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This paper proposes an iterated greedy algorithm for solving the blocking flowshop scheduling problem

for makespan minimization. Moreover, it presents an improved NEH-based heuristic, which is used as

the initial solution procedure for the iterated greedy algorithm. The effectiveness of both procedures

was tested on some of Taillard’s benchmark instances that are considered to be blocking flowshop

instances. The experimental evaluation showed the efficiency of the proposed algorithm, in spite of its

simple structure, in comparison with a state-of-the-art algorithm. In addition, new best solutions for

Taillard’s instances are reported for this problem, which can be used as a basis of comparison in future

studies.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

In the traditional flowshop model, it is assumed that there are
buffers of infinite capacity between two consecutive machines
where jobs can be stored until they can be processed in the next
stage. In practice, there are many productive environments where
the buffer capacity is limited or zero for technical reasons or due
to the process characteristics [1]. In such situations, a job
completed on one machine may block that machine until the
next downstream machine is free. Blocking scheduling problems
can be found in a variety of industrial systems. Grabowski and
Pempera [2] describe an example in the production of concrete
blocks where storage is not allowed in some stages of the
manufacturing process. Gong et al. [3] describe a scheduling
problem and the blocking constraint which arises in the iron and
steel industry. Martinez et al. [4] consider a new blocking
constraint, found in the treatment of industrial waste and the
manufacturing of metallic parts, where a machine remains
blocked by a job until its operation on the next machine is
finished and it leaves the machine. Another flowshop environ-
ment without intermediate buffers is the no-wait flowshop,
where the operations of a job have to be processed continuously
from start to finish without interruptions. Therefore, no buffer
storage is needed. One example to which the no-wait flowshop
problem applies can be found in Oulamara et al. [5]. A detailed
review on flowshop with blocking and no wait in process can be
found in Hall and Sriskandarajah [1].
ll rights reserved.
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In this paper, we consider the permutation flowshop problem
without buffers between two consecutive machines, which is
known as the blocking flowshop problem (BFSP). In the BFSP, a set
of n jobs must be processed in m machines, in the same order,
from machine 1 to machine m. Each job i, iAf1,2,. . .,ng, requires a
fixed non-negative processing time pj,i on every machine j,
jAf1,2,. . .,mg. The setup times are considered to be included in
the processing time. The objective is to find a sequence for
processing the jobs such that the makespan is minimized.
According to the notation proposed by Graham et al. [6], this
problem is denoted as FmjblockjCmax.

With regards to complexity, Reddi and Ramamoorthy [7] show
that F2jblockjCmax can be reduced to a special case of the
travelling salesman problem (TSP) with n+1 towns (0, 1, 2, y,
n) that can be solved in polynomial time using Gilmore
and Gomory’s algorithm [8]. Hall and Sriskandarajah [1]
showed, using results obtained by Papadimitriou and Kanellakis
[9], that the FmjblockjCmax problem for mZ3 machines is
strongly NP-hard.

Since the problem is NP-hard, it is more practical to use
heuristic procedures when the problem to be solved has a large
number of jobs, as is usual in industry. The simplest heuristics are
constructive procedures, which use rules to assign a priority index
to each job, in each step, to build a sequence. Some examples of
constructive heuristics have been developed to solve the BFSP for
makespan minimization, such as profile fitting (PF) [10], but some
attempts have also been made to study the efficiency of adapting
constructive heuristics of the permutation flowshop problem
without buffer constraints (PFSP) to the BFSP. Leisten [11]
adapted some procedures proposed for the PFSP and concluded
that the NEH heuristic [12] was the best one. In NEH, as is well
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Procedure Iterated greedy 
Generate initial solution (π0)
π = π0
πbest = π0

repeat
π’=Local Search (π)

if Cmax(π’) < Cmax(πbest) then πbest= π’ endif
π= Acceptance criterion (πbest, π’)
π’=deconstruction (π)
π= construction (π’)

if Cmax(π) < Cmax(πbest) then πbest = π endif
until stopping criteria is met

End

Fig. 1. Pseudocode of the iterated greedy algorithm.
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known, jobs are first ordered according to the longest processing
time (LPT) rule and are then iteratively inserted in a partial
sequence in accordance with the initial order obtained in the first
step. In the literature on the PFSP, this procedure has been widely
studied and some modifications have been proposed in order to
render it even more efficient. These modifications can be viewed
as new ordering rules to be used in the first step or as tie-breaking
methods to be used in the insertion phase when two positions
lead to the same makespan [13–15]. The literature on BFSP
has explored these ideas less extensively, even though the
NEH procedure also gives a good performance for this case.
Only Ronconi [16] proposes two different ordering procedures.
We did not find any papers that apply tie-breaking ideas to the
blocking case. Moreover, we analysed whether the reversibility
property of the BFSP can be used to improve the solution, as
proposed in [15].

Metaheuristics are more sophisticated heuristic procedures.
Recently, different types of metaheuristics have been developed
to solve the problem considered. Caraffa et al. [17] proposed a
genetic algorithm (GA). Grabowski and Pempera [18] presented
two tabu search (TS) algorithms and evaluated them with
Taillard’s benchmarks, using as a reference the solutions obtained
and reported by Ronconi [19]. Wang et al. [20] proposed a
hybrid genetic algorithm (HGA), Liu et al. [21] proposed an
algorithm based on particle swarm optimization (HPSO) and Qian
et al. [22] proposed an algorithm based on differential evolution
(DE) that was later adapted to multi-criteria case [23] and,
very recently, Wang et al. [24] proposed a hybrid discrete
differential evolution algorithm which they claim outperforms
the TS proposed in [18]. All of these algorithms are very
sophisticated and sometimes difficult to implement without
contacting the authors to obtain detailed information. Therefore,
it is highly desirable that a heuristic be simple—that is, easily
understood and adapted to specific constraints of industrial
environments. One very simple and effective metaheuristic is
the iterated greedy (IG) algorithm, which iteratively applies
constructive heuristics to an incumbent solution and uses an
acceptance criterion to decide whether the newly constructed
solution should replace the current one. This type of algorithm
has been successfully applied to the PFSP by Ruiz and Stützle [25].
However, to the best of our knowledge, it has not been used to
solve the problem considered here.

The aim of this paper is to provide an improved NEH-based
heuristic and a very competitive IG algorithm for the BFSP with
the makespan criterion.

The paper is organized as follows. After this brief introduction,
we describe the IG algorithm proposed and the adjustment of the
parameters. In Section 3, the experimental results are analysed.
Finally, Section 4 presents some concluding remarks.
2. Iterated greedy algorithm for the BFSP

The IG algorithm is a simple stochastic local search method,
which generates a sequence of solutions by iterating over a greedy
construction heuristic using destruction and construction phases.
The destruction phase removes some jobs from the incumbent
solution. In the construction phase, a new candidate solution is
created by reconstructing a complete solution using a greedy
constructive heuristic. Once the candidate solution has been
completed, an acceptance criterion is applied to decide whether
the constructed solution should replace the current solution. The
process iterates between these two phases until a defined
stopping criterion is met.

The IG is closely related to iterated local search (ILS). The main
difference between the two is that ILS applies local search to
perturbations of the current search point to extend the search
space and to escape from deep local optima, whereas in IG the
perturbation of the current solution is stronger because it is done
by means of the destruction and reconstruction of the solution
with a greedy constructive heuristic. Therefore, the IG is better
suited than ILS to escape from strong local optima.

Fig. 1 shows the main structure of the proposed IG algorithm.
In the next section, we describe each of its components.
3. Initial solution

The NEH heuristic is frequently used in many metaheuristics
as an initial solution procedure due to its effectiveness in
obtaining quality solutions for both the PFSP and the BFSP.
Therefore, we considered using NEH as the constructive greedy
algorithm for the application of the IG to the BFSP, but first we
tried to improve its performance by applying adaptations of some
ideas proposed in the literature on the PFSP.

The first idea is to use a different ordering rule to sequence the
jobs. Ronconi [16] proposed using the MinMax (MM) or PF
procedure instead of the LPT to improve the solutions obtained in
the BFSP.

Another alternative is to test some tie-breaking strategies to
use in the ordering phase (step 1) when two jobs have the same
processing time, and in the insertion phase (step 2) when two
positions result in the same makespan. It has been shown, in the
PFSP, that the performance of NEH improves if ties in the insertion
phase are treated with an appropriate method. Since ties exist in
both steps, it could be interesting to consider tie-breaking
methods not only for step 2 but also for step 1. To the best of
our knowledge, no tie-breaking for step 1 has been proposed
either for the PFSP or for the BFSP, whereas some efforts have
been made to find tie-breaking methods for step 2 in the PFSP. In
this study, we analysed the performance of the NEH heuristic with
tie-breaking strategies in steps 1 and 2.

For the ordering phase, we tested the following methods,
which make use of the two indices S1i ¼

Pm
j ¼ 1ðm�jÞpj,i and

S2i ¼
Pm

j ¼ 1ðj�1Þpj,i of the Trapezium procedure [26], being

Pi ¼
Pm

j ¼ 1 pj,i
�
 Method S1: If jobs i and j have the same Pi and S1i4S1j, then i

goes before j.

�
 Method S2: If jobs i and j have the same Pi and S2i4S2j, then j

goes before i.

�
 Method S3: Let S3i¼S1i�S2i. If jobs i and j have the same Pi and

S3i4S3j, then i goes before j.

�
 Method S4K: This criterion is equivalent to the ordering rule

proposed by Kalczynski and Kamburowski [13] in the NEHKK1
heuristic. Let S4Ki¼min{S1i, S2i}. If jobs i and j have the same Pi

and S4i4S4j, then i goes before j.
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�
 Method S4: Let S4¼max{S1i, S2i}. If jobs i and j have the same Pi

and S4i4S4j, then i goes before j.

For the insertion phase, we tested the behaviour of the tie-
breaking strategies proposed by Kalczynski and Kamburowski
[13], Dong et al. [14] and Ribas et al. [15] for the PFSP.

Finally, according to [15], improved solutions can also be
obtained if the reversibility property of the problem is used. This
property can be articulated as follows:

Given an instance I, which we call the direct instance, with
process times pj,i, the reverse instance I0 can be determined, with
process times p’j,i calculated according to (1):

puj,i ¼ pm�jþ1,i j¼ 1,2,. . .,m i¼ 1,2,. . .,n ð1Þ

For a permutation p, the value of Cmax in I is the same as that
obtained in I0 for the reverse permutation p0. This means that a
heuristic applied to I and its reverse I0 yields different approx-
imate solutions; thus, we can choose the better of the two
solutions.

These three approaches were evaluated in order to define the
specifications of the initial solution procedure. The computational
evaluation and conclusions are presented in Section 4.
Table 1

Combination of a and b values for each of g levels.

c a b

ffiffiffip
3.1. Local search

The performance of the IG improves when a local search is
applied on the reconstructed solution before the acceptance
criterion is used to decide from which solution the algorithm shall
continue. The implemented local search is a variant of the non-
exhaustive descent algorithm (NEDA). NEDA tries to improve the
solution by swapping any two positions in the sequence. If, during
the process, a new permutation improves the value of the
objective function (Cmax(p)), it becomes the new current solution
and the process continues until all of the positions have been
permuted and no further improvement is possible. However,
when the domain of the solution defined by the adopted
neighbourhood contains plateaus, great improvements can some-
times be obtained if, during the search, some solutions with the
same value as the current best solution (i.e. ties) are accepted. In
the BFSP, we observed that the number of ties is much lower than
in the PFSP. Even so, it could be interesting to find out if better
solutions can be obtained if ties are accepted with a certain
probability a. However, to avoid being trapped in the local search,
we set a maximum number of ties (b) that can be accepted during
the search. Therefore, the local search finishes when the number
of ties reaches b or there is no change in the incumbent solution.

In addition, to avoid always exploring the neighbourhood in
the same order, which can lead to one area being explored more
intensively than others, we incorporated a tool which we call
revolver. The revolver is a pointer vector whose components are
initialized with the different positions that a job can have in the
sequence. The components are randomly mixed and used to
codify the searching positions in the neighbourhood of the
solution. Given two pointers to positions i, j in the job sequence,
their equivalents irev and jrev are searched for in the revolver
vector, rev, being irev ¼ revðiÞ andjrev ¼ revðjÞ. These new positions
are used when the non-exhaustive descent search is applied. The
suitability of this procedure is analysed in Section 4.2.
1 0.25 n

2 0.25
ffiffi
n
p

2

3 0.5
ffiffiffi
n
p

4 0.5
ffiffi
n
p

2

5 0.75
ffiffiffi
n
p

6 0.75
ffiffi
n
p

2

7 0 0
3.2. Acceptance criterion

The acceptance criterion is used to decide whether the solution
obtained in the local search, p0, should be accepted as the current
solution, p, for the next iteration. In our implementation, if the
improved solution is worse than the best solution found, pbest, is
accepted with a probability of 50%.

3.3. Destruction and construction phases

The destruction phase consists in extracting d randomly
chosen jobs from the current solution p and re-inserting them,
one at a time, using the insertion procedure (step 2) of the NEH, as
done in [25].

3.4. Experimental parameter adjustment of the algorithm

The proposed IG algorithm has only three parameters to be
adjusted: the probability of accepting a tie solution (a), the
maximum number of ties accepted (b) and the number of jobs
extracted from the current solution (d). Not all levels of a and b
are compatible, because when b is 0, a can only take the value 0.
Therefore, we converted a and b into a single parameter (g) that
takes the values shown in Table 1. Notice that the levels are
chosen in a way that will allow for the estimation of the effect of a
if the value of b is not zero.

Consequently, g has 7 levels whereas the number of levels of d,
n and m have been fixed at 3, 7 and 4, respectively. To find the
best level of each one, we conducted a 7�3�4�7 full factorial
experiment with g and d as controllable factors and m and n as
non-controllable factors. Therefore, the final levels chosen for the
four factors are:

g : 1,2,3,4,5,6,7

d : 5,6,7
n : 20,50,80,110,140,170,200
m : 5,10,15,20

Due to the randomness of the improvement procedure, we
generated five instances for each of the 28 factor combinations
and we performed 5 runs per instance. This means that we
processed 140 instances (28 sets of 5) for each combination of
parameters with a computation time limit set at 10 �n2m ms. The
experiments were carried out on a 2.8 GHz Pentium IV with
512 MB of RAM.

To analyse the experimental results, we used the relative
percentage deviation (RPD) calculated as (2)

RPD¼
Heurhs�Bests

Bests
100 ð2Þ

where Heurhs was the average of the makespan values obtained by
the heuristic h, in instance s, and Bests the lowest makespan
known for this instance.

The results were analysed by a multiway analysis of variance
(ANOVA) where n and m were non-controllable factors. To check
the ANOVA model hypothesis (normality, homoscedasticity and
independence), the standardized residuals were analysed and no
major departure from the assumption was found. The only minor
problem is a slight skewness (departure from normality) that
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cannot be corrected by any Box–Cox transformation [27]; in any
case, as is well known [28], ANOVA is robust with respect to the
normality assumption.

Table 2 shows the results of the analysis. The results indicate
that the only significant controllable factor (p-valueo0.05) is g.
Of course, n and m are also significant, which is not a surprise
given their nature; they were included in the ANOVA in order to
take away their effect.

Interestingly, both factor interactions between g and the non-
controllable factors n and m are significant. This is due to the fact
that g¼7, on average the best option, has a very similar
performance to other options when the number of ties found
increases. Fig. 2 shows the number of ties for the different values
of n and m. For n¼80, 110 and 200 and m¼5, the number of ties is
clearly greater than it is for larger m values.

According to Figs. 3 and 4, which show the g�n and g�m

interactions for the abovementioned values of n and m, the
performance of the algorithm is very similar regardless of the g
value.

A first exploration of the significant effect of g by a main-effect
plot (Fig. 5) shows that the main difference is between level 7 and
the rest.

A more rigorous analysis of the differences in g levels, using
Dunnett’s simultaneous confidence intervals (Table 3), shows clearly
that the only significant difference is between level 7 and the others.
Among the other levels there are no significant differences.
Table 2
ANOVA table on ARPD.

Source DF Seq SS Adj SS Adj MS F p

g 6 6.3648 6.3648 1.0608 11.69 0.000

gnd 12 0.3905 0.3905 0.0325 0.36 0.977

gnn 36 6.9572 6.9572 0.1933 2.13 0.000

gnm 18 4.2566 4.2566 0.2365 2.61 0.000

D 2 0.0365 0.0365 0.0182 0.2 0.818

N 6 240.3698 240.3698 40.0616 441.37 0.000

M 3 20.1877 20.1877 6.7292 74.14 0.000

dnn 12 0.6053 0.6053 0.0504 0.56 0.878

dnm 6 0.4309 0.4309 0.0718 0.79 0.577

nnm 18 57.8615 57.8615 3.2145 35.42 0.000

Error 2820 255.9597 255.9597 0.0908

Total 2939 593.4205
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Table 3
Dunnett’s simultaneous tests. ARPD comparisons with control level g¼7.

c Difference of means SE of difference T-value Adjusted p-value

1 0.09562 0.02079 4.6 0

2 0.12910 0.02079 6.21 0

3 0.13198 0.02079 6.35 0

4 0.14203 0.02079 6.83 0

5 0.12376 0.02079 5.95 0

6 0.13823 0.02079 6.65 0

Table 4
Best solutions for Taillard’s benchmark.

Dataset Best Source Dataset Best Source Dataset Best Source

20�5 50�5 100�5

1 1374n 1,2 31 3002 2 61 6151 2

2 1408n 1,2 32 3201 2 62 6022 2

3 1280n 1,2 33 3011 2 63 5927 2

4 1448n 1,2 34 3128 2 64 5772 2

5 1341n 1,2 35 3166 2 65 5960 2

6 1363n 1,2 36 3169 2 66 5852 2

7 1381n 1,2 37 3013 2 67 6004 2

8 1379n 1,2 38 3073 2 68 5915 2

9 1373n 1,2 39 2908 2 69 6123 2

10 1283n 1,2 40 3120 2 70 6159 2

20�10 50�10 100�10

11 1698n 1,2 41 3638 2 71 7042 2

12 1833 1,2 42 3507 2 72 6791 2

13 1659 1,2 43 3488 2 73 6936 2

14 1535 1,2 44 3656 2 74 7187 2

15 1617 1,2 45 3629 2 75 6810 2

16 1590 1,2 46 3621 2 76 6666 2

17 1622 1,2 47 3696 2 77 6801 2

18 1731 1,2 48 3572 2 78 6874 2

19 1747 1,2 49 3532 2 79 7055 2

20 1782 1,2 50 3624 2 80 6965 2

20�20 50�20 100�20

21 2436 1,2 51 4500 2 81 7844 2

22 2234 1,2 52 4276 2 82 7894 2

23 2479 1,2 53 4289 2 83 7794 2

24 2348 1,2 54 4377 2 84 7899 2

25 2435 1,2 55 4268 2 85 7901 2

26 2383 1,2 56 4280 2 86 7888 2

27 2390 1,2 57 4308 2 87 7930 2

28 2328 1,2 58 4326 2 88 8022 2

29 2363 2 59 4316 2 89 7969 2

30 2323 1,2 60 4428 2 90 7993 2

200�10 200�20 500�20

91 13,406 2 101 14,912 2 111 36,609 2

92 13,313 2 102 15,002 2 112 36,927 2

93 13,416 2 103 15,186 2 113 36,646 2

94 13,344 2 104 15,082 2 114 36,641 2

95 13,360 2 105 14,970 2 115 36,583 2

96 13,192 2 106 15,101 2 116 36,917 2

97 13,598 2 107 15,099 2 117 36,518 2

98 13,504 2 108 15,141 2 118 36,837 2

99 13,310 2 109 15,034 2 119 36,641 2

100 13,439 2 110 15,122 2 120 36,866 2
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4. Computational analysis

This section evaluates the performance of the variants of the
NEH procedure at improving the initial solutions, as well as that of
the proposed IG algorithm. Both tests were done using Taillard’s
benchmark [29]. Note that we used a different dataset to calibrate
the IG parameters in order to avoid overfitting in the results. The
Taillard benchmark is composed of 120 instances grouped in 12
sets of different sizes, ranging from 20 jobs and 5 machines to 500
jobs and 20 machines.

All programs were coded in the same language (QuickBASIC)
and were tested on the same computer, a 3 GHz Intel Core 2 Duo
E8400 CPU with 2 GB of RAM. To analyse the experimental results,
we measured the RPD over the best-known solution, as in (2).

In this study, new best solutions were found in most of the
Taillard instances. The best solutions for calculating the RPD are
shown in Table 4, where the column Dataset indicates the size of
the instances denoted as n�m; Best indicates the best solution
found; and Source indicates, by means of a number, the study that
reported the method used: ‘‘1’’ indicates the hybrid discrete
differential evolution (HDDE) algorithm proposed by Wang et al.
[24] and ‘‘2’’ indicates the IG algorithm described here. The
permutations associated with each solution can be found in [30].
The optimal solutions are marked with an asterisk. The optimality
of these solutions was proved by the LOMPEN algorithm [31].

4.1. Analysis of results for the variants of the NEH procedure

The first step was to analyse the efficiency of the tie-breaking
methods proposed for steps 1 and 2. Firstly, we implemented the
NEH procedure with each of the tie-breaking methods to be used
when two jobs have the same processing time (step 1). Each of
these resulting procedures was run on the direct and reverse
instances. Table 5 shows the results. The average relative
percentage deviation (ARPD) corresponding to each set of
Taillard’s instances is shown in the dNEH rows and rNEH rows,
respectively, and the better of the two values is shown in the
NEH2 rows. The tie-breaking method used in each case is
indicated with its name in brackets after dNEH, rNEH or NEH2.
The numeral 0 indicates that no specific method has been used,
i.e. if two jobs have the same processing time, the first job is
chosen. A comparison of the dNEH rows or rNEH rows separately
indicates that the results achieved by any of these methods are a
little better than those obtained by NEH without any tie-breaking.
Note that the significant improvement is achieved by using the
reversibility property of the problem, the NEH2 rows. The NEH2
rows show that there are considerable differences between the
results achieved by each tie-breaking method. In particular, it
stands out that the best-performing method is S4.

Since S4 turned out to be efficient at increasing the
performance of NEH, next we analysed the results obtained by
NEH with each of the tie-breaking methods proposed for the
insertion phase (step 2) with and without S4 in step 1. Table 6
shows the results obtained by NEH with each tie-breaking
method for step 2 and S4 for step 1. Table 7 shows the results
obtained when no tie-breaking method is used in step 1. The first
row, in both tables, indicates, by means of a number, the tie-
breaking method implemented in the NEH procedure: ‘‘0’’ when



Table 6
ARPD obtained with each tie-breaking method for step 2 and with S4 for step 1, on Taillard’s instances.

Method 0 0 0 1 1 1 2 2 2 3 3 3
n�m NEH rNEH NEH2 dNEH rNEH NEH2 dNEH rNEH NEH2 dNEH rNEH NEH2

20�5 5.46 5.23 4.82 5.37 5.36 4.93 5.12 5.12 5.12 5.29 5.34 4.77

20�10 5.33 5.52 5.22 5.49 5.61 5.26 5.52 5.52 5.52 5.33 5.54 5.22

20�20 3.51 3.44 3.37 3.43 3.45 3.43 3.44 3.44 3.44 3.46 3.42 3.34

50�5 8.56 8.31 7.75 8.66 8.08 7.80 8.34 8.34 8.34 8.30 8.51 7.84

50�10 7.69 7.73 7.38 7.72 7.68 7.27 7.83 7.83 7.83 8.11 7.68 7.54

50�20 7.27 7.19 6.82 7.36 7.25 7.18 7.03 7.03 7.03 7.40 7.36 7.01

100�5 7.97 8.32 7.71 8.17 8.46 7.94 8.64 8.82 8.64 8.35 8.19 7.78

100�10 7.75 7.61 7.39 7.47 7.70 7.21 7.53 7.53 7.53 7.69 7.81 7.27

100�20 5.76 6.09 5.29 6.18 5.79 5.57 6.12 6.12 6.12 5.93 6.24 5.77

200�10 7.72 7.84 7.43 7.70 7.67 7.34 7.76 7.76 7.76 7.91 7.71 7.58

200�20 5.26 5.48 5.07 5.43 5.45 5.23 5.43 5.43 5.43 5.44 5.48 5.33

500�20 4.55 4.59 4.44 4.39 4.46 4.26 4.50 4.58 4.50 4.44 4.57 4.35

All 6.40 6.45 6.06 6.45 6.42 6.12 6.44 6.46 6.44 6.47 6.49 6.15

Table 5
ARPD obtained with each tie-breaking method used in step 1, on Taillard’s instances.

n 20 20 20 50 50 50 100 100 100 200 200 500
m 5 10 20 5 10 20 5 10 20 10 20 20 All

dNEH(0) 5.58 5.33 3.46 8.59 7.79 7.34 8.34 8.04 5.62 7.83 5.65 4.37 6.49

rNEH(0) 5.25 5.52 3.48 8.60 7.84 7.22 8.20 7.66 6.18 7.82 5.49 4.70 6.50

NEH2(0) 4.89 5.22 3.37 7.75 7.52 6.85 7.92 7.52 5.52 7.61 5.24 4.32 6.14

dNEH(S1) 5.63 5.35 3.39 8.80 7.73 7.42 8.48 7.72 5.47 7.71 5.16 4.56 6.45

rNEH(S1) 5.22 5.52 3.48 8.99 8.16 7.25 8.11 7.37 6.12 7.60 5.59 4.50 6.49

NEH2(S1) 4.92 5.22 3.29 8.20 7.58 6.89 7.66 7.22 5.43 7.42 5.01 4.38 6.10

dNEH(S2) 5.29 5.33 3.46 8.30 8.11 7.40 8.35 7.69 5.93 7.91 5.44 4.44 6.47

rNEH(S2) 5.34 5.54 3.42 8.51 7.68 7.36 8.19 7.81 6.24 7.71 5.48 4.57 6.49

NEH2(S2) 4.77 5.22 3.34 7.84 7.54 7.01 7.78 7.27 5.77 7.58 5.33 4.35 6.15

dNEH(S3) 5.63 5.35 3.39 8.80 7.73 7.42 8.48 7.72 5.47 7.71 5.16 4.56 6.45

rNEH(S3) 5.22 5.52 3.48 8.99 8.16 7.25 8.11 7.37 6.12 7.60 5.59 4.50 6.49

NEH2(S3) 4.92 5.22 3.29 8.20 7.58 6.89 7.66 7.22 5.43 7.42 5.01 4.38 6.10

dNEH(S4K) 5.46 5.35 3.35 8.74 7.83 7.22 8.31 7.61 5.69 7.99 5.49 4.47 6.47

rNEH(S4K) 5.34 5.54 3.46 8.75 8.08 7.25 8.73 7.41 6.24 7.78 5.40 4.49 6.49

NEH2(S4K) 4.98 5.24 3.25 8.06 7.68 6.82 7.97 7.18 5.68 7.74 5.19 4.31 6.15

dNEH(S4) 5.46 5.33 3.51 8.56 7.69 7.27 7.97 7.75 5.76 7.72 5.26 4.55 6.40

rNEH(S4) 5.23 5.52 3.44 8.31 7.73 7.19 8.32 7.61 6.09 7.84 5.48 4.59 6.45

NEH2(S4) 4.82 5.22 3.37 7.75 7.38 6.82 7.71 7.39 5.29 7.43 5.07 4.44 6.06
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no tie-breaking method is used (i.e. if two positions lead to the
same makespan, the first position is taken); ‘‘1’’ when the Ribas
et al. [15] method is implemented; ‘‘2’’ for the Kalczynski and
Kamburowski [13] strategy; and ‘‘3’’ for the method proposed by
Dong et al. [14]. Each of these procedures was run on the direct
and reverse instances. The corresponding ARPD of each set is
shown in the dNEH columns and rNEH columns, respectively, and
the better of the two values is retained in the NEH2 columns. In
general, as shown in Tables 6 and 7, tie-breaking behaviour is not
the same for direct and reverse instances. Only the method
proposed by Kalczynski and Kamburowski [13] gives similar
results for either instance. Moreover, as noted above, the
improvement achieved by using the reversibility property is
greater than the improvement achieved by any of these methods.

A comparison of the values shown in Tables 6 and 7 shows
that, on average, the best results are obtained when S4 is used in
step 1. In particular, the overall ARPD indicated in the NEH2
columns shows that the best-performing procedure is to use
NEH2 with S4 to break ties in step 1 and not to use any of these
tie-breaking procedures for step 2.

Next, a second test was carried out in order to analyse the
effect of the different initial ordering procedures (LPT, MM and PF)
in the solution obtained by the NEH-based algorithms (NEH, MME
and PFE, respectively). Since the PF ordering rule does not define
the first job to be considered, we chose the job with the smallest
processing time. In light of the results obtained in the previous
analysis, we implemented NEH with the tie-breaking method S4
used in step 1. Table 8 shows the ARPD for each set of problem
and procedure. In line with the notation used above, columns
with ‘‘d’’ before the name indicate that the procedure was applied
on the direct instance, columns with ‘‘r’’ before the name indicate
that the procedure was applied on the reverse instance, and
columns with a ‘‘2’’ after the name retain the better of the two
solutions.

Table 8 shows that the reversibility property improves the
obtained results by 5–7%. In most instances, the best results are
obtained when the initial order of jobs is determined with the MM
procedure. Only in the set of instances with 20 jobs does the PF
procedure lead to better results. MME2 is, on average, 18% better
than NEH2.

Finally, although MME2 has been shown to be the best of these
procedures, it is advisable to analyse the computational time
required by each one. Table 9 shows that all procedures require a
similar CPU time. Therefore, because on average MME2 obtains



Table 7
ARPD obtained with each tie-breaking method for step 2 and without any tie-breaking method for step 1, on Taillard’s instances.

Method 0 0 0 1 1 1 2 2 2 3 3 3
n�m NEH rNEH NEH2 dNEH rNEH NEH2 dNEH rNEH NEH2 dNEH rNEH NEH2

20�5 5.58 5.25 4.89 5.60 5.59 5.16 5.24 5.24 5.24 5.32 5.14 4.99

20�10 5.33 5.52 5.22 5.49 5.61 5.26 5.52 5.52 5.52 5.28 5.29 5.19

20�20 3.46 3.48 3.37 3.39 3.40 3.39 3.39 3.39 3.39 3.37 3.34 3.29

50�5 8.59 8.60 7.75 8.34 8.59 7.95 8.14 8.14 8.14 8.58 8.51 8.21

50�10 7.79 7.84 7.52 7.55 7.73 7.29 7.37 7.37 7.37 7.88 7.70 7.56

50�20 7.34 7.22 6.85 7.44 7.23 7.14 7.17 7.17 7.17 7.25 7.28 7.09

100�5 8.34 8.20 7.92 8.43 8.20 7.85 8.60 8.60 8.60 8.41 8.29 8.00

100�10 8.04 7.66 7.52 7.58 7.47 7.27 7.81 7.81 7.81 7.81 7.56 7.34

100�20 5.62 6.18 5.52 6.13 5.83 5.66 6.08 6.08 6.08 6.00 6.08 5.85

200�10 7.83 7.82 7.61 7.61 7.78 7.31 7.47 7.49 7.47 8.23 7.59 7.52

200�20 5.65 5.49 5.24 5.14 5.49 5.05 5.20 5.20 5.20 5.31 5.32 5.15

500�20 4.37 4.70 4.32 4.58 4.35 4.30 4.46 4.46 4.46 4.61 4.61 4.43

All 6.49 6.50 6.14 6.44 6.44 6.14 6.37 6.37 6.37 6.50 6.39 6.22

Table 8
ARPD obtained by each initial ordering procedure on Taillard’s benchmark.

n�m d NEH rNEH NEH2
d

MME
r MME MME2 d PFE r PFE PFE2

20�5 5.46 5.23 4.82 5.66 5.99 5.14 5.82 5.23 4.90

20�10 5.33 5.52 5.22 5.49 5.04 4.69 5.06 5.70 4.57

20�20 3.51 3.44 3.37 3.35 4.39 3.34 3.29 4.05 3.00

50�5 8.56 8.31 7.75 6.10 6.96 5.81 8.51 8.45 7.84

50�10 7.69 7.73 7.38 6.71 6.95 6.30 7.21 7.09 6.52

50�20 7.27 7.19 6.82 5.39 5.82 5.06 5.67 5.67 5.29

100�5 7.97 8.32 7.71 6.74 6.82 6.53 7.69 7.96 7.46

100�10 7.75 7.61 7.39 5.86 6.21 5.81 6.86 6.95 6.44

100�20 5.76 6.09 5.29 4.50 4.83 4.34 4.84 5.03 4.67

200�10 7.72 7.84 7.43 6.07 6.00 5.85 7.41 7.38 7.10

200�20 5.26 5.48 5.07 4.10 3.95 3.80 4.69 4.65 4.42

500�20 4.55 4.59 4.44 3.04 3.05 2.94 3.92 4.19 3.88

All 6.40 6.45 6.06 5.25 5.50 4.97 5.91 6.03 5.51

Table 9
Average CPU time, in seconds.

n�m NEH2 MME2 PFE2

20�5 0.00 0.00 0.00

20�10 0.00 0.00 0.01

20�20 0.00 0.01 0.01

50�5 0.01 0.01 0.01

50�10 0.01 0.01 0.02

50�20 0.02 0.03 0.03

100�5 0.03 0.03 0.03

100�10 0.04 0.05 0.07

100�20 0.09 0.09 0.13

200�10 0.18 0.20 0.27

200�20 0.36 0.40 0.51

500�20 2.29 2.34 3.16

Table 10
ARPD on Taillard instances for each algorithm.

n�m IG1 IG2 HDDE

20�5 0.39 0.46 1.49

20�10 0.48 0.62 1.53

20�20 0.31 0.32 1.23

50�5 2.71 2.99 5.69

50�10 3.24 3.23 5.63

50�20 2.88 2.54 5.04

100�5 3.82 3.56 7.22

100�10 3.34 3.48 6.67

100�50 3.03 2.82 4.41

200�10 3.85 3.63 6.91

200�20 2.31 2.20 4.34

500�20 1.32 1.33 3.93

Overall mean 2.31 2.26 4.51

Table 11
Two-way ANOVA test for the comparison of algorithms.

Source DF Seq SS Adj SS Adj MS F p

algorithm 2 473.571 473.571 236.786 891.72 0

dataset 11 862.859 862.859 78.442 295.41 0

algorithmndataset 22 89.705 89.705 4.077 15.36 0

Error 324 86.034 86.034 0.266

Total 359 1512.169
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better results than the other two procedures, we propose applying
MME to the direct and reverse instances and retaining the better
of the two solutions as the initial solution procedure for the BFSP.
4.2. Experimental evaluation of the IG algorithm

In this section, we analyse the performance of two variants of
the proposed IG algorithm, denoted as IG1 and IG2. The only
difference between these two variants is that IG2 uses the
revolver pointer in the local search, which makes it possible to
examine the usefulness of this tool in the BFSP. Furthermore, we
compare the performance of these algorithms with the perfor-
mance of the HDDE algorithm proposed by Wang et al. [24],
which is, to the best of our knowledge, the best-performing
algorithm proposed for this problem so far. To compare the
algorithms in the same conditions, we re-implemented the HDDE
algorithm. All of the algorithms were coded in the same language
(QuickBASIC) and run on 120 Taillard instances using the
computational time limit, set at 30 �n2m, as a stopping criterion
in all cases. Due to the randomness of the algorithms, five runs
were done for each one. As a performance criterion, we measured
the RPD for each instance, as in (2).

Table 10 shows that, on average, IG1 and IG2 perform better
than the HDDE algorithms. The statistical analysis of these results
was done by means of a two-way ANOVA. The hypotheses were
tested by a residual analysis, which showed small departures
from normality, mainly due to a low level of skewness and three
borderline outliers. However, as noted above, the ANOVA method
is robust to violations of this assumption; this fact, together with
the clarity of the results, validates the conclusions and makes a
deeper analysis unnecessary.

The ANOVA table (Table 11) shows that the algorithm, the
dataset and their interaction are highly significant. Fig. 6 clearly
shows that the significant difference for algorithms is due to the
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differences between algorithms IG1 and IG2 (which are
essentially equal) on the one hand, and HDDE, on the other; this
is confirmed by Tukey’s multiple comparisons, which give
significant p-values and are dependent on each explanation
given. Therefore, we conclude that the proposed IG algorithm is
very competitive.

Moreover, IG1 and IG2 behave in a very similar way. This
indicates that, for this problem, randomizing the search path
does not necessarily lead to better solutions. The explanation for
this can be found in the small number of ties found during the
search. If the number of ties were bigger, randomizing the search
would mean not always being trapped in the same local
minimum; however, since there are so few ties, this tool is not
efficient.
5. Conclusions

In this paper, we presented an effective IG algorithm for
solving the flowshop scheduling problem with blocking to
minimize makespan. The IG procedure proposed makes use of
the insertion method of the NEH heuristic, in the construction
phase, to reinsert the jobs extracted in the destruction phase, as
proposed in [25]. Our goal was to improve the performance of
NEH. To do this, first we tested some tie-breaking methods
to be used in each of the two phases, namely, the ordering of jobs
in accordance with LPT and the insertion phase. In light of the
results obtained, we concluded that the use of the reversibility
property of the problem is a powerful tool for improving the
solutions. Therefore, for constructive procedures, we recommend
running the procedure on direct and reverse instances and
retaining the better of the two solutions. The performance of
NEH, for the blocking problem, was shown to improve when
method S4 is used to break ties in the first step and none of the
methods proposed for the PFSP are used to break ties in the
second step.

Next, making use of the reversibility property, we analysed the
effectiveness of using two different procedures, MM and PF, to
order the jobs instead of using the LPT rule originally proposed in
NEH. The resulting procedures were named MME2 and PFE2,
respectively. The computational results showed that MME2 is
superior to NEH2. Therefore, we recommend using MME2 as an
effective constructive heuristic for the BFSP.
Finally, the proposed IG procedure, which uses MME2 as
the initial solution procedure, was tested against the HDDE
algorithm proposed by Wang et al. [24]. The comparison revealed
that the IG algorithm, despite its simplicity, is very competitive.
We reported the new best known solutions found with the
proposed IG method for most of the Taillard instances used
in the BFSP, which could serve as a basis for comparison in
future research.

Future research could focus on developing tie-breaking
methods to be used in the MME2 procedure in order to further
increase its efficiency. Moreover, due to the simplicity of the
proposed procedure, it could be interesting to analyse its
performance using other objective criteria and in other problem
settings, such as jobshop or hybrid flowshop.
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[25] Ruiz R, Stützle T. A simple and effective iterated greedy algorithm for the
permutation flowshop scheduling problem. European Journal of Operational
Research 2007;177(3):2033–49.
[26] Companys R. Métodos heurı́sticos en la resolución del problema del taller
mecánico. Estudios Empresariales 1966;5(2):7–18.

[27] Box GEP, Cox DR. An analysis of transformations (with discussions). Journal of
the Royal Statistical Society 1964;Series B(26):211–56.

[28] Box GEP, Andersen SL. Permutation theory in derivation of robust criteria and
the study of departures from assumptions. Journal of the Royal Statistical
Society 1955;Series B(17):1–26.

[29] Taillard E. Benchmarks for basic scheduling problems. European Journal of
Operational Research 1993;64(2):278–85.

[30] Companys R, Ribas I. New insights on the blocking flow shop problem. 2010,
p. 1–28, /http://upcommons.upc.edu/e-prints/bitstream/2117/6985/1/DIT
block-2.pdfS.

[31] Companys R, Mateo M. Different behaviour of a double branch-and-bound
algorithm on Fm9prmu9Cmax and Fm9block9Cmax problems. Computers and
Operations Research 2007;34(4):938–53.

http://upcommons.upc.edu/e-prints/bitstream/2117/6985/1/DITblock-2.pdf
http://upcommons.upc.edu/e-prints/bitstream/2117/6985/1/DITblock-2.pdf

	An iterated greedy algorithm for the flowshop scheduling problem with blocking
	Introduction
	Iterated greedy algorithm for the BFSP
	Initial solution
	Local search
	Acceptance criterion
	Destruction and construction phases
	Experimental parameter adjustment of the algorithm

	Computational analysis
	Analysis of results for the variants of the NEH procedure
	Experimental evaluation of the IG algorithm

	Conclusions
	Acknowledgements
	References


