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Abstract

In this study the isogeometric B-Rep mortar-based mapping method for geometry

models stemming directly from Computer-Aided Design (CAD) is systematically

augmented and applied to partitioned Fluid-Structure Interaction (FSI) simulations. Thus,

the newly proposed methodology is applied to geometries described by their

Boundary Representation (B-Rep) in terms of trimmed multipatch Non-Uniform Rational

B-Spline (NURBS) discretizations as standard in modern CAD. The proposed

isogeometric B-Rep mortar-based mapping method is herein extended for the

transformation of fields between a B-Rep model and a low order discrete surface

representation of the geometry which typically results when the Finite VolumeMethod

(FVM) or the Finite Element Method (FEM) are employed. This enables the transformation

of such fields as tractions and displacements along the FSI interface when Isogeometric

B-Rep Analysis (IBRA) is used for the structural discretization and the FVM is used for the

fluid discretization. The latter allows for diverse discretization schemes between the

structural and the fluid Boundary Value Problem (BVP), taking into consideration the

special properties of each BVP separately while the constraints along the FSI interface

are satisfied in an iterative manner within partitioned FSI. The proposed methodology

can be exploited in FSI problems with an IBRA structural discretization or to FSI

problems with a standard FEM structural discretization in the frame of the Exact

Coupling Layer (ECL) where the interface fields are smoothed using the underlying

B-Rep parametrization, thus taking advantage of the smoothness that the NURBS basis

functions offer. All new developments are systematically investigated and

demonstrated by FSI problems with lightweight structures whereby the underlying

geometric parametrizations are directly taken from real-world CAD models, thus

extending IBRA into coupled problems of the FSI type.

Keywords: Mortar-based mapping, Isogeometric B-Rep analysis, Trimmed NURBS

multipatches, Exact coupling layer, Penalty method, Fluid-structure interaction

Introduction

Computer-based simulations are playing an ever increasing role in the engineering design

and production process as they offer reliable predictions based on computational mod-
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els. These computational models have been traditionally obtained using the standard

Finite Element Method (FEM) [1,2] which is typically applied to Computational Struc-

tural Dynamics (CSD) or the Finite Volume Method (FVM) [3,4] which is typically used

in Computational Fluid Dynamics (CFD). Regardless of whether the aforementioned dis-

cretization methods are applied on structured or unstructured meshes, there is a consid-

erable effort involved in the mesh generation which also leads to a discrete representation

of the model’s geometry. However, the accuracy of the geometric model may play a deci-

sive role in various engineering applications such as, form-finding of membranes [5] and

buckling analysis of shells [6].

Isogeometric Analysis (IGA) is a modern numerical method which uses the geometric

basis of a parametrizedmodel in Computer-Aided Design (CAD) for the approximation of

the unknown fields [7]. Typically, Non-Uniform Rational B-Spline (NURBS)-based IGA

is used which means that the underlying CAD model is parametrized using the NURBS

basis functions [8]. The use of the NURBS basis functions for analysis typically results

in smooth and high order field approximations. Moreover, NURBS-based models are

standard in CAD and are therefore favoured for bridging design and analysis [9,10]. It is

worth noting that other splines such as the T-Splines [11] can be also used in the context

of IGA, see in [12] for more information. NURBS-based IGA was initially applied on

single patch untrimmed geometries for the Kirchhoff-Love shell problem in [13] and for

the Reissner-Mindlin (RM) shell problem in [14]. The application of IGA on conforming

multipatch geometries for the Kirchhoff-Love shell problem is detailed in [15]. It was then

extended tonon-conforminguntrimmedmultipatchgeometries in [16–19]. Subsequently,

Isogeometric B-Rep Analysis (IBRA) was introduced in [20] for nonlinear shell structures

on arbitrary CAD geometries involving non-watertight trimmed multipatches which are

standard in real-world CADmodels. Subsequently, the application of IBRA in membrane

analysis was shown in [21] and generally to lightweight structures in [22]. In this study, the

application of IBRA to linear static and modal analysis of the National Renewable Energy

Laboratory (NREL) phase VI wind turbine with flexible blades [23,24] is demonstrated to

highlight its application range.

Fluid-Structure Interaction (FSI) [25] forms a prominent category of surface coupled

problems which govern the mutual interaction between a fluid flow and a flexible struc-

ture. A common interface between the fluid and the structural domains has to be identified

in order to appropriately define the interface conditions [26,27]. Confining ourselves to

partitioned FSI, diverse numerical methods are used for solving each of the CFD and CSD

problems whereas the interface constraints are fulfilled in an iterative manner in case of

strong coupling which is herein employed. Moreover, the partitioned Gauss-Seidel (GS)

approach is hereinused,whereby amatching timediscretization is assumedand theunder-

lying solvers exchange information within each time step until convergence is achieved,

see in [24,28]. This allows for efficient methods targeted for each of the CFD and CSD

problems to be employed [27]. As a consequence, the interface discretizations between

the fluid and the structural subdomains are typically not matching and therefore methods

for transferring fields between these non-matching interfaces have to be developed. Such

methods compriseNearestNeighbor,Nearest Element,Barycentric Interpolation andMor-

tar-based formulations, see in [29,30]. Amongst these, themortar-basedmappingmethod

is found to be the most accurate and robust method especially for highly diverse inter-

face discretizations which are common in FSI where the fluid interface discretization is
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typically much finer than the corresponding structural interface discretization due to the

resolution of the fluid boundary layer [31]. The mortar method was initially applied to

elliptic boundary value problems on multiple subdomains with non-matching discretiza-

tions in [32]. It was then employed in the context of FSI problems in [33] with standard

finite element discretizations and in [34] with isogeometric structural discretizations.

In this contribution, a mortar-based mapping method on trimmed multipatch NURBS

geometries stemming directly from real-world CAD geometries is developed and sys-

tematically evaluated which is herein targeted to partitioned FSI, see also in [34]. This

method was firstly introduced in the dissertation [35] and this contribution serves as a

complement with more detailed elaboration, presentation and evaluation of the method

along with additional findings and conclusions. The treatment of the continuity condi-

tions across the NURBS-patch interfaces is done using a Penalty method in a similar

fashion as in [20] since multiple trimmed NURBS patches are considered. The proposed

B-Rep mortar-based mapping method can be used to perform FSI between a low order

discretizedCFDproblem (FVM) and an IBRAdiscretizedCSDproblem. Alternatively, the

trimmed multipatch NURBS geometry can be used as an Exact Coupling Layer (ECL) for

FSI simulations between a low order discretized CFD problem (FVM) and a low order dis-

cretizedCSDproblem (FEM) taking advantage of the smooth and high orderNURBS basis

functions for smoothing the fields (displacements and tractions) which are transformed

from one low order discretization to the other.

The study is complemented with examples ordered in a sequence of increasing com-

plexity. Firstly, the cavity FSI benchmark case is used since it is standard in literature for

the verification of FSI methods. Due to the simplicity of its geometry and given that rel-

atively large deformations are enabled, it allows for a detailed evaluation and verification

of the proposed isogeometric B-Rep mortar-based mapping method. Then, the example

of an inflatable hangar in numerical wind tunnel is employed in the frame of membrane

structural analysis in FSI. Lastly, the NREL phase VI wind turbine with flexible blades in

numerical tunnel is demonstrated, thus extending IBRA for Kirchhoff-Love shells in FSI.

The study is organized as follows: “Computer-aided design using non-uniform ratio-

nal b-splines” section provides a compact but comprehensive introduction to trimmed

NURBS multipatch geometries and how these are treated within CAD. “Isogeometric

lightweight structural analysis on trimmed multipatches” section serves as a compre-

hensive review of the latest developments in IBRA where the most important methods

concerning the coupling between the multiple trimmed patches are revised. This chapter

is complemented with a new large scale numerical example within IBRA to support the

theory. “Isogeometric B-Rep mortar-based mapping method on trimmed multipatches”

section introduces the proposed isogeometric b-repmortar-basedmappingmethodwhich

is the core of this study. The method is elaborated in very detail where both its variational

statement and its discrete equation system are presented. Moveover, a detailed guide on

how the interlying integrals are evaluated is givenwhereby part of theNRELphaseVIwind

turbine blade’s geometry is used for the demonstration of the algorithm. “Fluid-structure

interaction” section serves as a very compact introduction to partitioned FSI with strong

coupling regarding the satisfaction of the FSI interface constraints. Lastly, “Numerical

results” section presents a series of numerical examples ranging from benchmark to real-

world engineering applications demonstrating the applicability of the proposed frame-

work of CAD-integrated analysis for multiphysics problems.
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Computer-aided design using non-uniform rational b-splines

In the following, a comprehensive introduction to Non-Uniform Rational B-Spline

(NURBS) curves and surfaces along with their exploitation in Computer-Aided Design

CAD is provided. This is essential regarding the demonstration of the Isogeometric B-Rep

Analysis (IBRA) and the isogeometric B-Rep mortar-based mapping method as tech-

nologies contributing to Analysis in Computer-Aided Design (AiCAD) for multiphysics

problems which is the core of this study.

The parametric description of geometries represents the most flexible way for describ-

ing free-form shapes in engineering design [36]. Additionally, a geometry may comprise

multiple domains with a distinct parametrization in order to accurately describe large

scale geometric models. These multiple domains are known as patches. In turn, each of

these patches is typically described using the Non-Uniform Rational B-Spline (NURBS)

basis functions. In the following, the parametric description of curves and surface using

NURBS which is required for the derivation of the mapping methodology is provided, see

in [8] for more information.

Non-uniform rational b-spline curves

NURBS curves are parametrically described using by a set of NURBS basis functions. Let

� be the so-called knot vector consisting of knots θ̂i ∈ � with i = 1, . . . , m ∈ N in an

ascending order. Given also a polynomial order p̂, the NURBS basis functions Rp̂,i with

i = 1, . . . , n ∈ N, are constructed by means of the B-Spline basis functions Np̂,i,

Rp̂,i(θ ) =
ŵiNp̂,i(θ )

∑n
j=1 ŵjNp̂,j(θ )

, ∀θ ∈ γ̂ , (1)

ŵi being the weights of the NURBS basis functions in� and γ̂ the corresponding domain

of definition. The number of knots, the number of basis functions and the polynomial

order of the basis functions are related via m = n + p̂ + 1. The B-Spline basis functions

Np̂,i are constructed by means of the Cox-De Boor recursion formula, that is,

Nq̂,i(θ ) =
θ − θ̂i

θ̂i+q̂ − θ̂i
Nq̂−1,i(θ ) +

θ̂i+q̂+1 − θ

θ̂i+q̂+1 − θ̂i+1

Nq̂−1,i+1(θ ) , ∀θ ∈ γ̂ , (2)

where q̂ = 0, . . . , p̂. Thus, the B-Spline basis functions Np̂,i are obtained by a recursive

construction q̂ = 0, . . . , p̂ where N0,i = 1 for θ ∈ [θ̂i, θ̂i+1[ while N0,i(θ ) = 0 identically

elsewhere concerning the constant basis functions. Moreover, the definition 0/0 = 0 is

assumed in Eq. (2). The B-Spline and consequently the NURBS basis functions attain

C∞-continuity within each knot span ]θ̂i, θ̂i+1[⊂ γ̂ and C p̂−k̂i -continuity across knots

θ̂i where k̂i stands for the multiplicity of θ̂i in �. In this way, given a set of points X̂i,

i = 1, . . . , n ∈ N in R
α Euclidean space, known as the Control Polygon, the corresponding

NURBS curve C : γ̂ → R
α is parametrically constructed as,

C (θ ) =

n
∑

i=1

Rp̂,i (θ ) X̂i , (3)

at each parametric location θ ∈ γ̂ . Within this study, open knot vectors� are considered,

namely, the first and the last knots, θ̂1, θ̂m ∈ � respectively, have p̂ + 1-multiplicity so

that the curve is interpolated by the control polygon at the beginning and at the end. In

the sequel, saying that a NURBS basis Rp̂,i, i = 1, . . . , n is of polynomial order p̂ implies

that its underlying B-Spline basis Np̂,i attains polynomial order p̂.
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Non-uniform rational b-spline surfaces

The two-dimensional NURBS basis functions Rp̂1 ,p̂2 ,i,j , with i = 1, . . . , m1 ∈ N and

j = 1, . . . , m2 ∈ N, are constructed using the two-dimensional B-Spline basis functions

Np̂1 ,p̂2 ,i,j in a similar fashion as the NURBS curves in Eq. (2), namely,

Rp̂1 ,p̂2 ,i,j (θ1, θ2) =
ŵi,jNp̂1 ,p̂2 ,i,j (θ1, θ2)

∑n1
k=1

∑n2
l=1

ŵk,lNp̂1 ,p̂2 ,k,l (θ1, θ2)
∀ (θ1, θ2) ∈ �̂ , (4)

where mα , p̂α and nα stand for the number of knots at each knot vector �α , the polyno-

mial orders and the number of one-dimensional B-Spline basis functions in θα-parametric

direction, respectively. Surface’s parametric image �̂ is then defined by the square domain

spanned in θα-direction by knot vector �α . Additionally, ŵi,j stands for the weight asso-

ciated with NURBS basis function Rp̂1 ,p̂2 ,i,j . The two-dimensional B-Spline basis functions

Np̂1 ,p̂2 ,i,j in turn, are constructed as a tensor product of the underlying one-dimensional

B-Spline basis functions, that is,

Np̂1 ,p̂2 ,i,j (θ1, θ2) = Np̂1 ,i (θ1)Np̂2 ,j (θ2) , ∀ (θ1, θ2) ∈ �̂ . (5)

In this way, given a net of points X̂i,j in R
3 known as the Control Point Net, the corre-

sponding NURBS surface S : �̂ → � ⊂ R
3 is constructed by,

S (θ1, θ2) =

n1
∑

i=1

n2
∑

j=1

Rp̂1 ,p̂2 ,i,j (θ1, θ2) X̂i,j , ∀ (θ1, θ2) ∈ �̂ . (6)

Since open knot vectors �α are considered herein, see “Non-uniform rational b-spline

curves” section, surface� interpolates the four corners of the control point net. The latter

property along with the affine covariance of the NURBS basis functions, allows for the

application of strong Dirichlet boundary conditions at boundaries of untrimmed patches

within NURBS-based IGA. In the sequel, assumed is an one-to-one a map (i, j) → k such

that Rp̂1 ,p̂2 ,i,j → Rp̂1 ,p̂2 ,k with k = 1, . . . , n1n2 for a sequential ordering of the NURBS (or

B-Spline) basis functions which is necessary for the construction of the discrete equation

systems.

Trimmedmultipatch NURBS surfaces

In CAD, the trimming of aNURBS patch�(i) is performed using a set of NURBS trimming

curves γ̂
(i)
j defined in its parametric space �̂(i), see in [20,37] for more information. In

this way, trimming loops may be defined, each of which consisting of a sequence of uni-

oriented trimming curves. Accordingly, parts lying outside these loops are non-visible

and hence a lot of flexibility is added in describing arbitrary shapes in Euclidean space

originating from generic models. However, in real world engineering practice, multiple

trimmed surfaces are considered to accurately describe large scale models, such as cars,

ships, airplanes, etc. Let �(i), with i = 1, . . . , ns ∈ N, be a non-overlapping domain-
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Fig. 1 Computer-aided description of surfaces: Trimmed NURBS multipatch surfaces [35]

decomposition of �, meaning that,

ns
⋃

i=1

�(i) = � , (7a)

ns
⋃

i=1

�(i) = �d , (7b)

�(i) ∩ �(j) = ∅ ∀(i, j) ∈ I , (7c)

�(i) ∩ �(j) = γ
(i,j)
i ∀(i, j) ∈ I , (7d)

⋃

(i,j)∈I

γ
(i,j)
i = γi , (7e)

I being the set of all pairs (i, j) where i, j = 1, . . . , ns with i 	= j and let ni ∈ N be the

number of non-empty sets γ
(i,j)
i . Each of the surface patch subdomains �(i) has a NURBS

parametrization S(i) : �̂(i) → �(i) as per Eq. (6) and a set of trimming curves γ̂
(i)
j , with

parametrizations Ĉ
(i)
j as per Eq. (3), for j = 1, . . . , n

(i)
t ∈ N, n

(i)
t being the number of

curves trimming patch �(i). An example of a trimmed multipatch geometry is depicted

in Fig. 1 along with the distinct patch parametric spaces and the corresponding trimming

curves. In terms of CAD, each interface γ
(i,j)
i has a unique representation from each of

the neighboring patches, namely, γ̂
(i)
j and γ̂

(j)
i in the parametric spaces of patches�(i) and

�(j), respectively. For real world engineering applications, this distinct representation of
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the patch interfaces is in general not identical in the physical space, that is, γ
(i)
j ∩ γ

(j)
i 	=

γ
(i,j)
i . The accuracy of the interface parametrization from each neighboring patch is then

controlled by a tolerance which in most CAD software is user-defined. However, when

applying IGA on trimmed NURBS multipatches, it is important that the trimming curves

γ
(i)
j and γ

(j)
i representing the interface γ

(i,j)
i are identified so that the evaluation of the

interface integrals, accounting for the continuity enforcement across the multipatches,

can be performed. Most CAD software provide this identification of the patch interfaces

through a sew option where the topological information of the geometry is generated.

Isogeometric lightweight structural analysis on trimmedmultipatches

Isogeometric B-Rep analysis (IBRA) firstly introduced in [20] allows for performing Isogeo-

metric Analysis (IGA) on real-world CADmodels which involve trimmedmultipatches. In

this section the isogeometric analysis of lightweight structures on trimmed NURBS mul-

tipatches is briefly presented. Accordingly, membranes and thin shells of Kirchhoff-Love

shell type are used, see in [38] for more information.

Differential geometry of surfaces

Herein, a brief introduction to the differential geometry of surfaces is provided and the

underlying notions are used in the sequel, see in [39] for more information. Given is a

surface � ⊂ R
3 with parametric image �̂ ⊂ R

2. Given also a parametrization of that

surface S : �̂ → � which is well-defined almost everywhere (a.e.), that is, every para-

metric location (θ1, θ2) ∈ �̂ is mapped onto a unique Cartesian location X = (X1, X2, X3)

through map S a.e. in �̂ (see “Non-uniform rational b-spline surfaces” section for the

NURBS parametrization of a surface). Accordingly, a covariant basis may be constructed

as follows,

Aα = S,α , (8a)

A3 =
1

j̄
A1 × A2 , (8b)

where (•),α = ∂(•)/∂θα and j̄ = ‖A1 × A2‖2. Map S is then well-defined at parametric

locations where j̄ 	= 0. The components of the metric tensor A = Aαβ Aα ⊗ Aβ (also

known as the first fundamental form of a surface) are given by,

Aαβ = Aα · Aβ . (9)

The contravariant components of the metric coefficient tensor, namely, Aβγ can be

obtained by the relation AαβA
βγ = δ

γ
α , where δ

γ
α stands for the Kronecker delta symbol,

that is, δ
γ
α = 1 for α = γ and δ

γ
α = 0 otherwise. The Einstein’s summation convention

over repeated indices is assumed in the sequel. In this way, a contravariant basis can be

constructed using the contravariant metric coefficients,

Aα = AαβAβ , (10)

where surface normal vectorA3 stays the same in both the covariant and the contravariant

bases. The components of the curvature tensorB = BαβAα⊗Aβ (also known as the second

fundamental form of a surface) are given by,

Bαβ = −A3,α · Aβ = −A3,β · Aα = A3 · Aα,β , (11)

which are linked to the curvature along the parametric directions θα .



Apostolatos et al. Adv. Model. and Simul. in Eng. Sci.            (2021) 8:9 Page 8 of 55

θ2 θ3
θ1

θ1

θ2

Geometric map S Ω̂

A1
A2

A3

Ω θ2

θ3

θ1
a1

a2
a3

Ωt

Geometric map St

Deformation map

X1

X2

X3

xX

Fig. 2 Continuummechanics for lightweight structures: Mid-surface deformation at time t [35]

Mechanics of lightweight structures

Lightweight structures are typically represented by their mid-surface � which consists of

all particlesX in the reference configuration, see for example in [40]. Such structures com-

prise membranes and shells which are considered thin, that is, h̄/R̄ ≪ 20, h̄ and R̄ being

the structural thickness and the radius of curvature, respectively. Herein a Lagrangian

description of the motion is assumed and the problem is posed on the unknown displace-

ment field d : � → �t of the mid-surface, where �t stands for the current configuration

consisting of all particles x = X + d at time t ∈ T where T = [0, T∞], T0 and T∞ being

the start and the end time of the dynamic process. In this way, assumed is that � and �t

are represented by a parametric domain �̂ via the geometricmaps (“Differential geometry

of surfaces” section) S and St , respectively, see Fig. 2. Accordingly, the displacement field

may be expressed on both the Cartesian basis ei and a curvilinear basisAα ,A3 (see Eq. (8))

as follows,

d = d0i ei = dαAα + d3A3 . (12)

The weak form of dynamic equilibrium for these structures can be written as follows: Find

d ∈ H
α(�) for each time instance t ∈ T such that,

〈

δd, ρ h̄ d̈
〉

0,�
+

〈

δd, c h̄ ḋ
〉

0,�
+ a(δd,d) = l(δd) , ∀δd ∈ H

α(�) , (13)

where H
α(�) stands for the space of all square integrable vector-valued functions with

square integrable derivatives up to α-th order in �. Moreover, α = 1 and α = 2 for

the membrane and the Kirchhoff-Love shell problem, respectively. This is because the

curvature tensor involves second derivatives on the displacement field in Kirchhoff-Love

shell analysis, see also in [13]. The first and the second terms in Eq. (13) stand for the

inertia and damping of the structure, where ρ and c stand for the structural density and

the damping coefficient, respectively. The form a is specialized for the membrane and the

Kirchhoff-Love shell structural analysis in the following sections. The linear functional

l : Hα(�) → R is defined as,

l(δd) = 〈δd,b〉0,� , (14)
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where b stands for the body forces acting in �. Especially for the membrane and the

Kirchhoff-Love shell problems more types of external loads can be considered, see in

[17,41] for more information. The inner product 〈•, •〉0,� in the L2(�) space (space of

square integrable vector-valued functions in �) in Eq. (14) is defined as,

〈δd,b〉0,� =

∫

�

δd · b d� . (15)

Note that the weak form of dynamic equilibrium in Eq. (13) is formulated at each patch

�(i) independently, not accounting for the Dirichlet boundary conditions along a portion

of the domain’s boundary Ŵd ⊂ ∂�. The continuity across the multipatches and the weak

application of the Dirichlet boundary conditions are specialized for the membrane and

the Kirchhoff-Love shell in the following sections. The weak enforcement of the these

constraints is essential as the multiple patches are not conforming along their common

interfaces and the Dirichlet boundary conditions are typically enforced along trimming

curves where the basis functions are not interpolatory. Thus, the strong enforcement

of the interface and boundary constraints is in general inapplicable within IBRA. In the

sequel, the dynamic form of weak equilibrium in Eq. (13) is posed on the decomposed

open domain �d defined in Eq. (7b) and the interface continuity conditions are discussed

in the sequel.

Membrane structural analysis on multipatches

The isogeometric membrane structural analysis on multipatches employed in this work

is based on the Penalty and Nitsche-type formulations presented in [41], where also weak

application of the Dirichlet boundary conditions is considered. The Nitsche-type formu-

lation is considered as a consistent extension of the Penalty method. This is because the

Nitsche-type formulation in its original forms lacks coercivity and Penalty-like stabiliza-

tion terms are added to restore coercivity. The corresponding stabilization parameters can

be estimated by the solution of interface and boundary eigenvalue problems at each time

step [16,41]. On the other hand, one obtains a pure Penalty formulationwhen leaving only

the Penalty-like stabilization terms by excluding the additional Nitsche terms. Therefore

the statement of theNitsche-type formulation includes that of thePenalty formulation and

thus both are herein presented in a unified manner. The presented numerical examples

of multipatch isogeometric membrane structural analysis using the Penalty method are

computed using the IBRA implementation in Carat++ in-house software [42] whereas the

ones using the Nitsche-type method are computed using a MATLAB® based framework

freely available in [43]. Three-dimensional membranes can not in principle withstand

compression without any form of stabilization due to wrinkling which is a type of zero

energy mode.Wrinkling enhanced models have been extensively studied in the literature,

see also in [44]. Additionally, membranes typically need to be under prestress in order

to avoid wrinkling and be rendered stable. The latter results in a non-trivial design in

that not every free-form shape may render a shape of static equilibrium. For this purpose

form-finding methods have been developed [45] and in particular the Updated Reference

Strategy, (URS) see in [46,47]. In this study,membranes in their original design are consid-

ered and moreover no form-finding is used for the herein presented numerical examples

as the chosen geometries are by construction compatible with the applied prestress while

no cables are embedded, see also in [21,48] for more information. The Green-Lagrange

(GL) strain tensor of the mid-surface ε = εαβ Aα ⊗ Aβ is employed and its components
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are given by,

εαβ =
1

2

(

aαβ − Aαβ

)

, (16)

aαβ = aα ·aβ being the covariantmetric coefficients and aα the base vectors of the current

configuration. Moreover, Aα stand for the contravariant base vectors of the reference

configuration. The components of the energetically conjugate 2nd Piola-Kirchhoff (PK2)

stress-resultant force tensor n = nαβ Aα ⊗ Aβ of the mid-surface are defined by means

of the linear Hooke’s law (Saint-Venant material), namely,

nαβ = C
αβγ δεγ δ , (17)

where the components of the material tensor C = Cαβγ δAα ⊗Aβ ⊗Aγ ⊗Aδ are given by,

C
αβγ δ =

E h̄

2 (1 + ν)

(

AαγAβδ + AαδAβγ +
2ν

1 − 2ν
AαβAγ δ

)

, (18)

E and ν being the Young’s (elastic) modulus and the Poisson’s ratio, respectively. The

traction along any curve γ on surface � is defined by [38],

t = (nαβ + n
αβ
0 )uαaβ , (19)

where uα stand for the covariant components of the curve’s γ normal vector u on sur-

face � and where n
αβ
0 stand for the contravariant coefficients of the prestress tensor n0.

Concerning the multipatch formulation, the solution space for the Nitsche-type and the

Penalty methods isV = H
1(�d)∪H

1(γi)∪H
1(Ŵd) andV = H

1(�d)∪L
2(γi)∪L

2(Ŵd),

respectively. Fields restricted in a patch and along an interface are represented in the

sequel by a superscript that is, •|
�(i)

= •(i) and •|
γ (i,j)

= •(i,j), respectively. Let χ̂ stand for

the interface displacement jump, that is, χ̂|
γ
(i,j)
i

= d(i) − d(j). The mean interface traction

field is given by,

t̄ =
1

2

(

t(i) − t(j)
)

. (20)

Accordingly, form a : V × V → R in Eq. (13) is defined as follows for the multipatch

isogeometric membrane analysis using the Nitsche-type method,

a(δd,d) =

∫

�d

δε : (n + n0) d� −
〈

δχ̂, t̄
〉

0,γi
−

〈

δt̄, χ̂
〉

0,γi

+〈δχ̂, α̂χ̂〉0,γi − 〈δd, t〉Ŵd
− 〈δt,d〉Ŵd

+ 〈δd, ᾱd〉0,Ŵd
,

(21)

where α̂ : γi → R and ᾱ : Ŵd → R stand for the stabilization parameters (Nitsche-

type method) or the Penalty parameters (Penalty method) when the additional terms

stemming from the Nitsche-type method are omitted. In case the Nitsche-type method

is employed, the corresponding stabilization parameters are estimated automatically by

solving a sequence of interface and boundary eigenvalue problems, see in [41] for more

information. There are defined as piecewise constant along each interface γ
(i,j)
i and each

Dirichlet boundary Ŵ
(i)
d . On the other hand, in case the Penalty method is employed the

Penalty parameters are discretization-dependent and are computed similar to the rule

proposed in [17], namely,

α̂(i,j) = h
(i,j)
−1 ‖C‖ , (22a)

ᾱ(i) = h
(i)
−1 ‖C‖ , (22b)



Apostolatos et al. Adv. Model. and Simul. in Eng. Sci.            (2021) 8:9 Page 11 of 55

where h
(i,j)
−1 and h

(i)
−1 stand for the inverse of the smallest knot span length in the physical

space along the interface trimming curve γ
(i,j)
i and along the trimming curve Ŵ

(i)
d defin-

ing the portion of the Dirichlet boundary having an intersection with ∂�(i) within an

isogeometric discretization, respectively. The norm of the material tensor in Eqs. (22) is

understood as ‖C‖ =
(

∑2
α=1

∑2
β=1

∑2
γ=1

∑2
δ=1

(

Cαβγ δ
)2

)1/2
, that is, the square root of

the sum of its squared components.

Kirchhoff-Love structural analysis on multipatches

Similar to “Membrane structural analysis on multipatches” section, the herein employed

isogeometricKirchhoff-Love shell structural analysis onmultipatches accounting forweak

Dirichlet boundary conditions is based on a Penalty formulation as presented in [17,

20]. The employed numerical example of multipatch isogeometric Kirchhoff-Love shell

structural analysis using the Penalty method, that of the NREL phase VI wind turbine

[23], is computed using the IBRA implementation within the in-house software Carat++.

Moreover, small strains are herein assumed and thus the corresponding linearised theory

is briefly presented.

The linearised GL strain strain tensors ε = εαβ Aα ⊗ Aβ and κ = καβA
α ⊗ Aβ for the

membrane and the bending strain are defined as [49],

εαβ =
1

2

(

Aβ · d,α + Aα · d,β
)

, (23a)

καβ = −A3 · d,αβ + Aα,β · A3
1

j̄
((A2 × A3) · d,1 − (A1 × A3) · d,2)

+
1

j̄

((

Aα,β × A2

)

· d,1 −
(

Aα,β × A1

)

· d,2
)

, (23b)

where (•),αβ = ∂(•),α/∂θβ . The PK2 stress-resultant force tensor for the in-plane stiffness

of the Kirchhoff-Love shell is defined as in Eq. (17). Similarly, the PK2 stress-resultant

tensor for bending stiffness of the Kirchhoff-Love shell m = mαβ Aα ⊗ Aβ is defined

using also the linear Hooke’s law, that is,

mαβ = h̄2 C
αβγ δκγ δ . (24)

The rotation field ω = ωζAζ needs to be in this case defined, namely,

ωζ = −
(

d3,α + dγBγα

)

ǫαζ , (25)

where ǫαζ is the Levi-Civita symbol. For the multipatch formulation using the Penalty

method, the solution space is in this caseV = H
2(�d)∪H

1(γi)∪L
2(Ŵd). Let χ̃ stand for

the jump on the rotation field across the multipatches, that is, χ̃|
γ
(i,j)
i

= ω(i) + ω(j). In this

way, the form a : V × V → R in Eq. (13) for the multipatch isogeometric Kirchhoff-Love

shell analysis using the Penalty method is defined as,

a(δd,d) =

∫

�d

δε : n + δκ : m d� + 〈δχ̂, α̂χ̂〉0,γi + 〈δχ̃, α̃χ̃〉0,γi

+〈δd, ᾱd〉0,Ŵd
.

(26)

Additionally, α̃ : γi → R stands for the Penalty parameter associated with the imposition

of the rotation continuity across the interfaces. It is chosen also piecewise constant and is

defined similar to Eqs. 22, that is,

α̃(i,j) = h
(i,j)
−1 h2‖C‖ , (27)
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along interface boundary γ
(i,j)
i .

Isogeometric spatial discretization on trimmedmultipatches

Concerning the discretization of the aforementioned weak forms, the Isogeometric B-

Rep Analysis (IBRA) is employed, see also in [20]. In this way, the finite dimensional

subspace Vh ⊂ V is constructed using the parametric description of each patch �(i) as

Vh =
∏ns

i=1 V
(i)
h where,

V
(i)
h =

{

d(i) ∈ V
(i)

∣

∣

∣
d(i) ∈ R(�(i)) ∀i = 1, . . . , ns

}

, (28)

R(�(i)) being the space of all vector-valued piecewise rational polynomials for which the

NURBS basis functions of the geometric parametrization constitute a basis in each patch

�(i). Let φ̄
(i)
j , with j = 1, . . . , dimV

(i)
h , be a basis of V

(i)
h for all i = 1, . . . , ns. Then, there

exist reals d̂
(i)
j , the so calledDegrees of Freedom (DOFs), such that for each d ∈ Vh it holds,

d =

ns
∑

i=1

dimV
(i)
h

∑

j=1

φ̄
(i)
j d̂

(i)
j . (29)

Herein, the vector-valued NURBS basis functions are constructed as,

φ̄
(i)
r = R

(i)

p̂
(i)
1 ,p̂

(i)
2 ,k

el , (30)

where k = ⌈r/3⌉ and l = r−3⌈r/3⌉+3 for all r = 1, . . . dimV
(i)
h stand for the indices of the

control points and the Cartesian directions, respectively. Additionally, R
(i)

p̂
(i)
1 ,p̂

(i)
2 ,k

and n
(i)
α ,

stand for the scalar-valued NURBS basis functions in patch �(i) with polynomial orders

p̂
(i)
1 and p̂

(i)
2 and the number of control points of patch �(i) in θ

(i)
α -parametric direction,

respectively, see “Non-uniform rational b-spline surfaces” section. The latter implies that

dimV
(i)
h = 3n

(i)
1 n

(i)
2 . These DOFs do not represent physical values since they are defined

on the control points which in general do not interpolate the geometry.

In this way, projection of variational problem in Eq. (13) onto Vh results into the fol-

lowing discretized in space equation system,

M
¨̂
d + D

˙̂
d + R(d̂) = Ft , (31)

where
¨̂
d,

˙̂
d and d̂ stand for the vectors of acceleration, velocity and displacement DOFs,

respectively. In addition, M and D stand for the mass and damping matrices resulting

from the spatial discretization of the first and second terms of variational problem in

Eq. (13), respectively. Moreover, R(d̂) stands for the steady-state residual vector whose

linearization results in the steady-state tangent stiffness matrix K(d̂) and whose entries

are given by Kij(d̂) = ∂Ri(d̂)/∂d̂j , Ri(d̂) and d̂j being the i-th component of the residual

vector and the j-th DOF, respectively. The definition of the tangent stiffness matrices

for the membrane BVP can be found in [21,41] and for the Kirchhoff-Love shell BVP in

[17,20]. In this study, the damping matrix is approximated using the Rayleigh damping

method, that is,

D = αrM + βrK(d̂0) , (32)

where αr and βr stand for the so-called Rayleigh damping parameters and d̂0 stands for

the initial condition on the displacement field, see in [50] for more information.



Apostolatos et al. Adv. Model. and Simul. in Eng. Sci.            (2021) 8:9 Page 13 of 55

Time discretization andmodal analysis

The Newmark method [51] is used in this study for the time discretization of linear

equation system in Eq. (31). Accordingly, the continuous time domain T is discretized

into a set of time steps tn̂. The system is linearised using the Newton-Raphson iterative

method, that is,

K̄n̂,̂i �îd̂n̂ = −R̄n̂,̂i , (33)

where �î d̂n̂ = d̂n̂,̂i+1 − d̂n̂,̂i, d̂n̂,̂i being the vector of DOFs at the n̂-th time step and at

î-th Newton-Raphson iteration. The dynamic stiffness matrix K̄n̂,̂i and residual vector R̄n̂,̂i

at the n̂-th time step and at î-th Newton-Raphson iteration are defined by means of the

corresponding steady state tangent stiffness matrix Kn̂,̂i and residual vector Rn̂,̂i, namely

[35,41,52],

K̄n̂,̂i =

(

1

βn (�t)2
M +

γn

βn�t
D

)

+ Kn̂,̂i , (34a)

R̄n̂,̂i =

(

1

βn (�t)2
M +

γn

βn�t
D

)

d̂n̂,̂i + Rn̂,̂i − F̂n̂

−

(

1

βn (�t)2
M +

γn

βn�t
D

)

d̂n̂−1 −

(

1

βn�t
M −

βn − γn

βn

)

˙̂
dn̂−1

−

(

1 − 2βn

2βn
M − �t

2βn − γn

2βn
D

)

¨̂
dn̂−1 , (34b)

where βn and γn stand for the Newmark parameters and where d̂n̂−1,̂i,
˙̂
dn̂−1,̂i and

¨̂
dn̂−1,̂i

stand for the displacement, velocity and acceleration DOFs at time step tn̂−1, see in [41]

for more information on the discrete equation systems.

Concerning modal analysis, this is performed on the linearised system using the linear

stiffness matrix K(d̂0) and by solving the following eigenvalue problem,

det
(

ω2
i M + K(d̂0)

)

= 0 , (35)

where ωi = 2π fi are the circular eigenfrequencies and where fi stand for the natural

eigenfrequencies of the system.

Isogeometric B-Rep analysis of the NREL phase VI wind turbine

In this section, the NREL phase VI wind turbine with flexible blades [23] is employed as

demonstration of isogeometric analysis on multipatch surfaces in industrial scale appli-

cations, see Fig. 3c. This numerical example is herein employed for the demonstration of

IBRA on a real-world engineering structure in multiphysics environment and for validat-

ing the underlying computational models which are later on used in the context of FSI

with the proposed isogeometric B-Rep mortar-based mapping method. A picture of the

actual turbine can be seen in Fig. 3a. The corresponding CAD model consisting of rigid

parts and the two flexible blades whose stiffness is enhanced using two longitudinal spars

along the longitudinal trimming curves on the blades’ surfaces, is shown in Fig. 3b. The

problem is solved using the linearised Kirchhoff-Love shell theory within IBRA presented

in “Isogeometric lightweight structural analysis on trimmed multipatches” section. The

results of this simulation were firstly presented in the dissertation [35] and are repeated

herein for the sake of completeness of this study.
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Fig. 3 NREL phase VI wind turbine: Picture, problem setting, standard finite element and IBRA computational

models for the flexible blades [35]
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The original computational model in [53] involves a composite material model with

varying thickness by analysing the data provided in [23]. Herein a simplifiedmodel is used

with a Saint-Venant Kirchhoff material. The homogenized Young’s modulus, density and

thickness of the flexible blades are obtained by a calibration using a geometrically linear

static and a modal analysis against the maximum displacement and the first eigenfre-

quency, respectively, computed in [53]. In this way, the Young’s modulus, the density and

the thickness of the flexible blades assumed to be E = 6×1010 Pa, ρ = 1.515×103 Kg/m3

and h̄ = 7 mm, respectively. The Poisson ratio is then chosen as ν = 0.2. Regarding

the static analysis, the flexible blades are subject to self weight, namely, b = −ρh̄ e3.

The results of IBRA for this example are compared with the results obtained using a

standard finite element discretization of the flexible blades, see Fig. 3. Accordingy, the

FEM model consists of 48630 triangular elements (Fig. 3(c)) based on a shell model with

Reissner-Mindlin (RM) kinematics withinCarat++ software ( [42]). Then, the correspond-

ing h-refined multipatch NURBS computational model of the flexible blades is shown in

Fig. 3(d). Subsequently, the NURBS computational model of the right blade is shown both

intact and decomposed into its underlying trimmed patches in Fig. 4 where the geomet-

ric complexity and the large number of the underlying trimmed NURBS multipatches

comprising the geometry is highlighted. It is worth mentioning that the spars and the tip

of the NURBS computational model are connected to the rest of the blades’ skin with a

C0-parametric continuity forming geometric kinks, thus adding another complexity to

the NURBS multipatch model. Each blade consists of 37 trimmed patches with 170 inter-

face boundaries of highly diverse sizes and parametrizations. The scaling associated to

the Penalty parameters is then chosen as the inverse of the minimum element edge size

along each interface and Dirichlet boundary (see “Kirchhoff-Love structural analysis on

multipatches” section) for α̂, α̃ and ᾱ, respectively.

The contour of the 2-norm of the displacement field ‖d‖2 across the blades in the cur-

rent configuration due to self-weight for both the standard finite element analysis and

IBRA is shown in Fig. 5 demonstrating excellent accordance of the results. Moreover, an

eigenfrequency analysis for both models is performed, see Eq. (35), and the first three

eigenfrequencies of both the standard FEM and IGA models are shown in Fig. 6 demon-

strating once more an excellent accordance of the results also in this context.

Isogeometric B-Repmortar-basedmappingmethod on trimmedmultipatches

In this section the isogeometric B-Rep mortar-based mapping method is described in

which fields are transformed between a low order faceted discretization and a NURBS

multipatch description of a surface. Additionally, the NURBS multipatch description of

the surface can be used as a mediator Exact Coupling Layer (ECL). The ECL is used to

smooth the transformed fields between two low order representations of the FSI interface

and it is represented using the exact CADmodel of the common interface. In the sequel of

this chapter it is assumed that � and �h are the exact surface representations stemming

fromCAD as described in “Computer-aided design using non-uniform rational b-splines”

section and a low order faceted representation of the surface with a finite number of

polygonal elements, respectively.
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Fig. 4 NREL phase VI wind turbine: Right blade of the NREL Phase VI wind turbine, both complete and

decomposed into its underlying trimmed patches [35]

Fig. 5 NREL phase VI wind turbine: Contour of the 2-norm of the displacement fields under the self-weight

of the wind turbine blades for both the FEM and IGAmodels over the scaled by 200 current configuration [35]



Apostolatos et al. Adv. Model. and Simul. in Eng. Sci.            (2021) 8:9 Page 17 of 55

Fig. 6 NREL phase VI wind turbine: Three first mode shapes with their corresponding eigenfrequencies for

both the FEM and IBRA with Penalty models [35]

Theory

This section presents the problemplacement alongwith theweak formulation and the dis-

crete equation system governing the isogeometric B-Rep mortar-based mapping method

which is formulated as extension of the isogeometric mortar-based mapping method

proposed in [52]. This isogeometric B-Rep mortar-based mapping method was firstly

presented in [35] and it is herein repeated in more detail by including additional imple-

mentation and methodological aspects. All formulas are provided for the special case

where fields are transformed between a low order discretized and a multipatch NURBS

surface, however the following principles might well apply for any mortar-based mapping

method. Accordingly, let Ti, i = 1, . . . , ne ∈ N stand for the set of standard low order

finite elements in �h. Let q
h ∈ V

h
q be a field defined isoparametrically on the low order

discretized surface �h where,

V
h
q =

{

qh ∈ L
2 (�h)

∣

∣

∣q
h

|Ti
∈ Pα (Ti) for all Ti ∈ �h

}

, (36)

and where Pα (Ti) stands for the linear (α = 1) or bilinear (α = 2) basis functions in each

finite element Ti. Let also �(i), i = 1, . . . , ns be a non-overlapping decomposition of � as

defined in Eqs. (7). The goal is to find that field q ∈ L
2 (�d) which is the closest to qh in

the L
2(�d)-space, namely,

q = argmin
q∈L2(�d)

‖qh − q‖0,�d
, (37)

where field q is discontinuous along the interface γi and where �d is defined in Eq. (7b).

The problem in Eq. (37) is herein also subject to the following interface and boundary
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Fig. 7 Problem placement: Low order FEM discretization and CAD representation of a surface [35]

conditions,

q = 0 on Ŵd , (38a)

q(i) − q(j) = 0 on each γ
(i,j)
i , (38b)

ω
(i)
t + ω

(j)
t = 0 on each γ

(i,j)
i , (38c)

whereq(i) = q|
�(i)

as described in ‘Membrane structural analysis onmultipatches” section

andω
(i)
t = ωt(q

(i)) using only the rotation around the tangent to eachboundaryγ
(i,j)
i vector

following the definition introduced in Eq. (25), that is,

ωt = (q3,α + qγBγα)u
α , (39)

qγ and q3 being the curvilinear components of q defined similar to Eq. (12) and uα

the contravariant components of the normal vector u along γ
(i,j)
i , see in [17] for more

information. The aforementioned problem is depicted in Fig. 7. Similar to “Kirchhoff-

Love structural analysis on multipatches” section, let χ̂ and χ̃ represent the interface

jump on q and its rotation around the tangent to the interface vector ωt, respectively.

With the aforementioned condition one can restrict the transformed field along Ŵd while

simultaneously maintaining a solution in H
1 (γi). The solution of problem (37) subject to

the interface and boundary conditions (38) can be obtained by the minimization of the

following, augmented with Penalty terms, variational formulation: Given a qh ∈ V
h
q, find
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a q ∈ Vq, such that,

〈δq,q〉0,�d
+ 〈δχ̂, α̂χ̂〉0,γi + 〈δχ̃, α̃χ̃〉0,γi + 〈δq, ᾱq〉0,Ŵd

=
〈

δq ,qh
〉

0,�d

, (40)

for all δq ∈ Vq. Space Vq is defined in a similar manner as Vh in “Isogeometric spatial

discretization on trimmed multipatches” section, that is, Vq =
∏ns

i=1 V
(i)
q such that,

V
(i)
q =

{

q(i) ∈ L
2(�(i))

∣

∣

∣
q(i) ∈ R(�(i)) ∀i = 1, . . . , ns

}

. (41)

The weak form in Eq. (40) has a unique solution according to Lax-Milgram theorem [54]

since the bilinear form defining the left-hand side of Eq. (40) is coercive and continuous

in Vq × Vq whereas the functional defining the right-hand side of Eq. (40) is linear in

Vq. However, the quality of the solution depends on the choice of the Penalty param-

eters as typical for the Penalty methods, see also in [55]. Since spaces V
h
q and Vq are

by construction finite dimensional, given the vector-valued standard finite element and

NURBS basis functions at each patch�(i) (see also “Isogeometric spatial discretization on

trimmed multipatches” section), φh
i , i = 1, . . . , dimV

h
q and φ̄

(i)
j , j = 1, . . . , dimR(�(i)),

respectively, one has,

qh =

dimVh
q

∑

i=1

φh
i q̂

h
i , (42a)

q =

ns
∑

i=1

dimR(�(i))
∑

j=1

φ̄
(i)
j q̂

(i)
j , (42b)

where q̂hi and q̂
(i)
j stand for the DOFs of the finite element discretization and the DOFs of

the isogeometric discretization within each patch�(i), respectively. These can be grouped

into vectors,

q̂h =
[

q̂h1 · · · qh
dimVh

q

]T
, (43a)

q̂(i) =
[

q̂
(i)
1 · · · q̂

(i)
dimVq

]T
. (43b)

Accordingly, the discrete equation system corresponding to the weak form in Eq. (40)

reads,

(Crr + Cα̂,α̃,ᾱ) q̂ = Crnq̂
h , (44)

where,

Crr =

⎡

⎢

⎢

⎣

C
(1)
rr · · · 0

...
. . .

...

0 · · · C
(ns)
rr

⎤

⎥

⎥

⎦

, (45a)
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Crn =

⎡

⎢

⎢

⎣

C
(1)
rn · · · 0

...
. . .

...

0 · · · C
(ns)
rn

⎤

⎥

⎥

⎦

, (45b)

Cα̂,α̃,ᾱ =

⎡

⎢

⎢

⎣

Ĉ
(1)
α̂ + C̃

(1)
α̃ + C̄

(1)
ᾱ · · · Ĉ

(1,ns)
α̂ + C̃

(1,ns)
α̃

...
. . .

...

Ĉ
(ns ,1)
α̂ + C̃

(ns ,1)
α̃ · · · Ĉ

(ns)
α̂ + C̃

(ns)
α̃ + C̄

(ns)
ᾱ

⎤

⎥

⎥

⎦

, (45c)

q̂ =
[

q̂(1) · · · q̂(ns)
]T

. (45d)

Additionally, the entries of matrices C
(i)
rr , C

(i)
rn, Ĉ

(i)
α̂ , C̃

(i)
α̃ , C̄

(i)
ᾱ , Ĉ

(i,j)
α̂ and C̃

(i,j)
α̃ are given by,

C
(i)
rr (j,k)

=
〈

φ̄
(i)
j , φ̄

(i)
k

〉

0,�(i)
, (46a)

C
(i)
rn (j,k)

=
〈

φ̄
(i)
j ,φh

k

〉

0,�(i)
, (46b)

Ĉ
(i)
α̂ (k,l)

=

ns
∑

j=1

〈

φ̄
(i)
k , α̂φ̄

(i)
l

〉

0,γ
(i,j)
i

, (46c)

C̃
(i)
α̃ (k,l)

=

ns
∑

j=1

〈

ωt(φ̄
(i)
k ), α̃ ωt(φ̄

(i)
l )

〉

0,γ
(i,j)
i

, (46d)

C̄
(i)
ᾱ (j,k)

=
〈

φ̄
(i)
j , ᾱφ̄

(i)
k

〉

0,Ŵ
(i)
d

, (46e)

Ĉ
(i,j)
α̂ (k,l)

= ±
〈

φ̄
(i)
k , α̂ φ̄

(j)
l

〉

0,γ
(i,j)
i

, (46f)

C̃
(i,j)
α̃ (k,l)

=
〈

ωt(φ̄
(i)
k ), α̃ ωt(φ̄

(j)
l
)
〉

0,γ
(i,j)
i

, (46g)

where Ŵ
(i)
d = Ŵd ∩ ∂�(i) and where the ± sign in Eq. (46f) depends on the ordering of the

neighboring patches �(i) and �(j) in I . The matrix containing the Penalty terms, namely,

Cα̂,α̃,ᾱ in Eq. (45c), is optional and can be selectively used. In case some of the corre-

sponding Penalty contributions are not considered, the corresponding Penalty parameter

at the subscript of Cα̂,α̃,ᾱ is replaced by zero. Its application depends on the numerical

example, see “Numerical results” section. As aforementioned, problem in Eq. (44) is well

defined provided that the corresponding Penalty parameters are carefully chosen. Herein,

the choice of the Penalty parameters is made similar to Eqs. (22), that is,

α̂(i,j) = h
(i,j)
−1 (47a)

α̃(i,j) = α̂(i,j)‖Bt‖
−1
2 , (47b)

ᾱ(i) = h
(i)
−1 (47c)

where the definitions of h
(i,j)
−1 and h

(i)
−1 can be found in “Membrane structural analysis on

multipatches” section. Moreover, Bt stands for the B-operator vector Bt resulting from

the discretization of the rotation field ωt = ω · ên (see also in Eq. (25)), ên being the

outward normal vector to the boundary (yet tangent on the surface) along which the

bending component ωt of the rotation ω is defined. In other words, the i-th component



Apostolatos et al. Adv. Model. and Simul. in Eng. Sci.            (2021) 8:9 Page 21 of 55

Fig. 8 Realization: NURBS patch �(i) and the part of the finite element mesh �
(i)
h

⊂ �h which has a

projection on �(i) [35]

of Bt is given by,

Bt (i) =

(

∂φi

∂θα

· A3 + φi · A
γBγα

)

êαn , (48)

êαn being the contravariant components of unit vector ên, for more information see in

[35]. For the mortar-based transformation of a field q defined isogeometrically over a

multipatch NURBS surface to a field qh defined on a standard finite element discretized

surface, problem in Eq. (44) simply reverses, that is,

Cnnq̂
h = Cnrq̂ , (49)

where Cnn is defined similar to Crr in Eq. (45a) with entries,

Cnn (i,j) =
〈

φh
i ,φ

h
j

〉

0,�(i)
, (50)

and where Cnr = (Crn)
T, see in Eq. (45b). The fact that the variational problem of the

isogeometric B-Rep mortar-based mapping method is well-posed is reflected onto the

fact that matrices Crr and Cnn, are square, symmetric and positive definite, see Eqs. (44)

and (49), respectively.

Realization

In this section the implementation and methodological aspects of the isogeometric B-

Rep mortar-based mapping method are discussed in detail. As already mentioned in

“Theory” section, fields are to be transformed between a trimmedmultipatch NURBS and

a low order discretized surface. In the following, the corresponding algorithms and their

properties are discussed in detail.

Projection of the finite elementmesh onmultipatch surface

Firstly the numerical evaluation of the integrals on �(i) is discussed, see Eqs. (45a), (45b)

and (50), respectively.Within this study, the exact geometry�(i) for eachpatch is chosen as

the integration surface. Accordingly, the finite elementmesh is projected onto theNURBS

surface, by projecting each node Xi, i = 1, . . . , nn ∈ N onto �(i) through the nonlinear
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(i)
k

θ
(i)
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X
(i)
l

X
(i)
j

X
(i)
kGeometry map S

(i)

(i)

Fig. 9 Realization: Projection of the elements of �(i)
h
, e.g.Xj -Xk -Xl (see Fig. 8), onto �(i) [35]

map θ
(i)
j = (S(i))−1

(

Xj

)

for all nodes in the finite element mesh using a Newton-Raphson

scheme. In order to accelerate the projection process, the Newton-Raphson algorithm for

the projection of a node onto each patch �(i) is only performed for these nodes Xi which

are containedwithin the patch bounding box scaled by a small tolerance. The latter scaling

of the patch bounding box is necessary in order to include as candidates these nodeswhich

have projection very close to the patch boundary. Consider the finite elementXj-Xk-Xl in

right part of Fig. 8. Each of its nodes are projected onto �(i) to obtain the corresponding

parametric coordinates in the parametric space �̂(i) of the patch. Subsequently, a linear

connection in the parametric space �̂(i) is made in order to obtain the image of the

element in the parametric space of the patch, namely, θ
(i)
j -θ

(i)
k
-θ

(i)
l
, see left part of Fig. 9.

The latter linear approximation of the element edges in the parametric space of the patch

is a consistent approximation since the projection error tends to zero as the element

size gets smaller. Then, the image of the element back onto the geometric space can be

obtained using the geometric transformation X(i) = S(i)(θ(i)), defined in Eq. (6), see right

part of Fig. 9.

Projection on patch boundary

Consider one NURBS surface patch and the corresponding part �
(i)
h ⊂ �h of the finite

element mesh �h which has a projection on �(i), see Fig. 8. Occasionally, there exist

finite elements which are partially projected inside and partially outside the boundaries

of the patch parametric space (edge Xn-Xm in Fig. 10a). To obtain the parts of these

elements which lie within the computational domain of the patch, the corresponding

finite element edges are clipped with the patch boundary using two methods: A Newton-

type and a bisection method. Firstly the Newton-type method is employed due to its

quadratic convergence behavior and in case convergence to the solution is not achieved,

then the bisection method is used which is slower in terms of convergence but robust,

providing always a solution.
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For the Newton-type method, as closest point of the patch boundary ∂�(i) to edge Xn-

Xm is considered the point X̃
(i)
nm(ξ

(i)
nm) which lies on the plane spanned by the surface unit

normal of �(i) on the patch boundary and edge Xn-Xm, which in addition passes from

vertex Xn. The surface normal vector defining the aforementioned plane is given by,

n =
1

‖(Xm − Xn) × A
(i)
3 ‖2

(Xm − Xn) × A
(i)
3 , (51)

A
(i)
3 being the surface normal of patch �(i) (Eq. (8b)). Additionally, ξ

(i)
nm represents the

parametric coordinate (θ
(i)
1 or θ

(i)
2 ) along boundary ∂�(i) since patch boundaries are always

aligned with either parametric direction. In this way, the residual equation writes,

r(i)(ξ (i)) = (X̃(i)
nm(ξ

(i)
nm) − Xn) · n . (52)

For the case depicted in Fig. 10a it clearly holds ξ (i) = θ
(i)
1 (see Fig. 9). The Newton-

Raphson linearisation of residual in Eq. (52) results in,

∂r(i)

∂ξ (i)

∣

∣

∣

∣

∣

ξ
(i)
nm,j

�ξ
(i)
nm,j = −r(i)

(

ξ
(i)
nm,j

)

, (53)

where �ξ
(i)
nm,j = ξ

(i)
nm,j+1 − ξ

(i)
nm,j and where Jacobian ∂r(i)/∂ξ (i) is given by,

∂r(i)

∂ξ (i)
= A

(i)
ξ · n

+(X̃(i)
nm(ξ

(i)) − Xn) ·

(

(Xm − Xn) ×

(

∂A
(i)
1

∂ξ (i)
× A

(i)
2 + A

(i)
1 ×

∂A
(i)
2

∂ξ (i)

))

,

(54)

where A
(i)
ξ = A

(i)
1 if ξ (i) = θ

(i)
1 and A

(i)
ξ = A

(i)
2 if ξ (i) = θ

(i)
2 . Solving the iterative system in

Eq. (53) yields the solution X̃
(i)
nm(ξ

(i)
nm). The corresponding convergence criterion is based

on the residual magnitude, namely |r(i)(ξ (i))|. To obtain the part of the edgeXn-Xm which

is projected on patch �(i), namely Xn-X
(i)
nm, one has,

‖X(i)
nm − Xn‖2 =

1

‖Xm − Xn‖2
(Xm − Xn) · (X̃(i)

nm − Xn) , (55)

thus obtaining the closest point of edge Xn-Xm to patch boundary ∂�(i) namely X
(i)
nm =

Xn + λ
(i)
nm(Xm − Xn), where λ

(i)
nm = ‖X

(i)
nm − Xn‖2/‖Xm − Xn‖2. As initial guess for the

nonlinear problem in Eq. (53) the middle parametric location in either parametric direc-

tion θ
(i)
1 or θ

(i)
2 is in this study chosen depending on which parametric direction the patch

boundary is aligned. The Newton-type algorithm is depicted in Fig. 10b.

Concerning the bisection method, two sequences of pointsXi,j andXo,j on edgeXn-Xm

are generated,whereXi,j have aprojection andwhereXo,j donothave aprojectiononpatch

�(i). We seek the point X̃
(i)
nm which the closest to edge Xn-Xm on patch boundary ∂�(i)

and its imageX
(i)
nm on edgeXn-Xm. The initial condition of the bisection algorithm are the

vertices of the edge itselfwhich isXi,0 = Xn andXo,0 = Xm for the casedepicted inFig. 10a.

Then, the midpoint of segment Xi,j-Xo,j is iteratively computed as Xm,j = (Xi,j + Xi,j)/2

and assigned to either Xi,j+1 or Xo,j+1 depending on whether or not it has a projection

on patch �(i) while its projection X
(i)
nm,j on patch �(i) with parametric image θ̃

(i)
nm,j is

an approximation of X
(i)
nm. The method carries on until a specified tolerance based on the

distance ‖X
(i)
nm,j+1−X

(i)
nm,j‖2. In case the obtained projectionXnm is not sufficiently close to

the boundary then an additional projection step is performedwhere θ̃nm is projected on the
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Ω(i)

∂Ω(i)

Ω
(i)
h

Xn

Xm

X1

X2

X3

a Finite element edge crossing patch’s boundary.

X1

X2

X3

Xn

Xm

A3

A3

n

n

X̃
(i)
nm

X̃
(i)
nm,j

Ω(i)

∂Ω(i)

X
(i)
nm

b Newton-type algorithm for projecting an edge
onto a patch boundary.

Xn = Xi,0

Ω(i)

Xm = Xo,0

Xm,0 = Xo,1 = Xo,2 = . . .X̃
(i)
nm,0

Xm,1 = Xi,1 = . . .

X̃
(i)
nm,1

X1

X2

X3

∂Ω(i)

c Bisection algorithm for projecting an edge onto
a patch boundary.

Fig. 10 Realization: Projection of a finite element edge onto patch’s boundary using the bisection and the

Newton-type method

closest patch boundary via a two-dimensional point-to-curve projection in the parametric

space of patch�(i), namely �̂(i). Accordingly, the ratio of the projected part of edgeXn-Xm

on patch boundary ∂�(i) can be obtained as λ
(i)
nm = ‖X

(i)
nm − Xn‖2/‖Xm − Xn‖2 similar

to the Newton-Raphson method described before. The bisection algorithm is depicted in

Fig. 10c.

TheNewton-type and bisectionmethods developed for the projection of a finite element

edge onto a patch boundary may not yield the exact same results because of the inherent

non-convex nature of the closest projection. This is because the projection problemmight

be locally non-convex and thus a unique solution may not be available. However, this

algorithmic step is only necessary for obtaining a partial image of the element in the
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parametric spaces of the different patches it has a projection for evaluating the integrals

presented in “Theory” section. The combination of both aforementioned methods for the

projection of an element edge onto a patch boundary provides a very reliable and robust

solution for the projection of an edge on a patch boundary.

Reconstruction of the finite element in the parametric space of the patch

Having the projection of the element edges on the patch boundary (“Projection on patch

boundary” section) the next step is to reconstruct the partially projected finite element in

the parametric space of the patch. This is necessary as the basis functions of the element in

the finite elementmesh are computed based on the shape of the element in the parametric

space of the patch for the evaluation of the integrals in Eqs. (46b) and (50) as the integration

in this study is always performed over the NURBS parametric description of the interface.

Since herein finite elementmeshes with including elements of triangular and quadrilateral

types are employed, this study is confined into the three cases depicted in Fig. 11, without

loss of generality, while all other cases may be treated by a combination of the latter three

cases.

For case 1 (Fig. 11a) consider a triangular elementXm-Xn-Xl for which nodesXn andXl

have a projection on patch �(i) and where node Xm does not have a projection on patch

�(i). Given the parametric coordinates θ
(i)
k

and θ(i)r of the projections of edges Xn-Xm and

Xl-Xm with the patch boundary ∂�(i), respectively, these are extended in the fictitious

part of parametric space �̂(i) and their intersection θ̃
(i)
m is considered as the reconstructed

fictitious image of node Xm in the parametric space of patch �(i).

For case 2 (Fig. 11b) consider a triangular element Xm-Xn-Xl for which node Xm has

a projection on patch �(i) and where nodes Xn and Xl do not have a projection on

patch �(i). The fictitious parametric images θ̃
(i)
n and θ̃

(i)
l of nodes Xn and Xl , respectively,

are reconstructed using the projections θ(i)mn and θ
(i)
ml

of edges Xm-Xn and Xm-Xl with

patch boundary ∂�(i), respectively, and by also using the corresponding projection ratios

λmn = 1 − λnm and λml = 1 − λlm. The computation of projection ratios λnm and λlm is

detailed in “Projection of the finite element mesh on multipatch surface” section.

For case 3 (Fig. 11c) consider a quadrilateral element Xm-Xn-Xp-Xl for which node Xm

has a projection on patch �(i) and where nodes Xn, Xp and Xl do not have a projection

on patch �(i). The fictitious parametric coordinates θ̃
(i)
n and θ̃

(i)
l of nodes Xn and Xm are

computed similar to case 2. The fictitious parametric coordinate θ̃
(i)
p is obtained by means

of the projection θ(i)mp of edge Xm-Xp with the patch boundary ∂�(i) and by also using

projection ratio λpm = 1 − λmp.

Numerical integration

The set of trimming curves γ
(i)
k
, k = 1, . . . , n

(i)
t ∈ N which trim patch �(i) is subsequently

linearised, see also in [35]. For the linearisation, the union of p̂
(i)
k

+ 1 points equidistantly

placed in the parametric space γ̂
(i)
j of each trimming curve and the correspondingGreville

Abscissae1 of the curve, are chosen, where p̂
(i)
k

stands for the polynomial order of NURBS

curve γ
(i)
k
, see in “Computer-aided design using non-uniform rational b-splines” section.

Next, the projected elements onto the NURBS parametric space are clipped with the

1The Greville Abscissae provide an indication to the parametric locations where the basis functions attain their maxi-

mum values.
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a   Case 1: A node without projection on patch Ω (i) reconstructed using

two neighboring nodes which have a projection on Ω(i) (triangular ele-
ment).
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b   Case 2: Two nodes without projection on patch Ω (i) reconstructed

using the same neighboring node which has a projection on patch Ω(i)

(triangular element).
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c   Case 3: Three nodes without projection on patch Ω (i) reconstructed

using the same neighboring node which has a projection on patch Ω(i)

(quadrilateral element)

Fig. 11 Realization: Reconstruction of nodes without projection on patch �(i) with fictitious parametric

coordinates θ̃ using neighboring nodes from the same finite element with projection on patch �(i)
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aforementioned linearised trimming curves, in order to exclude parts of the elements

which are projected outside the computational domain of the patch. In this way, the

computational domain for the evaluation of the integrals in Eq. (40) is obtained, see

the shaded area in Fig. 9. Then, the projected finite elements in the parametric space

of patch �(i) are clipped with the knot lines of the parametric space of patch �̂(i), thus

obtaining subregions where the integrands in Eqs. (46) are C∞-continuous and where the

Gauss integration can be performed. The aforementioned resulting regions may attain an

arbitrary polygonal shape and thus they are subsequently triangulated using a very simple

triangulation rule since this is merely needed for the distribution of the Gauss points.

Then, the Gauss points are generated on each resulting sub-triangle where the integrals

in Eqs. (46) are numerically evaluated.

Fluid-structure interaction

In this section the employed approach to FSI is demonstrated. Accordingly the equa-

tions governing the incompressible Navier-Stokes equations for the Computational Fluid

Dynamics (CFD) problem on a moving frame are presented, as a body fitted approach

is herein utilized and subsequently the staggered (partitioned) Gauss-Seidel (GS) FSI

approach is provided.

Computational fluid dynamics

In this study, the incompressibleNavier-Stokes equations for aNewtonianfluid arenumer-

ically solved by means of the Finite Volume Method (FVM), see in [3], within the open-

source software OpenFOAM®, see also in [56]. The underlying equations are common

in the literature, see for instance in [57–61] among others and therefore are not herein

repeated. In the sequel, a set of variables which are necessary for the comprehensive

presentation of the study are introduced. Accordingly, let Ṽ be the computational fluid

domain. The primary unknown fields of the incompressible Navier-Stokes BVP are the

velocity and the pressure fields, u and p, respectively. Prescribed fluid inlet velocity u = υ̃

is assumed along a portion of its boundary �̃d ⊂ ∂Ṽ whereas applied tractions t̃ = τ̃ are

assumed along another portion of the domain’s boundary �̃n ⊂ ∂Ṽ . The incompressible

Navier-StokesBVP is posed in amoving frame in termsof aArbitrary Lagrangian-Eulerian

(ALE) description of the fluid motion to accommodate the mesh displacements along the

FSI interface.

Among the various solution procedures and adaptations offered byOpenFOAM®, herein

a laminar solver for the cavity FSI benchmark, a Large Eddy Simulation (LES) for the

hangar FSI simulation and an Unsteady Reynolds Averaged Navier-Stokes (uRANS) for

the NREL phase VI wind turbine FSI simulation are employed, see in [3,27,62] for more

information. These diverse solution approaches are chosen in order to show the applica-

bility of the proposed FSI methodology for the various fidelities of the CFD problem.

Partitioned fluid-structure interaction

In this section the partitioned FSI approach is briefly introduced, see also in [26]. Herein

assumed is that the structural and the fluid domains share a common interface S =

∂Ṽ ∩ �, where � is the domain of definition for the structural IBVP, see “Kirchhoff-Love

structural analysis on multipatches” and “Membrane structural analysis on multipatches”
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sections for the Kirchhoff-Love and the membrane IBVP, respectively. In this way, the

structural and thefluid IBVPs are subject to the followingDirichlet andNeumann interface

conditions across S , respectively,

ḋ − u = 0 , on S × T , (56a)

b̃ + t̃ = 0 , on S × T , (56b)

to account for a continuous solution across�. Accordingly, theComputational Structural

Dynamics (CSD) problem governed by either the Kirchhoff-Love or the membrane the-

ory, see “Kirchhoff-Love structural analysis on multipatches” and “Membrane structural

analysis on multipatches” sections , respectively, is discretized using IBRA or standard

FEM. Additionally, ḋ and u stand for the structural and fluid velocity fields, respectively,

which have to be equal across the common interface as per Eq. (56a). Moreover, Eq. (56a)

enforces also the continuity of the interface displacements across the common interface,

namely,

d − U = 0 , on S × T , (57)

when integrating Eq. (56a) on time, U being the fluid displacement field across the FSI

interface. Concerning the traction equilibriumacrossS , see Eq. (56b), the surface traction

vector b̃ of the structural FSI interface contributes to the body force vector b on the

right-hand side of structural weak forms in Eqs. (13) and the fluid traction vector t̃ (see

“Computational fluid dynamics” section).

Since the FVM scheme within OpenFOAM® is chosen for the solution of the CFD

problem, the fluid FSI interface is represented by a low order faceted surface, see “Com-

putational fluid dynamics” section. Additionally, the herein presented FSI simulations

involving IGAdiscretizations for the structure or the ECL, employ the isogeometric B-Rep

mortar-based mapping method introduced in “Isogeometric B-Rep mortar-based map-

pingmethod on trimmedmultipatches” section and are compared against FSI simulations

of the same problems involving standard FEM discretizations of the structure using the

standard mortar-based mapping method, see in [28]. Let S and Sh denote in the sequel

the exact CAD representation and a low order discretization of the FSI interface. The

restriction of the FSI interface at each patch is denoted by S (i) = S ∩ �(i). Moreover,

Sh may represent the FSI interface of the fluid domain since the FVM is employed as

discretization method for the CFD problem or the FSI interface of the structural domain

whenever FEM is used for the CSD problem. A distinction should be then made clear

from the context.

The solution of the CSD and CFD problems subject to interface conditions in Eqs. (56)

and (57) is achieved using a fixed-point iteration approach known as Gauss-Seidel (GS)

iterative method [26]. In this study, the underlying framework for the utilization of the

aforementioned partitioned GS approach is hosted in EMPIRE software [63]. Since this

coupling scheme has been extensively explained in the literature [30,35,52,53,64] it is

herein presented only an outline of the general algorithm along with the variables nec-

essary for the sequel of this study. Accordingly, the CFD problem is solved as a Dirichlet

problem by complying with the resulting interface displacements from the solution of the

CSD problem, whereas the CSD problem is in turn solved as a Neumann problem subject

to the interface traction field emanating from the solution of the CFD problem. In this
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way, the displacement field of the structural FSI interface d|S is transformed onto the

fluid FSI interface displacement field U and accordingly the fluid traction field at the FSI

interface t̃|S h
is transformed onto the traction field on the structural FSI interface. This

interaction takes place at each time step tn̂, assuming a matching time discretization for

both the CSD and the CFD problems, until a specified termination criterion based on the

relative change of the structural displacement across the FSI interface in the 2-norm at

each FSI iteration k̂ is met, given a user-defined tolerance ǫ̃, namely,

‖ d̂
n̂,k̂ |S

− d̂
n̂,k̂−1 |S

‖2

‖ d̂
n̂,k̂ |S

− d̂n̂−1 |S
‖2

< ǫ̃ (58)

d̂
n̂,k̂ |S

being the vector of structural displacement DOFs on the FSI interface at time

step tn̂ and at k-th FSI iteration. Moreover, d̂n̂−1 |S
stands for the vector of structural

displacementDOFson the FSI interface at the converged coupledFSI state and at time step

tn̂−1. In Eq. (58) the index î introduced in “Time discretization andmodal analysis” section

on d̂ representing theNewton-Raphson iteration is omitted since d̂
n̂,k̂

is assumed to be the

set of displacement DOFs at the converged state of the CSD problem for the geometrically

nonlinear analysis at time step tn̂ and at k̂-th FSI iteration. The aforementioned interface

fixed point iterations are stabilized and accelerated using the Aitken relaxation method,

see in [65].

Moreover, the displacement and the traction fields can be transformed using Eq. (44) or

Eq. (49), depending on the transformation direction, which is known as consistent trans-

formation, see also in [65]. In case Eq. (44) is used for the transformation of displacements,

all additional Penalty terms defined in Eq. (45c) are considered, since the displacement

and the rotation continuity across the multipatches along with the Dirichlet boundary

conditions need in this case to be weakly enforced. On the other hand, only the additional

Penalty matrix Cα̂,0,0 is employed in case Eq. (44) is used for the transformation of the

tractions, excluding continuity of the rotation field and weak application of the Dirichlet

boundary conditions. Let F̃t and F̃b be the forces acting on the structural and fluid FSI

interfaces, respectively. In this case, it is also possible to transform the force vector in a

conservative manner, meaning that the discrete interface work is exactly satisfied. This

can be achieved by [35],

F̃b =
(

C−1
nnCrn

)T
F̃t . (59)

The relation in Eq. (59) above is also known as conservative mapping [28,65]. Similar

to the consistent mapping, in case that the conservative transformation of forces takes

place from the CAD surface to the low order discretized surface in the frame of the ECL

approach, relation in Eq. (59) simply inverses, namely,

F̃hb =
(

C−1
rr Crn

)T
F̃b (60)

In this study, the additional Penalty termsare excluded for the conservative transformation

of the force vectors. Thus, a direct transformation of the consistent force vectors is offered

by the conservative mapping as per Eqs. (59) and (60) bypassing the computation of

the traction fields. A thorough comparison of both the consistent and the conservative

transformation of tractions and forces, respectively, is provided in [28] and in practice

either can be used.
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Numerical results

In this section, one benchmark and two real-world application examples are presented. As

benchmark the lid-driven cavity FSI benchmark is herein chosen as standard in literature,

see in [66]. The real-world applications comprise the FSI simulations of the inflatable

hangar structurepresented in [41] and theNRELphaseVIwind turbinewithflexible blades

(see “NREL phase VI wind turbine in numerical wind tunnel” section) in corresponding

numerical wind tunnels.

The results are validated using standard structural finite element discretizations and

the standard mortar-based mapping method as presented in [28]. Moreover, for each

numerical example, results of given time steps are selected and transformed on either the

standard finite element or on the NURBS surface using the proposed B-Repmortar-based

mapping method.

The consistent mapping approach is chosen for the numerical examples of the lid-

driven cavity FSI benchmark and the NREL phase VI wind turbine with flexible blades,

whereas the conservative mapping approach is used for the inflatable hangar in numerical

wind tunnel numerical example. In order to quantify the residual energy that occurs

using the consistent mapping approach (since the interface energy conservation is not

by construction satisfied in this case), the interface work from both the fluid and the

structural sides as well as the residual interface energies are used. The important role of

the energy transfer within partitioned FSI simulations via the mapping employed method

has been demonstrated in [67] and [68] among others. Therefore, the energy transfer

using the isogeometric B-Rep mortar-based mapping method is also herein considered as

an extension of study in [52] on real-world trimmed multipatch geometries. For the sake

of completeness, the underlying formulas which are used for the evaluation of the energy

transfer in [52] using the proposed isogeometric B-Rep mapping method are repeated

herein. Let WS be the work done by the fluid forces on the moving FSI interface S at a

given time. This is defined as follows,

WS =

∫

S

t · d d� , (61)

where t and d stand for the traction and displacement fields along the FSI interface S at

a given time defined on either the fluid or the structural subdomain. The superscript •(f)

or •(s) is accordingly used. Since in this study the traction and the displacement fields are

transformed using themortar-basedmappingmethod from one interface to the other (see

“Isogeometric B-Rep mortar-based mapping method on trimmed multipatches” section),

their discrete representations (see Eq. (42)) can be substituted in Eq. (61). In the case

when FVM and IGA are used for the discretization of the fluid and structural fields, the

following expressions for the interface work are obtained:

W
(f)
S

=
(

t̂(f)
)T

Cnn d̂(f) , (62a)

W
(s)
S

=
(

t̂(s)
)T

Crr d̂(s) . (62b)

If the ECL is applied, the structure is discretized by FEM and thusW
(s)
S

is computed using

Eq. (62a) using the corresponding structural Cnn matrix. The residual interface energy

ES is defined by the difference between the structural and the fluid interface work:

ES = W
(s)
S

− W
(f)
S

. (63)
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Lid-driven cavity

In this section the lid-driven cavity FSI benchmark is employed (Fig. 12), see also in [66],

for the demonstration and evaluation of the isogeometric B-Rep mortar-based mapping

method and the application of isogeometric membrane analysis onmultipatches inmulti-

physics problems, due to the simplicity of its geometry while relatively large deformations

are allowed. This example was firstly presented in [35] and it is herein complemented

with an additional study on the evolution of the interface work from each subdomain

and their difference against the time. For this case, the kinematic viscosity is chosen as

ν̃ = 10−2 m2/s, the left and right walls are fixed where the fluid velocity is zero, the

top wall is moving with a time varying velocity υ̃ = (1 − cos (2π t/5)) e1 and a flexible

membrane is attached at the bottom, see Fig. 12a. The whole surface of the flexible mem-

brane is the FSI interface, thus S and � are the same in this case. Additionally, a small

portion of the left and right fixed walls towards the upper moving wall are chosen as part

of the inlet and the outlet, respectively. Accordingly, the part representing the inlet allows

for a transition from the zero to the prescribed velocity at the moving top wall, that is

υ̃(X2) = (1− cos(2π t/5)) (10X2 − 9) e1, whereas the pressure is prescribed to zero along

the part representing the outlet. This allows for easier convergence in the fluid domain

since themass conservation can easier be satisfied. Regarding the flexiblemembrane at the

bottom, its Young’s modulus, Poisson ratio, density and thickness are chosen as E = 250

Pa, ν = 0, ρ = 500 Kg/m3 and h̄ = 2 mm, respectively. For this numerical example, the

applied prestress is zero. This might cause problems to some linear equation solvers as

the CSD problem is not well-posed in the first solution step due to the negligible struc-

tural stiffness in X2-direction. This can be circumvented by adding a small amount of

prestress at the first Newton-Raphson iteration of the CSD problem and then release it.

The time span and the time step size for the coupled problem is chosen as T = [0, 20] s

and �t = 10−2 s, respectively. The Reynolds number2 in this case does not exceed 200,

thus resulting in a laminar flow.

Accordingly, theCFDdomain is a unit squarewith thickness of 10 cm.TheCFDproblem

is solved as two-dimensional in X1–X2 plane, meaning that the velocity and pressure are

constant in thewidth direction.Accordingly, theCFDdomain is discretized using a 30×30

grid for all employed simulations, see Fig. 12b.On the other hand, themembrane structure

is discretized using a reference finite element mesh with 100 bilinear elements (FEM100),

a coarse finite element mesh with six bilinear elements (FEM6), a single patch geometry

with twenty quadratic in X1-direction and linear in the X3-direction elements (IGA1) and

a trimmed two-patch geometry where the interface is an arc of a circle (IGA2) see Fig. 13.

The CSD problem is also two-dimensional and accordingly the displacement field d03 in

the X3-direction is set to zero.

A set of FSI simulations is accordingly performed involving FEM100mesh for the struc-

ture as reference (FSI-FEM100), IGA1 structural discretization (FSI-IGA1), IGA2 struc-

tural discretization (FSI-IGA2), FEM6 mesh for the structure (FSI-FEM6), FEM6 mesh

for the structure with IGA1 parametrization for the ECL (FSI-FEM6-IGA1) and FEM6

mesh for the structure with IGA2 parametrization for the ECL (FSI-FEM6-IGA2). The

streamlines of the FSI simulations at time t = 19 s using the IGA structural discretizations

2The Reynolds number is given by Re = uL/ν̃ where u and L is a characteristic velocity and a characteristic length,

respectively, and it can be used for classification of fluid flows as laminar, turbulent, etc.
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Flexible membrane

Wall u = 0 Wall u = 0

Inlet υ̃(X2)

Moving wall υ̃=(1 − cos(2πt/5))e1

Outlet p = 0

X1

X2

a Problem placement.

Moving wall u = 1 − cos 2πt
5

)

b CFD computational domain.

Fig. 12 Lid-driven cavity: Problem placement and CFD computational domain [35]

Fig. 13 Lid-driven cavity: Trimmed vs untrimmed representation of the flexible membrane’s geometry [35]

Fig. 14 Lid-driven cavity: Streamlines of the CFD solution over the deformed domain at time t = 19 s [35]

against the reference solution using FEM100 is shown in the set of Fig. 14 demonstrating

an excellent qualitative accordance of the results. Accordingly, the streamlines of the FSI

simulations at time t = 19 s considering the FEM6 structural mesh and the ECL with a

single and a two-patch representation, namely, the FSI-FEM6-IGA1 and FSI-FEM6-IGA2

simulations respectively, against the pure FSI-FEM6 simulation is shown in the set of

Figs. 15 where the smoothing of the displacement field when using the ECL is exhibited.

For the quantitative comparison of the results, the time displacement curves of the struc-

tural displacement in the middle of the membrane, namely at X1 = 0.5 m, are shown,
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Fig. 15 Lid-driven cavity: Streamlines of the CFD solution over the deformed domain without and with ECL

at time t = 19 s [35]
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a Time-displacement curves.
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b Time-displacement curves using ECL.

Fig. 16 Lid-driven cavity: Time-displacement curves for the structural displacement at X1 = 0.5 m [35]

see Fig. 16. Accordingly, the time-displacement curves for the FSI simulations and the

FSI simulations with the ECL are depicted in Figs. 16a and 16b, respectively. As it can

be observed, the FSI simulations using single and multipatch IGA for the structural dis-

cretization deliver highly accurate results when compared to the reference FSI simulation

involving a highly refined finite element structural discretization. Please note that the

cavity FSI benchmark is a two-dimensional benchmark. To be able to demonstrate the

applicability of the trimmed multipatches for this benchmark, the underlying patches are

trimmed in the X3-direction, see Fig. 13. The latter leads in a non-uniform placement

of the integration points at each patch about the trimming, triggering some additional

dynamics of the membrane X3-direction that are not seen in the finite element and single

patch discretizations, where the integration points are uniformly placed with respect to

the X3-direction. The latter explains the slight deviation of the results obtained by the

two-patch discretization in Fig. 16, which is nevertheless minimal.

On the other hand, the application of the ECL improves the quality of the interface

displacement field, see Figs. 15b and 15c for the single and multipatch representation

of the ECL, respectively, whereas it produces highly accurate results given that the CSD

problem is only discretized using six elements, see Fig. 16b. It can be seen in Fig. 16b
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Fig. 17 Lid-driven cavity: Time evolution of the interface work in the fluid and solid subdomains and time

evolution of the residual interface energy ES

that the response of the membrane in this case is slightly stiffer when using the ECL.

The underlying reason is that the smoothing induced by the ECL adds a constraint to

the coupling interface. This constraint renders the membrane in this case slightly stiffer,

especially because the membrane is purposely discretized using only six elements to pro-

duce a rough displacement field and to highlight the effect of the smoothing by means of

the ECL, see Fig. 15.

The isogeometric mortar-based mapping method is subsequently evaluated based on

the work transferred through the FSI interface, see Fig. 17. An important finding herein

is that the evolution of the interface work from both the structural and the fluid sides is

smoother when using the isogeometric mortar-based mapping method as opposed to the

standard mortar-based mapping method, see the magnifying window in Fig. 17a. The rest

of the patterns in the latter figure correspond to the interface displacement field that was

observed previously in Fig. 16. In Fig. 17b it can be seen that the residual interface energy

as defined in Eq. (63) remains in insignificant levels for all the underlying discretizations

and for both mapping technologies (standard and isogeometric).

Next, the isogeometric B-Repmortar-basedmappingmethod is evaluatedwith regard to

its convergence behaviour. In the following convergence graphs the observed convergence

rates are mentioned, for which mathematical proofs are however pending. Accordingly,

the quantities of interest are the displacement and the traction fields along with their

corresponding transformations. The first set of graphs in Fig. 18 shows the convergence

of the consistent mapping in the displacement and traction fields onto Sh, when these

are originally defined on the CAD surface.

More specifically, the convergence graph in Fig. 18a shows the convergence based on the

relative error in the L
2(S )-norm for the displacement field defined on the CAD surface

for the FSI-IGA1 and the FSI-IGA2 simulations at time t = 19 s against its transformed

field on�h
i , for variousmesh densities with 5, 10, 20, 40, 80 and 160 elements, respectively,

where h stands for the minimum finite element edge in �h
i . Similarly, Fig. 18b shows the

convergence based on the relative error in theL
2(S )-normof the traction field defined on

the CAD surface for the FSI-FEM6-IGA1 and FSI-FEM6-IGA2 simulations at time t = 19



Apostolatos et al. Adv. Model. and Simul. in Eng. Sci.            (2021) 8:9 Page 35 of 55

10−3 10−2 10−1 100
10−5

10−4

10−3

10−2

10−1

‖d−dh‖0,S

‖d‖0,S

h [m]

1
2

IGA2
IGA1

a   Relative error in the L
2(S )-norm for the dis-

placement transformation.

10−5

10−4

10−3

10−2

10−1

10−3 10−2 10−1 100

h [m]

‖b̃−b̃h‖0,S

‖b̃‖0,S

1
2

IGA2
IGA1

b   Relative error in the L
2(S )-norm for the trac-

tion transformation.

Fig. 18 Lid-driven cavity: Relative error in the mapping from IGA to FEM using a reference field defined on

IGA1 and IGA2 surface representations at t = 19 s of the corresponding FSI simulation [35]

Fig. 19 Lid-driven cavity: Mapping of the displacement field defined on IGA1 and IGA2 surface

representations at t = 19 s from FSI-IGA1 and FSI-IGA2 simulations, respectively, to FEM for a given

discretization level [35]

s against its transformed field on �h
i . Both graphs show excellent convergence rates. The

displacement and traction fields defined on the IGA1 and IGA2 surface representations

from FSI-IGA1, FSI-IGA2 and FSI-IGA1-ECL, FSI-IGA2-ECL simulations at time t = 19

s along with their corresponding transformations on the low order discretized surface are

then shown in Figs. 19 and 20 , respectively.

Subsequently, Fig. 21 shows the convergence graphs corresponding to the isogeomet-

ric B-Rep mortar-based mapping of the fields defined on the fluid FSI interface onto

the different CAD surface representations. For the refinement study, IGA1 is refined

successively using 3, 6, 12, 24, 48, 96, 192, 384, 768 and 1536 elements with quadratic

(low order) and cubic (high order) basis functions in X1-direction, whereas one linear

element is chosen in the X3-direction. Then, IGA2 is refined using (5,1)-(2,1), (9,2)-(5,1),

(15,3)-(9,2), (30,6)-(18,4), (57,11)-(34,7), (123,31)-(81,21), (246,62)-(162,42), (492,124) and

(324,84) elements in X1, X3-directions for patch �(1) and patch �(2), respectively, where

the corresponding polynomial order of the basis is chosen as bilinear-biquadratic (low

order) and biquadratic-bicubic (high order).

In this case, the square root of the smallest area among the isogeometric elements in

the multipatch model is chosen as characteristic measure for the discretization density h
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Fig. 20 Lid-driven cavity: Mapping of the traction field defined on IGA1 and IGA2 surface representations at

t = 19 s from FSI-IGA1-ECL and FSI-IGA2-ECL simulations, respectively, to FEM for a given discretization level

[35]
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Fig. 21 Lid-driven cavity: Error in the transformation of tractions from FEM to IGA using a reference traction

field defined on the FE surface at t = 10 s of the FSI simulation [35]

for the relative errors in the domain S , see Fig. 21a. Regarding the interface error, the

smallest element edge length along the interface γi is chosen as characteristicmeasure h of

the mesh density, see Fig. 21b. The relative error in theL
2(S )-norm for the traction field

taken from the FSI-FEM100 simulation at time t = 19 s and transformed into the different

CAD surface representations with the aforementioned refinement is shown in Fig. 21a,

for both the low- and the high order bases. Accordingly, the jump in the traction field

along the interface γi for themultipatch CAD representations of the surface in theL
2(γi)-

norm is shown in Fig. 21b. It can be observed that the single patch solution demonstrates

quadratic convergence order for both polynomial order settings, whereas the convergence

order drops to linear concerning themultipatchmodel with Penalty. The latter is expected

as the optimal convergence rates for the Penalty methods are typically bounded by both

the mesh size and the underlying Penalty parameters themselves, in contrast to the single

patch discretizations. For more information on the convergence rates please refer to [69].

The traction field defined on the fluid FSI interface from FSI-FEM100 simulations at time

t = 19 s and its transformation into the various CAD representations of the surface are

then shown in Fig. 22 for a qualitative assessment of the isogeometric B-Repmortar-based

mapping from a low order surface discretization to CAD surface representations.
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Fig. 22 Lid-driven cavity: Mapping of the traction field defined on fluid FSI interface at t = 19 s from

FSI-FEM100 simulation to the various CAD surface representations of � for given refinement levels [35]
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Fig. 23 Lid-driven cavity: Error in the transformation of tractions from FEM to IGA using a reference

displacement field defined on the FE surface at t = 10 s of the FSI simulation [35]
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Fig. 24 Lid-driven cavity: Transformation of the displacement field defined on the low order surface

discretization at t = 19 s from FSI-FEM100 simulation to the various CAD surface representations of � for

given refinement levels [35]

Lastly, convergence graphs for the isogeometric B-Rep mortar-based mapping of the

displacement field defined on the fluid FSI interface mesh from simulation FSI-FEM100

at time t = 19 s onto IGA1 and IGA2 surface representations are drawn, corresponding to

theECLconcept (Fig. 23).The refinement studies of IGA1and IGA2surfacemodels are the

same as previously, where herein the complete PenaltymatrixCα̂,α̃,ᾱ is taken into account.

The relative error on the displacement field in theL
2(S )-norm is shown in Fig. 23awhere

as before quadratic rates of convergence are observed for the single patchmodel and linear

convergence rates are observed for the multipatch model. The solution accuracy however

is not significantly improved for the high order bases when compared to the low order

bases. The interface error on the jump of the displacement field and its rotation around

the tangent to the patch boundary vector for the different refinement levels in theL
2(γi)-

norm is shown in Fig. 23a regarding the trimmed two-patchmodel IGA2.One can observe

here an improvement of the fulfillment of the interface conditions for the high order bases

and an almost linear convergence rate. Then, Fig. 23b shows the error in the fulfillment

of the Dirichlet condition in the L
2(Ŵd)-norm for both CAD models where quadratic

convergence rates are observed. Additionally, an improvement of the solution for the

high order bases is also observed in this case. In the latter case, the minimum element

edge size along Ŵd is chosen as a measure of the discretization density h. Lastly, the 2-

norm of the displacement field defined on the fluid FSI interface and the corresponding

2-norms of its transformation on the IGA1 and IGA2 surface representations is shown in

Fig. 24. Once more, an excellent transformation can be seen which in addition respects

the interface and boundary conditions when using the isogeometric B-Rep mortar-based

mapping method in combination with Penalty.

Inflatable hangar in numerical wind tunnel

In this section the FSI simulation of an inflatable hangar [41] in numerical wind tunnel

is investigated. A similar FSI simulation is also presented in [35]. However, the stiffness

of the hangar in terms of the applied prestress and inner pressure in that numerical

investigationwas chosen such that significant deformation occurs in order to highlight the

advantages of the ECL approach. That led in many cases to wrinkling of the membrane,

which is a type of rigid body mode, as discussed in “Membrane structural analysis on

multipatches” section, rendering the results inaccurate. In the present study, the stiffness

of thehangar in termsof the appliedprestress and inner pressure is chosenhigher such that



Apostolatos et al. Adv. Model. and Simul. in Eng. Sci.            (2021) 8:9 Page 39 of 55

Fig. 25 Hangar in numerical wind tunnel: Problem placement [35]

Fig. 26 Hangar in numerical wind tunnel: CFD computational domain [35]

no significant wrinkling occurs allowing for an appropriate comparison of the standard

mortar-based mapping method and the newly proposed IBRA mortar-based mapping

method. Accordingly, the material properties of the hangar are described in [41], with the

only difference that herein three different magnitudes for the inner pressure are chosen,

namely, ‖b‖2 = 103 Pa (p1000), ‖b‖2 = 2×103 Pa (p2000) and ‖b‖2 = 4×103 Pa (p4000)

and the prestress is adapted so that the hangar remains in equilibrium with respect to its

shape, see in [41] for more details. The wind is modelled through the incompressible

Navier-Stokes (“Computational fluid dynamics” section), with kinematic viscosity of the

air ν̃ = 1.5451 × 10−5 m2/s. Regarding the CFD domain a mesh with approximately

100,000 polyhedral elements is employed,which is successively refined towards the hangar

region.

The locally refined region around the hangar is made using the snappyHexMesh mesh

generator ofOpenFOAM®, see Fig. 26. Accordingly, an LES solution approach is employed

using a one equation eddy-viscosity Subgrid-ScaleModel for the turbulencemodelling, see

in [70,71] for more details. The inlet velocity υ̃ is chosen using a 1/7-power law from

the bottom up to the height of the hangar and then is kept constant with an amplitude

of 13 m/s. The behavior of the structural deformation due to wind and for the various

internal pressure magnitudes with accordingly adjusted prestress is investigated. No-slip

conditions are assumed at the two side and the bottom walls whereas slip conditions3 are

assumed at the top wall of the wind tunnel. Lastly, the pressure is set to zero at the outlet

3Slip condition means that only the tangent components of the velocity field on the wall are free whereas the normal

to the wall velocity component is set to zero
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Fig. 27 Hangar in numerical wind tunnel: Mapped finite element mesh of the hangar onto the NURBS

multipatch surface with the different colors indicating mapped elements on the different NURBS patches)

[35]

Fig. 28 Hangar in numerical wind tunnel: Mapped fluid interface mesh onto the NURBS multipatch surface

(the different colors indicate the different NURBS patches) [35]

and the problem setup is depicted in Fig. 25. The time domain is chosen as T = [0, 5]

s with time step size �t = 2 × 10−3 s. Before the beginning of the FSI simulation, the

CFD problem is solved irrespective of the structure for 20 s with time step size equal to

5 × 10−3 s in order to start the FSI simulation with a divergence free velocity field.

Concerning the partitioned FSI approach, the consistent mapping method is chosen

for the transformation of the displacement fields whereas the conservative mapping

method is chosen for the transformation of the consistent force vectors as described

in “Fluid-structure interaction” section. Accordingly, nine simulations are performed:

FSI simulations using a standard FEM structural discretization for all three inner pres-

suremagnitudes (FSI-FEM-p1000, FSI-FEM-p2000 and FSI-FEM-p4000), FSI simulations

for the standard FEM structural discretization with an ECL for all three inner pressure

magnitudes (FSI-FEM-ECL-p1000, FSI-FEM-ECL-p2000 and FSI-FEM-ECL-p4000) and

FSI simulations with the multipatch IGA structural discretization (FSI-IGA-p1000, FSI-

IGA-p2000 and FSI-FEM-p4000) once more for all three inner pressure magnitudes. The

geometric parametrization of the computational model corresponds to the fine setting

investigated in [41] and it is used for both the ECL and the IGA discretization.

According to themethodological procedure concerning the isogeometric B-Repmortar-

basedmappingmethod described in “Isogeometric B-Repmortar-basedmappingmethod

on trimmed multipatches” section, the low order discretized surface is projected on the

NURBSmultipatch geometry. The projected structural finite elementmesh onto themul-

tipatchNURBS geometry in the frame of simulations FSI-IGA-p1000, FSI-IGA-p2000 and

FSI-IGA-p4000 and the projected fluid FSI interface mesh onto the multipatch NURBS

geometry concerning the simulations FSI-FEM-ECL-p1000, FSI-FEM-ECL-p2000 and

FSI-EFM-ECL-p4000 are depicted in Figs. 27 and 28 , respectively, highlighting the bound-

ary projection algorithm for elementswith projection onmore than one patch (see Fig. 10).

Moreover, the fluid FSI interface mesh does not follow the exact torus shape and the tori

comprising the hangar geometry from the fluid FSI interface mesh side are not connected

with each other through a shared curved interface as for the finite element and the mul-
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Fig. 29 Hangar in numerical wind tunnel: Streamlines at t = 2 s for all performed simulations

tipatch IGA structural models but with straight planes allowing for a better fluid mesh

between the tori. The latter choice is critical for the fluid mesh at these locations which

otherwise would be highly distorted. Therefore, a gap between the tori can be observed in

Fig. 28 as the elements comprising the planes between the tori have no unique projection

on the multipatch NURBS surface. This however causes no problem to the displacement

transformation as it can be seen in the sequel, but it does not allow for the consistent

transformation of tractions. Therefore, the conservative mapping approach is herein cho-

sen for the transformation of the consistent force vectors, see also in “Fluid-structure

interaction” section. For the forthcoming investigations based on the time-displacement

curves, the material point Xm = 2.5 e2 + 12.5 e3 in the middle of the hangar is used.

The streamlines on and around the hangar are shown in the set of Fig. 29 for all employed

simulations at t = 2 s demonstrating good qualitative accordance of the results when

using standard finite element structural discretization, standard finite element structural

discretization with the ECL and isogeometric structural discretization. The time displace-

ment curves for all employed simulations at point Xm along with the corresponding rela-

tive displacement error due tomapping are shown in Fig. 31. It can be seen that increasing

the internal pressure of the tori (with according increase in the prestress) leads to struc-

tural displacements with lower amplitude as expected, see Fig. 31a. This shows that the

structural response can be controlled through the internal pressure-prestress relationship

without the necessity of adjusting the material properties for this kind of structures. In

what concerns the displacement mapping error at Xm, this stays very low throughout the
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Fig. 30 Hangar in numerical wind tunnel: Structural (FEM and Nitsche-multipatch IGA) and fluid interface

deformation along with the fluid velocity magnitude ‖u‖2 in Ṽ at time t = 0.4 s with inner pressure p = 1000

Pa

time and for all employed simulations demonstrating the accuracy of the mortar-based

mapping method.

The partitioned FSI scheme for this case is detailed in set of Fig. 30 whereas the depicted

results are taken from the simulations with internal pressure of the tori equal to 1000 Pa.

Accordingly, Figs. 30a and 30bdemonstrate the concept of thepartitionedFSIwith consis-

tent displacement mapping and conservative force mapping for the FSI simulations using

standard finite element structural and isogeometric discretizations, respectively. The only

difference between these two types of FSI simulations is the computation of the mortar

based matrices, which for the former case are computed as in study [30] and for latter
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Fig. 31 Hangar in numerical wind tunnel: Time-displacement curves for all simulations and the

corresponding transformation error atXm vs time

Fig. 32 Hangar in numerical wind tunnel: Mapping of the displacement field defined on the multipatch

NURBS surface at time t = 0.4 s from FSI-IGA-p1000 simulation onto the fluid FSI interface mesh

Fig. 33 Hangar in numerical wind tunnel: Mapping of the displacement field defined on the FEM structural

discretization of the hangar at time t = 0.4 s from FSI-FEM-ECL-p1000 simulation onto the multipatch NURBS

surface
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Fig. 34 NREL phase VI wind turbine in numerical wind tunnel: Problem placement [35]

case their computation is detailed in “Isogeometric B-Repmortar-basedmappingmethod

on trimmed multipatches” section. Fig. 30c demonstrates the ECL concept where both

the consistent displacement and the conservative force mapping are taking place through

the ECL parametrized with the same CAD model used for the isogeometric structural

discretization. Lastly, the results from the isogeometric B-Rep mortar-based mapping

method for the transformationof the displacement field definedon themultipatchNURBS

surface onto the fluid FSI interface mesh and from the structural finite element mesh to

the multipatch NURBS surface are demonstrated. Accordingly, the FSI solution in terms

of the displacement field from FSI-IGA-p1000 simulation at time t = 0.4 s defined on the

multipatch NURBS geometry is transformed on the fluid FSI interface mesh, see Fig. 32,

demonstrating an excellent accuracy even for highly non-matching surface representa-

tions. The corresponding relative error of the displacement in the L
2 (S )-norm is found

in this case 8.462112E-03%. In the same way, the displacement field defined on the finite

element discretized structural domain from the FSI-FEM-ECL-p1000 simulation also at

time t = 0.4 s is transformed onto themultipatchNURBS surface, see Fig. 33. The relative

displacement error in the L
2(S )-norm is found in this case to be 3.277540E-03. More-

over, concerning the displacement and rotation interface jump in the L
2(γi)-norm, these

are ‖χ̂‖0,γi = 3.438509E − 04 m and ‖χ̃‖0,γi = 1.811682E − 04 rad, respectively, whereas

the L
2(Ŵd)-norm of the displacement field along the Dirichlet boundary Ŵd is computed

‖d‖Ŵd
= 1.059724E − 05 m.

NREL phase VI wind turbine in numerical wind tunnel

In this section the FSI simulation of the NREL phase VI wind turbine with flexible blades

introduced in “Isogeometric B-Rep analysis of the NREL phase VI wind turbine” section

in numerical wind tunnel is investigated, see also in [23,53]. This example was also firstly

presented in [35] and it is herein complemented with an additional study on the evolution

of the interface work from each subdomain and their difference against the time only

for the simulation involving the IBRA discretization of the blades. This is so because the

couplingmatrices are used in their original form for the computation of the interfacework,

see the preamble of “Numerical results” section, and the coupling matrices resulting from

the standardmortarmappingmethod employed herein aremodified for stability purposes

as presented in the original work [63]. Therefore these matrices can not be used for this
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numerical example in order to evaluated the evolution of the interface work and therefore

the corresponding results are not shown here. The selected material parameters for the

flexible blades are presented in “Isogeometric B-Rep analysis of the NREL phase VI wind

turbine” section and the kinematic viscosity for the air is given by ν̃ = 1.5451×10−5 m2/s.

The inlet velocity is chosen constant as υ̃ = −7 e2 m/s and the pressure is set equal to

zero at the outlet, see Fig. 34. Accordingly, the side walls, the top and the bottom walls

of the wind tunnel are set to slip boundary conditions. Moreover, the domain consists of

two parts4: One non-rotating outer part and a rotating inner cylindrical part containing

the rotor hub and the wind turbine blades which is rotating around X2-axis with constant

angular velocity ω = 7.5398 rad/s.

The fluid FSI interface is assigned to be the part containing the flexible blades. Note that

S contains only the flexible blades across which the aerodynamic forces are acting, that

is, the inner spars of the flexible blades are not part of S , see Fig. 4. The time interval

for the coupled problem is chosen as T = [T0, T∞] = [0, 5] s with a time step size of

�t = 10−3 s. As in the previous numerical example, herein also the CFD problems is

solved independently of the structure for 5 s with the same time step size as for the FSI

simulation in order to have a divergence free fluid velocity field at the start of the FSI

simulation. Concerning the CSD problem, the multipatch NURBS Kirchhoff-Love shell

model with Penalty is employed, see “Isogeometric B-Rep analysis of the NREL phase VI

wind turbine” section. Since the flexible blades are subject to constant angular velocity,

the corresponding CSD problem is solved with time varying gravitational bg and constant

centrifugal bc body forces given by,

bg(t) = ρgh̄�2(t) · e3 , (64a)

bc(t) = ρ|X1|h̄ω2 e1 , (64b)

respectively, where X1 is the distance from the center of rotation. The rotation tensor

�2(t) = �
ij
2 (t) ei ⊗ ej around X2-axis is defined as,

�
ij
2 (t) = − sin (ωt) ǫ

ij
2 + cos (ωt) δ

ij
2 , (65)

where ǫ
ij
2 = ǫαβ and δ

ij
2 = δαβ for α,β = 1, 3 stand for the components of the permutation

and delta Kronecker tensor on the X1-X3 plane, respectively, meaning that ǫi22 = ǫ2i2 =

δi22 = δ2i2 = 0 for all i = 1, . . . , 3. Concerning the aerodynamic body forces b̃ acting along

the flexible blades on S , these are computed similar to the gravitational body forces bg

in Eq. (64a), namely,

b̃(t) = �2(t) · t̃ , (66)

given that the fluid tractions t̃ are referred to the current rotated configuration of the flexi-

ble blades at each time instance t. The latter approach allows for solving the CSD problem

without considering inhomogeneousDirichlet boundary conditions which accelerates the

solution process. A limitation is however that only flexible blades rotating with constant

angular velocity can be confronted with this approach, where in another case additional

rotational inertial effects need to be addressed. Concerning the CFD setup, this is taken

from the study in [53] and corresponding views of the CFD mesh with a close-up on the

4In the original study [53] also an independent rotation of the flexible blades around X1-axis was considered to achieve

an emergency brake manoeuvre
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Fig. 35 NREL phase VI wind turbine in numerical wind tunnel: CFD computational domain [35]

right blade are depicted in Fig. 35 where a mesh refinement in the neighborhood of the

wind turbine can be observed and the CFD mesh consists of approximately ten million

cells. Moreover, the sliding mesh interface using the Arbitrary Moving Interface (AMI)

method provided in OpenFOAM® is employed in order to couple the solution between

the steady and rotating parts of the fluid domain Ṽ , see also in Fig. 34. For the CSD

the standard finite element mesh of a shell with Reissner-Mindlin kinematics and the

multipatch IGAmodel with Penalty and Kirchhoff-Love kinematics introduced in “Isoge-

ometric B-Rep analysis of the NREL phase VI wind turbine” section are herein employed

and evaluated.

For the FSI simulation using the standard finite element mesh of the flexible blades, the

standard mortar-based mapping method elaborated in [28] is used whereas for the FSI

simulation using themultipatch IGA discretization of the flexible blades, the isogeometric

B-Rep mortar-based mapping method introduced in “Isogeometric B-Rep mortar-based

mapping method on trimmed multipatches” section is used. Accordingly, the mapped

elements from the fluid FSI interface ontoS of themultipatch NURBS surface are shown

in Fig. 36 highlighting oncemore the excellent performance of the proposedmethodology

especially across the patch boundaries (see Fig. 10).

TheQ-criterion 5 coloredwith the corresponding fluid velocitymagnitude at exemplary

time instances for both FSI simulations with the standard finite element and multipatch

isogeometric discretizations is shown in the set of Figs. 37 where the deformation of the

flexible blades is herein scaled by 170. The results demonstrate excellent qualitative accor-

dance regardless of the highly diverse structural discretizations and mapping techniques,

thus extending the isogeometric B-Repmortar-basedmappingmethod to real-world engi-

neering applications.

Next, a quantitative comparison of the results in Fig. 38 is provided. Accordingly, the

time displacement curves at the tip of the right blade Xt = 5.029 e1 − 0.013007 e2 +

0.24821 e3 [m] and the rotor shaft torque are depicted in Figs. 38a and 38b, respectively.

Themagnitude of the displacement field at the tip of the right blade from theCSD solution

shows excellent accordance between the standard finite elementmesh and themultipatch

isogeometric discretization of the flexible wind turbine blades in terms of the pattern and

frequency of the oscillations. However, the FEM solution exhibits slightly larger displace-

ments which can be attributed to the underlying Reissner-Mindlin kinematics of the

employed model for the standard FEM discretization in contrast to the Kirchhoff-Love

5The Q-criterion is used for vortex identification based on the second invariant of the fluid velocity gradient
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Fig. 36 NREL phase VI wind turbine in numerical wind tunnel: Mapped fluid interface mesh onto the NURBS

multipatch surface (the different colors indicate the different NURBS patches) [35]

Fig. 37 NREL phase VI wind turbine in numerical wind tunnel: Q-criterion and blade deformation scaled by

170 at exemplary time instances for both the FEM and the multipatch IGA with Penalty discretizations [35]

shell kinematics associated with the multipatch isogeometric discretization of the flexible

wind turbine blades. The error of the transformed displacement fields onto the fluid FSI

interface at the tip is found negligible for this case. Concerning the rotor shaft torque, it

can be observed that the pure CFD simulation produced the largest values and the FSI

simulation with the FEM discretization of the flexible blades the lowest ones.

Subsequently, two points Xh = −4.7603 e1 − 0.03568 e2 + 0.00997 e3 [m] and Xl =

−0.74041 e1 + 0.07505 e2 − 0.06956 e3 [m] are chosen in the high and the low pressure

sides of the left wind turbine blade, respectively, for the evaluation of the corresponding

traction fields, see Figs. 39 and 40 , respectively. Accordingly, the fluid traction field t̃

versus the time is shown in Figs. 39a and 40a for both FSI and the pure CFD simulations,



Apostolatos et al. Adv. Model. and Simul. in Eng. Sci.            (2021) 8:9 Page 48 of 55

Displacement at Xt × 10−3 [m]

FSI-IGA
FSI-FEM

0 1 2 3 4 5
t [s]

16

14

12

10

8

6

4

2

a Displacement at the tip versus time.

0 1 2 3 4 5
t [s]

860
850
840
830
820
810
800
790
780
770
760

Torque [Nm]

FSI-IGA
FSI-FEM
CFD

b Total torque versus time.

Fig. 38 NREL phase VI wind turbine in numerical wind tunnel: Displacement at the tipXt and total torque

versus time [35]
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Fig. 39 NREL phase VI wind turbine in numerical wind tunnel: Traction magnitude and the corresponding

relative error of the transformation atXh on the upstream side versus time [35]

respectively. It canbeobserved that taking into consideration theFSI couplinghas an effect

on the fluid traction field, see Fig. 40a, even for relatively small displacement fields as in this

numerical example. Additionally, the relative error of the traction transformation at Xh

andXl versus time is shown inFigs. 39b and40b , respectively,where it canbeobserved that

both the standard and the isogeometric B-Rep mortar-based mapping methods produce

excellent transformations for the traction fields on the flexible wind turbine blades.

Next, the transformation of fields using the isogeometric B-Rep mortar-based mapping

method developed in “Isogeometric B-Rep mortar-based mapping method on trimmed

multipatches” section is quantified. Firstly, the displacement field taken from the FSI sim-

ulationwith themultipatch isogeometric discretization for the flexible blades at time t = 3

s are transformed onto the fluid FSI interface using Eq. (44), see Fig. 41, demonstrating

excellent performance of the proposed method. For this case, the relative transformation

error of the displacement field in the L
2 (S )-norm is found 0.038% which is highly sat-

isfactory given the complexity and the size of the geometry. Moreover, the traction field
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Fig. 40 NREL phase VI wind turbine in numerical wind tunnel: Traction magnitude and the corresponding

relative error atXl on the downstream side versus time [35]

Fig. 41 NREL phase VI wind turbine in numerical wind tunnel: Transformation of the displacement field

defined on the multipatch IGA surface at time t = 3 s onto fluid FSI surface [35]

from the same FSI simulation defined on the fluid FSI interface is taken at time t = 3

s and transformed onto the NURBS multipatch geometry S using Eq. (49), see Fig. 42.

For the sake of clarity, both the high and the low pressure sides are herein depicted,

see Figs. 42a and 42b, respectively. The results show once more excellent accordance

even for a highly oscillatory field, such as the traction field in this case, and the corre-

sponding transformation error in the traction field is in this case found 4.31% based on

the L
2 (S )-norm whereas the interface jump of the traction field between the multi-

patches is equal to ‖χ̂‖0,γi = 0.215 m. Lastly, the evolution of the interface work from

both the fluid and the structural sides versus the simulation time and the corresponding

residual energy are shown in set of Fig. 43 for the simulation with the IBRA structural

discretization. The results show a satisfactory energy transfer across the interface and the

corresponding residual energy at the interface stays at low levels for this large scale appli-

cation. The corresponding results for the standard structure FEM discretization where

the standard mortar-based mapping method is used are not shown herein. The reason is

that the corresponding implementation of the standard mortar-based mapping method

used herein is the one developed in [28] where many robustness enhancements are taken

into consideration in order to render the methodology applicable for real-world engi-
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Fig. 42 NREL phase VI wind turbine in numerical wind tunnel: Transformation of the traction field defined

on the fluid FSI surface at time t = 3 s onto the multipatch IGA surface [35]
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Fig. 43 NREL phase VI wind turbine in numerical wind tunnel: Time evolution of the interface work in the

fluid and solid subdomains and time evolution of the residual interface energy ES

neering problems. Accordingly, whenever a projection of a finite element fails the mortar

transformation matrices for the standard mortar-based mapping method are enhanced

with components stemming from a nearest neighbormethod and additionally consistency

enforcement is applied when the two interface meshes do not exactly overlap which is

standard for real-world applications. Therefore, the matrices resulting from this standard

mortar-based mapping method can not be used for the evaluation of the interface work

and the corresponding results are omitted. However, the purpose of this study is to high-

light the advantages of the newly proposed IBRA mortar-based mapping method and its

consistency in terms of the satisfaction of the interface work.
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It is important to note that the computational footprint of the mortar-based mapping

method is negligible in the context of partitioned FSI, regardless of whether the standard

finite element or the isogeometric B-Rep mortar-based mapping method is used. That

is so, because the coupling matrices in terms of the mortar-based mapping method are

computed only once at the beginning of the coupled simulation and then used through-

out the simulation by means of simple matrix-vector multiplications, see for instance

Eqs. (44), (49), (59) and (60). The overall additional computational overhead of themortar-

based mapping method is then negligible in this context, as the coupled simulation may

take days or evenmonths to complete, given the computational expense that 3DCFD sim-

ulations involve. It is demonstrated in study [52] that it takes about seven times longer to

generate the couplingmatrices for the isogeometric as compared to the standard finite ele-

mentmortar-basedmappingmethod based on the FSI simulation of a flexible hemisphere

discretized with a single untrimmed patch. The computational overhead when comput-

ing the coupling matrices in the frame of the ECL is simply the sum of the computational

overheads involved by the standard finite element and the isogeometric mortar-based

mapping, see Fig. 30c for an illustration or Eq. (31) in study [52]. In what concerns the

mapping over the NRELWind Turbine blades presented in this section, it was found that

it takes about 3 and 20 minutes for the generation of the coupling matrices regarding the

standard finite element and the isogeometric mortar-based mapping methods, respec-

tively, which is in accordance to the findings in study [52]. This is to be expected, since the

isogeometric mortar-basedmappingmethod involves additional algorithmic steps for the

generation of the coupling matrices, see “Realization” section. However, these findings

cannot be used conclusively concerning the comparison of the computational efficiency

between the twomortar-basedmappingmethods. It is therefore encouraged to develop an

efficient implementation of the isogeometric mortar-based mapping method in a future

study, in order to be able to provide conclusive results regarding the comparison of the

computational efficiency of both methods, given that such a comparison is out of the

scope of the present study. Overall it can be said that FSI with IGA is highly efficient by

means of the proposed isogeometric B-rep mortar-based mapping method for real-world

engineering problems.

Conclusions

In this contribution, a mortar-based mapping method is elaborated and assessed for its

application to field transformations between trimmed NURBS-based CAD models and

standard low order discretizations (FEM, FVM etc.) of a surface. The application of the

aforementioned method considered herein is that of the partitioned FSI simulations,

either directly involving isogeometric structural discretizations or using the geometric

parametrization of an Exact Coupling Layer (ECL) for smoothing the description of the

interface fields. However, the herein proposed isogeometric B-Repmortar-basedmapping

method can be also applied to the regeneration of CAD B-Rep models, see the work done

in [72]. Three numerical examples are used in order to validate and assess the proposed

methodology. The lid-driven cavity is employed as benchmark example, whereas the FSI

simulations of an inflatable hangar and the NREL phase VI wind turbine with flexible

blades are used in the context of real-word applications. The results clearly show, that

real-world CAD models involving trimmed multipatches can be efficiently used in the

context of partitioned FSI by means of the proposed isogeometric B-Rep mortar-based
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mapping method. Additional focus is given to the use of the isogeometric B-Rep mortar-

based mapping method in conjunction with the CAD description of the interface as

an ECL in order to obtain smooth results that are highly desirable in the context of

surface coupled problems and in particular in the context of FSI. The results section is

complemented with convergence studies and energy transfer evaluations of the proposed

method. The convergence studies are concerned with the assessment of the errors in the

L2-norm regarding themapping of given fields from the trimmed isogeometricmultipatch

surface to the finite elementmesh and the otherway around, demonstrating consistence of

the proposedmethod. The energy transfer evaluations are concerned with the transferred

work through the interface for the corresponding FSI simulations, demonstrating inherent

physical relevance of the method. It can be seen that although the proposedmethod is not

by construction energy-conservative, the energy gain or loss when transferring fields by

means of the proposed isogeometric B-Rep mortar-based mapping method is minimal.

Therefore, it can be concluded that the herein proposed isogeometric B-Rep mortar-

based mapping method extends IBRA to FSI in a consistent and efficient computational

framework.
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