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ABSTRACT 

The B-average divergence for m-distinct ~asses, resulting 
from the linear transformation y = Bx, is proposed as a feature se­
lection criterion, where B is a k by n matrix of rank k ~ n. It is 
shown that if the B-average divergence resulting from B is large 
enough, then the probability of misclassification, considered as a 
function of the class of all k by n matrices, is essentially mini­
mized by B. A computer program, utilizing a gradient procedure, is 
developed to numerically maximize the B-average divergence and re­
sults are presented for the Cl flight line. For this example, cor­
responding to 9-distinct classes, most of the discriminatory infor­
mation is found to lie in a 3-dimensional subspace, defined by an 
appropriately chosen 3 by 12 matrix B. 

1. INTRODUCTION 

This paper considers the problem of feature selection or reducing the dimension of the data to 
be processed from n to k. By reducing the dimension of the data from n to k, classification time is 
generally reduced. Yet the dimension reduction should not be so great that classification accuracy 
is impaired. Thus, consider the general problem of classifying an n-dimensional observation vector 
x into one of m-distinct classes ITi, i=1,2, ••• ,m where each class ITi is normally distributed with 
mean ~i and covariance Ai, so that we write ITi = ITi(~i,Ai). It can be shown (Anderson, 1958) that 
the probability of misclassification is minimized if a maximum likelihood classification procedure 
is used to classify the data. Thus, the notation PMC is used to denote this minimal probability of 
misclassification. The dimension of each observation vector to be processed can be conveniently re­
duced by performing the transformation y = Bx, where B is a k by n matrix of rank k. Thus, the n­
dimensional classification problem transforms into a k-dimensional classification problem. The-prob­
lem becomes one of classifying Tach k-dimensional observation vector y into one of m-distinct classes 
ITi, where now ITi = ITi(B~i, BAiB). In this k-dimensional space determined by the row vectors of B, 
the minimal probability of misclassification resulting from applying a maximum likelihood classifica­
tion procedure is denoted by PMCB• Since the transformation y = Bx produces a linear combination of 
the components of the observation vector x, it can be shown that, in general, information is lost and 

PMCB ? PMC 

Thus, for a fixed k, the feature selection problem could be stated as: select a k x n matrix B from 
the class -of all k by n matrices of rank k such that 

* Work sponsored in part by the National Aeronautics and Space Administration, Johnson Space Center, 
Earth Observation Division, under Contract NAS 9-12777. 
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where PMCB represents the probability of misclassification resulting from applying a maximum likeli­
hood classification procedure on the transformed data Bx. 

The problem of evaluating and minimizing PMC is handled indirectly. Let D(i,j) denote the in­
terclass divergence between classes i and j (Kullback, 1968), as determined using n-dimensional infor­
mation. Sim~larly, let DB (i,j? represent the ~nterclass divergence between classes i and j resulting 
from performlng fhe transformatl0n y = Bx. It 1S noted that the interclass divergence is a measure 
of the "degree of difficulty" of discriminating between classes TT· and TT. with in general, the larger 
th . t 1 d' h h " " 1 J e ln erc ass 1vergence, t e greater t e separation between classes TT.and TT·. Since (Kullback 
1968) it is true that 1 J ' 

it follows that the difference 

can be considered as a measure of the separation to be gained for classes TTi and TTj' If the average 
divergence for m classes is defined by 

m-l m 
D = err D(i,j) where c 

i=l j=i+l 

2 
m(m-l) 

it follows that the "B-average divergence", DB' satisfies 

m-l m m-l m 
DB = c r r 

i=l j=i+l 
:: c r r 

i=l j=i+l 
D (i ,j) 

i.e., that DB S D for every k x n matrix B; k 1, ... ,n. 

We will prove the following theorem. 

Theorem: If D = DB' then PMC
B 

= PMC. 

D 

These results suggest for fixed k less than n, that one should select B so as to maximize D . 
Tou and Heydorn (1967) proposed a procedure to maximize DB (i,j), as a function of B. However, Bthis 
procedure is valid only in case m = 2, i.e., the two-class problem. Babu (1972) extended the above 
procedure to the multi-class problem by proposing a procedure for maximizing DB' Both procedures 
amount to computing the gradient of the appropriate function DB or Dg(i,j) with respect to B. Babu's 
expression for the gradient of the average divergence DB with respect to B is (in addition to being 
incorrect) rather lengthy and numerically unattractive since it is expressed in terms of many eigen­
values and eigenvectors. In this paper, we derive a simple expression for the gradient of DB with 
respect to B. This expression for the gradient is free of any requirement for computation of eigen­
vectors or eigenvalues, and, in addition, all matrix inversions necessary to evaluate the gradient 
are available from computing DB' Thus, the feature selection problem becomes one of developing a 
numerical procedure to maximize DB over the class of all k by n matrices of rank k. We will show 
that the maximum value of DB is attained on the compact set, S = [B:BBT = I k ] and, further, that the 
maximum value of DB is attalned on [B£S: B = (IkIO)u where U is an element of the group of orthogonal 
transformations on En]. 

The problem of selecting the "best" k is handled by obtaining the "best" B for various values of 
k less than n. Then an "adequate" value of k is determine,d by computing the difference D - DB, and 
comparing D(i,j) with DB(i,j) for all distinct class pairs, where now, B is assumed to maximize DB 
for a fixed k. The comparison of D(i,j) with DB(i,j) for all distinct class pairs constitutes what 
is called a "Class Separability to be Gained Map". For a given set of classes TT and TT., the value 
of DB(i,j) can be considered to represent the separability between classes TTi an~ TTj re~ulting from 
the transformation y = Bx. The difference D(i,j) - DB(i,j) ~ 0 represents the separation to be gained 
for this class pair. Thus, we desire to find an integer k (preferably as small as possible) and cor­
responding optimal B such that the difference D (i ,j) - I1l (i ,j) is "small" for all distinct class pairs. 
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A computer program, based on the mathematical results of the next section, was subsequently de­
veloped by TRW Systems to maximize Os for a given k (Quirein, 1972). The program utilizes (in the it­
erative solution of the variational equation for B) a version (Johnson, 1969) of the Davidon Iterator 
(based on the Davidon-F1etcher-Powe11 technique), generously provided by Johnson Space Center. 
Numerical results for a 12-dimensiona1 data set corresponding to 9 distinct classes obtained from C1 
flight line data (Bond, 1972) are discussed in the final section. 

2. MATHEMATICAL DEVELOPI1ENT 

This section is included to derive and interpret the mathematical equations necessary to maxi­
mize the average divergence Os numerically, and to relate the average divergence to the probability 
of misc1assification. Also presented are additional mathematical results, obtained as an outgrowth 
of the University of Houston Mathematics Department Seminars in Pattern Recognition and Classifica­
tion Theory. Many of the results derived below involve computing the partial derivative of a scaler 
~ with respect to a matrix B = {b .. }. We use the notation 

1.J 

to represent the matrix 

evaluated at B. Let 

B; k by n matrix of rank k s n 

Aj n by n real symmetric matrix of rank n 

S; n by n real symmetric matrix 

and define 

where tr denotes the trace of a matrix and superscript T denotes the transpose of a matrix. We prove 
the following Lemma. 

Lemma 1 

and thus 

B (~n T = (0) 

Proof: Making use of the elementary properties of the trace of a matrix, and assuming no variation 
i;l"the matrices A and S, it follows that the differential of ~ is given by 

Thus, the result follows by noting 

3B-3 



It should be noted that any B-matrix corresponding to the selection of the transpose of any k-distinct 

eigenvectors of 1\-l S satisfies (~) T = (0). Lemma 1 shows that each row vector of 4t is orthogonal 
3B oB T 

to the subspace de termined by the row vectors of B, so that we may assume in this case that BB = I 
where Ik is a k by k identity matrix. Define the scaler k' 

\vhere log IB1\8TI denotes the logarithm to the base e of the determinant of the matrix B 1\ 8T. 

Lemma 2 

and th.us 

Proof: 

(
3 r ) T 

8 as = Ik 

tr{a~B [1\BT(B 1\ 8T)-1]} 
ij 

so that the result "follows. 

Now, let Q be any nonsingu1ar k by k matrix; the following Lemma follows immediately from Lemmas 1 and 
2. 

Lemma 3 If B QB, where Q is any nonsingu1ar k by k matrix, 

(:~ ) T =(~~ ) T Q-1 

and 

G~) ~ =(:~f Q-1 

aD
B 

He now define the average divergence DB and :ompute aB 
classes, normally distributed with means and covar~ances: 

\.Ii n-dimensional mean vector for class i. 

then 

Assume the existence of m-distinct 

1\i n by n covariance matrix for class i, assumed to be positive definite. 

The interclass divergence between classes i and j is defined [Ku11back, 1968] as 

D(i ,j) - n 

Note that when 1\i = 1\j and \.Ii \.I j , 

D(i ,j) 0 

so that D(i,j) is in a sense, a measure of the degree of difficulty of distinguishing between classes 
i and j, with the larger the value of D(i,j), the less the degree of difficulty of distinguishing be­
tween classes i and j. We define the average divergence D to be 
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where 

Let 

m-l m 
D = c E E D(i,j) 

x 

B 

y = Bx 

S. 
~ 

i=l j=i+l 

m 
f tr{ L: 

i=l 

m f tr{ E 
i=l 

c = 2/ (m2 - m) 

an n-dimensional observation vector 

a k by n matrix of rank k, with k ~ n, and 

the k-dimensional transformed observation vector. 

The m transformed classes are also normally distributed and satisfy 

k-dimensional mean vector for class i 

BA.B
T 

~ 
k by k covariance nlatrix for class i, which is positive definite by 
the assumptions on B and Ai' 

Thus, in the range space of B, the B-induced interclass divergence DB(i.j), is, by definition of the 
interclass divergence; 

DB(i,j) 1/2 
T -1 

~ .. <5~.)BT} tr{(BA.B) B(A. + 
~ J ~J ~J 

+ 1/2 T -1 
<5 .. <5~.)BT} - k tr{(BA.B) B(A. + J ~ ~J ~J 

Similarly we can define the B-average divergence, DB' as 

m-l m 
DB = c L: E DB(i,j) 

i=l j=i+l 

where, as defined previously 

m 
<5~jJ S. E [A

j + <5 .. 
~ 

j=l ~J 

JFi 

is constant and need be computed but once if DB is to be maximized numerically. 
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Note that in performing the transformation y = Bx, the dimension of each observation is reduced 
from n to k, so that in a sense, information is lost. A measure of the information lost is given by 
the difference 

which is necessarily non-negative (Ku11back, 1968). We remark that if DB = D, then B is said to be 
a sufficient statistic for the average divergence. We are interested in minimizing the information 
lost, as measured by the average divergence. Thus, it is desired to maximize the B-average diver­
gence, or equivalently, minimize - DB' He prove the following theorem: 

Theorem 1 - (i) Each k by n matrix of rank k maximizing DB must satisfy 

(0) 

(ii) If B QB, where Q is a nonsingular k by k matrix 

(iii) There exists a k by n matrix B of rank k that maximizes Dn" 

Proof: the proof of (i) and (ii) follows from the definitions of B and DB' and Lemmas 1 and 3. T 
Since BB is positive definite, there exists a nonsingular k by k transformation Q such that (QB)(QB) 
= Ik~ and since DQB = DB by (ii) it suffices to consider only those matrices B belonging to the set 
S = LBIBBT = IkJ. But ~ is a compact subset of Ekn. The proof of (iii) follows by noting that DB 
is a continuous scaler valued function on the compact set S. 

Thus, the problem of maximizing DB amounts to determining kn distinct elements b .. such that if 

B = {bij }, then :DB = (0). We show that it is only necessary to determine k(n-k)Jdistinct elements, 

for assume B is o~ the form 

B = (lk: S) 

(
aDB) aDB where S is a k by n-k matrix so that we write ---- = --- to represent the partial derivative of the aS ij as 

B-average divergence ,vi th respect to the matrix S, evaluated at B = (Ik S) . 
aD

B 
aDB 

Corollary 1.1 - If B = (lk : S), then as- = (0) implies ~ = (0) 

Proof:. lnunediate, since for all B, by Theorem 1, B (:~B )T = (0) 

Lemmas 1-3 enable us to briefly investigate the Bhattacharyya Distance (Kailath, 1967) for two 
multivariate normal distributions. The Bhattacharyya Distance between two classes TIl = TIl(~l,Al) and 
TI2 = TI 2 (u2,A2) is defined as 

where 

H(1,2) 

The Bhattacharyya Distance is perhaps desirable as a feature selection criterion, since a bound on the 
probability of misclassification .can readily be obtained from R(1,2) (Kailath, 1967). It follo~ls that 
the transformed Bhattacharyya Distance resulting from the transformation y = Ex is given by 
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r 
" 

~(l,2) 

where 

We prove 

Theorem 2 - Let a k by n matrix B of rank k extremize the transformed Bhattacharyya Distance Rs(l,2). 
Then it is necessary B satisfy an equation of the form 

= (0) 

Also, if B QB, where Q is a nonsingular k by k matrix, then 

Immediate by Lemmas I, 2, and 3. 

-1 
Q 

a~(l,2) a~(l,2) 
Corollary 2.1 - If B = (Ik : S), then as (0) implies aB 

Proof: ( 
a~(l,2)\T 

Immediate, since for all B, B aB J= 0 by Theorem 2. 

(0) 

Theorems 1 and t reveal that in maximizing either DB or Rs(l,2), it suffices to consider only those 
B satisfying BB = Ik (i.e., for any rank k matrix B, there always exists a nonsingular k by k matrix 
Q satisfying (QB) (QB) T = I k). Since S={B IBBT = Ik} is a compact subset of the class of k by n matrices 
(with the Euclidian topology), it follows that the maximum of DB or RB(l,2) must necessarily be ob­
tafned on 13. ~oreover, given any B E B, it is possible to construct an (n-k) by n matrix S satisfying 
SS = In-k, BS = (0), and such that the n by n matrix 

P =c) 
satisfies ppT = In' i.e., P is an orthogonal matrix. It follows that for any B E B, 

B = (Ik : 0) p 

and the solution to the feature selection problem amounts to optimally "rotating" or "reflecting" the 
original coordinates of the spectral measurement space (i.e., X + PX) and then selecting the first k 
components of the reSUlting vector. 

The following theorem [Bellman, 1970J is essential to the discussion and is included since it 
can be used to show 0 ~ DB ~ D and RB(1,2) ~ R(1,2) usin8 only expressions previously defined in this 
section (i.e., by only using matrix algebra). 

Theorem 3 - Consider the sequence of symmetric matrices 

A 
r 

i,j=l, .•• ,r 
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for r=1,2, .•. ,n. Let Ak (A ) denote the k'th characteristic root of A , where 
r r 

Then 

Corollary 3.1 

WT can use Corollary 3.1 to relate tr{B~BT} to tr{~}, where ~ is any n by n symmetric matrix 
and BB = I k . Simply "extend" B to a nonsingular n by n matrix P =(~)where P pT = In' the n by n 

identity matrix. The eigenvalues of P ~ pT are the same as those of ~, so that Theorem 3 and 
Corollary 3.1 apply to B ~ BT, considered as a submatrix of p'~ pT. Thus, it follows that when 
BBT = Ik, the trace of B ~ BT is bounded below by the sum of the k-smallest eigenvalues of ~ and is 
bounded above by the sum of the k-largest eigenvalues of~. Using this result, the following Theorems 
can be proved and are included for completeness. 

Theorem 4 - Denote the n eigenvalues of 

~:l S. by A. 1 ~ A. 2 ~ ..... ~ A. Then 
1. 1. 1., 1., 1,n 

£. m k 
2 L LA. '+n k 

i=l j=l ~,J -

c m k 
k S DB ~ 2 L L 

i=l j=l 

, 
A. • 
~,J 

- k 

Theorem 5 - Let A2 ~ A2 2 -1 
~ An > 0 be the eigenvalues of ~l ~2' and 1 2 

suppose that 

j k-j-l 
<I> 
max IT (Ai + l/Ai )} { IT (A . + l/A .)} 

n-~ n-~ 
i=l i=O 

maximizes the product of any k factors of the form (Ai + l/A
i
); then 

~(1,2) 
T (~l + ~2 ) -1 <l>max 

S 1/8 012 2 012 + 1/2 log -2---
< R(1,2) 

We remark again that Theorem 3.0 can also be used to shm'7 DB S D and RB(1,2) ~ O. \le conclude this 
section by outlining a proof of the following Theorem which relates the average divergence DB to 
the probability of misclassification PMC

B
• 

Theorem 6 - D = DB implies PMC = PMCB 

Proof: Let Pi(X) be the density function for the i'th class, defined by mean ~i and covariance ~i. 
Let gi(Bx) be the cOfresponding transformed density function for the i'th class defined by mean B~i 
and covariance B A. B. The condition D = DB [Kullback, 1968] implies 

~ 

Pi(X) gi(Bx) i,j=l, ••• ,m almost everywhere 
p. (x) = g. (Bx) 

J J 

so that a vector x is assigned to class i uSing a maximum likelihood classification procedure (with 
the Pi(X») if and only if Bx is assigned to class i using a maximum likelihood classification (with 
the gi(Bx». The result follows by noting that for any measurable set R, 

!gi(y)dY =! 

R B-l(R) 
= {xiBx e:R}. 

p.(x)dx 
~ 
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3. NUMERICAL RESULTS 

Based on the results of the last section, our feature selection criterion is stated simply as: 

where B is a k by n matrix of rank k. Since D - DB ? 0, we will take the difference D - DB to be a 
measure of the mformation lost in performing the transformation y = Bx. The problem of maximizing 
DB is handled numerically using the algorithm of Fletcher and Powell [1963], incorporated into a com­
puter program essentially as documented by Johnson [1969]. The expression for the gradient of D is 
as in Theorem 1. Using the above, a sample problem is solved as discussed below. B 

The twelve dimensional (n=12) statistics for nine distinct classes, corresponding to nine dis­
tinct crops along the Cl Flight Line were obtained. For a fixed k 5 n, an initial B is obt2ined by 
exhaustively determining the B which maximizes DB subject to the constraints BBT = Ikand bij = bij, 
where B = {bij}. Such a procedure constitutes what is called an "Exhaustive Search Procedure". Using 
the "best" B as obtained above for a first guess, DB is maximized numerically with the results being 
presented by Figure 1 for various values of k. The bottom line corresponds to the first guess and 
the top line corresponds to the solution. The Figure indicates that essentially all the "information" 
is in a subspace of dimension 6 or less. 

One can graphically display "separability" using what is called a "Class Separability to be 
Gained Map". Consider a coordinate system whose ordinate (for a given value of k) is DB (i,j) where 
now B is assumed to maximize DB' The abscissa is the value of D(i,j), in the original space and for 
a given i-j pair, represents the separability between classes i and j. Since D(i,j) ? DB(i,j), the 
distance of a given point from the diagonal line D(i,j) = DB(i,j) represents the separability to be 
gained for that class pair. Thus, for a given class pair, its location along the abscissa is fixed, 
and as k increases, the point corresponding to that class pair can only move vertically toward the 
diagonal boundary. ObviousfY, for large enough k, all the points will lie on the diagonal boundary. 

Figures 2 and 3 present Class Separability to be Gained Maps corresponding to k = 3 and k = 6, 
respectively. Each figure presents the class separation to be gained corresponding to the B obtained 
from the exhaustive search procedure (the initial B) and the B which maximizes DB. In addition, it 
is possible to relate the results, i.e., D - DB to the probability of misclassification. This is es­
sentially accomplished by analytically computing a bound on the probability of misclassification, com­
puted in range space of the matrix B. The bound is obtained [Quirein, 1973] by considering a distinct 
linear discriminate function for each distinct class pair. For a fixed k, a bound is presented for 
the initial B obtained from the exhaustive search procedure and for that B which maximizes DB obtained 
from the optimization program. From the figure, an "adequate" value of k is seen to be 3, so that for 
this particular problem, all the discriminatory information essentially lies in some three-dimensional 
subspace. 
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