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1. Introductiorn.
Let X be an n-dimensional random variable whose density.function p

is a convex combination of normal densities, i.e.,

D o n
P(x) = iglaipi<x) for X ER ¥

where

o O
of > 0, fpof =1,



and
1 -1/ 2(x-u°)TE°-1(x—u°)
py(¥) = T o if s 1,
(zm™ |z |
If {x } ﬂa is an independent sample of observatioms on x, then
k=l’ - 8w ’N -
0.0 o0 o
a maximum—likelihood estimate of the parameters {ui’ui’zi}i=l,...,m '
is a choice of parameters {ai“vi,zi}iﬂl which locally maximizes the
, LI ’

log-likelihecod function

N
= Zylog p(n)d,

i8 which p 1s evaluated with the true parameters {“i'”1'22}1=1,...,m
feﬁiaced by the estimate {“1’“1’31}1=1,...,m' (In the following, it is
usually clear from the context which parameters are used in evaluating the
density functions 1 and p. Therefore, these pa?ameters are explicitly
pointed out only vhen some ambiguity exists.)

Clearly, L 4is a differentiable function of the parameters to be estimated,
Equating to zero the partial derivatives of L with respect to these parameters,

one obtains, after a stralghtforward calculation, the following necessary

conditions for a maximum-likelihood estimate:

_“_1 N pi(xk)
N k=l p(xk)

N Rilx) . /g N Ry .
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These are known as the likellhood equations. As observed by Cramér [2],

Huzurbazar (7}, Wald .[11}, Chanda (1], and others, there is,loosely
speaking, a unique solution of the likelihood equations which tends in pro-
bability to the true parameters as the sample size N approaches Infinity.
Furthermore, this solution is a maximum-likelihood estimate, indeed, the

unique conf.stent maximum-likelihood estimate., (Btrictly speaking, given any

sufficiently small neighborhood of the true parameters, there is, with probability

tending to 1 as N approaches infinity, a unique solution of the likelihood

equations in that neipghborhood, and this solution is a maximum-likelihood estimate.

For completeness, we present a brief proof of this result in an appendix.)
This note is addressed to the problem of determining this consistent maximum-
likelihood estimate by successive approximations.

The likelihood equations, as written, suggest the following iterative
procedure for obtalning a solution: Beginning with some set of starting values,
obtain successive approximatioﬁs to a solution by inserting the preceding
approximations in the expressions on the right-hand sides of (l.a), (1.b),
and (Ll.c¢). This scheme is attractive for its relative ease of implementation,
and we discuss below the findings of several authors concerning its use in
obtaining maximum-likelihood estimates. For a discussion of other methods of
determining maximum-likelihood estimates, see Kale {8] and Wolfe ([13] as
well as the authors given below,

Empirical studies of Day (3], Duda and Hart [4], and Hasselblad [5]
suggest that thiq scheme is convergént and that convergence is particularly
fast when the component normal densities in p are "widely separated" in a

certain sense. Unfortunately, the likelihood equations have many solutions




in general, and the iterates may converge to solutions, including "singular
solutions™ (see {4]), which ara not the consistent maximum-likelihood
estimate 1f care is not taken in the choilce of starting values. No theoretical
evident. of convergence is given in [3], [4], or [5].

Peters and Coberly [LQ have proved that, &f all of the parameters ui
and Ei are held fixed, then the lterative procedure suggested by the equation

(l.a) alone converges locally to a maximum~likelihood estimate of the para-

meters di, i=1,...,m. (An iterative procedure is saild to converge locally
to a limit if the iterates converge to that limit whenever the starting values
are sufficiently necar that limit.) They also report on numerical studies in
which the computational feasibility of this procedure 1s demonstrated. Walker
[L2? has shown that, if all the parameters oy and Ei are held fixed, then
the iterative procedure suggested by the equatinn (l.b) converges locally to
a maximum-likelihood estimate of the means pi, i=1,...,m, provided that
either m = 2 or the component normal densities in p are "widely separated"
in a certain sense,

In the following, we present a general ilterative procedure for Jrtermining
the consistent maximum-likelihood estimate, of which the above prpcedure is a
special case. Indeed, ouf procedure 1s in some ways like a steepest—ascent
method, and the above procedure is obtained when a certain "step-size" is
taken to be 1. We show that, Lf the "step-size" is sufficiently small, then
with probability approaching 1 as the sample size approaches infinity, this
procedure converges locally to the consistent maximum-likelihood estimate. This
scheme 1s as easily implemented in general as in the above special case, and
it apéears to hold congiderable promise as an effective tool for obtaining con-

sistent maximum~likelihood estimates in many situations of practical interest.




2. The general iterative procedure.

In order to minimize notational difficulties, we introduce several vector
spaces and give useful representatious of thelr elements. For each i,
lsism, ai,pi, and E:L are elements of the vector spaces R 1, R n"
and the set of all real, symmetric n¥n matrices, respectively. We dev te
by O, /%, and 4 the respective m-fold direct sums of these spaces with

themselves, and we represent elements of 0[,)7?’, and ,d as columns

oy Ul Zl
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It will be convenient to represent elements of the direct sum Ao e ,.3 as

either .
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;
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If, for 1= 1,...,m, we denote

o, N pg(x)
= 4 1%
Ai(a,l-l, ) = N k§1 p(x_kT ’
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—— 1 N T
Si(u’usz) = 'ﬁ kﬁl(xk"lli) (xkapi)
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N py(m) 1 N
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pi(xk)

N k=1 p(xk) 4
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then the likelihood equations can be written as

o INCRT))
(2) m = M@LD |
T SC0, 1, L)
where
L CHTRS M
A(Es-ﬁ:-f) = : » M(E,H,E) =
T CHTRY

One can write (2)

=| 2|

(3

e

\

for any value of

e.

equivalently as

= & (a,1,L)

{(Of course,

(1-¢)

(3) becomes

p(x, )

N kAL plx)

A(a,1,L)
+ € M(, 1, L)
S(0, 1, L)

(2) when € = 1.) The

following iterative procedure is suggested by (3) for obtaining a seolution

of the likelihood equations:

Beginning with some starting value | _(1)

define_successive iterates inductively by

&(1_)

(1)

SIS



a(k+1)
(4) -ﬁ(k'*'l) - ¢, (‘&'(k) "ﬁ(k) ,f(k))
E(k'i'l)

for k= 1,2,3,,,, , This procedurs becomes the procedure given in the intro-
duction when ¢ = l.

In the next scction, we show that if ¢ 41s a sufficiently small positive
number, then, with probability approaching 1 as the sample size N approaches
infinity, this procedure converges locally to the consistent maximum-likelihood
estimate, 'This is done by showing that, with probability approaching 1 as

N approaches Iinfinity, the operator d)e is locally contractive (in a suiltable

vertor norm) near that estimate, provided ¢ 1is a sufficlently small positive

number, In saying that ¢e is locally contractive near a point

€ OIMJ‘Z GJ, we mean that there is a vector norm I[ H on X oMl /3

™ =) e}

and a number A, 0 £ X < 1 such that

o u” o

—_— — o _. ~1 -

(5) ¢E(a’.u i) = | s A -
T b T

& 3

whenever n lies sufficiently near u
T T

3. The local contractibility and convergence results.

We now establish the following

=



-~

Theorem. With probability approaching 1 as N approaches infinity, ‘be
18 a locally contractive operator (in som norm on (J{® N #.4) near the
consistent maximum-likelihood estimate whenever ¢ is a sufficiently small
positive npumber.

Our main result 1s an immediate consequence of this theorem, which we

state as a

Corollary, With probability approaching 1 as N approaches infinity, the
iterative procedure (&)} converges locally to the consistent maximum-likelihood
estimate whenever ¢ 18 a sufficiently small positive number,

Throughout the proof of the theorem, the symbol "V" denotes the .Fréchet
derivative of a vector-valued function of a vector variable. When ambiguity
exists, the specific vector variable of differentiation appears as a subscript
of this 'symbol. For questions concerning the definition and properties of

Fréchet derivatives, see Luenberger [9].

o
Proof of the theorem: Let {u) be the consistent maximum-likelihood estimate.

L
We assume that ai #0,d1d=1,...,m. (As N tends to infinity, the probability

approaches 1 that this is th: case.) It must be shown t-hat, with probability
approaching 1 as N approachrs infinity, an inequality of the form (5)
holds whenever ¢ 1s a sufficiently small positive number. .

For any norm on (& {24 0.8, one can write

e

) o o
¢ (@0 E)- (ul=90 @uD (W)~ W]} +
T T \T/l

+ 0

e =1 Qf
1
] =i ')

e i,




Consequently, the theorem will be proved if it can be shown that, for small
positive ¢, V& E(E,Tf,-f) converges in probability to an operator which has
norm legs than 1 with respect to a sultable norm on meﬁxf.

One can write Vd)e as (l-¢)I plus a matrix of Fréchet devivatives:

v

=)
",

Vd)e u (l-g)I + ¢ VEM

= <L T

&

This 1s consistent with our represencation of elements of ammej as

columns.

The entries of the sbove matrix can themselves be represented as matrices
of Fréchet derivatives. For 1 = 1,...,m, we introduce inner products
<x,y>;_ = xT(uiEZI)y on R" and <A, B>§'_ = Lr{A(2 Z )BT} on the space cf
real, symmetric n)Xn matr:l.ces. After a straightforward but extremely

tedious calculation, one obtains with the ald of equations . (1) that

N i1 ' . }
Pu(%) i P, ()
pix) plx,)

v-A(a,u, ) = I ~ (diag ai){

Py (%) 1‘Jl(xk)< VR R
p(xy) | | ple) kP11

1
ﬁ A0, u,0) = -(diag ai){-ﬁ- kél

-
-
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Pal) {\Pat%) ~
plx,) pGry) K 'm’
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T
rpl‘(xk) pl(xk) -1 T "
p(xk>\! P(xk) <El (xk-"l-:l)(xk-ul) - I,c:.l \
—— N .
ViA(a.ll,Z) = ~(diag @) {% W2 : ~ : }

P () Pl 3 T "
\ pixy) J\ pixy) <Dy Gy G Mo L7y /

Py (%) Py (%)
p(x,) Gyt A PGy
- l N ] ’
VoM (2, 1,E) = -0 Ly ‘ ‘ }
P (%) P (%)
O IAGTY
Py () \ { P1%) K
) (."k iiyew: ""k"‘l""l
vu(@,1,E) = LAl 2y ' ‘ }
: ?
P, (%) Py (%)
ey ety
—— 1 N Pi( k) E 1( '>||
VEM(u,u,E) (diag o, L1 e )\x ui) Xy W) (xk-ui) I, i) -
( k)( ul) —]_-)_(-;EP- <zl (X-k"Ul) (xk"‘l-ll) - I, '>1
1 N. ' ¢
- § & , , J
X pm(xk) P (xk) u
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p(xk)[z (xk Hl) (xk-lil) - 1] —R'x";:)'
— e — N ‘ N
VS@ T = -(diag I I : el
p(xk) [T- (xk~u o KH ) - 1] \“m'l:)'
Py (%) Py (%) AT
p(x )[z (xk l-ll) (x "'Lll) ] 'ka"ul":.l
N ¢
VST = ~(diag 5 ){N W1 ' ' }
. ?
Py (%) P, (%) i
p(xk) [E (X |-[ ) (Kk"ll ) - 1] ka"um, '>m
' — v — 1 N pi(‘{k "
VgS(a,),L) = (diag Z “—iﬁ K21 (%) [21 (xk Hy) (%) - ) I]<E Lix wHy) (k- ui) ~I,*>}) -

1"k K

pl(xk) T
N , ) \
- {diag Ei){N 1 ' ) }e
P ¢ (xk) :

X)) - T
Tyt () (i) ”\P%’ ORI TETRLS C

The Inner products <‘,¢>;_ and <-,->i, together with scalar multiplication

on [R 1, induce an inner product <+,*> . on (& WM. Setting




Vi(x) =

one obtains

0 0 (1-¢)I + e(diag?

e

Pl(x) \\
pgx) |
pmzx)
p{x)

pl(x) (x_u 1)

p(x)

P, (x)

P(x) (x- 11 )

plt D :
1) [z, (wa@rﬁ) 1]

p, (%)

Mm[E(xuNru)-I])

Np,(x.)
L 1Yk,
e(diag N ) plx)

1 N pi(x )

e oV 0.5,

"

c<zi (xk"“i)(xk—ui) I.'>i)
{diag ai) 0 0
N
R I 0 & (V) Vx>t
0 0 (diag Ei)
A e B
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o
We have assumed that the solution m of the likelihood equations ‘is
T
=)
consistent. Denoting the true parameters by —]  Ome verifies without
u
T°

difficulty that V(IL_ (@,H,Z) converges in prob‘ability to E(VﬂbE @° ,ﬂo,'f".) as

N approaches infiniily. A straightforward calculation yilelds

I 0 0
B @,1%,E)= (0 1 0] -
\0 0 I
(diag a;) 0 0
el 0 I 0 { fnv°(x)§v°(x) ,e>p° (%) dx}.
0 0 (ddag IJ) R

{In this expression, the super'script "o" on Y and p indicates that the
true parameters arr used in evaluating these functioms.) Thus

E(Vd)E (EO,HO,EO)) is an operator on O[® Mo . of the form I - e¢QR, where

Q and R are positive-dafinite and symmetric with respect to the inner product
<s,1>, Since QR is positive-definite and symmetric with respect to the

inner product <',Q—l' > on @ m&,cf, it wmust be the case that, for small
positive €, the operator norm of E(vq)e(a"’,ﬁ"’,‘f"ﬁ, with respect to the
inner product <',Q-l‘1>', is less than 1. So, for small positive &,

qu€ CRTD) converges in probability to an operator having norm less tham 1
with respect to the inner product <',Q-]i > on (Je G,(f. This completes the

proof of the theorem.
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We remark that, in order for the conclusion of the theo.em to hold, it is

L red in th
B(atl) (nhd)” Indeed, 1t is.chserved in the

provf of the theorem that E(Vcb (50 T '_0)) = I - eQR, where QR ds positive-

sufficient to take ¢ less than.

definite and symmetric with respect to a certain inner product and, hence, has

positive eigenvalues. Denoting the spectral radiiis of QR by pP(QR), one then

verlfics that E(VCP (E'.O,Il'o _ﬂ)) has operator norm less than 1, with respect

i

to some vector norm, whenever ¢ i1s less than (See [6].) Now

P (QR) ’
p(Qr* < criqQr}

= 5 ) Sy O e el (x) (x M )<=\ Myst>g dxl

2!

o f i(x) m )u }
+ L tr{Ei AT [E (x M) (x- ].li) - I]<i. (x Hy) (el ) ~L,+>, dx
< ;1;1 fpi(x)dx + :LEl ./n'(x—ui)TE;-l(x-uli)pi(x)dx
& .

R
B f 3 el 7 ) G -0 2o, () dx)
m+mn+£n-(n2 + n) o n(ntl) (ot2)
2 Z *

4

It follows that the conclusion of the theorem holds whenever ¢ < -m—(F-F-l_j—(anf .

4, Concluding remarks.

A number of numerical techniques for obtaining maximum-likelihood estimates

of the parameters for a mixture of normal distributions have been discussed in the
literature. In addition to the usual steepest—ascent method for obtaining a local

maximum of the 1og—likeiihood function, we mention in particular Newton's method,

the method of scoring, and the modifications of these procedures investigated by

Kale [8] for obtaining sulutions of the likelihood equations., It ig our feeling

-
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that the iterative procedure presented here offers considerable computational

advantages over these procedures in many cases of practical interest.
Although Newton's method and the method of scoring offer quadratic and
near-quadratic convergence, respectively, for large sample sizes, they require
at each iteration the inversioﬁ of a square matri# whose dimensilon is equal to
the number of indepsudent variables among the parameters, namely Eﬁgil%ﬁgtgl - 1.
Thus these methods may be less efficient computationally than the iterative
procedure (4) if m and n are large, even though they may yield a satisfactory
approximate solution after fewer iterations. The modified versions of Newton's
methed and the method of scciing do not require the re-calculation of the inverse
of a large matrix at each step. However, quadratic convergence is not achicved
with these modified methods, and multiplication by a large matrix must still be
carried out at each lteration. '
Even though the partial derivatives of the log-likelihood function are not

apprecilably more difficult to evaluate than the expr2ssions used in defining
the function (be’ the procedure (4) appears to have two particular advantages
over the steepest-ascent method. First, the successive iterates defined by i
(4) automatically satisﬁ& the.requisite constraints on the parameters,. i.e.,

the successive Zi's are, in probability, positive-definite and the successive
ui‘s are positive and sum to 1. Second, by the remarks following the proof (
of the theorem, one knows that, in probability, there iz a value of ¢, depending
only on m and n, for which the procedure (4) converges locally to the
consistent maximum-likelihood estimate. We doubt that there exists a step-size
depending only on m and n which is similarly sufficilent for the local

convergence of the steepest-ascent procedure.




16

Appendix

We now give a brief proof of the existence and uniqueness of the consistent
maﬁimum~likelihood estimate. TFor the sake of generality, this 1s done in a
somewhat broader context than is necessary for this paper.

Let p(x,0) be a probability density function of a vector variable x eﬂln
and a vector parameter 0O sﬂéu. If '{xk}k=1,...,N is an independent sample of
obgservations on a random varilable =x eR™ whose probability density function is
p(x,@o) for some ©O° e[Ry. then a maximum-likelihood eciiwmate of 0° is a

choice of © which locally maximizes the leog-likelihood function
N
L= kél log p(xk,G).

If p 1s a differentiable function of O, then a necessary condition for a
maximum-likelihood estimate is that‘the likelihood equations

oL
.é'é'_ﬂ 09 i=l’|.l’v,

i

be satisfied, where Gi is the iEE component of ©. In the following, our
objective 1s to show that 1f p satisfies certain conditions, them, glven any
sufficiently small neighborhood of Oo, there is, with probabilitﬁ approaching
1 as N approaches infinity, a unique solution of the likelihood equations in
that neighborhood, and this solution is a maximum-likelihood estimate of o°.
We assume that p(é,@) satisfies the following conditions of Chanda [1]:

(a) There is a neighborhood § of 0° such that for all O ¢ , for almost

A ot MR el st Phabph oy £ Bkt i KL 114 Dy nas s St i foen . pen i <epm s e
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) | g2 3
all x ¢[R", and for i,j,k=1,...,v, %ﬁ-, 4%—%3—, and 3 aae g exist
1 99,99, 19949%,

and satisiy

2. ..
d l ‘37p aﬂog D
|<b- s £,(x), | | s £,,00, | LD | s £, (%)
3d, 185 Géiﬁéj 147 aeiaejaak 14k "7
where fi and fij are integrable and fijk satisfies

ffijk(x)p(x,eo)dx < =,

mn
(b) The matrix J(O) = ( f 8 ’gé’gl’ 8 %.gg B o dx) is positive-definite at 0°,
ﬂzn 1 i
19L
. N %,
Let L@ = ' .
13L_
N Bev

It is immediately seen that oZ5(0) = 0 if and only if the likelihood equations
are satisfied, and that, by the weak law of large numbers, JﬁKOO) converges 1n
probability to zero. Furthermore, it follows from assumptions (a) and (b)
above that there exists a neighborhood 2 of ©° (contained in £ and, for
convenience, convex) and a positive ¢ such chat, with probability approaching
1 as N approaches infinity, VZ(@) = - ¢ 1 for all O e Q°. (The inequality

is with respect to the usual ordering on symmetric matrices.) Denoting the

spherical neighborhoed of radius & abkout e° by QG' we establish the following

Lemmat- With probability approaching 1 as N .approaches infinity,

(1) & 1s one-to-one on Q°,

;
i
i
;
i
i
it
i
T
il
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(1i1) aZKQG) contains the ball cf radius e§ about ¢2(0°) whenever
o
gt
Proof: We may assume that WZ(0) s - ¢ I for all O ¢ Q°, since the probability

that this is the case tends to 1 as N approaches infinity., To prove (i),

suppose that Jﬁ(@li -az(oz) for ol and 02 in ©°.  Then

0= (@' - eHTrzeY) - 2(6%)
= @' - 09HT( [lugo® + c1oh - o?packe* - @),
The negative~definiténess of V.¥ implies that 01 - 92, and (1) is proved.

To prove (ii), suppose that Q. c QO, and let Ol be. a boundary point
5 S

of ﬂa. Then

2@Y -2 = {fuae® + eet - e°1yaede! - o).

After left-multiplying this equation by (01 - GO)T, one verifies using Schwarz's

inequality and the negative-definiteness of V£ that

”,z(el) -,7:(@")“ > ¢ "ol - °

HEG’

where denotes the usual Euclidean norm on ﬂa v. Since all boundary points

|

of Jt(ﬂa) are images under o.Z of boundary points of Q&’ the proof of (ii)

is complete.

e e

The desired result of this appendix follows immediately from this lemma and



19

the remarks preceding it. Indeed, if 91 is any neighborhood of 0° which is

contsined in 9°, then one can find a & for which 96 53’21 < n°. By the lemma,

the probability approaches 1 as N tends to infinity that ° is one~to-one
on Ql and that .;C(QG) and, henne, OZ(QJ') contain the ball of radius e
about ot(ﬁ)o). Sinze ‘,Z(Oo) converges in probability to zero, one concludes
that, with probability tending to 1 as N approaches infinity, there exists

a unique © ¢ ﬂl for which L (@) = 0, Since the probability also tends to 1
that VX is negative~definite on 91, this © 18, with probability approaching

1, a maximum~likelihood estimate.

LRI
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