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1. Introduction. Many boundary value problems of interest in mathematical

physics can be finally reduced to the determination of the proper elements of a

Sturm-Liouville equation. The most general form of these equations is :

(1) iz \vix)
d L^^y

dx I dx
4- qix)yix) 4- \rix)yix) = 0,

with a ^ x ^ b, and the problem is to determine the particular values of the X

parameter (eigenvalues) for which Eq. (1) possesses nonidentically zero solutions

(eigenfunctions) obeying two boundary conditions of the type:

(2, a) Aiyia) +A2pia)^l=0,

(2,b) Biyib)+B2pib)dJ^ =0,

where the values of the constants Ai, A2 and Pi, P2 are not simultaneously zero.

Several methods have been proposed to determine the proper elements (i.e.

eigenvalues and eigenfunctions) of Sturm-Liouville equations. Most of them have

been reviewed by Kopal [1], but we shall examine one of them, the so called Ray-

leigh-Ritz method, in order to explain the main defect they have in common and to

judge their general efficiency. This method was originally proposed by Ritz [2]. By

transformations whose details will not be given here but which are described in

many classical texts it leads to the solutions of equations of the form:

(3) det || Da - Xff« || = 0,        Uî.Bti

where the Dik and Hik are the values of quadratic functionals for the ith and kth

elements of a sequence of trial functions chosen once for all. Under rather general

conditions, it can be shown that for indefinitely increasing values of n, the solutions

of Eq. (3) decrease monotonically and converge to the eigenvalues of the originally

stated problem. More precisely, if Xm(n) is the rath solution of Eq. (3) when the

solutions are ranged in increasing order, then the sequence of all the numbers Xm(n)

with n = m, m + 1, • ■ ■ is decreasing and converges to the rath eigenvalue of the cor-

responding Sturm-Liouville equation when its eigenvalues are also ranged in increas-

ing order. The big defect of this approximation method is its inability to furnish any

estimate of the difference between one of the numbers Xm<7,) and the corresponding

eigenvalue Xra . A theoretical convergence is not sufficient because the solution of

Eq. (3) gets extremely complicated when n increases. A rapid convergence is thus

required but this can only be reasonably expected if we possess beforehand a rather

precise knowledge of the general behaviour of the eigenfunctions. This is not usually

the case. An even more serious defect of this method is that high values of n are
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necessary to obtain the higher order eigenvalues and to reduce a truncation-like

error for the low order eigenvalues appreciably. When however such large values of

n are used, the determinantal Eq. (3) for X turns out to be of a correspondingly high

degree and its solution may then entail such an accumulation of round-off errors as

to prevent any further diminution of the total error affecting the computed eigen-

values. The necessity to compromise between these two sources of error severely

restricts the accuracy obtainable. Similar restrictions are encountered when other

previously developed methods are applied.

Thus, the methods in the current mathematical literature devoted to the problem

of approximating the proper elements of a Sturm-Liouville problem are not very

reliable. Specialists have, however, succeeded in improving those methods. Unfortu-

nately their results are not very well known by the increasing number of scientists

who are now able to program an electronic computer using one of the numerous

machine oriented languages. For this reason, it seems interesting and useful to

describe a new method which could be easily used by programmers who do not want

to spend time with the theoretical numerical aspects of their problems. In what

follows, the underlying principle of the method will be explained and it will be shown

how it can be applied. A particularly simple case will then be treated in order to

illustrate the efficiency of the new method. It will finally be shown that it can be

extended to singular Sturm-Liouville equations.

2. The New Approximation Method. The method is based on the remarkable

properties of a function introduced in a change of dependent variables that consider-

ably simplifies the theoretical study of those equations. Continual reference will be

made to references [4] and [5] where all details and proofs omitted here for sake of

brevity can be found. It will be assumed that in the interval a ^ x ^ b, the function

pix) is positive and possesses a first continuous derivative, that the function r(.r)

is positive and continuous and that the function qix) is continuous. The new de-

pendent variable pix) and dix) may be introduced by means of the defining equa-

tions :

(5,a) yix) = pix) sin dix),

(5,b) pix) ^± = pix) cos Six).

According to Eq. (1) and boundary conditions (2, a) and (2, b), the function

dix) obeys the differential equation:

(6) ^¡^ = -}-r cos2 dix) + [qix) + \rix)] sin2 dix)
dx pix)

and satisfies the boundary conditions :

(7, a) Ai sin 0(a) 4- A2 cos 0(a) = 0,

(7, b) Pisin0(o) 4- B2 cos 0(6) = 0,

while the function pix) obeys the differential equation:

(8) d^} = pix) sin dix) cos dix)
dx

qix) — \rix)
.Pix)
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and satisfies the condition of never being zero in the interval a ^ x ^ b.

Let us now determine a priori permissible initial and final values for the function

dix) by means of the auxiliary conditions:

(9, a) Ai sin a + A2 cos a = 0,        0 ^ a < ir,

(9, b) Pi sin ß 4- B2 cos ß = 0,       0 < ß ^ ir.

Boundary conditions (7, a) and (7, b) can then be replaced by the equivalent con-

ditions :

(10, a) 0(a) = a,

(10, b) 0(6) = ß 4- nir,

where n is any integer (positive, negative or null).

The solution dix, X) of equation (6) satisfying an initial condition deduced from

(10, a) and (9, a) possesses the following interesting properties.

As is shown in [4] and [5], 0( x, X) is a monotonically increasing function of the

argument X and satisfies the equalities :

(11, a) lim 0(6, X) = 0,

(11, b) lim 0(6, X) = 4-00.
x-»+«>

Moreover, the function:

(12) x(a,X)=5^
dX

is a solution of the differential equation:

qix) + \rix)-7-r   sin 20(x, X) 4- rix) sin2 dix, X)
Vix)A

and it obviously satisfies the initial condition :

(14) xia, X) = 0.

From this, we can deduce that xi%, X) is positive everywhere in the interval a <

x ^ 6. Equation (13) and initial condition (14) lead to the expression:

/10\    dxix, X) /    ,v
(13)    —~— = xix, X)

xix, X)

(15)

exp jT     g(if) + Xr(€) - -j-j sin 20(f, X) df

■ jf  r(n) sin2 0(r?, X) exp i - £ L(J) 4- Mí) - -L] sin 29(£, X) d?ja,.

Because of our hypothesis concerning the functions pix), qix) and rix), this

function is certainly nonnegative in the interval a < x 5= 6. Moreover, it can be zero

at a pointa; = cof this interval only if the function sin 0(x, X) is identically zero

and thus constant in the interval a < x ^ c. This cannot happen however because at

all points where the function sin dix, X) vanishes, we have according to (6) :
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(16) *£*) *    >0,
dx pix)

and also:

(17) d sin dix, X) = ±    1

ax p(x)

and this would contradict the previous deduction that sin 0(x, X) must be constant

in the interval a < x ¿ c.

Now, the derivative x(o> M of the function 0(6, X) with respect to X is positive.

When this is considered with the relations (11, a) and (11, b) it may be clearly seen

that the second boundary condition (10, b) considered as an equation for X is

solvable only for nonnegative values of the integer n and that it then possesses one

and only one solution. The calculation of the (n 4- 1 )th eigenvalue X„ is thus equiva-

lent to the solution of the equation :

(18) ß 4- nir - 0(6, X) = 0.

In the present case, the Newton-Raphson approximation method leads to the

algorithm :

(19) K.k+i = K,k + [ß + nir - 0(6, K,k)] x~\b, K,k),

where X„,/c denotes the kth approximation to the eigenvalue X„ . The application of

the algorithm (19) does not present any difficulties, especially when an electronic

computer is available for the numerical integration of Eqs. (6) and (13), or (6) and

(15). Nothing can ensure the convergence of the successive estimates \n¡k to the

corresponding eigenvalue X„ , but obtaining a converging sequence of approxima-

tions is no longer a problem. In fact, it can be seen that the correction proposed by

formula (19) for a known approximation is always in the right direction. In other

words, this correction is positive (resp. negative, zero) if the chosen approximation

is less than (resp. greater than, equal to) the sought eigenvalue. Then the only

accident that must be avoided is to disturb or even to make the convergence im-

possible by obtaining successive approximations X„,¡ , \n¡k and \n¿ ii < k < j) as

shown in the following diagram :

•x  ' \  ' \n,k

Whenever such a situation occurs, it is however possible to realise a sequence of

successive approximations, which certainly converges to the sought eigenvalue X„ ,

by modifying slightly the iteration process. As remarked just above, the sign of the

correction proposed by formula (19) to a given approximation immediately shows

if this value is a lower or a upper bound for the sought eigenvalue. At each step in the

iteration process, a greatest lower bound ra and a least upper bound M for X„ can

thus be determined by using all preceding approximations. The last approximation

obtained can then be accepted if it falls in the interior of the interval ra < X < M,

but if it fell outside, it is necessary to replace it by some inner point of this interval,

the middle point for example. There is then no difficulty in seeing that a sequence of

successive approximations which is convergent to the sought eigenvalue is always

obtained.
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Table I

0
1
2
3
4

2.46739
22.2068
61.6863

120.907
199.869

^ theor

2.467401
22.20661
61.68503

120.9026
199.8595

X 106

4
S

21
36
48

Iterations

9
1
3
3
3

3. Applications.

A. The efficiency of the proposed method for the approximation of the proper

elements of Sturm-Liouville equations, will now be investigated on a particularly

simple example.

Consider the differential equation:

(20)

and the boundary conditions :

(21, a)

(21,b)

d2yix)

dx2
+ Xyix) = 0

2/(0) = 0,

dyil)

dx
= 0.

Elementary calculations show that the proper elements of this problem are given

by:

(22, a)

(22, b)

X„ = (2n -f l)V2/4,

ynix) = sin (2n 4- l)irx/2.

In Table I, we compare the eigenvalues as they have been determined by our method

(Xcomp) to their exact values (Xtheor) for the first five values of the integer n. As an

illustration, the relative errors and the required numbers of iterations are also given.

It can thus be seen that the method provides good results in this case.

Practical problems are not so simple to handle and with many the most important

question is the determination of the relative errors. By considering formula ( 19 ) once

more, it can be said from a naive point of view that if the method used to solve Eqs.

(6) and (13), or (6) and (15) was perfectly exact, then the errors on the computed

eigenvalues could be made arbitrarily small. This is however sufficient for claiming

that the iteration process can be led in such a way that the error in the obtained

results are introduced only when solving (6) and (13), or (6) and (15). This is seen

if the maximum error e for the quantity 0(6, X) can be determined beforehand and if

the iteration process is then stopped when the correction to a given approximation

is much smaller than e.

As a last remark, it must be said that it is difficult to give any valuable indica-

tions on how much work is required in each iteration step : this depends too much on

the adopted method for solving the involved differential equations. In the examples

chosen here, as illustration, only a general method has been retained. This is due to

the fact that the present differential equations can be solved very easily analytically,
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so that there is no natural limitation in the improvements that can be brought to the

numerical solution of these equations.

B. The theory as developed to this point is not applicable to cases for which the

function pix) can be zero at one or both of the extremities x = a or x = 6. The

method proposed is however applicable to these cases, after being slightly modified

For sake of brevity, the theoretical aspects will be omitted and only intuitive argu-

ments will be used. These can, however, be established rigorously. Two examples

will be treated in order to indicate the suggested extension.

1. Consider the differential equation:

(23) Tx[xÈif\ + ^y{x) = 0

and the boundary conditions :

(24, a) |2/(0)| < +»,

(24, b) 2/(1) = 0.

It can easily be seen that the proper elements of this Sturm-Liouville problem are

given by:

(25, a) \n = jn,

(25, b) y„ix) = xll2Joijnx),

where do is the Bessel function of order 0 and where jn is its (n 4- l)th positive zero.

Equation (6) shows that the singularity at x = 0 can be avoided if we take:

(26, a) a = x/2.

By choosing ß as explained in the second paragraph, the approximation method may

be applied. The calculations have been performed and the obtained results are given

in Table II in the same form as used for Table I. Once more, the method has given

reliable results.

2. Consider finally the differential equation:

(27) j-
dx

(1 - x*)
^ dyix)

4- \yix) = 0
dx

and the boundary conditions :

(28, a) l2/(-l)| < +»,

(28, b) |2/( + DI < 4-«,

It is well known that the proper elements of this problem are given by :

(29, a) \n = nin 4- 1),

(29, b) ijnix) = Pnix),

where Pnix) is the Legendre polynomial of order n. Equation (6) shows that the

singularity at x = — 1 can be avoided if as before :

(26, a) a = x/2.
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0
1
2
.'!
I

5.78307
30.47111
74.88676

139.0414
222.9352

Table II

Xtheor

5.7831862
30.471262
74.887006

139.04027
222.93231

€ X 106

20
5
3
8

13

Iterations

10
10
11
11
9

Table III

0
1
2
3
4

Aeon

0
1.99997
5.99984

11.9996
19.9991

nheor

0
2
6

12
20

€   X   106

15
27
33
45

Iterations

10
9

13

The method however is no longer applicable in its original form because of the

second singularity at a; = -fT, yet its basic idea may be employed. For this, intro-

duce some intermediate point, say x = 0. For an arbitrary value of X, the equations

(6) and (13) or (6) and (15) can be solved in the interval -lgiáO taking the

initial conditions (14), (10, a) and (26, a) into account. The values at x = 0 of the

functions dix, X) and x(x, X) just obtained are then denoted by 0£(X) and xl(M-

In exactly the same manner, the singularity at x = 1 can be avoided by choosing :

(26, b) =   7t/2.

Taking into account the initial conditions (14), (10, b) and (26, b), the equations

(6) and (13) or (6) and (15) can be solved in the interval 0|i¿1. The values at

x = 0 of the new functions dix, X) and xix, X) that have been obtained are then de-

noted by 0Ä(X) and xrW-

It can be shown that the derivative x¿(M 0I the function 0l(X) with respect to

X is always positive and that the derivative xb(^) of the function 0R(X) with respect

to X is always negative. Moreover, the eigenvalues are the solutions of the equation :

(30) 0l(X) - 0B(X) = 0.

Equation (19) can then be replaced by the new algorithm:

(31) K.k+i = K.k — [0k(X„,jO — dLi\ntk)]/[xi¡iK,k) — XLÍK,k)]-

This new form of the approximation method has been applied to the determination

of the eigenvalues of the Sturm-Liouville problem defined by the relations (27),

(28, a) and (28, b). The results obtained in this case are summarized in Table III.

Once more, the comparison shows that the method has provided excellent results.

4. Conclusion. A new method of successive approximations has been proposed

in order to solve eigenvalue and eigenfunction problems associated with Sturm-

Liouville equations. The examples treated show that the convergence is reasonably
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rapid and that the proper elements can be determined with an actual accuracy

which is only limited by the errors inherent to the numerical resolution of Eqs. (6),

(13) and (15). It is thus highly recommended to replace numerical determinations

by analytic expressions whenever this is possible. The number of iterations of the

approximation method is highly dependent on the first estimates chosen for the X„ .

These values must then be determined as accurately as possible either by comparison

methods, by an asymptotic expression, or by any other means. In all cases, some

theoretical study is always helpful for the numerical solution of a Sturm-Liouville

problem.
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