results. Most of these dis-
crepancies are likely due to the comparison of synthetic short-read
data to complete genomes, where contig breaks within a gene result in
non-detection, or plasmid dropout in culture, leading to non-
identification of plasmid-borne AMR determinants in WGS data. In
our validation, use of a different genome assembly tool had minimal
impact, although it is critical to include this as a consideration in the
validation process, particularly where discrepancies are present.

We envisage that the abritAMR pipeline will most likely be applied
in CPHM settings, and hope that it may assist sequencing laboratories
address the difficult question of how to best report these data to
clinicians and public health teams with limited AMR knowledge.
However, it may also have utility in other settings including research,
particularly where complex AMR data need to be binned into func-
tional classes to facilitate understanding when the user is less familiar
with AMR. In our view, it is critical for medical microbiologists, scien-
tists and bioinformaticians to continue to work together to navigate
the challenges of communicating complex AMR data to clients, to
advance the reach of genomic AMR and maximise the benefits of this
potentially transformative technology.

Methods
Setting and existing genomics workflow
The Microbiological Diagnostic Unit Public Health Laboratory (MDU
PHL) is a state reference laboratory for bacterial pathogens, including
carbapenemase-producing Enterobacterales (CPE), Acinetobacter spp.,
Pseudomonas spp., vancomycin-resistant enterococci (VRE) and enteric
pathogens37–39. The laboratory has a strong emphasis on genomics,
primarily for epidemiologic surveillance, with increasing applications
for clinical purposes. In conjunction with the Department of Health
Victoria, we have embarked upon a broad program to increase imple-
mentation of pathogen genomics for public health purposes, either
enhancing or superseding current laboratory methods.

Our existing genomics workflow (incorporating sample receipt,
nucleic acid extraction, library preparation, short-read sequencing
(Illumina NextSeq or MiSeq), and quality control (QC) of reads
including de novo genome assembly) has already been validated and
accredited by the National Association of Testing Authorities Australia
(NATA, analogous to Clinical Laboratory Improvement Amendments
[CLIA] in USA)40–42. Details of this workflow can be found in Supple-
mentary Methods. Briefly, single colonies from overnight pure bac-
terial sub-cultures were selected and placed in lysis buffer. DNA
extraction was performed on the QIAsymphony using the DSP Virus/
Pathogen Mini Kit, and library preparation performed using Nextera
XT (Illumina Inc.) according to manufacturer’s instructions. WGS was
performed on NextSeq 500/550 or MiSeq platforms (Illumina Inc.),
generating 150 bpor 300 bppaired-end reads respectively. Readswere
assembled de novo using Shovill20. QC requirements for fastq reads to
be included in subsequent analysis were (i) Q-score ≥30, (ii) data with a
minimum estimated average genome coverage of >40X, and (iii) esti-
mated genome size within range for observed species (see Supple-
mentary Methods for detailed descriptions).

The abritAMR bioinformatics pipeline
The aims for developmentof this bioinformatic pipelinewere todetect
AMR genes andmutations accurately and reliably frombacterial whole
genome sequencing (WGS) data, which could be validated against PCR
and other data sources, implemented in a public health or clinical
microbiology laboratory, and successfully accredited by governing
bodies. The abritAMR bioinformatic platform takes a genome assem-
bly from short-read data, long-read data or hybrid assemblies (fasta
file) as input (once it hasmet definedQCparameters), and includesfive
main components (Fig. 1):
i. NCBI’s AMRFinderPlus tool (https://github.com/ncbi/amr) – abri-

tAMR implements this tool to identify AMR genes in genome
sequences, using a combination of BLASTx (matching the protein
sequences of AMR genes to the protein sequence of the query
isolate) and Hidden Markov Models (HMMs)16.

ii. NCBI’s AMRFinderPlus database – abritAMR uses this frequently
updated database (https://github.com/ncbi/amr/wiki/AMRFinder
Plus-database), which is a comprehensive and extensively curated
database of AMR gene sequences. Current functionality includes
mainly AMR genes (‘core’ database), with point mutations (spe-
cies-specific) and virulence genes increasingly being included in
the ‘plus’ database. In more recent iterations, AMR genes and
pointmutations include information about the antimicrobial class
and subclass (or specific antimicrobials) that they confer
resistance to.

iii. Classification database – While the AMRFinderPlus database
includes some information about the antibiotic class and subclass
affected for each AMR gene, these classifications are not always
easily translatable for clinical and public health practice. For
example, the beta-lactam subclass ‘cephalosporin’ includes AMR
genes conferring resistance to first-generation cephalosporins
(narrow-spectrum cephalosporinases, such as blaOXA-1), or third-
generation cephalosporins (such as blaCTX-M ESBLs), which have
very different implications for AMR surveillance and patient
management. The local abritAMR classification database is based
on the current version of the AMRFinderPlus database, with an
added field (‘Enhanced subclass’) to translate the NCBI subclasses
into more functional versions for our purposes (logic detailed in
Supplementary Table 3, examples in Fig. 2). This field is updated
following each new database release (logic detailed in Supple-
mentary Table 4).

iv. Species-specific reporting logic (AMR genes, all species) –

Currently, most AMR genes detected by this pipeline are not
required to be reported for surveillance or clinical purposes;
reporting data on all AMR genes found in an isolate runs the risk
of overwhelming clients with unnecessary data and missing the
most pertinent AMR genes detected. As such, we developed a
reporting logic process to filter the AMR genes detected in each
isolate into ‘reportable’ or ‘non-reportable’ categories, to mirror
the usual reporting requirements diagnostic laboratories (Sup-
plementary Figure 1). This logic takes into account the species
when determining what is reportable, limiting the reporting of
intrinsic AMR genes (such as blaOXA-51 subtypes in Acinetobacter
baumannii), and differentiating between AMR genes that are only
reportable in certain species (e.g. ESBL genes reportable for
national surveillance of Salmonella spp.), while always reporting
significant AMR genes that are not limited by species (e.g.
carbapenemase and mcr genes). Non-reportable genes are also
made available to the reporting pathologists and senior scientists
and recorded in the laboratory information management system
(LIMS), enabling detailed review of all detected AMR genes,
correlation with phenotype, and movement between reportable
and non-reportable categories when required as part of any
routine results review process before reporting.
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v. Inferred phenotype (AMR genes andmutations, validated species
only) – The pattern of AMR genes andmutations detected can be
used to infer phenotype for a given isolate. In abritAMR, this is
currently validated for Salmonella spp., and reported for epide-
miologic purposes in our laboratory, replacing routine anti-
microbial susceptibility testing (AST) of Salmonella spp. for public
health surveillance (reporting logic detailed in Supplementary
Figure 2, Inferred Antibiogram Report example shown in Sup-
plementary Data 1).

abritAMR outputs
abritAMR outputs include a Detailed Report output, consisting of a
table (comma separated values file) of AMR genes or mutations
detected for each sample, listed by enhanced subclass (e.g. “Car-
bapenemase (MBL)”, “Colistin”), or a Final AMR Gene Reports, a
table of AMR genes detected for each sample binned into ‘repor-
table’ or ‘not reportable’ fields, when the species-specific reporting
logic is applied (Fig. 2). Additionally, when run on validated species
(currently Salmonella spp.), abritAMR also produces an Inferred
Antibiogram Report. All alleles listed in these outputs are either
‘exact matches’ (100% identity and 100% sequence coverage
compared to the reference protein sequence) or ‘close matches’
(90-<100% identity and 90-<100% sequence coverage compared to
the reference protein sequence, marked by an asterisk [*] to dis-
tinguish from exact matches), as defined by AMRFinderPlus. Partial
matches (>90% identity, 50-<90% coverage compared to reference
protein sequence) are listed separately, and must be examined
further if deemed suitable for reporting. Where an internal stop
codon (i.e. truncated gene) or HMM match are recorded by AMR-
FinderPlus, no result is reported by abriTAMR. Examples of abri-
tAMR pipeline outputs are shown in Fig. 2, demonstrating how the
AMRFinderPlus output is modified by abritAMR (binned into
enhanced subclass according to abritAMR’s classification database,
and separated into reportable and non-reportable categories by the
reporting logic).

Validation of the abritAMR pipeline
To validate abritAMR, results from the pipeline were compared to
results fromPCR testing, Sanger sequencing and synthetic read sets as
detailed below. For the purposes of validation, both ‘exact’ and ‘close’
matches were considered as ‘detected’. Pre-specified sensitivity and
specificity thresholds were defined for successful validation prior to
analysis.

Validation datasets
All isolates used in validation were obtained as part of routine AMR
surveillance under public health laboratory functions, and hence were
exempt from requiring ethics approval. Data were de-identified for the
validation study (no patient or clinical data were used).

PCR. This dataset included 1184 bacterial isolates (42 species), that had
previously been tested by PCR, including a carbapenemase and ESBL
real-timemultiplex PCR (n = 1020 isolates, AusDiagnostics 16-well CRE
panel, catalogue no. 21098, version 03; Sydney, Australia), van gene
PCR (n = 121, in-house assay for vanA, vanB, vanC1 and vanC2/3
genes43) and mecA PCR (n = 43, in-house assay for mecA44)(Supple-
mentary Figures 3–6).

PCR and Sanger sequencing for allelic variants. This dataset inclu-
ded 347 isolates (20 species) with carbapenemase resistance genes
detected by a range of carbapenemase and ESBL PCR assays across six
different carbapenemase resistance gene families (targets and primers
detailed in Supplementary Table 5), with Sanger sequencing subse-
quently performed to identify the carbapenemase allelic variant
(Supplementary Figures 7 & 8).

Synthetic reads. For the remaining AMR gene targets where PCR was
not readily available to compare with abritAMR, we created synthetic
short-read sequence data from complete, publicly available genomes
fromRefSeq or GenBank, and compared abritAMR results on synthetic
short reads to AMRFinderPlus results from the complete genomes. To
do this, we generated synthetic 150 bp paired-end reads using the art-
illumina tool45 to fragment the complete genome sequences, incor-
porating error profile data from a NextSeq500 sequencer, at 40X to
150X average genome coverage (40X is the minimum coverage
accepted for QC) (Fig. 3). This dataset comprised 321 isolates (49 spe-
cies) covering 415 unique AMR alleles from 43 resistance subclasses
(Supplementary Table 3 and Figures 9 & 10). abritAMR results from
synthetic reads were compared to (native) AMRFinderPlus results from
complete genome sequences. This allowed direct comparisons of
presence or absence of AMR genes, therefore avoiding the problem of
discrepancies in AMR gene nomenclature that may lead to false dis-
cordance if two different AMR gene databases were compared.

Precision testing. abritAMR results from a test panel of 13 organisms
(12 genera, Supplementary Table 6) sequenced multiple times (both
within and across sequencing runs) using different sequencing plat-
forms in our laboratory (NextSeq and MiSeq) and a range of sequen-
cing modes (low, mid and high throughput) and read lengths
(75–300bp). Different combinations were compared to assess analy-
tical precision (repeatability and reproducibility).

Determination of limit of detection. The limit of detection for mole-
cular assays is normally the lowest amount of nucleic acid target that
canbe detected by the assay. This definition is not strictly applicable to
whole genome sequencing, as the WGS assay is qualitative with a
standardised DNA concentration being used in the sequencing reac-
tion. Instead, the limit of detection in this contextwas calculated as the
minimum average coverage across the genome required for accurate
detection of gene targets or allele variants. Synthetic paired-end reads
(150bp) were generated at a range of sequencing coverages, from the
minimum average coverage accepted for our routine QC (40 X) up to
150 X coverage.

Determination of inferred phenotype (Salmonella spp.). We vali-
dated phenotypic inference (Susceptible/Intermediate/Resistant, S/I/
R) against an existing dataset of 864 sequenced Salmonella spp. with
antimicrobial susceptibility (AST) data generated by agardilution from
2018-2019. For the fluoroquinolone drug class, the S/I/R phenotypes
associated with combinations of AMR genes and mutations were
analysed to determine the relative weighting of each AMRmechanism
to infer a phenotype most reliably from in silico analysis.

Discordant result resolution
Discordant results were divided into two categories: firstly, PCR nega-
tive, WGS positive (false positive) - this may be due to the AMR gene
detectedbyWGSnotbeing included in the rangeof thePCRpanel. If the
gene was known to be included in the range of the PCR panel (as stated
by the manufacturer), the isolate was retested by PCR and WGS to
resolve this discrepancy. Secondly, PCR positive, WGS negative (false
negative) – this may be due to an AMR gene being fragmented across
two or more contigs, hence partial matches were assessed; if no partial
matches were found, the sequence was interrogated using alternative
tools; if this failed to resolve the discrepancy, the isolatewas retestedby
PCR and WGS. Where possible, discrepancies between phenotypic and
genotypic results were investigated through repeat phenotypic testing
and/or repeat sequencing of the isolate.

Re-verification processes
In accordance with ISO standards, the abritAMR pipeline must be re-
verified after each database or tool update. Database updates are
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reverified by confirming that the updated database performs to the
same criteria as was defined in the original validation, using the syn-
thetic dataset described above (‘abritAMR test suite’). Updates to the
abritAMR software may take the form of minor patches or major
updates. Minor patches are changes that do not impact underlying
structure or core logic of the pipeline, such as fixes for typographical
errors or additionof functionalitywhichdoes not impact the core logic
of the tool, e.g. changes to log outputs. In these cases, a full rever-
ification is deemed unnecessary and running of the abritAMR test suite
is sufficient. However, other changes whichmay impact the core logic
or structure of the outputs require a complete reverification as
described for database updates. Any change in performance is asses-
sed, the cause identified, and modifications made before the changes
are implemented for reporting. All changes to abritAMR are tracked in
GitHub and the versions managed using conda.

Statistical analysis
Test performance characteristics (accuracy, sensitivity, specificity,
positive andnegative predictive values, including confidence intervals)
were calculated using the epiR package for R (version 4.1.1), used in
RStudio (version 1.4.1717).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Sequence data used in this study are available on NCBI Sequence Read
Archive (BioProjects PRJNA529744, PRJNA565795, PRJNA856406,
PRJNA856415, PRJNA857525, PRJNA857526, PRJNA857528, PRJNA857531,
PRJNA857533, PRJNA857534, PRJNA870170 and PRJNA319593) with
accession numbers provided in Supplementary Data 2. Accession num-
bers for the complete genomesused togenerate the synthetic validation
dataset are provided in Supplementary Data 2. PCR results for the PCR
validation dataset are available in Supplementary Data 2 and on GitHub
(https://github.com/MDU-PHL/abritAMR)46. Source data are provided
with this paper.

Code availability
Code for the abritAMR pipeline is publicly available at https://github.
com/MDU-PHL/abritAMR (https://doi.org/10.5281/zenodo.7370627).
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