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Abstract: In this paper, we present an iteration algorithm for the pricing of American options based on
reinforcement learning. At each iteration, the method approximates the expected discounted payoff
of stopping times and produces those closer to optimal. In the convergence analysis, a finite sample
bound of the algorithm is derived. The algorithm is evaluated on a multi-dimensional Black-Scholes
model and a symmetric stochastic volatility model, the numerical results implied that our algorithm
is accurate and efficient for pricing high-dimensional American options.

Keywords: American options; deep learning; Monte Carlo; optimal stopping; reinforcement learning

1. Introduction

The pricing of American options is an important issue in quantitative finance and
stochastic processes [1,2]. Many popular derivative products in various financial sectors
are of the American type, and can be exercised at any time before maturity. Therefore,
considerable effort has been spent to obtain accurate and efficient methods for pricing
American options (see, e.g., Hull [3]). When the dimension of the option is small, methods
based on partial differential equations [4] and binomial trees [5] can be applied. However,
the calculation costs of these methods increase exponentially as the dimension gets larger,
thus making them inefficient for pricing options on many underlying assets, such as the
widely used high-dimensional symmetric stochastic volatility models [6].

To treat American options on multi-dimensional underlying assets, many pricing meth-
ods based on Monte Carlo simulation have been proposed. The most popular are the
regression-based methods proposed by Longstaff and Schwartz [7] and Tsitsiklis and Roy [8].
Through a backward iteration scheme, these methods can approximate the continuation
value and a feasible exercise policy, such as linear regression [7], neural network [9], Gaus-
sian process regression [10] and kernel ridge regression [11], all of which produce lower
price bounds for American options. The dual approaches for American options were
developed by Rogers [12] and Haugh and Kogan [13], these methods produce upper price
bounds for options. However, in the computation of these methods, the continuation value
at each date is approximated by different functions, and only the data at this date are used.

A different strand of the literature focuses on finding the optimal exercise policy by
Monte Carlo sample [14,15]. These approaches consider a parametric class of exercise re-
gions and maximize an estimate of the value function within the parametric class. Through
optimization, all the sample data are used to approximate the optimal exercise policy.
Recently, Bayer et al. [16] and Becker et al. [17] consider randomized stopping times in
approximating the optimal exercise regions. However, in these approaches, the resulting
loss function may still be non-concave and exhibit isolated local optima; thus, it is difficult
to find the global optimum for the loss function [18,19].

Reinforcement learning, especially the policy iteration method, has achieved empirical
success in high-dimensional control problems [20–22]. The basic idea of policy iteration is
to compute the evaluation function of the policy in each iteration, after which an improved
policy is computed from the function for the next iteration [23]. The pricing of American
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options could be seen as a control problem, but there are only two possible actions, and
these do not influence the underlying process. Reinforcement learning methods have
already been applied to optimal stopping problems. Tsitsiklis and Roy [8] introduced the
fitted Q-iteration for American option pricing based on the least-squares method. Yu and
Bertsekas [24] proposed an algorithm based on projected value iteration, the convergence of
this method for finite-state models was also obtained. Li et al. [25] considered a least squares
policy iteration in the pricing of American options, and they give a finite-time bound for the
algorithm. Becker et al. [26] developed an algorithm related to policy optimization for high-
dimensional optimal stopping problems. Chen et al. [27] applied Zap-Q-learning for the
optimal stopping problem, and established consistency of the algorithm for linear function
approximation. Herrera et al. [28] considered a fitted Q-iteration based on randomized
neural networks for the optimal stopping problems. However, most of these methods
are a direct transformation of the method in reinforcement learning. Furthermore, there
is a lack of analysis on the accuracy and efficiency of reinforcement learning in pricing
high-dimensional American options.

In this paper, we propose an iteration algorithm for American options based on
reinforcement learning. In each iteration, the expected discounted payoff of a family
of stopping times is approximated by regression; thus, the data of all dates are used
to improve the approximation of all dates. An improved family of stopping times was
obtained based on the constructed function. After this procedure, an approximate optimal
exercise policy was obtained. To provide theoretical guarantees, we developed a finite
sample-error bound for the algorithm. In the numerical experiments, we considered the
data generated by the multi-dimensional Black–Scholes model and a symmetric stochastic
volatility model. The results showed that (a) our algorithm was accurate and efficient in
pricing high-dimensional American options; (b) by using a function of time and underlying
process, the continuation values can be approximated using a fraction of the parameters;
(c) the methods based on reinforcement learning outperform the state-of-the-art methods
in the pricing of American options.

The paper is organized as follows. In Section 2, we introduce the problem of pricing
American options and illustrate the relationship of continuation values and stopping times.
The efficient algorithm is described in Section 3. In Section 4, convergence rates of the
algorithm are discussed. Numerical experiments of high-dimensional American options on
multi-dimensional Black–Scholes model and a symmetric stochastic volatility model are
given in Section 5. Finally, we conclude in Section 6. All proofs are found in the Appendix A.

2. Pricing of American Options and Stopping Times

In this section, we introduce to the pricing of American options. Let {Xt, 0 ≤ t ≤ T}
be a Rd-valued Markov process, this process is defined on a filtered measurable probability
space with a risk-neutral measure P. We assumed that the process records all relevant
financial variables. In practice, the price of the American option was approximated by
the price of a Bermudan option [11], which could be exercised at discrete time points
0 < t1 < · · · < tN = T. For 0 ≤ n ≤ N, we represented tn by n to simplify the notation
in the following. We assumed that the risk-free discount factor between time points was
constant, which was denoted by γ ∈ (0, 1). The price Vn(x) of the option at n = 1, . . . , N
was given by the optimal stopping problems

Vn(x) = sup
τ∈Tn

E
[
γτ−ng(Xτ)|Xn = x

]
, (1)
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where g(x) is the non-negative payoff function, Tn denotes the set of stopping times such
that n ≤ τ. The price at time 0 is given by V0(x) = E[γV1(X1)|X0 = x]. We assume that g
satisfies ‖g(Xn)‖∞ ≤ B for n = 1, . . . , N, where ‖ · ‖p denotes the Lp-norm and B > 0. As
we will see later, this assumption can be relaxed.

The optimal stopping problem (1) is solved by a family of optimal stopping times
τ∗n , n = 1, . . . , N, that satisfies the consistency property τ∗n > n =⇒ τ∗n = τ∗n+1 [16]. By a
dynamic programming principle, τ∗n can be determined by the continuation values [29].
The value in state x at time n is C∗(N, x) ≡ 0 for n = N and

C∗(n, x) = E[γτ∗n+1−ng(Xτ∗n+1
)|Xn = x], (2)

for n = 0, . . . , N − 1. Then, τ∗n can be written as

τ∗n = inf{i ≥ n : g(Xi) ≥ C∗(i, Xi)}. (3)

In other words, the option should be exercised when the current payoff is larger than
the continuation value. A meaningful family of suboptimal stopping times should be
obtained by replacing the continuation values by a good approximation.

Motivated by the fitted policy iteration method in reinforcement learning [23], we
considered iteratively approximating the family of optimal stopping times. In this paper,
we dealt with consistent families of stopping times τn, n = 1, . . . , N. These times satisfied
n ≤ τn ≤ N with τN = N and τn > n =⇒ τn = τn+1. We define the function Cτ :
{0, 1, . . . , N − 1} ×Rd → R by

Cτ(n, x) = E[γτn+1−ng(Xτn+1)|Xn = x]. (4)

This function represents the expected discounted payoff achieved when Xn = x,
and the option is not exercised at n after which the stopping time τn+1 is followed. Con-
versely, given C : {0, 1, . . . , N − 1} × Rd → R, we defined a new family of stopping
times by

τ
′
N = N,

τ
′
n =

{
n, if g(Xn) ≥ C(n, Xn),
τ
′
n+1, otherwise.

(5)

It was immediately seen that the obtained family of stopping times τ
′
n, 1 ≤ n ≤ N

was consistent. The following result shows that, the exercise policy τ
′
1 constructed from Cτ

yielded a higher than expected discounted payoff than the original policy τ1.

Theorem 1. For any family of consistent stopping times τn, n = 1, . . . , N, the stopping time τ
′
1

constructed from Cτ by (5) satisfies

Eγτ
′
1 g(X

τ
′
1
) ≥ Eγτ1 g(Xτ1). (6)

By Theorem 1, if we can approximate Cτ(n, Xn) for a family of stopping times τn,
1 ≤ n ≤ N − 1, we can construct an improved family of stopping times closer to the
optimal family.
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3. Iteration Algorithm

In this section, we propose a two-step iteration algorithm for American options. In the
evaluation step, Cτ(n, x) of a family of stopping times is estimated. In the improvement
step, the estimated function is used to construct an improved family of stopping times
by (5).

We first defined the approximation architecture used for estimating Cτ(n, x) in the
algorithm. Contrary to the regression-based algorithms, we used a single function by
taking the time as an argument in the computation throughout the paper, denoted by
F : = { f : Rd+1 → R}, the choosing set of real-valued functions. We also introduced
the truncation operator for the approximation architecture. Let ψB denote the truncation
operator with level B defined by

ψB f =

{
f , if | f | ≤ B,
sign( f ) · B, otherwise .

(7)

For a set of functions F , we set ψBF = {ψB f : f ∈ F}.
To obtain a good approximation of Cτ , it was a straightforward matter to consider

1
N

N−1

∑
n=0

E
(
Cτ(n, Xn)− E[γτn+1−ng(Xτn+1)|Xn]

)2. (8)

To obtain a practical procedure, we considered the sample-based approximation to (8)
in the algorithm.

To approximate the optimal stopping times numerically, our method was initial-
ized with arbitrary C0 ∈ F and corresponding stopping times τ1

n constructed from (5),
n = 1, . . . , N. For j = 1, . . . , J − 1, we generated a set of Monte Carlo paths (xi

0, . . . , xi
N),

i = 1, . . . , M of process Xn, this sample set was independent of all previously generated
paths. If at time n, stopping time τ

j
n was applied, the discounted payoff along the i-th

simulated path was denoted by γτ
j,i
n −ng(xi

τ
j,i
n
). To obtain the approximation of Cτ j

, we

considered minimizing the empirical counterpart of (8). Let f̂ j ∈ F satisfy

f̂ j = arg min
f∈F

1
NM

M

∑
i=1

N−1

∑
n=0

(
f
(

n, xi
n

)
− γτ

j,i
n+1−ng(xi

τ
j,i
n+1

)

)2
, (9)

we used the truncation Ĉτ j
= ψB f̂ j as the approximation. In the next iteration, an improved

family of stopping times τ
j+1
n , n = 1, . . . , N was obtained by (5). Starting from any family

of consistent stopping times and computing inductively, we finally constructed the exercise
policy τ J

1 . Note that the optimization problem (9) is easily solved for some linear function
space such as polynomial basis functions. For other approximation architecture such as
neural networks, gradient-based methods can be applied to find the infimum, since (9) is
differentiable with respect to f .

To estimate V0, we generated another independent Monte Carlo sample path (xi
0, . . . , xi

N),
i = 1, . . . , M

′
and approximate V0 by the average

V̂0 =
M
′

∑
i=1

γτ
J,i
1 g(xi

τ
J,i
1
). (10)

Our method is summarized into Algorithm 1. In next section, we discuss the conver-
gence of the algorithm and derive a finite sample bound.
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Algorithm 1 Iteration algorithm for pricing American options.

Require: the number of sample path M, M
′
, the number of iterations J and function space

F
Ensure: the approximating optimal stopping time τ J

1 , the price estimate V̂0
1: Generate sample paths of the underlying process;
2: Generate a random function C0 ∈ F ;
3: for j = 1, . . . , J − 1 do
4: Obtain τ

j
n, n = 1, . . . , N using Ĉτ j−1

from (5);
5: Construct f̂ j by the regression optimization problem

f̂ j = arg min
f∈F

1
NM

M

∑
i=1

N−1

∑
n=0

(
f
(

n, xi
n

)
− γτ

j,i
n+1−ng(xi

τ
j,i
n+1

)

)2
;

6: Obtain the approximation by Ĉτ j
= ψB f̂ j;

7: end for
8: Obtain τ J

1 using Ĉτ J−1
from (5);

9: Generate another independent sample path of the underlying process;
10: Calculate the option price by (10);
11: return τ J

1 and V̂0;

4. Convergence Analysis

In this section, we consider the convergence of the algorithm introduced in Section 3.
Before describing the main result, we present some necessary definitions. To measure the
complexity of a functional class, we introduced the definition of covering numbers. For a
class of functions F and points zM

1 := (z1, . . . , zM), the covering number N1
(
ε,F , zM

1
)

is
the minimal number Q ∈ N such that there exist functions f1, . . . , fQ with the property that
for every f ∈ F there is a q ∈ {1, . . . , Q} such that

1
M

M

∑
i=1

∣∣ f (zi)− fq(zi)
∣∣ < ε. (11)

For f : Rd+1 → R, we introduce ‖ · ‖ by

‖ f ‖2 =
1
N

N−1

∑
n=0
‖ f (n, Xn)‖2

2. (12)

Denoted by τ( f ), the family of stopping times was obtained from (5) with respect to
f . Let EM stands for the expectation conditioned by the samples used to approximate the
function Cτ . We now state our main result about the convergence of our algorithm.

Theorem 2. Assume that B < ∞. Fix the set of admissible functions F and positive integer M.
For j = 1, . . . , J, define τ j by (5) and define Ĉτ j

by (9). Then

EM

∥∥∥C∗(n, Xn)− Cτ J
(n, Xn)

∥∥∥
≤

c1 log M sup0≤n≤N−1
(

supxM
1 ∈({n}×Rd)M log1/2

(
N1

(
1

MB , ψBF , xM
1

)))
M1/2

+ c2 sup
f ′∈F

inf
f∈F

∥∥∥∥ f − Cτ( f
′
)

∥∥∥∥+ c3γJ/2B, (13)

where c1, c2, c3 > 0.
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There are three terms in the bound (13). The first is the estimation error caused by
the sampling step in the approximation. The second is the approximation error of F with
respect to the Cτ j

(n, x) appearing in the iteration. The third comes from the error remaining
after running the iteration algorithm for J iterations. This term decays at a geometric rate.

Remark 1. logN1
(
ε, ψBF , xM

1
)

is bounded by log M · νψBF+ under some mild conditions, νψBF+
is the VC-dimension of ψBF+ (see the definition in Kohler and Langer [30]). Theorems 1 imme-
diately apply for linear, finite-dimensional approximation architecture, since the corresponding
VC-dimension is bounded [31]. For neural networks with L hidden layers, λ neurons per layer and
ReLU activation function, a bound of c4λL log λ with c4 > 0 on the corresponding VC-dimension
is also known [30]. Hence, the Theorem applies for deep neural networks as well.

The next corollary provides a bound on the difference between V0 and EV̂0.

Corollary 1. Assume that B < ∞ and X0 = x0 a.s. for some x0 ∈ R. Fix the set of ad-
missible functions F and positive integer M. Define τ J

1 by (5) with respect to Ĉτ J−1
and define

V̄0 := Eγτ
J
1 g(X

τ
J
1
). Then

EM|V0 − V̄0|

≤
c5 log M sup0≤n≤N−1

(
supxM

1 ∈({n}×Rd)M log1/2
(
N1

(
1

MB , ψBF , xM
1

)))
M1/2

+ c6 sup
f ′∈F

inf
f∈F

∥∥∥∥ f − Cτ( f
′
)

∥∥∥∥+ c7γJ/2B, (14)

where c5, c6, c7 > 0 and 0 < γ < 1.

5. Numerical Examples

In this section, the performances of the algorithm were tested on various American
options for bounded and unbounded payoffs.

The computations were carried out on a laptop with an Intel i5-10300H 2.50 GHz CPU
and a NVIDIA GeForce GTX 1650 GPU.

To evaluate our method, we considered two function spaces: the linear spaces of
polynomials and neural networks. Polynomial basis functions have been used in Longstaff
and Schwartz [7] and are a popular basis function for regression-based methods. To include
interaction terms in the basis, we considered the classical polynomial basis functions up to
the third order. Neural network approximates nonlinear functions by successive composi-
tions of an affine transformation and non-linear activation function. This model showed
good performance for pricing American options, especially in high dimensions [32].

We compared our method with two state-of-the-art methods: the least squares Monte
Carlo (LSM) proposed in Longstaff and Schwartz [7] and deep optimal stopping (DOS)
proposed in Becker et al. [26]. To have a fair comparison for accuracy and efficiency, we
used the same number of sample paths and time steps for both methods. Furthermore, we
used the same network architecture in DOS and in the method with the neural network
except the activation function. There were 3 hidden layers and 40 + d neurons per hidden
layer in the networks. The activation function in our method was a leaky ReLU function.

5.1. Multi-Dimensional Black–Scholes Model

In this subsection, we consider high-dimensional American options in the Black–
Scholes model. Assume the risk-neutral dynamics of the assets prices St = (S1

t , . . . , Sd
t ) are

given by

St = S0 exp
([

r− δ− 1
2

σ2
]
t + σWt

)
, (15)
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where S0 is the initial value; r is the risk-free interest rate; δ is the dividend rate; and Wt
is d-dimensional Brownian motions with covariance matrix ρ. The parameters are set as
T = 1 and N = 10, and we used r = 5%, δ = 0 for each asset. We assumed that ρ was a
diagonal matrix and all the assets had the same volatility σ = 0.2 and initial value S0 = 100.

We considered three types of high-dimensional options: max call options with payoff(
max1≤i≤d Si

t − K
)+, arithmetic put options with payoff (K− 1

d ∑d
i=1 Si

t)
+ and geometric put

options with payoff (K− (∏d
i=1 Si

t)
1/d)+. We considered d = {5, 10, 20, 30, 40, 60, 80, 100},

and set K = 100. In the computation we set M = 20,000; M
′

= 100,000; J = 5; and we used
the payoff as a regressor. For American options with unbounded payoff, we omitted the
truncation step.

Tables 1–3 report the pricing results. Column Ref. provides the benchmark value com-
puted by Premia (https://www.rocq.inria.fr/mathfi/Premia, accessed date is 29 September
2021), a freely available software for derivative pricing and hedging. Column Time is the
computational times in seconds. For large d the computation time of LSM and our method
with a polynomial basis function exceeded a reasonable amount of time, so the results were
omitted. The columns in tables labeled as LSM-2, LSM-3, LFPI and NNFPI correspond to,
respectively, LSM with a second-order polynomial basis function, LSM with a third-order
polynomial basis function, our method with a second-order polynomial basis function, and
our method with a neural network. Because V̂0 is a lower-biased price estimate, higher
price estimates implied better experimental performance.

We observed that both LFPI and NNFPI provided accurate results. LFPI was rela-
tively faster in low-dimensional cases, but the computation time of NNFPI increased little
with d. For the linear approximation architecture, the results showed that our method
outperformed the LSM with respect to the required polynomial degree in pricing. This
phenomenon is crucial when the number of underlying assets is large. For the computa-
tion time, although LFPI is slower than the LSM algorithm with same polynomial degree,
LSM needed larger polynomial degrees for accurate results so that our method returned
accurate results faster than the LSM in high-dimensional examples. In the case of nonlinear
architecture, NNFPI generally outperformed DOS, which has similar network architecture.

Table 1. Pricing results for d-dimensional max call options.

d Ref. LSM-2 Time LSM-3 Time LFPI Time DOS Time NNFPI Time

5 29.63 29.635 2.3 29.722 2.0 29.732 2.6 27.483 12.8 29.683 19.1
10 38.96 39.062 5.9 39.131 9.2 39.219 7.1 35.772 11.9 39.097 18.9
20 47.84 47.279 14.4 47.912 91.6 48.000 23.2 45.839 12.8 47.968 22.8
30 52.91 50.082 28.7 52.786 667.2 52.965 53.8 51.301 13.1 52.991 23.6
40 56.37 56.175 90.6 56.347 138.7 56.132 14.4 56.496 24.3
60 61.24 60.416 16.7 61.362 32.0
80 64.72 63.457 19.3 64.704 35.7

100 67.28 66.333 20.4 67.323 40.4

Table 2. Pricing results for d-dimensional arithmetic put options.

d Ref. LSM-2 Time LSM-3 Time LFPI Time DOS Time NNFPI Time

5 2.05 2.045 1.4 2.046 1.2 2.047 2.6 2.046 12.6 2.048 19.0
10 1.39 1.376 3.3 1.378 4.7 1.378 7.0 1.378 11.7 1.378 18.7
20 1.06 1.042 6.7 1.045 35.7 1.046 25.5 1.047 12.5 1.047 22.7
30 0.64 0.626 11.7 0.628 215.0 0.630 55.1 0.629 13.2 0.630 23.5
40 0.66 0.645 26.6 0.646 141.0 0.646 14.1 0.646 24.3
60 0.89 0.864 16.8 0.865 31.9
80 0.74 0.712 19.2 0.713 35.6

100 0.32 0.311 20.5 0.312 40.2

https://www.rocq.inria.fr/mathfi/Premia
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Table 3. Pricing results for d-dimensional geometric put options.

d Ref. LSM-2 Time LSM-3 Time LFPI Time DOS Time NNFPI Time

5 2.05 2.033 1.3 2.036 1.5 2.038 2.6 2.036 12.6 2.038 19.1
10 1.39 1.368 3.8 1.376 5.1 1.379 6.9 1.373 11.9 1.379 18.8
20 1.06 1.027 7.7 1.043 40.7 1.049 25.2 1.051 12.6 1.052 22.8
30 0.64 0.604 13.7 0.616 271.5 0.625 54.9 0.625 13.2 0.625 23.7
40 0.66 0.645 35.1 0.654 135.8 0.646 14.3 0.655 24.4
60 0.89 0.869 16.6 0.887 32.0
80 0.74 0.719 19.3 0.722 35.6

100 0.32 0.308 20.8 0.311 40.3

5.2. Stochastic Volatility Model

This subsection is devoted to the American options on the Heston model [33], a well-
known symmetric stochastic volatility model in options pricing. The evolution of un-
derlying asset St and instantaneous variance νt is described by the following stochastic
differential equation

dSt = rStdt +
√

νtStdW1
t ,

dνt = κ(θ − νt)dt + ξ
√

νtdW2
t , (16)

where r ≥ 0, κ > 0, θ > 0, ξ > 0, W1
t and W2

t are d-dimensional Brownian motions.
For a reliable price reference for high-dimensional American options, we used the same
parameter settings as in the cases studied in Herrera et al. [28]. The max call options and
geometric put options were considered in the experiments. Specifically, we choose the
parameters T = 1; N = 10; κ = 2; θ = 0.01; ξ = 0.2; the initial stock price S0 = 100;
the initial variance ν0 = 0.01; r = 0% for max call options; and r = 2% for geometric put
options. We assumed that the dynamics of different assets were independent, the correlation
between the Brownian motion driving the price process and variance process of single asset
was ρ = −0.3. In the computation we used M = 20,000; M

′
= 100,000; and J = 5 and same

network architecture as in last subsection.
To obtain a Markovian model, we included price and variance as inputs. In practical,

stochastic volatility models, they need to be calibrated from observed data; then, our
algorithm can be applied to sample data generated from the models. In the experiments,
we tested our method under max call options and geometric put options with K = 100.
The results are reported in Tables 4 and 5. The results were similar to those under the multi-
dimensional Black–Scholes model. The pricing results obtained from LFPI and NNFPI were
close to the reference values. The LFPI computation time was smaller than that of NNFPI
for low-dimensional situations, but the NNFPI was more efficient for d ≥ 10. It could be
seen that NNFPI is generally the most accurate method for high-dimensional American
options, and the computation time of NNFPI is close to that of DOS, especially for large d.
For the linear approximation architecture, the results showed that LFPI outperformed LSM.
Note that our method had much fewer trainable parameters.

Table 4. Pricing results for d-dimensional max-call options in the Heston model.

d Ref. LSM-2 Time LSM-3 Time LFPI Time DOS Time NNFPI Time

5 8.33 8.252 5.7 8.258 6.3 8.262 6.1 8.192 12.8 8.207 19.8
10 11.83 11.460 27.4 11.662 76.6 11.623 23.1 11.286 13.5 11.796 21.0
20 14.992 89.0 15.058 132.0 14.885 15.6 15.330 26.5
30 17.091 18.4 17.465 27.5
40 18.485 21.5 18.974 31.7
50 20.09 19.563 23.7 20.100 35.0
80 21.993 34.3 22.487 43.5

100 23.69 22.927 40.3 23.613 50.1
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Table 5. Pricing results for d-dimensional geometric put options in the Heston model.

d Ref. LSM-2 Time LSM-3 Time LFPI Time DOS Time NNFPI Time

5 2.43 2.366 4.9 2.368 5.0 2.420 6.0 2.309 12.8 2.443 19.7
10 2.01 1.773 21.1 1.959 52.6 1.986 22.5 1.931 13.6 2.015 21.0
20 1.71 1.631 67.5 1.658 134.0 1.643 15.4 1.712 26.5
30 1.292 18.1 1.593 27.5
40 1.304 20.8 1.522 31.6
50 1.48 1.291 22.5 1.474 34.9
80 1.194 33.3 1.426 43.3

100 1.40 1.141 39.9 1.402 49.8

5.3. Convergence with Respect to the Number of Iteration

In this subsection, we study numerically the convergence of our method with respect
to the hyperparameter J. We considered max-call options under the Black–Scholes model
with same parameters setting as in Section 5.1. Figure 1 presents the results for LFPI with
d = 5 and NNFPI with d = 20. The errors were computed with respect to the final value.
It could be seen that our method converged fast with respect to the number of iterations.
The results confirmed that limiting the number of iterations below to 5 was reasonable.
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Figure 1. Convergence with respect to the number of iteration.

6. Conclusions

We introduced a novel method for American options based on reinforcement learning
that was accurate and efficient in high-dimensional situations. We provided a convergence
analysis for the algorithms in the number of training samples and iterations. We also
considered the applicability of the algorithm and carried out comprehensive numerical
experiments in multivariate Black-Scholes and Heston models. The results showed that
(a) the NNFPI achieved good performance in high-dimensional situations, and the LFPI
outperformed the LSM in the pricing of American options; (b) the algorithm had high
efficiency and accuracy under different model assumptions; (c) our algorithm had a fast
convergence rate with respect to the number of iterations; (d) the continuation values can
be approximated with a fraction of the parameters by using a function of time and the
underlying process. To summarize, the results reconfirmed that reinforcement learning
methods surpass backward induction methods for pricing of high-dimensional American
options.

There are several directions for future research. First, upper price bounds and con-
fidence interval could be constructed based on the approximating the optimal stopping
time. Furthermore, it would be desirable to remove the condition that the payoff function
is bounded in L∞. One idea is to use the truncation technique in Zanger [34]. The proofs
are technically more challenging and are left for future research.
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Appendix A. Proofs

Proof of Theorem 1. Let IA be the indicator function of set A. Because τ
′
n = nI{g(Xn)≥Cτ(n,Xn)}

+ τ
′
n+1 I{g(Xn)<Cτ(n,Xn)}, we have

E[γτn g(Xτn)|xn = x]

=γng(x)I{τn=n} + E[γτn+1 g(Xτn+1)|Xn = x]I{τn>n}

≤γng(x)I{τ′n=n} + E[γτn+1 g(Xτn+1)|Xn = x]I{τ′n>n}

=γng(x)I{τ′n=n} + E[γτn+1 g(Xτn+1)I{τ′n>n}|Xn = x]

≤γng(x)I{τ′n=n} + E
[
γn+1g(Xn+1)I{τ′n=n+1}

+ E[γτn+2 g(Xτn+2)I{τ′n>n+1}|Xn+1]|Xn = x
]

=γng(x)I{τ′=n} + E
[
γn+1g(Xn+1)I{τ′n=n+1}

+ γτn+2 g(Xτn+2)I{τ′n>n+1}|Xn = x
]
.

By induction, we have

Eγτ1 g(Xτ1)

≤ E

[
N−1

∑
n=1

γng(Xn)I{τ′n=n} + γN g(XN)I{τN>N−1}|X0 = x0

]

= E

[
N−1

∑
n=1

γng(Xn)I{τ′n=n} + γN g(XN)I{τ′N=N}|X0 = x0

]
= Eγτ

′
1 g(X

τ
′
1
).

The last step follows from (5).

Our aim is to derive a bound of Cτ J
and C∗. To this end, we define the operator Tτ by

(TτC)(n, x) = γE[g(Xn+1)I{τn+1=n+1} + C(n + 1, Xn+1)I{τn+1>n+1}|Xn = x].

It is easy to see that Tτ is a contraction operator with index γ, and hence has a unique
fixed point Cτ(n, x),

TτCτ = Cτ .

For j = 1, . . . , J, we define ε j = Ĉτ j − Tτ j
Ĉτ j

.
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Lemma A1. Let J be a positive integer. Then, for the sequence of functions Ĉτ j ≤ B, 0 ≤ j < J
and ε j the following inequalities hold∥∥∥C∗ − Cτ J

∥∥∥ ≤ c8

(
max
1≤j<J

∥∥ε j
∥∥+ γJ/2B

)
,

where c8 > 0 and 0 < γ < 1.

Proof. We interpret (n, Xn) as a random variable, where n is uniformly distributed on
0, . . . , N − 1. We have

∥∥∥C∗ − Cτ J
∥∥∥ =

(
1
N

N−1

∑
n=0

E
(

C∗(n, Xn)− Cτ J
(n, Xn)

)2
)1/2

=
∥∥∥C∗(n, Xn)− Cτ J

(n, Xn)
∥∥∥.

By Lemma 12 in [23], the conclusions follows.

Lemma A2. Assume that B < ∞ and τn, n = 1, . . . , N is arbitrary family of consistent stopping
times. (xi

0, . . . , xi
N), i = 1, . . . , M is a set of Monte Carlo paths of process Xn. Let f̂ be defined by

f̂ = argmin
f∈F

1
NM

M

∑
i=1

N−1

∑
n=0

(
f
(

n, xi
n

)
− γτi

n+1−ng(xi
τi

n+1
)

)2
,

and set Ĉτ = ψB f̂ . Then we have

EM
∥∥Ĉτ − TτĈτ

∥∥2

≤
c9(log M)2 sup0≤n≤N−1

(
supxM

1 ∈({n}×Rd)M log
(
N1

(
1

MB , ψBF , xM
1

)))
M

+ 2 inf
f∈F
‖ f − Cτ‖2,

where c9 > 0.

Proof. For any a, b ∈ R, we have (a + b)2 ≤ 2a2 + 2b2. Thus, we have∥∥Ĉτ(n, Xn)− TτĈτ(n, Xn)
∥∥2

2

=
∥∥∥Ĉτ(n, Xn)− γE[g(Xn+1)I{τn+1=n+1} + Ĉτ(n + 1, Xn+1)I{τn+1>n+1}|Xn]

∥∥∥2

2

=
∥∥∥Ĉτ(n, Xn)− γE[g(Xn+1)I{τn+1=n+1} + Cτ(n + 1, Xn+1)I{τn+1>n+1}|Xn]

+ γE[Cτ(n + 1, Xn+1)I{τn+1>n+1} − Ĉτ(n + 1, Xn+1)I{τn+1>n+1}|Xn]
∥∥∥2

2

≤ 2
∥∥∥Ĉτ(n, Xn)− γE[g(Xn+1)I{τn+1=n+1} + Cτ(n + 1, Xn+1)I{τn+1>n+1}|Xn]

∥∥∥2

2

+ 2
∥∥∥γE[Cτ(n + 1, Xn+1)I{τn+1>n+1} − Ĉτ(n + 1, Xn+1)I{τn+1>n+1}|Xn]

∥∥∥2

2

≤ 2
∥∥Ĉτ(n, Xn)− Cτ(n, Xn)

∥∥2
2 + 2

∥∥Cτ(n + 1, Xn+1)− Ĉτ(n + 1, Xn+1)
∥∥2

2,

the last inequality follows from Jensen’s inequality. Thus by induction, we have

∥∥Ĉτ − TτĈτ
∥∥2

=
1
N

N−1

∑
n=0

∥∥Ĉτ(n, Xn)− TτĈτ(n, Xn)
∥∥2

2
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≤ 4
N

N−1

∑
n=0

∥∥Ĉτ(n, Xn)− Cτ(n, Xn)
∥∥2

2

=4
∥∥Ĉτ − Cτ

∥∥2.

Since Cτ(n, x) = E
[
γτn+1−ng

(
Xτn+1

)
|Xn = x

]
, we have the following error decomposition∥∥Ĉτ − Cτ

∥∥2

=
1
N

N−1

∑
n=0

[
E
∣∣Ĉτ(n, Xn)− γτn+1−ng

(
Xτn+1

)∣∣2
− E

∣∣Cτ(n, Xn)− γτn+1−ng
(
Xτn+1

)∣∣2
− 2

M

M

∑
i=1

(∣∣∣∣Ĉτ(n, xi
n)− γτi

n+1−ng
(

xi
τi

n+1

)∣∣∣∣2
−
∣∣∣∣Cτ(n, xi

n)− γτi
n+1−ng

(
xi

τi
n+1

)∣∣∣∣2
)]

(A1)

+
2

NM

N−1

∑
n=0

M

∑
i=1

[∣∣∣∣Ĉτ(n, xi
n)− γτi

n+1−ng
(

xi
τi

n+1

)∣∣∣∣2
−
∣∣∣∣Cτ(n, xi

n)− γτi
n+1−ng

(
xi

τi
n+1

)∣∣∣∣2
]

.

Using Lemma 1 in [35], the first term in (A1) is bounded by

c10(log M)2 sup0≤n≤N−1
(

supxM
1 ∈({n}×Rd)M log

(
N1

(
1

MB , ψBF , xM
1

)))
M

, (A2)

for some c10 > 0. Because |ψBa− b| ≤ |a− b| holds for |b| ≤ B, the second term in (A1) is
bounded by

inf
f∈F

2
NM

N−1

∑
n=0

M

∑
i=1

(∣∣∣∣ f (n, xi
n)− γτi

n+1−ng
(

xi
τi

n+1

)∣∣∣∣2 − ∣∣∣∣Cτ(n, xi
n)− γτi

n+1−ng
(

xi
τi

n+1

)∣∣∣∣2
)

.

If we choose an f̃ ∈ F such that

∥∥ f̃ − Cτ
∥∥2 ≤ inf

f∈F
‖ f − Cτ‖2 +

1
M

,

we can conclude

EM

[
inf
f∈F

1
NM

N−1

∑
n=0

M

∑
i=1

∣∣∣∣ f (n, xi
n)− γτi

n+1−ng
(

xi
τi

n+1

)∣∣∣∣2]

− EM

[
1

NM

N−1

∑
n=0

M

∑
i=1

∣∣∣∣Cτ(n, xi
n)− γτi

n+1−ng
(

xi
τi

n+1

)∣∣∣∣2]

≤EM

[
1

NM

N−1

∑
n=0

M

∑
i=1

∣∣∣∣ f̃ (n, xi
n)− γτi

n+1−ng
(

xi
τi

n+1

)∣∣∣∣2]

− EM

[
1

NM

N−1

∑
n=0

M

∑
i=1

∣∣∣∣Cτ(n, xi
n)− γτi

n+1−ng
(

xi
τi

n+1

)∣∣∣∣2]

=EM

[
1
N

N−1

∑
n=0

∣∣ f̃ (n, Xn)− γτn+1−ng
(
Xτn+1

)∣∣2]
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− EM

[
1
N

N−1

∑
n=0

∣∣Cτ(n, Xn)− γτn+1−ng
(
Xτn+1

)∣∣2]

=
∥∥ f̃ − Cτ

∥∥2
+ EM

[
1
N

N−1

∑
n=0

∣∣Cτ(n, Xn)− γτn+1−ng
(
Xτn+1

)∣∣2]

− EM

[
1
N

N−1

∑
n=0

∣∣Cτ(n, Xn)− γτn+1−ng
(
Xτn+1

)∣∣2]
≤ inf

f∈F
‖ f − Cτ‖2 +

1
M

. (A3)

The conclusion follows from (A2) and (A3).

Proof of Theorem 2. Fix M, J > 0. Lemma A1 gives

EM

∥∥∥C∗ − Cτ J
∥∥∥ ≤ c11

(
EM max

0≤j<J

∥∥ε j
∥∥+ γJ/2B

)
, (A4)

c11 > 0. For any a, b > 0, we have
√

a + b ≤
√

a +
√

b. By Jensen’s inequality and
Lemma A2, we conclude that for any fixed integer 0 ≤ j < J,

EM
∥∥ε j
∥∥ ≤(EM

∥∥ε j
∥∥2
) 1

2

≤
c12 log M sup0≤n≤N−1

(
supxM

1 ∈({n}×Rd)M log1/2
(
N1

(
1

MB , ψBF , xM
1

)))
M1/2

+ c13 inf
f∈F
‖ f − Cτ‖,

for c12 > 0, c13 > 0. Combining this with (A4), we get

EM

∥∥∥C∗(n, Xn)− Cτ J
(n, Xn)

∥∥∥
≤

c1 log M sup0≤n≤N−1
(

supxM
1 ∈({n}×Rd)M log1/2

(
N1

(
1

MB , ψBF , xM
1

)))
M1/2

+ c2 sup
f ′∈F

inf
f∈F

∥∥∥∥ f − Cτ( f
′
)

∥∥∥∥+ c3γJ/2B.

Proof of Corollary 1. By dynamic programming principle, we have

V0 = C∗(0, x0).

By the definition, we have
V̄0 = Cτ J

(0, x0).
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We have the following error bound,

EM|V0 − V̄0|

= EM

∣∣∣C∗(0, x0)− Cτ J
(0, x0)

∣∣∣
≤ c14EM

∥∥∥C∗ − Cτ J
∥∥∥

≤
c5 log M sup0≤n≤N−1

(
supxM

1 ∈({n}×Rd)M log1/2
(
N1

(
1

MB , ψBF , xM
1

)))
M1/2

+ c6 sup
f ′∈F

inf
f∈F

∥∥∥∥ f − Cτ( f
′
)

∥∥∥∥+ c7γJ/2B,

where c14 > 0 and 0 < γ < 1.
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