
IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 20, NO. 10, OCTOBER 2001 999

An Iterative Maximum-Likelihood Polychromatic
Algorithm for CT

Bruno De Man, Johan Nuyts*, Patrick Dupont, Guy Marchal, and Paul Suetens

Abstract—A new iterative maximum-likelihood reconstruction
algorithm for X-ray computed tomography is presented. The
algorithm prevents beam hardening artifacts by incorporating
a polychromatic acquisition model. The continuous spectrum of
the X-ray tube is modeled as a number of discrete energies. The
energy dependence of the attenuation is taken into account by
decomposing the linear attenuation coefficient into a photoelectric
component and a Compton scatter component. The relative
weight of these components is constrained based on prior material
assumptions.

Excellent results are obtained for simulations and for phantom
measurements. Beam-hardening artifacts are effectively elim-
inated. The relation with existing algorithms is discussed. The
results confirm that improving the acquisition model assumed
by the reconstruction algorithm results in reduced artifacts.
Preliminary results indicate that metal artifact reduction is a very
promising application for this new algorithm.

Index Terms—Beam-hardening correction, computed tomog-
raphy, iterative reconstruction, maximum likelihood.

I. INTRODUCTION

S
OON after the invention of computed tomography (CT) [1]

in 1972, reconstruction by filtered backprojection (FBP),

which was developed for astrophysical applications [2], was in-

troduced. Until today, FBP remains the most widely used re-

construction method in CT. FBP is based on the assumption

that every pixel can be characterized by a single parameter ,

the linear attenuation coefficient, and that the logarithm of the

measurement is the line integral of . In reality, an X-ray tube

emits a continuous spectrum, and the attenuation in every pixel

is energy-dependent. When a polychromatic X-ray beam passes

through matter, low-energy photons are preferentially absorbed,

and the beam gradually becomes harder, i.e., its mean energy

increases. The harder a beam, the less it is further attenuated.

Therefore, the total attenuation is no longer a linear function of
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absorber thickness. Neglecting this effect leads to various well-

known beam-hardening artifacts such as cupping, the apical ar-

tifact, streaks, and flares [3]–[14].

Many different solutions for beam hardening are found in the

literature:

A first approach is to limit the amount of beam hardening by

physically pre-filtering the X-ray beams [4], [15].

A second approach is to correct the measurements based on

certain material assumptions. The method of water correction

or linearization correction assumes that all substances in the

scanning plane have the same energy dependence and corrects

the measurements prior to reconstruction [4], [15]–[17]. The

so-called postreconstruction methods [18]–[27] make a first re-

construction, from which a rough material distribution is esti-

mated. This material distribution allows to estimate the mea-

surement error, based on either simulations or calibration mea-

surements. A new reconstruction is then calculated from the

corrected measurements. This process can be repeated several

times (see, also, Section II-C).

A third approach is the dual energy approach [7], [16],

[28]–[32]. Here, the linear attenuation coefficient is decom-

posed into a photoelectric and a Compton scatter component.

A drawback of this approach is that it requires either two scans

at different tube voltages or special detectors with two different

energy windows.

Other approaches use image processing to remove

beam-hardening streaks from the reconstructed images [33],

[34]. An overview of beam-hardening correction approaches is

given in [35].

In previous work [14] we have determined the major causes

of metal artifacts. We also have shown [36] that improving the

accuracy of the acquisition model assumed by the reconstruc-

tion process results in reduced artifacts. The work presented in

this paper introduces a polychromatic acquisition model. A new

algorithm—iterative maximum-likelihood (ML) polychromatic

algorithm for CT (IMPACT)—is presented.

II. THEORY

IMPACT is an extension of the ML algorithm for trans-

mission tomography (ML-TR) [36]–[38]. Section II-A treats

ML-TR, Section II-B gives the derivation of IMPACT, and

Section II-C describes our implementation of the postrecon-

struction method, used for comparison with IMPACT.

A. ML-TR

The basic idea is: given a set of transmission measurements

, find the distribution of linear attenuation coefficients

0278–0062/01$10.00 © 2001 IEEE
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that maximizes the log-likelihood (logarithm of the

likelihood) [39]–[41]

(1)

where is the expected number of photons detected along pro-

jection line given the current reconstruction . is as-

sumed to be a Poisson realization of . A simple acquisition

model for transmission tomography is given by

(2)

where is the number of photons that would be detected in the

absence of absorber (blank scan) and is the effective inter-

section length of projection line with pixel . is measured

by a calibration scan. The projection is implemented

as in [42]: for a projection line that is more vertical than hor-

izontal ( [ 45 ; 45 ] or [135 ; 225 ], where is the

angle between the projection line and the axis), calculate the

intersection of projection line with each row, perform linear

interpolation between the two adjacent columns, sum the inter-

polated pixel values for all rows, and multiply this sum with the

intersection length of ray with one single row. For all other pro-

jection lines ( 45 ; 135 ), do the same for all columns.

Using this projection method, becomes the product of the

interpolation coefficient and the row (or column) intersection

length.

An update step for maximizing (1) is given in [36]–[38]

(3)

Substituting (1) in (3) results in the ML-TR algorithm

(4)

where is the iteration number. Fessler et al. [43] have derived a

class of algorithms that monotonically increase the likelihood.

Algorithm (4) is a member of that class (by choosing

and in [43, Section IV-A]). In [43],

is approximated by in the denominator. The advantage is that

one can then precompute the denominator prior to iterating. In

the neighborhood of the optimum, both formulas are equivalent.

If however the initial estimate is far from the optimal solution,

the approximation leads to slower convergence. We have not

applied this approximation.

B. IMPACT

A more general acquisition model than (2) is given by

(5)

Fig. 1. Decomposition of the linear attenuation coefficient � of bone into a
photoelectric component and a Compton scatter component. The dashed line
represents a simulated spectrum b (normalized) provided by Siemens.

where

energy index;

total number of energies;

linear attenuation coefficient in pixel at energy ;

total energy that would be detected by detector in the

absence of absorber for incident photons of energy .

is given by

(6)

where

emitted source spectrum (number of photons);

detector sensitivity (dimensionless);

photon energy (keV).

The third factor is introduced because CT uses energy-counting

detectors, compared to photon-counting detectors in nuclear

medicine. Consequently, the measured quantity is not a number

of photons but an energy, and it will not strictly follow a

Poisson distribution. This fact is usually ignored, because the

Poisson model is still a good approximation (see [44] and [45]).

Although in this work is chosen independent of , it could

also be exploited to incorporate source fluctuations and the

effect of a bow-tie filter. The number of unknowns in (5) is

, compared to in (2). This higher number of degrees of

freedom (DOFs) leads to poor convergence. Hence, constraints

must be introduced.

For any particular substance, the energy-dependent linear

attenuation coefficient can be approximated by a linear

combination of a number of basic functions

(7)

A good set of basic functions are the energy dependence

of the photoelectric effect and the energy dependence of

Compton scatter (see [17], [29]). This results in a decomposition

of into a photoelectric component and a Compton scatter

component

(8)
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TABLE I
PHOTOELECTRIC COEFFICIENT �, COMPTON COEFFICIENT �, AND

MONOCHROMATIC LINEAR ATTENUATION COEFFICIENT � FOR A

NUMBER OF COMMON SUBSTANCES

Fig. 1 illustrates this for the case of bone. We call the photo-

electric coefficient and the Compton coefficient. The energy

dependence of the photoelectric effect is approximated by

(9)

where is a reference energy (e.g., 70 keV). This is a

good approximation except for substances that have a -edge

in the used spectral range, such as lead or glass [46]. The energy

dependence of Compton scatter is approximated by

(10)

where is the Klein–Nishina function, given by

(11)

with keV.

For any substance with known (data from

http://physics.nist.gov/PhysRefData/ based on [47] were

used), and are calculated by applying a least squares fit to

(8) and using the analytic formulations of and [see

(9)–(11)]. In practice this fit is performed after discretization

into energy levels. From (8)–(10), it can be seen that and

actually represent the photoelectric part and the Compton

scatter part of the attenuation at 70 keV. The calculated

values of and and the values of are shown in Table I

for some common substances.

Discretization of (8) gives

(12)

and represent the energy dependence of and are

known, dimensionless functions. and represent the ma-

terial dependence and have dimension cm . The acquisition

model of (5) becomes

(13)

The number of unknowns ( and ) is now .

Fig. 2(a) shows a plot of versus , and Fig. 2(b) is a zoomed

plot for the dashed region. Most substances lie in the neighbor-

hood of the piecewise-linear – -curve defined by the set of

base substances [air, water, bone, iron] (solid line). We now as-

sume that all substances lie on this – -curve. This assumption

implies that the energy dependence of the attenuation is required

to be a linear combination of the energy dependences of two ad-

jacent base substances. Fig. 2(c) shows a plot of the monochro-

matic attenuation versus and , and Fig. 2(d) is a

zoomed plot for the dashed region. Again, the set of base sub-

stances define a – -curve and a – -curve and all substances

are assumed to lie on them. For a given , these functions

unambiguously determine the values of and . This means that

and in (13) can be substituted by the functions and

, resulting in the following acquisition model:

(14)

where and are known functions of , and now

represents the monochromatic linear attenuation coefficient at

70 keV in pixel . The number of unknowns in (14) is now

. This equation is implemented more efficiently by bringing

and outside the summation over (projection)

(15)

resulting in two projections instead of . Substituting (15) in

(1) and applying (3) results in the IMPACT algorithm

(16)

where



1002 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 20, NO. 10, OCTOBER 2001

Fig. 2. (a) Photoelectric coefficient � versus Compton coefficient � for the set of base substances [air, water, bone, iron]. (b) Same as (a) but zoomed to the dashed
region and including the other substances from Table I. (c) Monochromatic linear attenuation coefficient � versus � and � for the set of base substances [air,
water, bone, iron]. (d) Same as (c) but zoomed to the dashed region and including the other substances from Table I.

Intermediate results are given in the Appendix. At the points of

inflection, and are defined as

(17)

Finally, the result is convolved with a Gaussian smoothing

kernel with standard deviation to suppress Gibbs overshoots

at sharp edges (cf. [48]).

The resulting image represents the monochromatic linear at-

tenuation coefficient at 70 keV. Applying the functions

and to these images yields the photoelectric and Compton

scatter images at 70 keV. Using (8), reconstructions at other en-

ergies (even outside the used spectrum) are obtained.

Every iteration requires four projections (projection of , ,

, and ), and four backprojections (backprojection of ,

, , and ).
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C. Postreconstruction Approach

Our implementation of the postreconstruction approach is

essentially the version of Fuchs et al. [27]. All other methods

[18]–[26] are either limited to two or three substances, or apply

some extra approximations because of limited computational

power at the time they were invented. Similar to IMPACT, a

set of base substances (e.g., [air, water, bone, iron]) is chosen,

assuming that every pixel contains a mixture of two adjacent

base substances. An initial FBP-reconstruction is calculated

from the original sinogram. For every substance, an image

containing the substance concentrations is segmented and

each image is projected into a substance sinogram. Every

substance sinogram pixel contains the total amount of that

substance along the corresponding projection line. For every

sinogram pixel, the monochromatic projections (at ) and the

polychromatic projections (based on a -energy spectrum)

are calculated. The difference between the monochromatic and

the polychromatic sinogram is added to the original sinogram

and a new FBP-reconstruction is obtained. This process is

repeated times. In the remainder, we refer to this method as

iterative beam-hardening correction (IBHC). In our implemen-

tation, computation time increases linearly with the number of

substances considered but is still much lower than for ML or

related iterative algorithms.

III. METHODS

A. Simulations

Our two-dimensional CT-simulator is described and vali-

dated in [14]. Simulations are performed at increased sampling,

taking into account the continuous rotation of the tube-detector

unit and the finite width of the focal spot and the detector

elements. Phantoms are defined as a superposition of a number

of basic objects, each with its own shape, composition, size,

position and resolution.

We defined four circular water phantoms, each with a diam-

eter of 19 cm. Phantom 1 consists of water only and is used

to study the cupping artifact in the presence of one single sub-

stance. Phantom 2 contains four circular bone regions ( 3

cm and 1 cm) and is used to study beam hardening in the pres-

ence of at least two different substances. Phantom 3 contains

eight circular regions ( 3 cm) of fat, aluminum, plexiglas,

lung, brain, bone, blood, and soft tissue (in clockwise order and

starting from the top). This is used to investigate how critical

is the set of base substances assumed by IMPACT and IBHC.

Phantom 4 is similar to phantom 2, but the two smallest cylin-

drical inserts are now made of iron ( 1 cm). This phantom

was designed to study beam hardening in the presence of metal

objects.

Simulation parameters were adjusted to the Siemens So-

matom Plus4 CT-scanner with fixed focal spot and a 0.75-s

rotation. Both monochromatic and polychromatic (by sum-

ming photons at 50 discrete energy levels) simulations were

performed. A simulated spectrum provided by Siemens and

corresponding to a nominal tube voltage of 140 kV was used

(Fig. 1). Generally, no noise or scatter was included, because

we want to focus on beam-hardening artifacts. For phantom

4, an extra simulation was performed with noise ( 10

Fig. 3. Picture of the plexiglas phantom.

photons) to investigate the importance of the noise model in

the presence of metal objects.

B. Measurements

Three phantoms were scanned on a Siemens Somatom Plus4

CT-scanner. Phantom 5 is a circular plexiglas phantom (Fig. 3)

with thickness 1 cm, a diameter of 19 cm, and containing four

aluminum cylinders ( 1 cm and 3 cm). This phantom is

comparable to software phantom 2. We chose plexiglas and

aluminum instead of water and bone for practical reasons. This

phantom is used to study beam hardening in the absence of

metal objects. Phantom 6 is similar to phantom 5, but the two

smallest cylindrical inserts are now made of iron ( 1 cm).

This phantom is comparable to software phantom 4 and it is

used to study beam hardening in the presence of metal objects.

Phantom 7 is a skull phantom (borrowed from Siemens): a

human skull filled and surrounded by plexiglas. The skull

phantom is used to study beam hardening on a clinically more

relevant phantom.

We used sequential scan mode with fixed focal spot, a nom-

inal slice thickness of 1.0 mm, a 0.75-s rotation, a nominal tube

voltage of 140 kV or 120 kV (skull), and a tube current of

206 mA or 240 mA (skull). The raw data were transferred to

a PC for further processing using our own reconstruction soft-

ware.

C. Reconstruction

All simulations and measurements were reconstructed with:

• FBP: using a Hamming window with a cutoff frequency

equal to half the maximum frequency.

• ML-TR: using 50 iterations of 100 subsets 50 iterations

of ten subsets (cf. [49]), pixels. is the stan-

dard deviation of the Gaussian smoothing kernel and was

chosen so that ML-TR and IMPACT resulted in images
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Fig. 4. Phantom 1 (simulation). (a) FBP. (b) IMPACT. The white curves
represent the middle rows of the respective images. The dotted white curves
represent FBP of the monochromatic simulation.

with the same degree of edge smoothing as the FBP and

IBHC reconstructions.

• IMPACT: using 50 iterations of 100 subsets 50 itera-

tions of ten subsets, 0.9 pixels, 20, 70 keV.

Unless stated differently, [air, water, bone, iron] was used

as set of base substances for the simulations [solid line in

Fig. 2(b)] and [air, plexiglas, aluminum, iron] was used as

set of base substances for the measurements [dotted line

in Fig. 2(b)].

• IBHC: 5, 20, 70 keV. The same sets of

base substances were used as for IMPACT.

A simulated spectrum provided by Siemens (Fig. 1) was

used for both IMPACT and IBHC.

IV. RESULTS

A. Simulations

All simulation results are shown using a windowing interval

[0.175; 0.215] cm (centered at ), which corresponds

to a window of 200 HU and a level of 0 HU. The images are 20

cm 20 cm and 256 256 pixels.

Fig. 4 shows the reconstructions of phantom 1. The white

curves represent the middle rows of the respective images. The

dotted white curves represent FBP of the monochromatic sim-

ulation, which is used as reference. For the polychromatic sim-

ulation, both FBP Fig. 4(a) and ML-TR (not shown) result in

a substantial amount of cupping: the values are depressed to-

ward the center of the object. This cupping is entirely eliminated

both with IMPACT Fig. 4(b) and IBHC (not shown). The perfect

overlap of the white curves in Fig. 4(b) shows that the images

are also quantitatively correct.

Fig. 5 shows the reconstructions of phantom 2. FBP of the

monochromatic simulation Fig. 5(a) is used as reference. For the

polychromatic simulation, both FBP Fig. 5(b) and ML-TR (not

shown) exhibit severe artifacts: the bone inserts are connected

by dark streaks. These streaks are effectively eliminated both

with IMPACT Fig. 5(c) and IBHC Fig. 5(d). IMPACT requires

at least 50 iterations for convergence, IBHC only two.

Fig. 6 shows the reconstructions of phantom 3. FBP of the

monochromatic simulation Fig. 6(a) is used as reference. For

the polychromatic simulation, both FBP Fig. 6(b) and ML-TR

Fig. 5. Phantom 2 (simulation). (a) FBP (mono). (b) FBP. (c) IMPACT. (d)
IBHC.

(not shown) exhibit severe artifacts: the bone and aluminum in-

serts are connected by dark streaks. These streaks are reduced

but not eliminated both with IMPACT Fig. 6(c) and with IBHC

Fig. 6(d). Using an extended set of base substances [air, water,

plexiglas, bone, aluminum, iron] beam-hardening artifacts are

effectively eliminated both with IMPACT Fig. 6(e) and IBHC

Fig. 6(f). It appears that aluminum and plexiglas are too far sep-

arated from the – -curve defined by [air, water, bone, iron],

while all human tissues (fat, lung, brain, blood, soft tissue, …)

are sufficiently close to water.

Fig. 7 shows the reconstructions of phantom 4. FBP of the

monochromatic simulation Fig. 7(a) is used as reference. It

shows some streak artifacts connecting the metal and bone

inserts. These streaks are not due to beam hardening, but to

other effects such as the nonlinear partial volume effect [50]

and aliasing [51]–[53]. For the polychromatic simulation, both

FBP Fig. 7(b) and ML-TR (not shown) exhibit severe artifacts:

the bone and metal inserts are connected by dark streaks. The

streaks that were present in Fig. 7(b) but not in Fig. 7(a) are

eliminated both with IMPACT Fig. 7(c) and IBHC Fig. 7(e).

The remaining streaks in Fig. 7(c) and (e) are similar to the

streaks in Fig. 7(a), which indicates that the beam-hardening

artifacts are effectively eliminated. Fig. 7(d) and (f) shows

the IMPACT and IBHC results for the simulation with noise

( 10 photons). In both images, beam-hardening artifacts

are partially masked by noise artifacts. Clearly, the IMPACT

reconstruction benefits from the correct noise model resulting

in less severe noise artifacts. This is shown quantitatively by

calculating the standard deviation in an excentric circular water

region. This resulted in a standard deviation of 0.0028 cm

for IMPACT and 0.0039 cm for IBHC.
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Fig. 6. Phantom 3 (simulation). (a) FBP (mono). (b) FBP. (c) IMPACT.
(d) IBHC. (e) IMPACT with extended set of base substances. (f) IBHC with
extended set of base substances.

B. Measurements

All measurement results are shown using a windowing in-

terval [0.20; 0.24] cm (centered at ), which cor-

responds to a window of 200 HU and a level of 125 HU. The

images are 20 cm 20 cm and 256 256 pixels.

The left column of Fig. 8 shows the reconstructions of

phantom 5. The FBP reconstruction Fig. 8(a) exhibits a number

of dark beam-hardening streaks. The streaks are strongly

reduced both with IMPACT Fig. 8(c) and IBHC Fig. 8(e).

The right column of Fig. 8 shows the reconstructions of

phantom 6. The FBP reconstruction Fig. 8(b) exhibits severe

streak artifacts. The dark streaks are reduced both with IM-

PACT Fig. 8(d) and IBHC Fig. 8(f). Comparison with phantom

4 indicates that the remaining streaks are mainly due to other ef-

fects, such as noise, scatter, the nonlinear partial volume effect,

and aliasing. The remaining dark streak in Fig. 8(f)—probably

due to scatter—is more prominent than in Fig. 8(d). This also

suggests that IMPACT benefits from its correct noise model,

Fig. 7. Phantom 4 (simulation). (a) FBP (mono). (b) FBP. (c) IMPACT. (d)
IMPACT (with noise). (e) IBHC. (f) IBHC (with noise).

which makes IMPACT robust against errors corresponding to

strongly attenuated measurements.

Fig. 9 shows the reconstructions of phantom 7. The FBP

reconstruction Fig. 9(a) exhibits dark beam-hardening streaks.

These streaks are effectively eliminated with IMPACT Fig. 9(b)

and IBHC Fig. 9(d). [air, plexiglas, bone, iron] was chosen as

set of base substances. Subtracting IMPACT from FBP shows

where the correction for beam-hardening artifacts is most

prominent Fig. 9(c). It also shows a strong reduction of the

background noise. Note also that the bone regions are dark.

This is mainly due to the fact that the IMPACT reconstruction

represents values at 70 keV, while the FBP reconstruction

represents averages over the entire spectrum.

V. DISCUSSION

We have derived a new algorithm that combines three existing

approaches. First, it is an ML iterative algorithm, which allows

to use a correct noise model and an acquisition model that can
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Fig. 8. Phantom 5 and phantom 6 (measurements). (a)–(b) FBP. (c)–(d)
IMPACT. (e)–(f) IBHC.

be extended to other sources of artifacts, in this case to poly-

chromaticity. Second, similar to the dual energy approach, the

attenuation coefficient is decomposed into a photoelectric and a

scatter component. This is a natural decomposition that strongly

reduces the number of DOFs without loss of generality. Third,

similar to IBHC, the domain of the linear attenuation coefficient

is confined to mixtures of known substances.

The quality of the IMPACT reconstructions is, in the absence

of metal objects, not better than the IBHC reconstructions: both

result in effective beam-hardening correction. The results of

phantom 4 and 5 indicate that, in the presence of metal objects,

IMPACT benefits from its correct noise model resulting in less

severe noise and other artifacts. A more extended evaluation of

the algorithm with respect to noise, spatial resolution, quantita-

tive accuracy, and degree of artifacts is planned after including

models for scatter and the nonlinear partial volume effect.

One important parameter is the assumed set of base sub-

stances. The simulations of phantom 3 show that this set is not

Fig. 9. Phantom 7 (measurement). (a) FBP. (b) IMPACT. (c) Subtraction of
IMPACT and FBP. (d) IBHC.

very critical provided that the substances in the scanning plane

are not too far separated from the assumed – -relationship.

It is advisable to include in the – -relationship all substances

that are known to be present in the scanning plane. For routine

clinical use, we suggest to use the set of base substances [air,

soft tissue, bone, teeth]. In case other materials (e.g., titanium,

amalgam, ) are known to be present, these should be added

as well. Unlike in IBHC, the number of these substances can

become large without increase in algorithmic complexity or

computational load. This also suggests a way of increasing the

speed of IBHC: decomposing the linear attenuation coefficient

into a photoelectric and Compton scatter components—just like

in IMPACT—amounts in two projections per iteration instead

of a projection per iteration for each modeled substance. Note

that materials with a -edge in the linear attenuation coefficient

may require to extend the algorithm to a third component.

There is one situation where the proposed model might not

be optimal, namely in the presence of two materials with the

same effective attenuation but with different photoelectric and

Compton scatter components.

Another important parameter is the used spectrum. As shown

by the results, the simulated spectrum provided by the man-

ufacturer results in effective beam-hardening correction. The

number of energy levels can be increased with only mar-

ginal increase in computation time. The results show that using

20 is sufficient for an effective beam-hardening correction.

For larger objects it could be opportune to take into account the

nonuniformity of the spectrum due to the bow-tie filter.

The main drawback of IMPACT is the high computation time

inherent to ML iterative reconstruction. Therefore, it is prob-

ably advisable to use IBHC as long as no metal streak artifacts



DE MAN et al.: AN ITERATIVE MAXIMUM-LIKELIHOOD POLYCHROMATIC ALGORITHM FOR CT 1007

are present. As a first-order approximation, we can write recon-

struction time as

nriter nrdet nrviews imsize nrslices complexity

CPU
(18)

where

nriter number of iterations;

nrdet number of detector elements;

nrviews number of views;

imsize number of rows or columns in the reconstruc-

tion;

nrslices number of slices;

complexity number of (back) projections per iteration;

CPU CPU-speed.

The complexity is 1 for FBP, 3 for ML-TR (or 2 if the denom-

inator is kept constant), eight for IMPACT, and (1 number

of materials 1/nriter) for IBHC. Typically, using a Pentium

III-800, computation time is a few hours for nrdet 768,

nrviews 1056, nriter 100, imsize 512, nrslices 1,

and complexity 8. This may prevent IMPACT from being

used in clinical routine the next few years. Until now, we have

focused on a fundamental solution to the problem, rather than

worrying about computation times. We are convinced that

additional acceleration tricks, more efficient programming, and

faster computers and hardware implementation will bring ML

iterative reconstruction in CT within reach.

In our opinion, the main contribution of this work is the in-

corporation of a polychromatic model into a ML iterative re-

construction algorithm. This allows to extend existing ML ap-

proaches with beam-hardening correction. The method requires

only one scan (in contrast with the dual energy approach), and

both the number of discrete energies and the number of sub-

stances taken into account can be increased with only marginal

increase in computation time (in contrast with IBHC). In our

case, we have previously [36] shown that ML-TR is promising

for metal artifact reduction, mainly thanks to the noise model,

and by adding a Markov Random Field prior. We now have ex-

tended this method with a model for polychromaticity. It is con-

firmed that improving the acquisition model results in reduced

artifacts. The algorithm can further be extended by including

other effects such as scatter and the nonlinear partial volume ef-

fect in the acquisition model. A common advantage of IMPACT

and IBHC is that the monochromatic reconstructions allow a

direct quantitative interpretation, compared with classical im-

ages, which are averages over the used spectrum. The differ-

ence between IMPACT and other beam-hardening correction

approaches (IBHC in particular) can be summarized as follows.

Instead of correcting the data in order to obey certain assump-

tions imposed by the reconstruction algorithm, the reconstruc-

tion process is adapted to the data by incorporating a more accu-

rate acquisition model. Polychromatic data are not transformed

into monochromatic data, but the algorithm takes into account

that the measurements actually are polychromatic.

VI. CONCLUSION

We have presented an iterative ML algorithm for CT (IM-

PACT) that prevents beam-hardening artifacts. Excellent results

were obtained on simulations and phantom measurements.

The algorithm has been compared to the postreconstruction

approach, and the degree of beam-hardening correction was

comparable for both algorithms. A strong reduction of compu-

tation time is required before being used routinely. Preliminary

results indicate that metal artifact reduction is a very promising

application for this new algorithm. Previous work has inves-

tigated the importance of the correct noise model. This paper

addresses a second important cause of metal artifacts, namely

beam hardening. Further research will extend the algorithm

to include a prior, a model for scatter, and a model for the

nonlinear partial volume effect.

APPENDIX

From (15) it follows that

and assuming and we have

From (1) it follows that

and

Substituting this in (3) and reordering the terms results in (16).
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