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Abstract—Delay/Disruption Tolerant Networks (DTNs) have been identified as one of the key areas in the field of wireless communication,
wherein sparseness and delay are particularly high. They are emerging as a promising technology in vehicular, planetary/interplanetary,
military/tactical, disaster response, underwater and satellite networks. DTNs are characterized by large end-to-end communication latency
and the lack of end-to-end path from a source to its destination. These characteristics pose several challenges to the security of DTNs.
Especially, Byzantine attacks in which one or more legitimate nodes have been compromised and fully controlled by the adversary can give
serious damages to the network in terms of latency and data availability. Using reputation-based trust management systems is shown to be
an effective way to handle the adversarial behavior in Mobile Ad-hoc Networks (MANETs). However, because of the unique characteristics of
DTNs, those traditional techniques do not apply to DTNs. Our main objective in this paper is to develop a robust trust mechanism and an efficient
and low cost malicious node detection technique for DTNs. Inspired by our recent results on reputation management for online systems and
e-commerce, we develop an iterative malicious node detection mechanism for DTNs referred as ITRM. The proposed scheme is a graph based
iterative algorithm motivated by the prior success of message passing techniques for decoding low-density parity-check codes over bipartite
graphs. Applying ITRM to DTNs for various mobility models, we observed that the proposed iterative reputation management scheme is far
more effective than well-known reputation management techniques such as the Bayesian framework and EigenTrust. Further, we concluded
that the proposed scheme provides high data availability and packet-delivery ratio with low latency in DTNs under various adversary attacks
which attempt to both undermine the trust and detection scheme and the packet delivery protocol.
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1 INTRODUCTION

Delay Tolerant Networks (henceforth referred to as DTNs)
are a relatively new class of networks [1], wherein sparseness
and delay are particularly high. In conventional Mobile
Ad-hoc Networks (MANETs), the existence of end-to-end
paths via contemporaneous links is assumed in spite of
node mobility. It is also assumed that if a path is disrupted
due to mobility, the disruption is temporary and either the
same path or an alternative one is restored very quickly.
In contrast, DTNs are characterized by intermittent contacts
between nodes, leading to space-time evolution of multihop
paths (routes) for transmitting packets to the destination.
In other words, DTNs’ links on an end-to-end path do not
exist contemporaneously, and hence intermediate nodes may
need to store, carry, and wait for opportunities to transfer
data packets towards their destinations. Hence, DTNs are
much more general than MANETs in the mobile network
space (i.e., MANETs are special types of DTNs). Applications
of DTNs include emergency response, wildlife surveying,
vehicular-to-vehicular communications, healthcare, military,
and tactical sensing.

Compared to traditional MANETs, common problems in
packet communication such as routing, unicasting, broad-
casting and multicasting become sufficiently harder in DTNs
even with lossless links (i.e., no packet erasures due to com-
munication link). This increase in difficulty can be directly
attributed to the lack of knowledge on the network topology,
and the lack of end-to-end path. Hence, the schemes for
routing packets have to be primitive such as forwarding to
the next available node, injecting multiple copies into avail-
able nodes and employing erasure block codes [2]. On the
other hand, depending upon the model for mobility, efficient
communication schemes for stationary ad-hoc networks can
be extended partially or wholly to DTNs.

As in MANETs, adversary may mount several threats
against DTNs to reduce the performance of the network.
The most serious attacks are due to the Byzantine (insider)
adversary in which one or more legitimate nodes have
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been compromised and fully controlled by the adversary. A
Byzantine-malicious node may mount the following attacks
in order to give serious damage to the network: 1. Packet
drop, in which the malicious node drops legitimate packets
to disrupt data availability, 2. Bogus packet injection, in
which the Byzantine node injects bogus packets to consume
the limited resources of the network, 3. Noise injection, in
which the malicious node changes the integrity of legitimate
packets, 4. Routing attacks, in which the adversary tempers
with the routing by misleading the nodes, 5. Flooding
attacks, in which the adversary keeps the communication
channel busy to prevent legitimate traffic from reaching
its destination, and 6. Impersonation attacks, in which the
adversary impersonates the legitimate nodes to mislead the
network. We note that because of the lack of end-to-end path
from a source to its destination in DTNs, routing attacks are
not significant threats for such networks. Attacks on packet
integrity may be prevented using a robust authentication
mechanism in both MANETs and DTNs. However, packet
drop is harder to contain because nodes’ cooperation is fun-
damental for the operation of these networks (i.e., a group of
nodes cooperate in routing each others’ packets using multi-
hop wireless links without any centralized control). This co-
operation can be undermined by Byzantine attackers, selfish
nodes, or even innocent but faulty nodes. Therefore, in this
work, we focus on packet drop attack which gives serious
damages to the network in terms of data availability, latency,
and throughput. Finally, Byzantine nodes may individually
or in collaboration attack the security mechanism (e.g., the
trust management and malicious node detection schemes)
as will be discussed later.

In MANETs, reputation-based trust management systems
are shown to be an effective way to cope with adversary. By
establishing trust with the nodes it has or has not directly
interacted, a node in the network diagnoses other nodes
and predicts their future behavior in the network. Hence,
trust plays a pivotal role for a node in choosing with which
nodes it should cooperate, improving data availability in the
network. Further, examining trust values has been shown
to lead to the detection of malicious nodes in MANETs.
Despite all the progress for securing MANETs, achieving
the same for DTNs leads to additional challenges. The
special constraints posed by DTNs make existing security
protocols inefficient or impractical in such networks as will
be discussed in Section 1.1.
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Our main objective in this paper is to develop a security
mechanism for DTNs which enables us to evaluate the
nodes based on their behavior during their past interactions
and to detect misbehavior due to Byzantine adversaries,
selfish nodes and faulty nodes. The resulting scheme would
effectively provide high data availability and packet delivery
ratio with low latency in DTNs in the presence of Byzan-
tine attackers. To achieve this goal, we aim at obtaining a
reputation-based trust management system and an iterative
malicious node detection mechanism for DTNs. Our work
on reputation systems stems from the prior success of it-
erative algorithms, such as message passing techniques [3]
in the decoding of Low-Density Parity-Check (LDPC) codes
in erasure channels [4]. We believe the significant benefits
offered by iterative algorithms can be tapped in to benefit the
field of reputation systems. To achieve this, we develop the
Iterative Trust and Reputation Mechanism (ITRM) [5], and
explore its application on DTNs. We propose a distributed
malicious node detection mechanism for DTNs using ITRM
which enables every node to evaluate other nodes based on
their past behavior, without requiring a central authority.
We will show that the resulting scheme effectively provides
high data availability and low latency in the presence of
Byzantine attackers. We will also show that the proposed
iterative mechanism is far more effective than the voting-
based techniques in detecting Byzantine nodes.

The main contributions of our work are summarized in
the following.

1) We introduced a novel iterative method for trust and
reputation management referred as ITRM which is in-
spired by the iterative decoding of low-density parity-
check codes over bipartite graphs.

2) We introduce the application of ITRM into DTNs as an
iterative trust management and malicious node detec-
tion scheme. The scheme provides high data availabil-
ity and packet delivery ratio with low latency in the
presence of Byzantine attackers.

3) The proposed algorithm computes the reputations of
the network nodes accurately in a short amount of
time in the presence of attackers without any central
authority.

4) The proposed algorithm mitigates the impacts of
Byzantine attackers proportional to their attack de-
grees. That is, the ones that are attacking with the
highest strength are detected with higher probability.

5) Comparison of ITRM with some well-known repu-
tation management techniques (e.g., Bayesian frame-
work and EigenTrust) indicates the superiority of ITRM
in terms of robustness against attacks in a realistic
DTN environment. Further, the proposed algorithm is
very efficient in terms of its computational complexity.
Specifically, the complexity of ITRM is linear in the
number of nodes. Hence, it is scalable and suitable for
large scale implementations.

The rest of this paper is organized as follows. In the rest of
this section, we summarize the related work. In Section 2, we
describe ITRM and its security evaluation as a general trust
and reputation framework (i.e., in a general setting). Next, in
Section 3, we present the application of ITRM to DTNs and
the proposed security mechanism in detail. Moreover, we
evaluate the proposed scheme by analysis and simulations
in a realistic DTN environment. Finally, in Section 4, we
conclude the paper.

1.1 Related Work

The main goal for building a reputation system in MANETs
is to protect the reactive routing protocol from attackers
and increase the performance of the network. A recent
review of these secure routing protocols for MANETs [6]
indicates that these protocols either use the watchdog mech-
anism or ACK messages to build trust values between the

nodes. In MANETs, a node evaluates another by using
either direct or indirect measurements. Building reputation
values by direct measurement is either achieved by using
the watchdog mechanism or by using the ACK from the
destination. Building reputation values by just relying on the
direct measurements and using the watchdog mechanism is
proposed in [7], [8]. In [9], [10], the use of indirect measure-
ments to build reputation values is also allowed while the
watchdog mechanism is used to obtain direct measurements.
In [11]–[15], reputation values are constructed using the
ACK messages sent by the destination node. We note that
these techniques are not applicable to DTNs due to the
following reasons. In DTNs, a node cannot use the watchdog
mechanism and monitor another intermediate node after
forwarding its packets to it. This is because links on an
end-to-end path do not exist contemporaneously, and hence
an intermediate node needs to store, carry and wait for
opportunities to transfer those packets. As a result, the
node loses connection with the intermediate node which it
desires to monitor. This implies that a Byzantine node in
DTNs can get packets from a legitimate node, then move
away and drop the packets. Similarly, relying on the ACK
packets from the destination to establish reputation values
would fail in DTNs because of the lack of a fixed common
multihop path from the source to the destination. Even if we
assume an ACK from destination to the source (which incurs
large latency), this feedback packet travels to the source
via intermediate nodes that are different from the set of
nodes that delivered the data packet to the destination. More
specifically, the source node, upon receiving a negative ACK,
cannot decide which node on the forwarding path is to be
blamed. Lastly, using indirect measurements is possible in
DTNs. However, it is unclear as to how these measurements
can be obtained in the first place.

Reputation systems for P2P networks and online systems
also received a lot of attention [10], [16]–[22]. In [16] and
[17], authors cover most of the work on the use of reputation
systems for P2P networks. However, reputation systems for
P2P networks are either not applicable for DTNs or they
require excessive time to build the reputation values of the
peers. Most proposed P2P reputation management mecha-
nisms utilize the idea that a peer can monitor others and
obtain direct observations [18] or a peer can enquire about
the reputation value of another peer (and hence, obtain
indirect observations) before using the service provided by
that peer [19], [20]. However, neither of these techniques
are practical for DTNs. In DTNs direct observations are not
possible as we discussed above. Further, enquiring about
the reputation value of a peer is not practical in DTNs
due to opportunistic communications during contact times
and intermittent connectivity of the peers. Assuming a peer
enquires about the reputation values of the other peers from
its contacts, it can calculate the reputation values of the
other peers when it collects sufficient indirect measurements.
However, considering the opportunistic and intermittent
connectivity in DTNs, this method requires excessive time
to build the reputation values of all peers in the network.
EigenTrust [21] is one of the most popular reputation man-
agement algorithm for P2P networks. However, the Eigen-
Trust algorithm is constrained by the fact that trustworthi-
ness of a peer (on its feedback) is equivalent to its repu-
tation value. In EigenTrust, the trust relationships between
the nodes are established based on the service qualities of
the peers during a P2P file transfer. However, trusting a
peer’s feedback and trusting a peer’s service quality are
two different concepts. As we will discuss in Section 3.1,
a malicious peer can attack the network protocol or the
reputation management system independently. Therefore,
the EigenTrust algorithm is not practical for applications in
which the trustworthiness and reputation are two separate
concepts (as in our work). Use of the Bayesian framework
is also proposed in [9]. In schemes utilizing the Bayesian
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framework, each reputation value is computed independent
of the other nodes’ reputation values. However, the ratings
provided by the nodes induce a probability distribution on
the reputation values. These distributions are correlated be-
cause they are induced by the overlapping set of nodes. The
strength of ITRM stems from the fact that it tries to capture
this correlation in analyzing the ratings and computing the
reputation values. Finally, [22] proposed to use the Cluster
Filtering method [23] for reputation management. However,
it can be shown that Cluster Filtering introduces quadratic
complexity while the computational complexity of ITRM
is linear with the number of users in the network. As a
result, our proposed scheme is more scalable and suitable for
large scale reputation systems. Different from the existing
schemes, ITRM algorithm [5] is a graph based iterative
algorithm motivated by the previous success on message
passing techniques and belief propagation algorithms. We
compared the performance of ITRM with EigenTrust [21]
and the Bayesian reputation management framework [10]
(which is also proposed as the reputation management
system of the well-known CONFIDANT protocol [9]) in a
realistic DTN environment in Section 3.5 and showed the
effectiveness of our proposed scheme.

Several works in the literature have focused on securing
DTNs. In [24], the challenges of providing secure com-
munication in DTNs is discussed and the use of Identity-
Based Cryptography (IBC) [25] is suggested. In [26], source
authentication and anonymous communication as well as
message confidentiality are provided using IBC. In [27], the
use of packet replication is proposed to improve message
delivery rate instead of using cryptographic techniques. We
note that the existing techniques to secure DTNs are aimed
to provide data confidentiality and authentication only. On
the other hand, our proposed trust based scheme provides
malicious node detection and high data availability with low
packet latency in the presence of Byzantine attacks.

2 ITERATIVE TRUST AND REPUTATION MANAGE-
MENT MECHANISM (ITRM)

In this section, we describe ITRM and its security evaluation
in a broader context (i.e., in a general setting). Then, we
will modify and utilize it for DTNs in Section 3. Further,
we will evaluate ITRM and compare its performance with
some well-known reputation management techniques (e.g.,
Bayesian framework and EigenTrust) in a realistic DTN
setting in Section 3.5. As in every trust and reputation man-
agement mechanism, we have two main goals: 1. Computing
the service quality (reputation) of the peers who provide
a service (henceforth referred to as Service Providers or
SPs) by using the feedbacks from the peers who used the
service (referred to as the raters), and 2. Determining the
trustworthiness of the raters by analyzing their feedback
about SPs. We consider the following major attacks that are
common for any trust and reputation management mecha-
nisms: i) Bad-mouthing, in which malicious raters collude
and attack the SPs with the highest reputation by giving
low ratings in order to undermine them, and ii) Ballot-
stuffing, in which malicious raters collude to increase the
reputation values of peers with low reputations. Further, we
evaluated ITRM against some sophisticated attacks (which
utilizes bad-mouthing or ballot-stuffing with a strategy) such
as RepTrap [28] or the one in which malicious raters provide
both reliable and malicious ratings to mislead the algorithm.

Our proposed iterative algorithm is inspired by the earlier
work on the improved iterative decoding algorithm of LDPC
codes in the presence of stopping sets [4], [29]. In iterative
decoding of LDPC, every check-vertex (in the graph repre-
sentation of the code) has some opinion of what the value of
each bit-vertex should be. The iterative decoding algorithm
would then analyze the collection of these opinions to

decide, at each iteration, what value to assign for the bit-
vertex under examination. Once the values of the bit-vertices
are estimated, in the next iteration, those values are used to
determine the satisfaction probability of the check-vertices
values. The novelty of ITRM stems from the observation
that a similar approach can be adapted to determine SPs’
reputation values as well as the trustworthiness of the raters.

We let TRj be the global reputation of the jth SP. Further,
TRij represents the rating that the peer i reports about
the SP j, whenever a transaction is completed between
the two peers. Moreover, Ri denotes the (report/rating)
trustworthiness of the ith peer as a rater1. The first step in
developing ITRM is to interpret the collection of the raters
and the SPs together with their associated relations as a
bipartite graph, as in Fig. 1(a). In this representation, each
rater corresponds to a check vertex in the graph, shown as a
square and each SP is represented by a bit vertex shown as a
hexagon in the graph. If a rater i has a rating about the jth SP,
we place an edge with value TRij from the ith check-vertex
to the jth bit-vertex. As time passes, we use the age-factored
values as the edge values instead. To each edge {ij}, a value
WRij = wijTRij is assigned, where WRij is the age-factored
TRij value. The factor wij(t) is used to incorporate the time-
varying aspect of the reputation of the SPs (i.e., time-varying
service quality). We use a known factor wij(t) = λ̂t−tij where
λ̂ and tij are the fading parameter and the time when the
last transaction between the rater i and the SP j occurred,
respectively. If a new rating arrives from the ith rater about
the jth SP, our scheme updates the new value of the edge
{ij} by averaging the new rating and the old value of the
edge multiplied with the fading factor.

We consider slotted time throughout this discussion. At
each time-slot, ITRM will be executed using the input pa-
rameters Ri and WRij to obtain the reputation parameters
(e.g., TRj) and the list of malicious raters (referred to as the
blacklist). Initially, the blacklist is set empty. Details of ITRM
may be described by the following procedure at the Lth

time-slot. Let Ri and TRij be the parameter values prior to
the present execution (the Lth execution) of ITRM algorithm.
Let also TRν

j and TRν
ij be the values of the bit-vertex and the

{ij}th edge at the iteration ν of the ITRM algorithm. Prior to
the start of the iteration (ν = 0), we set TRν=0

ij = TRij and
compute the initial value of each bit-vertex (referred to as
the initial guess TRν=0

j ) based on the weighted average of
the age-factored edge values (WRν

ij) of all the edges incident
to the bit-vertex j. Equivalently, we compute

TRν
j =

∑

i∈Aj
Ri ×WRν

ij
∑

i∈Aj
Ri × wij(t)

, (1)

where Aj is the set of all check-vertices connected to the bit-
vertex j. It is interesting to note that the initial guess-values
resemble the received information from the channel in the
channel coding problem. Then, the first iteration starts (i.e.,
ν = 1). We first compute the average inconsistency factor Cν

i
of each check-vertex i using the values of the bit-vertices (i.e.,
TRν−1

j ) for which it is connected to. That is, we compute

Cν
i = [1/

∑

j∈B

λ̂t−tij ]
∑

j∈B

d(TRν−1
ij , TRν−1

j ), (2)

where B is the set of bit vertices connected to the check-
vertex i and d(·, ·) is a distance metric used to measure the
inconsistency. We use the L1 norm (absolute value) as the
distance metric, and hence,

d(TRν−1
ij , TRν−1

j ) = |TRν−1
ij − TRν−1

j |λ̂t−tij . (3)
After computing the inconsistency factor for every check-
vertex, we list them is ascending order. Then, the check-
vertex i with the highest inconsistency is selected and placed

1. All of these parameters (TRj , TRij and Ri) may evolve with time.
However, for simplicity, we omitted time dependencies from the notation.
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Fig. 1: Illustrative example of ITRM.

in the blacklist if its inconsistency is greater than or equal to
a definite threshold τ (whose choice will be discussed later).
If there is no check-vertex with inconsistency greater than or
equal to τ , the algorithm stops its iterations. Once the check-
vertex i is blacklisted, we delete its rating TRν

ij for all the bit-
vertices j it is connected to. Then, we update the values of
all the bit-vertices using (1). This completes the first iteration
of ITRM. The iterative algorithm proceeds to other iterations
exactly in the same way as the first iteration, updating the
values of the bit-vertices and blacklisting some other check-
vertices as a result. However, once a check-vertex is placed
in the blacklist, for the remaining iterations it is neither
used for the evaluation of TRjs nor for the inconsistency
measure of the check-vertices. We stop the iterations when
the inconsistencies of all the check-vertices (excluding the
ones already placed in the blacklist) fall below τ .

As an example, ITRM is illustrated in Fig. 1 for 7 raters,
3 SPs, and τ = 0.7. It is assumed that the rates are integer
values from {1, . . . , 5} and the actual reputations, ˆTRj , are
equal to 5. For simplicity, we assumed wi’s to be equal
to 1 and Ri’s to be equal for all raters. Furthermore, we
assumed that the peers 1, 2, 3, 4, and 5 are honest but 6 and
7 are malicious raters. The malicious raters (6 and 7) mount
the bad-mouthing attack in this example. Fig. 1(a) shows
the TRij values (illustrated by different line-styles) prior to
the execution of ITRM. The TRj values and the individual
inconsistencies of the raters after each iteration are also
illustrated in Fig. 1(c). We note that the algorithm stops at the
third iteration when all the raters have inconsistencies less
than τ . Fig. 1(c) indicates how ITRM gives better estimates of
TRj’s compared to the weighted averaging method (which
is correspond to the zero iteration). Fig. 1(b) illustrates the
edges after the final iteration of ITRM. It is worth noting
that the malicious raters 6 and 7 are blacklisted and their
ratings are accordingly deleted. Moreover, rater 3, although
honest, is also blacklisted at the third iteration. We note that
this situation is possible when an honest but faulty rater’s
rating have a large deviation from the other honest raters.

2.1 Raters’ Trustworthiness

We update the Ri values using the set of all past blacklists
together in a Beta distribution. Initially, prior to the first
time-slot, for each rater-peer i, the Ri value is set to 0.5
(φi = 1 and ϕi = 1). Then, if the rater-peer i is blacklisted,
Ri is decreased by setting

ϕi(t+ 1) = λ̄ϕi(t) + (Ci + 1− τ)δ, (4)

otherwise, Ri is increased by setting

φi(t+ 1) = λ̄φi(t) + 1, (5)

where λ̄ is the fading parameter and δ denotes the penalty
factor for the blacklisted raters. We note that updating Ri

values via the Beta distribution has one major disadvantage.
An existing malicious rater with low Ri could cancel its
account and sign in with a new ID (whitewashing). This
problem may be prevented by updating Ri’s using the
method proposed in [30].

2.2 Security Evaluation of ITRM

To prove that the general ITRM framework is a robust trust
and reputation management mechanism, we briefly evaluate
its security both analytically and via computer simulations.
Then, in Section 3.5, we will evaluate the security of
ITRM in a realistic DTN environment. In order to facilitate
future references, frequently used notations are listed below.
D Number of malicious raters
H Number of honest raters
N Number of service providers
m Rating given by an honest rater
n Rating given by a malicious rater
X Total number of malicious ratings TRij per a victim SP

d
Total number of newly generated ratings, per time-slot, by
an honest rater

b Total number of newly generated ratings, per time-slot, by
a malicious rater

b̂
Total number of newly generated attacking/malicious rat-
ings, per time-slot, by a malicious rater

∆ b̂/b (i.e., fraction of attacking ratings per time-slot)
µ Total number of un-attacked SPs rated by an honest rater

2.2.1 Analytic Evaluation

We adopted the following models for various peers involved
in the reputation system. We assumed that the quality of
SPs remains unchanged during time-slots. We provided the
evaluation for the bad-mouthing attack only, as similar
results hold for ballot-stuffing and combinations of bad-
mouthing and ballot-stuffing. We let T̂Rj be the actual
reputation value of the jth SP. Ratings (i.e., TRij) generated
by the non-malicious raters are distributed uniformly among
the SPs. We further assumed that m is a random variable
with folded normal distribution (mean ˆTRj and variance
0.5), however, it takes only discrete values from 1 to 5.
Furthermore, the values of Ri for all the raters are set to the
highest value (i.e., Ri = 1) for simplicity (which reflects the
worst case). Finally, we assumed that d is a random variable
with Yule-Simon distribution, which resembles the power-
law distribution used in modeling online systems, with the
probability mass function fd(d; ρ) = ρB(d, ρ+ 1), where
B(·, ·) is the Beta function. For modeling the adversary,
we made the following assumptions. We assumed that the
malicious raters initiate bad-mouthing and collude while
attacking the SPs. Further, the malicious raters attack the
same set Γ of SPs at each time-slot. In other words, Γ
represents a set of size b̂ in which each SP has an incoming
edge from all malicious raters. The following discussions are
developed for the time-slot t.
τ -eliminate-optimal Scheme: We declare a reputation
scheme to be τ -eliminate-optimal if it can eliminate all the
malicious raters whose inconsistency (measured from actual
reputation values ˆTRj of SPs) exceeds the threshold τ .
Hence, such a scheme would compute the reputations of
the SPs by just using the honest raters. Naturally, we need
to answer the following question: For a fixed τ , what are
the conditions to have a τ -eliminate-optimal scheme? The
conditions for ITRM to be a τ -eliminate-optimal scheme are
given by the following lemma:

Lemma 1: Let Θj and dt be the number of unique raters
for the jth SP and the total number of outgoing edges from
an honest rater in t elapsed time-slots, respectively. Let also
Q be a random variable denoting the exponent of the fading
parameter λ̂ at the tth time-slot. Then ITRM would be a τ -
eliminate-optimal scheme if the conditions
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∑

r∈Λ

Ψr ≥ (b̂m+ bτ) (6a)

and

µ

dt
> 1−

Θλ̂Q∆

D
(6b)

are satisfied at the tth time-slot, where

Ψr =
mX + nΘrλ̂

Q

X +Θrλ̂Q
for r ∈ Λ, (7)

and Λ is the index set of the set Γ.
Proof: At each iteration, ITRM blacklists the rater i with

the highest inconsistency Ci if Ci ≥ τ . Each malicious rater
has b̂ attacking ratings at each time slot. Moreover, the
inconsistency of a malicious rater due to each of its attacking

edge j is
(

mX+nΘj λ̂
Q

X+Θj λ̂Q
−m

)

, where j ∈ Γ. Therefore, the

total inconsistency of a malicious rater (which is calculated
considering both its attacking and non-attacking ratings)
should be greater than or equal to τ to be blacklisted. This
results the condition in (6a). Further, given Ci ≥ τ for a
malicious rater i, to have a τ -eliminate-optimal scheme, we
require that the inconsistency of the malicious rater with
the highest inconsistency exceeds the inconsistencies of all
the reliable raters so that the blacklisted rater can be a
malicious one in all iterations. To make sure ITRM blacklists
all malicious raters, the inconsistency of a malicious rater
must be greater than the inconsistency of a reliable rater at
the 0th iteration with a high probability. The inconsistency
of a malicious rater at the tth time slot is given by

(

|
mX + ncλQ

X + cλQ
−m|

)

∆. (8)

Similarly, the inconsistency of a reliable rater at the tth time
slot is

(

|
mX + ncλQ

X + cλQ
− n|

)

dt − µ

dt
. (9)

Hence, to blacklist a malicious rater, we require the term in
(8) be greater than that of (9) which leads to (6b).

The design parameter τ should be selected based on
the highest fraction of malicious raters to be tolerated. To
determine the optimal value of τ , we start with Lemma 1.
We use a waiting time t such that (6a) and (6b) are satisfied
with high probability (given the highest fraction of malicious
raters to be tolerated). Then, among all τ values that satisfy
(6a) and (6b) with high probability, we select the highest τ
value. The intention for selecting the highest τ value is to
minimize the probability of blacklisting a reliable rater. In
the following example, we designed the scheme to tolerate
up to W = 0.30 (i.e., 30% malicious raters). For the given
parameters D + H = 200, N = 100, ∆ = 1, ρ = 1 and
λ̂ = 0.9, we obtained the optimal τ = 0.4. As shown in Fig. 2,
for W lower than 0.30, the waiting time becomes shorter to
have a τ -eliminate-optimal scheme for τ = 0.4. However,
the scheme may also blacklist a few non-malicious raters in
addition to the malicious ones when W is actually less than
0.30. This is because the optimal value of τ is higher for
a τ -eliminate-optimal scheme when W is actually less than
0.30.

2.2.2 Simulations

We evaluated the performance of ITRM via computer simu-
lations. We assumed that there were already 200 raters (all of
which are honest and provide reliable ratings) and 50 SPs in
the system. Moreover, a total of 50 time-slots have passed
since the launch of the system. Further, ratings generated
during previous time-slots were distributed among the SPs
in proportion to their reputation values. After this initial-
ization process, we introduced 50 more SPs as newcomers.

Further, we assumed that a fraction of the existing raters
changed behavior and became malicious after the initializa-
tion process. Hence, by providing reliable ratings during the
initialization period (for 50 time-slots) the malicious raters
increased their trustworthiness values before they attack.
Eventually, we had D+H = 200 raters and N = 100 SPs in
total. We further assumed that d is a random variable with
Yule-Simon distribution as discussed in the analysis. At each
time-slot, the newly generated ratings from honest raters are
assigned to the SPs in proportion to the present estimate of
their reputation values, TRj . We obtained the performance
of ITRM, for each time-slot, as the mean absolute error
(MAE) |TRj− T̂Rj |, averaged over all the SPs that are under
attack (where, T̂Rj is the actual value of the reputation). We
used the following parameters throughout our simulations:
b = 5, ρ = 1, λ̂ = λ̄ = 0.9, the penalty factor δ = 10, and
τ = 0.4 (the choice of τ is based on the analytical results
discussed in Section 2.2.1).

We have evaluated the performance of ITRM in the pres-
ence of bad-mouthing and ballot-stuffing. Here, we provide
an evaluation of the bad-mouthing attack only, as similar
results hold for ballot-stuffing. In all simulations, we consid-
ered the worst-case scenario in which the victims are chosen
among the newcomer SPs with an actual reputation value
of ˆTRj = 5 in order to have the most adverse effect. The
malicious raters do not deviate very much from the actual
ˆTRj = 5 values to remain under cover as many time-slots as

possible (while still attacking). Hence, at each time-slot, the
malicious raters apply a low intensity attack by choosing
the same set of SPs from Γ and rate them as n = 4. We
had also tried higher deviations from the ˆTRj value and
observed that the malicious raters were easily detected by
ITRM in fewer time-slots. Therefore, we identified the low
intensity attack scenario as the most adverse one against
the reputation management mechanism. We note that this
attack scenario also resembles the RepTrap attack in [28]
which is proved to be a strong and destructive attack that
can undermine the reputation system. Further, by assuming
that the ratings of the reliable raters deviate from the actual
reputation values, our attack scenario becomes even harder
to detect when compared to the RepTrap. Figure 3 illustrates
the MAE performance of ITRM for this attack scenario
after the newcomer SPs joined to the system and varying
fractions of existing raters (W ) changed behavior and be-
came malicious. Thus, the plots in Fig. 3 are shown from
the time-slot the newcomers are introduced and existing
raters changed behavior. We note that for this simulation
we set ∆ = b̂/b = 1. The lags in the plots of ITRM in
Fig. 3 correspond to waiting times to include the newcomer
SPs into the execution of ITRM, computed based on our
analytical results presented in Fig. 2. We also observed that
the average number of iterations for ITRM is around 5
and it decreases with time and with decreasing fraction of
malicious raters.

We also evaluated the performance of ITRM when the
malicious raters provide both reliable and malicious ratings
to mislead the algorithm. In Fig. 4, we illustrate the perfor-
mance of ITRM for this attack for W = 0.10 and different
∆ = b̂/b values. We observed that as the malicious raters
attack with less number of edges (for low values of b̂), it
requires more time slots to undo their impact using ITRM.
Further, when the b̂ values becomes very small (b̂ = 1, 2),
it is hard to detect the malicious peers. On the other hand,
although the malicious raters stay under cover when they
attack with very less number of edges, this type of an attack
limits the malicious raters’ ability to make a serious impact
(they can only attack to a small number of SPs). It is worth
noting that Fig. 4 only considers the MAE on the SPs that
are under attacked. Thus, if the MAE is normalized over
all SPs, it becomes clear that the impact of the malicious
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raters is reduced as they attack using smaller b̂ values. We
note that for small values of b̂, other reputation management
mechanisms also fail to detect the malicious raters. From
these simulation results, we conclude that ITRM framework
provides robust trust and reputation management in the
presence of attacks.

3 TRUST MANAGEMENT AND ADVERSARY DE-
TECTION IN DTNS

3.1 Adversary Models and Security Threats

As discussed in Section 1, we consider the challenging
problem of countering Byzantine (insider) attacks (that give
serious damage to the network in terms of data availability,
latency and throughput). We note that the security issues
such as source authentication and data authentication have
been considered for disconnected networks in [24], [26].
Hence, they are not explicitly considered in this paper.
Instead, broadly we consider two types of attack: 1. Attack
on the network communication protocol, 2. Attack on the
security mechanism.
Packet drop and packet injection (attack on the network
communication protocol): An insider adversary drops legit-
imate packets it has received. This behavior of the malicious
nodes has a serious impact on the data availability and
the total latency of the network. Moreover, a malicious
node may also generate its own flow to deliver to another
(malicious) node via the legitimate nodes. As a result, bogus
flows compete with legitimate traffic for the scarce network
resources.
Bad-mouthing (ballot-stuffing) on the trust management
(attack on the security mechanism): As it will be discussed,
a legitimate node needs feedbacks from a subset of nodes
to determine its trust on a specific node. When a malicious
node is an element of this subset, it gives incorrect feedback
in order to undermine the trust management system. Bad-
mouthing and ballot-stuffing attacks attempt to reduce the
trust on a victim node and boost the trust value of a
malicious ally, respectively. A successful attack may result in
an incorrect edge value (rating) from a non-malicious check-
vertex in the graph representation in Fig. 1(a).
Random attack on trust management (attack on the secu-
rity mechanism): A Byzantine node may adjust its packet
drop rate (on the scale of zero-to-one) to stay under cover,
making it harder to detect.
Bad-mouthing (ballot-stuffing) on the detection scheme
(attack on the security mechanism): As it will be discussed,
every legitimate node, in order to detect the nature of
every network node, creates its own trust entries in a table
(referred to as the node’s rating table) for a subset of network
nodes for which the node has collected sufficient feedbacks.
Further, each node also collects rating tables from other
nodes. When the Byzantine nodes transfer their tables to a
legitimate node, they may victimize the legitimate nodes (in
the case of bad-mouthing) or help their malicious allies (in
the case of ballot-stuffing) in their rating table entries. This
effectively reduces the detection performance of the system.
Furthermore, malicious nodes can provide both reliable and
malicious ratings to mislead the algorithm as discussed in
Section 2.2.2. A successful attack adds a malicious check-
vertex providing malicious edges (ratings) in the graph
representation in Fig. 1(a).

During the evaluation of the proposed scheme, we as-
sumed that malicious nodes may mount attacks on both the
network communication protocol and the underlying secu-
rity mechanism (trust and reputation management mecha-
nism, ITRM) simultaneously. In the attack on the network
communication protocol, we assumed that malicious nodes
both drop the legitimate packets they have received from
reliable nodes and generate their own flows to deliver to
other (malicious) nodes via the legitimate nodes in order to

degrade the network performance (i.e., data availability and
packet delivery ratio) directly. In the attack on the security
mechanism, we assumed that malicious nodes simultane-
ously execute “bad-mouthing (ballot-stuffing) on the trust
management”, “random attack on trust management”, and
“bad-mouthing (ballot-stuffing) on the detection scheme”
(which are described above) to cheat the underlying trust
and reputation management scheme (i.e., ITRM) and de-
grade the network performance indirectly. We study the
impact of these attacks and evaluate our proposed scheme in
the presence of these attacks (on the network communication
protocol and the security mechanism) in Section 3.5. First,
we study the impact of the attacks to cheat the underlying
trust and reputation management mechanism alone and
obtain the time required to detect all the malicious nodes in
the network. Next, we study the impact of the “packet drop
and packet injection attack” to the network performance (in
terms of data availability and packet delivery ratio) while
the malicious nodes also mount attacks on the underlying
reputation mechanism.

As a result of our studies, we concluded that ITRM
provides a very efficient trust management and malicious
node detection mechanism for DTNs under the threat model
discussed above. The most significant advantage of ITRM
under the above threat model, in addition to resiliency to
a high fraction of malicious nodes, is to let each network
node accurately compute the reputation values of the other
network nodes in a short time. Computing the reputation
values in a short time is a very crucial issue in DTNs be-
cause of their unique characteristics (such as the intermittent
contacts between the nodes). As a result of this advantage,
each legitimate node detects and isolates the malicious nodes
from the network to minimize their impact to the network
performance (as will be illustrated in Section 3.5).

We note that since we did not assume pre-existing trust
relationships among the nodes, we did not study some
particular attacks such as RepTrap [28] (which is studied
in Section 2.2.2 to evaluate the performance of ITRM) par-
ticularly for DTNs.

3.2 Network/Communication Model and Technical
Background in Context

Before giving a high level description of our scheme, we will
introduce the network/communication model and the main
tools that we use for the system to operate.
Mobility model: We use both Random Waypoint (RWP) and
Levy-walk (LW) mobility models for our study which are
widely used for simulating DTNs. RWP model produces
exponentially decaying inter-contact time distributions for
the network nodes making the mobility analysis tractable.
On the other hand, LW is shown to produce power-law
distributions that has been studied extensively for animal
patterns and recently has been shown to be a promis-
ing model for human mobility [31]. In the RWP mobility
model [32], each node is assigned an initial location in the
field and travels at a constant speed to a randomly chosen
destination. The speed is randomly chosen from [vmin, vmax]
independently of the initial location and destination. After
reaching the destination, the node may pause for a random
amount of time before the new destination and speed are
chosen randomly for the next movement. In LW mobility
model [31], [33], [34], on the other hand, each movement
length and pause time distributions closely match truncated
power-law distributions. Further, angles of movement are
pulled from a uniform distribution. Our implementation
of the LW mobility model is based on the model in [31].
A step is represented by four variables, movement length
(ℓ), direction (θ), movement time (Υtf ), and pause time
(Υtp). The model selects movement lengths and pause times
randomly from their Levy distributions p(ℓ) and ψ(Υtp) with
coefficients α and β, respectively. Finally, regardless of the



7

2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

time slot

P
r(

IT
R

M
 b

e
in

g
 τ

−
e
li
m

in
a
te

−
o

p
ti

m
a
l)

 

 

W=0.10

W=0.15

W=0.20

W=0.25

W=0.30

Fig. 2: Waiting time for τ -eliminate-
optimal.

6 8 10 12 14 16 18 20
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

time slot

M
A

E

 

 

W = 0.10

W = 0.15

W = 0.20

W = 0.25

W = 0.30

Fig. 3: MAE performance of ITRM for bad-
mouthing and for varying W .

6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

time slot

M
A

E

∆ = 1

∆ = 0.8

∆ = 0.6

∆ = 0.4

∆ = 0.2

Fig. 4: MAE performance of ITRM for bad-
mouthing when W = 0.10 and for varying ∆.

mobility model used, we assume a finite rate of packet
transfer which forces the number of packets transmitted per
contact to be directly proportional to the contact time.
Packet format: We require that each packet contains its two
hop history in its header. In other words, when node B
receives a packet from node A, it learns from which node
A received that packet. This mechanism is useful for the
feedback mechanism as discussed in Section 3.4.
Routing and packet exchange protocol: We assume that
messages at the source are packetized. Further, the source
node never transmits multiple copies of the same packet.
Hence, at any given time, there is at most a single copy
of each packet in the network. We assume only single-copy
routing since reliable single-copy routing with packetization
is achieved by encoding the data packets using rateless
codes [35], [36] at the source node. The use of rateless coding
improves reliability and latency in DTNs even when there
is no adversary [37]. Furthermore, exchange of packets be-
tween two nodes follows a back-pressure policy. To illustrate
this, assume node A and B have x and y packets belonging
to the same flow f , respectively (where x > y). Then if the
contact duration permits, node A transfers (x−y)/2 packets
to node B belonging to flow f . As a result of the mobility
model, each node has the same probability to meet with
the destination of a specific flow. Hence, by using the back-
pressure policy we equally share the resources (e.g., contact
time) among the flows.

The packet exchange protocol also enforces fairness
among multiple nodes that forwarded the same flow to a
node. To clarify, let us assume that node A has some packets
from a flow f (which were forwarded to it by χ different
nodes) and based on the back-pressure policy, it needs to
transfer some of them to node B. In this situation, node A
must fairly select the packets based on their previous hops
(which is available via the packet format discussed before).
In other words, each packet that is received from a different
node has the same probability to be selected for transfer.
This mechanism is useful for the feedback mechanism as
discussed later. Finally, when a node forwards a packet, it
deletes it from its buffer.
Bloom filter: A Bloom filter is a simple space-efficient
randomized data structure for representing a set in order
to support membership queries [38]. A Bloom filter for
representing a set U of G elements is described by an array
of κ bits, initially all set to 0. It employs γ independent
hash functions H1, . . . ,Hγ with range { 1, . . . , κ }. For every
element x ∈ U , the bits H1(x), . . . ,Hγ(x) in the array are
set to 1. A location can be set to 1 multiple times, but
only the first change has an effect. To check if y belongs
to U , we check whether all H1(y), . . . ,Hγ(y) are set to 1.
If not, y definitely does not belong to U . Otherwise, we
assume y ∈ U although this may be wrong with some
probability. Hence, a Bloom filter may yield a false positive
where it suggests that y is in U even though it is not. The
network designer can arbitrarily decrease this probability to

the expense of increasing communication overhead. Further,
the false positive probability can be significantly reduced by
using recently proposed techniques such as [39].

3.3 Iterative Detection for DTNs

In this section, we will describe how ITRM is adapted in
DTNs as an iterative malicious node detection mechanism.
We will pick an arbitrary node in the network and present
the algorithm from its point of view throughout the rest of
this paper. We denote this node as a judge for clarification of
our presentation. Further, the counterpart to the quality of a
SP in the discussion of ITRM is the reliability of the node in
DTN in faithfully following the network (routing) protocols
to deliver the packets.

Since direct monitoring is not an option in DTNs (as
explained in Section 1.1), a judge node creates its own rating
about another network node by collecting feedbacks about
the node and aggregating them. Each judge node has a
table (referred to as a Rating Table) whose entries (which
are obtained using the feedback mechanism described in
Section 3.4) are used for storing the ratings of the network
nodes. In DTNs, due to intermittent contacts, a judge node
has to wait for a very long time to issue its own ratings for
all the nodes in the network. However, it is desirable for
a judge node to have a fresh estimate of the reputation of
all the nodes in the network in a timely manner, mitigating
the effects of malicious nodes immediately. To achieve this
goal, we propose an iterative detection mechanism which
operates by using the rating tables formed by other nodes
(acting as judges themselves). The rating table of a judge
node can be represented by a bipartite graph consisting one
check-vertex (the judge node) and some bit-vertices (i.e., a
subset of all the nodes in the network for which the judge
node has received sufficient number of feedbacks to form a
rating with high confidence). Besides, by collecting sufficient
number of rating tables from other nodes, a judge node can
generate a bipartite graph as in Section 2; which includes all
the network nodes as bit-vertices. We illustrate this process
at judge node M in Fig. 5 in which node M collects rating
tables from other judge nodes (including K and V ) and
generates a bipartite graph including all network nodes as
bit-vertices. Assuming N nodes in the network, a judge node
may create a bipartite graph with N bit-vertices by collecting
rating tables from k−1 nodes each with at least s non-empty
entries. Hence, the resulting graph would have k check-
vertices (the kth check vertex belongs the judge node). The
parameters s and k are to be determined for high probability
of detection while minimizing detection latency. Clearly,
higher s and k reduces the detection error but increases the
delay. We will discuss this issue in Section 3.5. Hence, when
two nodes establish a contact in a DTN, they exchange their
rating tables. Once a judge node collects sufficient number
of tables each with sufficient number of non-empty entries,
it can then proceed with the iterative algorithm to specify
the reputation values for all the nodes.
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To adapt the ITRM scheme for DTNs, we will present
(feedback) ratings as “0” or “1”, which results in binary
reputation values. In this special case, the iterative reputa-
tion scheme becomes a detection scheme. That is, a node
with a reputation value of zero would be interpreted as a
malicious node. Therefore, the proposed scheme detects and
isolates the malicious nodes from the network to minimize
their impact. We note that we used binary rating values for
simplicity of the setup. Alternatively, one may consider a
setup where ratings are non-binary. In this scenario, when
two nodes establish a contact, they may exchange packets
with some probability associated with their reputation val-
ues (i.e., they may exchange packets proportional to their
reputation values). Moreover, we did not incorporate Ri

values for simplicity of simulations, and hence, we set all Ri

values to one for the application of ITRM in DTNs. In other
words, we assume that the judge node does not have any
previous knowledge about the witness nodes and it trusts
each witness node equally.

3.4 Trust management scheme for DTNs

In the proposed scheme, the authentication mechanism for
the packets generated by a specific source is provided by a
Bloom filter [38] and ID-based signature (IBS) [25]. When-
ever a source node sends some packets belonging to the flow
that is initiated by itself, it creates a Bloom filter output
from those packets, signs it using IBS and sends it to its
contacts. The Bloom filter output provides an authentication
mechanism for the packets generated by a specific source.
It is worth noting that whenever an intermediate node
forwards packets belonging to a specific flow to its contact,
it also forwards the signed Bloom filter output belonging
to those packets for the packet level authentication at each
intermediate node. We do not give further details of the
authentication mechanism as source and data authentication
for DTNs have been considered before [24], [26] and they are
out of the scope of this paper.

Our proposed feedback mechanism to determine the en-
tries in the rating table is based on a 3-hop loop (referred to
as Indirect type I feedback). We will describe this scheme by
using a toy example between 3 nodes A, B, and C as follows.
Let us denote the node that is evaluating as the judge (node
A), the node that is being evaluated as the suspect (node
B), and the node that was the direct contact of the suspect

A B

B C

C A

Packets from A’s buffer

Time Stamp signed by B

Receipts  to prove its deliveries

Contact History

Request feedback for B

Feedback for B

( t
0 
)

( t
1 
)

( t
2 
)

Fig. 6: Indirect type I feedback between nodes A (judge), B (suspect) and
C (witness).

as the witness (node C). The basic working principle of the
mechanism is that after the judge node has a transaction (in
the form of passing some packets) with a suspect, the judge
node waits to make contacts and receive feedback about the
suspect from every node (i.e., witnesses) that has been in
direct contact with the suspect. It is worth noting that this
feedback mechanism is only used for constructing the entries
in the judge node’s rating table for a few network nodes. In
overall, rating tables are collected from the contacts of the
judge node and ITRM is applied to find the reputations of
all network nodes (as described in Section 3.3).

Let assume that node A meets B, B meets C and C meets
A at times t0, t1 and t2, respectively, where t0 < t1 < t2.
Indirect type I feedback between nodes A, B and C is
illustrated in Fig. 6. At time t0, A and B execute mutual
packet exchange as described in Section 3.2. When B and C
meet at t1, they first exchange signed time-stamps. Hence,
when C establishes a contact with A, it can prove that
it indeed met B. Then B sends the packets in its buffer
executing the fairness protocol discussed in Section 3.2.
Moreover, (suspect) node B transfers the receipts it received
thus far to the (witness) C. Those receipts include the proofs
of node B’s deliveries (including deliveries of the packets
belonging to node A) thus far and are signed by the nodes
to which its packets were delivered. We note that the receipts
expire in time and deleted from the buffers of the witnesses.
Hence, they are not accumulated in the buffers of the nodes.
The lifetime of the receipts are determined based on the
detection performance of the scheme (required time for the
scheme to have a high malicious node detection accuracy)
as will be described in Section 3.5. At the end of the contact,
node C also gives a signed receipt to node B including the
IDs of the packets it received from B during the contact.
Finally, when the judge node A and the witness C meet, they
initially exchange their contact histories. Hence, A learns
that C has met B and requests the feedback. The feedback
consists of 2 parts: i) Those receipts of B that are useful
for A’s evaluation (i.e., receipts which include the delivery
proofs of the packets belonging to node A), and ii) If node C
received node A’s packets from node B, it sends the hashes
of those packets to A for the latter’s evaluation. We note
that C can easily find out A’s packets by just examining the
headers as explained in Section 3.2. From B’s receipts, node
A can determine if B followed the packet delivery procedure
(which is described in Section 3.2) properly while delivering
the packets forwarded by node A at time t0 (B’s receipts
will reveal the packet deliveries of B after time t0). Further,
from the hashes of its own packets (if there is any received
by node C), node A can determine if node B had modified
any of the packets before delivery.

If both parts of the feedback are verified by node A (if
node B followed the packet delivery procedure for A’s
packets and delivered the packets properly), then the judge
A makes a “positive evaluation” as 1. Otherwise, if either
part of the feedback is not verified, the evaluation will be
“negative” as 0. We note that if node C did not receive
any packets belonging to node A, then node A’s evaluation
will be only based on the receipts of B which are provided
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by node C at time t2 (i.e., node A will evaluate node B
based on the receipts it received from node C, which is the
first part of the feedback explained before). We note that
the feedbacks from the witnesses are not trustable. Because
of the bad-mouthing (ballot-stuffing) and random attacks
(discussed in Section 3.1), a judge node waits for a definite
number of feedbacks to give its verdict about a suspect
node with a high confidence. We will discuss this waiting
time, the number of required feedbacks, and their interplay
for different adversarial models in Section 3.5. Hence, each
judge node uses the Beta distribution to aggregate multiple
evaluations it has made about a suspect using the associated
feedbacks to form its rating (verdict) for a suspect node.
That is, if the aggregation of multiple feedbacks for a suspect
node is bigger that 0.5, the suspect node is rated as “1” in
the judge node’s rating table (i.e., the node’s verdict is “1”).
Otherwise, if the aggregation value is smaller than or equal
to 0.5, the suspect node is rated as “0”2.

In the high level description of ITRM, it was implicitly
assumed that the judge has a priori knowledge about the
packet drop rate of the Byzantine node. This is unrealistic
as the nodes may apply random attacks as in Section 3.1. To
remove this assumption, we propose detection at different
levels. We observed that the sufficient number of feedbacks
that is required to give a verdict with high confidence
depends on the packet drop rate of the Byzantine nodes. In
other words, for a node with a higher drop rate, we would
require fewer feedbacks than a node with a lower drop
rate. Assume that we desire to perform detection at level
p1 = 0.8. This implies that after applying ITRM, each judge
node would identify and isolate all the Byzantine nodes
whose packet drop rates are p1 or higher. Further, assume
that the detection at level p1 requires at least M̂1 feedbacks
about a suspect node. The number of feedbacks depends on
the confidence we seek at the accuracy of a verdict (before
detection). The level of confidence is determined by the
detection strategy. For instance, for ITRM, a confidence value
in the order of 0.95 (out of 1) would be sufficient. Clearly,
the number of feedbacks also depends on the detection level.
The lower the detection level, the higher is the number of
required feedbacks to maintain the same detection confi-
dence. Hence, every judge stores together with its verdict the
lowest level of detection at which the verdict can be used.
Obviously, an entry verdict with lower detection level (e.g.,
p = 0.6) is also good for use in a high detection level (e.g.,
p = 0.8), but the inverse is not true. An entry is left empty if
the judge does not have the sufficient number of feedbacks
to give any verdict even at the highest detection level. We
note that there is no pre-determined detection level for the
proposed scheme. The judge node applies the ITRM for
the lowest possible detection level (to minimize the impacts
of malicious nodes) depending on the entries (number of
feedbacks used to construct each entry verdict) in both its
own rating table and the rating tables it collected from other
nodes. The judge checks the detection level of each table
entry (from both its own table and the collected tables) and
performs the ITRM at the detection level of the entry verdict
which is the largest. To clarify this, assume a judge node
M collected rating tables from other nodes K and V as
in Fig. 5. For this toy example, we assume that the judge
node M performs the ITRM by using only 3 rating tables
(its own rating table and the ones collected from nodes K
and V ). We further assume that the rating table entries with
the largest detection levels has a detection level of m, k and
v for nodes M , K and V ’s rating tables, respectively. Then,
the judge node M performs the ITRM at the detection level
of max(m, k, v). As a result of this mechanism, the malicious
nodes may try to survive from the detection mechanism by

2. ITRM then takes the rating tables, whose entries are associated ver-
dicts, as inputs to process and determines the final faith of a node. Hence,
the verdicts will be further examined by ITRM.

setting their packet drop rates to lower values. However,
the proposed detection mechanism eventually detects all
the malicious nodes (even the ones with lower packet drop
rates) when the judge node waits longer times to apply the
ITRM at a lower detection level. Further, as the drop rate
of the malicious nodes gets lower, the negative impact of
the malicious nodes gets less significant in terms of data
availability and packet delivery ratio.

3.5 Security Evaluation

In this section, we give an analysis of the metrics of interest
and illustrate our simulation results. Further, we compare
the performance of ITRM with the well-known reputation
management schemes (Bayesian framework [10] and Eigen-
Trust [21]) in a realistic DTN environment. Finally, we show
the performance of the proposed scheme for the malicious
node detection, availability and packet delivery ratio via
simulations (conducted using MATLAB). We assumed the
mobility models (RWP and LW) of Section 3.2 with N
nodes in the network. It is shown that the inter-contact
time distributions of the LW can be modeled by a truncated
Pareto distribution [34]. On the other hand, as we mentioned
in Section 3.2, the fact that the inter-contact times of the RWP
mobility model can be modeled as a Poisson process [40]
makes the mobility analysis tractable. Therefore, for our
analytical conclusions (in Lemmas 2 and 3), we assumed
the RWP mobility model3. However, for the simulations,
we used both RWP and LW mobility models to evaluate
the performance of the proposed scheme under different
mobility models.

In all simulations, we fixed the simulation area to 4.5km
by 4.5km (with reflecting boundaries) which includes N =
100 nodes each with a transmission range of 250m (which is
the typical value for IEEE 802.11b). For the RWP model, we
used [vmin, vmax] = [10, 30]m/s and ignored the pause time
for the nodes. For the LW model, we set the speed of every
node to 10m/s. Further, we set the scale factors of movement
lengths and pause times to 10 and 1, respectively. We used
the Levy distribution coefficients of α = 1 and β = 1. Finally,
we set the maximum movement length and pause time to
4km and 2 hours, respectively.
Confidence on a Verdict: We let λi be the inter-contact time
between two particular nodes. We analytically illustrated the
waiting time of a judge node to collect sufficient number
of feedbacks about a suspect (to give its verdict with high
confidence) and evaluated the effect of random attack on
the required number of feedbacks in the following. Let
the random variables x, y and z represent the number of
feedbacks received at a specific judge node A (about a
suspect node B), total number of contacts that the suspect
node B established after meeting A, and the number of
distinct contacts of B after meeting A, respectively. The
following lemma characterizes the time needed to receive
M distinct feedbacks about a particular suspect node B at
a particular judge node A for the RWP mobility model.

Lemma 2: Let t0 be the time that a transaction occurred
between a particular judge-suspect pair. Further, let NT be
the number of feedbacks received by the judge for that
particular suspect node since t = t0. Then, the probability
that the judge node has at least M feedbacks about the
suspect node from M distinct witnesses at time T + t0 is
given by

Pr(NT ≥M) =

∫

∞

M

∫ +∞

−∞

f(x|z, T )f(z, T )dzdx. (10)

Here, the distribution f(x|z, t) is Poisson with rate λiz/2 and

f(z, t) =

∫ +∞

−∞

f(z|y, t)f(y, t)dy, (11)

3. Similar results can be obtained for the LW mobility model using a
truncated Pareto distribution for the inter-contact times.
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where f(y, t) and f(z|y, t) are both Poisson distributions
with rates (N − 2)λi and (N − 2)λi − λiy/2, respectively.

Proof: The probability that a particular judge node re-
ceives at least M feedbacks (from distinct witnesses) about
a particular suspect node between time t0 and t0+T is given
by

Pr(NT ≥M) =

∫

∞

M

f(x, T )dx., (12)

where f(x, t) =
∫ +∞

−∞
f(x|z, t)f(z, t)dz. As a result of the

RWP mobility model, it can be shown that f(x|z, t) is
Poisson with rate λiz/2 where z represents the number
of distinct contacts of the suspect between time t0 and
t0 + T and x is the number of feedbacks received by the
judge node (about the suspect) from a subset of those z
contacts. Further, since there are N nodes in the network,
it can be shown that the number of contacts established by
any node has a Poisson distribution with rate (N − 1)λi
(excluding itself). Therefore, the number of contacts the
suspect established after the transaction with the judge, y,
has a Poisson distribution with rate (N−2)λi (excluding the
judge node and the suspect node itself), and given y, the
number of distinct contacts of the suspect z has a Poisson
distribution with rate (N − 2)λi − λiy/2.

We studied the effect of random attack on the required
number of feedbacks for a network with N = 1004. We
denote the fraction of the Byzantine nodes in the network as
W . As we discussed in Section 3.4, a judge node waits for
a definite number of feedbacks to give its verdict about a
suspect node with a high confidence. Figure 7 illustrates the
variation of a (judge) node’s confidence Σ on its verdict for
a suspect versus different levels of detection p. This is given
for different number of feedbacks (M ) when W = 0.10. As
expected, a node has more confidence at higher detection
levels and for high M values. Due to the bad-mouthing,
ballot-stuffing and random attacks, a judge node must wait
for a definite number of feedbacks to give its verdict about a
suspect node with a high confidence. Let M̂ be the minimum
number of feedbacks required about a specific suspect node
for an acceptable confidence level on a verdict. In Fig. 8,
the variance of M̂ for different detection levels (p) and
different W values is illustrated for a judge node to have
Σ = 0.95 confidence on its verdict (i.e., M̂=M for Σ ≃ 0.95).
Using Fig. 8, we conclude that a judge node needs more
feedbacks about a suspect when there are more malicious
nodes mounting bad-mouthing (or ballot-stuffing) on the
trust management.

Detection Performance: We analytically obtained the wait-
ing time of a judge node before executing ITRM and eval-
uated the effects of attacks on the detection scheme for a
network of size N in which the inter-contact time between
two particular nodes is λi. Let M̂ be the minimum number
of feedbacks required about a specific suspect node for an
acceptable confidence level on a verdict. Further, let T̂ be
the time required to receive M̂ feedbacks for a specific
suspect. The following lemma along with the simulation
results illustrated in Figs. 9, 10, 11 and 12 (which will be
presented next) provide a good insight for a judge node
about the instant at which it should apply ITRM (the proof
is similar to that of Lemma 2).

Lemma 3: Let a particular judge node start collecting feed-
backs and generating its rating table at time t = t0. Further,
let N̂T be the number of entries in the rating table of the
judge node. Then, the probability that the judge node has at
least s entries at time t0 + T is given by

4. The results illustrated (in Figs. 7 and 8) are independent of the mobility
model used.

Pr(N̂T ≥ s) =

∫ +∞

s

∫ +∞

−∞

f(z|x, T − T̂ )f(x, T − T̂ )dxdz,

(13)

where f(x, t) and f(z|x, t) are Poisson distributions with the
rates (N − 1)λi and (N − 1)λi−λix/2 for the RWP mobility
model, respectively.

We evaluated the performance of ITRM for different (k, s)
pairs (where k is the number of rating tables collected at
the judge node and s is the number of non-empty entries in
each table). Moreover, we compared ITRM with the well-
known Voting Technique in which a judge node decides
on the type of a suspect based on the majority of the
votes for that node. For the Voting Technique, we used the
Indirect type I feedback as described in Section 3.4 (since
direct monitoring is not possible in DTNs, we believe that
this feedback mechanism is the only option for the nodes).
However, in the Voting Technique, instead of utilizing the
ITRM, a judge node decides on the type of a suspect node
based on the majority of feedbacks it received (i.e., a suspect
node is identified as a malicious node if it received more
negative feedbacks than the positive ones).

We defined the success of a scheme as its capability of
detecting all malicious nodes in the network (without tag-
ging any reliable node as malicious by mistake). We illus-
trated the probability of success S of ITRM and the Voting
Technique for different (k, s) pairs versus the required time.
We used both RWP and LW mobility models (with the
parameters described previously) in our simulations. In both
mobility models, whenever two nodes establish a contact, a
transaction occurs between them in the form of the packet
exchange. Further, it is assumed that the judge and malicious
nodes start generating their rating tables and mounting their
attacks at time t = 0, respectively.

We provide the evaluation only for the bad-mouthing
on the detection scheme and bad-mouthing on the trust
management only, as similar results hold for ballot-stuffing
and combinations of bad-mouthing and ballot-stuffing. In
particular, malicious nodes provide incorrect feedbacks to
the judge nodes about their reliable contacts in order to
cause the judge nodes to misjudge the types of reliable nodes
(in their verdicts). As a result of the malicious feedback, a
judge node may make a “negative evaluation” (as described
in Section 3.4) on a reliable node. Second, the malicious
nodes collaboratively victimize the reliable nodes (i.e., attack
the same set of reliable nodes) in their own rating tables by
rating them as “0” and forward these rating tables whenever
they contact with reliable nodes to mislead the detection
mechanism.

In Fig. 9, we illustrated S versus time for fixed values of
k and varying s for the RWP mobility model. In Fig. 10,
the s values are fixed and the parameter k is varied with
increments of 5 for the RWP model. Similarly in Figs. 11
and 12, we illustrated S for ITRM and the Voting Technique
with the LW mobility model. In all figures, time is measured
starting from t = 0. Our results support the fact that RWP
shows a more optimistic routing performance compared to
LW since its high occurrences of long movements intensify
the chance of meeting destinations [31]. Further, these results
also give some indication of the false positive (tagging a
reliable node as malicious) and false negative (labeling a
malicious node as reliable) probabilities of the proposed
scheme as well. As S increases, the probability that the
scheme detects all malicious nodes gets higher along with
the probability that the scheme identifies all reliable nodes
as reliable. Similarly, as S decreases, the probability that
the scheme labels a malicious node as reliable gets higher
along with the probability that the scheme marks a reliable
node as a malicious one. In other words, false positive and
false negative probabilities are high when the probability of
success is low as in Figs. 9, 10, 11 and 12. Furthermore, these
results can also be used to determine the lifetimes of the
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receipts at the witness nodes. Knowing how long it takes to
have a high success probability at a judge node for a given
detection level, the witnesses can delete the receipts which
have been stored for more than the sufficient time required
for a high success probability from their buffers. Based on
our simulation results, we concluded that ITRM significantly
outperforms the Voting Technique by providing higher suc-
cess rates in shorter time (regardless of the mobility model)
which is a very crucial issue in DTNs. We obtained these
results for the fraction of malicious nodes W is 0.10 and
for a detection level of p = 0.8. However, we note that
the required (k, s) pairs to obtain a high success probability
do not change with the detection level, which only has an
effect on M̂ . It is worth noting that even though the time
required to get the high success probability increases with
increasing W , the performance gap between ITRM and the
Voting Technique remains similar for different values of W .

In the rest of this section, we will present our simulation
results for different network parameters and show the per-
formance of the proposed scheme for mean absolute error
(MAE) in the computed reputation values, data availability,
and packet delivery ratio. We note that we did not compare
the proposed scheme with existing DTN security schemes
such as [26] since none of the existing schemes is aimed to
provide data availability and malicious node detection as in
our work. Further, it is worth noting that there is no existing
trust and reputation management mechanism for DTNs. In
spite of this, we compared the proposed scheme with the
Bayesian reputation management framework in [10] (which
is also proposed as the reputation management system of the
well-known CONFIDANT protocol [9]) and the EigenTrust
algorithm [21] in a DTN environment. For the Bayesian
framework [10], we used the parameters from the original
work [10] (deviation threshold d = 0.5 and trustworthiness
threshold t = 0.75). Further, we set the fading parameter
to 0.9 (for details refer to [10]). It is worth noting that
neither the original Bayesian reputation framework in [10]
nor EigenTrust [21] is directly applicable to DTNs since
both protocols rely on direct measurements (e.g., watchdog
mechanism) which is not practical for DTNs as discussed
in Section 1.1. Therefore, we implemented [10] and [21]
by letting the judge nodes collect indirect measurements
(feedbacks) from the witnesses using Indirect type I feedback
as described in Section 3.4. Since direct monitoring is not
possible in DTNs, we believe that this feedback mechanism
is the only option for the nodes. Thus we assumed that,
as in our scheme, each judge node collects feedbacks and
forms its rating table. Further, each judge node exchanges
its rating table with the other nodes upon a contact and
then executes the reputation management protocol in [10] or
EigenTrust [21]. We note that in principle, ITRM performs
better than the Bayesian reputation management framework
in [10] since Bayesian approaches of [10] and [41] assume
that the reputation values of the nodes are independent.
Hence, in these schemes, each reputation value is computed
independent of the other nodes’ reputation values using
the ratings given to each node. However, this assumption
is not valid because the ratings provided by the nodes
induce a probability distribution on the reputation values of
the nodes. However, this assumption is not valid because
the ratings provided by the nodes induce a probability
distribution on the reputation values of the nodes. These
distributions are correlated because they are induced by
the overlapping set of (rater) nodes. The strength of ITRM
stems from the fact that it tries to capture this correlation in
analyzing the ratings and computing the reputations. On the
other hand, as we discussed in Section 1.1, the EigenTrust
algorithm is constrained by the fact that trustworthiness
of a peer (on its feedback) is equivalent to its reputation
value. However, trusting a peer’s feedback and trusting
a peer’s service quality are two different concepts since

a malicious peer can attack the network protocol or the
reputation management system independently. Therefore, in
principle, ITRM also performs better than the EigenTrust
algorithm. Indeed, our simulation results (presented next)
also support these arguments.

We used the simulation settings described before with the
LW mobility model. We assumed that a definite amount of
time (4 hours) has elapsed since the launch of the system
as the initialization period, during which new messages are
generated by a Poisson distribution at rate λm = 1/3000
at the source nodes and transmitted to their respective
destinations. Further, during this initialization period, rating
tables were being created at the judge nodes. Then, at time
t = 0 (after the initialization period)5, we assumed legitimate
nodes simultaneously start new flows to their destinations
(while the previous flows may still exist) and attackers start
mounting their attacks (both on the network communica-
tion protocol and the security system). Therefore, at time
t = 0, we assumed each legitimate source node has 1000
information packets which are encoded via a rateless code
for single-copy routing transmission. Hence, the number of
encoded packets required by each destination to recover a
message is roughly 10006. We assumed packets with 128
bytes payloads and a data rate of 250 kbps for each link. We
note that we used the same routing and packet exchange
protocol for ITRM, Bayesian framework and EigenTrust
algorithm (which is described in Section 3.2). We evaluated
the data availability and packet delivery ratio for these new
flows since time t = 0. Moreover, we let each judge node
execute ITRM, Bayesian framework, or EigenTrust algorithm
starting from time t = 0, and hence, we also evaluated
the MAE since time t = 0. Thus, for all simulations, the
plots are shown from time t = 0. The percentage of the
Byzantine nodes in the network is denoted as W . For ITRM,
the Bayesian framework in [10], and EigenTrust [21], we
assumed that each judge node randomly picks 10 entries
from each rating table it received in order to prevent the
malicious users from flooding the mechanism with incorrect
entries. We ran each simulation 100 times to get an average.
We executed the experiment with different parameters in
the LW mobility model (e.g., different Levy distribution
coefficients, node speeds, etc.) and obtained similar trends.
We further simulated the proposed scheme with the RWP
mobility model with [vmin, vmax] = [10, 30]m/s and ignoring
the pause times. The RWP model resulted in similar trends
as the LW model, and hence, we do not report its results
due to the space limit.

As before, we present the evaluation only for the bad-
mouthing on the detection scheme and bad-mouthing on the
trust management (as described in Section 3.1), as similar
results hold for ballot-stuffing and combinations of bad-
mouthing and ballot-stuffing. Malicious nodes provide in-
correct feedbacks to the judge nodes about their reliable
contacts in order to cause the judge nodes to misjudge the
types of reliable nodes (in their verdicts). Further, malicious
nodes collaboratively victimize the reliable nodes in their
rating tables by rating them as “0” and forward their rating
tables whenever they contact with a reliable node to mislead
the detection mechanism. In addition to the attacks on the
security mechanism (i.e., the trust management and the
detection algorithms), malicious nodes mount attacks on
the network communication protocol by both dropping the
legitimate packets they have received from reliable nodes
(with different packet drop rates) and generating their own
flows to deliver to other (malicious) nodes via the legitimate
nodes. The ultimate goal of the adversary is to degrade
the network performance (i.e., data availability and packet

5. Once the initialization period is elapsed, we set the time as t = 0.
6. It can be shown that when the decoder receives 1000(1+ζ1000) packets,

where ζ1000 is a positive number very close to zero, it can successfully
decode all 1000 input packets with high probability [35], [36].
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Fig. 7: Confidence of a judge node on its
verdict vs. the detection level for W = 0.10.
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Fig. 9: Probability of detection success for
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delivery ratio).
Mean Absolute Error (MAE): In Fig. 13, we compared the
performance of ITRM with the Bayesian reputation manage-
ment framework in [10] and the EigenTrust algorithm [21]
(in the DTN environment presented before) in terms of MAE
when the fraction of the malicious raters (W ) is 0.30. In
other words, for each legitimate judge, we computed the
average MAE (between the actual reputation value and the
computed reputation value) based on the reputation values
computed at that judge node. Further, since each legitimate
judge node computes the reputation values (of the other
nodes) itself using ITRM, Bayesian framework or EigenTrust,
we computed the average MAE over all legitimate nodes.
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Fig. 13: MAE performance of various schemes for bad-mouthing when
W = 0.30.

From these simulation results, we conclude that ITRM
significantly outperforms the Bayesian framework and the
EigenTrust algorithm in the presence of attacks. Further,
for different values of W and for different parameters in
the LW mobility model, we still observed the superiority
of ITRM over the other schemes. We note that since the
Bayesian framework shows a better performance than the
EigenTrust in terms of MAE, we compare the performance
of ITRM with the Bayesian framework for data availability
and packet delivery ratio in the rest of this section.

Availability: We define the availability as the percentage
of recovered messages (by their final destinations) in the
network at a given time. In Figs. 14 and 15, we showed
the percentage of recovered messages versus time for the
following scenarios: i) when there is no defense against the
malicious nodes and each malicious node has a packet drop
rate of 1, ii) when a detection level of 0.8 is used by ITRM (in
which each judge node is supposed to identify and isolate
all the Byzantine nodes whose packet drop rates are 0.8 or
higher), iii) when a complete detection is used by ITRM (in
which all malicious nodes are supposed to be detected and
isolated regardless of their packet drop rate), and iv) when
the Bayesian reputation management framework in [10] is
used to detect the malicious nodes. We note that in the
second, third, and fourth scenarios, the packet drop rates
by the malicious nodes are uniformly distributed between 0
and 1 in order to make the detection harder. Further, in the
second, third, and fourth scenarios, we assume the attack on
the security mechanism as described before.

The plots show that the percentage of recovered messages
at a given time significantly decreases with increasing W for
the defenseless scheme. On the other hand, we observed a
considerable improvement in the percentage of recovered
messages even after a high level detection (p = 0.8) using
the proposed scheme. We further observed that the Bayesian
reputation management framework in [10] fails to provide
high data availability with low latency. This is due to the
fact that when the malicious nodes collaboratively attack the
reputation management scheme, reputation systems which
rely on the Bayesian Approach (such as [10]) result in high
MAE in the reputation values of the nodes (as illustrated
in Fig. 13). Therefore, the reputation mechanism in [10] not
only fails to detect all malicious nodes in the network, but
it also labels some reliable nodes (which are victimized by
the malicious nodes using the bad-mouthing attack) as mali-
cious. Moreover, we considered the reliable message delivery as
the probability of the delivery of a single specific message
to its destination at any given time. Thus, the probability
of recovery (of a specific message) at the destination node
at any given time is plotted (while other flows still exist) in
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Fig. 14: Fraction of the recovered messages
versus time for W = 0.10 with the LW mobil-
ity model.
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Fig. 15: Fraction of the recovered messages
versus time for W = 0.40 with the LW
mobility model.
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Fig. 16: Probability of message recovery for
a single flow versus time for W = 10% with
the LW mobility model.
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Fig. 17: Probability of message recovery for
a single flow versus time for W = 40% with
the LW mobility model.
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Fig. 18: Packet delivery ratio versus time
for W = 10% with the LW mobility model.
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Fig. 19: Packet delivery ratio versus time
for W = 40% with the LW mobility model.

Figs. 16 and 17. These figures also illustrate the improvement
in reliable message delivery as a result of the proposed
scheme even after a high level detection. We again observed
that the reputation mechanism in [10] fails to provide fast
reliable message delivery due to the vulnerability of the
Bayesian reputation management framework to detect ma-
licious nodes.

Comparing the time required for a high success prob-
ability (for detection) in Figs. 11 and 12 and the time
required to have high data availability at the receivers, we
observed that the ITRM enables the judge nodes to calculate
the reputations of all the network nodes in a relatively
short amount of time. In other words, the time required to
calculate the reputation values of all the network nodes at
a judge node is significantly less than the time required for
the transmission of a single message, which is a significant
result for DTNs. Further, the overhead caused by the extra
messages between the nodes due to the security protocol
is negligible when compared with the data packets. This
is because the overhead due to the security mechanism is
dominated by the signed receipts from the suspect nodes to
prove the deliveries by the suspect nodes. As we mentioned
before, knowing how long it takes to have a high success
probability at a judge node for a given detection level (from
the results in Figs. 11 and 12), the witnesses can determine
the lifetimes of the signed receipts. For example, in the LW
mobility model used, the scheme provides a high probability
of success (S) in approximately 70 minutes. Therefore, the
lifetime of a signed receipt is estimated as 70 minutes, on
the average. Moreover, for the chosen mobility model, each
node establishes (on the average) 30 contacts in 70 minutes.
This means that a suspect node transfers approximately 30
signed receipts to a witness node upon its contact. Since the
length of the signature is about 20 bytes [42] and the size of a
data packet is 128 bytes, 30 signed receipts can be delivered
via 5 data packets. Considering the data rates of 250 kbps,
the overhead of 5 data packets becomes negligible when
compared to the entire message exchange between two
nodes during the contact. This also shows that the proposed
algorithm does not introduce a significant overhead burden

on the network.
Packet Delivery Ratio: We define the packet delivery ratio
as the ratio of the number of legitimate packets received
by their destinations to the number of legitimate packets
transmitted by their sources. Therefore, we observed the
impact of malicious nodes on the packet delivery ratio and
the progress achieved as a result of our scheme in Figs. 18
and 19. As before, we consider i) the defenseless scheme,
ii) a detection level of 0.8, iii) a complete detection, and iv)
the Bayesian reputation management framework in [10]. We
observed a notable improvement in the packet delivery ratio
as a result of the proposed scheme. As W increases, the
packet delivery ratio of the defenseless scheme decreases
significantly while our proposed scheme still provides a
high packet delivery ratio even at the detection level of
0.8, which illustrates the robustness of the proposed scheme.
Finally, we observed that the scheme in [10] fails to provide
a high packet delivery ratio due to its vulnerability against
colluding malicious nodes as discussed before.

4 CONCLUSION

In this paper, we introduced a robust and efficient security
mechanism for delay tolerant networks. The proposed secu-
rity mechanism consists of a trust management mechanism
and an iterative reputation management scheme (ITRM).
The trust management mechanism enables each network
node to determine the trustworthiness of the nodes with
which it had direct transactions. On the other hand, ITRM
takes advantage of an iterative mechanism to detect and
isolate the malicious nodes from the network in a short
time. We studied the performance of the proposed scheme
and showed that it effectively detects the malicious nodes
even in the presence of the attacks on the trust and de-
tection mechanisms. We also illustrated that the proposed
scheme is far more effective than the Bayesian framework
and EigenTrust in computing the reputation values in a
DTN environment. Moreover, using computer simulations
we showed that the proposed mechanism provides high data
availability with low information latency by detecting and
isolating the malicious nodes in a short time.
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