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An Iterative Image Dehazing Method With
Polarization

Linghao Shen, Yongqiang Zhao , Qunnie Peng, Jonathan Cheung-Wai Chan, and Seong G. Kong

Abstract—This paper presents a joint dehazing and denoising
scheme for an image taken in hazy conditions. Conventional
image dehazing methods may amplify the noise depending on
the distance and density of the haze. To suppress the noise
and improve the dehazing performance, an imaging model is
modified by adding the process of amplifying the noise in hazy
conditions. This model offers depth-chromaticity compensation
regularization for the transmission map and chromaticity-depth
compensation regularization for dehazing the image. The proposed
iterative image dehazing method with polarization uses these two
joint regularization schemes and the relationship between the
transmission map and dehazed image. The transmission map and
irradiance image are used to promote each other. To verify the
effectiveness of the algorithm, polarizing images of different scenes
in different days are collected. Different algorithms are applied
to the original images. Experimental results demonstrate that the
proposed scheme increases visibility in extreme weather conditions
without amplifying the noise.

Index Terms—Dehazing, polarization, iterative scheme,
weighted regularization.

I. INTRODUCTION

IN HAZY weather conditions such as fog and mist, scene
radiance can significantly be altered due to light scattering

caused by dust particles in the atmosphere. Such degradation
may cause poor image contrast, inauthentic color fidelity, and
loss of scene details resulting in degraded object recognition
capability in many visual surveillance applications [23] includ-
ing urban transportation, outdoor video surveillance, and driver

Manuscript received January 11, 2018; revised April 30, 2018, July 18,
2018, and September 2, 2018; accepted September 4, 2018. Date of publication
September 24, 2018; date of current version April 23, 2019. This work was sup-
ported in part by the National Natural Science Foundation of China (61771391,
61371152); in part by the Shenzhen Municipal Science and Technology Inno-
vation Committee (JCYJ20170815162956949); in part by the National Natural
Science Foundation of China and Korea National Research Foundation Joint
Funded Cooperation Program (61511140292, NRF-2015K2A2A2000886);
and in part by the Korea National Research Foundation (NRF-2016R1D1A
1B01008522). The associate editor coordinating the review of this manuscript
and approving it for publication was Prof. Zixiang Xiong. (Corresponding
author: Yongqiang Zhao.)

L. Shen and Y. Zhao are with the School of Automation, Northwestern
Polytechnical University, Xi’an 710072, China (e-mail:, 460855258@qq.com;
zhaoyq@nwpu.edu.cn).

Q. Peng is with the Luoyang Institute of Electro-optical Equipment of AVIC,
Luoyang 471000, China (e-mail:,pengqn1992@126.com).

J. C.-W. Chan is with the Department of Electronics and Informatics, Vrije
Universiteit Brussel, 1050 Brussels, Belgium (e-mail:,jcheungw@etrovub.be).

S. G. Kong is with the Department of Computer Engineering, Sejong Univer-
sity, Seoul 05006, Korea (e-mail:,skong@sejong.edu).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TMM.2018.2871955

Fig. 1. Typical image dehazing process.

assistance systems [1]–[3]. There has been an increasing de-
mand for effective measures to reduce haze effects in the ac-
quired images.

Image dehazing aims at reconstructing an image of high qual-
ity from its degraded version taken in hazy weather conditions.
As a typical ill-posed inverse problem, image degradation pro-
cess is generally modeled by

I(x) = L(x)t(x) + A∞(1 − t(x)) (1)

where L(x) denotes the radiance of a haze-free scene on a clear
day at a spatial location x, A∞ is the intensity of the airlight
at infinity. I(x) denotes the degraded version of L(x) by atmo-
spheric scattering. Transmission map t(x) represents the rate
of transmission, describing the scattering and absorption of
radiance through particulates in the atmosphere. L(x) can be
calculated by

L(x) =
I(x) − A∞(1 − t(x))

t(x)
. (2)

The key point of image dehazing is to estimate the t(x) and
A∞. A∞ is the scene unrelated parameter which can be esti-
mated by a pre-processing step. eq. (2) can be simplified as a
transmission map estimation problem. Fig. 1 shows a typical
image dehazing process.

Existing methods for estimation of transmission map can be
based on single image or multiple images. In single image based
methods, some image statistical priors like local contrast [1],
dark channel [3], non-local [5] are used to regularize the trans-
mission map estimation. As for multiple images based methods,
atmospheric optical features such as polarization [10] are used
to regularize the transmission map estimation process.

Tan [1] used both the chromaticity and value of infinite sky
to get the transmission map. The dehazing results are found to
be not satisfactory with some halos. Fattal [2] described a single
image method to obtain solutions where surface shading and
transmission function are locally uncorrelated. However, this
method fails when the image has a low SNR value. He et al.
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[3] found that the values of a color channel of clear images are
always very small. Using this observation as prior, the trans-
mission of fog is estimated. Many dehazing researches based
on He’s dark channel prior were developed for the advance of
the dehazing algorithms [20]. Based on the strong recurrence
property that small image patches can be repeated at different
scales in natural images, Bahat and Irani [4] exploited the de-
viation from ideal patch reoccurrence in the estimation of local
airlight and relative transmission at different distances. Berman
et al. [5] utilized the non-local prior, computing the distribu-
tion of values of all color channels which built the hazy-lines.
Transmission and airlight can be estimated with hazy-lines. Co-
druta et al. [21] used the information existing in the single input
image for multi-scale fusion-based dehazing. By assuming that
a linear relationship exists in the minimum channel between
the hazy image and the haze-free image, Wang et al. [25] esti-
mated transmission map which is used for dehazing. Fan et al.
[29] use two-layer Gaussian process regression (GPR) to learn
the relationship between the hazy image and the transmission
map, and smooth the final transmission map with local infor-
mation. To estimate the scene transmission, Ren et al. [27] use
a coarse-scale network to obtain the transmission map and then
refine it using a fine-scale network. Using a learned model, Tang
et al. [6] added more features for foggy images based on the dark
channel prior to achieve successful dehazing in certain weather
conditions. Song et al. [26] used Ranking Convolutional Neu-
ral Network to learn powerful haze-relevant features which are
used for dehazing. Cai et al. [7] use a deep learning approach
with DehazeNet for transmission estimation. The input layers
contain almost all haze-relevant features and a novel nonlin-
ear activation function is used to improve the final result. Zhu
et al. [30] combine generative adversarial network (GAN) and
usual dehazing process, getting the clear image and intermedi-
ate parameters at the same time. Li et al. [31] use convolutional
neural network to reconstruct the clear image directly from the
hazy image, without calculating the intermediate factors. These
methods above are effective in light hazy condition. However,
estimating the transmission map is challenging for a given image
taken in heavy hazy conditions. In heavy haze conditions, visual
information loses quickly, so restoring a clear image becomes
hard by previous methods.

In hazy weather, scattering will be propagated and the atmo-
sphere light becomes stronger and polarized. Using the polar-
ization properties of the light, scattered light can be removed
effectively with a polarizer. The polarization information can
also be utilized as a prior to regularize the transmission map es-
timation. Schechner et al. [10] used polarized images to estimate
the transmission map. Shwartz et al. [11] proposed a mathemat-
ical method using Independent Component Analysis to isolate
the airlight from the reflected light, then accurate transmission
map is obtained with the estimated airlight. Without including
any sky region, Miyazaki et al. [12] used the polarization in-
formation of similar objects at different distances to estimate
the polarization factors. While the result is reasonably accurate,
objects at different distances may not appear in the polarized
images. Liang et al. [13] used polarization angles to estimate
factors such as the degree of polarization of airlight (DPA).
They found that visual improvement was achieved especially in

extreme weather. With a similar approach, Qu et al. [14] used
the brightest pixels of both the intensity image and the polariza-
tion difference to estimate the airlight. And DPA is calculated
based on the dependency between DPA and airlight.

Existing dehazing methods can improve visibility, but noise
will become more serious with increasing hazy level. The noise
is associated with the transmission map, and the accuracy of
the latter depends on the density of haze and the distance be-
tween the scene and the imaging device. Therefore, denoising
after dehazing may end up with two scenarios: the noise will
not be suppressed or the image details can be destroyed. As
the distance and the degree of the haze density increase, the
value of the transmission map would increase exponentially. As
a result, the noise becomes so overwhelming that image qual-
ity becomes very low. In addition, the noise actually varies at
different locations and it depends on the transmission map. As
traditional denoising methods have a local consistency, they are
not effective.

For most scenes, the depth and chromaticity information in
local regions is rather consistent. A transmission map can pro-
vide local depth information as well as information pertaining
to noise amplification and these could be used as a guide for
denoising. An irradiance image with chromaticity information
can also be used as a guide for denoising. An accurate trans-
mission map using irradiance as feedback could suppress the
noise. At the same time, as transmission map is estimated from
irradiance, a more accurate transmission map can be acquired
by a clearer irradiance image. The quality of transmission map
and irradiance image can promote each other. First, local depth
consistent prior is used as the guide information to improve the
quality of transmission map. Then optimized transmission map
is used to improve the quality of the irradiance image. Based on
the coupled relationship between transmission map and irradi-
ance image, an iterative image dehazing method is proposed in
this paper.

The main contributions of this paper include:
1) An imaging model to consider both the noise and the noise

amplified during the dehazing process is proposed.
2) Based on the depth and chromaticity information correla-

tion in local regions, a joint depth-chromaticity regular-
ization and a joint chromaticity-depth regularization are
proposed for transmission map and dehazed image de-
noising.

3) An iterative scheme combining the weighted regulariza-
tion to substantially improves the quality of dehazing.

The rest of this paper is organized as follows. Section II
presents the basic knowledge of polarization dehazing.
Section III presents the targeted problem. Then an iterative
scheme for joint optimization method is proposed in Section IV.
Finally, we show the experimental results in Section IV and con-
clude this paper in Section V.

The Matlab source code and the data is available online at
https://github.com/polwork.

II. IMAGE DEHAZING

To derive the scene radiance, t(x) should be acquired. The
transmission map t(x), 0<t(x)<1, can be expressed as an
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exponential function of the distance [1]:

t(x) = exp (−βz(x)) (3)

where β denotes the optical density of the particles in the at-
mosphere, which is assumed to be a constant at any specific
wavelengths. The depth map z(x) indicates the distance from
the camera to a scene point at a spatial location, x, in the image.

For an outdoor haze-free image L, except for the sky region,
some dark pixels with very low intensity exist in at least one
of the color (RGB) channels [3]. As the intensity of dark pixels
tends to be zero, it is called dark channel prior. While for a
hazy image, the intensity of these dark pixels in that channel is
mainly contributed by airlight A. Based on this prior, t(x) can be
estimated as [3]:

t = 1 − w min
y∈Ω(x)

[
min

c

Ic(y)
Ac

]
(4)

where ω is a constant parameter, Ω(x) is a local patch centered
at x, and c ϵ{R, G, B} is the color channel index.

Forced by strong polarization effects of the suspended par-
ticulates as a result of backward scattering, the airlight A is a
partially polarized light. But because of the depolarization effect
of the suspended particulates, the irradiance reflected from the
scene through the haze (D) could be treated as unpolarized light
as compared to the airlight. Based on the polarized scattering
effects, t can be estimated as:

t = 1 − (I⊥ − I
//

)A
A∞(A⊥ − A// )

(5)

where I
//

and I⊥ are images acquired through polarizers at 0°
and 90°, respectively.

The quality of the restored image is closely related with the
estimation of t(x). To evaluate the performance of single image
dehazing method and polarization dehazing method, we set up
a hazy image database of 1000 images taken in different hazy
weather conditions. Some examples of these images are shown
in Fig. 2. FADE [17] is calculated to represent the visibility after
dehazing. A lower FADE value means a clearer condition and
higher visibility. We applied three typical dehazing methods:
dark channel method [3], Non-local based method [4] and po-
larization based method [10], to small foggy patches and FADE
values of the dehazed patches are presented to represent degree
of clearness. Fig. 3 shows FADE as a function of dark chan-
nel value for different dehazing methods. A large dark channel
value means that the image is brighter, which can be consid-
ered a hazier situation. Dark channel value is represented by
the largest value in the dark channel [3]. Based on dark channel
value of image, hazy images are grouped into two sets roughly,
light haze (dark channel value lower 150) and heavy haze (dark
channel value higher than 150). The performance of the dark
channel method, non-local based method and polarization based
method were similar in cases with low haze density. However,
as the haze density increases, the dark channel and non-local
based methods’ performance drops quickly. In contrast, the
polarization method maintains consistently outstanding perfor-
mances even in extremely hazy conditions, better than the dark

Fig. 2. Images of the same scene taken under different haze conditions, from
clear day to extremely hazy weather.

Fig. 3. FADE [17] is an evaluation value dehazing methods based on dark
channel [3], non-local [5], Polarization [10] and proposed method. A higher
value means a heavier haze.

channel and non-local based methods. It can be concluded that
polarization based dehazing method has relative stable dehazing
performance even in heavy hazy weather condition. In this pa-
per, we will focus on improving the performance of polarization
dehazing method.

III. PROBLEM DEFINITION

Most existing image dehazing methods are based on imaging
models without accounting for imaging noise. In actual situa-
tions, however, any acquired image is corrupted by noise to a
certain extent. This noise is mainly caused by optical imaging
sensor due to the level of illumination and the electronic cir-
cuits, and image noise can be modeled by additive noise model
[22]. Taking the additive noise into consideration, the image
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Fig. 4. The upper row shows (a) Hazy image, (b) Dehazing result with polar-
ization, (c) Dehazing result with dark channel. The bottom row is a zoom in of
the sky region to show noisy effect after dehazing.

degradation model is given by

I = L0t + A∞(1 − t) + n (6)

where n denotes the imaging noise, L0 is still the initial irradi-
ance of the scene. From (6), L0 can be expressed as

L0 =
I − A∞(1 − t)

t
+

n

t
. (7)

Compared with (2), after dehazing, L0 can be represented by

L0 = L +
n

t
. (8)

Eq. (8) shows that the recovery result is the original irradiance
mixed with added noise divided by t. The transmission t ranges
between 0 and 1 meaning that the added noise can be amplified.

Fig. 4 shows that some noise and artifacts become more visi-
ble after dehazing, especially in the sky region using the methods
based on polarization and dark channel. From (8), the final irra-
diance of the scene has been mixed with the noise n. The added
noise ε is given by

ε =
n

t
= n exp (βz). (9)

Eq. (9) shows that the noise becomes serious as the fog density
and the depth of the scene increase. If β (or z) is fixed, the noise
would increase exponentially as z (or β) grows.

A. Factor β

From the analysis above, we have learnt that the degree of
noise is positively related to the degree of haze. To further il-
lustrate this is real, we collected images in different weather
conditions and applied the polarization dehazing method de-
scribed in [9]. We collected 300 images of a red brick house in
different weather conditions. Fig. 5 shows dehazing effects of

Fig. 5. Dehazing results of scenes in different haze conditions with polariza-
tion. The dehazing performance decreases with more noise and artifacts as haze
density increases.

low density (b and c) and high fog density (e and f). After po-
larization dehazing, the image quality generally improves, but
at the same time, the noise effect becomes more serious as fog
density increases (Fig. 5(e) and 5(f)).

To analyze the noise level in dehazed image with different
haze levels, we compare the deviation (or absolute difference)
between each pixel and the image mean in the same region
acquired at low and high haze levels. The histograms in Fig. 6
show that deviations are higher in heavy-haze patch indicating
higher level of noise. And as shown in (9), the noise would
increase as β grows.

B. Factor z

As the distance between the scene and imaging device in-
creases, the dehazing result will be affected by more noise and
artifacts. Fig. 7 compares the dehazing results of far and near
objects. The dehazing result of objects like building in various
distances show that noise issue with distant objects is bigger.
Two objects, one far at region 2 and one near at region 1, both
with smooth surface are selected from an image which has been
dehazed (Fig. 7). The far object has a larger deviation as illus-
trated in Fig. 7 and explained by (9). As the density of haze
or the distance of the objects increases, the negative impact of
the atmosphere becomes more serious. As a result, the value
of the transmission map decreased rapidly, even approaching
zero. These effects ultimately result in amplified noise and im-
age distortion. Near objects however are less influenced by the
noise. Thus the noise that is amplified after dehazing is not glob-
ally consistent, and this can explain why results from existing
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Fig. 6. Distributions of the deviation from the mean value of the low-haze
patch Fig. 5(c) (TOP) and high-haze patch Fig. 5(f) (BOTTOM). Horizontal
axis is the absolute difference from mean, and vertical axis is the percentage
frequency.

Fig. 7. (a) Dehazed image by polarization, (b) Zoomed far object 2,
(c) Zoomed near object 1.

denoising methods which can be used after dehazing are not
satisfactory.

To analyze the noise level in dehazed image with different
distance, we compare the deviation (absolute difference from
image mean) of dehazed patches at different distances. Fig. 8
shows the distribution of deviation for Fig. 7(b) and (c). The
horizontal ordinate presents the absolute difference between the
pixel value and the mean value of the patch, and the vertical
ordinate represents the distribution of the differenced values.
Comparing Fig. 8(a) and (b), there are much less percentage
of small values in the far scene than in the near scene. This
indicates that the noise content of the far scene is much higher
and that the noise increases with the increase of depth.

Fig. 8. (a) Histogram of deviation from the mean of the patch Fig. 7(c) and
(b) is the same from Fig. 7(b).

Fig. 9. 2D image representation of the βz term denoting relative depth map.

C. Depth Map

Through the experiments and the statistical result above, the
variance of the smooth area increases as the distance or the
haze degree increases. The noise has a positive correlation with
the distance and the degree of the haze, which coincide with
the result from theoretical derivations, βz is associated with the
noise. Eq. (3) shows that the transmission map is a function
of the distance and fog density. From (9), when the noise n is
constant, the added noise ε is inversely proportional to the value
of the transmission map. From (3) and (9), βz is given by

βz = −ln(t) (10)

Fig. 9 shows the depth map (βz) calculated from the image in
Fig. 7(a). The value of βz is associated with the distance between
the object and the image acquisition equipment. Supposing that
the density of the fog (β) is instant in a short time, the image of
βz shows the relative depth of the scene. The larger the values
of βz (lighter in the image), the higher the noise level. This
observation suggests that it is possible to deal with the noise
after dehazing with the help of the transmission map.

The proposed idea is to improve image quality by denoising an
image which has been dehazed, or a dehazed image. We applied
BM3D [16], a popular image denoising method, to enhance a
dehazed image and the result is shown in Fig. 10. Fig. 10(a)
is a dehazed image and Fig. 10(b) is after denoising method
BM3D has been applied. With the enlarged images, we can see
the near objects like wires are sharper, but far objects like the
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Fig. 10. Dehazing result shows a high level of noise in the whole image
especially in the sky region and the denoising: (a) Dehazing result, (b) Dehazing
after denoising by BM3D, (c), (d), (e), (f) are the zoom images of regions 1,2,3,4,
in (a) and (b).

sky has little improvement and the sky regions are still covered
with noise. To achieve the goal of dehazing the images acquired
with different haze levels with objects in various distances, the
core issues are: (a) local distortion according to fog density and
(b) the distance between the objects and the image acquisition
equipment.

IV. AN ITERATIVE SCHEME FOR JOINT OPTIMIZATION

In conventional dehazing approaches, visibility enhancement
and noise suppression are treated separately. Such scheme suf-
fers from distortions and excess smoothness. Visibility enhance-
ment often leads to amplification of non-local noise. Since vis-
ibility enhancement and noise are correlated, it is logical to
incorporate visibility enhancement in denoising. But denoising
without considering the local consistency will erase details [24]
and is not suitable for the dehazing progress. As the transmission

Fig. 11. (a) Depth distance histogram, (b) Chromaticity distance histogram
where depth distance < 0.05.

map keeps local consistency, an iterative scheme using informa-
tion from a transmission can improve the final dehazing result.

A. Joint Depth-Chromaticity Compensation Regularization for
Transmission Map

For a transmission map, depth and spatial information of a lo-
cal neighborhood are highly correlated. Depth distance in trans-
mission map and chromaticity distance (in a dehazed image)
between two pixels x and y is defined as:

D1(x, y) = |z(x) − z(y)| (11)

D2(x, y) = |CL (x) − CL (y)| (12)

where z(x) and z(y) denote depth information at pixel x and
y respectively and CL (x) and CL (y) denotes color channel
intensity at pixel x and y of a haze free image respectively (z(x),
z(y), CL (x) and CL (y) are normalized values between 0 and
1). To use D1 and D2 for further analysis, 100 haze free images
and corresponding depth maps are collected. A 5 × 5 window
is run where the absolute difference between the middle pixel x
and all 24 neighborhood pixels (y) are calculated. For an image
with size m by n, a total of (m−2)(n−2)∗24 D1 or D2 values are
generated. The D1 and D2 values from 100 images are lumped
together to show their distributions.

Fig. 11 show the depth distance and chromaticity distance
from 100 depth maps and corresponding haze free images. In
the depth distance histogram (Fig. 11(a)), approximately 90%
of the pixels have depth distance smaller than 0.05. For most
natural images, depth is highly correlated among local neigh-
borhood pixels. And for regions with high depth correlations,
the chromaticity is also highly correlated in dehazing results as
shown in Fig. 11(b).

Estimated transmission map must retain high depth cor-
relation besides edge region, and estimated dehazing results
must retain high chromaticity correlation in transmission map
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correspond region. To ensure edge, depth and chromaticity con-
sistency in the estimated transmission map and dehazing re-
sults, a joint depth-chromaticity compensation regularization is
defined as:

E1(t, L) =
∑

x

∑
y∈Ω(x)

W1(x, y)‖t(x) − t(y)‖ 2 (13)

W1(x, y) =
1

2σ2 exp

⎛
⎝−

∑
i∈R,G,B

‖L(x) − L(y)‖2
2

⎞
⎠ (14)

where W(x,y) is the weight function, i denotes color channels,
t(x) and t(y) denote the value in the transmission map, x and y
denote the spatial coordinate of pixel x and pixel y respectively, σ
is the standard deviation. In the local region of the transmission
map, due to the influence of noise, if the transmission difference
of two pixels is large, which is often the case at the edge of
regions, the color of the two pixels of the corresponding dehazed
image also differs significantly, then W1 ≈ 0. Therefore, this
paper proposes a weighted regularization term to effectively
suppress the noise amplification and preserve the edge details
of the transmission map. The denoised transmission map t can
be estimated by:

t = argmin
t

‖t(x) − t0(x)‖ 2
2 + λE1(t, L) (15)

where the initial estimated transmission map value is t0 , λ is
the standard Lagrangian multiplier. eq. (15) can be solved by
standard gradient descent method.

B. Joint Chromaticity-Depth Compensation Regularization for
Dehazed Image

For clear images, depth and spatial information of a local
neighborhood are highly correlated. To confirm this, we selected
and analyzed statistically 100 depth maps and corresponding
haze free images.

Fig. 12 is generated using the same procedure as described in
the last section. It can be seen that when the depth distance is less
than 0.05, the chromaticity distance which is less than 0.02 is
more than 90%. This shows that, for most natural images, there
is a larger color correlation consistency with depth in the local
area of the scene. Estimated irradiance L must retain high depth
correlation besides edge region, and estimated intensity image
must retain high chromaticity correlation. To ensure edge, depth
and chromaticity consistency in the estimated irradiance, a joint
chromaticity-depth compensation regularization is defined as:

E2(L, t) =
∑

x

∑
y∈Ω(x)

W2(x, y)‖L(x) − L(y)‖ 2 (16)

where

W2(x, y) =
1

2σ2 exp

⎛
⎝−

∑
i∈R,G,B

‖t(x) − t(y)‖2
2

⎞
⎠ . (17)

If the chromaticity difference of two pixels is large, which is
often the case at the edge of regions, the depth of the two pixels
of the corresponding transmission map also differs significantly,

Fig. 12. (a) Chromaticity distance histogram. (b) Chromaticity distance his-
togram where depth distance < 0.05.

then W2 ≈ 0. Therefore, this paper proposes a weighted regu-
larization term to effectively suppress the noise amplification
and preserve the edge details of the irradiance. The denoised
dehazed image L can be estimated by:

L = argmin
L

‖L(x) − L0(x)‖ 2
2 + βE2(L, t) (18)

where the initial value is L0 , β is the standard Lagrangian mul-
tiplier. Eq. (18) can be solved by standard gradient descent
method.

C. An iterative Image Dehazing Method With Polarization

By using the previous method, noise in the calculated trans-
mission map and irradiance image can be reduced greatly. A
less noisy transmission map can enhance the quality of irradi-
ance image, and a less noisy irradiance image can promote the
performance of the joint depth-chromaticity compensation reg-
ularization algorithm for transmission map. In other words, the
performance of transmission map and irradiance image is mu-
tually beneficial. Thus, an iterative scheme is applied to solve
the problem that t(x) and L(x) are optimized at the same time.

From the two acquired polarized image, the initial transmis-
sion map can be calculated as:

t0 = 1 − (I⊥ − I
//

)A
A∞(A⊥ − A// )

. (19)

And the initial irradiance also can be calculated:

L0 =
(I⊥ + I

//
) − A∞(1 − t0)

t0
. (20)
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Fig. 13. Procedure of the haze removal algorithm.

So the iterative process can be written as:

ti+1 = argmin
ti + 1

‖ti+1(x) − ti(x)‖ 2
2 + λE1(ti+1 , Li) (21)

L′
i =

(I⊥ + I
//

) − A∞(1 − ti+1)
ti+1

(22)

Li+1 = argmin
Li + 1

‖Li+1(x) − L′
i(x)‖ 2

2 + βE2(Li+1) (23)

where L’ is the intermediate result of irradiance, i means the ith
iteration.

The iterative process will stop when ||ti(x) − ti−1(x)|| < ε.
It has been shown typically 3 to 4 iterations are suffice for
convergence. At each iteration, the noise of transmission map
and irradiance decreases and the accuracy improves. And the
algorithm is shown as follows:

Algorithm 1: Iterative Image Dehazing Method with
Polarization
Require: {I0 , I90} (Two polarized images of 0 and

90 degrees) and A (estimated airlight)
Output: Lopt (The optimized radiance of the scene)
1: Calculate the transmission map t0(x) by EQ (19);
2: Calculate the intermediate radiance L0(x) by EQ (20);
3: do i = 0

Calculate the transmission map ti+1(x) by EQ (21);
Calculate the intermediate radiance Li+1(x) by EQ (23);
i = i + 1;
until ||ti(x) − ti−1(x)|| < ε

4. return Lopt = Li

D. Algorithm Solution

Because the solution of (21) and the solution of (23) use the
same method, we will discuss only once the solving process of
(21).

Then we set

F = ‖ti+1(x) − ti(x)‖ 2
2 + λE1(ti+1 , Li)

= ‖ti+1(x) − ti(x)‖ 2
2

+ λ
∑

x

∑
y∈Ω(x)

W1(x, y)‖ti+1(x) − ti+1(y)‖ 2 . (24)

Because when we optimize the transmission map ti+1 , we
think that Li is known. So W1(x,y) is known and is constant
in the process of optimization. The derivation of F is shown as
follows:

∂F

∂ti+1
= 2[ti+1(x) − ti(x)]T [ti+1(x) − ti(x)]

+ λ
∑

x

∑
y∈Ω(x)

W1(x, y)
[ti+1(x) − ti(y)]T

‖ti+1(x) − ti(y)‖ . (25)

In this step, we assume ti(y) is known, and its value is the
output from the last iteration. From the above equation of the
derivation we can see F is derivable everywhere, so we can use
the gradient descent method with t updated as follows:

ti+1 = ti − η
∂F

∂t
(26)

where ti and ti+1 represent the values of t in the adjacent iterative
process. η represents the step length of the iteration. Along the
fastest gradient reduction direction, it is more likely to find the
minimum value of the function. It is understood that the final
point of gradient descent could be a local minimum instead of a
global minimum point.

E. Test Data Preparation

The raw images are taken mostly in Xi’an, Shaanxi Province,
China. The used digital camera is Nikon D90 mounted by a
rotating polarizer. The output image size is 4288 × 2848 pixels,
and its format is JPEG. The chosen scenes include buildings,
statues, mountains, trees, cars, road, and so on. The distance
ranges from 50 to 5000 meters. The date set contains over 300
different scenes. We took images in 400 different hazy days
in recent 5 years. The haze level ranges from 40 to 245 in dark
channel value, like images shown in Fig. 2. For each scene in any
different day, two images are captured with the linear polarizer
at the angles of 0° and 90° at the same time.

Figs. 14–20 show some examples of comparison between
popular methods and our proposed method. In this paper, the
parameter λ in (21) is set as 1 and the parameter β in (23) is set as
2. In the process of dehazing, transmission map and irradiance
have the comparable levels of noise. If transmission map has a
lower level of noise, transmission should be more dominant to
reduce the influence of the noise of the irradiance. To such end,
λ should be smaller than β. If the irradiance has a lower noise
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Fig. 14. Dehazing results for images in different days.

Fig. 15. Dehazing results for light-haze images.

level, then β should be smaller than λ. Based on experience, β
and λ are set between 1 and 2. To get A∞, we use the mean
value of the brightest pixels.

Our results were compared with polarization based method
[10], dark channel based method [3], and non-local based
method [4] for images taken in light-haze and heavy-haze con-
ditions. To evaluate the denoising after dehazing, we compare
our method with the results of applying BM3D [16] to dehazed
image obtained by the polarization based method.

In this paper, we collected hazy images in different days.
Fig. 14 shows one of the collected scenes with increasing haze
and the dehazing results of different methods. When haze is
light, dark channel based method performs better in terms of
visibility. And as haze increases, its quality drops sharply.

F. Dehazing Results in Different Haze Level

In a light-haze day, visibility is slightly degraded by the haze,
and polarized images from two angles 0° and 90° are used,
as shown in Figs. 15–17. All five dehazing methods including
Polarization [10], Polarization+BM3D [16], Dark Channel [3],
Non-local [5] and the proposed method, perform well to improve
visibility. Dark Channel and Polarization results show problem
of noise in the smooth regions. The proposed method effectively
improves the contrast and reduces the noise at the same time.
The polarization dehazing method followed by denoising with
BM3D also have a good dehazing result, but lose some image
details. It is illustrative especially in Fig. 16(e) that the house
number ‘8’ was degenerated to ‘H’.

When haze is heavy, the quality of the images drops sub-
stantially. In Fig. 18 and Fig. 19, it is shown that the polariza-
tion method outperforms the dark channel and non-local based
methods in extremely hazy conditions. The proposed method
effectively improves the contrast without sacrificing much in-
formation of the texture and the edges. The sky has clear color
distortion, and even the BM3D method could not mitigate this
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Fig. 16. Dehazing results for light-haze images and zoom images of the red square.

Fig. 17. Dehazing results for light-haze images and zoom images of the red square.

Fig. 18. Dehazing results for heavy-haze images and zoom images of the red square.

Fig. 19. Dehazing results for heavy-haze images and zoom images of the red square.
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Fig. 20. Dehazing results for different images in different days.

Fig. 21. Visible edges of original image and results of different dehazing
methods.

Fig. 22. Gradients of original image and results of different dehazing methods.
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Fig. 23. Evaluation of the final results by CEM.

effect. Comparatively our method gives a better result, and more
importantly the sharp edge of the objects is maintained as shown
in Fig. 18 and Fig. 19. The BM3D method has resulted in blurry
edge and lost the edge information. The experiment results show
that the two traditional dehazing method have amplified the
noise due to the depth and the high degree of the haze. Even
when denoising is applied after dehazing, the noise is sometimes
hardly removed and the details can be lost. Many existing de-
hazing methods fail to take this phenomenon into consideration.
For example, a popular dehazing method based on non-local
prior concentrates on the similarity of the non-local patches [5].
However, as the patches of similar structure may not have similar
level of the noise, applying denosing algorithms invariantly will
lead to losses of image details. The proposed dehazing method
aims at achieving dehazing and denoising by considering the
influence of the transmission map to the noise.

G. Evaluation and Discussions

No-Reference image evaluation is a hard task, especially for
polarization images [18], [19], [28]. In [16], authors pointed
out that clearer images should have sharper edges and greater
gradients, edges or gradients of dehazed images can be used to
represent the performance of dehazing. To analyze these results,
detected edges are shown in Fig. 21. Although more edges are
detected in Figs. 21(a) and (b), the edge images show enormous
amount of noise. And Fig. 21(c) shows a loss of edges. It is
shown that the proposed method generates the clearest edges and
reduces noise. Fig. 21 also demonstrates that existing dehazing
methods have amplified the noise level while trying to improve
the visibility of a hazy image. In Fig. 22, the images of (a) and
(b) has dim gradients of the edges of the scenes and the noise at
the background is prominent. The image of (c) shows a loss of
details. The gradient images also show that the proposed method
performs the best.

A perceptual evaluation using the contrast enhancement met-
ric (CEM) was carried out, and machine learning improve it
[28]. A no-reference perceptual fog density prediction model
called Fog Aware Density Evaluator (FADE) based on natural
scene statistics (NSS) was proposed [17]. Both CEM and FADE
correlate well with human judgments. CEM can sort images by

TABLE I
COMPARISON OF THE COMPUTATION TIME FOR THE DIFFERENT METHODS

their contrast. In FADE, a smaller value means better image
quality.

FADE of our results is presented in Table II and in Fig. 3.
It correlates well with visual judgments. The FADE evalua-
tion shows that the proposed dehazing method performs better
in four of the eight scenarios. For the FADE evaluation uses
the nature scene data and it is trained according to a human’s
intuitive sense, Table II and Fig. 3 could prove our work is
mostly outstanding, especially when haze is heavy. Here, we
qualitatively compare our method to state-of-the-art dehazing
techniques with some real examples.

Fig. 23 presents the CEM of our results. We choose a group
of light-hazy results in Fig. 17 and a group of heavy-hazy results
in Fig. 18. Then we rank and arrange these results with CEM in
order. The CEM is also trained with human’s intuitive sense. So
the CEM evaluation shows our work performs better in different
days.

To show the effectiveness of the proposed iterative scheme,
we extract the irradiance of every group of images in the first
iteration, which means a one-step optimized operation on the
original result with polarization method [10]. We calculate the
FADE of these intermediate results which is shown in Table II.
We sort the images into two conditions: a light haze condition
(the dark channel value less than 150) and a heavy haze condition
(the dark channel value higher than 150). From Table II, it can
be seen that our method with only one-step iteration performs
better than the original polarization method. By analysis the
Table II, we can conclude that proposed method obtains the best
results in heavy haze than other methods. In light haze condition,
part of dehazing results by the proposed method is superior to



SHEN et al.: ITERATIVE IMAGE DEHAZING METHOD WITH POLARIZATION 1105

TABLE II
EVALUATION RESULTS BY THE METHOD PROPOSED IN [17]

other methods. And part of dehazing results by dark channel
and non-local methods is the best. As in light haze condition,
the noise in transmission map and irradiance is very low.

We ran all three algorithms on a computer with Intel R Core
E3-1225 3.30 Ghz CPU with 48 GB RAM, and using Mat-
lab R2014b. The images have an average resolution of 708 ×
516 pixels. Table I shows the average computation time per
image.

H. The Convergence of Proposed Method

To confirm the convergence of the proposed method, every
iteration in dehazing process is tested. Fig. 24 shows the four
iterations of transmission of light-hazy image and heavy-hazy
image, respectively. Fig. 25 also shows the four iterations of
irradiance of light-hazy image and heavy-hazy image.

In our method, we set the step size a small value, η = 0.1 to
ensure the convergence and the convergence can be guaranteed
as showed in the figure below where the difference between
iteration continues to fall.

To show the convergence of the proposed scheme, we calcu-
late the mean difference of every neighboring iterative images.
The specific method is calculating the difference of pixels of the
same coordinates of every neighboring iterative images, then
calculate the average of the differences. The results of Fig. 25
are shown in Fig. 26. From Fig. 26, it can be seen the mean dif-
ference decreases with each iteration. And at the last iteration
the mean difference reaches a small value. It shows our iterative
method will converge quickly.

A large step size will lead to fast convergence, but could miss
the optimal solution. If the step size is too small, the iteration

Fig. 24. The row 1 and row 3 demonstrate the four iterative transmission maps
of Fig. 16 and Fig. 19. The row 2 and row 4 demonstrate the iterative irradiance
maps of Figs. 16 and 19. (a) (b) (c) (d) present the first, second, third and fourth
iterative transmission in order.

speed is too slow, and the running time is long. And the value
of t only ranges from 0 to 1. There is only one condition that the
iteration will not converge: the step size is too large.

So, in conclusion, our iteration will converge in general. If
not, the problem can be solved by reducing the step size.

I. The Iteration of Dehazing Method

To compare the proposed iterative dehazing method with
other non-iterative method fairly, we also iterate the other
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Fig. 25. The mean difference of every neighboring images of Fig. 24.

Fig. 26. The mean difference of every neighboring images of Fig. 25(a) in
continuing iterations.

Fig. 27. Iterative irradiance maps of Figs. 16 and 19 with Dark Channel.

methods. The iteration results of other results are shown in
Fig. 27. Since the input of Schechner’s method is at least two im-
ages and output is one image, however, iterative execution is not
possible.

Fig. 27 shows that in every iteration, the estimated airlight be-
comes smaller and transmission map becomes larger compared
with the normal value. The result of every iteration becomes

Fig. 28. Iterative irradiance maps of Figs. 16 and 19 with Non-local method.

darker compared to the result of last iteration. Fig. 28 shows
that in every iteration, the estimated airlight becomes larger
and transmission map becomes smaller compared to the normal
value. The contrast becomes larger, but the distortion becomes
heavy in every iteration. Iterative execution of Dark Channel
and Non-local methods fail to enhance the original images. In
every iteration, the quality of image dehazing of Dark Channel
and Non-local declines.

V. CONCLUSION

This paper proposes a haze model considering the noise am-
plification effect in the dehazing process. The method is based on
the relation between the level of the noise after dehazing and the
scene distance as well as the concentration of the haze. We have
proposed an Iterative Dehazing Optimizing Process, an iterative
scheme, to suppress the noise produced during the dehazing
process incorporating two weighted regularization processes.
The experiments show that our method does not only work well
with different hazy levels, even in the extreme intensities, it
suppresses noise and maintains details.
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