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Abstract: In the present study, 1D, 2D, and 3D fractional
hyperbolic telegraph equations in Caputo sense have
been solved using an iterative method using Sawi trans-
form. These equations serve as a model for signal ana-
lysis of electrical impulse transmission and propagation.
Along with a table of Sawi transform of some popular
functions, some helpful results on Sawi transform are
provided. To demonstrate the effectiveness of the sug-
gested method, five examples in 1D, one example in 2D,
and one example in 3D are solved using the proposed
scheme. Error analysis comparing approximate and exact
solutions using graphs and tables has been provided.
The proposed scheme is robust, effective, and easy to
implement and can be implemented on variety of frac-
tional partial differential equations to obtain precise series
approximations.

Keywords: Caputo derivative, fractional hyperbolic tele-
graph equation, Sawi transform

1 Introduction

Fractional calculus deals with derivatives of fractional
orders, and the concept can be dated back to a letter
from Leibnitz to L’Hospital discussing the possibility of
fractional order derivatives [1]. In the present day, multiple
different fractional derivatives exist, for example Caputo
derivative, Riemann-Liouville derivative [2], Atangana-
Baleanu Caputo derivative [3], etc. There exists a wide
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variety of fractional partial differential equations (FPDEs),
one such type of equation being the fractional hyperbolic
telegraph equation, which is used as a model in signal
analyses of transmission and propagation of electrical
impulses and other fields [4]. Many methods have been
developed and used to solve FPDEs, such as iterative
Laplace transform method [5], homotopy analysis method
[6], finite difference method [7], Adomian decomposition
method and variational iteration method [8], computa-
tional model based on hybrid B-spline collocation method
[9], etc.

In the 1880s, Oliver Heaviside developed the tele-
graph equation to describe the time and distance on an
electric transmission line with current and voltage [10].
As fractional hyperbolic telegraph equations (FHTEs) are
a kind of FPDE, it is difficult to solve them by the usual
means. Therefore, multiple techniques have been devel-
oped and applied to solve FHTEs, such as Chebyshev Tau
method [11], Sinc Legendre collocation method [12], He’s
variational iteration Method [13], fractional skewed grid
Crank-Nicolson scheme [14], meshless method using
radial basis function [15], hybrid meshless method by
combining GFDM in space domain and Houbolt method
in temporal dimension [16], shifted Jacobi collocation
scheme [17], finite difference scheme based on extended
cubic-B spline method [18], least square homotopy per-
turbation technique [19], etc.

Definition 1. One, two, and three dimensional (1D, 2D,
and 3D) FHTEs are given as follows [20]:

D6 + Bé(e, t) + ad; = O + g(e, 1), 6]
D6 + 20wDP8 + P26 = bge + 64y + (e, 0, 1), (2)
D8 + 2wDPS + P26 = 8ge + By + 600 + 8(€, 0, T, 1), (3)

where f§ and « are arbitrary constants and 4 is an unknown
function, w is the fractional order of the equation, t is the
time variable, €, 0, and 1 are the x, y, and z dimensions,
respectively. D/ is the fractional order derivative of order
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w in Caputo sense. Alternatively, 6 can be used as the
fractional order derivative of order w in Caputo sense of
the function 6. When dealing with space fractional tele-
graph equations, x would be used to refer to the xdimension.
0(e,0,0) = g, 0), 6(e, 0,0) = g(¢,0),6(g,0,7,0) =
g (e, 0,7) and 6(¢, 0, 7, 0) = g(¢, 0, T). For the sake of
consistency, t, w, €, g, and T will have the same meaning
as stated above throughout the manuscript.

Different transforms like Natural transform [21], Sumudu
transform [22], Mohand transform [23] etc., can be applied
on pre-existing techniques to solve FPDEs, for example,
Natural transform has been used with Adomian decompo-
sition method, also known as Natural transform decompo-
sition method to solve FHTESs [24], Shehu Transform is used
in an analytical approach to solve time-fractional Schro-
dinger equations [25], differential transform method has
been used to solve FPDEs like Bagley-Torvik equation
and composite fractional oscillation equation [26], a
method developed by combining time discretization and
Laplace transform method has been used to numerically
solve fractional differential equations via quadrature rule
[27], Sumudu transform has been combined with homo-
topy perturbation method to solve non-linear fractional
differential equations [28], inverse fractional Shehu trans-
form method has been used to solve fractional differential
equations [29] etc. In the present study, Sawi transform is
used in an iterative approach, which is based on an analy-
tical approach using Shehu transform to solve FHTEs [20],
to obtain a series solution to FHTEs in 1D, 2D, and 3D.

Definition 2. Sawi transform of a function §(t) is as fol-
lows [30]:

(e9]

" Ie‘ﬁ&(t)dt “85), t>0,u>0, (4
0

S[6()] =

where y is the transformed variable. u will be the default
transformed variable for the entire manuscript.

Definition 3. Linearity property of Sawi transform is as
follows [30]:

(e9]

%Ie’ﬁ(aﬁl(t) + b8,(t))dt

0

Slady(t) + bba(1)] =

17 e 17 ¢ (5)
- a [e ko (ode + bPJe RS ()dt
u

= aS[6:(t)] + bS[6,(t)].
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Definition 4. Scaling property of Sawi transform is as
follows [30]:

[ee]

je’ﬁ&(t)dt _5), t=0,u>0
u2

0

S[6()] =

Then,

[e¢]

" Je*ﬁa(at)dt

0

S[8(at)] =

Let at = p, then dp = adt

1 T _b
S[8(at)] = a—yz,[e au§(p)dp
% 6)

a _p =
= e au§(p)dp = aé (ap).
(ap)? »!

Definition 5. Translation property of Sawi transform is as
follows [30]:

SI8()] = Ie‘ﬁ(‘i(t)dt —8G), t>0,u>0
’J 0
Then,
ki _ I &_H
S[e“5(0)] = = ky)25(1 ! kp). @

Definition 6. Caputo derivative of a function 6(t) is as
follows [31]:

CHwssy — 1 _ gym-w-1g(m)
CpUs(t) r(m—w)l(t gym-w-15m(@)de,  (8)

wherem-1<w<m meN,e>0.

Definition 7. Sawi transform of Caputo derivative of a
function 6(t) is as follows [32]:

m-1 w-(k-1)
SID#6(8)] = —S[6(H)] - Z() 800).  (9)
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2 Outline of the study

Outline of the study has been provided below.

¢ In Section 3, general formula for the 1D FHTEs is devel-
oped. For the 2D and 3D FHTEs, Appendixes A and B
have been referenced.

¢ In Section 4, a total of seven examples have been solved to
illustrate the efficacy of the proposed method. Examples 1, 4,
and 5 involve 1D time FHTEs, Examples 6 and 7 involve
1D space FHTEs, Example 2 involves 2D time FHTE and
Example 3 involves 3D time FHTE. A series solution is devel-
oped for each example using the proposed method.

¢ In Section 5, graphs and tables for Examples 1, 2, 4, 5, 6,
and 7 have been provided to perform error analysis.

¢ In Section 6, the conclusion has been provided.

3 Development of the formula

The form of 1D time telegraph equation is as follows [20]:
D{’8(e, t) + L[6(e, t)] + N[6(e, )] = q(e, 1),

where L refers to the linear operator and N refers to the
nonlinear operator. D/’6(e, t) is the Caputo derivative of
6(e, t). Applying Sawi transform on equation

S[D’8(e, t)] + SIL[6(e, )] + N[6(e, )]] = Slq(e, D],

1 m-1 1 w-(k-1)
Wsw(s, DI (—) 8%(0)

k=0
= Slq(e, )] - S[L[6(e, D] - S[N[5(e, D],

m-1 w-(k-1)
= 8, t) = S‘llu“{ > (%) 8®(0) + S[q(e, t)])]
k=0

= ST (SILIS(e, D] + SIN[S(e, DIDI.

Now, linear and nonlinear operators can be decom-
posed in the following manner:

L[6] = L[ Oi&,(s, t)}

r=0

0 r r-1
= L[6o(e, )] + . H 8ile, t)] - L[ Y 8i(e, t)”.
i=0 i=0

r=

=N

N[6]=N 02015,(8, t)]

r=0

0 r r-1
= N[6o(g, )] + ZlN[Zﬁi(e, t)] ~ N[ Y 8i(e, t)”,

r=1 i=0 i=0
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0 m-1 1 w-(k-1)
=) Sile, t) = s-l[u“( > (—) 80(0) + S[q(e, t)]]]
k=0 k=0\ H

= ST S(LISo(e, O] + Nlbo(e, D]

- S-l[u%[fu&(e, 0]

r=1

0o r r-1
+ ZlN[ 8i(e, t)] — N| Y6, t)”]]
r=1 i=0 i=0

m-1 1 w—-(k-1)
= bole, t) = Sl[u"’( > (;) 89(0) + Slq(e, t)]ﬂ,
k=0

= Bi(e, t) = =S7[uS(L[So(e, O] + N[bo(e, DI,

r=1

N[é&-(e, t)] - N[g&(s, t)”]],

r=1,2,3,4,5,....

= 6r+1(€’ t) = _S_I{HMS[ZL[6Y(£’ t)]

o0
+ 2
r=1

The general formulae for 2D and 3D can also be
derived in a similar manner. Their proofs have been pro-
vided in Appendixes A and B, respectively. It can be
observed that the first term §, depends on the initial
conditions.

4 Examples and calculations

Each example has a series solution calculated at a spe-
cific w and the exact solution is also provided. Examples
1, 4, and 5 contain 1D time FHTEs, Examples 6 and 7
contain 1D space FHTEs, Example 2 contains 2D time
FHTE and Example 3 contains 3D time FHTE.

Example 1. Consider the following 1D time FHTE [20]:
DP6 =6 — 26; — 6, (10)

where 6(g, 0) = e® and (¢, 0) = -2e%,0 < w < 2 are
the initial conditions.

bo(e, t) = b6(g, 0) + toi(e, 0) = e — t(2e%) = e?(1 - 2t).
Applying Sawi transform on Eq. (10)

S[D{’8(e, )] = S[6 — 26; — beel,
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m-1 1 w-(k-1)
=6=5" uw(z(;) 5<k><0)] + SpOSIR@)II,

k=0

m-1 1 w-(k-1)
=68 =51 H“(Z(—) 6<">(0)] , (11)
k=0\H
= 6r+1 = S_l[ﬂwS[R(ar)]]' (12)

Considering m = 1 in Eq. (11),
8o = 5-1[15(0)] — 5(0) = e£(1 - 20),
U

R[6o] = 60 — 2(80)t — (60)ec = 4e°.
Using Eq. (12)

81 = S [u(S[4ef])] = 6; = 4esS7[uv1] = 6i(e, t)

_ heft”
Iw+1)’
—8efwtw1
R[61] = 61— 2(61)¢ — (1) = ————.
[61] = 81— 2(61)¢ — (81)ee Fw+1)

Using Eq. (12)

Al of o] —8efwt? !

S [" (S[ T+ 1) m =0

_ _—8efw g1
I'w+1)

_ —8efwl(w)t?*!
Iw+ DI Qw)’

[

[C(@)*=?] = by, )

16efw(Rw - DI (w)t?@—2

R[65] = 65 — 2(62)¢ — (62)ee = I'w + DI Qw)

Using Eq. (12)

5, - Sl[uw(s[ 1600w — DI@)P-2 m =6
I'w + DI'Qw)

_ 16efww - DNIM'(w) 51
I'w + NI'w)

_ 16efww - DI'(w)IQw - Dt3¥-2

B I'w + DI'QRw)IBw - 1)

O(e, t) = bg(e, t) + 6i(e, t) + 6x(g, t) + 63(e, t) + ...

[FQw - D3] = By(e, )

>

4ectv 8eftwl(w)t2w-1

Tw+1) T+ )HIQw)
16efww — DI (w)I' 2w — 1)t3¥-2

Iw+DIWIGw -1

=6, t) = e*(1 - 2t) +

Putting w = 2, the series solution is as follows:

2 + @) _ @ + @) _ )
1 2! 3! 41

(e, t) = ef(l -
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Also, the fractional equation becomes,

O = 0 — 26 — Ope.

Given the same initial conditions, the exact solution
of this differential equation is 6(g, t) = e*~% [20], and it
agrees with the series solution obtained by the iterative

scheme.

Example 2. Consider the following 2D time FHTE [20]:

D6 + 3D + 26 = 8¢ + Oy0,

(13)

where 8(g, 0, 0) = e£*? and 68(¢, 0, 0) = —3e€*9 are

the initial conditions.
bo(g, 0,t) = b6(g, 0,0) + to(e, 0,0) = 519 —
= eto(1 - 3t).
Applying Sawi transform on Eq. (13)
S[D?“8 + 3D{6 + 26] = S[6ee + 645l,
mo1 0\ w01
=68(g,0,t) = S Z (—) 5W(0)
k=0\ M

+ ST [p*(S[R[S] - 3D*6])],

3t(e£+a)

| SV )

k=0
61 = S [P*(S[RIS] - 3D{6])].
r=0,1,2,3,...

Considering m = 1 in Eq. (14),
8o = 31[16(0)] — 6(0) = e*+9(1 - 3¢),
u

R[60] = (60)ee + (60)g0 — 260 = 0.
Using Eq. (15)
61 = ST (-3S[D{*6o])] = -3S ' [u*(S[D{*6o))],

_3Et0
= %

—L_64(0) = S[DP 8]

Hqu

_2pE+0O E+0fw+1
= 61 = —33_1 sz BL‘U = 51 = %;,
U I'w +2)

R[5l] = (61)68 + (61)00 - 261 =0.

SID{*8o] = ;5S180] -

Using Eq. (15)
8, = S p**(=3S[D{61])] = -3S~'[W?*(S[D{*81])],

S[D{6,] = H%S[fsl] ~ —1261(0) = S[D¥61] = 9ec+,

w+1
u

(15)
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_27es+0t2w+1
I'w+2) ’

R[62] = (62)58 + (52)017 - 261 = 0.

= 61 = —38‘1[}12‘”(96“‘7)] = 51 =

Using Eq. (15)
83 = S [p?*(-3S[D{’8,])] = -3S[u**(S[D{*8,])],
S[D{6,] = ﬁS[sz] - —1.5,(0) = S[D{6,] = —27ec+ou®,

”w+1
81e£+at3w+1

= 65 = 3§ [u2(-27et*u¥)] = 3= ——,
3 [u( Ul 3 TGw +2)

5(81 o, t) = 60(81 o, t) + 61(8’ o, t) + 62(87 o, t) + 53(8’ o, t)

+ ...,
= b8(, 0, t) = e5*9(1 - 2t) + gestotwHl  g7eetoful
, 0, I'w+2) I'Qw +2)
Slee+at3w+1
T@Ew+2

Putting w = 1, the series solution is as follows:

3t + (30 - Gey + G0* - )
1! 2! 3! 4!

6(,0,t) = e”"(l -

Also, the fractional equation becomes
6tt + 36[ + 26 = 655 + 600.

Given the same initial conditions, the exact solution
of this differential equation is 8(g, o, t) = e£+-3t [20], and
it agrees with the series solution obtained by the iterative
scheme.

Example 3. Consider the following 3D time FHTE [20]
D??8 + 2D6 + 36 = 6z + Bg0 + brr, (16)

whereé(e, 0, T, 0) = sinhesinhosinht and 6;(¢, o, 7, 0) =
—-sinhesinhosinht, O < w < 1 are the initial conditions.

bo(e, 0,t) = 6(¢, 0, 1, 0) + toe(e, 0, T, 0)
= sinhesinhosinht - t(sinhesinhosinht)
= sinhesinhosinht(1 - t).
Applying Sawi transform on Eq. (16)
S[D?“8 + 2DP6 + 36) = S[6ee + 45 + 611,
mol g\ 20k
= 68(g, 0,7, t) = S| p z (_) 50(0)
k=0\ M
+ SHp2(SIR8] - 20761,
m-1 1 2w-(k-1)
= bo(g, 0, T,t) = S| p? Z (—) sOOY |, a7
u

k=0
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8r1(e, 0, 7, t) = ST[P*“(S[RIS] - 2D°6D)],  (18)
r=0,1,23,..

Considering m = 1 in Eq. (17),
6o = S‘1[16(0)] = 6(0) = sinhesinhosinht(1 - t),
u

R[8o] = (80)ec + (Bo)oo + (Bo)rr — 380 = 0.
Using Eq. (18)
6y = ST (=25[D"6o])] = —25~"[u**(S[D¢"Go])],
SID*60] = ,5S180] — 5::60(0)

—sinhesinhosinht
bol = — @

=0, = _251|:y2w( —Slnhesni)hasmhr)] 5
U
_ 2sinhesinhosinhrt®*!
- I'w+2)

R[61] = (61)88 + (51)00 + (51)11' - 351 = 0.
Using Eqg. (18)
6, = ST (-2S[D{*61])] = —2S[p*(S[D#8:])],

= S[Df

>

>

SID#81] = 5S[81] = 2526:(0)
= S[D{’6,] = 2sinhesinhgsinhr,
= §; = =257 [u?“(2sinhesinhosinht)] = 6

_ —4sinhesinhosinh7t?0+1
I'Cw + 2)

R[52] = (62).‘.‘8 + (62)00 + (62)11' - 352 = 0.

’

Using Eq. (18)

63 = ST (=2S[D{*6,])] = —2S~[p**(S[D*62D)],
SID{*62] = 5S18] ~ 15262(0)

= S[D{8,] = —4sinhesinhosinhTu?,

= 83 = -257[u??(-4sinhesinhosinhTu®)] = 63

_ 8sinhesinhosinhtt3**!
Ir'Gw +2)

5(‘9) 0,71, t) = 60(85 o,T, t) + 51(8’ 0,71, t) + 62(8’ o, T, t)
+ 65(e,0,T,t) + ...,

= 6(g, 0, T, t) = sinhesinhosinh7(1 - t)

2sinhesinhosinhtt®*!  4sinhesinhosinhTt?@+1
I'w+2) - I'Qw +2)
8sinhesinhosinhrt3¢+!
I'Gw + 2) -
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Putting w = 1, the series solution is as follows:
6(e,0,1,t)

2 3 4
= sinhesinhosinh‘r(l by A _ At + 8t )
2 3 4
Example 4. Consider the following FHTE [31]:
Dt2w6 + 2th6 +6= 588’ (19)

where 6(g, 0) = sinhe and 6;(¢, 0) = —2sinhe, 0 < w < 2
are the initial conditions.

bo(e, t) = 6(g, 0) + tbi(g, 0) = sinhe — t(2sinhe)
= sinhe(1 - 2t).

Applying Sawi transform on Eq. (19)
S[D“6 + 2D + 8] = S[be],
S[D“6] = S[6s — 6 — 2D6],

m-1 1 2w—(k-1)
= 8(s, t) = sl[;ﬂw( > (—) 5<k>(o)]}

k=0

+ S pu2(S[R[8] - 2DP8))],

1| ;2w S 1 o k),
=80 =S| Y| = §®) ||,
K=o\ H

6r+1 = S_l[yzw(S[R[5] - ZD[(U(S])],
r=0,1,2,3,...

(20)

(21)

Considering m = 1 in Eq. (20),
6o = 81[16(0)] = 6(0) = sinhe(1 - 2t),
U

R[(SO] = (50)55 - 60 =0,
Using Eq. (21)
61 = S [p?(=2S[D{8o])] = 25 [u*(S[D{8o))],

SID#8o] = 5S180] ~ :80(0) = SID{So] = 0,

yw+l

= 6 = —og-1| 0 Z2sinhE N [ o 4sinhet®*!
! K e " Tw+2)’

R[(Sl] = (61)&2 - 61 = 0.
Using Eq. (21)
6, = ST (=2S[D{*61))] = -2~ [(SID{61)],

S[DY6,] = 733[51] - —1_6,(0) = S[DY6,] = 4sinhe,

yw+1

DE GRUYTER

—8sinhet?@+1
6, = —2S7[u??(4sinh b= ———,
=6 [p?“(4sinhe)] = 6, rw+2)
R[52] = (82).‘.‘8 - 82 =0.
Using Eq. (21)

65 = S [p*(-2S[D{*6,1)] = -2 [w**(S[D{*62D)],

SIDP8,) = 55162 ~ 5:262(0)

w+1
u

= S[D{’6,] = —8sinheu?®,

16sinhet3@+1

63 = —2S7[u?“(-8sinhep® 3= —r—r,
= 65 [ (~8sinhep®)] = &5 TGw 1 2)

6(e, t) = bp(e, t) + 61(g, t) + 6x(g, t) + O3(e, t) + ...,

i w+l i 2w+1
= 8(s, t) = sinhe (1 -2) + 4sinhet®*!  8sinhet
Fw+2) TQw+2)
l6sinhet> ™
r'Gw+2

Putting w = 1, the series solution is as follows:

.\ Q)"
2! 3! 4 -y

b(e, t) = sinhg(l _ % + @t (@)

Also, the fractional equation becomes
5[[ + 25t +6= 5&‘;.

Given the same initial conditions, the exact solution
of this differential equation is (g, t) = sinhee % [31], and
it agrees with the series solution obtained by the iterative
scheme.

Example 5. Consider the following 1D time FHTE [20],
Df6 =6 — 6 — b, (22)

where 6(g, 0) = e® and (g, 0) = —e%,0 < w < 2 are the
initial conditions.

bo(e, t) = 6(g, 0) + toi(g, 0) = e — t(2e) = e*(1 - ).
Applying Sawi transform on Eq. (22)
S[D{6(e, t)] = S[6 — 8¢ — Beel,

m-1 1 w-(k-1)
=6=5"1 y“{ Z (—) 8(">(O)J
k=0\ X

+ ST SIRG)]],

A m-1(y w—-(k-1) ©
=80 =57 X M OO, @3
k=0

= 6r.1 = S [U”S[R(S]]. (24)
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Considering m = 1 in Eq. (23),
5o = 51[15(0)] — 5(0) = e*(1 - 1.
u

R[60] = 6o — (80)¢ — (B0)ee = €°.
Using Eq. (24)

61 = S [u“(Sle*D] = 61 = e [u“"'] = bu(e, ©)

et
CTw+1’
—efwtv1
R[61] = 61— 2(61)¢ — (61)ee = ————.
[61] = 81 - 2(61)¢ - (61) @+

Using Eq. (24)

_et(u—l
8, = 57| ol s| 2L
2 [“([r(w+1)

. —€fw
I'w+1)

B

ST @y 2] = Sxe, £) = 0L @

I'w + DI'Qw)’

efww - NI'(w)t?@-2

Ri8a] = 62 = 202)c = (82dee = —— 1 =T F )

Using Eq. (24)

_ o] 0 efww - DI (w)t-2
T T(w + DI Qw)

_ efwQw - DI (w)I' 2w - 1)t302
 I'(w+ DIrCwIGw - 1)

SrQw - Du*=3] = 63, t)

b6(e, t) = bp(e, t) + 8i(e, t) + Oy(e, t) + 83(e, t) + ...

ectw efwl (w)t2@-1
Fw+1) TI(w+)IQw)
. e‘wQw - DI (W)l 2w - D2
I'w + DIrRw)rGw - 1)

=0, t)=ef1-1t) +

Putting w = 2, the series solution is as follows:

th )
+ — — ...
4

Also, the fractional equation becomes

6tt =6- 5t - 6£e-

2 3
6(£,t)=eg(1—i+t——t—
2t 3!

Given the same initial conditions, the exact solution of
this differential equation is 6(¢, t) = e®~f [20], and it agrees
with the series solution obtained by the iterative scheme.

Example 6. Consider the following 1D space FHTE [34]:

5)%(‘) = 6“ + 45t + 45, (25)

—_7

where 6 (0, t) = 1 +e%,8(x,0) =1+ e*,8,0,t) =2,
6:(x,0) = -2,t > 0,0 < w < 1 are the initial conditions.

Solx, t) = 8(0, t) + x6,(0,t) =1+ e + x(2)
=1+2%+e™,
Applying Sawi transform on Eq. (25)

S[62%] = S[by + 46, + 46],

m-1 1 2w~(k-1)
-6=5"1 uzw[ Y (;) 6<k>(0)) + ST S[R(B)]],

k=0

-1 5,20 (1 ey (9]
k=0

= 8,41 = SpS[R(6,)]]. (27)

Considering m = 1 in Eq. (26)
8o = s-l[lé(O)] ~8(0) =1+ 2+ e,
U

R[&o] = (60)et + 4(80)¢ + 460 = 4 + 8x.
Using Eq. (27)
81 = S [p2(S[4 + 8x])] = 8 = S 4p21 + 8u2]
4Lx2w 8x2w+1

6 ,t = )
= 0x ) TQw+1)  TQw+2)

16X2w 32X2w+1

R[81] = (61)r + 4(81)¢ + 461 = I'Qw +1) * 2w +2)

Using Eq. (27)

16X2a1 32X2w+1
8y =S u®ls =6
2 [“ ( [F(Zw D) TQw+ 2)])] 2
16x%4w
= ST16p Y1 + 32u] = 6,(x, t) = ————
[16p + 32u*¢] 2x, t) T+ D
32X4(u+1
+ 7’
I'4w + 2)
64x4w 128x 4w+l
R[65] = (6 + 4(62)¢ + 465 =

TGw+1)  Tw+2)

]

Using Eq. (27)

4w L4w+1
5, = -1 yauf o 68X, 128
T'dw+1) Tlw +2)
= ST[64uc%1 + 128u¢], = 85(x, t)
o 64xs . 128x6@+1
I'éw+1) T(6w+2)
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Putting w = 1, the series solution is as follows:

4X2w 8X2w+1 2 3 4 5
=600 =1+2+e?)+ S0, t)y=e? +1+ x, @07 2 @7 20
Iw+1) I'Qw+2) 1! 2! 3! 41 5!
16X4a) 32X4w+1 64)(6(” (2X)6 (2X)7
+ + + - LR
l'dw +1) T(4w +2) réw + 1) : 7!
128x6w+1 ) Also, the fractional equation becomes
+ _—
6w +2) Bx = B + 46, + 48
0.007 A
——+ Approx. solutionatt =3
O Exact solutionatt=3
0.006 1 --. Approx. solution att = 3.5
Exact solution att = 3.5
0.0054 —~° Approx. solution att =4
' Exact solution att = 4
0.004 -
w
0.003 A
0.002 1
0.001

Figure 1: Comparing exact and approximate solutions of Example 1 at t = 3, 3.5, and 4.

0.0030 71— Approx. solution at t = 3
O Exactsolutionatt=3
0.0025 4 —— Approx. solution att = 3.5
Exact solution att = 3.5
—=—: Approx. solution att = 4
0.0020 4 O Exactsolutionatt=4
lo 0.0015 A
0.0010 A
0.0005 -
0.0000 A
0.0 0.2 0.4 0.6 0.8 1.0

Figure 2: Comparing exact and approximate solutions of Example 4 att = 3, 3.5, and 4.



DE GRUYTER An iterative approach using Sawi transform for fractional telegraph equation = =——

0.14 A
—=—+ Approx. solution att = 3
O Exactsolutionatt=3
0.12 1 == Approx. solution att = 3.5
Exact solution att = 3.5
==+ Approx. solution att =4
0.10 1 Exact solution att = 4
© 0.08 A
0.06 A
0.04 -
0.02 A
T ¢ T T T T
0.0 0.2 0.4 0.6 0.8 1.0
&

Figure 3: Comparing exact and approximate solutions of Example 5 at t = 3, 3.5, and 4.

Approx. solution at t = Exact solution at t = 2.5

6
5
4
o3
2
1
0
0 1 2 3 4 5 6

Absolute error at t =2.5

i

Figure 4: Comparing exact and approximate solutions of Example 2 at t = 2.5.
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Given the same initial conditions, the exact solution 1_ - m 2w-(k-1) 50 1
— w
of this differential equation is §(x, t) = e + e* [34], and =6=5 Z( ) 0)
it agrees with the series solution obtained by the iterative -
scheme. + S u?“S[R(E) - t + 1 - x?]],
i m-1/ , \2w—(k-1) 1
Example 7. Consider the following 1D space FHTE [35]: =8y =S1 yzw[ z (l) 5(k)(0)] , (29)
82 =8y + 8 +6—t+1-x% (28) k=0 |
= S [u2S[R(8) — t + 1 - x7]], 30
where §(0, t) = t, 6(x, 0) =x2,6,(0,t)=0,t >0,0 < w < 1 = 6= ST[S[R(6) — £+ 1 - x7]] (30)
are the initial conditions. = 8,11 = STU*S[R(S)]]. (31)
Go(x, t) = 60, t) + x6x(0, t) = t + x(0) = t. Considering m = 1 in Eq. (29)

Applying Sawi transform on Eq. (28)
&:s{l&m]:am:a
S[(wa] =S[6tt+6t+5— t+1 —Xz], H

R[6o] = (60)it + (60)r + 6o =1+ t.

Approx. solution at t = Exact solution att=3

6 6 -
5
a4 4
03
2
1
0

0 1 2 3 4 5 6

Absolute crror at t =

m

Figure 5: Comparing exact and approximate solutions of Example 2 at t = 3.
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Approx. solution at t = 3.5 Exact solution at t =3.5

Absolute crror att=3.5

Figure 6: Comparing exact and approximate solutions of Example 2 at f = 3.5.

==+ Approx. solutionatt =10
3,54 O Exactsolutionatt=0
——+ Approx. solution att = 0.8
Exact solution att = 0.8
3.0 { —=— Approx. solution att= 1.6
Exact solution att = 1.6

Figure 7: Comparing exact and approximate solutions of Example 6 atf = 0, 0.8, and 1.6.
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7 1 ——- Approx. solutionatt=1
O Exactsolutionatt=1
==+ Approx. solution att =2
61 Exact solution at t = 2
—=— Approx. solutionatt =3
5 - Exact solutionatt =3
w0 4+
34
2 .
1 -
T T T T
0.00 0.25 0.50 0.75

1.25 150 1.75 2.00

Figure 8: Comparing exact and approximate solutions of Example 7 atf = 1, 2, and 3.

Table 1: Sawi transform of common functions [33]

f®) S[f(®)] = qu)
1 1 1
u
2 t 1
3 t" r(n + ppr-?
sinat a
1+ (ap)?
5 cosat _a
p(+(ap?)
6 sinhat a
1- (ap)?
7 coshat —a
p(1- (ap)?)
8 eat 1
p(@-ap)

Table 2: Inverse Sawi transform of common functions [33]

q(p) SQw] = fa)

1 1 1
"

2 1 t

3 pn [n+1

rn+2)

4 a sinat
1+ (ap)?

5 _a cosat
u(+ (ap)?)

6 a sinhat
1-(ap)?

7 . coshat
p(1 - (ap)?)

8 1 eat
u(Q-ap)

Using Eq. (30)

=S uS+t-t+1-x2)] =6

— S—I[Z‘MZw—l _ 2y2w+1] = 51()(’ l’) — szw
I'Cw + 1)
2X2w+2
- IQw +3)
2x2w 2x2w+2

R[61] = (61)it + (61 + 61 =

F(2w+1)_1"(2a)+3)'

Using Eq. (31)

2w 2w+2
8, =S u|s X o X =6,
I'2w+1) T'Qw+3)
S 12 4w-1 2 4w+1] 5( ) lem)
=S -1 = 0)x, t) =
[2u M 2 I'dw + 1)
2X4w+2
C Tw +3)
leuu 2X4a)+2

Ri&2] = (@)t + (62)c + 62 = 4w +1) Tw +3)

Using Eq. (31)

4w 4w+2
63 =S uS 2 o = 83
I'dw+1) T(4w + 3)
2X6(u
=S 6w-1 _ 9y,6w+1 ) ) =
[2u U] = §3(x, t) 6w+ D

2X6a)+2
CT(6w +3)
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Table 3: Error analysis for Example 1
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N Exact value Approx. L., err. Exact value  Approx. L., err. Exact value  Approx. L., err.
att =1 valueatt =1 att=1 att =2 valueatt =2 att=2 att =3 valueatt =3 att=3
10 0.367879 0.367999 0.000119 0.049787 0.262911 0.213124 0.006738 16.32522 16.31849
20 0.367879 0.367879 1.02 x 107 0.049787 0.049787 1.98 x 10”7 0.006738 0.007653 0.000915
30 0.29523 0.29523 1.28 x 107" 0.033373 0.033373 4.55x 107" 0.006738 0.006738 3.69 x 107
L Upto10™% lUpto107® | Upto1071°
Table 4: Error analysis for Example 2
N Exact value Approx.value L, err. Exact value  Approx. L, err. Exact value  Approx. L. err.
att =0.4 att = 0.4 att = 0.4 att = 0.5 value at att = 0.5 att = 0.6 value at att = 0.6
t=05 t=0.6
10 49020.8 49020.83 0.027523 36315.5 36315.82 0.313187 26903.19 26905.46 2.275563
15 49020.8 49020.8 1.34x107 363155 36315.5 4,69 x107°  26903.19 26903.19 8.54 x 107°
20 49020.8 49020.8 6.55 x 107"  12088.38 12088.38 2.91x10™  26903.19 26903.19 7.13x107%°
lUpto102 | Up to 1071 lUpto101°

6(x, t) = 8o(x, t) + 61(x, t) + 6o(x, t) + 630, t) + ...

L8 6) = (O) + ( 252w - Iy 2w+2 )
I'2w+1) TI'Qw+3)
leuu 2X4w+2
" (F(4w 1) TG+ 3))

2XGw 2X6w+2
+ - + ...
(F(6a)+1) F(6w+3))

Putting w =1, the series solution is as follows:
2 4 4 6 6 8
5(X,t):t+2(x__x_+x__x_ X X )
20 4 4 6 6 8

Also, the fractional equation becomes
S =0 +0i+06—t+1-x%

Given the same initial conditions, the exact solution
of this differential equation is 6(x, t) = t + x? [35], and it
agrees with the series solution obtained by the iterative
scheme.

Exact and approximate solutions of Examples 1, 4
and 5 are compared for t = 3, 3.5 and 4 in Figures 1-3.
Contour graphs comparing exact and approximate solu-
tions of Example 2 at t = 2.5 and absolute error graph are
provided in Figure 4. Contour graphs comparing exact

and approximate solutions of Example 2 at t =3 and
absolute error graph are provided in Figure 5. Contour
graphs comparing exact and approximate solutions of
Example 2 at ¢t = 3.5 and absolute error graph are pro-
vided in Figure 6. Exact and approximate solutions
of Example 6 are compared for ¢t =0,0.8, and 1.6.
Figure 8 provides the exact and approximate solutions
of Example 7 at t = 1, 2, and 3. Each figure considers the
value of w used in its respective example for comparing
the exact solution for the same w. Each figure takes N = 35
for approximate solutions, where N is the number of terms
in approximate solutions, i.e. the parameter for conver-
gence. The aim of using multiple values of N is to demon-
strate numerical convergence of the approximate solution
to the exact solution. The graphs in Figures 1-3 are plotted
with 51 equally spaced € values, the graphs in Figures 7
and 8 are plotted with 51 equally spaced x values and the
contour graphs in Figures 4—6 are plotted with 61 equally
spaced € and o values. Using the graphs, we can conclude
that the proposed method provides good compatibility
between approximate and exact solutions of FPDEs over
wide variety of time scales (Tables 1 and 2).

For consistency, the number of equally spaced values
for L, error in the tables is the same as their respective
graphs of the examples. For the same reason, the range at
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Table 8: Error Analysis for Example 7
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N Exact Approx. value L, err. at Exact Approx value L, err. at Exact Approx. value L, err. at
value at att =1 t=1 value at att =2 t=2 value at att =3 t=3
t=1 t=2 t=3
4 5 4.987302 0.012698 6 5.987302 0.012698 7 6.987302 0.012698
7 5 5 3.76 1077 6 6 3.76 x1077 7 7 3.76 x 1077
10 5 5 8.62x10 2 6 6 8.62x10 "2 7 7 8.62x10° "
| Up to 1078 | Up to 1073 | Up to 10723

which L., error is considered is also the same as the
respective graphs of the examples. The columns con-
taining the exact and approximate values at any given ¢
are taken at the point where the error is maximum, i.e. the
L, error. In Table 3, the exact, approximate, and L, error
values for Example 1 have been provided at t = 1, 2, and
3, and as N increases to 30, the error reduces up to 1075,
For Example 2, Table 4 provides the exact, approximate,
and L, error values att = 1, 2, and 3, and as N increases
to 20, the error reduces up to 1071, In Table 5, the exact,
approximate, and L., error values for Example 4 have
been provided at t = 1, 2, and 3, and as N increases to
30, the error reduces up to 1076, For Example 5, Table 6
provides the exact, approximate, and L., error values
at t=1,2, and 3, and as N increases to 30, the error
reduces up to 10716, In Table 7, the exact, approximate,
and L, error values for Example 6 have been provided at
t =1,2,and 3, and as N increases to 10, the error reduces
up to 107, For Example 7, Table 8 provides the exact,
approximate, and L., error values at t = 1, 2, and 3, and
as N increases to 10, the error reduces up to 1073, From
these tables, we can thus conclude that as the parameter of
convergence increases, the series solutions approximate
the exact solutions with increasing accuracy, thus illus-
trating the efficacy of the proposed method.

5 Conclusion

In the present study, an iterative scheme was proposed
involving the Sawi transform for solving FHTEs. A gen-
eral formula for the proposed method was developed for
1D, 2D, and 3D FHTEs. Seven Examples in total was
solved using the proposed method, Examples 1, 4, and
5 of which were for 1D time FHTESs, Examples 6 and 7 for
1D space FHTEs, Example 2 for 2D time FHTE, and
Example 3 for 3D time FHTE. Graphs for Examples 1, 2,
4,5, 6, and 7 were created and the approximate and exact
solutions were compared using them. It was found that

the approximate and exact solutions were showing good
compatibility across wide variety of time scales. Tables
for the same examples as the graphs were created and
contained the exact, approximate, and L, error values.
For each table, it was observed that as the parameter of
convergence increased, the L., error reduced, thus illus-
trating that the series generated by the proposed scheme
approximates the exact solution with acceptable level of
accuracy. Thus, it can be concluded that the proposed
method is a simple and efficient method for obtaining
solutions to 1D, 2D, and 3D time and space FHTEs.
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Appendix A

The form of 2D time telegraph equation is as follows [20]:
D{’6(¢, 0, t) + L[b(¢, 0, O)] + N[8(e, 0, )] = q(e, 0, 1),

where L refers to the linear operator and N refers to the
nonlinear operator. D{’6(e, t) is the Caputo derivative of

An iterative approach using Sawi transform for fractional telegraph equation

6(e, t). Applying Sawi transform on equation

S[D{"6(e, )] + S[L[(e, )] + N[&(e, O] = Slq(e, )],

k=0

1 m-1
—S[6(, t)] -
o518 0] Z(

1)
3

k-1)
5%(0)

= Slq(e, )] - S[L[(e, O] - SIN[6(e, D)]]

m-1 w-(k-1)
= 8, t) = Sllu‘”( > (l) 80(0) + S[q(e, t)]]]

k=0\ H

= ST (SILIS(e, 0, O]] + SIN[S(e, 0, DID].

Now,

L[6] = L[ Oi&(&:, g, t)] = L[6o(e, 0, 1)]

r=0

5

i=0

o, t)]

i=0

N[6] = N[ i&,(e, g, t)] = N[by(e, 0, t)]

r=0

+ ilw[isi(e,

i=0

o, t)]

r-1
- N[Zﬁi(e, o, t)”,

i=0

& mlrg w-(k-1)
=) (e, 0,t) = S v Z(—) 5%(0)
k=0 k=0\ H

+ S[q(e, o, t)]H - S u?S(L[So(e, 0, t)]

+ N[bo(e, 0, )D]- S| uvs

o0
+ 2
r=1

i=0

= 8o(g, 0,t) = S‘lly‘“(

+ S[q(e, o, t)]”,

N[ Z bi(e, 0, t)

ml( 1
k=0\ 1

iL[&(S, o, )]

r=1

] [ r-1
-N Zsi(‘g’ o, t)]l]]’
] | i=0

w-(k-1)
) 6%(0)

r-1
- L[Z(Si(s, g, t)”,

—_ 17
= 8i(g, 0, t) = =S~ u?S(L[bo(¢, 0, )] + N[bo(e, 7, )])]

r=1

=68,.4(5,0,t) = —Sl’y‘”S(DZO:L[S,(g, o, t)]

+ DZO: N[z&-(e, g, t)]
r=1 i=0

S]]

r=1,2,3,4,5,...

Appendix B

The form of 3D time telegraph equation is as follows [20]:
Df6(e, 0,1, t) + L[6(¢g, 0, T, )] + N[b6(¢, 0, T, t)]
=q(g, 0,7, 1),

where L refers to the linear operator and N refers to the
nonlinear operator. D’6(¢, t) is the Caputo derivative of
6(e, t). Applying Sawi transform on equation

S[D{"6(e, )] + S[L[S(e, )] + N[&(e, O] = Slq(e, t)],

1 m-1 1 w-(k-1)
st@, e (—) 80(0)

k=0

= Slq(e, )] - S[L[6(e, 1)]] - SIN[6(e, D],

m-1 w-(k-1)
= 8(e, t) = sllu“‘[ > (1) 80(0) + S[qce, t)]]}

k=0
- S u?(S[L[6(e, o, T, t)]] + S[N[b(e, 0, T, )]])].

Now,
r=0

L[6] = L[ Y 6.(¢, 0,1, t)} = L[by(e, 0, T, t)]

i=0

(o] r r-1
+ Z L[Z&(s, o, T, t)] - L[z&(s, o, T, t)”,
r=1 i=0

r=0

N[6] = N[ Y 8,(e, 0,1, t)] = N[bo(e, 0, T, )]

(0]
+ 2
r=1

i=0 i=0

r r-1
N[Z(Si(s, o, T, t)] - N[Zéi(e, o, T, t)”,
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= Z Si(e,0,1,t) =571

m-1 1 w-(k-1)
[y‘“( > (—) 8%(0)
k=0 k=0\ H

+ Slq(e, 0, T, t)]]] - SNu“S(L[by(¢, 0, T, t)]

+ N[bo(e, 0, T, D)])] - s-l[yws(ZL[a,(g, 0,7, t)]
r=1

+ Z N[ bi(e, 0, T, t)] - N[
i=0

r-1
Z6,~(s, o, T, t)] ”],
r=1 i=0
mo1 g w-(k-1)
= 6o(s, 0,1, t) = Sllyw[ z (_) 80(0)
k=0\ #

+ S[q(e, 0, T, t)])],

DE GRUYTER

= 6i(e, 0,7, t) = -SuS(L[6o(e, 0, T, )]

+ N[60(£’ o,T, t)])]y

= 6Y+1(€’ o, T, t) = _Sl[HwS(ZL[ar(S’ o, T, t)]
r=1

+ i[N[ZSi(S, o, T, t)]
r=1 i=0
r-1
- N 261(5, o, T, t)”ﬂ,
i=0

r=1,2,3,4,5,...
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