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AN ITERATIVE ALGORITHM FOR THE LEAST SQUARES

SOLUTIONS OF MATRIX EQUATIONS OVER SYMMETRIC

ARROWHEAD MATRICES

Fatemeh Panjeh Ali Beik and Davod Khojasteh Salkuyeh

Abstract. This paper concerns with exploiting an oblique projection
technique to solve a general class of large and sparse least squares prob-
lem over symmetric arrowhead matrices. As a matter of fact, we de-
velop the conjugate gradient least squares (CGLS) algorithm to obtain
the minimum norm symmetric arrowhead least squares solution of the
general coupled matrix equations. Furthermore, an approach is offered
for computing the optimal approximate symmetric arrowhead solution of
the mentioned least squares problem corresponding to a given arbitrary
matrix group. In addition, the minimization property of the proposed
algorithm is established by utilizing the feature of approximate solutions
derived by the projection method. Finally, some numerical experiments
are examined which reveal the applicability and feasibility of the handled
algorithm.

1. Introduction

First we introduce the ensuing symbols and notations which are exploited
during this paper. The symbols tr(A), AT , Range(A) and Null(A) are utilized
to denote the trace, the transpose, the column space and the null space of the
matrix A, respectively. The notation Rm×n stands for the set of all m × n
real matrices. For a given matrix A, the symbol A+ denotes the well-known
Moore-Penrose inverse of A. A matrix A ∈ Rn×n is called a symmetric (skew-
symmetric) matrix if A = AT (A = −AT ) and the set of all n × n symmet-
ric (skew-symmetric) matrices is denoted by SR

n×n (SSRn×n). The notation
I[1, p] refers to the set of all integer numbers between 1 and p. Assume that
X = (X1, . . . , Xq) where Xj ∈ Rmj×nj for j ∈ I[1, q], we call X as a matrix

group.
Linear matrix equations have a cardinal application in numerous fields, such

as control theory, system theory, stability theory and some other areas of pure
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and applied mathematics. Hitherto, several types of iterative algorithms to
solve various kinds of matrix equations have been handled in the literature; for
further details see [1, 2, 10, 11, 12, 15, 18, 19, 26, 29, 30, 34, 35, 37, 38, 43]
and the references therein. In addition the explicit forms of the solutions of
some kinds of matrix equations have been derived. For instance, Jiang and
Wei [20] have studied the solutions of complex matrix equations X −AXB =
C and X − AX̄B = C and obtained explicit solutions of the equations by
the method of characteristic polynomial and a method of real representation
of a complex matrix, respectively. In [39], Wu et al. have propounded an
unified approach to resolve a general class of Sylvester-polynomial-conjugate
matrix equations which include the Yakubovich-conjugate matrix equation as a
special case. Several explicit parametric solutions to the generalized Sylvester-
conjugate matrix equation have been presented in [40].

The idea of conjugate gradient (CG) method [33] has been developed for
constructing iterative algorithms to compute the solutions of different kinds
of linear matrix equations over generalized reflexive and anti-reflexive, gen-
eralized bisymmetric, generalized centro-symmetric, mirror-symmetric, skew-
symmetric and (P,Q)-reflexive matrices, for more details see [2, 7, 8, 9, 16, 22,
29, 38] and the references therein. For instance, Peng et al. [28] have proposed
an iterative algorithm for finding the bisymmetric solutions of matrix equation

A1X1B1 +A2X2B2 + · · ·+AlXlBl = C.

Recently, the conjugate gradient least squares (CGLS) [33] method has been
extended to present iterative algorithms for finding least squares solutions of
various kinds of (coupled) matrix equations. For example, Peng [26] has offered
an algorithm for minimizing

(1) ‖A1X1B1 +A2X2B2 + · · ·+AlXlBl − C‖
F
,

where ‖·‖
F
is the Frobenius norm and Xj (j ∈ I[1, l]) is a reflexive matrix with

a specified central principal submatrix. In [31], Peng and Zhou have offered an
algorithm to minimize (1) where Xj (j ∈ I[1, l]) is bisymmetric with a specified
central principal. In an alternative work, Peng and Xin [30] have extended the
algorithm in [26, 31] to propose an iterative method for solving the general
coupled matrix equations

l
∑

j=1

AijXjBij = Ci, i = 1, 2, . . . , t,

where Xj ∈ R
nj×nj (j ∈ I[1, l]) is a reflexive matrix with a specified central

principal submatrix. In [15], Hajarian has developed the CGLS method to
determine the minimum norm solutions of the following general least squares
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In this paper we aim to develop the CGLS method for solving the least
squares problem for a class of coupled matrix equations over symmetric ar-
rowhead matrices. The inspiration of presenting the current work is briefly
expounded in the second section. Here we would like to comment that the
topic of constructing iterative algorithms to find the symmetric arrowhead so-
lutions of coupled matrix equation has not been investigated so far. Beside the
earlier refereed comment, some of our utilized manners for analyzing the prop-
erties of the CGLS method are different to those employed in [15, 30, 31]. More
precisely, the applied strategy for demonstrating the minimization property of
the proposed algorithm.

Before ending the present section, we recollect some definitions and proper-
ties which are used throughout this paper. The inner product of X,Y ∈ Rm×n

is defined by 〈X,Y 〉F = tr(Y TX). The induced norm is the well-known Frobe-

nius norm, i.e., the norm of Y ∈ Rm×p is given by ‖Y ‖
F
=
√

tr(Y TY ). It is

natural to expound the inner product of the matrix groups X = (X1, . . . , Xq)
and Y = (Y1, . . . , Yq) by

〈X,Y 〉 = 〈X1, Y1〉
F
+ 〈X2, Y2〉

F
+ · · ·+ 〈Xq, Yq〉

F
,

where Xj , Yj ∈ Rnj×mj for j ∈ I[1, q]. Therefore we may define the norm of
the matrix group X = (X1, . . . , Xq) as follows:

‖X‖
2
= ‖X

1
‖
2

F
+ ‖X

2
‖
2

F
+ · · ·+

∥

∥X
q

∥

∥

2

F
,

where Xj ∈ Rnj×mj for j ∈ I[1, q].
Suppose that A = [aij ]m×s and B = [bij ]n×q are real matrices, the Kronecker

product of the matricesA andB is defined as themn×sq matrixA⊗B = [aijB].
The “vec” operator transmutes a matrix A of size m× s to a vector a = vec(A)
of size ms× 1 via stacking the columns of A. The following useful equality can
be verified easily (See [3])

vec(AXB) = (BT ⊗A)vec(X).

Definition 1.1 ([23]). A given matrix A ∈ Rn×n is called a symmetric arrow-
head matrix if it has the following form:

A =















a1 b1 b2 · · · bn−1

b1 a2 0 · · · 0
b2 0 a3 · · · 0
...

...
...

. . .
...

bn−1 0 0 · · · an















.
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In practice arrowhead matrices occur in numerous areas, see [14, 24, 42].
For instance, when the Lanczos method is exploited for solving the eigenvalue
problem for large sparse matrices [25]. In addition, the eigenstructure prob-
lems of arrowhead matrices emerge from applications in molecular physics [23].
In [21], it is pointed that the symmetric arrowhead matrices can denote the
parameter matrices of the control equations of nonlinear control systems.

The set of all n×n symmetric arrowheadmatrices is represented by SAR
n×n.

The matrix group X = (X1, X2, . . . , Xq) is said to be a symmetric arrowhead

matrix group if the matrices X1, X2, . . . , Xq are symmetric arrowhead matrices.
The outline of this paper is organized as follows. In the next section we

momentarily recount our goal for presenting the current work and state two
main problems which this paper is concerned with. In Section 3, we establish
some useful theoretical results which capable us to analyze the properties of
our proposed algorithm. Section 4 is devoted to elaborating an algorithm for
solving the mentioned problems and investigating its convergence properties.
Numerical experiments are reported to illustrate the effectively and applica-
bility of the propounded algorithm in Section 5. Finally the paper is finished
with a brief conclusion in Section 6.

2. Motivation and main contribution

In [5, 27], a specific inverse eigenvalue problem has been studied which con-
sists of constructing the symmetric arrowhead matrix from spectral data. The
generalized inverse eigenvalue problem for symmetric arrowhead matrices con-
sists of determining nontrivial symmetric arrowhead matrices A and B such
that

(2) AX = ΛBX,

where X and the diagonal matrix Λ are known such that the columns of X
are given eigenvectors and the diagonal elements of Λ are the given associated
eigenvalues. In [41], an approach has been offered to solve the generalized
inverse eigenvalue problem (2). Moreover, the author has calculated the nearest

solution of (2) to an arbitrary given symmetric arrowhead matrices Ã and B̃.
Nevertheless, it can be easily checked out that the proposed manner has high
computational costs.

As seen (2) is a linear matrix equation and it can be a inspiration to in-
vestigate about the symmetric arrowhead solutions of matrix equations. For
instance, recently, Li et al. [21] have derived the general expression of the least
squares solution of the matrix equation AXB + CY D = E with the least
norm for symmetric arrowhead matrices. In fact the authors has considered
the following problem.

Problem 2.1. Given A ∈ Rm×n, B ∈ Rn×s, C ∈ Rm×k,D ∈ Rk×s, E ∈ Rm×s,
let

S̄E = {[X,Y ] | X ∈ SAR
n×n, Y ∈ SAR

k×k, ‖AXB + CY D − E‖ = min}.
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Find out [X̂, Ŷ ] ∈ S̄E such that

‖X̂‖2
F
+ ‖Ŷ ‖2

F
= min

[X,Y ]∈S̄E

(‖X‖2
F
+ ‖Y ‖2

F
).

In [21], the Moore-Penrose inverse and the Kronecker product have been
exploited to obtain the next algorithm for solving Problem 2.1. Note that in
the following algorithm, the matrix Hl (l = n, k) has the following structure

Hl =



















e1 e2 e3 · · · el−1 el 0 0 · · · 0 0
0 e1 0 · · · 0 0 e2 0 · · · 0 0
0 0 e1 · · · 0 0 0 e3 · · · 0 0
...

...
...

...
...

...
...

...
...

0 0 0 · · · e1 0 0 0 · · · el−1 0
0 0 0 · · · 0 e1 0 0 · · · 0 el



















,

where ei is a unite vector with the ith entry is one and the others are zero.

Algorithm 1 (Li et al. [21]).
Step 1. Input A ∈ Rm×n, B ∈ Rn×s, C ∈ Rm×k, D ∈ Rk×s, E ∈ Rm×s and
Hn, Hk.
Step 2. Compute P1 = (BT ⊗A)Hn, P2 = (DT ⊗ C)Hk.
Step 3. Compute R, G, Z, K11, K12, K22 as follows:

R = (I − P1P
+
1 )P2

G = R+ + (I −R+R)ZPT
2 (P+

1 )TP+
1 (I − P2R

+),

Z = (I + (I −R+R)PT
2 (P+

1 )TP+
1 P2(I −R+R))−1,

K11 = I − P+
1 P1 + P+

1 P2Z(I −R+R)PT
2 (P+

1 )T ,

K12 = −P+
1 P2(I −R+R)Z,

K22 = (I −R+R)Z.

Step 4. If the equality (P1P
+
1 + RR+)vec(E) = vec(E) holds, then compute

[X̂, Ŷ ] such that [vec(X̂)T , vec(Ŷ )T ]T is equal to the following vector
(

I −H

[

K11 K12

KT
12 K22

] [

H

[

K11 K12

KT
12 K22

]]+
)

H

[

P+
1 − P+

1 P2G
G

]

vec(E),

where H = diag(Hn, Hk).

There are mainly two reasons which motivate us to develop an efficient
iterative algorithm to solve linear matrix equations over symmetric arrowhead
matrices. The first is that Algorithm 1 is too expensive in practice due to
exploiting the Kronecker product and requiring the computation of the Moore-
Penrose inverses. On the other hand, to the best of our knowledge, the subject
of applying of an iterative method to resolve coupled linear matrix equations
over symmetric arrowhead matrices has not been investigated so far.

In order to derive the algorithm for more general cases, in this paper we
consider the following two main problems.
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Problem 2.2. Assume that the matrices Aijℓ ∈ Rri×nj , Bijℓ ∈ Rri×nj and
Ci ∈ Rri×si are given for i ∈ I[1, N ], j ∈ I[1, q] and ℓ ∈ I[1, p]. Moreover,
suppose that
(3)

SE={(X1, . . . , Xq) | Xj ∈ SAR
nj×nj ,

N
∑

i=1

‖

p
∑

ℓ=1

q
∑

j=1

AijℓXjBijℓ − Ci‖
2
F
= min}.

Find the least norm symmetric arrowhead solution group X̂ = (X̂1, . . . , X̂q) ∈
SE such that

‖X̂‖ = min
X∈SE

‖X‖.

Problem 2.3. Assume that SE is defined as (3). For a given arbitrary matrix

group X̃ = (X̃1, . . . , X̃q). Find X∗ = (X∗
1 , . . . , X

∗
q ) ∈ SE such that

‖X∗ − X̃‖ = min
X∈SE

‖X − X̃‖.

For simplicity, we exploit the following linear operator

M : Rn1×n1 × · · · × R
nq×nq → R

r1×s1 × · · · × R
rN×sN ,

X = (X1, . . . , Xq) 7→ M(X) := (M1(X), . . . ,MN(X)),

where

Mi(X) =

p
∑

ℓ=1

q
∑

j=1

AijℓXjBijℓ, i = 1, 2, . . . , N.

In fact we mainly focus on determining the minimum norm symmetric arrow-
head solution of the following general least squares problem

(4) ‖M(X)− C‖ = min,

where C = (C1, . . . , CN ).

3. Preliminary theoretical results

The current section deals with proving some useful theoretical results which
capable us to construct and analyze an algorithm for solving Problems 2.2 and
2.3. Meanwhile, some notations are introduced.

Let us consider the linear subspace CSAR
n×n on Rn×n defined as follows:

CSAR
n×n =































X |X =

















0 0 0 · · · 0
0 0 a23 · · · a2n

0 a32 0
. . .

...
...

...
. . .

. . . an−1n

0 an2 · · · ann−1 0

















and X = XT































.

Now we present an important lemma which demonstrates that R
n×n can be

written as a direct sum of its three subspaces, i.e., SARn×n, CSARn×n and
SSR

n×n.
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Lemma 3.1. Assume that the linear subspaces SAR
n×n, CSAR

n×n and

SSR
n×n are defined as before. Then the following statement holds:

R
n×n = SAR

n×n ⊕ CSAR
n×n ⊕ SSR

n×n.

Here ⊕ refers to the orthogonal direct sum with respect to 〈·, ·〉
F
.

Proof. It is well-known that

R
n×n = SR

n×n ⊕ SSR
n×n.

That is, for an arbitrary Z ∈ Rn×n we have

Z = Z1 + Z2,

where Z1 = (Z + ZT )/2, Z2 = (Z − ZT )/2 and 〈Z1, Z2〉
F
= 0. Evidently the

symmetric matrix Z1 = [Z
(1)
ij ] be written as follows:

Z1 = Z ′
1 + Z ′

2,

where Z ′
1 ∈ SAR

n×n and Z ′
2 ∈ CSAR

n×n are respectively defined by

Z ′
1 =

















Z
(1)
11 Z

(1)
12 Z

(1)
13 · · · Z

(1)
1n

Z
(1)
21 Z

(1)
22 0 · · · 0

Z
(1)
31 0 Z

(1)
33 · · · 0

...
...

...
. . .

...

Z
(1)
n1 0 0 · · · Z

(1)
nn

















,

and Z ′
2 = Z1 − Z ′

1. It is not difficult to verify that

〈Z ′
1, Z

′
2〉F = tr

(

(Z ′
1)

TZ ′
2

)

= 0.

From the above results, it can be deduced that SRn×n = SAR
n×n⊕CSAR

n×n.
On the other hand, the matrix Z ′

1 is symmetric and Z2 is a skew-symmetric
matrix which imply that

〈Z ′
1, Z2〉

F
= tr

(

ZT
2 Z

′
1

)

= −tr (Z2Z
′
1) = −tr (Z ′

1Z2)

= −tr
(

(Z ′
1)

TZ2

)

= −〈Z2, Z
′
1〉F = −〈Z ′

1, Z2〉
F
.

Therefore 〈Z ′
1, Z2〉

F
= 0. As Z ′

2 is a symmetric matrix, we may show that

〈Z ′
2, Z2〉

F
= 0 in a similar manner. Now the result can be concluded immedi-

ately. �

In what follows we consider the linear operator A expounded by

A : Rn1×n1 × · · · × R
nq×nq → R

n1×n1 × · · · × R
nq×nq ,

X = (X1, . . . , Xq) 7→ A(X) :=

(

A1 +AT
1

2
, . . . ,

Aq +AT
q

2

)

,
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where Al corresponding to Xl = [X
(l)
ij ]nj×nj

is elucidated by

Al =

















X
(l)
11 X

(l)
12 X

(l)
13 · · · X

(l)
1n

X
(l)
21 X

(l)
22 0 · · · 0

X
(l)
31 0 X

(l)
33 · · · 0

...
...

...
. . .

...

X
(l)
n1 0 0 · · · X

(l)
nn

















, l ∈ I[1, q].

Now we establish the following proposition which provides the effective tools
to scrutinize the properties of the sequence of approximate solutions produced
by the presented main algorithm.

Proposition 3.2. Suppose that the linear operators A and M are defined

as before. Let P = (P1, . . . , Pq) be an arbitrary symmetric arrowhead matrix

group. Moreover assume that the linear operator M∗ is given by

M∗ : Rr1×s1 × · · · × R
rN×sN → R

n1×n1 × · · · × R
nq×nq ,

Y = (Y1, . . . , YN ) 7→ M∗(Y ) := (M∗
1 (Y ), . . . ,M∗

q (Y )),

where

M∗
j (Y ) =

p
∑

ℓ=1

N
∑

i=1

AT
ijℓYiB

T
ijℓ, j ∈ I[1, q].

Then for arbitrary given matrix groups X = (X1, . . . , Xq) and Y = (Y1, . . . , Yp),
the following statements hold

〈M(X), Y 〉 = 〈X,M∗(Y )〉 ,(5)

〈P,M∗(Y )〉 = 〈P,A(M∗(Y ))〉 ,(6)

〈M(P ), Y 〉 = 〈P,A(M∗(Y ))〉 .(7)

Proof. It is known that for given arbitrary matrices A,B, we have tr(AB) =
tr(ATBT ) = tr(BA). Now straightforward computations turn out that

〈M(X), Y 〉 =

N
∑

i=1

tr



Y T
i





p
∑

ℓ=1

q
∑

j=1

AijℓXjBijℓ









= tr





N
∑

i=1

p
∑

ℓ=1

q
∑

j=1

Y T
i (AijℓXjBijℓ)





=

N
∑

i=1

p
∑

ℓ=1

q
∑

j=1

tr
(

YiB
T
ijℓX

T
j A

T
ijℓ

)

=
N
∑

i=1

p
∑

ℓ=1

q
∑

j=1

tr
(

AT
ijℓYiB

T
ijℓX

T
j

)

,
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=

q
∑

j=1

tr

(

XT
j

(

N
∑

i=1

p
∑

ℓ=1

AT
ijℓYiB

T
ijℓ

))

= 〈X,M∗(Y )〉 .

The relation (6) can be concluded from Lemma 3.1. The last equality follows
from Eqs. (5) and (6). �

The following lemma known as the Projection Theorem which is useful for
obtaining the next results in this paper, the proof of theorem can be found in
[36].

Lemma 3.3. Let W be a finite dimensional space, U be a subspace of W, and

U⊥ be the orthogonal complement subspace of U. For a given w ∈ W, always,

there exists u0 ∈ U such that ‖w−u0‖ ≤ ‖w−u‖ for any u ∈ U. More precisely,

u0 ∈ U is the unique minimization vector in U if and only if (w − u0) ⊥ U.

Here ‖ · ‖ is the norm corresponding to the inner product defined on W.

The following proposition is a direct conclusion of Proposition 3.2 and Lem-
ma 3.3.

Proposition 3.4. The symmetric arrowhead matrix group X̂ = (X̂1, . . . , X̂q)
is the solution of Problem 2.2 if and only if

〈

M∗(C −M(X̂)), X
〉

= 0,

or equivalently,
〈

A(M∗(R̂)), X
〉

= 0,

where R̂ = C −M(X̂) and X = (X1, . . . , Xq) is an arbitrary given symmetric

arrowhead matrix group.

Proof. By Lemma 3.3, X̂ = (X̂1, . . . , X̂q) is the solution of Problem 2.2 if and
only if

C −M(X̂) ⊥ M(X)

for any symmetric arrowhead matrix group X = (X1, . . . , Xq), i.e.,

(8)
〈

C −M(X̂),M(X)
〉

= 0.

Now the results follow immediately from Proposition 3.2. �

The following remark of the above proposition provides a sufficient condition
for X̂ = (X̂1, . . . , X̂q) to be the solution of Problem 2.2.

Remark 3.5. Suppose that X̂ = (X̂1, . . . , X̂q) is a symmetric arrowhead matrix

group and R̂ = C −M(X̂) = (R̂1, . . . , R̂N ). If

(9) A(M∗(R̂)) = 0,

then Proposition 3.4 implies that X̂ is the solution of Problem 2.2.
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Proposition 3.6. Suppose that X̂ is the solution of Problem 2.2 and the set

SE is determined by (3). Then the following statements hold

(1) Assume that X̃ = X̂ + X̄ where X̄ is a given symmetric arrowhead

matrix group such that M(X̄) = 0. Then X̃ ∈ SE.

(2) Suppose that X̃ ∈ SE, then M(X̃−X̂) = 0, i.e., there exists a symmet-

ric arrowhead matrix group X̄ such that X̄ = X̃ − X̂ and M(X̄) = 0.

Proof. Suppose that X̄ is a given symmetric arrowhead matrix group such that
M(X̄) = 0. Let X̂ be the solution of Problem 2.2 and X̃ = X̂ + X̄ . Evidently,
〈

C −M(X̃), C −M(X̃)
〉

=
〈

C −M(X̂)−M(X̄), C −M(X̂)−M(X̄)
〉

=
〈

C −M(X̂), C −M(X̂)
〉

.

The preceding equality together with the fact that X̄ ∈ SAR
n×n reveal that

X̃ ∈ SE which proves the first part.
Now we establish the second part. Suppose that X̃ ∈ SE and without loss

of generality assume that X̃ 6= X̂ . As X̂, X̃ ∈ SE , we may conclude that

(10)
〈

C −M(X̃), C −M(X̃)
〉

=
〈

C −M(X̂), C −M(X̂)
〉

.

Note that with an analogous explanation for concluding (8), we may deduce
that

(11)
〈

C −M(X̂),M(X̃ − X̂)
〉

= 0.

By some easy computations, we derive that
〈

C −M(X̃), C −M(X̃)
〉

=
〈

C −M(X̂ − (X̃ − X̂)), C −M(X̂ − (X̃ − X̂))
〉

=
〈

C −M(X̂), C −M(X̂)
〉

−2
〈

C −M(X̂),M(X̃ − X̂)
〉

+
〈

M(X̃ − X̂),M(X̃ − X̂)
〉

.

In view of (10) and (11), the above relation implies that
〈

M(X̃ − X̂),M(X̃ − X̂)
〉

= 0,

which completes the proof. �

4. An algorithm and its analysis

The conjugate gradient least squares (CGLS) method is an efficient algo-
rithm for solving the large sparse least squares problem

(12) min
x∈Rn

‖b−Ax‖2,
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where ‖ · ‖2 is the well-known Euclidean vector norm, A ∈ Rm×n and b ∈ Rm

are known; for further details see [4, 33].
In this section we develop the CGLS method to construct an iterative algo-

rithm for solving Problems 2.2 and 2.3.

4.1. An iterative algorithm to resolve Problem 2.2

In the following, we present an extended form of the CGLS method for
finding the solution of the first problem.

Algorithm 2. An iterative algorithm for solving Problem 2.2

1. Choose an arbitrary symmetric arrowhead matrix group X(0) and a toler-
ance ǫ. (For simplicity we may set X(0) = 0.)
2. Set k = 0 and compute

• R(0) = C −M(X(0));
• P (0) = A(M∗(R(0));
• Q(0) = P (0).

3. If ‖P (k)‖ < ǫ or ‖R(k)‖ < ǫ, then stop else goto the next step.
4. Calculate

• X(k + 1) = X(k) + ‖P (k)‖2

‖M(Q(k))‖2Q(k);

• R(k + 1) = R(k)− ‖P (k)‖2

‖M(Q(k))‖2M(Q(k));

• P (k + 1) = A(M∗(R(k + 1)));

• Q(k + 1) = P (k + 1) + ‖P (k+1)‖2

‖P (k)‖2 Q(k);

• k := k + 1.

5. Goto Step 3.

Remark 4.1. We would like to point out here that

(1) Evidently at each iterate the matrix groups P (k) and Q(k) are symmet-
ric arrowhead matrix groups. Hence the approximate solution X(k) at
each iterate is a symmetric arrowhead matrix group.

(2) If R(k) = 0, then the kth approximate solution X(k) is the exact so-
lution of the coupled matrix equations M(X) = C over the symmetric
arrowhead matrices.

Theorem 4.2. Suppose that k steps of Algorithm 2 have been performed, i.e.,

P (l) 6= 0 and M(Q(l)) 6= 0 for l = 0, 1, . . . , k. The sequences P (l) and Q(l)
(l = 0, 1, . . . , k) produced by Algorithm 2 satisfy

(1) 〈P (i), P (j)〉 = 0,
(2) 〈M(Q(i)),M(Q(j))〉 = 0,
(3) 〈Q(i), P (j)〉 = 0,

for i, j = 0, 1, 2, . . . , k (i 6= j).

The proof of Theorem 4.2 is given in Appendix A. In the following remark,
we will discuss the assumption P (l) 6= 0 and M(Q(l)) 6= 0 (l = 0, 1, . . . , k) in
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the previous theorem. More precisely, we clarify that if there exists t such that
P (t) = 0 or M(Q(t)) = 0, then X(t) is the exact solution of Problem 2.2.

Remark 4.3. Suppose that t (t ≥ 1) steps of Algorithm 2 have been performed,
i.e., P (l) 6= 0 and M(Q(l)) 6= 0 for l = 0, 1, . . . , t− 1.

(1) Consider the case that P (t) = 0 but R(k) 6= 0. By Remark 3.5, P (t) =
0 implies that X(t) is the solution of Problem 2.2.

(2) Now let us consider the case that M(Q(t)) = 0. Note that Q(t) is a
symmetric arrowhead matrix group. Therefore, using Proposition 3.2
we deduce that

0 = 〈M(Q(t)), R(t)〉

= 〈Q(t),M∗(R(t))〉

= 〈Q(t), P (t)〉

=

〈

P (t) +
‖P (t)‖2

‖P (t− 1)‖2
Q(t− 1), P (t)

〉

= 〈P (t), P (t)〉+
‖P (t)‖2

‖P (t− 1)‖2
〈Q(t− 1), P (t)〉 .

Now Theorem 4.2 implies that 〈P (t), P (t)〉 = 0 which is equivalent to
say that P (t) = 0. That is M(Q(t)) = 0 indicates that X(t) is the
solution of Problem 2.2.

The following theorem turns out that the solution of Problem 2.2 can be
computed by Algorithm 2 within finite number of steps for any initial symmetric
arrowhead matrix group in the exact arithmetic.

Theorem 4.4. In the absence of roundoff errors, the solution of Problem 2.2

can be computed by Algorithm 2 within at most m + 1 iteration steps where

m = ν1 + · · · + νq and νj stands for the dimension of the linear subspace

SAR
nj×nj .

Proof. Presume that P (l) 6= 0 for l = 0, 1, . . . ,m − 1. Therefore, X(m) can
be obtained by Algorithm 2. Suppose that S denotes the matrix subspace
consists of all matrices of the form E = (E1, . . . , Eq) where Ei ∈ SAR

ni×ni for
i = 1, 2, . . . , q. As established by Theorem 4.2, we have

〈P (i), P (j)〉 = 0 for i, j = 0, 1, 2, . . . ,m− 1, (i 6= j),

which reveals that {P (0), P (1), . . . , P (m− 1)} is an orthogonal basis for S. It
is not difficult to see that P (m) = 0, hence X(m) is the solution of Problem
2.2. �

Consider the least squares problem (12). It is known that the solutions of the
least squares problem (12) are computed by x = A+b+Null(A) [3]. Hence, x∗ =
A+b gives the minimum norm solution. Invoking the fact that Range(A+) =
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Range(AT ), it is concluded that x∗ ∈ Range(AT ) has the smallest 2-norm
solution of the linear system Ax = b. On the other hand we have

‖C −M(X)‖2 =
N
∑

i=1

‖

p
∑

ℓ=1

q
∑

j=1

AijℓXjBijℓ − Ci‖
2
F

=

N
∑

i=1

‖

p
∑

ℓ=1

q
∑

j=1

(BT
ijℓ ⊗Aijℓ)vec(Xj)− vec(Ci)‖

2
2

= ‖Âx− ĉ‖2
2
,

where

Â =



















p
∑

ℓ=1

BT
11ℓ ⊗A11ℓ · · ·

p
∑

ℓ=1

BT
1qℓ ⊗A1qℓ

...
. . .

...
p
∑

ℓ=1

BT
N1ℓ ⊗AN1ℓ · · ·

p
∑

ℓ=1

BT
Nqℓ ⊗ANqℓ



















, x =







vec(X1)
...

vec(Xq)






,

and ĉ =







vec(C1)
...

vec(CN )






.

For an arbitrary matrix group W = [W1, . . . ,WN ], it is not difficult to see

that the matrix group vec(X̃) = vec(M∗(W )) belongs to Range(ÂT ). We can
deduce that if X(0) = A(M∗(W )), then the sequence of approximate solutions
produced by Algorithm 2 converges to the least norm solution of the following
the least squares problem

(13) min
X∈Rn1×n1×···×R

nq×nq

‖C −M(X)‖.

That is Algorithm 2 converges to the solution of Problem 2.2.

4.2. Minimization property of Algorithm 2

In order to demonstrate the minimization property of Algorithm 2, we need
to establish the following proposition.

Proposition 4.5. Suppose that k steps of Algorithm 2 have been performed,

i.e., P (l) 6= 0 and M(Q(l)) 6= 0 for l = 0, 1, . . . , k − 1. Then the kth residual

R(k) satisfies

(14) 〈R(k),M(Q(i))〉 = 0, i = 0, 1, . . . , k − 1.

Proof. It is known that Q(i) is a symmetric arrowhead matrix group for i =
0, 1, . . . , k − 1. Now by Proposition 3.2 and Theorem 4.2, it reveals that

〈R(k),M(Q(i))〉 = 〈M∗(R(k)), Q(i)〉 = 〈A(M∗(R(k))), Q(i)〉

= 〈P (k), Q(i)〉 = 0. �
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Assume that m steps of Algorithm 2 have been performed, i.e., P (l) 6= 0
and M(Q(l)) 6= 0 for l = 0, 1, . . . ,m− 1. Let us define the subspaces Km and
MKm as follows:

(15)
Km = span{Q(0), . . . , Q(m− 1)},

MKm = span{M(Q(0)), . . . ,M(Q(m− 1))}.

Now in view of Proposition 4.5, it reveals that Algorithm 2 is an oblique pro-
jection technique onto X(0)+Km (X(m) ∈ X(0)+Km) with the orthogonality
condition R(m) ⊥ MKm where R(m) = C −M(X(m)). The following theo-
rem shows that the residual matrices associated with the approximate solutions
produced by Algorithm 2 satisfy an optimality property.

Theorem 4.6 (The minimization property of Algorithm 2). Suppose that m
steps of Algorithm 2 have been performed, i.e., P (l) 6= 0 and M(Q(l)) 6= 0 for

l = 0, 1, . . . ,m−1. Moreover presume that X(0) is an arbitrary given symmetric

arrowhead matrix group. Presume that the subspaces Km and MKm are defined

by (15). Assume that P (m) 6= 0, then the m-th approximate solution obtained

by Algorithm 2 satisfies

‖C −M(X(m))‖ = min
X∈X(0)+Km

‖C −M(X)‖.

Proof. It is not difficult to see that X(m) ∈ X(0) + Km. Consequently, there

exist γ
(m)
0 , γ

(m)
1 , . . . , γ

(m)
m−1 such that

X(m) = X(0) +

m−1
∑

i=0

γ
(m)
i Q(i).

Suppose that X is an arbitrary member of X(0) + Km. That is there exist
γ0, γ1, . . . , γm−1 so that

X = X(0) +
m−1
∑

i=0

γiQ(i).

Assume that R(m) = C−M(X(m)) and R(X) = C−M(X), it is not onerous
to see that

R(X) = R(m) +

m−1
∑

i=0

(γ
(m)
i − γi)M(Q(i)).

Thus

〈R(X), R(X)〉 = 〈R(m), R(m)〉 − 2
m−1
∑

i=0

(γ
(m)
i − γi) 〈M(Q(i)), R(m)〉

+

〈

m−1
∑

i=0

(γ
(m)
i − γi)M(Q(i)),

m−1
∑

i=0

(γ
(m)
i − γi)M(Q(i))

〉

.
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In view of Theorem 4.2 and Proposition 4.5, the above relation reduces to

〈R(X), R(X)〉 = 〈R(m), R(m)〉+

m−1
∑

i=0

(γ
(m)
i − γi)

2 〈M(Q(i)),M(Q(i))〉 ,

which completes the proof. �

4.3. On the solution of Problem 2.3

Let X̃ = (X̃1, . . . , X̃q) be a given arbitrary matrix group. By means of
Lemma 3.1, we have

X̃ = W1 +W2 +W3,

where W1 = (W
(1)
1 , . . . ,W

(1)
q ), W2 = (W

(2)
1 , . . . ,W

(2)
q ), W3 = (W

(3)
1 , . . . ,W

(3)
q )

such that W
(1)
j ∈ SAR

nj×nj , W
(2)
j ∈ CAR

nj×nj and W
(3)
j ∈ SSR

nj×nj for

j ∈ I[1, q]. As a matter of fact W1 = A(X̃) and Lemma 3.1 implies

〈W1 −X,W2 +W3〉 = 0,

where X = (X1, . . . , Xq) is a symmetric arrowhead solution group. Therefore,
it is not difficult to show that
〈

X̃ −X, X̃ −X
〉

= 〈(W1 −X) + (W2 +W3), (W1 −X) + (W2 +W3)〉

= 〈W1 −X,W1 −X〉+ 2 〈W1 −X,W2 +W3〉

+ 〈W2 +W3,W2 +W3〉

= 〈W1 −X,W1 −X〉+ 〈W2 +W3,W2 +W3〉 .

Consequently, we deduce that

min
X∈SE

‖X − X̃‖ = min
X∈SE

‖X −W1‖.

As a result, we may apply Algorithm 2 to find the least norm solution of the
following least squares problem

(16) min
Y ∈ŜE

‖M(Y )− Ĉ‖,

where

ŜE = {Y = (Y1, . . . , Yq) | Yj ∈ SAR
nj×nj for j ∈ I[1, q]}

and Ĉ = C − M(W1). To determine the solution of Problem 2.3, we first
compute Y ∗ as the least norm solution of (16) using the approach described
at the end of Subsection 4.1. Then the solution of Problem 2.3 is derived by
X∗ = Y ∗ +W1.
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5. Numerical experiments

In this section, some numerical experiments are reported to verify the va-
lidity of the presented theoretical results and the applicability of Algorithm 2.
The execution of all numerical tests was performed in double precision with
some Matlab codes on a Pentium 4 PC, with a 3.06 GHz CPU and 1.00GB
of RAM.

Example 5.1. Consider the following two-dimensional convection diffusion
equation

{

−∆u+ 2α1ux + 2α2uy − 2α3u = f, in Ω,
u = 0, x on ∂Ω,

where Ω = [0, 1]× [0, 1] and ∂Ω is the boundary of Ω. We assume that α1, α2

and α3 are nonnegative parameters. Discretization of the Laplacian operator
by the standard five-point stencil and the first-order derivatives by centered
finite differences with mesh size h = 1/(n + 1) in both x- and y-directions
yields the Sylvester matrix equation

(17) AX +XB = C,

where A and B are n× n matrices of the form

A = tridiag(−1− α1h, 2− α3h
2,−1 + α1h),

B = tridiag(−1− α2h, 2− α3h
2,−1 + α2h).

The Sylvester matrix equation (17) with the above data have been examined
by several authors so far, for instance see [6, 13, 17, 32]. The right-hand side
matrix C is taken such a way that the exact solution of (17) is the following
symmetric arrowhead matrix

X∗ =















1 1 2 · · · n− 1
1 2 0 · · · 0
2 0 3 · · · 0
...

...
...

. . .
...

n− 1 0 0 · · · n















.

We apply Algorithm 2 to solve system (17). The initial guess is set to be
X(0) = 0 and the succeeding stopping criterion is exploited,

Ek =
‖R(k)‖∞
‖R(0)‖∞

< 10−9.

Numerical results for different values of n (=1000, 2000, 3000, 4000, 5000) and
three set of parameters (α1, α2, α3) = (10, 20, 10), (α1, α2, α3) = (50, 100, 50)
and (α1, α2, α3) = (100, 100, 0) are given in Table 1. In this table, the num-
ber of iterations for the convergence (Iters), CPU times (in seconds) and Ek

are presented. As seen the proposed algorithm is effectual for computing the
symmetric arrowhead solution of (17).
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Table 1. Numerical results for Example 5.1 for different val-
ues of n and (α1, α2, α3).

α1 = 10, α2 = 20, α3 = 10
n = 1000 n = 2000 n = 3000 n = 4000 n = 5000

Iters 25 24 22 22 22
Ek 7.6e-10 7.0e-10 8.8e-10 6.3e-10 5.0e-10
CPU times 0.42 1.20 2.20 4.34 7.17

α1 = 50, α2 = 100, α3 = 50
n = 1000 n = 2000 n = 3000 n = 4000 n = 5000

Iters 25 24 22 22 22
Ek 8.2e-10 7.3e-10 9.1e-10 6.5e-10 5.1e-10
CPU times 0.42 1.23 2.22 4.27 7.09

α1 = 100, α2 = 100, α3 = 0
n = 1000 n = 2000 n = 3000 n = 4000 n = 5000

Iters 25 24 22 22 22
Ek 7.3e-10 6.9e-10 8.8e-10 6.3e-10 5.0e-10
CPU times 0.44 1.23 2.22 4.33 7.34

Example 5.2. LetM = tridiag(−1, 2,−1) ∈ Rn×n andN = tridiag(0.5, 0, 0.5)
∈ Rn×n. For every r ∈ R we define the matrix Tr as Tr = M + rN . Consider
the following coupled matrix equations

(18)

{

A11X1 +X2B12 = C1,
A21X1 +X2B22 = C2,

where A11 = T4, B12 = T4, A21 = T3 and B22 = T3. The right-hand matrices
C1 and C2 are selected such that (X∗

1 , X
∗
2 ) is the solution of (18) where X∗

1

and X∗
2 are the symmetric arrowhead matrices given by

X∗
1 =















1 1 2 · · · n− 1
1 2 0 · · · 0
2 0 3 · · · 0
...

...
...

. . .
...

n− 1 0 0 · · · n















, X∗
2 =















−1 1 2 · · · n− 1
1 −2 0 · · · 0
2 0 −3 · · · 0
...

...
...

. . .
...

n− 1 0 0 · · · −n















.

The application of Algorithm 2 is examined to compute a symmetric arrowhead
solution to the system (18). We utilize (X1(0), X2(0)) = (0, 0) as the initial
guess and

(19) Ek = max{
‖R1(k)‖∞
‖R1(0)‖∞

,
‖R2(k)‖∞
‖R2(0)‖∞

} < 10−9,
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Table 2. Numerical results for Example 5.2, system (18).

n = 1000 n = 2000 n = 3000 n = 4000 n = 5000

Iters 45 48 50 47 48
Ek 4.6e-10 5.8e-10 4.8e-10 4.8e-10 4.2e-10
CPU times 1.61 5.75 13.59 21.77 33.95

Table 3. Numerical results for Example 5.2, system (20).

n = 1000 n = 2000 n = 3000 n = 4000 n = 5000

Iters 105 105 108 108 114
Ek 8.4e-10 8.4e-10 8.7e-10 8.5e-10 7.7e-10
CPU times 4.50 13.92 30.36 52.56 85.13

as the stopping criterion where R(k) = (R1(k), R2(k)). Numerical results for
different values on n are given in Table 2. All the assumptions are as the
previous example. Now consider the next coupled matrix equations

(20)

{

A11X1B11 +A12X2B12 = C1,
A21X1B21 +A22X2B22 = C2,

where A11 = A12 = T3, A21 = A22 = T1, B11 = B12 = T7 and B21 =
B22 = 8. Numerical results are reported in Table 3. We point here that all
the assumptions are as the first part of this example. As seen, the handled
algorithm is suitable.

Example 5.3. This example is given to verify the validity of the presented
results in Subsection 4.3. To do this, we consider the system

(21)

{

A11X1B11 +A12X2B12 = C1,
A21X1B21 +A22X2B22 = C2,

where

A11 =





4 2 0
1 2 2
0 −1 3



 , B11 =





2 0 −1
1 2 1
1 −1 3



 , A12 =





−1 2 1
1 −2 2
0 2 1



 ,

B12 =





4 2 3
0 3 −2
1 1 −1



 , A21 =





2 3 −1
1 3 1
0 1 −2



 , B21 =





1 3 −1
1 0 −1
−1 2 2



 ,

A22 =





1 −3 1
1 3 0
2 0 1



 , B22 =





7 −2 2
1 −3 1
1 1 −6



 ,
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with the right-hand side matrices

C1 =





31 18 24
51 7 39
34 8 23



 , C2 =





22 25 −28
59 −3 4
68 −38 −23



 .

It is not difficult to see that Eq. (21) has a unique symmetric arrowhead solution
(see [1]) of the form (X∗

1 , X
∗
2 ) where

X∗
1 =





1 1 2
1 2 0
2 0 3



 , X∗
2 =





3 1 2
1 2 0
2 0 1



 .

An initial guess (X(0), Y (0)) = (0, 0) and the stopping criterion Ek < 10−4

are exploited where Ek is defined in (19). The approximate solution X(56) =
(X1(56), X2(56)) is provided by Algorithm 2 where

X1(56)=





1.0002 1.0004 1.9996
1.0004 1.9994 0
1.9996 0 3.0003



 , X2(56)=





2.9999 1.0001 2.0002
1.0001 2.0000 0
2.0002 0 0.9988



 .

We now consider

X̃1 =





4 4 3
5 3 0
4 −1 4



 , X̃2 =





3 4 4
4 2 5
5 −2 4



 .

The matrix group W1 = (W
(1)
1 ,W

(2)
1 ), defined in Subsection 4.3, is given by

W
(1)
1 =





4 4.5 3.5
4.5 3 0
3.5 0 4



 , W
(2)
1 =





3 4 4.5
4 2 0
4.5 0 4



 .

Therefore, we have Ĉ = C −M(W1) = (Ĉ1, Ĉ2) where

Ĉ1 =





−94.5 −34.5 −46
−39.5 −23 14.5
−41 −15 −29.5



 , Ĉ2 =





14 −58.5 64
−87.5 −25.5 10.5
−35 17.5 42.5



 .

In this case, the provided approximate solution of Eq. (16) by Algorithm 2 is
Y (44) = (Y1(44), Y2(44)) where

Y1(44) =





−2.9989 −3.5011 −1.5001
−3.5011 −0.9977 0
−1.5001 0 −0.9996



 ,

Y2(44) =





−0.0004 −3.0000 −2.4999
−3.0000 0.0002 0
−2.4999 0 −3.0008



 .
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Hence

X1(44) = W
(1)
1 + Y1(44) =





1.0011 0.9989 1.9999
0.9989 2.0023 0
1.9999 0 3.0004



 ,

X2(44) = W
(2)
1 + Y2(44) =





2.9996 1.0000 2.0001
1.0000 2.0002 0
2.0001 0 0.9992



 .

As seen the proposed algorithm has obtained a suitable solution for Problem
2.3.

6. Conclusion

Recently, Li et al. [21] have derived the general expression for the least
norm symmetric arrowhead solution of the least squares problem correspond-
ing to the matrix equation AXB+CY D = E by exploiting the Moore-Penrose
inverse and the Kronecker product. In this paper, an efficient iterative algo-
rithm has been proposed to solve the least squares problem associated with
a general class of coupled matrix equations over symmetric arrowhead matri-
ces. More precisely, the conjugate gradient least squares (CGLS) method has
been extended to construct the offered algorithm which obtains the symmetric
arrowhead solution group of the considered problem within finite number of it-
eration steps for any initial symmetric arrowhead matrix group in the absence
of roundoff errors. In particular, the least norm symmetric arrowhead solution
group of the mentioned least squares problem can be computed by choosing an
appropriate initial symmetric arrowhead matrix group. Scrutinized numerical
experiments have confirmed the validity of the established theoretical results
and reveal the good performance of the handled algorithm. The superior fea-
tures of our examined algorithm over the existing manner [21] are that it is very
simple, neat and inexpensive to handle for large an sparse problems. Whereas,
the propounded algorithm outperforms Li et al.’s approach even for small size
problems as examined for several examples.

Appendix A

The proof of Theorem 4.2. Without loss of generality, we only need to establish
the validity of the assertions for 1 ≤ i < j ≤ k. To this end, the mathematical
induction is exploited. In what follows, for simplicity, we set

αk =
‖P (k)‖2

‖M(Q(k))‖2
, βk =

‖P (k + 1)‖2

‖P (k)‖2
.

Step 1. For k = 1, we have

〈P (0), P (1)〉 = 〈P (0), P (0)− α0A(M∗(M(Q(0))))〉

= ‖P (0)‖2 − α0 〈P (0),M∗(M(Q(0)))〉
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= ‖P (0)‖2 − α0 〈M(Q(0)),M(Q(0))〉

= 0.

Also, it can be seen that

〈M(Q(0)),M(Q(1))〉 = β0‖M(Q(0))‖2 + 〈M(Q(0)),M(P (1))〉

= β0‖M(Q(0))‖2 +
1

α0
〈M∗(R(0)−R(1)), P (1)〉

= β0‖M(Q(0))‖2 +
1

α0
〈A(M∗(R(0)−R(1))), P (1)〉

= β0‖M(Q(0))‖2 +
1

α0
〈P (0)− P (1), P (1)〉

= β0‖M(Q(0))‖2 −
1

α0
〈P (1), P (1)〉

= 0.

As Q(0) = P (0) we conclude that

〈Q(0), P (1)〉 = 〈P (0), P (1)〉 = 0.

Step 2. Suppose that the conclusions are true when k = ℓ, i.e., the following
relations hold for i < l,

〈P (i), P (l)〉 = 0, 〈M(Q(i)),M(Q(l))〉 = 0 and 〈Q(i), P (l)〉 = 0.

We demonstrate that the validity of the assertions for k = ℓ+1. It can be seen
that

〈P (l + 1), P (l)〉 = 〈P (l)− αlA(M∗(M(Q(l)))), P (l)〉

= 〈P (l), P (l)〉 − αl 〈M(P (l)),M(Q(l))〉

= 〈P (l), P (l)〉 − αl 〈M(Q(l))− βl−1M(Q(l − 1)),M(Q(l))〉

= 〈P (l), P (l)〉 − αl 〈M(Q(l)),M(Q(l))〉

= 0.

Moreover by some straightforward computations and Proposition 3.2, we have

〈M(Q(l + 1)),M(Q(l))〉 = 〈M(P (l + 1)) + βlM(Q(l)),M(Q(l))〉

= 〈M(P (l + 1)),M(Q(l))〉+ βl 〈M(Q(l),M(Q(l))〉

=
1

αl

〈M(P (l + 1)), R(l)−R(l + 1)〉

+βl 〈M(Q(l)),M(Q(l))〉

= −
1

αl

〈P (l + 1), P (l+ 1)〉+ βl 〈M(Q(l),M(Q(l))〉

= 0.

Note that Q(l− 1) is a symmetric arrowhead matrix group. In view of Propo-
sition 3.2, it is not difficult to conclude that

〈P (l + 1), Q(l)〉 = 〈P (l + 1), P (l) + βl−1Q(l − 1)〉
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= βl−1 〈P (l + 1), Q(l − 1)〉

= βl−1 〈P (l)− αlA(M∗(M(Q(l)))), Q(l − 1)〉

= −αlβl−1 〈M(Q(l)),M(Q(l − 1))〉

= 0.

For j = 1, 2, . . . , l − 1, by using the above results, we have:

〈P (l + 1), P (j)〉 = 〈P (l)− αlA(M∗(M(Q(l)))), P (j)〉

= 〈P (l), P (j)〉 − αl 〈M(Q(l)),M(P (j))〉

= −αl 〈M(Q(l)),M(Q(j))− βj−1M(Q(j − 1))〉

= 0.

From Proposition 3.2, it is seen that

〈M(Q(l + 1)),M(Q(j))〉 = 〈M(P (l + 1)) + βlM(Q(l)),M(Q(j))〉

= 〈M(P (l + 1)),M(Q(j))〉

=
1

αj

〈M(P (l+ 1)), R(j)−R(j + 1)〉

=
1

αj

〈P (l + 1),M∗(R(j)−R(j + 1))〉

=
1

αj

〈P (l + 1), P (j)− P (j + 1)〉

= 0.

Invoking the fact that Q(j) is a symmetric arrowhead matrix group for each j,
we derive:

〈P (l + 1), Q(j)〉 = 〈P (l)− αlA(M∗(M(Q(l)))), Q(j)〉

= 〈P (l), Q(j)〉 − αl 〈M(Q(l)),M(Q(j))〉

= 0.

From Steps 1 and 2, the proof is competed by the principle of the mathematical
induction. �
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