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Abstract 

Altman (1990) and Hart (1991) have shown that kernel regression can be an effective 

method for estimating an unknown mean function when the errors are correlated. How­

ever, the optimal bandwidth for kernel smoothing depends strongly on the correlation 

function, as do confidence bands for the regression ·curve. 

In this paper, the simultaneous estimation of the regression and correlation functions 

is explored. An iterative technique analogous to the iterated Cochrane-Orcutt method 

for linear regression (Cochrane and Orcutt, 1949) is shown,to perform well. However, for 

moderate sample sizes, stopping after the first iteration produces better results. 

An interesting feature of the simultaneous meth~d is that it performs best when 

different .kernels are used to estimate the regression and correlation functions. For the 

regression function, unimodal kernels are known to be optimal. However, examina­

tion of the mean squared error of the correlation estimator suggests that a bimodal 

kernel will perform better for estimating correlations. Use of a bimodal kernel for es­

timating the correlation function, followed by use of a unimodal kernel for estimat­

ing the regression function a.t the final step, performed best in a. simulation study. 

Keywords: autocorrelation; smoothing; nonlinear time'series 
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1. Introduction 

Altman (1990) and Hart (1991) have shown that kernel regression can be an effective 

method for estimating an unknown mean function, J.L( x) in the nonparametric regression 

problem 

y = J.L(x) + c 

when the errors, c, come from a stationary correlated process with summable correlations. 

The optimal bandwidth for kernel smoothing depends strongly on the correlation function. 

Altman {1990), Hart (1991) and Truong (1989) have suggested methods for estimating the 

correlation function from the data. This paper explores the use of iterative, Cochrane­

Orcutt (CO) type techniques, for simultaneous estimation of the regression and correlation 

functions. 

The bias and variance of both the regression and correlation estimates are controlled 

by the kernel and bandwidth used for smoothing. If the bandwidth needs to be chosen 

from the data, as is usually the case, estimation of the correlation function is critical. 

Altman (1990) and Hart (1991) show that cross-validation (CV) and related tech­

niques for estimating prediction error perform poorly when the errors are correlated. Their 

mean squared error (MSE) computations, which are summarized in Section 2, indicate that 

"plug-in" methods (Gasser, Kneip, ~nd Kohler, 1991) may also need to be adjusted for 

correlation. Overestimation of the correlations leads to estimated bandwidths which are 

too large, and hence to oversmoothing the data, while underestimation leads to under­

smoothing. Two methods for adjusting CV have been suggested (Altman, 1990; Chiu, 

1989; Diggle and Hutchinson, 1989; Engle et al, 1986; and Hart, 1991) and are reviewed 

in Section 3. 

The asymptotic properties of the MMEs of correlation are reviewed in Section 2. 

Over most reasonable ranges of bandwidths, oversmoothing leads to positive bias in the 

method of moments estimators (MMEs) of correlation, while undersmoothing leads to 

negative bias. Thus, using iterative methods, it is possible to enter a positive feedback 
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loop in which both the regression and correlation estimators move away from their true 

values as iteration continues. 

At the asymptotically optimal bandwidth, A*, for estimating the regression function, 

the asymptotic MSE of the MMEs of correlation are proportional to a characteristic func­

tion of the kernel, and depend, to first order, only on the bias. For unimodal kernels, 

the asymptotic bias at A* is always negative. However, the asymptotic bias at A* can be 

reduced to a lower order of magnitude by an appropriately chosen bimodal kernel. This 

suggests that certain bimodal kernels may be preferable to unimodal kernels for use in CO 

type computations. 

By contrast, Gasser and Miiller (1979) show that optimal kernels for estimating 

the regression function are unimodal when the errors are independently and identically 

distributed (i.i.d.). Altman (1990) showed that this result is also true when the errors are 

correlated. Therefore, this paper proposes that the final step in the CO procedure use a 

unimodal kernel to estimate the regression function. 

Section 4 is a simulation study, supporting the use of the bimodal kernel and the 

iterative method. Section 5 is an example of the use of the method to determine features 

in a long time series of daily sea surface temperatures. 

· ·2. Asymptotic MSE of the Regression and Correlation Es-
. . 

timators 

This paper focuses on the nonparametric regression model, 

(1) 

where n is the sample size, JL(x) is a smooth deterministic mean function on [0, 1], and e 

is a stationary second order error process with mean zero and covariance function 

(2) 

., 
In this formulation, the d~ign points become closer together as the sample size increases, 

but the error process remains the same. T~s model is discussed by Altman (1990) and 
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Hart (1991). The model is of practical application in situations in which the correlation 

is induced by the measuring device, for example, when the output from a monitor is a 

filtered sequence. In many applications, the correlation function depends on the distance 

between design points, and thus on n. However, for these applications, asymptotic results 

based on model ( 1) can be viewed as approximations valid for large sample sizes. 

Under regularity conditions on the mean and correlation functions, kernel regression 

has been shown to be consistent for estimating the mean function for classes of models 

which include (1) (Altman, 1990 and Hart 1991). It is therefore natural to attempt to 

estimate functionals of the error distribution from the residuals 

e>.,n( i) = Yn,i - P.>.,n(; ). (3) 

The regression estimator, P,>.,n(*) is the kernel estimator o~ Priestley and Chao (1972). 

This has the form 

(4) 

K is called the kernel function, and ..\ is a smoothing parameter, called the bandwidth. 

Only kernels with the following properties are considered: 

·A) K is symmetric about 0. 

B) K has support only on the interval ( -!, !). 

C) K is Lipschitz continuous of order a> 0. 

K is called a kernel of order p if all the first p - 1 moments of K are 0, and the pth 

moment, 

SK = j xP K(x)dx 

is not zero. The squared norm of K 

WK = J K 2(x)dx 

is also needed for the computations that follow. 
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Altman (1990) showed that kernel estimators of this type are consistent estimators 

of the mean function under the following regularity conditions: 

D) The mean function p, has square integrable pth derivative (p ~ 2) which is Lipschitz 

of order 1, 0 < 1 ::::; 1. 

E) The correlation function is absolutely summable and 

00 

:Lp(j) = Sp. (7) 
i=l 

F) The correlation function satisfies: 

N 

~ 2: ilp(i)l = o(1) 
i=l 

Conditions E and F are mixing conditions which ensure that observations sufficiently far 

apart are essentially uncorrelated. 

Theorem 1: Suppose the kernel satisfies A-C and is of order p, the regression 

function satisfies D for the same p, and the correlations satisfy E and F. Then, for the kernel 

estimator with bandwidth >.,the asymptotic mean integrated squared error (AMISE) of 

the regression function over the region >./2 ::::; x ::::; 1 - >./2 is 

The signal to noise ratio, N(>.), is defined by: 

(8) 

The proof of Theorem 1 is in Altman, 1990. 
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Corollary {!):Under the conditions of Theorem 1, the asymptotically optimal band-

width, ).*is 

[ ]
2p~l 

'* WK(l + 2Sp) __ 1_ 
"" - n 2p+t 

- pN(O) (~r . (9) 

For the consistency of the MMEs of variance and correlation based on the residuals 

from the kernel smooth, further regularity conditions on the errors are needed. A condition 

which is often used in time series analysis (see, for example, Brockwell and Davis, 1987, 

chap. 7) and which is sufficient for consistency is: 

G) En,t = 2:~-oo t/;jZt-j with 2:~-oo lt/Jil < oo 

Zt i.i.d. with E(zt) = 0 

E(zl) = u2 

E(zt) < oo. 

(10) 

For results on the variance of the MMEs, the following condition is needed on the 

fourth moment of the error process: 

H) For all r, s, t 

L:~=O E(EtEt+sEt+rEt+r+s+n) converges. 

I:;:,0 E(EtEt+sEt+rEt+r-s+n) converges. 

Define 

n-[~]-s 

i'A,n(s) =.;; L e>.,n(i)eA,n(i + s) 

i=[~J 

where eA,n(i) = Yn,i- ftA,n(-!;J. 

(11) 

Theorem 2: Suppose the data and kernel satisfy conditions A - H and define i'>.,n( s) by 

(11). For fixed s, nand>., define the method of moments estimator of p(s) by 

~ ( ) i'>.,n(s) 
P>.,nS = ~ (0)" 

/>.,n 
(12) 
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Then h,n( 8) is asymptotically normal and, as ;\ -t 0 and n;\ -t oo, 

A p(8) + ;\2P ( ~) 2 N()..) + (l~ 2 >.Se)(WK- 2K(O)) 
E(P>.,n(8)) = 2 

1 + )..2p ( ~) N(..\) + (l~~Se)(WK- 2K(O)) 

1 8 + o(;\2P) + o( \) + o(- ). (13) 
n"' n 

and 

where Va is given by Bartlett's formula (Bartlett, 1946) for the process Et· 

. 
The proof of Theorem 2 is in Altman (1991). 

Theorem 2 shows the consistency of the MMEs of the correlation function. It also 

shows that, asymptotically, the mean squared error of the correlation estimates is dom­

inated by the bias, which depends on the noise to signal ratioN(..\) and the sum of the 

correlations Sp. 

While the MMEs are consistent for all lags, it is important to note that the coefficients 

of the higher order terms increase in magnitude with 8. In finite samples, correlations at 

low lags are estimated much more precisely than correlations at longer lags. 

Corollary 2, below, discusses the dependence of the estimation bias on N(..\) and ,S,. 

Corollary 2: Under the conditions of Theorem 2, asymptotically, 

a) If WK ~ 2K(O), the bias of h,n(8) is positive. 

b) If WK < 2K(O), h,n(s) has bias which is increasing in A, and the signal to noise ratio, 

N(..\), and is decreasing in S,. 

Proof: Let r>.,n(s) = (p(s) + C>.,n) / (1 + C>.,n) where 

C>.,n = ;\2P ( ~) 2 
N(..\) + (l :~Sp) (WK- 2K(O)). (14) 

Then 

E(h,n(s)) = r>.,n(s) + o(;\2P) + o(,:;\). (15) 
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rA,n(s) is a hyperbola in CA,n, with asymptote 1, and singularity at CA,n = -1. rA,n(s) is 

increasing in CA,n for CA,n > -1. If WK 2: 2K(O), then CA,n > 0. If WK < 2K(O), then, 

for A sufficiently small, and nA sufficiently large, C A,n > -1 and r A,n ( s) is increasing in A 

and N(A) and decreasing in Sp. 

Computing cA.,n gives 

(16) 

This suggests that a kernel of order p will perform well in a simultaneous estimation 

scheme if WK = 2:f.1 K(O). Such a kernel will be denoted a CO kernel. Suitable kernels 

can be computed using truncated polynomials. 

Altman (1990) suggested a two-step estimation procedure for estimating the mean 

and correlation functions. Residuals from a moderate bandwidth smooth were used to 

compute MMEs of the low order correlations. These were extended to all lags by assuming 

an autoregressive moving average (ARMA) model for the errors. These estimates were 

used with a corrected bandwidth selection technique for estimating the regression function. 

Simulations using the same unimodal kernel to estimate the regression and· correlation 

functions showed that this method worked well for estimating the mean function, but less 

well for estimating the correlations. 

Improvement of this technique by iteration has been suggested (Bates, 1985; Hart, 

1991). Corollary 2 suggests that a CO kernel should perform better than an unimodal 

kernel in an iterative scheme. 

There is no guarantee that a CO kernel will be optimal for estimating either the 

regression or correlation function. In fact, since a CO kernel is bimodal, it cannot be 

optimal for estimating the regression function. However, for the unimodal kernels which 

are optimal for estimating the regression function, K ( 0) 2: W K, so that C >... ,n is negative, 

and the correlation estimates tend to be biased down. The simulation results presented 

in Section 4 confirm that estimation procedure performs best when a CO kernel is used 

to estimate the correlation function, and a unimodal kernel is used at the final step to 
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estimate the regression function. 

3. Correcting Cross-Validation for Correlation 

Altman (1990) and Hart (1991) showed that CV and related bandwidth selection 

techniques perform very poorly when the errors are correlated, unless appropriate cor­

rections are made. The problem is that the uncorrected bandwidth selectors, which may 

be regarded as (almost) unbiased estimators of squared prediction error in the case of 

i.i.d. errors, are highly biased when the errors are correlated. Two corrections have been 

suggested when the correlation is known, and are discussed in Altman (1990). 

The indirect correction can be viewed as a likelihood based approach (see, for exam­

ple, Diggle and Hutchinson, 1989, and ~ngle et al, 1986). The idea is to transform the 

residuals using the inverse square root of the correlation matrix. Ordinary cross-validation 

is then done using the transformed residuals. 

The direct correction is simply a bias correction, to make the cross-validation criterion 

asymptotically unbiased for squared prediction error: 

n e2 (i) 
CV: = L: .>.,n . • 

P i=l (1- :Ej=l W.>.,n,i(*)p(i- j))2 

Similar corrections can be made to generalized CV, and other criteria which estimate 

squared prediction error. The direct correction is used in the studies discussed in this 

paper. However, all analyses were also carried out using the indirect correction, with very 

little change in the results. 

Analysis of the bandwidth selected by either criterion shows that, when the correc­

tion is based on the true correlation function, the selected bandwidth converges to the 

asymptotically optimal bandwidth. If; however, the estimated correlations used for cor­

rection are too big (in the sense that Sp is too big) the selected bandwidth will tend to be 

too large, while, if the estimated correlations are too small, the converse is true. 
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4. Simulation Results 

A simulation study was carried out to test the suggestions of Section 2. 128 points 

were generated from the process 

Yn,i = cos(3.157ri/n) + €i 

where the error process was AR(l). Various values of p(1) and two variances, cr2 = 1.0 

' 
and cr2 = 0.01 were used. 50 samples were generated for each combination of variance and 

correlation. 

For each experiment, 4 second order kernels and a fourth order kernel were used. 

The definitions of the kernels are displayed in Table 1. (The kernels are zero on ( -t, t )c.) 

The fourth order "spline" kernel is a truncated version of the effective kernel for the cubic 

smoothing spline with equally spaced design points (Silverman, 1984 and 1985). 

Kernel 
uniform 
triangular 

quadratic 

spline 
bimodal 

equation 
1 

4(! -lxl) 
6(~- x2 ) 

Table 1. Kernels 

8exp( -lxJf16v'2)sin(lxl/16v'2 + 1r /4) 
-7 4.876t ( t2 - .21987) + .56405 

K(O) 
1 
2 

1.5 

4v'2 
.56405 

WK 
1 
1.333 

1.2 

3/2 
.90248 

The bimodal kernel is a quartic second order kernel chosen to be symmetric about 

zero, vanish at the points -1/2 and 1/2 and to be a CO kernel. 

Bandwidths for the spline kernel were multiplied by 3, as preliminary investigations 

showed empirically that, for the sample sizes and mean function used in this study, and 

i.i.d~ errors, the optimal bandwidth for this kernel is about three times as large as for the 

others. The MME of the first autocorrelation was based on the same design points for all 

the kernels, so the estimates for the spline kernel include some endpoint effects. 

In the initial simulations, the starting bandwidth was chosen by minimizing the true 

Total Squared Error (TSE) on a grid of values. Residuals from this smooth were then 
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used to obtain the initial estimate of p{1), which was subsequently used to correct CV for 

bandwidth selection. Thus iteration was started from a bandwidth very near the optimal 

one for the realization. Iteration was then done until "convergence". The computation 

was deemed to have converged if either Pn,>..{1) converged, or the iterations cycled. Cycling 

occurred when, for two bandwidths ..\1 and ...\2, CV was minimized for Pn,>..1{1) at ..\2 and 

for Pn,>..2 {1) at ..\1. When this happened, the final estimate of correlation was found by 

averaging Pn,>..1 {1) and Pn,~ 2 {1) 

For the initial simulations, the same kernel was used to estimate the correlation 

and regression functions. In the final set of simulations, the bimodal kernel ·was used to 

estimate the correlation function, and the quadratic kernel was then used to estimate the 

regression function. 

When analyzing real data, identifying a suitable bandwidth to start iteration is prob­

lematic. The simulations were redone, starting at a moderate ( ..\ = .15) bandwidth, instead 

of at ...\ *. However, this made little difference to the value of the bandwidth at convergence. 

Results are not reported here. 

All the kernels gave reasonable estimates of p{l) for both values of the variance, when 

the true value was negative. For positive p{l), the estimates were biased down, and were 

particularly poor when the variance was small. The spline kernel did very poorly, often 

failing to converge for positive p{1). 

The bimodal kernel was best for estimat~g the correlation when p{l) was positive. Of 

the other kernels, only the uniform kernel, with the smallest-value ofWK{l+l/2p)-2K{O), 

performed well for positive p{l). However, it did not perform as well as the bimodal kernel. 

The estimates of p( 1) from the bimodal and uniform kernels are displayed in Figure 1. The 

bimodal kernel was designed to reduce bias, but it also appears to have reduced variance, 

particularly at p{1) = .9. 

The bimodal kernel is poor for estimating the regression function. Figure 2 displays 

the ratio, for each data set, of minimum TSE achieved usirig the bimodal kernel over the 

minimum TSE achieved using the quadratic kernel. The quadratic kernel was uniformly 
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better except for large positive p(1). 

When the bimodal kernel is used to estimate the correlation, and the quadratic 

kernel is used to estimate the regression function, the iterative procedure performs very 

well. Figure 3 displays the ratio, for each data set, of the TSE achieved using the iterative 

procedure, over the the minimum TSE achieved using the quadratic kernel. The ratio can 

be as large as 10 when the variance is large, but is generally less than 2. By contrast, when 

the correlation function is also estimated using the quadratic kernel, CV selects regression 

estimators with TSE 20 to 40 times greater than the minimum. 

In linear least squares regression, it has been noted that estimating the error cor:re­

lation and using weighted least squares does not improve the TSE unless the sample size 

or correlation is very large, due to the additional variance introduced by estimating the 

weights. In kernel regression, when the bandwidth is selected using an estimator of squared 

prediction error, estimating the correlation is crucial (Altman, 1990 and Hart, 1991). It 

is useful to ask, however, whether the iterative procedure provides any improvement over 

a two-step procedure. To determine this, estimation was started with bandwidth .25, 

instead of the optimal bandwidth. The two-step and fully iterative procedures were then 

compared. The results are displayed in Figure 4. 

It is notable that, for all combinations of parameters, the two-step procedure out­

performed the full iterative procedure. 

To determine the effect of sample size, the simulation study was repeated with sample 

size 1024, and appropriated adjusted initial bandwidth of .16. For u2 = 1.0, the iterative 

procedure marginally outperformed the two-step procedure. For u 2 = 0.01, the two-step 

procedure continued to outperform the iterative procedure. 

5. Example 

The two-step procedure was used to estimate a suitable correlation and mean function 

for a set of 4380 sea surface temperatures collected daily at Granite Canyon, California 

(Breaker, Lewis and Orav, 1984). This data set is known to have asymmetric seasonal 
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and other periodic effects; however, the features of most interest ru;e broad peaks, called 

El Nino episodes, associated with unusual weather patterns in the middle latitudes. This 

data was analyzed in Altman, (1990), using a two-step procedure, with the same unimodal 

kernel used in both steps. The analysis was done assuming that the errors came from an 

AR(2) process. A purely nonparametric approach was used for estimating the regression 

function, with no attempt to model the seasonal effects. Using the quadratic kernel, the 

first two autocorrelations were estimated to be 0.85 and 0.69. 

In the current analysis, the bimodal kernel was used, with an initial bandwidth of 

a quarter of a year, to generate residuals for estimating the autocorrelations. The AIC 

criterion (Akaike, 1970 and 1974) was used to determine the degree of a suitable AR 

process for estimating the autocorrelations. The estimated autocorrelations were then 

used with the quadratic kernel to estimate the mean function. 

The degree chosen by AIC was 2. (AIC was also used with the residuals from the 

quadratic smooth, to confirm that the earlier analysis was appropriate.) The first two 

estimated autocorrelations were 0.86 and 0.72. The bandwidth chosen by the corrected 

CV criterion was 124 days, compared to 95 days in the earlier study. However, the final 

curve estimates were quite similar, never differing by as much as 0.4°C (compared to 

residuals as large as 4.0°C). 

6. Conclusions 

When the correlations are sufficiently short-term, kernel regression estimators con­

verge at the same rate, (although with a different constant), as when the errors are i.i.d. 

Convergence relies, however, on choice of an appropriate sequence of bandwidths. 

Automatic selection of bandwidth from the data is often desirable. Cross-validation 

and related techniques need to be adjusted for correlation. Appropriate confidence bands 

for the kernel regression estimate also depend on the correlation structure. 

For these reasons, even if estimating the regression function is the primary goal, it 

is desirable to estimate the correlation function from the data. MMEs based on residuals 
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from the smooth are consistent, but m~y be very biased in finite samples unless the kernel 

function and bandwidth are chosen carefully. 

For unimodal kernels, oversmoothing leads to estimates of the correlation which are 

biased up, and undersmoothing to estimates which are biased down. In turn, corrected 

bandwidth selection techniques pick the bandwidth too large when the correlation is over­

estimated, and too small when it is underestimated. The result is that iterative techniques 

tend to do poorly when unimodal kernels are used. 

If appropriate bimodal kernels are used for estimating the correlation function, iter­

ative techniques for simultaneous estimation of the mean and correlation functions have 

been shown to perform well. However, for moderate sample sizes, a two-step procedure, 

in which first the correlations and then the regression function are estimated, outperforms 

the iterative procedure. 
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Figure 3: The ratio of total squared errors of the iterated fit of the regression function to the 
minimum total square error, when the bimodal kernel w 1s used to compute the 
correlation function and the quadratic kernel was used to compute the regression 
function. 
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Figure 4: Ratio of total squared errors of the fully iterative procedure to. the two-step 
procedure. The bimodal kernel was used to estimate the correlation function, and 
the uniform kernel was used to estimate the regression function, for both 
procedures. 


