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Abstract — An inverse iterative algorithm for microwave 
imaging based on moment method solution is presented here. 
A modified Gauss-Newton method has been depicted here to 
address the nonlinear ill-posed problem. The stabilization 
term consists of a combination of three weighted discrete 
derivative operators instead of an Identity matrix as in the 
Levenberg-Marquardt method based algorithm developed by 
us. The present algorithm shows a marked improvement over 
the previous one in the quality of the reconstructed images 
from synthetic data under noisy condition.  
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I. INTRODUCTION 

Microwave tomography techniques for biomedical ap-
plications have gained much interest during the last two 
decades. Immense research is being carried out to qualita-
tively reconstruct the complex permittivity distribution of 
the biological media.  

Though diffraction tomography has fast numerical algo-
rithm, yet it is marred in strongly inhomogeneous media 
where Born and Rytov approximations are not valid [1]-[3]. 
The other methods [4]-[8] based on moment method solu-
tions, are being explored rigorously, but the stability de-
pends on the measurement accuracy due to ill-conditioning 
of the matrix. 

Apart from our first generation algorithms [9] – [10], we 
had proposed an algorithm [11], which reconstructed the 
image without any misfit under noise-free environment. 
However, in noisy condition, the quality of the recon-
structed image was rather poor which has been improved 
by our next algorithm [12]. In this paper, another iterative 
algorithm based on modified Gauss-Newton method has 
been proposed which gives a much better result than the 
previous algorithms under noisy condition. 

II. FORWARD PROBLEM 

The structure of the forward problem is same as that of 
our previous works. Here, we have considered a cylindrical 

object of arbitrary cross section characterized by a complex 
permittivity distribution ε(x,y). The object is illuminated by 
an electromagnetic wave radiated from an open-ended 
waveguide for which the incident electric field Einc is paral-
lel to the axis of the cylinder. 

Let E represents the total electric field and Es represents 
the scattered field which is generated by the equivalent 
electric current radiating in free space so that 

 

E  = E inc  + E s            (1) 

The total electric field can be calculated with an integral 
representation 

 

E ( )yx, = E inc ( )yx, + ∫∫
s

sJ ( )yx, ( )yxyxG ′′,;,

ydxd ′′            (2) 

where the Green’s function can be given by 

( )yxyxG ′′,;, =-
4
j 2

0H ( )22 )()( yyxxk ′−+′−  

               (3) 
Here ( yx, ) and ( ',' yx ) are the observation and source 

points respectively. 
The solution of the forward are carried out by moment 

method using pulse-basis function and point matching 
technique [13]. The synthetic data at the receivers is then 
contaminated with white Gaussian noise with SNR 30 dB 
as our main objective is to reconstruct the numerical model 
under noisy conditions. 

III. INVERSE PROBLEM 

The aim of the inverse problem is to find a stable solu-
tion for permittivity distribution *ε  which minimizes the 
squared error output at the receivers: 

2)()( eE −=Φ εε         (4) 
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where nCe∈ , the n electric fields we measure at re-
ceiver points, nm CCE ⎯→⎯: , a function mapping the 
complex permittivity distribution with m degrees of free-
dom into a set of n approximate electric field observations, 
and also mC∈ε , the complex permittivity distributions 
with m degrees of freedom. 

For the minimization of (4), first we compute the Gauss-
Newton direction 

 

( )( kk Eh ε′−= † ( ) ) 1−ε′ kE ( )( kE ε′ †

( )( ) ]eE k −ε′  
 
where ( )kE ε′ is the Jacobian matrix evaluated at kε , † 

denotes the conjugate transpose.  
Due to the inherent instability of ill-poised problems, an 

iterative method has to be stopped properly to ensure the 
stability of the iterates. The Gauss-Newton method uses the 
stabilization term 

 

( )( kE ε † ( ) ) 1−λ+ε′ LLE T
kk ( ) ]ak

T
k LL εελ −  

 
leading to the solution 
 

( )( kk Eh ε′−= † ( ) ) 1−λ+ε′ LLE T
kk ( )[ kE ε′ †

( )( ) ( ) ]ak
T

kk LLeE εελε −+−′
      (5) 

 
where kλ  is a monotonically decreasing regularization 

parameter and aε  is the assumed permittivity distribution 
at the start of the iteration. L is some regularization matrix 
and is chosen as a discrete approximation of a derivative 
operator. It is determined by combining several derivative 
orders (Sobolev norm) and by Cholesky factorization [14] 
having the form  

∑
=

=
2

0k
k

T
kk

T LLwLL  

where 0≥kw  are some weighting factors such that 

∑
=

=
2

0
1

k
kw  

The weighting factors are chosen accordance to the pe-
culiarities of the solution. 

Instead of conventional iterative procedure by making  

kkkk ha+=+ εε 1  

where ak is the positive step length, we proposed a modi-
fied iterative approach. The algorithm leads to an iterative 
procedure where permittivity distribution at iteration k+1 
can be given by  

 

kkkk ha+Δ=Δ + εε 1         (6) 
and 

11 ++ Δ+= kkk εεε         (7) 

where 1+εk  is the permittivity distribution at the k+1th 
iteration. 

The iteration is stopped according to the discrepancy 
principle. 

IV. NUMERICAL MODEL 

The theoretical model used to test our algorithm is 
shown in figure1  

 

Fig. 1 Theoretical Model 

It is a high contrast square biological object 9.6 cm ×  
9.6 cm consisting of muscle and bone having complex 
dielectric constants 50-j23 and 8-j1.2 respectively. The 
object is surrounded by saline water having complex di-
electric constant 76-j40. 

The object is illuminated with TE fields radiating from 
an open ended dielectric filled wave guide having sinusoi-
dal aperture field distribution at a frequency of 1 GHz. The 
transmitter is moved along four mutually orthogonal direc-
tions. For each of the transmitter positions along a particu-
lar transmitting plane, the received fields in the other three 
orthogonal planes were measured theoretically. The rectan-
gular model together with saline water region is divided 
into 324 equal square cells 0.6 cm×  0.6 cm. The dimen-
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sions of the bone regions are equal and are given by 1.8 cm 
×  1.2 cm. During the iterative reconstruction, the complex 
permittivity values of the cells filled up with saline water 
were assumed to be known, thus rendering the problem of 
estimating the complex dielectric constants of the remain-
ing 256 cells.  

V. RESULTS AND DISCUSSION 

To apply the reconstruction algorithm, it was assumed 
that the biological medium is filled up with muscle only i.e. 
it was assumed to be homogeneous one having complex 
dielectric constant 50 – j23. The received fields at different 
receiver locations were computed for each transmitter posi-
tion. 

The algorithm applied here is as follows: 
1. The initial values of Φ  and hk are computed from 

(4) and (5) considering the initial kλ  to be 
0.00001. 

2. Equation (6) and (7) are solved forε and 1+Φ k  is 
evaluated. ak has been chosen as 1. 

3. If kk Φ>Φ +1 , 10*λλ ← and the control is 
transferred to 2. 

4. If kk Φ<Φ +1 ,then 10/λλ ← , the total solu-
tion is updated εεε Δ+← and the control is 
transferred to 2. 

 

 
 

Fig. 2 Numerical model in terms of (a) real components  
and (b) imaginary components of the permittivity distribution 

 

Fig. 3(a) Reconstructed model (under noisy condition)  
with Levenberg-Merquardt regularization technique 

 

Fig. 3 (b) Reconstructed models (under noisy condition)  
with Modified Gauss-Newton technique 

The only priori information we have used in our algo-
rithm is that the real part of the complex dielectric constant 
can not be negative and the imaginary part can not be posi-
tive. Figure 2 shows the numerical model in terms of the 
real and imaginary parts. Figure 3 shows the reconstructed 
model with different algorithms. Figure 3(a) shows the 
reconstructed model (under noisy condition) with our pre-
vious algorithm. Figure 3(b) represents the reconstructed 
image (under the same noisy condition as the earlier) based 
on our present algorithm.  

The plot of squared error vs. number of iterations is 
shown in Figure 4. 

 

Fig. 4 Plot of squared error vs. number of iterations 

We define the Mean Estimation Error as Mean 

Mean Estimation Error  = 1001
*

*

×
−∑
i

ii

N ε
εε

     (7) 

where N is the number of cells, iε  is the estimated per-

mittivity of the ith cell and *
iε is the true permittivity of the 

ith cell. The relative errors in the reconstructed image de-
crease from 39 to 14% for the real part and 135 to 98% 

(a) (b) 
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for the imaginary part of the complex dielectric constant as 
compared with the image shown in Fig. 3. 

The result shows that our present iterative algorithm 
provides us a far better reconstructed image than what we 
have obtained from our previous algorithm.  
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