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1. INTRODUCTION

The theory of isostasy has a well-documented history of more than a hundred

years. Its fundamentals are even considerably older and can be traced back .". -

to Archimedes. From geodetic evidences some kind of isostatic equilibrium had

to be postulated. Although in some limited areas the Pratt/Hayford system

seemed to prevail, the Airy/Heiskanen system is now generally believed to

model the complex reality better.

The geodetic interest in isostasy was considerably fueled both by the access -

to high speed computers and the release of a worldwide digital terrain model.

Harmonic coefficients of the topographic-isostatic potential have been

calculated by several colleagues up to degree and order 36, based on 5" X 5'

mean topographic information, both in linear approximation (Khan, 1973) and in ,.

the non-linear mode (Lachapelle, 1975). At that time much higher resolutions

could not be obtained because of missing data, but in particular because of

excessive computer time requirements. With the design of the fast Fourier

algorithm on the sphere by Colombo (1981) and the public release of his

programs, high resolution models became suddenly feasible and have been -

computed complete up to degree 180 by Rapp (1982a) based on the worldwide

digital topographic model of 64800 1 1 V mean elevations provided by DMAAC

in 1979 and using the Airy/Heiskanen model in linear approximation. Rapp r
claimed that correlation studies between his geopotential solution of 1981 and r,_-Z

the topographic-isostatic potential suggest a considerably deeper level of

compensation of about 50 km rather than the usually used value of 30 km.

Rapp's linear approximation has been extended recently, taking into account

also second and third order terms, by Rummel (private communication). For a

compensation depth of 50 km the agreement between the topography-isostasy ",-*

and the geopotential spectrum was very good in the frequency range between ..-

degree 50 and 150; however, rather poor results have been obtained for the

range between degree 20 and 50 and, what is more astonishing, also in the

high frequency range above 150.

In 1983 an "exact" solution has been produced by former colleagues at the

Technical University in Graz using the same DMAAC data set, but

1 '- °. .
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unfortunately a less exact computer program which yielded, softly speaking,

* not utterly reliable results. Since this data set is often identified with my

name for unidentified reasons, I feel obliged to clarify: it is not my J
product.

Tscherning (1984) compared existing solutions, found that the above

referenced data set must be in doubt, criticized Rapp's 1982 solution because
I

of the too large and therefore, hard to sell depth of compensation, and 4

suggested the use of much smaller compensation depths in the range between

15 and 35 km which he found "optimal" in terms of maximally reducing the 9]
power of the observed geopotential. A

The question of the meat between the sandwich triggered my interest and was

a challenge to investigate that problem from scratch. The goal of this study

was to estimate the parameter(s) of the most likely compensation model which

is in best possible agreement with the observed geopotential and also

geophysically acceptable, and the calculation of the harmonic coefficients of

the topographic-isostatic potential complete up to degree and order 180, based

on that model.

Now you may continue with Chapter 6, the other part of the sandwich, and if

you are turned on, you may even find some meat between.

2.
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2. HARMONIC ANALYSIS OP THE TOPOGRAPHIC-ISOSTATIC POTENTIAL

Tae topographic-isostatic potential of Airy/Heiskanen type TTI is defined as

the potential of all mass disturbances relative to an ideal crustal layer of7

uniform density p, and thickness D, superimposed upon underlying material of

equally uniform density, pl. Denoting the mass disturbance by 6p, the -
potential TTI is well-known to be given by

TTI(P) G JJJ 4-1 (P,Q) .5p(Q) dv(Q) (2-1)
V

with G ... Newton's gravitational constant,

i(P,Q) .. space distance between P and Q,

dv ... volume element.

TTIj is certainly harmonic outside the earth's surface and TWO spherical

harmonic series is certainly convergent outside a sphere completely enclosing

the earth. Outside that sphere we may use the convergent series

representation of 2-1,

rP,) P., (coo #P) (2-2) -

n=o

with r ... modulus of the radius vector,

*Pg ... spherical distance between P and Q,

Pn ... Legendre polynomial of degree n

(Heiskanen & Morits, 1967 (HM), p. 33). Decomposing P,~ in terms of

n

P (co o) Ey 1.,(P) Ri,(Q) (2-3)

with the fully normalized spherical harmonicase.

rcoo aXp for a 4O

k.P " 2+)(n~s). n(O GO, (2-4)
R~(P =; ,~(cs sin aAp for a>O0

Of j ... Kronecker symbol, Pn, ... Legendre function, 6, X ... polar distance,

longitude.), the topographic-Isostatic potential is represented by the harmonic

3 /



series

TTI Gn+ __ (P) Sn Cp(Q)rn(Q)Rfi(Q)dv(Q) (2-5)
V

with dv (Q) =r 2(Q) dr(Q) do(Q)

and the spherical surface element do.

Let us now investigate the volume integral, confining ourselves to the usual

spherical approximation. Then its contribution due to the topographical

masases outside the geoid and ocean water inside the geoid in

W+ H

ffJp(Q)rfl+2(Q)dr(Q)R~(~uQ,(-a

and its contribution due to ',he isostatically compensating masses is

wrR-D~k

wihR . .. mean earth radius,

D . .. depth of compensation level,

H . .. topographical height ()

ocean bo:to height ()

(The compensation "factor" k, which is in the non-planar case actually a
function slightly dependent on H, will be discussed later.) In (2-6a) the

function

65p =po constant for topographic inses,

6p p, -po =constant for ocean maisses,

in (2-6b)

6p po p constant for compensating miasses

is used ( density of ocean water). The integration of (2-6a,b) with

4
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respect to r is straightforward and yields

n+3 fP(Q) 1 + H(Q) - 1 ].QduQ) (2-6a)'

and

- .1- -- I. V,.",

-J 6p(Q)[ 1 + - 1 Jm(J)dp(U), (2-6b)'

respectively.

The compensation "factor" k

This concept of isostasy is based on the principle of mass balance: surplus +

deficit 0. In the simple Airy/Heiskanen isostatic model this enables us to

derive the geometry of the compensation surface (roots/antiroots) such that an

exact 1 1 relation is postulated between a topographic height H and the

corresponding compensation height kH. This mass balance principle, applied to

rock topography and its compensation, yields

P5R3 + R -1( + (Po p)(R- D)' I - + 0, (2-7) ".

and after elementary manipulations

R D [1 k. [[i } 1 1 rock; (2-7a)

for the ocean and its compensation we obtain a similar expression,

1k - i- 1k( oI - I -1 ... ocean (2-7b)

with ko: =P,

(p'. -o.

5
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It is instructive to investigate the planar case. For this purpose we evaluate

kH in a power series with respect to H,

k = -k. H + O(..

and if we let the radius R become infinite, we obtain

k -kocH (2-8)

with cH 1 for H ) 0 and cH = 1- for H < 0.

PO

It is obvious that the compensation factor k is constant in the planar model

and independent of both H and D. For standard densities po = 2.67, P, - 3.27,

P.- 1.03 gcm- 1, we obtain the familiar values of -4.45 and -2.73 for rock and

ocean compensation, respectively (HM p.136). In the spherical model the

compensation "factor" k is no longer a constant; it is a function which

depends to a small extent on both the height H and the depth of the

compensation level D according to (2-7a,b) with (2-8) as the leading term. In

order to simplify, we introduce "normalized" heights H and H' according to

H
R (2-9)

R - D-.'.-

and the earth's mass M by

M (2-10)

3.. -

with the mean earth density Po = 5.517 gcm- 3 . With this notation, the

topographic-isostatic potential in its harmonic series representation is given .-

by

TTX(P) = T_ - RM(F) (2-11) ,J..

with the harmonic (Fourier) coefficients of the topographic-inostatic potential

6%

-. . ,, . .._ . . . .. . .. ... . -... .. . . . . . . .. . . . . . . . ' ,
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(t) no) (2-12a)

TW 3Po 1I r -
r

To Pt (2rj-e-)(n+3) 4ir ()~ uQ) - ,--

1 +3-- p- W L ff [r1 + '(Q)]" - 1]k.(Q) d,(Q)

U (2-12c)

(Here "t" stands for topography and "c" for its compensation.) Note that the

summation in (2-11) starts with n = 1 due to the mass equality condition;

the reader is invited to check that + %-) is indeed equal to zero (hint:

use (2-7a,b)).

7V
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3. APPROXIMATIONS FOR THE HARMONIC COEFFICIENTS OF THE

TOPOGRAPHIC-ISOSTATIC POTENTIAL

3.1 Linear Approximation

Given a worldwide digital terrain model (DTM) representing the geometry of

the solid earth surface, H(Q), standard numerical integration techniques have

been used in the past (Khan, 1973; Lachapelle, 1975). Due to the excessive

computation requirements, only low degree coefficients (up to degree and

order 36) using a 5' x 50 DTM, could be determined. A couple of years ago,

Colombo developed a fast Fourier algorithm for the sphere which can be

efficiently applied if the integrand is independent of any degree n.

Unfortunately, this is not the case with (2-12b,c). However, due to the

smallness of i and H' compared to 1, a linear approximation seemed to be

justified, yielding integrands L -

u (1 +lf+ 31 (3-1)

1 [( 1 + 9,)-+g - "

n +3 ,

which are obviously independent of the degree n. Therefore, in the linear

approximation, the FFT algorithm applied to H and H', respectively, can be and

has been used (Rapp, 1982), providing the Fourier coefficients

1 rrcf QRf.Qd()

(3-2)

1 J(

in a very efficient way. *

In this linear approximation case, the product cNH is usually called "equivalent

rock topography" which, looely speaking, trades in rock for water. The

products pocH and pok;'H' can consequently be interpretated as surface 4%: 4

layer densities at zero level and at the level of compensation. Therefore, in I
the linear approximation, the topographic-isostatic potential in represented in

8 V
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terms of a double layer potential.

The linear approximation of (2-12b) yields

ff 13-ff

the linear term of (2-7b) is

B' koc.7a

leading to

1 - 1 ffcHQk(~aQ.(3-3b)

Adding %1~) and T$.) according to (2-12a) the harmonic series of the

topographic-isootatic potential's linear approximation is given by 1.7

n1 2n + I RJ

*Exactly the same expression can be obtained if rock/ocean and compensation

masses are considered as single layers at zero level and at the level of

compensation, respectively.

Equation (3-4) is well suited to discuss the two extreme case of D) 0 and

D =R . It in obvious that for D =0 the topographic-isostatic potential in its

* linear approximation vanishes identically. For the second case, D =R, the

topographic-inostatic potential reduces to the topographic potential with

* vanishing zero degree harmonic (due to the mass balance). Neither of these

two cases is realistic, an we know from geodetic and geophysical evidence. if

we consider "reasonable" values of 0 < D << R, we my (at least for low

degrees) approximate

9
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we observe that the main torms in (3-4) cancel each other and obtain the

* approximation

TT() 4ffGDRPo nLP n k(P) L- JJ c"H(Q)R,,(Q)dgt(Q)
r P p n=1Lp 2n + 1 ...... 4w

I. (3-6)

which can be further simplified with

n . 1 (3-7)
2+ 1 -2

and the harmonic representation of the equivalent rock topography,

c"()c 5 H(Q)Rk.(Q)dv(Q). (3-8

* we find at ero lvel

TTI(PM 27IGWpocNB(P (3-9)

*(cf. also Hid, p. 149). This approximative formula is a very useful rule of

thumb which provides a fairly good estimate for a standard Airy/Heiskanen

*isostatic model. From this simple expression we conclude that the

topographic-i soatatic potential is approximately linearly dependent on the

depth of compensation and also linearly on the height of the equivalent rock

* topography.

* ~3.2 Eisther order avaroximations i.

Rapp's (1982) argument that the efficient FIT algorithm is only applicable in

* the linear approximation, which we have shown in the double layer formulation,

is no longer valid if we use the binomial expansion of the left-hand side of

(3-1),n+3

(1 + i)"+3- (3-10)

(analogous for H%) yielding exact expressions (within spherical approximation)

of the harmonic coefficients of the rock/ocean topography and it~s isostatic

10



compensation:

ni + 3'-(t) 3 po I .+-
no= - L ) L I cNHJ (Q)Rna,( Q )dE(Q) (3-11a)

p" (2n+l) (n+3) J=, 47

= p" (2 n+l)(n+3 ) 1- k . J= J 4 w cj ( d

(3-11b)

There is no reason why Pv'r could not be applied to any power of H and H',

respectively. (Note that (3-11a,b) are exact.) But do we gain anything by

employing FFT, considering the fact that 2(n + 3) FFT's have to be performed

(one FPT for each power of H and H'), compared to twice a standard numerical

integration? In the case of our earth we know that H, H'<< 1; therefore,

(3-10) converges very quickly and we can safely terminate the binomial

expansion at a very low degree without committing a significant error (an

upper limit of power j = 5 is perfectly sufficient). Consequently, only a small

number of FFT'e must be calculated; we typically save a tremendous amount of

computer time without sacrificing accuracy, and can arbitrarily improve the

result by adding another power of ff and H' if we so desire.

3.3 The second order effect

By the second order effect we understand the contribution of the second

power of H and H' to the topographic-isostatic potential. Because of the

rapid convergence of (3-10), this second order effect represents with very

good approximation the difference between the actual topographic-isostatic

potential and its double layer approximation. Is this difference sufficiently

small to be safely neglected?

Actually, there are two kinds of second order effects: one is due to the

second power of i and f' in the binomial expansion (3-10), the other is due

to the second power of 1 in the compensation function k = k(H) of (2-7a,b).

The second order effect due to rock/ocean topography is straightforward:

using the binomial expansion (3-10) in (2-12b) and observing the binomial

% 4V
11-



coefficient

1 (n + ______+_2

(n + 3) 2. 2]..(Z

* we obtain

W~; 3Po n t- -12s)
2p (2 n~l) 4WJJfC H()Rl(Q)da(Q). 

(3-1a

For the compensation part we develop (2-7a,b) in a series up to the second

power of H,

- )H -koc.~H(1 + R) k 1IAL. + 0(is),

and using again the binomial expansion (3-10), we get

n + 1( + 1jk~c4H2(1 + 0(is)

* and obtain as second order contribution of the isostatic compensation

Lpo 1 (1 n ffcj ji.QdQ.

=pig (2n+1) t~i ~ CH~koclill i ]R.Qd~()

(3-12b)

*Synthesizing T t and GT$,Qc according to (2-11), we obtain the second order

effect of the topographic-isostatic potential,

6TTI(P) = in(P (3-13)

* with the harmonic coefficients

6Tnw fiTh) + 6TJ.-

(3-14)

Using the approximations (3-6) and (3-7), this odd-looking expression can be

12
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* considerably simplified if we admit an error on the order of 20%, which can be

accepted since the second order effect in small compared to the first order

effect, yielding

- 3p

6T,, ~ k,-Jf LcHi(Q)'knmI.IuQ. (3-14)'

With (3-13) we then obtain at zero level

6TTI(P) 4Rs9 4. R .P) f C.VQ)' (Q)dur(Q)

*ani replacing M by (2-10), the approximated second order effect on the

* topographic-isostatic potential is simply

6TTI3[(P) "Gpoko (C.BP) (3-15)-

We observe that under these approximations the second order effect is

independent of the depth of compensaijon, is proportiOnal to the square of the

* evalent rock topography's height, and is therefore always positive.

*If we use the standard values for pe' pit and p,# we obtain a rule of tht; b

formula for the second order affect on the topographic-isostatic geoidal

height, using the Bruns formula,

6NTI(,.] E 10.2 8* (3-16)
[kn]

with H8:. c,1H, the equivalent rock topography. Note the formal similarity to

the Molodensky effect (HUd, p. 328)! ~

Combining first and second order effects we obtain

Ty~P1 + k, H (3-17)

from (3-17) we conclude that the second order effect, relative to the total

13
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potentia, increases with decreasing depth of compensation and vice versa.

For areas with extreme topography (both positive and negative), the secondil

order effect may amount to about 50% of the first order effect and certainly

cannot be neglected.

14
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4. POWER SPECTRUM CONSIDERATIONS

The power spectrum (degree variances) of the topographic-isostatic potential

in linear approximation is implied by the harmonic coefficients T(t ) and

of (3-3a,b),

"A
+ (4-1)

Denoting the harmonic coefficients of the normalized equivalent rock -
topography by fm ,

H* cL H R).(Q)ds(Q), (4-2)

the degree variances of the topographic-isostatic potential T' are related to

the degree variances of the equivalent rock topography H=,

n

n R*:*2.. (4-3)

* by

.2n + 1 R)1 H*

(cf. Lambeck, 1979, p. 592).

Considering T2 as a function of the compensation depth D, it is obvious that

the power spectrum of the topographic-imostatic potential is gaining power

with increasing compensation depth and attains a maximum for D = R such that

in this extreme case T: reduces to the degree variance of the potential of the

topography for n > 0 (T, = 0 in any case). For moderately large depths and

low degrees n we may use the approximation (3-5) and obtain as ratio between

15
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topographic-isostatic degree variances, corresponding to the compensation

depths D, and D 2,

T2(D,) D(45)

T.2(112  D2

From geodetic satellite and surface data we know that the actual anomalous

gravitational potential of the earth has much less power than (T2 (D = R)), -.-

implying that the rock/ocean topography is isostatically compensated to a

large extent with a relatively small D. A global standard value of 30 km is

generally accepted and frequently used for the purpose of topographic-

isostatic reduction of surface data.

If the global figure for the compensation depth is D, we should expect a good

agreement between the power spectrum of the earth's anomalous gravitational

potential V' and the power spectrum T.D), provided that the standard

Airy/Heiskanen model describes reality sufficiently well.

This idea was pursued by Rapp (1982a), using the simple double layer model

(linear approximation) and the DTM data set consisting of 64800 V x 1* mean

elevation and ocean depth data, provided by DMAAC. His results clearly

demonstrate that the standard Airy/Heiskanen compensation model with a

compensation depth of D = 30 km produces much too little power over the

entire frequency range from n = 2 to 180 and is totally inadequate to explain

the observed power spectrum of the anomalous gravitational potential. Later

investigations by Rapp and Rummel (private communication), using in addition

the terms of second and third order in H, confirmed the earlier studies.

Guided by the relation (4-4) or (4-5), considerably larger values for D were ..

suggested by Rapp (1982a). Obviously the best agreement between the two

power spectra was achieved for a compensation depth of D = 50 ks, yielding a

good match between degree 50 and 150; poor results have been obtained for

the range between 20 and 50 ki, but what is particularly astonishing, also in

the high frequency part between degree 150 and 180. Moreover, a

compensation depth of 50 km is generally considered to be too large by a

factor of almost 2 and i geophysically hard to justify.

16



The South Pacific area has not only a strong appeal to financially sound

vacationers but also to hard working geodesists (don't be misled by this

coincidence!) because of extreme gravity field structures. Forsberg (1984)

studied the topographic-isostatic geoid in the Tonga Trench and Tahiti area

using the recently released 5' x 5' "SYNBAPS" ocean depth data set. (I

strongly recommend to study Forsberg's report - it is a beautiful document!)

His results, which are also based on the standard Airy/Heiskanen compensation

model, also suggest much deeper compensation levels than 30 km. Forsberg 4

argues that at smaller depths of 30 km or so, conventional isostasy is led ad

absurdum by deep ocean trenches which would imply antiroots ending

considerably above the actual ocean bottom(!) - an argument in favor of larger

compensation depths. On the other hand, the observed average thickness of

the crust below the ocean bottom is only about 6-8 km - a fact which would

favor a compensation depth smaller than 30 km.

Isn't there a simple way out of that isostatic dilemma?

4.1 Compensation Deith versus Smoothing

The recent studies of Rapp (1982a) and Forsberg (1984), but also an earlier

work by Moritz (1968) and Schwarz (1976) have triggered my interest in this

problem; but in particular it was the simple idea of Vening Meinesu (1939) that

the actual compensation takes place regionally rather than strictly locally,

which made me to numerically investigate the problem of isostasy. But before

we shall hit the target in Chapter 5, let's make a small sidestep to

collocation.

During the collocation "high noon" period in the mid-seventies, one of the

main issues was how to deal wlth block mean gravity anomalies within a

homogeneous and isotropic statistical model environment. Numerical integration

of the covarlance function was prohibitive; therefore, an approximation had to

be employed: through formally replacing the block averaging operator by a

homogeneous and isotropic moving average operator of constant weight, the

comfort of homogeneity and isotropy can be achieved. According to the

convolution theorem, the moving average convolution process in the space ,.
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domain corresponds to a simple product between the eigenvalues of the moving

average operator and the Fourier coefficients of the function to be averaged

in the frequency domain. As far as collocation is concerned, this particular

function is the kernel function (in least-squares collocation the covariance

function) which, smoothed and unsmoothed, has to be represented by a finite

and as simple as possible expression in order to render possible a fast

calculation of linear functionals. Unfortunately, the eigenvalues of the moving

average operator prevent such a closed expression and therefore, they have

to be approximated by another spectrum which behaves properly. Schwarz

(1976, p. 37 ff.) suggested replacing the moving average eigenvalues with the

eigenvalues of an upward continuation operator. Applying this trick means

that the statistical properties of mean values at zero level are replaced by the

statistical properties of point values at a certain altitude which depends on

the block size of the moving average operator. Numerical tests confirmed that

this approximation was admissible.

Have we lost our track? No, we haven't! The same idea can be carried over to

get, at least partially, out of the isostatic dilemma: assuming that the Vening

Meinesz concept of regional isostatic compensation is correct, we may expect a

reasonably good solution in terms of a power spectrum agreement (between the

observed anomalous gravitational and the isostasy implied potential) by

formally replacing the regional isostatic concept of Vening Meinesz at

compensation depth D, by the strictly local isoatatic concept of Airy/Heiskanen

at a larger depth Da, where (D2 - DI) depends on the characteristics of the

Vening Meinesz smoothing.

After that verbal avalanche, it is time to be a little more specific: confining [

ourselves to the linear approximation, the Airy/Heiskanen power spectrum is

given by (4-4) which we repeat here

.oN 2n+ 1

The regional Vening Meinesz concept is based on a smoothing of the

compensation ( root/antiroot) surface. Since we don't know any better, we

propose democratic smoothing represented by a homogeneous and isotropic

18 i.



operator B with eigenvalues ,"

B(PQ) = (2n + 1)PP,(cosVpq), (4-6s)

.=2wJB(t)P,,(t)dt (t coo !) (4-6b)
-I4

with P = 1 to make the integral of the operator B over the unit sphere equal

to 1 which in required for mass balance.

The operator B will now be applied to the equivalent rock topography

represented by its harmonic coefficients RL, at the compensation level only.

Note: the rock/ocean topography remains unchanged, only the compensating

masses and therefore, the compensation root/antiroot surface is smoothed.

This smoothing process ( which is a simple convolution in the space domain) is

represented by a multiplication of Hi. by the eigenvalue ,-'

B*H* . (4-7)

Therefore, the Vening Meiness power spectrum in its linear approximation is

given by

T,(D1 ) = : 1 i -(i!1 p,] I 2  (4-8) '"'-,

p R np]R2(
T. D~o p.2a + 1 ''-

At this point we should briefly discus two extreme cases of smoothing:

a) 1 V n = 0, 1, ...

In this case the smoothing operator B of equation (4-4a) degenerates into

the Dirac distribution and will reproduce the input; consequently there is

no smoothing involved. Therefore, this operator represents the standard

Airy/Heinkanen modeL

b) P = 1, P, = 0 V n = 1, 2,...

In this case the smoothing operator B degenerates into the global average
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operator with equal weight; the compensation masases form a homogeneous

layer which is equivalent to a point mass at the origin. Therefore, this

operator represents the extreme case of the Airy/Heiskanen model with -

D2=R.

It is evident that the two power spectra T2 and i2 coincide if the condition

is fulfilled for all n. This implies an Airy/Heiskanen compensation depth D2 .

D2 =R -(R -Di)" (4-10)

or, in terms of radius of compensation, R1: =R D1

R, Ri . (4-10)'

It is obvious that R2 is constant (independent of the degree n) if and only if

b =conat.,

which implies

P" b (4-11)

with b -C 1 because of the compressing properties of a smoothing operator.

The smoothing operator B corresponding to (4-11) is obtained by an inverse

Fourier transform according to (4-6a)

B(P,Q) L (2a + 1)bP,(cosf#Pg) (4-12a)

*which is evidently the interior Poisson operator (EM, p. 35). With b 2R

* (equation (4-10)' and (4-11)) we finally obtain

B(,)=R( -R) (4-13)47i 3 (p, Q) 2

%.
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T. -Q

with the spatial distance I defined by

.(PQ) (R: + Rp- 2R."coa-pq)

. We conclude: if the Vening Meinee regional smoothing of the compensation

* surface is of Poison type at level R, with parameter R2, we can exactly

replace it by the standard Airy/Heiskanen model with compensation level R2 .

' Or vice versa, using a standard Airy/Heiskanen model at depth D2 corresponds

exactly to the use of a Vening Meiness model at depth DI with the Poisson

smoothing (4-13) and parameter D2 .

Now we are already on much mafer ground because we are able to justify

the formal use of an unusually large compensation depth. However, the

crucial question is still open: does the Poisson smoothing reflect physical

reality?

• - .1-,
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5. AN OPTIMAL VENING MEINESZ ISOSTATIC MODEL

If we are talking about "optimal", we have to choose a norm which defines

what "good" is. The choice of the norm is not so difficult if we are primarily

interested in the power spectrum of the topographic-isostatic potential. In

this case we consider a solution good if its deviation from the observed power

spectrum of the anomalous gravitational potential is small. Therefore, it is

quite natural to look after an operator, acting on the compensation, which

* makes both spectra match as closely as possible.

From our considerations in Chapter 4, we conclude that the minimum number

.. of parameters must be 2 if we are after a compensation smoothing operator:

one parameter that controls the level of compensation, the second one

controlling the smoothing. (Note that also the Poisson smoothing operator -- _

- (4-13) has two parameters, R, and Ra.)

5.1 Estimation of the parameters of the smoothing operator

In linear approximation, the Vening Meiness topographic-isostatic power

spectrum is given by equation (4-8); the operator's two parameters are D and

b, where D stands for depth of compensation and b is a smoothing parameter

(note that Pn depends on b). As a matter of fact, the individual harmonic

coefficients of the topographic-isostatic potential are also controlled in the

* same way,

T = T..(D,b). (5-1)

. Extending a suggestion of Techerning (1984), we perform a least-squares

• estimation of the model parameters such that the energy of the residual field

is minimized.

1T ~ m2 in. (5-2)

Since the low order harmonics of the anomalous gravitational potential are to a

large degree due to density disturbances in the upper mantle, and probably

22
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due to even deeper sources, it makes no sense (and would only disturb the

isostatic concept) to include the very long wavelength part in the energy

budget.

With a homogeneous and isotropic smoothing operator B having eigenvalues .,

the harmonic coefficients of the topographic-isostatic potential are given by

T,,(D,b) L (5-3)
PM 2n + I

The decision of the model spectrum (p(b)) can be based on correlation

*.- considerations between T,(D,b) and Vm requiring that

.. V,, , (5-4)

*- and yielding empirical estimates

(1-- : f1-- I - (2n + 1) ! " 1-(5-5)

which depend on the choice of D. The figures 6.3a-d on page 31 show graphs

of this empirical frequency transfer function P' for several compensation

depths D. As data the Rapp 81 geopotential model and the worldwide 1 * x 1

DTM model, supplied by DMAAC, have been used. All empirical frequency

transfer functions Pn, at least for geophysicaly reasonable compensation

depths, strongly suggest a Gaussian model of type

=.(b) e-b2 " . (5-6)

The solid curves represent the best fit of such a Gaussian model to the "'"

empirical frequency transfer function.

Having chosen a model for P.(b), it is a simple matter of least-squares

adjustment with 2 parameters to solve for the "beat" D and b. If we use

non-equal weights P. which depend on the degree like

p,,2 2n + 1
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with the model degree variances k. ,and error variances of the harmonic

cmefficients of the anomalous potential modelled by

an n K ... constant, (5-8)

according to Jekeli (1979, pp. 13, 14), we can even interpret the least-squares

solution as a kind of least-squares collocation solution for the model

parameters D and b (cf. Moritz, 1980, pp. 160, 161). (Here the data consists of

the vector I :: ..

Because of (5-7) and (5-8) the signal and error covariance matrices C. and C.

are diagonal, which implies that the energy

~i~~I (~ k.t + (4-yJ i2 (D,b) - a J2 (5-9)n=no 2n + 1 ::-

must be minimized with respect to D and b. With the Taylor linearization of

.%*(D,b) = T.(D(O),b()) + aln,(D,b) l(D - D(*))  -,

DD I(D=(),b=b(O))

+ aT,(D,b) (b-

ab I(DD(O),b=b(o)) (5-10)

at an appropriate Taylor point (for example D 30 km and b according to the

solid line in Fig. 6.3b), we obtain the coefficients of the design matrix A. The

elements of the two column vectors a, and a2 consist of the paertials of (5-10)

fITin"(D'b) i:!

a 1 . I (o=o(o),b=b(o))-

(5-11)

ab (.=o(o),b=b(o))J
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the residual parameter vector X of

XT (D,6b]. (5-12)

The least-squares solution is provided by

X (ATC'A)-ATC-
'
(1 - 1( ° ) ) (5-13)

* with

C C, + C, (5-14)

and

1(0) (T,.(Dob~)(5-15)

Finally we obtain the wanted parameters D and b of our best-fitting Vening

Meinesz isostatic model,

D =D ( ) + 6D,

b = b(o) + 6b.

For error considerations we have

• = (ArC-'A) -' (5-16)

as parameter error covariance matrix (for reference see Moritz (1980, Part B).

5.2 Pine-tuning of narameter estimation

When we derived the least-squares estimation of the isostatic parameters D

and b, we made two simplifications: firstly, if our Taylor point in far away

from reality, we must iterate the estimation process; secondly, in our

discussion of the estimation problem and in all our derivations we have

generously and tacitly assuemd that T. of equation (5-3) is correct.,/.,

The first problem will not be dealt with here because it is simple and

standard, provided the Taylor point is not too much off the truth. The

second problem is probably s -htly more delicate, although a relatively simple

solution i possible:
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'* Equation (5-3) presupposes a linear relation between the topographic- inostatic

potential and the equivalent rock topography. But according to (2-11) and

(2-12a,b,c) we know that the relation is highly non-linear. Therefore, the

concept of parameter estimation has to be modified accordingly.

This modification is basically due to second and higher order effects which,

we know from our discussion in Chapter 3, are small because the topographic

height is so much smaller than the radius of the earth. Therefore, an

iteration process offers itself again.

Let B be, as before, the smoothing operator applied to the compensation

surface, represented by H', yielding the smoothed compensation surface

H' =B * I'. Then H' should be used for the harmonic coefficients of the

copensation of equation (3-11b). Note, however, that I (and not H) is

used for the harmonic coefficients of the topography T), because smoothing ri
is only applied to the compensating masses. The problem is that also higher

order powers of ' enter into - - -

nm n l1k' 3 3J
(5-17)

while %.0 remains unchanged (equation (3-11a)). Since H' is a convolution of

B and H', higher order powers of H correspond to convolutions in the frequency

domain. Therefore, the smoothing parameter b enters in a rather complicated

manner into the higher order term of T). But fortunately, these term are

only small correction terms to the leading linear term (5-3); therefore, if we

solve for b, it will be sufficient to calculate the higher order terms based on

* the latest knowledge of b and to consider them formally as constants in the

subsequent least-squares estimation process. It is sufficient to iterate this

process a few times because of the extraordinarily rapid convergence. The

entire procedure can be summarised as follows:
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- - - -i- i-

0) i 0

harmonic analysis of low order powers of topography according to (3-11a);

correlation study (5-5) yields initial estimates D(o) and ^(o);.

I ) i: =i +Il" 
-

smoothing of compensation surface (11(1) = B(-), R') using D(-1) and

- 2) Harmonic analysis of low order powers of smoothed compensation surface

i'M() according to (5-17) yields a fiLst order term ;4) which will be

considered as a function of D and b, and higher order (correction) term
U

6T~m which will be considered as constants in the subsequent step;

3) Adjustment (collocation) solution for D and b with Taylor point (D(-),
b- ) and linearization restricted to the linear term T) of step (2);

Stop if I E(b) _ ('-') I , E0 and I £() _ £('-) I ' £b, else go to (1).

The result of this iteration process is both a best estimate for the depth

of compensation and for the parameter of the most likely compensation

smoothing, and a set of harmonic coefficients of the topographic-isostatic

potential corresponding to that Vening Meinesz regional isostatic compensation

"- model.

.2
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6. NUMERICAL STUDIES, RESULTS, CONCLUSIONS

For the numerical investigations the worldwide digital terrain model of 64800

P x 1 mean elevations and ocean bottom depth. (but no information on ice

coverage), supplied by DMAAC in 1979, and, representing the earth's gravity

field, the Rapp 1981 solution which is complete to degree and order 180, have

been used. Due to the time limitations of this study it was unfortunately not

possible to merge the recently released SYNBAPS dataset, which consists of

5' by 5' mean ocean depths, with the available DTM. Since the output of a

system can hardly be better than its input, our results have to be considered

with these reservations in mind.

As we mentioned already at the beginning, the goal of this study was both the

-. parameter estimation of the most likely isostatic compensation model and the

determination of a set of topographic-isostatic coefficients complete up to -

- degree and order 180, based on that compensation model This task would be

. formidable without support of the powerful tool of fast Fourier transform on

the sphere. Therefore, the unlimited access to Colombo's (1981) outstanding

FFT algorithms "HARMIN" for analysis and "SSYNTH" for synthesis was

particularly appreciated. The following is a comprehensive documentation of

our numerical studies.

In all our investigations, the following parameters have been used:

density:

PO = 2.67 g-s ... rock topography

P, = 1.027 gcu - I ... ocean water

= 3.27 gc' ... crust'". ;.

Pm = 5.517 gc- ... e- earth

R = 6371 km

28 
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potential coefficient detree variance model:

" ,(A 1O), A = 4.1, B = 1.8

(cf. Rapp, 1979, p. 10)

potential coefficient error model:

R. 1I, K 0.0581 10- 6

(cf. Jekeli, 1979, p. 13 ff.)

harmonic series co.wlete up to destree:

n = 180

binomial expansion up to power: -

j = 5

Ir order to get an idea about the contribution of first and higher order terms

to the harmonic coefficients of the topographic-isostatic potential, we provide .

in Fig. 6.1 a graph of the degree variances, separate for the linear and

second order term as well as the composite degree variances. Note that the

linear approximation pretends more power over the entire frequency range

than the exact topographic-isostatic model actually has. The contribution of

the third order term is already so small that it does not show up in the

plntting window. Therefore, we have confined our discussion of higher order

terms in Chapter 3 to the second order term only. '""

The dependence of the power spectrum on the choice of the compensation

depth D or, if Poisson compensation smoothing is employed, on the

r corresponding smoothing parameter (cf. Section 4.1), is illustrated in Fig. 6.2

for depths D = 30, 50, 70, and 100 km. The gain of power with increasing

compensation depth (or more compensation smoothing) is obvious.

Frequency transfer functions between the Rapp 81 anomalous gravitational

power spectrum and the topographic-iostatic power spectrum in linear
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approximation are given in Fig. 6.3a-d for compensation depths D 20, 30, 50,

and 70 km. The graphs strongly suggest a Gaussian model of the type (5-6).

The solid lines represent that best model fit.

By an inverse Fourier transform of the frequency transfer function P, we

obtain the corresponding space transfer function which is essentially the

compensation smoothing operator B, -

B(P,Q) L (2n + 1)pP,(P,Q). (6-1)

Using the best fitting Gaussian frequency transfer model, the smoothing

operator has been determined for the most important part of its support and

is presented in Fig. 6.4a-d normalized to B(O) = 1. The scale of the abscissa

is arc deg. of spherical distance. These operators demonstrate that the

smoothing of the compensation surface, as implied by our knowledge of the L

global gravitational field of the earth, is obviously most likely of Gaussian

type rather than of moving average, box-shaped type or of Poisson type. The

radius of smoothing (theoretically 180 degrees, practically very much smaller)

decreases with increasing compensation depth. This should be expected

because an increase of compensation depth accounts already for a certain

degree of smoothing, although of Poisson type. For geophysically relevant

compensation depths the smoothing radius does practically not exceed 2

degrees.

For the least-squares estimation of the two model parameters, compensation

depth D and smoothing parameter b, the initial (Taylor) values

D(O) = 30 Ika, (6-1) "
b(°) =0.0082,

suggested by the correlation pattern, have been used. (The smoothing

parameter b(o) = 0.0082 implies a "correlation length" of the bell-shaped

Gaussian frequency transfer function of about (degree) n = 100.) Graphs of

both the frequency and the corresponding space domain transfer

function(smoothing operator) for these initial values are presented in Figs.

6.3b and 6.4b.
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SPACE TRANSFER FUNCTION 1= SMOOTHING OPERATOR)
BASED ON A I X 1 DEG. DTM (DMA-MODEL. 1979)

AND AIRT/VENING MEINESZ COMPENSRTION MODEL WITH
GAUSSIAN SMOOTHING, PARAMETER B = 0.0091

DEPTH = 214 KM, ROCK DENSITT= 2.67 G/CMxx3,

CRUST DENSITY = 3.27 G/CMxx3.
WATER DENSITY = 1.027 G/CMxw3

CALCULATION METHOD: FFT + POWER SERIES
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Fig. 6.5 Optimal smoothing operator 't 2
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The compensation smoothing H' B H i' was naturally performed in the

frequency domain. The higher powers of H' could have been obtained by spectral

convolution in the frequency domain. We found it a lot easier to

retransform the spectrum %, into the space domain using Colombo's Fourier

synthesis progran SSYNTH and to calculate all powers of H' there. The . -.

binomial expansion has been terminated at power j = 5. After two iterations of

the least-squares parameter estimation process no significant change of D and

b could be observed. The finally adopted compensation model parameters,

which yield a best possible agreement between gravity field information and a

topography-isoetasy implied model gravity field on a global scale, were

D = 24 km

b = 0.0091 (6-2)

with a standard deviation of less than 2% (!) each. Note that the very low

frequency part of n < 15 has been excluded from the parameter estimation

process in order to avoid a strong bias of the solution coming from that part

of the power spectrum which has the least to do with iostasy. The "best"

smoothing operator B(,#) with b = 0.0091, normaUsed to B(0) = 1, is presented

in Fig. 6.5 as a function of the spherical distance it. Finally we present in

Fig. 6.6 both the power spectrum of the Rapp 81 geopotentlal solution and the

power spectrum implied by the "best" Airy/Heiskanen-Vening Meiness

topographic-isostatic model. Because of the above-mentioned exclusion of the

very low frequency part a match in that range can never be expected (and if

observed, is purely artificial). The very long wavelengths, corresponding to

that very low frequency part, are to a great extent due to density

disturbances in the earth's mantle and are only superimposed by a relative

little topographic-isotatic effect. Therefore, we should primarily focus on the

higher and highest frequencies. And indeed, in this range the agreement of

the two spectra is not only remarkable - it is almost unbelievable. At least

from degree 36 on the match is very good and, as we believe, a considerable

improvement compared with earlier solutions (compare Rapp, 1982).

The compensation smoothing due to Vening Meiness yields not only a better
agreement with observoed reality, it also makes Forsberg's argument of V,
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antiroots with tops partly above the ocean bottom, a phenomenon observed

with the conventional Airy/Heiskanen model, obsolete because the compensation

smoothing largely eliminates those singularities. An argument in favor of a

smaller compensation depth is the observed thickness of the crust below the

oceans which is of the order of 6-8 km; our model is in good agreement also

with this figure. Another argument which speaks in favor of a Vening

Meinesz model and against the simple Airy/Heiskanen model i the fact that the

strength of the earth's crust is able to support a certain amount of

topographical load without local yielding, while in the 1:1 model of

Airy/Heiskanen free mobility between vertical mass columns is presupposed - a

highly unlikely case. It remains an interesting exercise of applied elasticity

theory to figure out whether the Gaussian compensation smoothing with the

parameter b = 0.0091, estimated from global geodetic evidence only, is

compatible with the known elastic parameters of the crust. Geophysicists are

also invited to comment on our geodetic estimate of the depth of compensation.

In any case, we should carefully keep in mind that our model is a global one

with only two parameters - it can hardly be simpler. Therefore, it must be

considered as a model describing the average behavior of the crust on a

global scale. Local deviations from this global model, even large ones, are

possible and are well-known from geophysical/geological evidence to exist.

Therefore, this model can never be adequate to describe or even explain

density patterns which are due to plate tectonics, like slabs sliding down into

the mantle at plate margins or the like. Needless to say, this was not the

goal of our investigation.

Geodesists have been and are still using the concept of isostasy for filtering

purposes only, without bothering very much about its geophysical significance.

They are happy with any isostatic model as long as the power of their

measured gravity field signal is sufficiently diminished; as long as the

topographic-isotatically reduced gravity field signal is sufficiently smooth,

geodesists can live with that model. The Vening Meiness model proposed here

is probably not capable of smoothing gravity field signals significantly better

than conventional models which have been successfully used in the past,

although numerical studies in geodetically pathological areas along trenches

and continental margins suggest more optimism. The model presented here

should be understood as a bridge between geodesy and geophysics, which is
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*" more stable and sound than the ones that have been used by geodesists in

the past. It is a model which makes us cheat less and therefore, enables us

to live scientifically more comfortably.

-' The harmonic coefficients of the topographic-isostatic potential (called TIC 85),

which are based on the model parameters (6-2) and derived from the DMAAC

DTM dataset, have been synthesized using Colombo's Fourier algorithm SSYNTH,

yielding both topographic-isostatic geoidal heights and gravity anomalies on a

global 1 x * grid.

The minimum and maximum geoidal height implied by TIC 85 are -10 m and

+30 m with a variance of 17 ma which, compared to the observed value of

about 900 m, clearly demonstrates the strong power of non-isostatic effects

due to deep density sources which in also reflected by the pronounced

disagreement between the TIC 85 and the Rapp 81 solution in the very low

frequency range. It is instructive to compare the minimum and maximum TIC

, 85 geoidal heights with those derived from the rule of thumb formula (which

does not presuppose compensation smoothing) of equation (3-17): with the -

* i minimum and maximum DTM terrain heights of -7800 m and +5900 m equation

-~ (3-17) yields estimates of -12 m and +25 m which differ by only 20% from what

- we have obtained. (It in also interesting to note that the compensation

smoothing reduces the root/antiroot maxima by about 30% .) The histogram of

TIC 85 geoidal heights which is presented in Fig. 6.7 documents basically the

distribution of rock (+) and ocean -) masses.

As far as TIC 86 implied gravity anomalies are concerned, we have minima and

maxima of -225 mgal and 214 regal with a variance of 516 regal' which comes

already much closer to the observed variance of 1" x 10 mean gravity

anomalies of about 900 migal'. This had to be expected because gravity

responds much more to local density disturbances than the potential. The

histogram of TIC 85 gravity anomalies in Fig. 6.8 has a pronounced maximum at

zero and is almost symmetrically bell-shaped.

FProm these simple but instructive statistical data we can already anticipate the II
main features of the topogrphic-iostatic gfeoid: it mirrors topography to a
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great extent and does hardly resemble the observed geoid on a global scale

because of the missing long wavelength information. However, locally the TIC

geoid comes very close to the observed trend-reduced geoid. Geoid maps,

produced by GSPP (Siinkel, 1980) for various geodetically challenging "hot

spots" on our earth are provided as illustration material. The reader is

invited to make a comparison with the SEASAT - geoid derived by Rapp

(1982b) and with the topographic-isostatic geoid, based on Airy/Heiskanen

models of various depths and using the much more detailed and accurate

SYNBAPS bathymetric dataset (5' $ 5' compared with the V x V DMAAC model),

calculated by Forsberg (1984) for some pleasant resort areas on our globe.

The TIC 85 model got input from a worldwide DTM with a maximum resolution

of about 200 km wavelength and very poor performance in some identified

areas like South Africa, for example. Because our operators are well-known to - .

be gigo's (garbage in-garbage gut), we strongly suggest to improve the global

DTM both with respect to resolution and accuracy in order to make a

computation of an even better model up to degree and order 360 possible.

* Topographic-isostatic models of that high resolution are not only important for

geophysical research, they are also extremely useful for the topographic-

isostatic reduction of geodetic data: using a high resolution model like TIC 85

or better as a global reference, the entire topographic- isostatic reduction

problem can practically be reduced to the processing of small residuals in

planar approximation. And for that purpose we have again the very powerful

FFT algorithm at our disposal which has been so successfully applied by

Sideris (1984) for the evaluation of DTM-related integrals, or alternatively, the

recently published TC-programs written by Forsberg(1984).

We consider this report (which claims neither to be complete nor to be

completely debugged, despite the heavy use of a scientific word processing

system) as a small step towards a better understanding of our earth's shell,

which A. Wegener once compared to a defendant who declines to answer. The

earth scientist, confronted with that defendant, is the judge who has to find

the truth from the circumstantial evidences.
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