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An Iterative Global Optimization Algorithm for Potential

Energy Minimization

N. P. Moloi and M. M. Ali
�

School of Computational and Applied Mathematics,

Witwatersrand University, Wits - 2050, Johannesburg

March 22, 2003

Abstract

In this paper we propose an algorithm for the minimization of potential energy functions. The new

algorithm is based on the differential evolution algorithm of Storn and Price [1]. The algorithm

is tested on two different potential energy functions. The first function is the Lennard Jones

energy function and the second function is the many-body potential energy function of Tersoff

[2, 3]. The first problem is a pair potential and the second problem is a semi-empirical many-

body potential energy function considered for silicon-silicon atomic interactions. The minimum

binding energies of up to
✁✄✂

atoms are reported.

Keywords: Many-body, pair potential, differential evolution, potential energy, iterative, global

optimization.

1 Introduction

Potential energy functions are becoming an increasingly important means of various investigations

in nanoscale devices within the semiconductor industry and in structure-based drug design. These

functions are often used as global optimization problems in search of the stable structure of atoms or

molecules [4, 5]. Therefore, the determination of the global minimum energy configuration, or the

ground state structures, for clusters of atoms or molecules, predicted by the potential functions, is

an important global optimization problem. The numerical approach to finding the global minimum

of these empirical potentials poses a very difficult problem as the number of local minima increases

rapidly with the number of atoms. They are very hard in the sense that they have many local minima

and that they represent high non-linearities in their mathematical representations.

To date, several methods have been proposed for this type of optimization problem [5, 6]. These

are the spatial smoothing techniques [7, 8, 9], variants of simulated annealing [10] and the genetic

algorithm (GA) [11]. These algorithms, however, were implemented on the Lennard-Jones (LJ) pair

potential. The main thrust of these studies was to find the better configuration (or minimizer) compro-

mising the efficiency of algorithm. Except the numerical studies carried out in [12], very little work

has been done on numerical experiments using various global optimization algorithms considering

the potential functions as sample global optimization test problems. In [12] the global optimization

☎
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involving Tersoff’s many-body potential (MB) for silicon (
�✂✁☎✄✝✆✟✞

and
�✂✁☎✄✡✠☛✞

[3]) is reported. Eight

different recent global optimization algorithms were used in this study with the conclusion that MB

is very hard to optimize and therefore only small problems for silicon clusters of size up to ☞ atoms

were considered for testing different algorithms. Global optimization of the MB potential using up to✌✎✍
atoms was carried out in [13]. The algorithm used was a topographical multi-start algorithm. We

note that unlike the LJ problem, which has been extensively studied by the optimization communities,

very little experiment has been devoted to the more realistic potential problem such as MB.

In this study we consider the potential functions as sample global optimization problems only

for testing our algorithm. We do not consider the physics involved in the problems and therefore no

plots of the clusters are given. It was concluded in [13] that the design of an efficient multi-start type

algorithm was imperative for potential minimization. We have designed the new algorithm with this

observation in mind. This is a local search based differential evolution (DE) algorithm. The new

algorithm is iterative in the sense that it uses the optimal structure of the cluster of ✏✒✑✔✓ ✌
atoms when

minimizing the cluster of ✏✕✑ atoms. The main thrust of this paper is to devise a global optimization

algorithm which is robust and efficient in finding the global minimum of silicon (
�✂✁

) and Lennard-

Jones clusters. We demonstrate the robustness of the new algorithm on both of these problems. The

organization of the paper is as follows. In section 2 we present our new algorithm. In the same section

we also briefly present the DE algorithm. Section 3 contains the statement of the problems. Section

4 contains the numerical results and conclusion is made in section 5.

2 Local Search Based Differential Evolution Algorithm

The DE algorithm is a direct method and it has a role to play where the gradient of the function is not

available. Design of DE certainly brought a new dimension to the direct search techniques in the field

of global optimization. Indeed, in [15] it was found that DE is very efficient in locating the global

minimizer for some test problems when comparing with some other direct search global optimization

methods. However, the robustness of DE falls off as the number of dimension increases. In this

study we have adapted the DE method for problems of large dimension for which the gradients are

readily available. We incorporate the localization of search within the global exploration feature of

DE. In particular, we would like to integrate the complementary strengths of DE and the multi-start

in a suitable framework, to minimize the potential functions. Although the new method is designed

for potential minimization it can be adapted for general global optimization problems. Therefore, we

have presented the local search based differential evolution algorithm for general problem and for

the potential problem. We call these two algorithms respectively as DELG and DELP. It is easy to

describe our new algorithms based on the description of DE. We begin by briefly describing the DE

algorithm.

2.1 Differential Evolution (DE)

Differential Evolution (DE) [1] is a population set based algorithm [15] designed for minimizing a

function of real variables. It is extremely robust in locating the global minimum. Like the other popu-

lation set based direct search methods [15], DE also attempts to guide an initial set
�✗✖✙✘✎✚✜✛✣✢✤✚✦✥✧✢✣★✣★✣★✩✢✤✚✕✪✬✫

of points in the search region ✭✯✮✱✰✳✲✵✴ , ✏ being the dimension of the problem, to the vicinity of the

global minimum through repeated cycles of selection, reproduction (mutation and crossover) and

acceptance. DE attempts to replace all points in
�

by new better points at each generation. The mech-

anism of the DE algorithm is to progress in an epoch or generation base. During each epoch ✶✦✷✹✸✻✺✽✼ of

DE, ✾ function values are evaluated. We now describe how this is done. In each generation, ✾ com-

petitions are held to determine the members of
�

for the next generation. The
✁
-th (

✁✜✖ ✌ ✢❀✿❁✢✣★✣★✣★❂✢ ✾ )

competition is held to replace
✚ ✷ in

�
. Considering

✚ ✷ as the target point, a trial point ❃❄✷ is found from

2



two points (parents), the point
✚ ✷ , i.e., the target point and the point

�✚ ✷ determined by the mutation

operation. In its mutation phase DE randomly selects three distinct points
✚ ✑ ✁ ✛✄✂ ✢✤✚ ✑ ✁ ✥☎✂ and

✚ ✑ ✁✝✆ ✂ from

the current set
�

. None of these points should coincide with the current target point
✚ ✷ . The weighted

difference of any two points is then added to the third point which can be mathematically described

as : �✚ ✷ ✖ ✚ ✑ ✁ ✛✄✂✟✞✡✠☞☛ ✄ ✚ ✑ ✁ ✥☎✂ ✓ ✚ ✑ ✁✌✆ ✂ ✞✔✢ ✄ ✌ ✞

where
✠✎✍ ✌

is a scaling factor. The trial point ❃❄✷ is found from its parents
✚ ✷ and

�✚ ✷ using the

following crossover rule :

❃✑✏ ✷ ✖✓✒ �✚ ✏ ✷ if ✲ ✏ ✍ ✠✕✔
or ✖ ✖ ✰ ✷✚ ✏ ✷ if ✲ ✏✘✗ ✠✕✔
and ✖✚✙✖ ✰ ✷ ✢

✄ ✿ ✞

where ✰✣✷ is a randomly chosen integer in the set ✰ , i.e., ✰✩✷✜✛ ✰ ✖ ✘ ✌ ✢❀✿❁✢✣★✣★✣★❂✢ ✏ ✫
; the superscript ✖

represents the ✖ -th component of respective vectors; ✲ ✏ ✛ ✄✣✢ ✢ ✌ ✞
, drawn randomly for each ✖ . The

entity
✠✤✔

is a constant (eg. 0.5). The ultimate aim of the crossover rule (2) is to obtain the trial vector

❃ ✷ with components coming from the components of target vector
✚ ✷ and mutated vector

�✚ ✷ . This is

ensured by introducing
✠ ✔

. Notice that for
✠ ✔ ✖ ✌

the trial vector ❃ ✷ is the replica of the mutated

vector
�✚ ✷ , i.e., only the mutation operation is used in reproduction. For more detailed discussions on

the scaling parameter
✠

, the population size ✾ and on the controlling parameter
✠✥✔

the authors refer

[15]. In the acceptance phase the function value at the trial point, ✦ ✄ ❃ ✷ ✞ , is compared to ✦ ✄ ✚ ✷ ✞ , the

value at the target point. If ✦ ✄ ❃❄✷ ✞★✧ ✦ ✄ ✚ ✷ ✞ then ❃ ✷ replaces
✚ ✷ in

�
, otherwise,

�
retains the original✚ ✷ . This process, per generation, continues until all members of

�
are targetted. The algorithm stops

when some stopping condition is met. The typical stopping condition is given by

✦✪✩✬✫✮✭ ✓✯✦✪✩✱✰✳✲ ✍✵✴ ✢ ✄✷✶ ✞
where

✴
is a small number, say

✴ ✖ ✌ ✢✹✸ ✆
, and ✦✪✩✬✫✮✭ and ✦✑✩✱✰✳✲ are, respectively, the current maximum

and the minimum function values in
�

.

2.2 The Local Search Based DE Algorithm (DELG) : General Case

Structurally, DELG is similar to DE except the fact the population set
�

for DELG contains only the

local minimizers. Mutation and crossover are similar to DE but they use distinct local minimizers

in
�

. Initially, the ✾ local minimizers (not necessarily distinct) of the set
�

are generated in the

following way; iteratively sample
✚ ✷ from ✭ and perform a local minimization from the point

✚ ✷ giving✚ �✷ ✛ �
,
✁ ✖ ✌ ✢❀✿❁✢✣★✣★✣★❂✢ ✾ . Alternatively, a set

� ✷ ✴ ✷ consisting of ✾ random points can be generated

first and then the set
�

consisting of the corresponding local minimizers can be generated. Like

DE, DELG attempts to replace points (minimizers) in
�

with better points (minimizers). However,

✾ local searches are needed per generation. In each generation of DELG the local minimizers in�
are targetted and attempts are made to replace them with better minimizers. Like DE, DELG

needs multiple epochs/generations to improve the estimate of the optimal solution. The number of

generations increases until some stopping condition is met. Let ✶ ✷✹✸✻✺✽✼ be the number of generation. For

the targetted local minimizer
✚ �✷ , at ✶ ✷ ✸✻✺✳✼ -th generation, DELG first generates a point ❃❁✷ using mutation

(1) and crossover (2) and then obtains the corresponding local minimizer ❃ �✷ . If ✦ ✄ ❃ �✷ ✞✺✧ ✦ ✄ ✚ �✷ ✞ then✚ �✷ is replaced by ❃ �✷ . This process is continued until all
✚ �✷ in

�
are targetted. However, unlike DE,

the mutation and the crossover in DELG are carried out using local minimizers in
�

. For instance,

the mutation rule (1) is implemented on three distinct random minimizers
✚ �✑ ✁ ✛✄✂ ✢✤✚ �✑ ✁ ✥☎✂ and

✚ �✑ ✁✝✆ ✂ from

the current set
�

and the crossover rule (2) is carried out between the targetted minimizer
✚ �✷ and the

mutated point
�✚ ✷ . If the distinct number of local minimizers in

�
is less than ✻ at any epoch of the

DELG algorithm, it skips the mutation and performs the crossover only. However, in this case the

3



crossover rule (2) is not used. Rather, for every targetted
✚ �✷ ✛ �

, it uses

❃ ✏✷ ✖ � ✏ ✚ � ✁ ✏ ✂✑ ✁ ✛✄✂ ✞ ✄ ✌ ✓ � ✏ ✞✽✚ � ✁ ✏ ✂✑ ✁ ✥☎✂ ✢ ✖ ✖ ✌ ✢❀✿❁✢✣★✣★✣★❂✢ ✏ ✢ ✄ ✻ ✞
to obtain the elements of ❃ ✷ , where � ✏ are uniform random numbers in

✁ ✓ ✢✄✂ ✍ ✢ ✌ ✂ ✍✆☎ . See references

[15, 16] for the motivation of � ✏ . Again two distinct local minimizers
✚ �✑ ✁ ✛✄✂ and

✚ �✑ ✁ ✥☎✂ , both different

from
✚ �✷ , are selected randomly from

�
. The generation ✶ ✷ ✸✻✺✳✼ is completed when all

✚ �✷ are targetted.

The DELG algorithm stops when all minimizers in
�

have converged. We have taken the following

convergence criterion. ✦ �✩✬✫✮✭ ✓✯✦ �✩✱✰✳✲ ✍✵✴ ✢ ✄ ✍ ✞

where ✦ �✩✬✫✮✭ and ✦ �✩✱✰✳✲ are, respectively, the current worst minimizer and the best minimizer in
�

. We

now present the DELG algorithm.

Algorithm-1 : The Local Search Based Differential Evolution Algorithm (DELG)

Step 1 Determine the initial set
�

. Generate the set
� ✷ ✴ ✷ ✖ ✘✎✚ ✛ ✢✤✚ ✥ ✢✣★✣★✣★✎✢✤✚ ✪ ✫

by obtaining the ran-

dom point
✚ ✷ ✛ ✭ . Generate the initial set

� ✖ ✘✎✚ � ✛ ✢✤✚ �✥ ✢✣★✣★✣★ ✢✤✚ �✪ ✫
of local minimizers by

performing a local minimization starting at
✚ ✷ in

� ✷ ✴ ✷ , giving
✚ �✷ in

�
,
✁☛✖ ✌ ✢❀✿❁✢✣★✣★✣★❂✢ ✾ . Set

✶ ✷ ✸✻✺✽✼ ✖✱✁ ✖ ✌
and go to Step 4.

Step 2 Determine the candidate point for local minimization. If the number of distinct local mini-

mizers in
�

is less than 4 then use the mutation rule (4) to obtain ❃ ✷ . Otherwise, obtain ❃ ✷ using

mutation (1) and crossover (2).

Step 3 Generate minimizers to replace minimizers in
�

. Produce ❃ �✷ by local minimization starting

at ❃ ✷ . Select the trial minimizer ❃ �✷ for the ( ✶ ✷ ✸✻✺✳✼ +1)-th generation using the acceptance criterion

: replace
✚ �✷ ✛ �

with ❃ �✷ if ✦ ✄ ❃ �✷ ✞ ✧ ✦ ✄ ✚ �✷ ✞ , otherwise retain
✚ �✷ . Set

✁✜✖ ✁ ✞ ✌
. If

✁ ✧ ✾ then

go to Step 2.

Step 4 Stop the algorithm. Rank order the local minimum values in
�

from the best to the worst. If

(5) is satisfied the stop, otherwise set
✁ ✖ ✌

, ✶ ✷✹✸✻✺✽✼ ✖ ✶ ✷ ✸✻✺✽✼ ✞ ✌
and go to Step 2.

The DELG algorithm presented above can be implemented to any global optimization problem

where the gradient based local search is permitted. Indeed, implementation of DE and DELG using

14 test problems is carried out in [17] with the conclusion that DELG is superior. We now present our

main DELP algorithm for the minimization of potential functions, namely the LJ and MB potentials.

Remark 1 : In the computer implementation the population set
�

is represented by an array ✝ .

The array ✝ contains the ✾ members of
�

with their function values. Therefore, ✝ has ✾ rows and

✏ ✞ ✌
columns.

2.3 The Local Search Based DE Algorithm for Potential Minimization (DELP)

In this section we present the DELP algorithm for energy minimization of clusters of atoms interacting

through a well-defined potential function. DELP is a modified version of DELG. This modification

takes advantage of the special structure of potential functions in that the optimal cluster of, say ✏ ✑ ✓ ✌
atoms is used in the optimization of the cluster involving ✏ ✑ atoms. We consider the smallest cluster

to have three atoms. To optimize the cluster of ✏ ✑ atoms, DELP iteratively optimize clusters of 3

atoms, 4 atoms, and up to ✏✕✑✵✓ ✌
atoms. Therefore, a single run of the DELP is needed to optimize

all clusters of atoms up to the cluster of ✏ ✑ atoms. There are ✏✦✑✬✓ ✿
optimization subproblems in the

optimization of the cluster consisting of ✏ ✑ atoms. This optimization problem is solved iteratively
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with the inner level (the smallest subproblem) formed by the problem of 3 atoms and the outer level

(the largest subproblem) formed by ✏✕✑ atoms. In these subproblem optimizations the optimal structure

in the (✖ -1)-th subproblem is used in the optimization of ✖ th subproblem, ✖ ✖ ✌ ✢❀✿❁✢✣★✣★✣★❂✢ ✄ ✏ ✑✬✓ ✿ ✞
. We

now describe how this is done. For this let us define ✏ ✁ ✑ ✂
be the dimension of the subproblem with

✏ ✑ number of atoms. For instance ✏ ✁✝✆ ✂
is the dimension of 3 atoms problem. The size ✾ of the

population set
�

is dependent on the dimension ✏ ✁ ✑ ✂
of the problem. The population set for this

subproblem with ✏✦✑ atoms will be

� ✖✙✘✎✚ � ✛ ✢✤✚ �✥ ✢✣★✣★✣★✩✢✤✚ �✪ ✫ ✢

where ✾ ✖ ✌ ✢ ✏ ✁ ✑ ✂
and

✚ �✷ ✛ ✰✽✲ ✴
� ✁✄✂

. The corresponding array ✝ have
✌ ✢ ✏ ✁ ✑ ✂ ☛ ✄ ✏ ✁ ✑ ✂ ✞ ✌ ✞

elements.

After this subproblem has been solved its final minimizers
✚ �✷ in

�
, except the function values, are

passed into the generation process of the initial
�

of the next subproblem with ( ✏ ✑ +1) atoms. As the

number of atoms increases in the subproblems, so is the size ✾ of the set
�

. The additional coor-

dinates of points in
� ✷ ✴ ✷ that are coming from the previous subproblem, as well as the coordinates

of additional points are generated randomly. For instance, the subproblem with ( ✏ ✑ +1) atoms,
� ✷ ✴ ✷

have
✌ ✢ ✏ ✁ ✑✆☎ ✛✄✂

members. Hence,
✌ ✢ ✏ ✁ ✑ ✂ ☛ ✏ ✁ ✑ ✂

coordinates in
� ✷ ✴ ✷ will be coming from the final

�
of the previous subproblem. The remaining

✌ ✢ ✏ ✁ ✑✆☎ ✛✄✂ ☛ ✏ ✁ ✑✆☎ ✛✄✂ ✓ ✌ ✢ ✏ ✁ ✑ ✂ ☛ ✏ ✁ ✑ ✂
coordinates in

� ✷ ✴ ✷
are generated randomly within the search region ✭ . The initial population set

�
for this subproblem

is then formed by performing local searches from these
✌ ✢ ✏ ✁ ✑✆☎ ✛✄✂

points in
� ✷ ✴ ✷ . The array ✝ stores

these minimizers with its final column containing the corresponding minimum values. Since DELP

iteratively optimize each subproblem, the population sets
� ✷ ✴ ✷ and

�
are indexed respectively as

� ✷ ✴ ✷✏
and

� ✏ for the ✖ -th subproblem. We now present the DELP algorithm for potential minimization. Let

the maximum number of atoms considered be ✝ .

Algorithm-2 : The Local Search Based Differential Evolution Algorithm for Potential Mini-

mization (DELP)

Step 1 Initialize the subproblem counter, the number of atoms in the subproblem and the popula-

tion sets. Let
� ✷ ✴ ✷✏ denotes the population set of points, and

� ✏ the population set of minimizers

for the subproblem ✖ . Set ✖ ✖ ✌
,
✁ ✖ ✌

, ✶ ✷ ✸✻✺✽✼ ✖ ✌
, ✏ ✑ ✖ ✶

and ✾ ✖ ✌ ✢ ✏ ✁ ✑ ✂
.

Step 2 Determine the initial set
�

. If ✖ ✖ ✌
generate the initial set

� ✏ ; proceed exactly the same way

as in Step 1, Algorithm-1. Otherwise, generate the extended coordinates of points (minimizers)

in
� ✷ ✴ ✷✏ ✸ ✛ and the full coordinates of the additional ✾ ✓ ✌ ✢ ✏ ✁ ✑ ✸ ✛✄✂

points in determining the set� ✷ ✴ ✷✏ , and obtain
� ✏ ✖ ✘✎✚ � ✛ ✢✤✚ �✥ ✢✣★✣★✣★✩✢✤✚ �✪ ✫

of local minimizers by performing local minimizations

starting at each point in
� ✷ ✴ ✷ . Go to Step 4.

Step 3 Determine the candidate point for minimization, Generate minimizers to replace mini-

mizers in
� ✏ . Perform Step 2 and Step 3 of Algorithm-1.

Step 4 Stop the algorithm for subproblem ✖ . Rank order the local minimum values in
� ✏ from the

best to the worst. If (5) is satisfied then go to Step 5, otherwise set
✁ ✖ ✌

, ✶ ✷ ✸✻✺✳✼ ✖ ✶ ✷✹✸✻✺✽✼ ✞ ✌
and

go to Step 3.

Step 5 Stop the algorithm. If ✖ ✖
✝ ✓ ✿

or ✏✕✑ ✖
✝ then stop. Otherwise set ✖ ✖ ✖ ✞ ✌

, ✏✕✑ ✖ ✏ ✑ ✞ ✌
and go to Step 2.

The Algorithm 1 (DELG) is embedded in the Algorithm 2 (DELP) as the DELP is iterative. We

will present results and compare the performances of these algorithms with those of some previously

proposed algorithms using LJ and MB problems, but first we present LJ and MB mathematically.
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3 The Potential Energy Function

In this section we present two potential functions namely the LJ and MB potential functions. Both

the potentials are differentiable. While the gradient of LJ function is easy to calculate (see [17]), the

gradient of MB is explicitly given in [13]. The model parameter values for different parameters in

MB can be found in [13, 3] and therefore will not also be repeated here.

3.1 The LJ Potential

The LJ potential energy between two atoms separated by distance � is given by

✁✄✂ ✄ � ✞✔✖ ✌
� ✛✳✥ ✓

✿
�✆☎ ✂

The total potential energy ✦✞✝✠✟ of a cluster of ✏ ✑ atoms is defined by

✦✡✝☛✟ ✄✌☞ ✛✎✢✣★✣★✣★ ✢✍☞ ✴ ✁ ✞ ✖✏✎
✷✌✑ ✏
✁✄✂ ✄✓✒✔☞ ✷ ✓ ☞ ✏ ✒ ✞✕✢ ✄ ☞ ✞

where
☞ ✷✱✛ ✰✽✲ ✆ represents the coordinates of the

✁
-th atom and the norm is Euclidean.

3.2 Tersoff’s MB Potential

The binding energy in the Tersoff formulation [3] is written as a sum over atomic sites in the form

✕ ✷ ✖
✌
✿ ✎✏✡✖✗ ✷ ✦✡✘

✄ � ✷ ✏ ✞ ✄✚✙ ✔✜✄ � ✷ ✏ ✞ ✓✜✛ ✷ ✏ ✙✣✢ ✄ � ✷ ✏ ✞✤✞✔✢✥✤✦✁ ✄✧✦ ✞

where � ✷ ✏ is the distance between atoms
✁

and ✖ (or
☞ ✷ and

☞ ✏ ), ✙ ✔ is a repulsive term,
✙★✢

is an

attractive term, ✦✩✘ ✄ � ✷ ✏ ✞ is a switching function and ✛✕✷ ✏ is a many-body term that depends on the

positions of atoms
✁

and ✖ and the neighbours of atom
✁
. More details of each of these quantities can

be found in [13, 3]. The term ✛✦✷ ✏ is given by

✛ ✷ ✏ ✖ ✄ ✌ ✞✫✪ ✴✞✬✍✭ ✴ ✬✷ ✏ ✞ ✸
✛✚✮ ✥

✴✯✬ ✄✱✰ ✞
where ✏ ✛ and

✪
are known fitted parameters [3]. The term ✭ ✷ ✏ for atoms

✁
and ✖ (i.e., for bond

✁ ✖ ) is

given by ✭ ✷ ✏ ✖ ✎✲ ✖✗ ✷✌✳ ✏ ✦ ✘
✄ � ✷ ✲ ✞✵✴✕✄✷✶ ✷ ✏ ✲ ✞ ✕ ✄ � ✷ ✏ ✢ � ✷ ✲ ✞✔✢ ✄✱✸ ✞

where ✕ ✄ � ✷ ✏ ✢ � ✷ ✲ ✞✔✖✺✹✼✻☛✽✿✾✼❀ ✆✆ ✄ � ✷ ✏ ✓ � ✷ ✲ ✞ ✆✼❁ ✄ ✌ ✢ ✞
and
✶ ✷ ✏ ✲ is the bond angle between bonds

✁ ✖ and
✁ ✶ and

✴
is given by

✴ ✄✷✶ ✷ ✏ ✲ ✞ ✖ ✌ ✞❃❂ ✥❅❄❇❆ ✥ ✓ ❂ ✥❅❄ ✁ ❆ ✥ ✞ ✄✱❈ ✓❊❉✼❋✩● ✶ ✷ ✏ ✲ ✞ ✥ ☎ ✂ ✄ ✌ ✌ ✞

The quantities
❀ ✆ , ❂ ✢ ❆ and

❈
which appear in

✄ ✌ ✢ ✞
and

✄ ✌ ✌ ✞
are also known fitted parameters. The

terms
✙✟✔ ✄ � ✷ ✏ ✞ and

✙❍✢✜✄ � ✷ ✏ ✞ are given by

✙ ✔ ✄ � ✷ ✏ ✞ ✖ ✝❏■ ✸❍❑ ✬ ✼▼▲ ◆ ✄ ✌ ✿✡❖ ✞
✙❍✢✜✄ � ✷ ✏ ✞ ✖ ✆ ■ ✸❍❑◗P ✼✚▲ ◆ ✄ ✌ ✿✆❘✣✞
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where ✝ ✢ ✆ ✢✓❀ ✛
and

❀ ✥
are given fitted parameters. The switching function ✦ ✘ ✄ � ✷ ✏ ✞ is given by

✦ ✘ ✄ � ✷ ✏ ✞ ✖
�✁✂ ✁✄ ✌ ✢ � ✷ ✏ ✍ ✲ ✓✆☎✛✥ ✓

✛✥ ●✞✝✠✟ ✁ ✡ ✄ � ✷ ✏ ✓ ✲ ✞
❄ ✄ ✿ ☎ ✞ ☎ ✢ ✲ ✓☛☎ ✧ � ✷ ✏ ✧ ✲ ✞ ☎ ✢✢☛✢ � ✷ ✏✌☞ ✲ ✞ ☎ ✄ ✌ ✶ ✞

values of ✲ and ☎ can also be found in [13, 3]. We consider two different MB problems, due to

two different parameterizations of Tersoff potential for silicon. The two sets of parameter values

respectively for
�✂✁☎✄✝✆✟✞

and
�✂✁☎✄✡✠☛✞

are taken from [3]. In order to calculate the minimum potential

energy for, say ✏ ✑ atoms we need to calculate the energy for each atom. Each atom, say atom
✁
, has

its own potential energy,
✕ ✷ , given by

✄✧✦ ✞
. Therefore, to determine the potential energy of a single

atom one has to calculate
✄✧✦ ✞

which involves the calculation of (8)-(13) for each neighbour of that

atom. Notice that the energy of a atom depends upon the distances and angles subtended with respect

to the other atom and therefore different atoms have different energies. To formulate the problem we

consider the atomic positions in two and three dimensional space as variables. It is clear that the total

energy, say ✦✎✍✑✏ ✄✌☞ ✛ ✢✣★✣★✣★ ✢✍☞
✴ ✁ ✞ , is a function of atomic coordinates and it is given by

✦✒✍✑✏ ✄✌☞ ✛ ✢✣★✣★✣★✎✢✍☞
✴ ✁ ✞✔✖ ✕ ✛ ✄✌☞ ✛ ✢✣★✣★✣★✎✢✍☞

✴ ✁ ✞ ✞ ✕ ✥ ✄✌☞ ✛ ✢✣★✣★✣★ ✢✍☞
✴ ✁ ✞ ✞ ★✣★✣★ ✞ ✕

✴ ✁ ✄✌☞ ✛ ✢✣★✣★✣★✎✢✍☞
✴ ✁ ✞☎✢ ✄ ✌ ✻ ✞

for which the global minimum ✦ �✍✑✏ has to be found.

3.3 Problem Formulation

We have reduced the dimension of both potentials described by (6) and (14) in the following way. We

first fix an atom at the origin and choose our second atom to lie on the positive
✚

-axis. The third atom

is chosen to lie in the upper half of the
✚

-axis. Since the position of the first atom is always fixed and

the second atom is restricted to the positive
✚

-axis, this gives a minimization problem involving three

variables for three atoms. For four atoms, additionally three variables (the Cartesian co-ordinates of

the ✻ -th atom) are required to give a minimization problem in six independent variables. For each

further atom, three variables (coordinates of the position of the atom) are added to determine the

energetics of clusters. Let
✚

be the variable of the problem which has three components for three

atoms, six components for 4 atoms and so on.

The search region for all the problem is constructed in the following way. The first variable due

to the second atom is taken as
✚✂✛ ✛ ✁ ✢ ✢ ✻ ☎ and the second and third variables are such that

✚ ✥ ✛ ✁ ✢ ✢ ✻ ☎
and

✚ ✆ ✛ ✁ ✢ ✢ ✡ ☎
. The coordinates

✚ ✷ due to any other atom are taken to lie on✓
✓✤✻✵✓ ✌

✻✕✔ ✁ ✓ ✻✶✗✖ ✢ ✻ ✞ ✌
✻✘✔ ✁ ✓ ✻✶✙✖✛✚ ✢ ✄ ✌✎✍ ✞

where ✜ �✣✢ is the nearest least integer with respect to � ✛ ✰✳✲ . For instance, three variables (
✚✥✤✧✢✤✚✧✦

and✚ ☎ ) due to the ✻ -th atoms lie on
✁ ✓✤✻ ✢ ✻ ☎ and the variables for the

✍
-th atoms on

✁ ✓✤✻ ✂ ✿ ✍ ✢ ✻ ✂ ✿ ✍✆☎ and so

on. The entire region ✭ will be the union of these subregions. The function due MB to be minimized

now can be defined by ✦✒✍✑✏ ✄ ✚ ✞✔✖ ✕ ✛ ✄ ✚ ✞ ✞ ★✣★✣★✎✢ ✞ ✕
✴ ✁ ✄ ✚ ✞☎✢ ✄ ✌ ☞ ✞

where
✚ ✛ ✭ ✮ ✰✳✲ ✁✝✆ ✴ ✁ ✸ ☎ ✂

. The ✦ ✝✠✟ ✄ ✚ ✞ can also be defined similarly [17].

4 Computational Results

In this section we present the numerical results obtained by DELG and DELP on both the problems.

We also compare the results obtained by these algorithm with those obtained by TDE algorithm [14]
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suggested for large scale potential minimization. Implementation of these algorithms require setting

of some parameter values. They inherit these parameters from the original DE algorithm. Therefore,

we set these parameter values according to the suggestions in [13, 14, 15]. For instance a good

value for the population size ✾ lies in
✁ ✦ ✏ ✢ ✌✎✍ ✏ ☎

. We have used ✾ ✖ ✌ ✢ ✏ . The value of
✠ ✔

is

taken to be 0.5 [15]. A good choice of the scaling factor
✠

can be calculated using a formula given

in [14, 15]. All computations were carried out on a SGI-Indy Irix-5.3. A limited memory BFGS

algorithm (LBFGS) of Lui and Nocedal [18] was used as the local search algorithm. The LBFGS is

designed for large scale local optimization problems. The performance is measured by criteria based

on the number of function evaluation (FE), the cpu time (cpu) and the total success (ts) in obtaining

the global minimum. To show the robustness of our algorithm we first compare all algorithms on the

LJ problem. We consider clusters of up to 10 atoms. There are 8 problems and 10 runs are conducted

for each problem. This gives a total of 80 test runs1. Except a few cases, both DELG and DELP were

successful in finding the global minimum for almost all runs. DELP fails only 5 times out of 360 runs

and DELG 4 times out of 80 runs, all occurring on 6 atom cluster. However, the total successful runs,

out of 80 runs, for DE and TDE are 59 and 71 respectively. Therefore, DELG and DELP methods

are superior to the other two methods. The total number of successes for DELP (3 failures at inner

levels and 2 failures at the outer levels for ✏ ✑ ✖ ☞ ) and FELG are 78 and 76 respective. The results on

FE and cpu are summarised in Table 1. In this table FE and cpu respectively represents the average

number of function evaluations and average cpu times. The average is taken over successful runs, out

of 10 runs, for which the algorithm obtained the best known minimizer [17]. From this table and the

Table 1: Comparison of FE and cpu using 80 runs for LJ

DE TDE DELG DELP

✏ ✑ FE cpu FE cpu FE cpu FE cpu

3 1980 0.09 2524 0.18 1707 0.22 1973 0.24

4 5700 0.35 10716 1.23 8678 1.47 10359 1.57

5 19440 1.56 40968 4.54 18948 3.74 31443 5.47

6 119760 12.93 271044 14.11 106692 22.47 67953 15.52

7 525150 69.69 1360444 34.01 160757 40.32 103449 23.22

8 866700 142.40 9557877 154.44 593776 165.47 207776 51.89

9 3736740 685.78 14942176 717.55 1206893 382.09 1463183 470.48

10 37887600 8196.02 29063121 6012.07 6176557 3557.61 4653885 1711.68

Total 43163070 9108.82 55248870 6938.13 8177985 4173.39 6540021 2280.07

discussion above it is quite clear that both DELG and DELP are superior to DE and TDE in terms

of FE, cpu and ts. Since both DELG and DELP were successful almost in all runs we compare them

using the total FE and cpu given on the last row of Table 1. DELP is superior to DELG in terms of

FE and cpu respectively by 20% and 45%. However, DELP produces cumulative FE and cpu. For

instance, FE needed for ✏✦✑ ✖ ✌ ✢
is the total number of function evaluations from the beginning (first

cluster to the last cluster) to the end and therefore FE for ✏ ✑ ✖ ✌ ✢
includes the FE for all subproblems.

Therefore, FE and cpu for DELP are respectively given in brackets on the second last row of Table 1.

If we compare total FE and cpu for DELG with those of DELP given in brackets we see that DELP

is superior to DELG by 43% and 59% respectively in terms of FE and cpu. These results motivate us

1When DELP is applied to each of the 8 problems 10 times total number of test runs involved is 360. When DELP

solves the 10 atom problem it iteratively solves 8 subproblems starting from 3 atom up to 10 atom problems. Therefore

when we apply DELP 10 times to the 10 atom problem there are altogether a total of 80 test runs. When we apply DELP 10

times to the 9 atom problem there are a total of 70 test runs involved. Similarly, a total of 60 test runs for 8 atom problem,

50 for 7 atom problem and so on up to a total of 10 test runs involved in the 3 atom problems. We took average FE and cpu

for all successful test runs.
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to conduct more test runs using bigger clusters of atoms of 11 to 15 atoms. We ran DELG and DELP

5 times on each of these problems. The number of problems is now 5 and a total of 25 test runs2.

DELP was successful in all test runs (including the inner ones) and DELG failed 6 times. DELP was

superior (in successful runs) to DELG by 45% in FE and by 60% in cpu. Moreover, the robustness of

DELG gradually fell off as we added more atoms in the cluster. For example, we ran both DELG and

DELP on LJ using clusters for 16 to 30 atoms. In these problems DELP again outperforms DELG

in all respect, i.e., in terms of ts, FE and cpu. We ran these two algorithms 5 times on each of the

5 problems. In these 75 runs DELP was successful (including the inner level runs) in all runs, and

DELG was successful in 55 runs. We further tested DELP using LJ 5 times on each problems of

clusters of 16 to 30 atoms. In these runs DELP only fails only 4 times, all only at the inner levels.

These failures occur for 19 and 23 atom problems. However, the best minimum obtained in these runs

were -72.60 and -92.63 respectively for ✏ ✑ ✖ ✌ ✸
and ✏ ✑ ✖ ✿ ✶

, against their best known minimum

respective values -72.66 and -92.84. The total number of failures for DELG was 26.

Table 2: Global minimum values for MB found by DELP✦ �✍✑✏ ✦ �✍✑✏
✏ ✑ �✂✁☎✄✡✠✵✞ � ✁☎✄✝✆✟✞ ✏ ✑ �✂✁☎✄✡✠✵✞ �✂✁☎✄✝✆✟✞

3 -5.33 -7.87 17 -57.72 -72.10

4 -8.63 -15.70 18 -60.94 -78.54

5 -12.43 -20.39 19 -64.37 -82.86

6 -15.80 -25.65 20 -67.60 -87.31

7 -18.66 -30.39 21 -71.43 -90.95

8 -22.27 -36.26 22 -74.51 -94.8

9 -26.20 -40.67 23 -77.60 -99.63

10 -29.26 -45.19 24 -82.55 -103.44

11 -32.83
�

-46.89 25 -86.19 -109.28

12 -36.36
�

-53.02 26 -89.56 -112.87

13 -41.54
�

-55.38 27 -92.11 -116.53

14 -44.67
�

-59.43 28 -95-56 -120.14

15 -48.73
�

-63.62 29 -98.75 -124.32

16 -53.99 -67.86 30 -102.22 -128.03

The above numerical experiments on LJ problems motivated us to apply DELP to optimize a more

complicated potential, namely the MB potential. Our previous experiment with this potential using

only 15 atoms [12, 13] has shown that MB is a much harder problem than LJ. In these studies using

MB for 100 independent runs we noticed that
�✂✁☎✄✡✠☛✞

was difficult than
�✂✁☎✄✝✆✟✞

, it took on average

more FE and cpu. Indeed, it was difficult to locate the very best minimum for
�✂✁☎✄✡✠✵✞

, for all 15 atoms

considered. Unlike LJ, the best known minimum values for MB are not known except the minimum

values for up to 15 atoms reported in [13]. We have used DELP for the optimization of MB potential

using up to 30 atoms involving 84 variables. The minimum values have been found by DELP in 5

independent runs are given in Table 2. In Table 2 the minimum values with asterisk marks indicates

the best minimum found by DELP than that reported in [13], where results of up to 15 atoms are

given.

2DELP has 75 test runs as defined in footnote 1 and DELP was successful in all these runs
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5 Conclusion

We have developed a new global optimization algorithm for large scale problems and the algorithm

has been implemented on difficult optimization problems involving potentials functions. The MB

potential function is complex in that the interacting forces are many-body and angle-dependent. The

global optimization of silicon potentials for up to
✶✑✢

atoms consisting of up to
✰ ☞ variables is carried

out. The new algorithm was able to produce better minima for some problems than those previously

found. The algorithm can be applied to large scale optimization problems in other areas of applica-

tion such as problems in biological chemistry and in plasma physics. However, the new algorithm

has become rapidly slow as we have added more than 30 atoms in the cluster. This is partly because

of the size of the array ✝ . Therefore, designing a more efficient algorithm for even larger problems

will form the basis of our future research. In particular, we are working in designing a new algorithm

for large scale potential problem that will combine the current features of DELP with as much as

prior knowledge as possible on the problem domain. In this way we would be able to work with a

managable size of the array ✝ . One of our objective is to inform the global optimization communities

of the more realistic MB potential and we hope that more researchers will investigate this potential

alongside the LJ potential.

Acknowledgements

This paper was written at IMA, University of Minnesota, USA, where the second author participated

the IMA Program on Optimization for a year. Financial support from IMA is acknowledged. The

authors thank Professor Kar Wong of Witwatersrand University for several helpful comments on the

first draft of this work.

References

[1] R. Storn and K. Price, “Differential Evolution – A Simple and Efficient Heuristic for Global

Optimization over Continuous Spaces”, Journal of Global Optimization, vol. 11, pp. 341-359,

1997.

[2] J. Tersoff, “New Empirical approach for the Structure and Energy of Covalent Systems”, Physics

Review B, vol. 37, pp. 6991-7000, 1988.

[3] J. Tersoff, “Empirical Interatomic Potential for Silicon with improved Elastic Properties”, Physics

Review B, vol. 38, pp. 9902-9905, 1988.

[4] M. M. Ali and R. Smith, “The Structures of Small Cluster Ejected by Ion Bombardment of

Solids”, Vacuum, vol. 44, pp. 377-379, 1993.

[5] H. A. Scheraga, “Recent Developments in the Theory of Protein Folding : Searching for the

Global Minimum”, Biophysical Chemistry, vol. 59, pp. 329-339, 1996.

[6] P. M. Pardalos, D. Shalloway and G. L. Xue, “Optimization Methods for Computing Global

Minima of Non-convex Potential Energy Function”, Journal of Global Optimization, vol. 4, pp.

117-133, 1994.
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