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ABSTRACT

The orienteering problem (OP) is a routing problem that has numerous
applications in various domains such as logistics and tourism. The objec-
tive is to determine a subset of vertices to visit for a vehicle so that the total
collected score is maximized and a given time budget is not exceeded. The
extensive application of theOPhas led tomany different variants, including
the team orienteering problem (TOP) and the team orienteering problem
with time windows. The TOP extends the OP by considering multiple vehi-
cles. In this article, the team orienteering problem with variable profits
(TOPVP) is studied. Themain characteristic of the TOPVP is that the amount
of score collected from a visited vertex depends on the duration of stay on
that vertex. A mathematical programmingmodel for the TOPVP is first pre-
sented and an algorithm based on iterated local search (ILS) that is able
to solve modified benchmark instances is then proposed. It is concluded
that ILS produces solutions which are comparable to those obtained by the
commercial solver CPLEX for smaller instances. For the larger instances, ILS
obtainsgood-quality solutions that have significantly better objective value
than those found by CPLEX under reasonable computational times.
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1. Introduction

The orienteering problem (OP) is a multi-level optimization problem that has numerous applications
in various domains such as logistics (Golden,Wang, and Liu 1987) and tourism (Sou�riau et al. 2008).
Vansteenwegen, Sou�riau, and Van Oudheusden (2011) de�ne the OP as a combination of vertex
selection and determining the shortest Hamiltonian path between the selected vertices. The main
objective is to determine a path, limited by the total travel time or distance, which visits some vertices
in order to maximize the collected score from the visited vertices.

The team orienteering problem (TOP) is an extension of the OP with multiple paths. Each path is
limited by the total travel time. The objective is to maximize the total collected score from all paths.
Some recent work related to the TOP can be found in Dang, Guibadj, andMoukrim (2013), Ferreira,
Quintas, and Oliveira (2014) and Ke et al. (2015). There are many di�erent variants of the OP to
accommodate additional aspects of real-world problems, such as multiple vehicles, vehicle capacities,
customer time windows, stochastic/time-dependent travel times, and stochastic and variable pro�ts.
Vansteenwegen, Sou�riau, and Van Oudheusden (2011) provide a comprehensive survey on the OP
and its variants up to 2009. Gunawan, Lau, and Vansteenwegen (2016) extend the survey by focusing
onmore recent work on the OP and its latest variants, such as the capacitated OP and generalized OP.
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2 A. GUNAWAN ET AL.

One recent variant of theOP is the orienteering problemwith variable pro�ts (OPVP), as presented
by Erdoğan and Laporte (2013). In the OPVP, a visit at a particular vertex can be extended to collect
more scores. To replicate such a situation, Erdoğan and Laporte (2013) introduce discrete passes,
where each pass on a particular vertex represents a constant time incurred. The more passes the visit
made, the longer the duration of stay.

In this article, a new variant of the OPVP, namely the team orienteering problem with variable
pro�ts (TOPVP), is introduced. In the context of logistics applications, a path can be based on a
vehicle that needs to visit a certain number of vertices, and pro�ts from vertices are considered as
collected scores. The TOPVP extends the OPVP by consideringmultiple paths or vehicles. Therefore,
the total collected scores from all paths is the main objective of the TOPVP.

Applications of the OPVP as described by Erdoğan and Laporte (2013) can be relevant for TOPVP
as well. As an example, multiple boats may be considered when planning �shing routes where the
amount of �sh caught in each location is dependent on the time spent there. Another potential appli-
cation of the TOPVP is in the deployment of multiple military units to di�erent con�ict zones for
peacekeeping missions, whereby the peacekeeping organization strives to maximize the stability in
the region and is still able to cease operations within the stipulated timeline. The TOPVP can be
applied to organizing humanitarian logistics, whereby the amount of humanitarian aid received in
each location is proportional to the time spent there. It can also be used to model the tourist trip
design problem, where tourists may prefer to stay longer at a particular location or attraction.

A mathematical programming model for the TOPVP, which would be solved by the commercial
solver CPLEX, is �rst introduced. Owing to the limitation of using this solver to solve large instances,
a heuristic based on iterated local search (ILS) to solve the TOPVP is then proposed. It is concluded
that the proposed algorithm performs well with short computational times for solving large TOPVP
instances.

The remainder of this article is organized as follows. In Section 2, a literature review of the OP
including its variants is provided. The problem description and the mathematical programming
model for the TOPVP are then given in Section 3. In Section 4, the proposed algorithm is described.
Section 5 reports numerical experiments that are performed on modi�ed benchmark instances.
Finally, in Section 6, the main achievements and possible future works are summarized.

2. Literature review

Tsiligirides (1984) was the �rst to de�ne the standard OP. Important assumptions in the OP include
perfect knowledge of the score speci�ed for each vertex and the time incurred for the edges. In
addition, each vertex can be visited only once, except for the start and the end vertices, which are
commonly referring to the same vertex. In this article, it is assumed that the start and end vertices are
the same vertex as well.

One characteristic of the classical OP is that the duration of staying at any vertex during a visit
is �xed; therefore, the full score or pro�t is collected upon reaching the vertex. However, in certain
situations, especially those related to logistics problems, the time spent in a particular vertex for a
vehicle to unload the delivery has to be determined. This problem is referred to as theOPVP (Erdoğan
and Laporte 2013).

In the OPVP, the vehicle is permitted to prolong the duration of stay. In this case, each vertex is
assigned a pro�t that can potentially be collected, with the actual collected amount depending on the
time spent on the vertex. The vehicle is not compelled to collect the full pro�t. Erdoğan and Laporte
(2013) introduced discrete passes to represent the vehicle’s duration of stay at a particular vertex for
the discrete model of the OPVP. More speci�cally, making a pass means staying for a prede�ned
amount of time at a vertex. The amount of time spent on a vertex is additive according to the number
of passes made. The pro�t collected over the duration of stay is described using the growth or decay
function, which determines the rate of increase or decrease of pro�t collected per pass made, respec-
tively. The rest of the conditions for the OPVP remain identical to those of the OP. Hence, making
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ENGINEERING OPTIMIZATION 3

multiple passes on a vertex does not equate to visiting the vertex multiple times since each vertex can
be visited only once.

A uni�ed branch-and-cut algorithm for OPVP has been proposed as the solution approach,
using adapted inequalities from the covering tour problem formulation (Gendreau, Laporte, and
Semet 1997). Since no prior research has been done on this, there were no benchmark instances
available for the OPVP. As such, Erdoğan and Laporte (2013) modi�ed test instances from the
TSPLIB, which is a library of sample instances for the travelling salesman problem (TSP), to gen-
erate OPVP test instances. Even though optimality can be achieved when solving most instances,
excessive computational times are required to solve the larger instances.

Since there is limited literature available for the OPVP, reviewing the solution approaches to the
TOP may provide deeper insights into the development of heuristics for TOPVP. This is because the
TOP and TOPVP share largely similar characteristics, with the exception of the variable pro�t com-
ponent. Chao, Golden, andWasil (1996b) proposed a heuristic for the TOP that involves two phases:
initialization and improvement phases. In the initialization phase, a feasible solution is constructed
using the farthest vertices from the start vertex. Additional paths involving non-visited vertices in the
initial feasible solution are constructed in this phase as well. The improvement phase consists of iterat-
ing the sequence of two-point exchange, one-point movement and 2-Opt operators until terminating
conditions are met. Archetti, Hertz, and Speranza (2007) proposed four comparable metaheuristics
that are variants of tabu search and variable neighbourhood search heuristics. The metaheuristics
�rst generate an initial feasible solution using the initialization phase of Chao, Golden, and Wasil’s
(1996b) heuristic.

Some researchers have proposed exact algorithms to solve the TOP, as described next. Boussier,
Feillet, and Gendreau (2007) proposed a branch-and-price algorithm using column generation to
solve the relaxedmaster problem, and then using the branch-and-boundmethod to obtain an integer
solution to the TOP. Keshtkaran et al. (2016 ) proposed two algorithms to solve the TOP: a branch-
and-price approach and a branch-and-cut-and-price approach, while El-Hajj, Dang, and Moukrim
(2016) introduced a cutting plane algorithm to solve the TOP.

Archetti, Hertz, and Speranza’s (2007) proposed metaheuristics are one of the leading algorithms
for the TOP in terms of achieving the best known solution, the average gap to the best known solution
and the average computational time. In addition, these high-performance algorithms are able to con-
struct feasible paths for non-included vertices, allow infeasible solutions during the search procedure,
as well as alternate between operators that increase objective value and decrease travel time.

3. Team orienteering problemwith variable profits

3.1. Problem description

The TOPVP can be described by an undirected graph G = (V, E), where V = {0, 1, . . . , |V|} is the
set of vertices and E is the set of edges. Vertices 1 to |V| are potential vertices to visit, whereas vertex
0 corresponds to the start and end vertices of the paths. Each vertex i ∈ V is designed with a score Si
as well as an associated collection parameter αi ∈ [0, 1]. The amount of score collected at each vertex
i depends on the duration of stay at that vertex and its collection parameter αi. The duration of stay
at vertices is represented by discrete passes. Each pass made at vertex i incurs a constant time cost ri.
The collection parameter is used to model the decay of the collected score, where each pass made at
a vertex allows collection of 100 αi% of the remaining score.

A travel time tij is associated with every edge (i, j) ∈ E. Thus, the total travel time on a particular
path is contributed to by the travel time across edges as well as the number of passes made at visited
vertices. The objective of the TOPVP is to determine a set of paths P such that the collected score by
all paths is maximized. The amount of time required to traverse between two vertices (i, j) is assumed
to be symmetrical, i.e. tij = tji. In addition, the travel time associated with every edge satis�es the
triangle inequality.
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4 A. GUNAWAN ET AL.

Standard constraints applied to the OP (Vansteenwegen, Sou�riau, and Van Oudheusden 2011)
are also applied to the TOPVP, such as each vertex can be visited at most only once, except for the
start vertex, which is the same as the end vertex; each path has to start and end at the start and end
vertices, respectively; and each path is limited by the time budget T.

3.2. Mathematical programmingmodel

The formulation of the TOPVP is extended from the OPVP discrete model (Erdoğan and Laporte
2013). The theoretical maximum number of passes at vertex i is denoted as mi, where mi ≤ (T −

2t0i)/ri. Below is the list of decision variables for the proposed mathematical programming model:

xijp = 1, if a visit to node i is followed by a visit to node j on path p; 0, otherwise

yilp = 1, if l or more passes are performed at vertex i on path p; 0, otherwise

Maximize
∑

i∈V\{0}

Si
∑

l∈{1,...,mi}

αi(1 − αi)
l−1yilp (1)

subject to:
∑

j:(0,j)∈E,p∈P

x0jp =
∑

i:(i,0)∈E,p∈P

xi0p = |P| (2)

∑

p∈P

yi1p ≤ 1, (i ∈ V\{0}) (3)

∑

i:(i,k)∈E,i �=k

xikp =
∑

j:(k,j)∈E,j �=k

xkjp = yk1p, (k ∈ V\{0}, p ∈ P) (4)

yilp ≤ yi,l−1,p, (i ∈ V\{0}, l ∈ {2, . . . ,mi}, p ∈ P) (5)

yi(mi+1)p = 0, (i ∈ V\{0}, p ∈ P) (6)

∑

(i,j)∈E,i �=j

tijxijp +
∑

i∈V

ri
∑

l∈{1,...,mi}

yilp ≤ T, (p ∈ P) (7)

2 ≤ uip ≤ |V|, (i ∈ V\{0}, p ∈ P) (8)

uip − ujp + 1 ≤ (|V| − 1)(1 − xijp), (i, j ∈ V\{0}, p ∈ P) (9)

y01p = 0, (p ∈ P) (10)

yilp = 0 or 1, (i ∈ V\{0}, l ∈ {1, . . . ,mi}, p ∈ P) (11)

xijp = 0 or 1, ((i, j) ∈ E, p ∈ P) (12)

The objective function (1) maximizes the total collected score/pro�t from visited vertices of
all paths. It is worth noting that the total pro�t collected from each vertex will then be
Si

∑

l∈{1,...,mi}
αi(1 − αi)

l−1yilp, which resembles a �nite geometric series. Constraints (2) designate
vertex 0 as the start and end vertices for each path. Constraints (3) ensure that across all paths, each
vertex can be visited at most only once, with the exception of vertex 0. Constraints (4) ensure the
connectivity between the edges and the vertex. In other words, each vertex that is visited must be the
origin and the destination for a pair of edges.
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Constraints (5) ensure that in order tomake further passes at a particular vertex, the preceding pass
must be made. Constraints (6) ensure that the paths do not exceed the maximum allowable passes of
the visited vertices. If the maximum allowable passes of all vertices are not limited by exogenous rea-
sons, then constraints (6) can be relaxed. Constraints (7) ensure that the total time allocated does not
exceed the time budget T for every path. Since both the edge costs and time incurred from making
passes at vertices are subtracted from the total time allocated, costs and time are treated as synony-
mous in this article. Constraints (8) and (9) prevent the formation of subtours. These constraints are
adopted from those proposed by Divsalar, Vansteenwegen, and Cattrysse (2013), Palomo-Martinez et
al. (2017) and Vansteenwegen et al. (2009). Constraints (10) ensure that no passes are made at vertex
0. Constraints (11) and (12) are the integrality constraints.

Erdoğan and Laporte (2013) noted that in the case where ai = 1 for all i ∈ V\{0}, the OPVP is
reduced to a selective travelling salesman problem (STSP) (Laporte and Martello 1990). Since the
STSP is NP hard and is a special case of the OPVP, by extension, the TOPVP is also NP hard. This
implies that an exact solution algorithm may be beyond computational reach and that attempting to
obtain a suboptimal solution through heuristics will be more appropriate.

4. Proposed iterated local search algorithm

In this section, an algorithm to solve the TOPVP, which is mainly based on ILS, is proposed. The
details of this proposed ILS are described below.

The proposed algorithm is an extension of the ILS proposed by Chao, Golden, andWasil (1996a),
as shown in Figure 1. In this subsection, an overview of the algorithm structure will �rst be presented,
followed by more detailed elaboration of the di�erent operators used in the algorithm.

4.1. Overview of the proposed algorithm

ILS is de�ned as a local search method that iteratively applies a local search to perturbations of the
current locally optimal solution (Lourenço, Martin, and Stützle 2003). The four basic requirements
of the ILS are: (1) an initial solution; (2) a perturbation guideline to deconstruct the locally optimal
solution; (3) a local search to seek improvements in the solution; and (4) an acceptance criterion to
determine which solution the local search is continued from.

Similar to Chao, Golden, and Wasil’s (1996a) algorithm, the proposed ILS consists of an initial-
ization, two improvement steps and two re-initialization steps. The initialization step constructs the
initial feasible solution. The two improvement steps represent the local search methods, seeking pos-
sible improvements in the current solution. The two re-initialization steps perturb the locally optimal
solution for the next iteration of improvement.

The acceptance criterion used in ILS is based on an optimization algorithm called the record-to-
record travel (RRT) (Dueck 1993). In the RRT, the best solution obtained thus far is set as the record.
Any con�guration found that is an improvement over record is set as the new record. The proposed ILS
attempts to seek further improvement using the new con�guration. In addition, a constant percentage
of the record is set as the acceptance threshold called deviation. Whenever the algorithm fails to �nd
a con�guration that is an improvement, the best con�guration that deteriorates the solution within
the deviation will be chosen to be worked on.

The sequence of steps to be executed for ILS is as follows:

Step 1 (initialization phase): An initial solution is constructed using the initialization process, which
is discussed in Section 4.3. The objective value of the initial solution is set as the record, while
the deviation is set at 5% of the record.

Step 2 (improvement phase): The improvement phase consists of two loops: the inner loop will be
referred to as L loop while the outer loop will be referred to as K loop. In the L loop, a local
search for improvement is conducted. This local search is a sequence of operators consisting
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Figure 1. Iterated local search.
4

of two-point exchange, one-point movement and 2-Opt operators. These operators will be dis-
cussed in Section 4.4. At the end of the sequence, if a solution with a higher objective value is
obtained, then record and deviation are updated. The local search is iterated until no exchange
or movement of vertices can be performed, ending the L loop. Note that it is possible to have no
improvement in the objective function value after performing exchanges ormovements. In theK
loop, re-initialization 1 (described in Section 4.5) is performed to perturb the solution obtained
from the L loop. The new solutionwill then be iterated through the L loop again. Subsequent per-
forming of re-initialization 1 perturbs the solution according to howmany times re-initialization
1 has been performed. A global variable k is used to track the number of re-initialization 1 steps
performed. The terminating condition for the K loop is when no new record is achieved for �ve
consecutive iterations.

Step 3 (re-initialization 2): Re-initialization 2 (described in Section 4.5) is performed using the last
k value of Step 2. The deviation is also set to 2.5% of the current record.

Step 4 (improvement phase 2): The second improvement phase follows the same sequence of events
as Step 2 (�rst improvement phase) with the exception of the deviation used in RRT exchanges
and movements.

4.2. Insertion criteria

Before elaborating on the di�erent operators used in the TOPVP algorithm, there is a need to intro-
duce a newly conceived criterion, called themost e�cient criterion. This criterion is used extensively
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in the proposed algorithm to accommodate the discrete pass component of the TOPVP that is used
to represent the duration of stay at a vertex. Owing to the discrete passes, the construction heuristic
used in the ILS algorithm is required to decide between increasing the passes made on the vertices
currently in a path of interest or inserting an additional vertex that is not in that path. Thus, the com-
monly used construction heuristics, such as the cheapest insertion and nearest neighbour heuristics,
cannot be directly applied since there is no comparison between the increments of passes and the
additional insertion of vertices. To address this issue, themost e�cient criterion designates a score to
each vertex using the pro�t available from the vertex and the total time required to collect that pro�t,
as shown below:

Score =
Pro�t available for collection

Total time required to collect the pro�t
(13)

Considering a path of interest, all vertices can be categorized as (1) vertices in the path or (2) unas-
signed vertices. For any vertex i that is in the path, the pro�t available refers to the remaining pro�t
that is uncollected and calculated using pi − pi

∑

l∈{1,...,mi}
αi(1 − αi)

l−1yilp. The total time required
to collect this pro�t is then ri(mi −

∑

l∈{1,...,mi}
yilp), which is the product of the remaining allowable

passes and the duration of a single pass. In short, the score for vertices assigned to the path is the
uncollected pro�t per unit of time required.

On the other hand, the insertion cost for vertices not assigned to the path is an additional con-
sideration. In this case, the pro�t available refers to the entire pro�t of the vertex, pi. The total time
required then consists of the cheapest insertion cost and the time incurred to collect the entire pro�t.
Let vertex k be the vertex not assigned to the path and vertices i and j be consecutive vertices in the
path. Thus, the expression for the total time required is rkmk + mink �=i,j(tik + tkj − tij), where rkmk

is the time required to collect the entire pro�t at vertex k and mink �=i,j(tik + tkj − tij) is the cheapest
insertion cost. After calculating the score for every vertex, the vertex with the highest score can either
be inserted into the path or have an additional pass made.

Figure 2 depicts the process of using themost e�cient criterion. Let the current path be 0–8–5–4–0,
and vertices 2 and 7 be unassigned; the score for every vertex is then calculated according to themost
e�cient criterion. Consequently, vertex 7 scored the highest and is inserted between vertices 5 and 4.

4.3. Initialization phase

In the initialization step, vertices that cannot be theoretically visited given the time budget are �rst
removed. In other words, any vertex i for which 2ti0 + ri > T is removed from consideration by the
heuristic. This is because the vehicles have to return to the depot and any vehicle that visits these
vertices will always violate the time budget allocated owing to the triangle inequality assumption.
The vertices that are not removed in this process are referred to as feasible vertices.

The next process in the initialization step will be to construct paths using the feasible vertices.
Similarly to Chao, Golden, andWasil’s (1996a) and Archetti, Hertz, and Speranza’s (2007) heuristics,
ILS constructs additional feasible paths that are not in the solution such that every feasible vertex is
assigned to a path. The |P| paths with the highest pro�t collected constitute the solution and will be
referred to as the set of paths PTOPVP. Thus, the sum of the pro�t collected from each path in PTOPVP
is the objective value. The set of the remaining paths will be referred to as PNTOPVP. It is possible for
a path in PNTOPVP to replace another path in PTOPVP as long as the pro�t collected is higher.

First, C vertices are chosen as candidate vertices, where C is de�ned as min(|P| + 1, number of
feasible vertices). These candidate vertices are selected to be the vertices that are farthest away from
the depot in terms of the time taken to travel to the vertex tomake a single pass, t0i + ri. Subsequently,
out of the C vertices, |P| vertices are chosen and inserted as the �rst vertices to each of the |P| paths.
All remaining vertices that are yet to be assigned are then inserted into the |P| paths using the most
e�cient criterion until the paths are full. Paths are considered full when no additional vertices can be
inserted or no additional passes can be made.
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Figure 2. Illustration of the ‘most efficient’ criterion.

If all |P| paths are full and there are vertices left unassigned, then additional paths are constructed
until all feasible vertices are assigned. These additional paths are constructed using the same idea of
constructing |P| paths. The |P| paths with the highest pro�t collected are in the set PTOPVP, while the
remaining paths are in the set PNTOPVP.

In the case when C > |P|, since only |P| vertices are chosen out of C vertices, there are

(

C
|P|

)

possible combinations of vertices chosen. For ILS, each of the combinations will be initialized accord-
ing to the above description. The combination with the highest objective value will then be set as the
initial solution. Subsequently, the record and deviation can be obtained. This will then conclude the
initialization phase of the ILS algorithm.

When determining the value of C, it is possible that C ≤ |P|. In this case, obtaining the optimal
solution is trivial. This is because the number of vertices that are feasible is less than or equal to
the number of paths. Therefore, the optimal solution is to assign each vertex to the di�erent paths
randomly, making the maximum allowable passes mi to each vertex and ensuring the feasibility of
solutions.

4.4. Improvement phase

Using the initial solution generated in the initialization phase, the solution is then improved by
performing three di�erent operators of ILS.

4.4.1. Two-point exchange

Theobjective of the two-point exchange is to seek possible improvement in the solution by exchanging
vertices from the paths in PTOPVP with vertices from the paths in PNTOPVP. Since there is no shared
vertex allocated in both PTOPVP and PNTOPVP, the complexity involved is O(|V|2).

More speci�cally, all the vertices in PTOPVP are checked for exchanges one at a time. When con-
sidering the exchanges, the passes made at the two involved vertices are �rst set to one. The vertices
are then inserted into their respective paths using the cheapest insertion criterion with complexity
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O(|V|). Finally, the passes made at the two involved vertices are gradually increased until the paths
are full, which would only cost O(1) for the process. Therefore, the overall complexity of this operator
would be O(|V|2)× [O(|V|)+O(1)] = O(|V|3).

Any exchange that causes the path in PTOPVP to become infeasible will not be considered;
exchanges that cause the path in PNTOPVP to become infeasible are still acceptable. Upon discovering
an exchange that will increase the objective value, whether due to an increase in pro�t collected by
the path in PTOPVP or due to the path in PNTOPVP replacing one of the paths in PTOPVP, this exchange
is performed immediately. Whenever an exchange is successful, the two-point exchange will proceed
to the next vertex in PTOPVP. In the case where the path in PNTOPVP becomes infeasible owing to the
exchange, an additional path containing only the depot and the responsible vertexwill be constructed.

It may be possible for a vertex in PTOPVP not to have any exchanges with any vertex in PNTOPVP
that will result in an improvement in objective value. In this case, the RRT acceptance criterion will be
utilized. Exchanges that will result in a small decrease in the objective value are now considered. The
amount of decrease, however, must be within the deviation. If such RRT exchanges are available, then
the RRT exchange with the highest objective value will be performed. In other words, the best RRT
exchange that is within deviation will be performed only if the vertex in PTOPVP has no exchanges
with any vertex in PNTOPVP that will improve the objective value. If no feasible or RRT exchange is
within deviation, then no exchange will be performed for that vertex in PTOPVP.

At the end of the two-point exchange, every path in PNTOPVP is deconstructed and the vertices
are unassigned. New paths are then constructed using the most e�cient criterion to reassign all the
vertices that were unassigned previously. This is because during the exchanges, the paths containing
only one vertex and the depot may be constructed whenever the path in PNTOPVP becomes infeasible
during an exchange. These ine�ective paths are eliminated by reconstructing all the paths inPNTOPVP.
During the reconstructing process, it is possible for a path in PNTOPVP to replace a path in PTOPVP
owing to the higher pro�t collected leading to an improvement in objective value. Note that the paths
are always kept feasible throughout the two-point exchange.

4.4.2. One-pointmovement

One-point movement is the operator used after two-point exchange in the local search compo-
nent. One-point movement attempts to improve the solution by relocating vertices from one path
to another. In particular, every feasible vertex is checked for possible movement, one at a time. When
considering a possible movement for a candidate vertex from its original path to a designated path,
both paths will have the number of passes made at every vertex set to one. The candidate vertex is
then inserted into the designated path using the cheapest insertion heuristic. The process of inserting
a vertex and evaluating the insertion to other paths involves O(|V|2) complexity. Finally, after the
movement is made, the passes made for the vertices in both paths are increased using the most e�-
cient criterion until the paths are full. This process involves O(|V|) complexity. Therefore, the total
complexity of this operator is the addition of O(|V|2) and O(|V|) complexities, and is thus O(|V|2).

In addition, when selecting the designated path for insertion, paths with higher pro�t collected are
given greater priority. Any movement that will cause either of the paths to become infeasible will not
be considered. Upon discovering a movement that improves the objective value, the candidate vertex
is relocated immediately. The one-point movement will then proceed to evaluate the next candidate
vertex.

In addition, it is possible for a candidate vertex not to have any movement that will improve the
objective value. Similarly to the two-point exchange, the RRT acceptance criterion becomes active.
In this case, movements that do not a�ect or cause a small decrease in the objective value are consid-
ered; the amount of decrease must be within the deviation. If RRT movements are possible, then the
movement with the highest objective value will be performed.

Regardless of the type of movement made, a path in PNTOPVP with higher pro�t collected may
replace another path in PTOPVP. The paths in PTOPVP and PNTOPVP are sorted whenever a movement
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is made. Finally, when every vertex has been evaluated for one-point movement, any empty path is
removed.

4.4.3. 2-Opt

The 2-Opt technique is used after two-point exchange and one-pointmovement have been completed
in order to reduce the total edge cost incurred by the paths in PTOPVP and PNTOPVP. In doing so,
there may be opportunities for more exchanges and movements in later iterations. There should be
no improvement in the objective value due to 2-Opt. The operator is applied to each path in PTOPVP
and PNTOPVP with the complexity of O(|V|2).

Note that, as mentioned earlier in the overview of the structure of the proposed algorithm, the two
parameters record and deviation are updated only after a sequence of two-point exchange, one-point
movement and 2-Opt is completed. If no new record is found after �ve consecutive iterations, then
the terminating condition for the corresponding improvement phase has been achieved. Otherwise,
the solution obtained will be perturbed using re-initialization 1 as described below.

4.5. Re-initialization phase

The two di�erent re-initialization phases are described as follows.

4.5.1. Re-initialization 1

To avoid being restricted to a particular neighbourhood, re-initialization 1 is used to prepare the
solution for the next iteration of the local search. It is the perturbation component of ILS. In this step,
vertices with the lowest pro�t collected are removed from each of the paths in PTOPVP. The number
of vertices removed from each path is determined by a variable k. As the iteration count for the local
search increases, the value of k is increased by one unit. In other words, more vertices are removed
from the paths in PTOPVP in subsequent re-initialization 1 steps. New paths containing the removed
vertices are then constructed using themost e�cient criterion. Finally, the new PTOPVP is determined
and the next iteration of the local search will be performed on this new con�guration.

4.5.2. Re-initialization 2

In re-initialization 2, the vertices are removed di�erently from re-initialization 1. In particular, instead
of removing vertices with the lowest pro�t collected, vertices with the smallest ratio of pro�t collected
to insertion cost are removed from each of the paths in PTOPVP. The number of vertices removed
from each path is the stopping value of k for re-initialization 1 in improvement phase 1. Note that
throughout the ILS algorithm, re-initialization 2 will be performed only once.

New paths containing the removed vertices are then constructed using themost e�cient criterion.
Finally, the new PTOPVP is determined and improvement phase 2 will begin. In addition, the thresh-
old of RRT exchanges and movements is reduced so as to only perturb the solution slightly during
improvement phase 2. In improvement phase 2, the deviation is reduced to 2.5% of the record.

5. Computational experiments and results

In this section, the results obtained after applying the proposed algorithm to test instances for the
TOPVP are presented. The algorithm is coded using Visual Studio 2013 in C++ and executed on
computers with an Intel Core i5-4570 central processing unit (CPU) at 3.20GHz and 8GB RAM.

5.1. Benchmark instances

Since no benchmark TOPVP instances are readily available, there is a need to generate the test
instances to evaluate the proposed algorithm. As such, the scheme proposed by Erdoğan and Laporte
(2013) is used to generate benchmark OPVP instances using the TSP test instances.
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Table 1. Formulae used to generate parameters for team orienteering problem with variable profits (TOPVP) instances.

XmaxXminYmaxYmin =

Maximum X coordinate, minimum X coordinate, maximum Y coordinate and
minimum Y coordinate of the vertices considered for the problem

pi = 10 + (Xi + Yimod90)
ai = (10 + (((Xi + Yimod20)/20) × 90))/100
rmax = (Xmax − Xmin + Ymax − Ymin)/50
rmin = (Xmax − Xmin + Ymax − Ymin)/100
ri = rmin + (((Xi + Yimod15)/15) × (rmax − rmin))

T = (2.5 × (Xmax − Xmin + Ymax − Ymin))/|P|

The TSP instances used are kroA100, kroB100, kroC100, kroA200 and kroB200, which are
obtained from the TSPLIB. The number in the instance’s name represents the number of vertices.
The �rst vertex from the data �le is set as the depot. The edge costs tij are determined from the ver-
tex coordinates using Euclidean distance. Note that the 200-vertex instances are extensions of the
100-vertex instances, with the �rst 100 vertices being the same.

The OPVP instances are then used to generate the TOPVP instances. This is done by taking the
one-path OPVP and dividing the time budget by the number of paths in TOPVP (Chao, Golden, and
Wasil 1996a). In other words, the accumulative total time budget for the paths in TOPVP is the same
as the time budget for OPVP. Table 1 summarizes the formulae used to generate the parameters from
the vertex coordinates.

Veri�cation and validation of the ILS algorithm were conducted using the CPLEX solver to solve
for the optimal solution for small test instances. The objective is to compare the optimal solution of
the instances with that of ILS. The optimality gap for the ILS solutions can be determined, although
this is only for small test instances.

The factors tested in the veri�cation and validation experiments are the number of vertices |V|,
number of paths |P| and time budget for each path T. Since the test instances from TSPLIB are in sets
of 100 vertices (kroA100, kroB100 and kroC100) and 200 vertices (kroA200 and kroB200), solving to
optimality using all the test instances with such signi�cant sizes will be beyond computational reach.
As such, to reduce the size of the experiments, only the initial 15 vertices from each test instance are
used, and experiments for �ve, 10 and 15 vertices are conducted. In addition, the number of paths
|P| tested for each test instance is one, two and three. The solver CPLEX 12.6.2 was used to solve the
TOPVP on a computer with an Intel Xeon E5-1603 CPU at 2.80GHz and 16GB RAM.

The objective value of the solutions obtained from CPLEX and ILS are recorded in Tables 2 and 3.
Part of the veri�cation process involves checkingwhether the objective values from ILS have exceeded
the objective value of the optimal solution and, as can be observed, these objective values do not
exceed the optimal objective value. In addition, the solutions are checked to ensure that the paths
remained feasible. Furthermore, the maximum optimality gap for all the experiments conducted is
3.32%, which is an acceptable value for small instances.

For the time budget assigned for each path/vehicle, arbitrary values are picked for the veri�cation
and validation experiments. This is because by evaluating ILS over a comprehensive range of time
budget values, the veri�cation and validation process can be more credible. To illustrate, the edge
costs calculated from the test instances can go up to about 3000 time units. For experiments with
only �ve vertices considered or 5000 time units allocated for each vehicle, the optimality gap is likely
to be 0%. This can be attributed to the elimination of vertices that require more than 2500 time units
when visiting from the depot. These vertices are eliminated from consideration since they cannot be
visitedwithout exceeding the time budget. As such, the reduction in the number of vertices considered
resulted in ILS being more likely to converge to the optimal solution.

In contrast, for larger experiments with more than 7000 time units allocated, each vertex can
be visited. In this case, the performance of ILS drops slightly, and optimality is achieved in some
experiments only. In addition, the largest time budget allocated for each vehicle was set at 12,500 and
9000 time units for the experiments with a single vehicle and multiple vehicles, respectively. This is
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Table 2. Validation results for kroA100.

Test instance |P| |V| T

CPLEX
objective value

ILS objective
value Optimality gap (%)

CPLEX CPU
time (s) ILS CPU time (s)

kroA100 1 5 5,000 81.00 81.00 0.000 4.59 0.22
1 5 7,500 173.07 169.13 2.277 3.85 0.28
1 5 10,000 261.91 258.79 1.191 4.52 0.36
1 5 12,500 279.24 279.02 0.079 4.54 0.37
1 10 5,000 251.99 250.50 0.591 8.81 0.31
1 10 7,500 294.19 293.07 0.381 7.82 0.57
1 10 10,000 394.15 391.31 0.721 10.50 0.66
1 10 12,500 500.66 491.68 1.794 9.50 0.72
1 15 5,000 249.90 249.35 0.220 14.37 0.32
1 15 7,500 334.64 330.11 1.354 19.90 0.37
1 15 10,000 455.30 450.27 1.105 38.28 0.41
1 15 12,500 589.74 579.64 1.713 22.10 0.50
2 5 5,000 154.98 154.98 0.000 3.98 0.24
2 5 7,000 269.09 268.18 0.338 4.06 0.24
2 5 9,000 279.82 279.77 0.018 4.56 0.40
2 10 5,000 346.97 345.48 0.429 10.28 0.42
2 10 7,000 464.52 464.03 0.105 10.80 0.62
2 10 9,000 541.10 538.50 0.481 16.86 0.93
2 15 5,000 383.47 381.02 0.639 72.62 0.69
2 15 7,000 572.56 570.26 0.402 227.90 1.09
2 15 9,000 715.09 691.35 3.320 188.76 0.91
3 5 5,000 195.61 195.61 0.000 4.54 0.28
3 5 7,000 279.45 279.45 0.000 4.73 0.54
3 5 9,000 280.00 280.00 0.000 4.88 0.44
3 10 5,000 422.76 416.79 1.412 16.24 0.63
3 10 7,000 547.06 539.97 1.296 12.20 0.71
3 10 9,000 553.80 553.17 0.114 50.72 0.49
3 15 5,000 476.36 473.91 0.514 219.76 0.62
3 15 7,000 732.18 713.49 2.553 800.44 0.74
3 15 9,000 788.10 779.49 1.099 > 1000 1.07

Note: ILS = iterated local search; CPU = central processing unit.

because given a larger time budget, the paths in the solution will be longer and the maximum allow-
able passes made at each path will be higher. Thus, setting a larger time budget is likely to be beyond
computational reach.

5.2. Computational results

In this section, experiments were conducted for the full range of vertices using the test instances
kroA100, kroB100, kroC100, kroA200 and kroB200. Results obtained from CPLEX after 1000 s of
computational time were compared with the results obtained by ILS. The objective is to evaluate
the performance of the ILS algorithm using the best upper bound as well as the best feasible integer
solution obtained by CPLEX.

The numbers of vertices used for kroA100, kroB100 and kroC100 instances are varied at 25, 50,
75 and 100, using the initial vertices for each instance. The numbers of vertices used for kroA200 and
kroB200 instances are varied at 125, 150, 175 and 200 to avoid repetition of computational results due
to using the same initial vertices for each instance. Experiments are conducted for two-, three- and
four-path TOPVPs. The de�nitions of the column headings are given in Table 4. The results for the
kroA100, kroB100 and kroC100 instances are presented in Table 5. Table 6 presents the results for the
larger instances kroA200 and kroB200.

As observed from Tables 5 and 6, the ILS algorithm is able to obtain a solution using consider-
ably smaller amounts of computational time, even for the large instances kroA200 and kroB200. The
maximum computational time recorded is 11.95 s for the two-path 175 vertices TOPVP using the
test instance kroB200. This is due to the ILS algorithm using operators that are not computationally
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Table 3. Validation results for kroB100.

Test instance |P| |V| T

CPLEX
objective value

ILS objective
value Optimality gap (%) CPLEX CPU time (s) ILS CPU time (s)

kroB100 1 5 5,000 103.00 103.00 0.000 3.92 0.27
1 5 7,500 242.40 241.54 0.355 4.45 0.28
1 5 10,000 269.80 269.80 0.000 4.63 0.28
1 5 12,500 270.00 270.00 0.000 4.62 0.30
1 10 5,000 283.99 283.99 0.000 8.81 0.33
1 10 7,500 423.79 421.99 0.425 9.64 0.47
1 10 10,000 533.99 533.82 0.032 10.83 0.46
1 10 12,500 560.70 560.66 0.007 10.53 0.57
1 15 5,000 286.42 286.37 0.017 14.21 0.43
1 15 7,500 446.82 446.41 0.092 57.53 0.60
1 15 10,000 635.85 630.50 0.841 26.13 0.75
1 15 12,500 703.17 702.68 0.070 19.42 0.73
2 5 5,000 178.00 178.00 0.000 3.82 0.24
2 5 7,000 270.00 270.00 0.000 4.56 0.47
2 5 9,000 270.00 270.00 0.000 4.70 0.47
2 10 5,000 435.61 435.61 0.000 10.28 0.47
2 10 7,000 560.31 560.07 0.043 13.85 0.43
2 10 9,000 561.00 561.00 0.000 10.11 0.84
2 15 5,000 455.52 450.09 1.192 22.95 0.41
2 15 7,000 662.38 650.67 1.768 582.18 0.93
2 15 9,000 733.95 733.87 0.011 225.33 1.02
3 5 5,000 178.00 178.00 0.000 4.76 0.27
3 5 7,000 270.00 270.00 0.000 4.56 0.43
3 5 9,000 270.00 270.00 0.000 4.62 0.50
3 10 5,000 468.61 468.60 0.002 11.22 0.64
3 10 7,000 561.00 561.00 0.000 78.81 0.46
3 10 9,000 561.00 561.00 0.000 9.64 0.67
3 15 5,000 523.68 511.81 2.267 224.13 0.61
3 15 7,000 733.42 733.36 0.008 > 1000 0.66
3 15 9,000 734.99 734.98 0.003 > 1000 0.68

Note: ILS = iterated local search; CPU = central processing unit.

Table 4. Definitions of column headings.

CPLEX upper bound : Best upper bound obtained by CPLEX at 1000 s
CPLEX best solution : Objective value of the best solution obtained by CPLEX at 1000 s
TOPVP objective value : Objective value of the ILS
TOPVP CPU time (s) : Computational time required for the ILS
Upper bound–TOPVP gap (%) : Percentage deviation of the ILS’s objective value from CPLEX upper bound

Note: TOPVP = team orienteering problem with variable profits; ILS = iterated local search; CPU = central processing unit.

intensive. In addition, the computational time for experiments with comparatively more paths is gen-
erally lower. This can be attributed to the time budget allocated for each path being lower than in
experiments with fewer paths. Since the time budget is lower, the paths constructed are shorter and
the maximum number of passes allowed for each vertex is lower. Thus, the possibility of achieving
improvement from the local search component of ILS is lower. Hence, ILS is able to converge to a
solution using fewer iterations in the improvement phases.

Although the gap between the solution obtained from ILS and the upper bound is considerably
large, it can be reasonably justi�ed. Given the termination time being set at 1000 s, there is already
a large optimality gap between the upper bound and the solution obtained by CPLEX. Hence, the
actual optimality gap for ILS is likely to be smaller than the gap reported in Tables 5 and 6. This is
seen in the kroB100 instance with |V| = 4, |P| = 25 and T = 3359, where the optimal solution was
obtained by CPLEX and the optimality gap for ILS is only 0.22%.

Even though the average gap reported might be considerably large, ILS manages to produce
near-optimal solutions for a few experiments. More speci�cally, for kroB100 three- and four-path
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Table 5. Computational results for kroA100, kroB100 and kroC100.

Test instance |P| |V| T

CPLEX upper
bound

CPLEX best
solution

ILS objective
value ILS CPU time (s)

Upper bound–ILS
gap (%)

kroA100 2 25 7020 874.39 762.40 736.49 0.66 15.77
2 50 7186 1464.12 868.92 1205.71 1.50 17.65
2 75 7240 1783.85 1005.67 1372.54 1.75 23.06
2 100 7351 2026.70 1408.40 1539.49 4.51 24.04
3 25 4680 777.44 649.45 667.23 0.86 14.18
3 50 4791 1288.17 921.60 967.35 1.12 24.91
3 75 4827 1625.96 916.86 1174.92 2.07 27.74
3 100 4901 1881.80 1150.23 1318.98 2.17 29.91
4 25 3510 746.92 588.89 580.05 0.74 22.34
4 50 3593 1143.35 761.17 757.50 0.64 33.75
4 75 3620 1486.59 829.77 956.83 1.77 35.64
4 100 3673 1701.83 982.12 1083.80 2.64 36.32

kroB100 2 25 6718 1057.95 702.81 795.07 0.75 24.85
2 50 7051 1550.25 1122.16 1129.98 1.44 27.11
2 75 7275 1934.81 1189.21 1410.98 2.34 27.07
2 100 7391 2519.20 1548.81 1837.54 5.79 27.06
3 25 4478 589.34 573.72 570.74 0.85 3.16
3 50 4701 1216.24 1042.29 1017.78 1.49 16.32
3 75 4850 1707.65 1285.83 1344.68 1.03 21.26
3 100 4927 2319.70 1559.52 1731.71 1.97 25.35
4 25 3359 520.67 520.67 519.50 0.79 0.22
4 50 3526 1137.17 951.78 942.26 1.47 17.14
4 75 3638 1605.68 1076.38 1193.96 1.33 25.64
4 100 3696 2252.69 1207.40 1514.31 1.85 32.78

kroC100 2 25 7020 832.62 735.28 689.65 0.71 17.17
2 50 7186 1418.87 1008.78 1118.80 1.63 21.15
2 75 7240 1930.83 1238.18 1368.79 2.56 29.11
2 100 7345 2285.38 1240.78 1665.63 3.90 27.12
3 25 4680 794.99 627.43 586.49 0.69 26.23
3 50 4791 1244.62 953.44 973.19 1.73 21.81
3 75 4827 1762.39 1114.87 1233.01 2.48 30.04
3 100 4897 2151.57 1157.68 1497.63 2.73 30.39
4 25 3510 557.57 517.37 491.55 0.83 11.84
4 50 3593 1081.96 828.61 818.23 1.58 24.38
4 75 3620 1547.31 951.18 1029.44 2.40 33.47
4 100 3673 1941.39 1158.59 1225.85 2.48 36.86

Note: ILS = iterated local search; CPU = central processing unit.

instances, the gaps for the experiments using only 25 vertices are considerably small, 3.16%and 0.22%,
respectively. The reason for this is two-fold: the number of vertices is only 25, and the time budgets
allocated for the three- and four-path experiments are relatively low. As such, the number of feasible
vertices in the time budget constraint is small, enabling ILS to reach a near-optimal solution. On the
other hand, for experiments with more vertices available, ILS is unable to achieve a comparable small
gap. By the same argument, the number of feasible vertices for ILS to consider is large, which explains
the much larger gap reported.

Given the considerably large gap between ILS and the upper bound, improving the local search
as well as the perturbation is certainly a probable notion. The current operators used are relatively
simple. For example, two-point exchange is essentially the swapping of two vertices, while one-
point exchange attempts to insert an additional vertex into another path. Hence, the use of more
sophisticated operators for the local search may lead to possible improvements that these simple
operators are unable to achieve. Also, the perturbation component can be made more rigorous,
as modifying the solution further after a local search may improve the chances of discovering a
better local optimal solution. Furthermore, the current computational time of ILS is considerably
small. As such, implementing these suggestions should cause the computational time to increase only
slightly.
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Table 6. Computational results for kroA200 and kroB200.

Test instance |P| |V| T

CPLEX upper
bound

CPLEX best
solution

ILS objective
value ILS CPU time (s)

Upper bound–ILS
gap (%)

kroA200 2 125 7345 2556.54 1126.84 1755.72 3.90 31.32
2 150 7380 2826.82 1267.49 1914.66 7.17 32.27
2 175 7380 2994.77 466.22 2036.53 5.21 32.00
2 200 7380 3117.18 155.99 2111.68 8.94 32.26
3 125 4897 2362.61 1091.55 1687.18 3.34 28.59
3 150 4920 2638.86 1072.10 1722.68 4.77 34.72
3 175 4920 2790.47 858.58 1860.15 4.89 33.34
3 200 4920 2906.92 247.89 1917.95 4.97 34.02
4 125 3673 2263.87 1136.59 1405.30 2.17 37.92
4 150 3690 2388.89 1081.03 1498.14 2.94 37.29
4 175 3690 2538.22 1235.60 1595.99 3.18 37.12
4 200 3690 2700.82 734.89 1630.20 3.70 39.64

kroB200 2 125 7391 2727.64 1091.29 1905.82 5.19 30.13
2 150 7391 2957.56 1357.81 2048.07 6.83 30.75
2 175 7391 3102.08 1319.55 2119.59 11.95 31.67
2 200 7401 3320.49 948.71 2233.36 8.82 32.74
3 125 4927 2475.03 1530.28 1802.51 4.08 27.17
3 150 4927 2675.39 1496.86 1920.98 3.74 28.20
3 175 4927 2833.15 1329.10 2102.80 5.33 25.78
3 200 4934 3093.34 617.07 2116.00 7.36 31.59
4 125 3696 2393.64 1271.46 1605.69 2.54 32.92
4 150 3696 2617.37 1486.56 1813.00 4.63 30.73
4 175 3696 2828.17 1298.20 1853.34 3.67 34.47
4 200 3701 3001.25 897.02 1976.09 3.67 34.16

Note: ILS = iterated local search; CPU = central processing unit.

6. Conclusion

A variant of the OP, namely the TOPVP is introduced. For the TOPVP, multiple paths are involved
in collecting scores which are dependent on the time spent at the visited vertices. In this article, the
TOPVP is formulated as amathematical programmingmodel that could be extended to othermodels.
One of the future plans for extending the model is to include the correlated e�ect among vertices (in
the context of the tourist trip design problem). The objective function for this extended model will
consist of two components: the total of the collected scores from visited nodes and a quadratic score
function that captures spatial correlations among nodes (Yu, Schwager, and Rus 2014).

An ILS algorithm has been developed to solve the modi�ed benchmark TOPVP instances. The
results obtained from solving some modi�ed benchmark instances by ILS are compared with those
obtained by the CPLEX solver, which is able to solve small instances to optimality. For these small
instances ranging up to 15 vertices, ILS is able to achieve optimality in several experiments using
considerably shorter computational time. ILS is then applied to larger instances ranging up to 200
vertices. While the computational time needed for ILS is low, the gap between the ILS results and the
upper bound obtained by CPLEX solver after 1000 s is still considerably small, and the ILS is able to
obtain better solutions than the CPLEX solver after 1000 s in most of the larger instances. However,
the development of a more e�ective heuristic incorporating more advanced operators to achieve a
smaller optimality gap is a possible direction for future research.

In the current TOPVP model, it is assumed that split deliveries are not allowed. Archetti et al.
(2014) introduced the split delivery capacitated team orienteering problem.When split deliveries are
allowed, the number of vehicles used may be reduced. It is theoretically shown that split deliveries
may increase the pro�t twice compared with the constraint that limits each customer to be served
by at most one vehicle. It is also shown experimentally that the pro�t increase due to split deliveries
varies according to the instance. As part of future work, the proposed algorithm could be extended
to tackle this problem. Other applications of the OP, such as the vehicle routing problem and the
tourist trip design problem, which have similar characteristics to the TOPVP can also be considered.
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Finally, the idea of using stronger mathematical programming models and exact algorithms, such as
the branch-and-cut approach in Erdoğan and Laporte (2013), to generate better upper bound values
will be considered for future work as well.
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