
An Iterative Method for Multi-class Cost-sensitive Learning

Naoki Abe
Mathematical Sciences Dept.

IBM T. J. Watson Res. Ctr.
Yorktown Heights, NY 10598

nabe@us.ibm.com

Bianca Zadrozny
Mathematical Sciences Dept.

IBM T. J. Watson Res. Ctr.
Yorktown Heights, NY 10598

zadrozny@us.ibm.com

John Langford
Toyota Technological Institute

at Chicago
1427 East 60th Street

Chicago, IL 60637

jl@tti-c.org

ABSTRACT
Cost-sensitive learning addresses the issue of classification in
the presence of varying costs associated with different types
of misclassification. In this paper, we present a method
for solving multi-class cost-sensitive learning problems us-
ing any binary classification algorithm. This algorithm is
derived using three key ideas: 1) iterative weighting; 2) ex-
panding data space; and 3) gradient boosting with stochastic
ensembles. We establish some theoretical guarantees con-
cerning the performance of this method. In particular, we
show that a certain variant possesses the boosting property,
given a form of weak learning assumption on the component
binary classifier. We also empirically evaluate the perfor-
mance of the proposed method using benchmark data sets
and verify that our method generally achieves better results
than representative methods for cost-sensitive learning, in
terms of predictive performance (cost minimization) and, in
many cases, computational efficiency.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning

General Terms
Algorithms

Keywords
cost-sensitive learning, multi-class classification, boosting

1. INTRODUCTION
Classification in the presence of varying costs associated

with different types of misclassification is important for prac-
tical applications, including many data mining applications,
such as targeted marketing, fraud and intrusion detection
among others. A body of work on this subject has become
known as cost-sensitive learning, in the areas of machine
learning and data mining.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
KDD’04, August 22–25, 2004, Seattle, Washington, USA.
Copyright 2004 ACM 1-58113-888-1/04/0008 ...$5.00.

Research in cost-sensitive learning falls into three main
categories. The first category is concerned with making
particular classifier learners cost-sensitive, including meth-
ods specific for decision trees [15, 4], neural networks [14]
and support vector machines [13]. The second category
uses Bayes risk theory to assign each example to its low-
est expected cost class [8, 19]. This requires classifiers to
output class membership probabilities and sometimes re-
quires estimating costs [19] (when the costs are unknown
at classification time). The third category concerns meth-
ods that modify the distribution of training examples before
applying the classifier learning method, so that the classifier
learned from the modified distribution is cost-sensitive. We
call this approach cost-sensitive learning by example weight-
ing. Work in this area includes stratification methods [7, 6]
and the costing algorithm [20]. This approach is very gen-
eral since it reuses arbitrary classifier learners and does not
require accurate class probability estimates from the clas-
sifier. Empirically this approach attains similar or better
cost-minimization performance.
Unfortunately, current methods in this category suffer

from a major limitation: they are well-understood only for
two-class problems. In the two-class case, it is easy to show
that each example should be weighted proportionally to the
difference in cost between predicting correctly or incorrectly
[20]. However, in the multi-class case there is more than
one way in which a classifier can make a mistake, break-
ing the application of this simple formula. Heuristics, such
as weighting examples by the average misclassification cost,
have been proposed [6, 16], but they are not well-motivated
theoretically and do not seem to work very well in practice
when compared to methods that use Bayes risk minimiza-
tion [8].
In this paper, we propose a method for multi-class cost-

sensitive learning based on an iterative scheme for example
weighting. There are a number of key techniques we em-
ploy in this method: 1) an iterative process which empiri-
cally adjusts the example weighting according to the perfor-
mance of the learning algorithm; 2) data space expansion for
multi-class labels; 3) gradient boosting [17] with stochastic
ensembles. The first two ideas are combined in a unifying
framework given by the third.
We establish theoretical performance guarantee for a vari-

ant of our algorithm. In particular, we show that this variant
possesses the so-called boosting property, given that the com-
ponent classification algorithm satisfies a certain weak learn-
ing assumption. We test our method on several multi-class
data sets and discover excellent predictive performance (i.e.

3

Research Track Paper

cost minimization) as compared to existing cost-sensitive
algorithms. Moreover, our results show that when the dis-
tribution of costs is skewed (as is common in many data
mining applications) our method has the added advantage
that it uses drastically smaller sample sizes and hence re-
quires much less computational resources.

2. PRELIMINARIES
We begin by introducing some general concepts and no-

tation we use in the rest of the paper.

2.1 Cost-sensitive learning and related
problems

A popular formulation of the cost-sensitive learning prob-
lem is via the use of a cost matrix. A cost matrix, C(y1, y2),
specifies how much cost is incurred when an example is pre-
dicted to belong to class y1 when its correct label is y2, and
the goal of a cost-sensitive learning method is to minimize
the expected cost. Zadrozny and Elkan [19] noted that this
formulation is not applicable in situations in which misclas-
sification costs depend on particular instances, and proposed
a more general form of cost function, C(x, y1, y2), that allows
dependence on the instance x. Here we adopt a formulation
based on this (although slightly more general).
Once we allow the costs to depend on each example, it

is natural to assume that the costs are generated according
to some distribution, along with the examples, which leads
to the following formulation. In (multiclass) cost sensitive

classification, examples of the form (x, �C) are drawn from

a distribution D over a domain X × R+k

. (Throughout
the paper, we will let k denote |Y |.) Here, for each label
y ∈ Y , Cy equals the cost of misclassifying instance x as y,
i.e. Cy = C(x, y, y∗) where y∗ is the minimum cost label for
x.
Given a set of examples, S = (x, �C)m, the goal is to find

a classifier h : X → {1, ..., k} which minimizes the expected
cost of the classifier:

argmin
h

E
(x,�C)∼D

[Ch(x)] (1)

We can assume without loss of generality that the costs are
normalized so that

∀x ∈ X min
y∈Y

Cy = 0.

Note that with this normalization, the above formulation is
equivalent to the common formulation in terms of misclas-
sification cost, i.e.,

argmin
h

E
(x, �C)∼D

[Ch(x)I(h(x) �= argmin
y

Cy)]

where we used I(·) to denote the indicator function which
takes on the value 1 whenever the statement is true, and the
value 0 otherwise.
Normally a learning method attempts to do this by min-

imizing the empirical cost in the given training data, given
some hypothesis class H:

arg min
h∈H

Ê
(x, �C)∼S

[Ch(x)] =
1

|S|
X

(x, �C)∈S

Ch(x) (2)

Here the empirical expectation notation, Ê, refers to the
averaged empirical cost.

As a building block of our method, we make use of meth-
ods for solving importance weighted classification problems,
which we define below. In importance weighted classifica-
tion, examples of the form (x, y, c) are drawn from a distri-
bution D over a domain X×Y ×R+. Given a set of examples
S = (x, y, c)m, the goal is to find a classifier h : X → Y hav-
ing minimum importance-weighted misclassification error:

argmin
h

E
(x,y,c)∼D

[c · I(h(x) �= y)]

Again, usually, a learning method attempts to meet this
goal by minimizing the empirical weighted error in some
hypothesis class H:

argmin
h∈H

Ê
(x,y,c)∼S

[c · I(h(x) �= y)] (3)

We emphasize that the importance weighted formulation
critically differs from the per example formulation of multi-
class cost-sensitive learning in that there is a single weight
associated with each instance x, whereas in multi-class cost-
sensitive learning there is a weight (misclassification cost)
associated with each label y. We note that importance
weighted classification can be solved very well with a classi-
fier learning method, by use of weighted rejection sampling
techniques [20].

2.2 Hypothesis representations and other
notation

In the above, we assumed that the hypotheses output by
a cost-sensitive learner is a functional hypothesis h, i.e. h :
X → Y. It is also possible to allow hypotheses that are
stochastic, namely

h : X × Y → [0, 1]

subject to the stochastic condition:

∀x ∈ X
X
y∈Y

h(y|x) = 1.

With stochastic hypotheses, stochastic cost-sensitive learn-
ing is defined as the process of finding a hypothesis mini-
mizing the following expected cost:

argmin
h

E
(x,�C)∼D

E
y∼h(y|x)

[Cy]

In general, we sometimes use the following short-hand no-
tation for the expected cost of a stochastic hypothesis h on
an instance x.

Ch(x) ≡ E
y∼h(y|x)

[Cy]

Note that in the special case that h is deterministic, the
above formulation is equivalent to the definition given in
Eq. 1. Also, this is a convexification of the standard ob-
jective function that we usually expect a stochastic cost-
sensitive learner to minimize, i.e.

E
(x, �C)∼D

[Carg maxy h(y|x)]

We also consider a variant of cost-sensitive learning in which
relational hypotheses are allowed. Here relational hypothe-
ses h are relations over X × Y , i.e. h : X × Y → {0, 1}. In
general h is neither functional nor stochastic, and in partic-
ular it may violate the stochasticity:

P
y∈Y h(x, y) = 1.

4

Research Track Paper

• An input sample S = (x, �C)m.

• A component learner A that takes an importance-
weighted sample S′ = (x, y, c)m and outputs a func-
tional hypothesis h, possibly by weighted sampling.

• An integer T specifying the number of iterations to
be performed.

1. Let S′ =

{(x, argmin
y

Cy,max
y

Cy)|(x, �C) ∈ S}

2. For t := 1 to T do

(a) Let ht := A(S′).

(b) Choose αt ∈ [0, 1), for example αt := 1/t.

(c) For each example (x, y, c) ∈ S′ with an error
ht(x) �= y update the importance weight by

c := αtCh(x) + (1− αt)c

3. Return hT .

Figure 1: Method IW (Iterative Weighting)

3. THE METHODOLOGY
Our methodology can be interpreted as a reduction, which

translates a multi-class cost-sensitive learning problem to a
classifier learning problem.
This methodology is derived using three key ideas: 1)

iterative weighting; 2) expanding data space; and 3) gradient
boosting with stochastic ensembles. The first two ideas are
combined in a unifying framework given by the third.
Below we will explain the first two key ideas by exhibiting

a prototypical method based on each, and then derive our
main learning method that makes use of them in a gradient
boosting framework.

3.1 Iterative cost weighting
We note that the weighting scheme proposed in [20], called

costing, exploits the following observation: For the binary
class case, the above formulation in terms of per example
cost for each class can be further reduced to a formulation
in terms of a single importance number per example. This is
possible by associating a number indicating the importance
of an example (x, y), given by |C0 − C1|. This conversion
allows us to reduce the cost-sensitive learning problem to a
weighted classifier learning problem, but it is not immedi-
ately obvious how that would be done for the multi-class sce-
nario. It is therefore natural to consider iterative weighting
schemes, in which example weights are iteratively modified
in search for the optimal weighting. The technique, which
we call IW (Iterative Weighting), presented in Figure 1, is
an example of such a scheme. We can show that the final
weights of IW are the optimal weights in some sense, pro-
vided the algorithm converges.

Theorem 1. Assume IW converges and the final hypoth-
esis is h. Then, the following holds:

Ê
(x,y,c)∼S′[c · I(h(x) �= y)] = Ê

(x,�C)∼S
[Ch(x)].

• An input sample S = (x, �C)m.

• A component learner A that takes an importance-
weighted sample S′ = (x, y, c)m and outputs a func-
tional hypothesis h, possibly by weighted sampling.

1. Set S′ = {(x, y,maxy′ Cy′ − Cy)|(x, �C) ∈ S, y ∈ Y }
2. Return h := A(S′)

Figure 2: Method DSE (Data Space Expansion)

This theorem says that, if the iterative algorithm con-
verges, then the loss of the component learner with respect
to the final weights (left hand side) is equal to the expected
cost for the problem that we wish to solve (right hand side).

Proof
At convergence, for every example (x, y, c) that the h errs

on, we must have:

c = αtCh(x) + (1− αt)c

and thus

c = Ch(x)

Noting that when h does not err on x, we have I(h(x) �=
y) = 0, Thus, it follows that

Ê
(x,y,c)∼S′[c · I(h(x) �= y)] = Ê

(x,�C)∼S
[Cht(x)]

Q.E.D

3.2 Data space expansion
One drawback to iterative weighting is an inability to di-

rectly take into account the different costs associated with
multiple ways of misclassifying examples. This translates
to non-convergence of the method in practice. We address
this issue by the technique of expanding data space, as we
describe below.
Given a labeled sample S consisting of (x, �C) of size m,

we define an expanded sample S′ of size mk for weighted
classification, where k is the size of the label set, i.e. k = |Y |,
as follows.

S′ = {(x, y,max
y′ Cy′ − Cy)|(x, �C) ∈ S, y ∈ Y }

Note here that the newly defined weights are more like ben-
efits than costs, since larger costs are mapped to smaller
weights.
It turns out that minimizing the importance weighted loss,

Ê
(x,y,c)∼S′ c · I(h(x) �= y)

on this new data set also minimizes the cost on our origi-
nal sample. The algorithm DSE (Data Space Expansion),
shown in Figure 2, is based on this observation, which is
summarized as theorem below.

Theorem 2. With the definitions given in Figure 2, a
hypothesis h minimizing the weighted classification error on
the expanded weighted sample S′,

Ê
(x,y,c)∼S′[c · I(h(x) �= y)]

5

Research Track Paper

also minimizes the cost on the original sample S,

Ê
(x,�C)∼S

[Ch(x)]

Proof

argmin
h

Ê
(x,y,c)∼S′[c · I(h(x) �= y)]

= argmin
h

Ê
(x, �C)∼S

X
y∈Y

[(max
y′∈Y

Cy′ − Cy) · I(h(x) �= y)]

= argmax
h

Ê
(x, �C)∼S

X
y∈Y

[Cy · I(h(x) �= y)]

= argmax
h

Ê
(x, �C)∼S

[(
X
y∈Y

Cy)− Ch(x)]

= argmin
h

Ê
(x, �C)∼S

[Ch(x)]

Q.E.D.

3.3 Gradient Boosting with Stochastic Ensem-
bles

Having described two key ideas, namely iterative weight-
ing and data space expansion, we now apply them together
to arrive at our main method. We do so by casting the
stochastic multiclass cost-sensitive learning in the framework
of gradient boosting [17], with the objective function defined
as the expected cost of the stochastic ensemble, obtained as
a mixture of individual hypotheses, on the expanded data
set. As we stated in Section 2, a functional hypothesis of
the form h : X → Y can be viewed as a special case of
a stochastic hypothesis. We then define a stochastic en-
semble hypothesis H , given multiple functional hypotheses,
ht, t = 1, ..., T , as the conditional distribution defined as the
mixture of the component hypotheses, namely,

∀x ∈ X,∀y ∈ Y, H(y|x) = 1

T

TX
t=1

I(ht(x) = y)

Let Ht denote the mixture hypothesis of the learning pro-
cedure at round t. The procedure is to update its current
combined hypothesis by the mixture of the previous com-
bined hypothesis and a new hypothesis, i.e. by setting

Ht(y|x) = (1− β)Ht−1(y|x) + βI(h(x) = y)

Thus, the expected cost of Ht on x is

E
y∼Ht(y|x)

Cy = (1− β) E
y∼Ht−1(y|x)

Cy + βCht(x)

If we now take a derivative of this function with respect to
β, we get:

∂ Ey∼Ht(y|x) Cy

∂β
= Cht(x) − E

y∼Ht−1(y|x)
Cy

Note that this is the difference between the average cost
of the current ensemble hypothesis and the new weak hy-
pothesis assigning probability one to the specified label.
We then take the expectation of this derivative with re-

spect to all data points (x, y) in the expanded data set S′,
and thus the gradient is mk-dimensional. The weak learner
is to find a hypothesis h whose inner-product with the neg-
ative gradient is large. That is, the output h of the weak
learner seeks to maximize the following sum.

−〈h,∇C〉 = Ê
(x, �C)∼S

[E
y′∼Ht−1(y|x)

Cy′ − Ch(x)] (10)

This leads to the following example weighting on the ex-
panded sample:

wx,y = CHt−1(x) − Cy

where we recall that CHt−1(x) denotes Ey′∼Ht−1(y|x) Cy′ .
Note that these weight updates are similar to those used

in IW and DSE. In fact, the IW weight update rule is es-
sentially equivalent to the GBSE rule, except IW has, for
each instance x, the weight for only the best (least cost)
label, and hence Cy = 0 holds. This is because the IW up-
date rule mixes the weights from earlier iterations, which is
equivalent to taking the average over the stochastic ensem-
ble as is done in GBSE. The DSE update rule differs from
the GBSE rule in that maxy′ Cy′ is used in place of CHt−1(x),
which ensures that the weight is always non-negative, even
though DSE has weights for all labels. Thus, the GBSE
weights can be viewed as IW weights, applied on the ex-
panded data set, as in DSE. As a consequence, the GBSE
weights wx,y := CHt−1(x)−Cy can be negative, since y is not
necessarily the best label. This means that the weak learner
now receives both positive and negative weights. While
the minimization of weighted misclassification with positive
and negative weights makes perfect sense as an optimiza-
tion problem, its interpretation as a classification problem
is not immediately clear. In particular, it prohibits the use
of weighted sampling as a means of realizing the weighted
classification problem.
We deal with this problem by converting a relational ver-

sion of the weighted multi-class classification problem (i.e. of
finding h to maximize Eq. 10) in each iteration to a weighted
binary classification problem. Specifically we convert each
example pair (x, y) to ((x, y), l), and set l = 1 if the weight
on (x, y) is positive, and l = 0 if the weight is negative. The
output hypothesis of the binary classifier is in general rela-
tional, so it is converted to a stochastic hypothesis by the
procedure Stochastic shown in Figure 4. (The particular
way this procedure is defined is motivated by the theoretical
guarantee, which will be shown in the next subsection.) The
overall process, consisting of multiple iterations of such a re-
duction, constitutes a reduction of the stochastic multi-class
cost-sensitive classification to binary weighted classification.
With the foregoing definitions, we can now state our main

method, GBSE (Gradient Boosting with Stochastic Ensem-
bles), which is shown in Figure 3.

3.4 Theoretical Performance Guarantee on a
Variant

It turns out that a strong theoretical performance guaran-
tee can be proved on a variant of this method. The variant
is obtained by simply replacing the weight updating rule of
GBSE by the following:

wx,y =
CHt−1(x)

k
− Cy

The resulting variant, which we call GBSE-T (Gradient Boost-
ing with Stochastic Ensembles - Theoretical version), is sum-
marized in Figure 5.
We can show that GBSE-T has a boosting property given

a version of weak learning condition on the component clas-
sifier. This weak learning condition, which we make precise
below, is one that is sensitive to class imbalance.

Definition 1. We say that an algorithm A for the bi-
nary importance weighted classification problem, as defined

6

Research Track Paper

• An input sample S = (x, �C)m.

• A component learner A for (importance weighted)
binary classification that takes a sample of the form
((x, y), l, w)∗, and outputs a relational hypothesis h.

• A subprocedure Stochastic, as specified in Figure 4.

• An integer T specifying the number of iterations to
be performed.

1. Set S′ = {(x, y)|(x, �C) ∈ S, y ∈ Y }.
2. Initialize H0 by ∀x ∈ X, y ∈ Y H0(y|x) = 1/k.

3. For t := 1 to T Do

(a) wx,y := Ey′∼Ht−1(x)[Cy′] − Cy for all (x, y) in

S′.

(b) St = {((x, y), I(wx,y ≥ 0), |wx,y |)|(x, y) ∈ S′}.
(c) Let ht := A(St)

(d) ft := Stochastic(ht, Ht−1).

(e) Choose αt ∈ [0, 1), for example αt =
1
t
.

(f) Set Ht := (1− αt)Ht−1 + αtft.

4. End For

5. Return HT .

Figure 3: Method GBSE (Gradient Boosting with
Stochastic Ensembles)

Stochastic(h: a relational hypothesis, H : a stochastic
hypothesis)

1. Define f by setting for each x ∈ X:

• (default) if |{y ∈ Y |h(x, y) = 1}| = 0 then
define for all y ∈ Y , f(y|x) = H(y|x).

• else f(y|x) = I(h(x,y)=1)
|{y∈Y |h(x,y)=1}| .

2. Output f .

Figure 4: Sub-procedure Stochastic

in Section 2, satisfies the weak learning condition for a given
classification sample S = (x, y)m, if for all weighted samples
S′ = (x, y, c)m for it, its output h satisfies the following, for
some fixed γ > 0:

Ê
(x,y,c)∼S′ cI(h(x) = y)

≥ Ê
(x,y,c)∼S′ cI(y = 0) + γ Ê

(x,y,c)∼S′ cI(y = 1) (12)

Intuitively, this weak learning condition requires that the
weak learner achieve better weighted accuracy than that at-
tainable trivially by assigning all examples to the negative
class.

Theorem 3. Suppose that the component learner A sat-
isfies the weak learning condition for sample S′ as defined by
GBSE-T. If we set αt = α for all t, the output of GBSE-T

Identical to Method GBSE of Figure 3, except for the
following change:

3.(a) Set wx,y :=
CHt−1(x)

k
− Cy, for all (x, y) in S′.

Figure 5: Method GBSE-T (Gradient Boosting with
Stochastic Ensembles - Theoretical variant)

satisfies:

Ê
(x, �C)∼S

CHT (x) ≤ exp {−γα

k
T} Ê

(x, �C)∼S
CH0(x)

This theorem shows that the empirical cost of the output
hypothesis of GBSE-T converges exponentially fast, given
the weak learning assumption.

Proof
We first establish the following simple correspondence be-
tween the weak learning conditions on the relational multi-
class classification problem that we wish to solve in each it-
eration, and the weighted binary classification problem that
is given to the component algorithm to solve it.

Definition 2. Let S be a weighted sample of the form
S = (x, y, c)m, where weights c can be both positive and neg-
ative. Then define a transformed sample S′ for weighted
classification as S′ = ((x, y), I(c > 0), |c|)m.

1. The relational weighted multi-class classification prob-
lem for S is to find a relational hypothesis h : X×Y →
{0, 1} that maximizes the following sum:

Ê
(x,y,c)∼S

c · h(x, y)

2. The weighted binary classification problem for the trans-
formed sample S′ is to find a hypothesis h : X × Y →
{0, 1} that maximizes the following weighted classifica-
tion accuracy:

Ê
((x,y),I(c>0),|c|)∼S′ |c| · I(h(x, y) = I(c > 0))

Note that, in a relational weighted classification problem as
defined in Definition 2, the goal of a learner is to try to
assign 1 to pairs with positive weights and assign 0 to those
with negative weights as much as possible.

Lemma 1. For all h:

Ê
(x,y,c)∼S

c·h(x, y) = Ê
((x,y),I(c>0),|c|)∼S′ [|c|I(h(x, y) = I(c > 0))]

− Ê
((x,y),I(c>0),|c|)∼S′ [|c|I(c < 0)]

Proof of Lemma 1

Ê
((x,y),I(c>0),|c|)∈S′ |c| · I(h(x, y) = I(c > 0))

= Ê
(x,y,c)∈S

|c| · I(h(x, y) = I(c > 0))

= Ê
(x,y,c)∼S

c · I(h(x, y) = 1 and c ≥ 0)

+ Ê
(x,y,c)∼S

−c · I(h(x, y) = 0 and c < 0)

= Ê
(x,y,c)∼S

c · h(x, y)I(c ≥ 0) + c(h(x, y)− 1)I(c < 0)

= Ê
(x,y,c)∼S

c · h(x, y) + Ê
(x,y,c)∼S

|c|I(c < 0)

7

Research Track Paper

Hence the lemma follows. Q.E.D.
This lemma establishes that getting positive weighted ac-

curacy on the original relational weighted multi-class classi-
fication problem is equivalent to the weak learning condition
on the transformed weighted binary classification problem.

Proof of Theorem 3
First, note that applying Stochastic to ht can increase the
expected cost only for x’s such that |{y|ht(x, y) = 1}| = 0,
and for such x’s the cost of the output function f equals
that of Ht−1 by the definition of Stochastic. Hence, the
average empirical cost of f on the original sample S, satisfies
the following:

Ê
(x,�C)∼S

[Cf(x) −
X

y

ht(x, y)Cy]

≤ Ê
(x,�C)∼S

[CHt−1(x)I(∀y h(x, y) = 0)] (13)

Now recall that the expected empirical cost of Ht equals the
following, where we drop the subscript t from αt.

Ê
(x,�C)∼S

CHt(x) = Ê
(x, �C)∼S

(1− α)CHt−1(x) + αCf(x)(14)

Hence, by combining Eq. 13 and Eq. 14, we can show the
following bound on the decrease in empirical cost in each
iteration. Here, we also drop the subscript t on h.

Ê
(x, �C)∼S

CHt−1(x) − Ê
(x,�C)∼S

CHt(x)

= Ê
(x, �C)∼S

α(CHt−1(x) − Cf(x))

= α Ê
(x,�C)∼S

CHt−1(x) −
X

y

h(x, y)Cy

+
X

y

h(x, y)Cy − Cf(x)

≥ α Ê
(x,�C)∼S

[CHt−1(x)

−
X

y

h(x, y)Cy − CHt−1(x)I(∀y h(x, y) = 0)]

≥ α Ê
(x,�C)∼S

[
X

y:h(x,y)=1

h(x, y)

�
CHt−1(x)

k
− Cy

�

+
X

y:h(x,y)=0

CHt−1(x)

k
− CHt−1(x)I(∀y h(x, y) = 0)]

= α Ê
(x,�C)∼S

X
y

h(x, y)

�
CHt−1(x)

k
− Cy

�

+CHt−1(x)

� |{y : h(x, y) = 0}|
k

− I(∀y h(x, y) = 0)

�

≥ α Ê
(x,�C)∼S

X
y

h(x, y)

�
CHt−1(x)

k
− Cy

�

= α Ê
(x,�C)∼S

X
y

����CHt−1(x)

k
− Cy

����
(I(h(x, y) = I(

CHt−1(x)

k
> Cy))− I(

CHt−1(x)

k
< Cy))

(15)

Here Lemma 1 was applied to get the last equality. Next
apply the weak learning assumption on the induced measure

over (x′, y′, c′) defined by: x′ = (x, y), y′ = I
�

CHt−1(x)

k
> Cy

�
,

and c′ =
���CHt−1(x)

k
− Cy

��� to get:

≥ αγ Ê
(x, �C)∼S

X
y

����CHt−1(x)

k
− Cy

���� I
�

CHt−1(x)

k
> Cy

�

≥ αγ

k
Ê

(x, �C)∼S
CHt−1(x)

The last inequality follows because for all y Cy ≥ 0, there
exists y such that Cy = 0, and the sum is bounded below
by its largest term.
Since the expected cost is convex (in fact linear), this

implies convergence to the global optimum. Noting that in
each iteration, the empirical cost is reduced at least by a
factor of 1− γα

k
, the theorem follows. Q.E.D.

Note that at earlier iterations, the binary classifier used as
the component learner is likely to be given a weighted sam-
ple with balanced positive and negative examples. As the
number of iterations increases and progress is made, how-
ever, it will receive samples that are increasingly more neg-
ative. (This is because the positive examples correspond to
labels that can further improve the current performance.)
It therefore becomes easier to attain high weighted accu-
racy by simply classifying all examples to be negative. The
weak learning condition of Eq. 12 appropriately deals with
this issue, as it requires that the weak learner achieve bet-
ter weighted accuracy than that attainable by assigning all
examples to the negative class, as we mentioned earlier.

4. EXPERIMENTAL EVALUATION
We use the C4.5 decision tree learner [18] as the base clas-

sifier learning method, because it is a standard for empirical
comparisons and it was used as the base learner by Domin-
gos for the MetaCost method [8].
We compare our methods against three representative meth-

ods: Bagging [5], Averaging cost [7, 8] and MetaCost. The
Averaging cost method was also used for comparison in [8].
Note that Bagging is a cost-insensitive learning method.
Here we give a brief description of these methods, and refer
the reader to [5, 8] for the details.

• Bagging obtains multiple sub-samples from the original
training set by sampling with replacement, feeds them
to the base learner (C4.5), and takes the average over
the ensemble of output hypotheses

• Averaging Cost (AvgCost) obtains a sub-sample by
weighted sampling with weights defined as the average
cost for each x, and then feeds it to the base learner
(C4.5).

• MetaCost uses bagging to obtain an ensemble of hy-
potheses, then uses the ensemble to estimate class prob-
abilities, relabels the examples with the labels that
minimize the expected risk according to the probabil-
ity estimates and finally runs the base learner (C4.5) to
obtain a single classifier that predicts the new labels.

There are some deviations from these methods in our im-
plementation, which we clarify below. The main deviation
is that we use rejection sampling for all methods (includ-
ing bagging), while other sampling schemes such as resam-
pling with replacement are used in the original methods.1

1In weighted rejection sampling, the original data are

8

Research Track Paper

We do this for two reasons: (1) inadequacy of resampling
with replacement (or over-sampling), especially for C4.5, has
been noted by various authors [20, 9]; (2) since our proposed
methods use rejection sampling, we do the same for the other
methods for fairness of comparison. We stress that this devi-
ation should only improve their performance. Another devi-
ation is that we use a variant of MetaCost that skips the last
step of learning a classifier on the relabeled training data set,
but directly minimizes the expected risk on the test data.
It has been observed that this variant performs at least as
well as MetaCost, in terms of cost minimization. (This vari-
ant has been called BagCost by Margineantu [16].) Also, in
our implementation of AvgCost, we perform weighted sam-
pling multiple times to obtain an ensemble of hypotheses,
then output their average as the final hypothesis. (In the
original implementation, only a single iteration of weighted
sampling was performed.) We note that, due to our normal-
ization assumption that the minimum cost for each instance
x is always zero, our version of AvgCost is identical to a
more sophisticated variant in which the difference between
the average cost and the minimum cost is used for sampling
weights. Our experience shows that this variant of AvgCost
performs better than the original method.
The methods were applied to five benchmark data sets

available from the UCI machine learning repository [3] and
one data set from the UCI KDD archive [2]. These data
sets were selected by the criterion of having approximately
1000 examples or more, besides being multi-class problems.
A summary of these data sets is given in Table 1. Here class
ratio is defined as the class frequency of the least frequent
class divided by that of the most frequent one. We note that
the KDD-99 data set is actually a larger data set. We used
the so-called 10% training data set, which consists roughly
of 500 thousand instances, and further sampled down by
random sampling 40% of them, to get the data set of size
197,710 which we used for our experimentation. Emphati-
cally, we only used data from the original training set, and
not data from the test set. We do this because of the idiosyn-
cratic property of this data set that the test data are gener-
ated from a considerably different data distribution. While
this property is both realistic and interesting for empirical
evaluation of a method for intrusion detection, we judged
it not to be desirable for the current purpose of evaluating
general purpose cost-sensitive classification algorithms.
Except for the KDD-99 data set, these data sets do not

have standard misclassification costs associated with them.
For this reason, we follow Domingos and generate cost ma-
trices according to a model that gives higher costs for mis-
classifying a rare class as a frequent one, and the lower costs
for the reverse. (Note therefore that our experiments do not
exploit the full generality of the instance-dependent cost for-
mulation presented in Section 2.) This reflects a situation
that is found in many practical data mining applications,
including direct marketing and fraud detection, where the
rare classes are the most valuable to identify correctly.
Our cost model is as follows: Let P̂ (y1) and P̂ (y2) be the

empirical probabilities of occurrence of classes y1 and y2 in
the training data. We choose the non-diagonal entries of
the cost matrix C(y1, y2), y1 �= y2 with uniform probability

from the interval [0, 2000P̂ (y1)/P̂ (y2)]. In [8], the diagonal

scanned once (without replacement), and each example is
accepted with probability equal to (or proportional to) its
weight.

Data Set # of examples # of classes Class ratio
Annealing 898 5 0.01316
KDD-99 197710 5 0.0001278
Letter 20000 26 0.9028
Satellite 6435 6 0.4083
Solar flare 1389 7 0.002562
Splice 3190 3 0.4634

Table 1: Data set characteristics: data size, number
of classes, and the ratio between the frequency of
the most common class to the least common.

entries were then chosen from the interval [0, 1000], which
often leads to cost matrices in which the correct label is not
the least costly one. Besides being unreasonable (see Elkan
[10]), these cost matrices can give an unfair advantage to
cost-sensitive methods over cost-insensitive ones. We there-
fore set the diagonal entries to be identically zero, which is
consistent with our normalization assumption.
In all experiments, we randomly select two thirds of the

examples in the data set for training and use the remaining
one third for testing. Also, for each training/test split we
generate a different cost matrix according to the rules above.
Thus, the standard deviations that we report reflect both
variations in the data and in the misclassification costs.
We remark on certain implementation details of the pro-

posed learning methods in our experimentation. First, we
note that in all of the methods used for comparison, ex-
cept IW, C4.5 was used as the component algorithm with
weighted rejection sampling, and the final hypothesis is ex-
pressed essentially as an ensemble of output decision tress
of C4.5. IW, as a meta-method, does not use ensembles; in-
stead we used an ensemble method of costing [20] on C4.5,
as the component algorithm. Its output hypothesis is there-
fore also an ensemble of decision trees. DSE, as stated in
its definition in Figure 2, is not an ensemble method, but
analogously to AvgCost, we performed multiple iterations
of weighted sampling according to the weighting scheme of
DSE and averaged the resulting hypotheses to define the fi-
nal hypothesis. Finally, the choice of the mixture weight αt

was set at 1/t for all methods.
The results of these experiments are summarized in Ta-

ble 2 and Table 3. Table 2 lists the average costs attained
by each of these methods on the 6 data sets, and their stan-
dard errors. These results were obtained by averaging over
20 runs, each run consisting of 30 iterations of the respec-
tive learning method. These results appear quite convinc-
ing: GBSE outperforms all comparison methods on all data
sets, except on Splice, for which it ranks second after Meta-
Cost. Also, GBSE is the best performing among the pro-
posed methods in the paper, confirming our claim that the
combination of various techniques involved is indeed neces-
sary to attain this level of performance.
Table 3 lists the average total data size used by each of the

methods in 30 iterations. The data size for IW is not listed,
since it consists of 30 iterations of 10 rounds of costing and
the direct comparison of total data size does not seem to
make as much sense for this method. Examining these re-
sults in conjunction with the data characteristics in Table 1
reveals a definite trend. First, note that the data sets are di-
vided into two groups: those having very large skews, or very
low class ratios (Annealing, KDD-99 and Solar flare), and

9

Research Track Paper

Data Set Bagging AvgCost MetaCost IW DSE GBSE
Annealing 1059± 174 127.4 ± 12.2 206.8 ± 42.8 67.38 ± 9.22 127.1 ± 14.9 33:72� 4:29

Solar 5403± 397 237.8 ± 37.5 5317 ± 390 174.2 ± 32.7 110.9 ± 28.7 48:17� 9:52
KDD-99 319.4 ± 42.2 42.43 ± 7.95 49.39 ± 9.34 50.43 ± 10.0 46.68± 10.16 1:69� 0:78
letter 151.0 ± 2.58 91.90 ± 1.36 129.6 ± 2.44 247.7 ± 4.15 114.0 ± 1.43 84:63� 2:44
Splice 64.19 ± 5.23 60.78 ± 3.65 49:95� 3:05 67.26 ± 4.18 135.5 ± 14 57.50 ± 4.38

Satellite 189.9 ± 9.57 107.8 ± 5.95 104.4 ± 6.43 140.1 ± 18.2 116.8 ± 6.28 93:05� 5:57

Table 2: Experimental results: the average cost and standard error.

Data Set Bagging AvgCost MetaCost IW DSE GBSE
Annealing 11991 ± 13.1 1002.8 ± 183 11987 ± 9.84 − 3795.5 ± 688 1260.2 ± 224

Solar 18499 ± 20.4 334.80 ± 37.5 18510 ± 14.4 − 2112.8 ± 276 486.45 ± 53.3
KDD-99 395310 ± 143 2551.9 ± 428.6 395580 ± 143 − 12512 ± 2450 4181± 783.6
letter 40037 ± 44.3 159720 ± 2028 40052 ± 41 − 479130 ± 2710 363001 ± 5557
Splice 42515 ± 26.6 33658 ± 1697 42501 ± 21 − 52123 ± 592 50284 ± 3659

Satellite 86136 ± 123 60876 ± 1641 85984 ± 127 − 218870 ± 6516 140810 ± 3335

Table 3: Experimental results: the average data size used by each method in 30 iterations, and standard
error.

those having moderate skews (Satellite, Splice and Letter).
It is evident that the methods based on example weighting
(AvgCost, GBSE, DSE) use magnitudes smaller data sizes
for the 3 data sets in the first group (i.e. with large skews),
as compared to the other methods (Bagging and MetaCost).
The performance of GBSE is especially impressive on this
group, achieving much lower cost while requiring very small
data sizes. It is worth mentioning that it is these data sets in
the first group with large skews, that require cost-sensitive
learning the most.

5. DISCUSSION
It is not the first time that the issue of incorporating cost-

sensitivity to boosting has been addressed. For example,
AdaCost [11] suggested a way of modifying AdaBoost’s ex-
ponential loss using a function (called cost adjustment func-
tion) of the cost and confidence. The rational choice of this
cost adjustment function, however, appears not to be well-
understood. The stochastic ensemble that we employ in
the present paper provides a straightforward but reasonable
way of incorporating cost and confidence, i.e. in terms of
expected cost. An interesting future direction is to investi-
gate the relationship between these alternative approaches
to cost-sensitive boosting. Also note that AdaCost, being
a modification of AdaBoost, is restricted to two-class prob-
lems. Comparing and studying possible relationships be-
tween GBSE and other (both cost-sensitive and insensitive)
multi-class extensions of boosting, such as AdaBoost.M2
[12], is another interesting topic. Finally, GBSE can also
be viewed as a reduction from multi-class classification to
binary classification. Comparison with existing methods for
such reductions (e.g. [1]) is another important research issue.

6. ACKNOWLEDGMENTS
We thank Saharon Rosset of IBM Research for fruitful

discussions on related topics.

7. REFERENCES
[1] E. L. Allwein, R. E. Schapire, and Y. Singer.

Reducing multiclass to binary: A unifying approach
for margin classifiers. Journal of Machine Learning
Research, 1:113–141, 2000.

[2] S. D. Bay. UCI KDD archive. Department of
Information and Computer Sciences, University of
California, Irvine, 2000. http://kdd.ics.uci.edu/.

[3] C. L. Blake and C. J. Merz. UCI repository of
machine learning databases. Department of
Information and Computer Sciences, University of
California, Irvine, 1998.
http://www.ics.uci.edu/∼mlearn/MLRepository.html.

[4] J. Bradford, C. Kunz, R. Kohavi, C. Brunk, and
C. Brodley. Pruning decision trees with
misclassification costs. In Proceedings of the European
Conference on Machine Learning, pages 131–136,
1998.

[5] L. Breiman. Bagging predictors. Machine Learning,
24(2):123–140, 1996.

[6] L. Breiman, J. H. Friedman, R. A. Olsen, and C. J.
Stone. Classification and Regression Trees. Wadsworth
International Group, 1984.

[7] P. Chan and S. Stolfo. Toward scalable learning with
non-uniform class and cost distributions. In
Proceedings of the Fourth International Conference on
Knowledge Discovery and Data Mining, pages
164–168, 1998.

[8] P. Domingos. MetaCost: A general method for making
classifiers cost sensitive. In Proceedings of the Fifth
International Conference on Knowledge Discovery and
Data Mining, pages 155–164. ACM Press, 1999.

[9] C. Drummond and R. C. Holte. C4.5, class imbalance,
and cost-sensitivity: Why under-sampling beats
over-sampling. In Workshop Notes, Workshop on
Cost-Sensitive Learning, International Conference on
Machine Learning, June 2000.

[10] C. Elkan. Magical thinking in data mining: Lessons
from coil challenge 2000. In Proceedings of the Seventh

10

Research Track Paper

International Conference on Knowledge Discovery and
Data Mining, pages 426–431. ACM Press, 2001.

[11] W. Fan, S. J. Stolfo, J. Zhang, and P. K. Chan.
AdaCost: Misclassification cost-sensitive boosting. In
Proceedings of the Sixteenth International Conference
on Machine Learning, pages 97–105, 1999.

[12] Y. Freund and R. E. Schapire. A decision-theoretic
generalization of on-line learning and an application to
boosting. Journal of Computer and System Sciences,
55(1):119–139, 1997.

[13] G. Fumera and F. Roli. Cost-sensitive learning in
support vector machines. In VIII Convegno
Associazione Italiana per L’Intelligenza Artificiale,
2002.

[14] P. Geibel and F. Wysotzki. Perceptron based learning
with example dependent and noisy costs. In
Proceedings of the Twentieth International Conference
on Machine Learning, 2003.

[15] U. Knoll, G. Nakhaeizadeh, and B. Tausend.
Cost-sensitive pruning of decision trees. In Proceedings
of the Eight European Conference on Machine
Learning, pages 383–386, 1994.

[16] D. Margineantu. Methods for Cost-Sensitive Learning.
PhD thesis, Department of Computer Science, Oregon
State University, Corvallis, 2001.

[17] L. Mason, J. Baxter, P. Barlett, and M. Frean.
Boosting algorithms as gradient descent. In Advances
in Neural Information Processing systems 12, pages
512–158, 2000.

[18] J. Quinlan. C4.5: Programs for Machine Learning.
San Mateo, CA: Morgan Kaufmann, 1993.

[19] B. Zadrozny and C. Elkan. Learning and making
decisions when costs and probabilities are both
unknown. In Proceedings of the Seventh International
Conference on Knowledge Discovery and Data Mining,
pages 204–213. ACM Press, 2001.

[20] B. Zadrozny, J. Langford, and N. Abe. Cost-sensitive
learning by cost-proportionate example weighting. In
Proceedings of the Third IEEE International
Conference on Data Mining, pages 435–442, 2003.

11

Research Track Paper

