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Abstract. The paper deals with blind source separation of images. The
model which is adopted here is a convolutive multi-dimensional one. Re-
cent results about polynomial matrices in several indeterminates are used
to prove the invertibility of the mixing process. We then extend an iter-
ative blind source separation method to the multi-dimensional case and
show that it still applies if the source spectra vanish on an interval. Based
on experimental observations we then discuss problems arising when we
want to separate natural images: the sources are non i.i.d. and have a
band limited spectrum; a scalar filtering indeterminacy thus remains af-
ter separation.

1 Introduction

Due to its numerous applications such as passive sonar, seismic exploration,
speech processing and multi-user wireless communications, blind source separa-
tion (BSS) has been an attractive and fruitful research topic for the last few
years. Independent Component Analysis (ICA) has also found interesting ap-
plications in image processing, but in this context, the original framework of
instantaneous mixture has been mainly considered (e.g. [1, 2]).

However mixtures may be more complicated in practice, and the spread
of each source over several pixels may require to address the general model
of convolutive mixtures [3]. The single-channel blind deconvolution of images
has been extensively studied and solutions have been proposed which usually
involve some regularization and use some prior information [4]. Multichannel
acquisition, which provides several different blurred version of a single image,
also allows to improve the image restoration quality. This Single Input/Multiple
Output (SIMO) case has been extensively studied (see e.g. [5, 6]) and is not
addressed here. However, little attention has been paid to the general Multiple
Input/Multiple Output (MIMO) case, where independent sources are mixed on
different sensors.

This paper considers MIMO convolutive mixtures of independent multi-
dimensional signals: the problem is described in Section 1. Two main difficulties
arise in the 2D case: finding invertibility conditions for the 2D mixing process and
ability to deal with non i.i.d. sources which may have band-limited (or rapidly



decaying) spectra. The former problem is discussed in Section 3. The latter one
is addressed in Section 4 which presents the separation method. Finally, simu-
lation results in Section 5 show the validity of the proposed method and outline
the specificities of convolutive source separation for images.

2 Problem statement

We consider N ∈ N∗ two-dimensional signals which, for i ∈ {1, . . . , N} are
denoted by (si(n))n∈Z2 . Though our theoretical results apply to the general
p-dimensional case, we will be more particularly interested in images. For the
sake of readability, we shall equivalently use either a two-dimensional notation
(n1, n2) or a boldface character n. The N former signals are referred to as source
signals, which generate Q ∈ N∗ observation signals according to the following
2D convolutive mixture model:

x(n1, n2) =
∑

(k1,k2)∈Z2

M(k1, k2)s(n− k1, n− k2) =
∑

k

M(k)s(n− k). (1)

We use here vector notations where s(n) = (s1(n), . . . , sN (n))T and x(n) :=
(x1(n), . . . , xQ(n))T are respectively the source and observation vectors, and
(M(k))k∈Z2 is a set of Q×N matrices which corresponds to the impulse response
of the mixing system. BSS aims at inverting the above described process, with
no precise knowledge about the mixing process or the sources. The separating
system is modeled as a linear convolutive structure and reads:

y(n1, n2) =
∑

(k1,k2)∈Z2

W (k1, k2)x(n− k1, n− k2) =
∑

k

W (k)x(n− k) (2)

where (W (k))k∈Z2 is the impulse response of the separating filter of size N ×Q
and y(n) = (y1(n), . . . , yN (n))T is the separation result. Ideally, y(n) reduces
to the original source vector, up to a permutation and a scalar filtering indeter-
minacy. Some assumptions have to be made in addition to the aforementioned
convolutive model for the source separation task to be achievable:

A.1 The source processes (si(n))n∈Z2 , i ∈ {1, . . . , N} are statistically mutually
independent and stationary.

A.2 The mixing system is stable (i.e. its impulse response is summable) and
admits a summable inverse.

Assumption A.1 is a key assumption in BSS and ICA, whereas A.2 is necessary to
be able to separate the sources. Invertibility conditions for multivariate systems
are discussed in detail in Section 3.

Let us further emphasize that we do not require the sources to be i.i.d. and,
contrary to other separation methods in the non i.i.d. context, we do not exploit
the spectral diversity of the sources to realize source separation. Indeed, images



may exhibit similar spectral characteristics. In most of the works dealing with
convolutive mixtures in the same context, sources are generally supposed to be
i.i.d.[3]. From the fact that the sources are non i.i.d., it follows that each source
can only be recovered up to a scalar filtering, in addition to the well-known per-
mutation ambiguity. The scalar filtering issue does not appear in instantaneous
mixtures, as it reduces to a scaling factor ambiguity.

3 Invertibility conditions

The considered separation method is valid for all kind of filters, both with in-
finite impulse response (IIR) and with finite impulse response (FIR). However,
considering FIR filters allows us to provide simple conditions for the invertibility
of the mixing process.

3.1 Finite Impulse Response assumption

We assume in the following:

A.3 The mixing filter is FIR and M(k1, k2) = 0 if k1 /∈ {0, . . . , L1 − 1} or
k2 /∈ {0, . . . , L2 − 1}.

In the 1D case, it is well known that, under primeness conditions, the mixing
system admits an inverse (see [7] and references therein). This result is based
on results concerning polynomial matrices and extends to the multivariate case.
Let us first define the following z-transform of the mixing system:

M [z1, z2] :=
∑

(k1,k2)∈Z2

M(k1, k2)z−k1
1 z−k2

2 = M [z] =
∑

k

M(k)z−k. (3)

The z-transform of the separating system is defined in the same way and is
denoted by W [z]. Equations (1) and (2) can then be formally written:

x(n) = M [z]s(n) and y(n) = W [z]x(n). (4)

The goal of BSS consists in finding W [z] such that the global transfer function
G[z] := W [z]M [z] is diagonal up to a permutation. Conditions for the existence
of such an inverse are discussed in the next section.

3.2 Primeness properties and invertibility

Invertibility properties of the mixing system rely on primeness properties of the
polynomial matrix M [z]. Although some theoretical results may be found in
the literature [8, 9] for multi-dimensional signals, some of them are not easily
accessible. The ring of Laurent polynomials in indeterminates z = (z1, . . . , zp)
and with coefficients in C is denoted by C[z]. Primeness properties in C[z] are
somewhat more complicated than in the case of polynomials in one indetermi-
nate as there exist four distinct notions of primeness. We will be particularly
interested in the following definition:



Definition 1. A polynomial matrix M [z] ∈ C[z]Q×N is said to be right zero
prime if Q ≥ N and the ideal generated by its maximal order minors is the ring
C[z] itself.

An equivalent definition of right-zero coprimeness can be obtained after slight
modifications of known results:

Property 1. A polynomial matrix M [z] ∈ C[z]Q×N is right zero prime if and
only if its maximal order minors have no common zero in (C∗)p.

The invertibility of the mixing system is ensured by the following property [8]:

Property 2. A polynomial matrix M [z] ∈ C[z]Q×N is right zero prime if and
only if it has a polynomial left inverse, or equivalently if and only if there exists
W [z] ∈ C[z]Q×N such that W [z]M [z] = IN

The above property provides a necessary and sufficient condition for the
mixing system to be invertible. Since however the mixing system is supposed
to be unknown, an interesting point would be to know if a randomly generated
polynomial matrix is likely to have a polynomial left inverse or not. The answer
was partially given in [9]:

Property 3. If the Q ×N polynomial matrix M [z] has coefficients drawn from
a continuous density function and if

(
Q
N

)
:= Q!

N !(Q−N)! > p, then M [z] is almost
surely invertible.

In particular, for images p = 2 and one can see that a mixing system with
coefficients driven from a continuous density function is almost surely invertible
as soon as there are more sensors than sources (Q > N). Finally, bounds on the
order of the separating filter have been given [9]: although they are quite large,
they give a maximum order for a possible separating system.

4 Separation method

In this section, we will see how a 1D iterative separating method can be used
for the separation of multi-dimensional sources. Among the possible approaches,
iterative and deflation-like methods appear especially appealing as they allow
the separation of non i.i.d. sources. In addition, they do not present spurious
local maxima, unlike many global MIMO approaches.

4.1 An iterative approach

Contrast function for the extraction of one source We first consider the
extraction of one source and denote by w[z] one row of the separating system
W [z]. Let g[z] := w[z]M [z] denote the corresponding row of the global system.
Contrast functions are a practical tool to tackle BSS as they reduce it to an
optimization problem: by definition, a contrast function is maximum if and only



if separation is achieved. Since we consider here an iterative approach and since
the global filter g[z] is a Multiple Input/Single Output (MISO) one, a contrast
is maximum if and only if the global scalar output is a scalar filtered version of
one source. Consider the following function:

J(w) :=
∣∣Cum4[y(n)]

∣∣ (5)

where y(n) := g[z]s(n) is the global scalar output corresponding to w[z] and
where Cum4[.] denotes the fourth-order auto-cumulant. It has been proved that
the function J (which depends on w or equivalently on y(n)) constitutes a
contrast for both i.i.d. [10] and non i.i.d. sources [11], if it is maximized under
the constraint:

C.1 E{|y(n)|2} = 1.

The method has been used in the 1D case [11, 12]. In the 2D case, it can be
implemented as follows: define the vectors W and X (n) which are composed of
the terms wj(k) and xj(n− k), respectively, when k varies in {0, . . . , L1 − 1}×
{0, . . . , L2−1} and j varies in {1, . . . , Q}. One can then write: y(n) = WX (n) .
The optimization of (5) is then be carried out with a batch, iterative algorithm,
where constraint C.1 is imposed at each iteration by a re-normalization step.
The optimization procedure can be written in a such way that X (n) and W
are the only required inputs. This means that 1D separation procedures can be
used under the appropriate modifications of the definition of W and X (n).

Extraction of the remaining sources After having separated one source,
deflation approaches subtract its contribution from the observations by a least
square approach. The former procedure is then applied again on a new obser-
vation vector. If P sources (P < N) have been extracted and y1(n), . . . , yP (n)
denote the obtained outputs, we alternatively suggest to carry out the optimiza-
tion of J under the constraint:

C.2 ∀i ∈ {1, . . . , P},∀k E{y(n)y∗i (n− k)} = 0.

It can be proved that constraint C.2 prevents from separating twice the same
source. Furthermore, C.2 is a linear constraint on W , which can hence easily be
taken into account.

4.2 Validity of the method for sources with non positive definite
auto-correlation

Natural images are highly correlated and their spectrum is mostly concentrated
on low frequencies. We consider the limit case when the source spectrum is
positive on a set Ω and vanishes on its complementary set Ω. Let us see the con-
sequences when Ω is with non zero measure. Writing g[z] = (g1[z], . . . , gN [z]),
let fix i ∈ {1, . . . , N} and define:

‖gi‖i =
( ∑

k,l

gi(k)g∗i (l)γi(l− k)
) 1

2
(6)



Fig. 1. Original images used as sources

where γi(k) is the autocorrelation of the i-th source. If Ω = ∅ the sequence γi(k)
is definite positive and ‖.‖i is a norm. On the contrary, if Ω is with non zero
measure, ‖.‖i is a semi-norm only and the proof in [11] no longer applies, since
it is based on the possibility to write gi[z] = ‖gi‖i

gi[z]
‖gi‖i

for any non-zero filter .
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Fig. 2. MSE after separation of two uni-
form i.i.d. 2D sources.

Fortunately, one can consider
working over the subset of filters
which are identically zero on the fre-
quency band Ω, and the proof in [11]
can then be easily adapted. However,
one can see that after separation, the
part of the global filter which operates
on the band Ω is left free. This part
has indeed no influence neither on the
separator outputs nor on the contrast
J . This may however lead to numeri-
cal difficulties with sources with lim-
ited band spectrum.

5 Effectiveness of the
procedure

The previous results have been tested on convolutive mixtures of images. In our
experiments, there were 2 source images and 3 sensors, so that invertibility is
almost surely guaranteed as soon as the coefficients of the mixing system are
drawn from a continuous probability density function.

5.1 Simulation results with i.i.d. sources

We first verified the validity of our assertions with i.i.d. sources. The study was
carried out on a set of 100 Monte-Carlo runs. The coefficients of the mixing
systems were drawn randomly from a Gaussian zero-mean unit-variance distri-
bution and the sources were i.i.d. uniform, unit-variance and zero-mean. The
length of the mixing system was set to L1 = L2 = 2 whereas the length of the
separator was set to D1 = D2 = 5. The images were of size 256 × 256. Results
are plotted in Figure 2 and show the mean square reconstruction error (MSE)



for each source an Monte-Carlo run. As the sources are i.i.d., the scalar filtering
ambiguity is known to reduce to a simple delay. All MSE were below 0.043 and
the mean value over all realization was 5.5 × 10−3. Naturally, the invertibility
of the mixing filter must be ensured in order to obtain good results. Hence the
separator should be long enough and a shorter separator led in our experiments
to degraded performances. These experimental results prove both the validity of
Properties 2, 3 and the ability of the method to separate sources.

Observations Reconstructed image

Fig. 3. Separation of a natural image and a noise source

5.2 Natural images

The separation of a natural image and a noise image was tested on a filter of
length L1 = 3, L2 = 1 and a separator of length D1 = 4, D2 = 1. The sources are
the first two ones in Figure 1 and the mixtures are given in Figure 3. Another
interesting example involving now two natural sources is given by the mixture
of the last two images given in Figure 1 with a filter of length L1 = 2, L2 = 1
and a separator of length D1 = 2, D2 = 1. The observations are represented
in Figure 4. As previously said, there is no guarantee to recover the original
unfiltered sources at the output of the method: this is particularly well illustrated
in Figure 4, where we roughly recognize high-pass filtered versions of the original
sources. It is interesting to note however that in a certain number of experiments,
other filtered versions of the original sources can be obtained as well, including
filters which can be close to the identity. On the contrary, the noise in Figure 3
being i.i.d., it can be recovered up to a delay and scaling factor only.

Suppose that each source has a non convolutive contribution on one sensor.
Then, it is possible to recover the sources by subtracting the output of the
algorithm from the sensors by a least square approach. The results are given in
Figure 4, and one can see that the original sources are well recovered. In other
cases, one may resort to other image processing techniques in order to solve
the remaining blind SISO deconvolution problem, when the sources have been
separated.
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Observations

Output of the separation algorithm Least square reconstruction

Fig. 4. Separation of two images
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