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An Isolated Multiport DC–DC Converter for

Simultaneous Power Management of Multiple

Different Renewable Energy Sources
Jianwu Zeng, Student Member, IEEE, Wei Qiao, Senior Member, IEEE,

Liyan Qu, Member, IEEE, and Yanping Jiao, Student Member, IEEE

Abstract— This paper proposes a new isolated multiport
dc–dc converter for simultaneous power management of multiple
renewable energy sources, which can be of different types
and capacities. The proposed dc–dc converter only uses one
controllable switch in each port to which a source is connected.
Therefore, it has the advantages of simple topology and minimum
number of power switches. A general topology of the proposed
converter is first introduced. Its principle and operation are then
analyzed. The proposed converter is applied for simultaneous
maximum power point tracking (MPPT) control of a wind/solar
hybrid generation system consisting of one wind turbine
generator (WTG) and two different photovoltaic (PV) panels. The
experimental results are provided to validate the effectiveness of
using the proposed converter to achieve MPPT simultaneously
for the WTG and both PV panels.

Index Terms— Isolated dc–dc converter, maximum power
point tracking (MPPT), multiport converter, power management,
renewable energy, solar energy, wind energy.

I. INTRODUCTION

I
N RECENT years, there has been a growing interest in

generating electricity from distributed renewable energy

sources. In many applications, it is required to connect multi-

ple renewable energy sources of different types (e.g., wind

and solar) and capacities to a power grid or load [1]–[6].

To perform efficient power management and grid integration

for the multiple sources, multiport dc–dc converters have been

proposed [5]–[10]. Fig. 1 shows a two-stage, grid-connected

multisource renewable energy system, which consists of an

isolated multiport dc–dc converter and an inverter [11]. The

isolated dc–dc converter has multiple input ports for connect-

ing different sources, such as photovoltaic (PV) panels, wind

turbine generators (WTGs), fuel cells, and so on. The multiport
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Fig. 1. Configuration of a two-stage, grid-connected, multisource energy
system.

dc–dc converter not only regulates the low-level dc voltages

of the sources to a constant high level required by the inverter,

but also can provide other important control functions, such

as maximum power point tracking (MPPT), for the renewable

energy sources.

There are two categories of integrated isolated multiport

converters. One category of converters uses a transformer

with a separate winding for each port. Therefore, all ports

are electrically isolated [12]–[17]. The other category of

converters has multiple ports connected to a single winding on

the primary side of a transformer [18]–[25], as shown in Fig. 1.

It requires a common ground point for all the input sources.

The second topology is preferable due to the advantage of

using less number of windings in the transformer.

A number of isolated multiport converters belonging to the

second category have been proposed. A widely used topology

is the isolated half-bridge converter [7], which used 2m + 2

controllable switches, where m(m ≥ 2) is the number of input

ports. Thereafter, in this paper, controllable switches are also

called switches. The number of switches was reduced to 2m

by either using one source as the dc link [21], [22] or reduc-

ing switches on the secondary side of the transformer [25].

Recently, a multiport converter topology with m + 3 power

switches has been proposed [5]. When m > 3, this multiport

converter has the least number of switches among the existing

topologies.

This paper proposes a new isolated multiport dc–dc con-

verter for simultaneous power management of multiple renew-

able energy sources [26], where only one switch is used in

each input port connected to a source. Similar to the converter

in [25], the proposed converter does not use any control-

lable switch on the secondary side of the transformer. Com-

2168-6777 © 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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Fig. 2. Topology of the proposed isolated multiport dc–dc converter.

pared with the existing multiport dc–dc converter topologies

[18]–[25], the proposed converter has the least number of

switches and thereby a lower cost.

The proposed converter is applied for power management

of a wind/solar hybrid generation system, which consists of a

WTG and two different PV panels. Using a suitably designed

perturbation and observation (P&O) MPPT algorithm, the

WTG and PV panels can be controlled simultaneously to

extract the maximum power from wind and sunlight, respec-

tively, using the proposed converter.

This paper is organized as follows. The topology of the con-

verter is introduced and the operating principle of the converter

is analyzed in Section II. Section III discusses the design

considerations for the proposed converter. In Section IV,

the proposed converter is applied for simultaneous power

management of a wind/solar hybrid generation system. The

experimental studies are carried out in Section V to testify

the effectiveness of the proposed isolated multiport dc–dc

converter for simultaneous MPPT control of the wind/solar

hybrid generation system. Section VI summarizes this paper

with some concluding remarks.

II. PROPOSED ISOLATED MULTIPORT

DC–DC CONVERTER

Fig. 2 shows the circuit diagram of the proposed iso-

lated multiport dc–dc converter. It consists of a low-voltage-

side (LVS) circuit and a high-voltage-side (HVS) circuit

connected by a high-frequency transformer TX. The LVS

circuit consists of m ports in parallel, one energy storage

capacitor Cs , and the primary winding of the transformer.

Each port contains a controllable power switch, a power diode,

and an inductor. The HVS circuit consists of the secondary

winding of the transformer connected to a full-bridge diode

rectifier, and a low-frequency LC filter. The transformer’s turn

ratio is defined as n = Np /Ns , where Np and Ns are the

numbers of turns of the primary and secondary windings,

respectively.

This converter has three operating modes: 1) all switches are

on; 2) switch S1 is off while at least one of the other switches

is on; and 3) all switches are off. The equivalent circuits of the

converter in the three operating modes are shown in Fig. 3.

Fig. 4 shows the steady-state waveforms of the converter in

Fig. 3. Equivalent circuits of the three operating modes of the proposed
converter. (a) Mode 1: all switches are on. (b) Mode 2: S1 is off and at least
one of the other switches is on. (c) Mode 3: all switches are off.

one switching period covering the three operating modes when

m = 3. To facilitate the explanation of the converter operation,

the state-space equations for different modes are written in the

following form:

M · Ẋ = A · X + B (1)

where M = diag(L1, L2, . . . , Lm , Cs , L, C) is a (m + 3) ×

(m + 3) diagonal matrix, X = [i1, i2, . . . , im, vcs, iL , vdc]
T is
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Fig. 4. Waveforms of the proposed converter when m = 3.

a (m + 3) × 1 state vector, A is the (m + 3) × (m + 3)

coefficient matrix, and B is a (m + 3) × 1 vector containing

input signals and some state variables.

Mode 1: t ∈ [t0, t1] (see Fig. 4), during which all of the

switches are on and the inductors L1, . . . , Lm store the energy

extracted from the sources; while the energy stored in the

capacitor Cs in the previous switching cycle is delivered to

the HVS through the diodes Ds2 and Ds4. The state-space

equations can be described as follows:

M · Ẋ =
⎡
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Mode 2: t ∈ [t1, t3], during which S1 is off and at least one

switch Sk (k = 2, . . . , or m) is on. Actually, there are 2m−1−1

different scenarios in this mode depending on the states of

the other (m − 2) switches S2, . . . , Sk−1, Sk+1, . . . , Sm . One

scenario is illustrated as an example, in which only one

switch Sk is on and all other switches are off. The state-space

equations are
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Mode 3: t ∈ [t3, t4], during which all switches are off. The

state-space equations are

M · Ẋ =
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With (2)–(4), the average state-space model can be derived

as follows:

M · Ẋ =
⎡
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where dk (k = 1, . . . , m) is the duty cycle of the switch Sk .

The equilibrium points can be calculated by setting all

time-derivative terms in (5) to be zero, then

Dk = 1 − (1 − D1) · Vk/V1 k = 2, . . . , m (6)

Ip− · D1 =

m
∑

k=1

Ik(1 − Dk) (7)

where Dk represents the steady-state value of dk and Vk is

the steady-state voltage of the kth input port of the converter.

Equation (7) shows the power conservation law in the capac-

itor Cs , where Ip−, as shown in Fig. 4, is the mean absolute

value of i p when S1 is on, and Ik is the steady-state values

of ik .
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III. DESIGN CONSIDERATIONS

To make multiple sources work effectively, the following

requirement should be satisfied: the switch Sk (k = 2, . . . , m)

should not be turned off before S1 is switched off; otherwise,

Lk will continuously store energy through S1 even Sk is off,

which is not desired. To meet this requirement, the following

inequality should be satisfied for the converter

min{d2, d3, . . . , dm} ≥ d1 (8)

Inequality (8) is met if the input voltage of Port 1 (P1) is

the largest, namely the following inequality is satisfied:

V1 ≥ max{V2, V3, . . . , Vm} (9)

where Vk is the output voltage of the kth source

(k = 1, . . . , m). In practice, the renewable energy source

with the largest nominal output voltage will be connected to

Port 1. A violation of (9) may lead to one of the following

two scenarios.

Scenario 1 (V1 = 0): If no power is available from

Port 1, (9) is no longer valid but (8) should still be satisfied.

In this scenario, the duty cycle of the switch S1 is set to be

a constant value such that (8) is satisfied, e.g., d1 = 0.4, and

the function of the switch S1 is to change the direction of the

current i p flowing through the transformer. Specifically, when

S1 is off, the current i p flows from the other sources to the

transformer to charge the capacitor Cs . When S1 is on, the

capacitor Cs discharges so that the direction of the current i p

reverses.

Scenario 2 (0 < V1 < max{V2, V3, . . . , Vm}): If the maxi-

mum power that can be generated by the renewable energy

source at Port 1 is low such that (9) cannot be satisfied,

(8) should still be satisfied. In this scenario, the duty cycle of

the switch S1 will be increased to a predefined maximum value

(e.g., 0.4) by the MPPT controller such that (8) is satisfied, and

the function of the switch S1 is the same as that in Scenario 1.

In this scenario, the power generated by the renewable energy

source connected to Port 1 might be less than the maximum

power that can be generated by the source. However, the

difference between the generated and the maximum power at

Port 1 is small because the maximum available power at Port 1

is usually very low in this scenario.

It should be noted that in the aforementioned two scenarios,

the sources connected to other ports (i.e., Ports 2–m) can

still be controlled simultaneously and independently in the

MPPT mode by appropriately controlling the duty cycles of the

corresponding switches. Therefore, in Scenario 1, the power

management of all the ports is still independent. In Scenario 2,

the power management of Port 1 is not independent, which

slightly affects the power generated from Port 1. However,

Scenario 2 can be avoided by connecting a boost type voltage

regulator between the source and Port 1 [27] so that (9) is

always satisfied.

The parameters of the components of the converter need

to be properly designed. These include the transformer turn

ratio n, inductances Lk (k = 1, . . . , m) and L, capacitances Ck

(k = 1, . . . , m) and CS , and the switches Sk (k = 1, . . . , m).

The turn ratio of the transformer is designed based on the

output voltage Vdc and the source voltage V1 of Port 1 [27]

n = 2 · V1 · D1/Vdc. (10)

The design of the inductance Lk (k = 1, . . . , m) is the same

as that in the dc–dc boost converter. When Sk is on, the voltage

across the inductor Lk is Vk , then

Vk = Lk
�Ik

Dk · Ts

k = 1, 2, . . . , m (11)

where �Ik is the desired current ripple of the inductor Lk and

Ts is the switching period. Therefore, the inductance can be

calculated by the following formula:

Lk =
Vk · Dk

fs · �Ik

k = 1, 2, . . . , m (12)

where fs is the switching frequency of the converter. When S1

is on, the voltage across the secondary inductor L is V1/n−Vdc,

and therefore

L =
(V1/n − Vdc) · D1 · Ts

�IL

=
V1 · (1 − 2D1) · D1

fs · n · �IL

(13)

where �IL is the desired current ripple of the inductor L.

Particularly, when D1 = 0.25, L achieves its peak value

Lmax =
V1

8 fs · n · �IL

. (14)

Then, �IL can be controlled within a certain value if

selecting L > Lmax.

In the steady state, the inductor current equals to the source

current in each input port, and the capacitor Ck (k = 1, . . . , m)

provides the ripple current �Ik of the inductor

�Ik = Ck
�vk

Dk · Ts

k = 1, 2, . . . , m (15)

where �vk is the voltage ripple of Ck . Then

Ck =
�Ik · Dk

fs · �vk

k = 1, 2, . . . , m. (16)

Similarly, the capacitor C provides the extra current to

balance the ripple current �IL caused by the inductor L. Then,

the capacitance C can be calculated from (16) with the use of

�Ik = �IL , Dk = D1, and �vk = �vdc.

When Sk is off, the current flowing through Cs is increased

by Ik , then the capacitance Cs is determined as follows:

Cs =

m
∑

k=1

Ik(1 − Dk) · Ts

�vcs
=

m
∑

k=1

Ik(1 − Dk)

fs · �vcs
(17)

where �vcs is the voltage ripple of Cs .

The peak voltage of the switch Sk (k = 2, . . . , m) is

Vk /(1 − Dk), which equals to V1/(1 – D1) according to (6).

The peak current flowing through the switch Sk (k = 2, . . . , m)

is Ik , which is less than that flowing through S1. When S1 is

on, as shown in Fig. 3(a), the inductor L1 stores energy and

the capacitor Cs discharges, then the current flowing through

S1 becomes

IS1 = I1 + Ip− =

I1 +
m
∑

k=2

Ik(1 − Dk)

D1
(18)
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Fig. 5. Signal flows in the wind/solar hybrid generation system managed by
the proposed converter.

where IS1 is the maximum drain-to-source current of the

switch S1. Then, the switches are selected based on their peak

voltages and maximum currents. In this paper, the allowed

maximum voltages and currents of the selected switches are

twice their calculated peak values.

IV. SIMULTANEOUS POWER MANAGEMENT FOR A

WIND/SOLAR HYBRID GENERATION SYSTEM

USING THE PROPOSED CONVERTER

Due to voltage variation and voltage sampling error, (6) will

not be strictly held if Dk (k = 2, . . . , m) are fixed. If (6) is

not met, the power will be mainly supplied by one port, e.g.,

Port 1, while the other ports can only supply a little power.

This issue is caused by the parallel connected ports, which

are coupled with each other [15]. Therefore, a control strategy

is required to decouple the power flow management for each

port. In this paper, a simple decoupling strategy is proposed, in

which only the duty cycle of one switch is being updated at a

time. For example, when d1 is being updated, other duty cycles

dk (k = 2, . . . , m) are fixed so that the voltage and current

in Port 1 can be controlled. The strategy is implemented

by setting different updating frequencies for the duty cycles

in different ports. For example, the updating frequency of

dk (k = 1, . . . , m − 1) is set lower than that of dk+1. Once

the decoupling strategy is determined, the controller for each

port can be designed individually.

In this paper, the proposed converter is applied for MPPT

control of a wind/solar hybrid generation system consisting of

a WTG and two PV panels, as shown in Fig. 5. The MPPT

controller uses a P&O MPPT algorithm [28] to maximize the

output power of the WTG and two PV panels simultaneously

under various weather conditions. Since the wind flow changes

more drastically than the solar radiation and the temperature,

the updating frequency of d1 is set to be the highest.

As shown in Fig. 5, the MPPT controller uses the output

voltage and current of each source as the input to generate an

appropriate pulsewidth modulated signal for the corresponding

switch. The flowchart of the P&O MPPT algorithm is shown

in Fig. 6, where Vs(k) and Ps(k) are the sampled voltage and

power of each source at the kth step, respectively, and �d is a

predefined perturbation value of the switch duty cycle in two

consecutive switching periods. The updated duty cycle causes

a change in the source current, which leads to the variation of

the output power of the source. As shown in Fig. 6, the power

Fig. 6. Flowchart of the P&O MPPT algorithm.

variation and duty cycle perturbation in the previous step are

used to determine the direction (i.e., positive or negative) of

the duty cycle perturbation in the next step.

To test the MPPT results for the two PV panels and the

WTG, it is necessary to obtain the ideal maximum power

points (MPPs) of the three sources under various conditions.

For a PV panel, the power–voltage (P–V ) characteristic curve

can be assumed unchanged within every 3-min interval in

a clear day. Then, the MPPs can be derived by gradually

increasing the duty ratio from a low to a high value. The MPPs

of the WTG are calculated using the measured wind speed and

other parameters provided by the manufacture as follows:

PMPP(t) =
⎧

⎪

⎨

⎪

⎩

Cp · 1
2
·ρ ·π ·r2 · v3

wind vcut−in <vwind <vnorm

Pnorm vnorm ≤vwind <vcut−out

0 vwind ≤vcut−in, vwind ≥vcut−out

(19)

where PMPP is the maximum power output of the wind

turbine, vwind is the wind speed, which can be measured by an

anemometer, ρ is the air density, r is the radius of the wind

turbine rotor plane, vcut−in, vnorm, and vcut−out are the cut-in,

nominal, and cut-out wind speeds of the wind turbine, respec-

tively, Pnorm is the nominal power of the wind turbine and its

value is 160 W, and Cp is the power coefficient of the wind

turbine. According to Betz’ law, the maximum value of Cp is

0.59. According to the power-wind speed characteristic of the

wind turbine provided by the manufacture, when the average

wind speed is 13.4 m/h, the monthly generated power of this

wind turbine is 40 kWh. Therefore, the maximum value of Cp

is calculated to be 0.4458 for the wind turbine in this paper.

V. EXPERIMENTAL RESULTS

With the analysis and design guidelines presented in the

previous sections, the proposed converter was constructed
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Fig. 7. Experimental setup.

TABLE I

COMPONENT SPECIFICATIONS OF THE CONVERTER CONSTRUCTED

in hardware for power management of an actual wind/solar

hybrid generation system. Fig. 7 shows the whole system,

which consists of the proposed multiport dc–dc converter,

three renewable energy sources, a dSPACE 1005 controller

board, and a resistive load. The control algorithm was imple-

mented in the dSPACE 1005 real-time control platform. The

three sources are a Southwest Windpower Air Breeze WTG

with a rated dc output voltage of 48 V, a BP SX 3175 PV panel

(PV1) with the voltage and current of 36.1 V and 4.85 A,

respectively, at the maximum power output, and a SunWize

SW-S110P PV panel (PV2) with the voltage and current of

17.4 V and 6.3 A, respectively, at the maximum power output.

The switching frequency and nominal output voltage of the

dc–dc converter are 60 kHz and 100 V, respectively. The

updating frequency of d1, d2, and d3 are set as 2000, 500,

and 100 Hz, respectively. The parameters of the converter

prototype used in the experiments are listed in Table I.

A. Steady-State Waveforms

Fig. 8(a) shows the measured waveforms of the currents

i1 and i2 flowing through the two inductors L1 and L2,

respectively, where i1 and i2 increase when the two switches

S1 and S2 are switched on; when the two switches are off,

i1 and i2 decrease.

Fig. 8(b) shows the current waveforms of the two inductors

L2 and L3, where i3 is the current flowing through the

inductor L3. i3 increases when the switch S3 is switched on

and decreases when S3 is off, which is similar to i1 and i2. The

mean values of the three source currents in Fig. 8(a) and (b)

are I1 = 1.41 A, I2 = 3.82 A, and I3 = 3.28 A, which shows

that the three sources WTG, PV1, and PV2 are connected to

the multiport dc–dc converter to supply power simultaneously.

Fig. 8(c) shows the waveform of i p , which is the current

flowing through the primary side of the transformer. When S1

is on, the capacitor Cs discharges since the current is negative;

during the period when S1 is off, the current becomes positive,

which charges Cs ; when S2 is off, i p increases because

Fig. 8. Current waveforms of the multiport dc–dc converter. (a) Currents
of the two inductors L1 and L2 (CH3 and CH4: 1 A/div). (b) Currents of
the two inductors L2 and L3 (CH3 and CH4: 1 A/div). (c) Current on the
primary side of the transformer (CH4: 10 A/div).

i p = i1 + i2; i p further increases to i1 + i2 + i3 when all of the

three switches are off. The waveforms in Fig. 8 are consistent

with those in Fig. 4, which validates the theoretical analysis.

B. MPPT Results

Fig. 9 shows the MPPT results of the two PV panels, where

the P–V characteristic curves were derived by connecting

each of the two PV panels to Port 1 at a time and gradually
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Fig. 9. MPPT results of the PV panels. (a) PV1. (b) PV2.

increasing the duty cycle of switch S1 from a low value (0.1)

to a high value (0.8) in 15 s, leading to a gradual change of

the operating points of the PV panel.

As shown in Fig. 9, the operating points of the two PV pan-

els are close to their respective MPPs, which shows that the

proposed multiport dc–dc converter has successfully achieved

MPPT control for different PV panels simultaneously. In

Fig. 9, the operating points are higher than the ideal MPPs

sometimes because there are capacitors connected with the

PV panels in parallel for storing energy, and the instantaneous

power can be larger than the MPPs. Small oscillations of the

operating points are caused by the P&O MPPT algorithm in

which the duty ratio varies slightly around the optimal duty

ratio from time to time. Such oscillations of power, however,

are relatively small compared with the average power value

and are acceptable. The results obtained at different times

of the day show that the proposed converter and control

algorithm regulate the two PV sources correctly to generate

the maximum power over the whole day.

Fig. 10 shows the MPPT result of the WTG. As shown in

Fig. 10(a), the wind speed measured by the anemometer varies

from time to time. The ideal MPP fluctuated with the wind

speed. The measured output power of the WTG follows closely

the ideal MPPs in Fig. 10(b), which shows the effectiveness

of the proposed multiport dc–dc converter and the MPPT

algorithm.

Fig. 10. Experimental result of WTG. (a) Wind speed profile. (b) MPPT
result of the WTG.

Fig. 11. Measured efficiency with respect to the output power.

C. Efficiency

Three voltage sources were connected to the three input

ports of the converter to test its efficiency. During the test,

the voltages of the three sources connected to the input ports

1∼3 were set to be 48, 36, and 17.4 V, respectively; the

ratio of the input powers among the three input ports 1∼3

were approximately regulated as 1:1:0.6, which is the same

as the ratio of the maximum powers of the three sources.

Fig. 11 shows the measured efficiency with respect to the
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output power of the converter. The efficiency first increases

with the increase of the output power. Particularly, when the

output power is 43 W, the maximum efficiency reaches 91.7%.

Then, the efficiency gradually decreases with the increase of

the load but is always higher than 90%.

VI. CONCLUSION

An isolated multiport dc–dc converter that uses the mini-

mum number of switches has been proposed for simultaneous

power management of multiple renewable energy sources. The

proposed converter has been applied for simultaneous power

management of a three-source wind/solar hybrid generation

system. The experimental results have been provided to show

the effectiveness of the proposed converter. The advantage of

the proposed multiport dc–dc converter is its simple topology

while having the capability of MPPT control for different

renewable energy sources simultaneously. Moreover, the pro-

posed converter can be easily applied for power management

of other types of renewable energy sources.
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