
IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 8, NO. 3, MAY 1997 519

An Iterative Pruning Algorithm for
Feedforward Neural Networks

Giovanna Castellano, Anna Maria Fanelli,Member, IEEE,and Marcello Pelillo,Member, IEEE

Abstract—The problem of determining the proper size of an
artificial neural network is recognized to be crucial, especially
for its practical implications in such important issues as learning
and generalization. One popular approach tackling this prob-
lem is commonly known as pruning and consists of training a
larger than necessary network and then removing unnecessary
weights/nodes. In this paper, a new pruning method is developed,
based on the idea of iteratively eliminating units and adjusting the
remaining weights in such a way that the network performance
does not worsen over the entire training set. The pruning problem
is formulated in terms of solving a system of linear equations, and
a very efficient conjugate gradient algorithm is used for solving
it, in the least-squares sense. The algorithm also provides a simple
criterion for choosing the units to be removed, which has proved
to work well in practice. The results obtained over various test
problems demonstrate the effectiveness of the proposed approach.

Index Terms—Feedforward neural networks, generalization,
hidden neurons, iterative methods, least-squares methods, net-
work pruning, pattern recognition, structure simplification.

I. INTRODUCTION

DESPITE many advances, for neural networks to find gen-
eral applicability in real-world problems, several ques-

tions must still be answered. One such open question involves
determining the most appropriate network size for solving a
specific task. The network designer’s dilemma stems from the
fact that both large and small networks exhibit a number of
advantages. When a network has too many free parameters
(i.e., weights and/or units) not only is learning fast [2]–[5],
but local minima are more easily avoided [6]. In particular,
a theoretical study [7] has shown that when the number of
hidden units equals the number of training examples (minus
one), the backpropagation error surface is guaranteed to have
no local minima. Large networks can also form as complex
decision regions as the problem requires [8] and should exhibit
a certain degree of fault tolerance under damage conditions
(however, this appears not to be as obvious as might intuitively
have been expected [9]). On the other hand, both theory [10]
and experience [11]–[13] show that networks with few free
parameters exhibit a better generalization performance, and
this is explained by recalling the analogy between neural
network learning and curve fitting. Moreover, knowledge

Manuscript received May 16, 1994; revised February 13, 1995, January 16,
1996, and October 8, 1996.

G. Castellano is with the Istituto di Elaborazione dei Segnali e delle
Immagini, Consiglio Nazionale delle Ricerche, 70126 Bari, Italy.

A. M. Fanelli is with the Dipartimento di Informatica, Universita’ di Bari,
70126 Bari, Italy.

M. Pelillo is with the Dipartimento di Matematica Applicata e Informatica,
Universita’ “Ca’ Foscari” di Venezia, 30173 Venezia Mestre, Italy.

Publisher Item Identifier S 1045-9227(97)01755-4.

embedded in small trained networks is presumably easier to
interpret and thus the extraction of simple rules can hopefully
be facilitated [14]. Lastly, from an implementation standpoint,
small networks only require limited resources in any physical
computational environment.

To solve the problem of choosing the right size network,
two different incremental approaches are often pursued (e.g.,
[1], [15], [16] and references therein). The first starts with
a small initial network and gradually adds new hidden units
or layers until learning takes place. Well-known examples
of such growing algorithms are cascade correlation [17] and
others [18]–[20]. The second, referred to aspruning, starts
with a large network and excises unnecessary weights and/or
units. This approach combines the advantages of training large
networks (i.e., learning speed and avoidance of local minima)
and those of running small ones (i.e., improved generalization)
[21]. However it requires advance knowledge of what size
is “large” for the problem at hand, but this is not a serious
concern as upper bounds on the number of hidden units
have been established [22]. Among pruning algorithms there
are methods that reduce the excess weights/nodes during the
training process, such as penalty term methods [23]–[25] and
the gain competition technique [26], and methods in which the
training and pruning processes are carried out in completely
separate phases.1 The latter approach is exemplified by Sietsma
and Dow’s two-stage procedure [28], [29], Mozer and Smolen-
sky’s skeletonization technique [32], the optimal brain damage
(OBD) algorithm [30] and the optimal brain surgeon (OBS)
[31]. These post-training pruning procedures do not interfere
with the learning process [3], but they usually require some
retraining to mantain the performance of the original network.

In this paper, a novel posttraining pruning method for arbi-
trary feedforward networks is proposed, which aims to select
the optimal size by gradually reducing a large trained network.
The method is based on the simple idea of iteratively removing
hidden units and then adjusting the remaining weights with a
view to maintaining the original input–output behavior. This is
accomplished by imposing that, at each step, the net input of
the units fed by the unit being removed be approximately the
same as the previous one, across the entire training set. This
amounts to defining a system of linear equations that we solve
in the least-squares sense using an efficient preconditioned
conjugate gradient procedure. Although the approach does
not itself provide a criterion for choosing the units to be

1This idea has been proved to be quite effective in the analogous problem
of determining the proper dimension of a classification tree, thereby improving
its generalization performance [27].

1045–9227/97$10.00 1997 IEEE

520 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 8, NO. 3, MAY 1997

removed, a computationally simple rule has been derived
directly from the particular class of least-squares procedures
employed, and has proved to work well in practice. Besides
sharing the advantages of posttraining pruning procedures, the
one proposed here exhibits a number of additional features.
First, in contrast with many existing algorithms (e.g., [28],
[29], [34], [35]), ours does not make use of any working
parameter and this frees the designer from a lengthy, problem-
dependent tuning phase. Second, the proposed algorithm does
not require any retraining phase after pruning, like the OBS
procedure [31], but it requires far less computational effort
(see Section III-D for details). Finally, although we shall focus
primarily on hidden unit removal in feedforward networks, the
approach presented here is quite general and can be applied
to networks of arbitrary topology [36] as well as to the
elimination of connections.

Some algorithms bear similarities with the proposed one.
First, the basic idea of removing redundant hidden units and
properly adjusting remaining weights was proposed by Sietsma
and Dow [28], [29] who heuristically derived a two-stage
pruning procedure for layered networks. While their primary
goal was to devise specific rules for locating redundant units,
we focus mainly on directly solving a linear system without
explicitly taking into account the redundancy of individual
units. Furthermore, as described in Section IV, their stage-one
pruning rules are but special consistency conditions for the sys-
tem we solve, and the remaining weights update corresponds
to a particular solution of that system. Second, the Frobenius
approximation reduction method (FARM) [37] selects the set
of hidden units in a layered network so as to preserve, like in
our approach, the original training-set behavior. Our algorithm,
however, differ significantly as regards how both the units
to be removed are selected and the weights of the reduced
networks are derived. Further, for FARM to be applicable,
the optimal number of hidden units must be determined
in advance. This can be carried out by a computationally
expensive singular value decomposition (SVD) procedure [38],
[39], but it may fail to detect linear dependencies among
hidden neurons even in very redundant networks [9]. Finally,
system formulations similar to ours were used in [3] and [40],
but for different goals.

The definitions and notations used in this paper are intro-
duced in Section II. In Section III we formulate the pruning
problem in terms of solving a system of linear equations
and derive the pruning algorithm. In Section IV the relations
between the proposed pruning approach and that of Sietsma
and Dow are pointed out. In Section V experimental results
on different test problems are presented. Finally, Section VI
gives the summary and conclusions.

II. DEFINITIONS AND NOTATIONS

Since the pruning algorithm presented in this paper can
be applied to arbitrary feedforward networks, not necessarily
layered or fully connected, some definitions and notations
must be introduced. A feedforward artificial neural network
can be represented by an acyclic weighted directed graph

where is a set of

units (or neurons), is a set of connections,
and is a function that assigns a real-valued
weight to each connection positive weights
correspond to excitatory connections and negative weights to
inhibitory connections. In the following, the more familiar
notation will be used instead of

Each unit is associated with its ownprojective field

(1)

which represents the set of units that are fed by unitand
its own receptive field

(2)

which is the set of units that feed unitIn the special case of
layered fully connected networks, the receptive and projective
fields of a given unit are simply its preceding and succeeding
layers, if any, respectively. In the following, we will denote the
cardinality of by and the cardinality of by The set
of units is divided into three subsets: the set of input units

having an empty receptive field, the set of output units
having an empty projective field, and the set of hidden units

As usual, it is assumed that a particular input unit (here
labeled by zero) works as a bias unit which is permanently
clamped at 1 and is connected to any noninput unit. Fig. 1
shows an example of feedforward network architecture and
illustrates the notations introduced above.

The network operates as follows. Input units receive from
the external environment an activity pattern which is propa-
gated to all units in the corresponding projective fields. Every
noninput unit in turn, receives from its own
receptive field a net input given by

(3)

where represents the output value of unit and sends to
its projective field an output signal equal to

(4)

being an arbitrary differentiable activation function. The
process continues until the output units are reached and their
outgoing signals are thus taken to be the actual response of the
network. A common choice for the function is the logistic
function but no restriction is placed on
the type of activation function used.

III. T HE ALGORITHM

A. Problem Formulation

Our approach to network minimization consists of suc-
cessively removing hidden units after the network has been
trained for satisfactory performance. It is assumed that learning
is carried out over a sample of training patterns by means
of an arbitrary learning procedure (note that the pruning al-
gorithm developed in the following is completely independent
of the particular training procedure).

Assume that hidden unit has somehow been
identified as a candidate for removal (later on, we shall address

CASTELLANO et al.: ITERATIVE PRUNING ALGORITHM 521

Fig. 1. Example of feedforward network architecture to illustrate notations
(the bias unit zero has not been included to make representation easier).
Here, the set of input units isVI = f1; 2; 3; 4g; the set of hidden units
is VH = f5; 6; 7g; and the set of output units isVO = f8; 9; 10g: As an
example, the receptive field of node 7 isR7 = f1;3; 5g (light-gray units)
whereas its projective field isP7 = f8;10g (dark-gray units).

the question of how to choose the units to be excised). First, the
elimination of unit involves removing all its incoming and
outgoing connections. More precisely, this amounts to stating
that the new pruned network will have the following set of
connections:

where is the connection set of the preceding unpruned
network.

Removing the in/out ’s connections is not the whole story.
Our approach to network pruning consists first of removing
unit and then appropriately adjusting the weights incoming
into ’s projective field so as to preserve the overall network
input/output behavior of the training set. To be more precise,
let be a unit of ’s projective field Its net input

upon presentation of pattern is given by

where denotes the output of unit corresponding to
pattern After removal of unit will take its own input
from 2 In order to maintain the original network
behavior, we attempt to adjust the remaining weights incoming
into node i.e., the ’s for all so that its
new net input remains as close as possible to the old one, for
all the training patterns (see Fig. 2). This amounts to requiring
that the following relation holds:

(5)

for all and where the ’s are ap-
propriate adjusting factors to be determined. Simple algebraic
manipulations yield

(6)

which is a (typically overdetermined) system of linear
equations in the unknowns Observe
that represents the total number of connections incoming
into ’s projective field after unit has been removed.

It is convenient to represent system (6) in a more compact
matrix notation. To do so, consider for each unit the

-vector composed of the output values of unitupon
presentation of the training patterns

Also, let denote the matrix, whose columns
are the output vectors of’s new receptive field
that is,

(7)

where the indexes for all vary in
Now, we have to solve the disjoint systems

(8)

for every where is the unknown vector, and

(9)

Finally, putting these systems together, we obtain

(10)

where

(11)

(12)

and

(13)

Here, the indexes ’s vary in

2For convenience, it is assumed here that the following condition is always
satisfied8i 2 Ph: Ri � f0; hg 6= ;, which means that, after removing node
h; all the units of its projective field will receive at least one input other than
the bias signal.

522 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 8, NO. 3, MAY 1997

Fig. 2. Illustration of the pruning process. Unit 7 has been selected to be
removed. After pruning, all its incoming and outgoing connections (dashed
lines) will be excised and all the weights incoming into its projective field
(thick lines) will be properly adjusted.

To summarize, the core of the proposed pruning approach
consists of solving the linear system defined in (10).3 This will
be accomplished in the least-squares sense, which amounts to
solving the following problem:

minimize (14)

Since we start with larger than necessary networks, linear
dependencies should exist among the output vectors of the
hidden units, and the matrix is therefore expected to be rank
deficient, or nearly so. This implies that an infinite number of
solutions typically exist for problem (14) and in such cases
the one having the lowest norm is generally sought. Because
of the particular meaning of our unknown vectorhowever,

3Instead of directly solving system (10), one can independently solve the
ph disjoint systems (8). Here, the former approach was preferred because of
the moderate dimensions of the networks considered. When large networks
are involved, the latter approach can well be pursued.

we deviate from this practice and will be satisfied with any
solution vector, regardless of its length.

We emphasize that, although it was developed to prune off
hidden units, the approach presented here can be applied to
remove single connections as well. Supposing that connection

is to be removed, the idea is to distribute the weight
over the connections incoming into unitin such a way

that ’s net input remains unchanged across the training set.
It is easy to see that this condition is equivalent to solving a
single system of equations and unknowns that is
identical to (8).

B. Weight Adjustment by a Conjugate
Gradient Least-Squares Method

To solve the least-squares problem (14), standard QR factor-
ization methods with column pivoting or the SVD technique
can be employed [41]. These methods, however, turn out
to be impractical for large and sparse coefficient matrices,
and iterative conjugate gradient (CG) methods, especially
when used in conjunction with appropriate preconditioning
techniques [41]–[43], are advantageous in this case. Moreover,
CG-methods are particularly attractive because they do not
depend upon parameters that are difficult to choose. In this
work we made use of a general preconditioned CG-method
derived by Bj̈orck and Elfving in [44], which proved to be
extremely efficient thanks not only to its modest computational
cost per step, but also to its fast rate of convergence. This
section is devoted to a brief description of Björck and Elfving’s
so-called CGPCNE algorithm,4 as applied to problem (14).

Consider our original system as defined in
(10)–(13). For notational convenience the index which
denotes the unit being removed, will be suppressed. Write the
matrix as

(15)

and recall from the previous section thatdenotes the number
of columns of Here, is a diagonal matrix whose
nonzero elements are defined to be

(16)

(the notation indicates the th column of matrix
and is a strictly lower triangular matrix constructed as

(17)

Now, consider the normal system and let
denote the following preconditioning matrix:

(18)

where represents a relaxation parameter in the interval (0, 2)
used to control the convergence rate of the algorithm. Making
the change of variables we finally arrive at the
preconditioned normal system

(19)

4The acronym CGPCNE is not explicitly defined in [44]; however, it should
stand for “conjugate gradient preconditioned normal equation.”

CASTELLANO et al.: ITERATIVE PRUNING ALGORITHM 523

Applying the CG-method to (19), the CGPCNE algorithm for
solving problem (14) results. It begins with an initial tentative
solution range and iteratively produces a sequence
of points in such a way that the residuals

(20)

are monotonically decreased, i.e., for all
.

Algorithm 1: CGPCNE Least-Squares Algorithm
1)
2)
3)
4)
5) repeat

6)
7)
8)
9)
10)
11)
12)
13)

14) until /* where is a
small predetermined constant *.

Björck and Elfving showed that the vectors and
can be computed efficiently according to the

following iterative procedure (where .

Algorithm 2
1)
2) for downto 1 do

3)
4)

5) endfor
6)

Analogously, the following algorithm calculates .

Algorithm 3
1)
2) for to do

3)

4)
5) endfor.

Therefore, the above vectors can be computed with only
two sweeps through the columns of the matrix so that
the overall computational complexity of each CGPCNE cycle
turns out to be in the order of where denotes
the number of nonzero elements ofAnalyzing the structure
of from (11), it is readily seen that and,
in turn, is smaller than the total number of connections
in the network. Consequently, each CGPCNE cycle requires
a number of operations which is roughly proportional to

and this is exactly the computational complexity of
one epoch of the feedforward backpropagation algorithm [15]
(observe that one CGPCNE cycle “sees” all the training
patterns at once, and therefore it should be compared with one

backpropagation epoch). However, unlike backpropagation,
the CGPCNE algorithm contains dependencies which make
it less suitable for parallel implementation. Fortunately, this
does not appear to be a serious problem because, as seen in the
experimental section, the number of CGPCNE cycles needed
to find a solution is typically low.

C. Choosing the To-Be-Removed Units

One of the fundamental concerns in any pruning algorithm
is how best to select the units to be eliminated. One possible
strategy is to make use of some relevance or sensitivity
measure to quantify the contribution that individual nodes
make in solving the network task, and then to select the
less relevant units as those to be removed (see, e.g., [32]).
This choice, however, has nothing to do with the basic idea
underlying the proposed method, as there is in general no
guarantee that selecting the less relevant units will actually
make system (10) consistent, or nearly so, which is clearly
our ultimate goal.

Ideally, the most appropriate choice would be to elimi-
nate among all the hidden units the one that, after solving
the corresponding problem (14), results in the smallestfinal
residual. This guarantees that the removal of that unit and the
corresponding updating of the weights will have a minimal
effect on the network’s input–output behavior. This brute-force
approach, however, involves solving as many least-squares
problems as there are hidden units and would become im-
practical even for moderate problem dimensions. Fortunately,
the specific method we use to solve problem (14) exhibits a
nice property that naturally suggests a suboptimal selection
criterion. Namely, recalling that CG-methods monotonically
decrease the residuals at each time step,
a reasonable approximation to the globally optimal approach
mentioned above is to choose the unitto be eliminated in
such a way that theinitial residual

(21)

be the smallest among all the hidden units or, more formally,

(22)

Since the initial solution is typically chosen to be the null
vector, and recalling the meaning of from (9) and (13),
rule (22) becomes

(23)

Along the same lines, in the case of weight elimination,
the rule for detecting the to-be-removed connections would
become

(24)

It should be clear that the proposed criterion is by no means
intended to be theglobally optimal choice because there is no
guarantee that starting from the smallest initial residual will
result in the smallest final residual. Moreover, these selection

524 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 8, NO. 3, MAY 1997

rules suffer from the same disadvantage as the sensitivity meth-
ods [21]. Namely, since the decision as to which unit/weight
to remove is based mainly on the output of individual nodes,
we could fail to identify possible correlations among units. To
avoid this problem, combined selection criteria that take into
account some correlation measure could well be employed,
without altering the nature of the proposed pruning algorithm.
Despite these caveats, in the present work we prefer this
criterion not only because of the encouraging results it yielded
in practice but also for its operational simplicity.

As a final remark, we note that the preceding selection
rules have an interesting interpretation which comes from
rather different considerations. In fact, as suggested in [45],
the quantity can be regarded as a measure of the
synaptic activity of the connection between unitsand upon
presentation of pattern By averaging across all training
patterns we obtain
Accordingly, the total synaptic activity of unit can be defined
by summing the above quantities across all the units in’s
projective field and this is proportional to (a
nearly identical measure was independently proposed in [46],
in an attempt to quantify the “goodness” of individual hidden
units). Therefore, rules (23) and (24) can also be interpreted
as criteria that select, respectively, the units and connections
having the smallest synaptic activity.

D. Definition of the Pruning Algorithm

We now define precisely the pruning algorithm. Starting
with an initial trained network
the algorithm iteratively produces a sequence of smaller and
smaller networks by first identifying the unit to be
removed, and then solving the corresponding system (10) to
properly adjust the remaining weights. The process is iterated
until the performance of the reduced networks falls below the
designer’s requirements. More explicitly, the algorithm can be
written as follows.

Algorithm 4: Proposed Pruning Algorithm
1)
2) repeat

3) identify excess unit in network
according to rule (23)

4) apply theCGPCNEalgorithm to find a
that solves problem (14)

5) construct
as follows:

if
if

6)
7) until the “performance” of deteriorates

excessively.

Note that the iterative nature of the above procedure allows the
network designer to define appropriate performance measures
depending on his own requirements (e.g., if separate training
and validation sets are available, the network’s performance

can be measured as the error rate over validation data, in an
attempt to improve generalization). Moreover, after pruning,
the final network need not be retrained because the
updating of the weights is embedded in the pruning algorithm
itself.

Finally, we point out that the overall computational cost
of each iteration of our pruning algorithm depends mainly on
Step 4) which, as seen in Section III-B, requires a number of
operations per step roughly proportional to being the
total number of connections in the network. Also, the number
of cycles performed by theCGPCNEprocedure, like any CG-
based least-squares method [42], [43], turns out to be very
low and typically far less than either or so that the
overall computational complexity of each pruning step can
be approximately It may be interesting to compare
this computational cost with that of the OBS procedure [31]
which, like our algorithm, does not demand further retraining
sessions after pruning. Whereas OBS takes time to
remove one single weight and update the remaining ones, we
are able to remove a processing unit with all its incoming
and outgoig connections and adjust the remaining weights in

time (a major difference between the two procedures
is that, unlike our method, OBS updates all the weights in
the network). Furthermore, if our procedure were employed to
remove a single connection, say its computational
complexity would scale to where is the number of
connections incoming into unit since our pruning
algorithm is far less computationally expensive than OBS.

IV. RELATIONS WITH SIETSMA

AND DOW’S PRUNING APPROACH

In this section we show how the linear system formulation
developed in this paper can lead to an alternativemanual
approach to network pruning, of which Sietsma and Dow’s
(S&D) algorithm [28], [29] is the best-known representative
(see also [35], [47]). Specifically, rather than trying to di-
rectly solve system (10), one can study specific consistency
conditions for it, thereby deriving rules for locating and
removing redundant units. This is basically the approach
made by Sietsma and Dow, although they were apparently
unaware of the linear system formulation underlying their idea.
Starting from simple heuristic considerations, they developed
the following simple rules for pruning layered networks.

1) If the output of hidden unit is constant over the whole
training set, i.e., then remove
and, for each unit in the succeeding layer (which is’s
projective field), add to its bias value the quantity

.
2) If unit gives the same output as a second unit

across the entire training set, i.e., for all
then remove and adjust ’s outgoing

weights as .
3) If unit gives opposite output values as a second unit

i.e., then remove
adjust ’s outgoing weights as and,
for each in the next layer, add to its bias value
the quantity

CASTELLANO et al.: ITERATIVE PRUNING ALGORITHM 525

We now demonstrate how S&D’s rules can easily be derived
within our framework. In particular, if any of the previous
conditions are fulfilled then all the subsystems

defined in (8) are consistent, and so therefore
will be system (10). Moreover, the way in which rules 1)–3)
update the remaining weights after pruning corresponds to a
specific solution of that system. In fact, all the matrices ’s
defined in (7) will always contain a column consisting of
all “1’s”, which corresponds to the output of the bias unit.
When the output of unit is constant (rule 1), the vector

(for all becomes by simply
setting and all the other components of at zero,

can therefore be written as a linear combination of the
columns of which means that is consistent,
for any Similar arguments apply to rule 2) where
the vector now becomes proportional to the column in

corresponding to unit in this case, too, system (8) is
consistent and a solution can be obtained by setting
and all other components at zero. Finally, rule 3) can be
derived analogously by observing that the vectors’s can be
obtained as a linear combination of the columns of the’s
corresponding to the “0” (bias) and units.

It is clear that the major drawback of S&D’s approach
is its simplicity: in real-world applications, in fact, hidden
units are unlikely to be exactly correlated and the algorithm
may thus fail to detect redundant elements. Additionally,
although rules 1)–3) are particularly simple to implement in
networks of threshold units, in the practical case of nonlinear
activation functions, they must be translated into more precise
criteria. This involves determining a number of problem-
dependent threshold parameters whose choice is problematic:
small threshold values, in fact, typically lead to removing very
few redundant units, while large values result in too many
excised nodes, thereby seriously worsening the performance
of the network. Due to these approximations, a further slow
retraining stage is generally required after pruning and we
found experimentally that sometimes the retraining process
may even fail to converge. The approach to network pruning
pursued in this paper offers a general and systematic method
for reducing the size of a trained network which contrasts
sharply with the heuristic,ad hoc procedure developed by
Sietsma and Dow: ours, in fact, is not based on any simplifying
assumption, does not depend on any working parameter, and
does not demand additional retraining sessions.

V. EXPERIMENTAL RESULTS

To test the effectiveness of our pruning algorithm, several
simulations were carried out over different problems. In all
the experiments presented, fully connected neural networks
with one hidden layer were considered. For each test problem,
ten independent networks (denoted with A to J), with weights
randomly generated from a standard Gaussian distribution,
were trained by the backpropagation algorithm [2], [6]

and Each trained network was reduced by
applying our algorithm, where the CGPCNE procedure was
iterated, with relaxation parameter fixed at 1, until the
distance between two successive solutions became smaller
than

For comparison, the S&D pruning algorithm was imple-
mented with a fine-tuned choice of parameters. Specifically, a
hidden unit was regarded as having constant output (rule 1)
when the variance of its output vector is lower than a threshold

two hidden units and had the same output values
(rule 2) when the normalized distance is less
than a threshold and the same condition was applied to
and for locating anti-parallel units (rule 3). The choice
of and appeared to be near-optimal
for the considered problems. Also, following S&D’s practice
[29], before detecting the units to be removed, output values
less than 0.35 and greater 0.65 were approximated to zero and
one, respectively. Units were removed in the following order,
shown to be the best: first constant-output units, then parallel
units, and finally antiparallel units.

To evaluate the behavior of both methods, three different
measures were adopted: 1) the number of hidden nodes in
the reduced networks; 2) the recognition rate, measured as the
proportion of examples for which all network output values
differed from the corresponding target by less than 0.5; and 3)
the usual mean-squared error (MSE).

A. Parity and Symmetry Problems

To assess the performance of the proposed method, the
well-known parity and symmetry tasks [2] were chosen, as
the near-optimal number of hidden units required to achieve
their solution is known. In the case of the parity task, this is
equal to the number of input units (but, see [48] for smaller
solution networks), while the symmetry problem can be solved
with only two hidden nodes, whatever the length of the input
string. In both series of experiments, ten randomly initialized
4-10-1 networks were trained until, for each pattern in the
training set, all the network output values differed from the
corresponding targets by less than 0.05.

Then, to evaluate the behavior of our pruning procedure
under “stressed” conditions, each trained network was pruned
(regardless of its performance) until the hidden layer contained
exactly one unit. The average results are shown in Fig. 3 which
plots, for both problems, the evolution of the recognition rate
and the MSE during the pruning process. As can be seen, our
algorithm exhibits very steady behavior in the first stages of
pruning, whereas, as may be expected, it performs poorly when
near-optimal size is approached. Also, as shown in Fig. 4, the
number of CGPCNE iterations required to find a solution for
each pruning step is extremely small and decreases linearly
with the number of hidden units. This is in agreement with
theoretical and experimental results reported in [42] and [43].

However, for the proposed procedure to produce useful
small networks, a stopping criterion should be specified, which
takes into account the performance of the reduced networks.
For the two tasks at hand, the following stopping rule was
adopted, aiming to obtain networks with the same training-
set performance as the original ones. At each pruning step,
the performance of the reduced network, measured as the
recognition rate over the training set, was compared with that
of the original network. If a deterioration of 1% or more was
observed, then pruning was stopped and the previous reduced

526 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 8, NO. 3, MAY 1997

TABLE I
NUMERICAL RESULTS FOR THE PARITY PROBLEM

TABLE II
NUMERICAL RESULTS FOR THE SYMMETRY PROBLEM

network was retained as the final one. The results obtained
by our pruning procedure with the above stopping criterion,
and the S&D pruning algorithm with no retraining phase, are
summarized in Table I for parity and Table II for symmetry.
As can be observed, our procedure appears extremely robust
since all trials resulted in a near-optimal solution network
with perfect 100% recognition rate, irrespective of the initial
conditions. The S&D method, by contrast, exhibits much more
unstable behavior with poorer recognition performance of the
pruned networks, that were therefore later retrained. We found
that in the case of the parity problem five out of ten trials failed
to converge within 3000 epochs. The remaining five required
a median number of 24 (ranging from zero to 119). In the
symmetry case, instead, all the retraining trials converged to a
solution in a median number of 48 epochs.

Finally, to compare the time required to train and prune
a large solution network with that for directly training a
small network, ten independent 4-5-1 and 4-4-1 networks were

trained for parity and symmetry respectively; the size of these
networks corresponds to the “median” sizes found by our pro-
cedure. Tables III and IV show the median number of epochs
required to train such small networks, for parity and symmetry,
respectively, and the median number of backpropagation as
well as CGPCNE cycles (which, as seen in Section III-B, have
comparable computational complexity) needed to train the
original 4-10-1 networks and then reduce them to the median
size. As can be observed, in any case the overall time required
to train a large network and then prune it to a small size
compares very favorably with that of simply training a small
network. In addition, for initially small networks, convergence
is not always guaranteed; in fact, seven out of ten parity trials
did not converge within 3000 epochs.

B. A Simulated Pattern Recognition Task

A classification task nearer to real-world problems, sug-
gested in [49] and used as a test problem by many authors

CASTELLANO et al.: ITERATIVE PRUNING ALGORITHM 527

TABLE III
MEDIAN NUMBER OF BACKPROP/CGPCNE CYCLES REQUIRED BOTH TO TRAIN A SMALL

NETWORK AND TO TRAIN-AND-PRUNE A LARGE NETWORK, FOR THE PARITY PROBLEM

TABLE IV
MEDIAN NUMBER OF BACKPROP/CGPCNE CYCLES REQUIRED BOTH TO TRAIN A SMALL

NETWORK AND TO TRAIN-AND-PRUNE A LARGE NETWORK, FOR THE SYMMETRY PROBLEM

(a)

(b)

Fig. 3. Behavior of the recognition rate and the MSE during the pruning
process. (a) Parity problem; (b) symmetry problem.

[50]–[52], was chosen to test the generalization performance
of the networks reduced by our procedure. This is a two-class
simulated pattern recognition problem with a two-dimensional
continuous feature space, and known probability distributions.
As shown in Fig. 5, class 1 is a single Gaussian distribution,
while class 2 is an equal likelihood mixture of two Gaussians.
In the experiments reported here the values

and were used, which correspond to “mixture
2” data used by others [50], [51].

(a)

(b)

Fig. 4. Number of CGPCNE cycles at each pruning step. (a) Parity problem;
(b) symmetry problem.

A training set of 200 samples, and two separate 1000-sample
data sets, one for validation and the other for testing, were
randomly generated from the Gaussian distributions for both
classes with equal probability. Due to overlapping between
classes, perfect learning cannot be achieved. Accordingly, ten
randomly initialized 2-10-1 networks were trained for 1000
epochs. After training, the pruning procedure was applied.
Fig. 6 shows the results of running the algorithm until all but
one unit remained in the hidden layer; the performance over

528 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 8, NO. 3, MAY 1997

TABLE V
NUMERICAL RESULTS ON TRAINING AND VALIDATION SETS FOR THEPATTERN RECOGNITION PROBLEM

both the training and the validation set, averaged over the
ten trials, is reported. It can be observed how the algorithm
exhibits a very stable behavior, both in terms of recognition
rate and MSE and even with just one hidden unit performance
deterioration is negligible. In Fig. 7, the (average) number of
CGPCNE cycles is plotted as a function of the size of the
hidden layer. As in both the previous logical tasks, linear
behavior can be observed.

In practical real-world applications, a better generalization
performance is more important than optimal behavior over the
training data. As suggested by many authors [53], [54], one
way to improve generalization and thereby avoid overfitting
consists of stopping the learning stage as soon as a deteriora-
tion of the network performance over a separate validation set
is observed. Recently, this approach has proved to be effective
when combined with some pruning process [55]. Accordingly,
the following rule was employed to stop pruning. Whenever
a hidden unit was removed, the recognition rate of the new
smaller network was evaluated over the validation set, and
then compared with the performance of thepreviousnetwork.
If a deterioration of 1% or more was observed, then pruning
was stopped and the previous reduced network was taken as
the final one.

Table V summarizes the results obtained by applying our
pruning with the above stopping condition as well as the
S&D results. It is clear that our procedure yields a better
performance than S&D procedure, in terms of network size
reduction. Comparable results, instead, were obtained in terms
of recognition rate over both the training and validation set.
The original networks performed better than the pruned ones
over the training set, due to the particular rule employed to stop
pruning, which does not take into account the performance
of the reduced networks over the training data as pruning
proceeds. Besides, it is well known that good generalization
results are typically achieved when performance over the
learning set is nonoptimal [53]–[55]. On the other hand, when
the performance on the training set is important, alternative
criteria can be employed to stop pruning, in order to avoid
loss of accuracy on training data.

Fig. 5. Gaussian densities used in the pattern recognition example.

Next, we evaluated the generalization ability of the reduced
networks with respect to the original ones. The statistics of the
performance measures, number of hidden units and recognition
rate computed over the test set, are listed in Table VI. As can
be seen, the networks reduced by our procedure generalize
slightly better than the original ones as well as the ones
reduced by S&D.

Finally, we point out that the generalization results of the
networks reduced by our pruning algorithm are not only
superior to those found by Holt [51] under experimental
conditions similar to ours (i.e., same classification problem,
equal training and test set sizes, network architecture, and
learning stopping criterion), but are comparable with the best
results he obtained using an alternative cost function aiming
to improve the generalization performance. Moreover, the
median size of our reduced networks (2-3-1) coincides with
the minimal network size required for achieving the best

CASTELLANO et al.: ITERATIVE PRUNING ALGORITHM 529

TABLE VI
GENERALIZATION RESULTS FOR THEPATTERN RECOGNITION PROBLEM

Fig. 6. Behavior of the recognition rate and the MSE during the pruning process for the pattern recognition problem. Both the behavior over the
training and validation sets are displayed.

Fig. 7. Number of CGPCNE cycles at each pruning step for the pattern
recognition problem.

generalization results for this problem, as claimed in [51] and
[49]. This demonstrates once again that the proposed

pruning procedure is able to find the most appropriate
network architecture to solve a given problem.

VI. CONCLUSIONS

This paper describes a method for reducing the size of
trained feedforward neural networks, in which the key idea

consists of iteratively removing hidden units and then adjusting
the remaining weights in such a way as to preserve the over-
all network behavior. This leads to formulating the pruning
problem in terms of defining a system of linear equations that
we solve with a very efficient conjugate gradient least-squares
procedure. A simple and effective rule is also derived which
proves to work well in practice, and turns out to be closely
related with a selection rule derived elsewhere in a different
context. However, alternative selection rules can be adopted as
well, without altering the method as a whole. A nice feature is
that no parameter needs to be set, and this contrasts with most
existing pruning procedures. Furthermore, the iterative nature
of the algorithm permits the network designer to monitor
the behavior of the reduced networks at each stage of the
pruning process, so as to define his own stopping criterion.
The experimental results obtained prove that the method does
a very good job of reducing the network size while preserving
excellent performance, without requiring the additional cost
of a retraining phase. In addition, the time required to train
a small network is typically much longer than that needed to
train a large network and then reduce its size by means of our
pruning procedure. The results of the experimental comparison
with a well-known pruning procedure show that the proposed

530 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 8, NO. 3, MAY 1997

one yields better results in terms of network size, performance,
and robustness.

Although we have focused primarily on the problem of
removing units, our approach is naturally applicable to the
elimination of single connections as well. Our choice was
motivated by the observation that computational nodes rep-
resent the “bottleneck” through which information in a neural
network is conveyed, and are therefore more important than
individual connections [26]. Moreover, node pruning algo-
rithms are more efficient, although less accurate, than weight
elimination methods. However a “coarse-to-fine” approach
could be pursued by removing first units and then, when no
unit can be further excised, single connections. Finally, we
emphasize that the proposed pruning approach is far more
general than we have presented here and can be applied to
networks of arbitrary topology.

REFERENCES

[1] D. R. Hush and B. G. Horne, “Progress in supervised neural networks,”
IEEE Signal Processing Mag.,vol. 10, pp. 8–39, 1993.

[2] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning internal
representations by error propagation,” inParallel Distributed Process-
ing—Vol. 1: Foundations, D. E. Rumelhart and J. L. McClelland, Eds.
Cambridge, MA: MIT Press, 1986, pp. 318–362.

[3] S. Y. Kung and J. N. Hwang, “An algebraic projection analysis
for optimal hidden units size and learning rates in backpropagation
learning,” in Proc. IEEE Int. Conf. Neural Networks,San Diego, CA,
vol. 1, 1988, pp. 363–370.

[4] D. C. Plaut and G. E. Hinton, “Learning sets of filters using backprop-
agation,”Comput. Speech Language,vol. 2, pp. 35–61, 1987.

[5] D. J. Burr, “Experiments on neural net recognition of spoken and written
text,” IEEE Trans. Acoust., Speech, Signal Processing,vol. ASSP-36,
pp. 1162–1168, 1988.

[6] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning repre-
sentations by backpropagating errors,”Nature, vol. 323, pp. 533–536,
1986.

[7] X.-H. Yu, “Can backpropagation error surface not have local minima,”
IEEE Trans. Neural Networks,vol. 3, pp. 1019–1021, 1992.

[8] R. P. Lippmann, “An introduction to computing with neural nets,”IEEE
Acoust., Speech, Signal Processing Mag.,vol. 4, pp. 4–22, 1987.

[9] M. D. Emmerson and R. I. Damper, “Determining and improving
the fault tolerance of multilayer perceptrons in a pattern-recognition
application,”IEEE Trans. Neural Networks,vol. 4, pp. 788–793, 1993.

[10] E. B. Baum and D. Haussler, “What size net gives valid generalization?”
Neural Computa.,vol. 1, pp. 151–160, 1989.

[11] J. Denker, D. Schwartz, B. Wittner, S. Solla, R. Howard, L. Jackel, and
J. Hopfield, “Large automatic learning, rule extraction, and generaliza-
tion,” Complex Syst.,vol. 1, pp. 877–922, 1987.

[12] Y. Le Cun, “Generalization and network design strategies,” inConnec-
tionism in Perspective, R. Pfeifer, Z. Schreter, F. Fogelman-Soulie, and
L. Steels, Eds. Amsterdam: Elsevier, 1989, pp. 143–155.

[13] Y. Chauvin, “Generalization performance of overtrained backpropaga-
tion networks,” inNeural Networks—Proc. EURASIP Wkshp. 1990, L.
B. Almeida and C. J. Wellekens, Eds. Berlin: Springer-Verlag, 1990,
pp. 46–55.

[14] G. G. Towell, M. K. Craven, and J. W. Shavlik, “Constructive induction
in knowledge-based neural networks,” inProc. 8th Int. Wkshp. Machine
Learning, L. A. Birnbaum and G. C. Collins, Eds. San Mateo, CA:
Morgan Kaufmann, 1991, pp. 213–217.

[15] J. Hertz, A. Krogh, and R. G. Palmer,Introduction to the Theory of
Neural Computation. Redwood City, CA: Addison-Wesley, 1991.

[16] Y. H. Hu, “Configuration of feedforward multilayer perceptron net-
work,” unpublished manuscript, 1993.

[17] S. E. Fahlman and C. Lebiere, “The cascade-correlation learning ar-
chitecture,” in Advances in Neural Information Processing Systems 2,
D. S. Touretzky, Ed. San Mateo, CA: Morgan Kaufmann, 1990, pp.
524–532.

[18] S. I Gallant, “Optimal linear discriminants,” inProc. 8th Int. Conf.
Pattern Recognition,Paris, France, 1986, pp. 849–852.

[19] T. Ash, “Dynamic node creation in backpropagation networks,”Con-
nection Sci.,vol. 1, no. 4, pp. 365–375, 1989.

[20] M. Mézard and J.-P. Nadal, “Learning in feedforward layered networks:
The Tiling algorithm,”J. Phys. A,vol. 22, pp. 2191–2204, 1989.

[21] R. Reed, “Pruning algorithms—A review,”IEEE Trans. Neural Net-
works, vol. 4, pp. 740–747, 1993.

[22] S. C. Huang and Y. F. Huang, “Bounds on the number of hidden neurons
in multilayer perceptrons,”IEEE Trans. Neural Networks,vol. 2, pp.
47–55, 1991.

[23] G. E. Hinton, “Connectionist learning procedures,”Artificial Intell., vol.
40, no. 1, pp. 143–150, 1989.

[24] Y. Chauvin, “A backpropagation algorithm with optimal use of hidden
units,” in Advances in Neural Information Processing Systems 1, D.
S. Touretzky, Ed. San Mateo, CA: Morgan Kaufmann, 1989, pp.
519–526.

[25] A. S. Weigend, D. E. Rumelhart, and B. A. Huberman, “Generalization
by weight-elimination with application to forecasting,” inAdvances in
Neural Information Processing Systems 3, R. P. Lippmann, J. E. Moody,
and D. S. Touretzky, Eds. San Mateo, CA: Morgan Kaufmann, 1991,
pp. 875–882.

[26] J. K. Kruschke, “Creating local and distributed bottlenecks in hidden
layers of backpropagation networks,” inProc. 1988 Connectionist Mod-
els Summer School, D. S. Touretzky, G. E. Hinton, and T. J. Sejnowski,
Eds. San Mateo, CA: Morgan Kaufmann, 1988, pp. 120–126.

[27] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone,Classification
and Regression Trees. Belmont, CA: Wadsworth, 1984.

[28] J. Sietsma and R. J. F. Dow, “Neural net pruning: Why and how,” in
Proc. IEEE Int. Conf. Neural Networks,San Diego, CA, vol. 1, 1988,
pp. 325–333.

[29] , “Creating artificial neural networks that generalize,”Neural
Networks,vol. 4, pp. 67–79, 1991.

[30] Y. Le Cun, J. S. Denker, and S. A. Solla, “Optimal brain damage,” in
Advances in Neural Information Processing Systems 2, D. S. Touretsky,
Ed. San Mateo, CA: Morgan Kaufmann, 1990, pp. 598–605.

[31] B. Hassibi and D. G. Stork, “Second-order derivatives for network
pruning: Optimal brain surgeon,” inAdvances in Neural Information
Processing Systems 5, S. J. Hanson, J. D. Cowan, and C. L. Giles, Eds.
San Mateo, CA: Morgan Kaufmann, 1993, pp. 164–171.

[32] M. C. Mozer and P. Smolensky, “Using relevance to reduce network
size automatically,”Connection Sci.,vol. 1, no. 1, pp. 3–16, 1989.

[33] E. D. Karnin, “A simple procedure for pruning backpropagation trained
neural networks,”IEEE Trans. Neural Networks,vol. 1, pp. 239–242,
1990.

[34] A. Burkitt, “Optimization of the architecture of feedforward neural
networks with hidden layers by unit elimination,”Complex Syst.,vol.
5, pp. 371–380, 1991.

[35] F. L. Chung and T. Lee, “A node pruning algorithm for backpropagation
networks,” Int. J. Neural Syst.,vol. 3, no. 3, pp. 301–314, 1992.

[36] G. Castellano, A. M. Fanelli, and M. Pelillo, “Pruning in recurrent neural
networks,” in Proc. Int. Conf. Artificial Neural Networks (ICANN’94),
Sorrento, Italy, 1994, pp. 451–454.

[37] S. Y. Kung and Y. H. Hu, “A Frobenius approximation reduction
method (FARM) for determining optimal number of hidden units,” in
Proc. Int. J. Conf. Neural Networks,Seattle, WA, vol. 2, 1991, pp.
163–168.

[38] Q. Xue, Y. H. Hu, and W. J. Tompkins, “Analyzes of the hidden units
of backpropagation model by singular value decomposition (SVD),” in
Proc. Int. J. Conf. Neural Networks,Washington, D.C., vol. 1, 1990, pp.
739–742.

[39] Y. H. Hu, Q. Xue, and W. J. Tompkins, “Structural simplification of
a feedforward multilayer perceptron artificial neural network,” inProc.
Int. Conf. Acoust., Speech, Signal Processing,Toronto, Canada, 1991,
pp. 1061–1064.

[40] M. A. Sartori and P. J. Antsaklis, “A simple method to derive bounds
on the size and to train multilayer neural networks,”IEEE Trans. Neural
Networks,vol. 2, pp. 467–471, 1991.

[41] G. H. Golub and C. F. Van Loan,Matrix Computations. Baltimore,
MD: Johns Hopkins Univ. Press, 1989.

[42] A. Björck, “Methods for sparse linear least-squares problems,” inSparse
Matrix Computations, J. R. Bunch and D. J. Rose, Eds. New York:
Academic, 1976, pp. 177–199.

[43] I. S. Duff, “A survey of sparse matrix research,”Proc. IEEE,vol. 65,
no. 4, pp. 500–535, 1977.

[44] A. Björck and T. Elfving, “Accelerated projection methods for comput-
ing pseudoinverse solutions of systems of linear equations,”BIT, vol.
19, pp. 145–163, 1979.

[45] G. Orlandi, F. Piazza, A. Uncini, E. Luminari, and A. Ascone, “Dynamic
pruning in artificial neural networks,” inParallel Architectures and
Neural Networks. E. R. Caianello, Ed., Singapore: World Scientific,
1991, pp. 199–208.

CASTELLANO et al.: ITERATIVE PRUNING ALGORITHM 531

[46] K. Murase, Y. Matsunaga, and Y. Nakade, “A backpropagation algo-
rithm which automatically determines the number of association units,”
in Proc. Int. J. Conf. Neural Networks,Singapore, pp. 783–788.

[47] T.-C. Lee, Structure Level Adaptation for Artificial Neural Networks.
Boston, MA: Kluwer, 1991.

[48] A. Sperduti and A. Starita, “Speed up learning and network optimization
with extended backpropagation,”Neural Networks,vol. 6, pp. 365–383,
1993.

[49] L. Niles, H. Silverman, J. Tajchman, and M. Bush, “How limited training
data can allow a neural network to outperform an optimal statistical clas-
sifier,” in Proc. Int. Conf. Acoust., Speech, Signal Processing,Glasgow,
Scotland, vol. 1, 1989, pp. 17–20.

[50] P. Burrascano, “Learning vector quantization for the probabilistic neural
network,” IEEE Trans. Neural Networks,vol. 2, pp. 458–461, 1991.

[51] M. J. J. Holt, “Comparison of generalization in multilayer perceptrons
with the log-likelihood and least-squares cost functions,” inProc. 11th
Int. Conf. Pattern Recognition,The Hague, The Netherlands, vol. 2,
1992, pp. 17–20.

[52] W. T. Lee and M. F. Tenorio, “On an asymptotically optimal adaptive
classifier design criterion,”IEEE Trans. Pattern Anal. Machine Intell.,
vol. 15, pp. 312–318, 1993.

[53] N. Morgan and H. Bourlard, “Generalization and parameter estimation
in feedforward nets: Some experiments,” inAdvances in Neural Infor-
mation Processing Systems 2, D. S. Touretzky, Ed. San Mateo, CA:
Morgan Kaufmann, 1990, pp. 630–637.

[54] A. S. Weigend, B. A. Huberman, and D. E. Rumelhart, “Predicting the
future: A connectionist approach,”Int. J. Neural Syst.,vol. 1, no. 3, pp.
193–209, 1990.

[55] W. Zinnoff, F. Hergert, and H. G. Zimmermann, “Improving model
selection by nonconvergent methods,”Neural Networks,vol. 6, pp.
771–783, 1993.

Giovanna Castellanowas born in Bari, Italy, on
June 27, 1969. She received the “Laurea” degree
with honors in computer science from the University
of Bari, Italy in 1993, with a thesis on structural
optimization of artificial neural networks.

From 1993 to 1995 she worked at the Computer
Science Department of the University of Bari for
research in the field of artificial neural networks.
Since March 1995, she has been a Researcher at
the Institute for Signal and Image Processing with
a scholarship under a grant from the “Consiglio

Nazionale delle Ricerche.” Her current research interests include artificial
neural networks, fuzzy systems, neuro-fuzzy modeling, intelligent control
using fuzzy logic, robotics, and autonomous systems.

Anna Maria Fanelli (M’89) was born in Bari, Italy,
on June 29, 1949. She received the “Laurea” degree
in physics from the University of Bari, Italy, in
1974.

From 1975 to 1979, she was full-time Researcher
at the Physics Department of the University of Bari,
Italy, where she became Assistant Professor in 1980.
In 1985 she joined the Department of Computer
Science at the University of Bari, Italy, as Professor
of Computer Science. Currently, she is responsible
for the courses “computer systems architectures”

and “neural networks” at the degree course in computer science. Her research
activity has involved issues related to pattern recognition, image processing,
and computer vision. Her work in these areas has been published in several
journals and conference proceedings. Her current research interests include
artificial neural networks, genetic algorithms, fuzzy systems, neuro-fuzzy
modeling, and hybrid systems.

Prof. Fanelli is a Member of the System, Man, and Cybernetics Soceity
and the International Neural Network Society. She is also on the editorial
board of the journalNeural Processing Letters.

Marcello Pelillo (M’92) was born in Taranto, Italy,
on June 1, 1966. He received the “Laurea” degree
with honors in Computer Science from the Univer-
sity of Bari, Italy, in 1989.

From 1988 to 1989 he was at the IBM Scientific
Center in Rome, where he was involved in studies
on natural language and speech processing. In 1991
he joined the Department of Computer Science at
the University of Bari, Italy, as Assistant Professor.
Since 1995 he has been with the Department of
Applied Mathematics and Computer Science at the

University of Venice “Ca’ Foscari.” In 1995 and 1996 he was a Visiting
Professor at the Department of Computer Science of the University of York,
U.K., and in 1995 he visited the Center for Intelligent Machines of the
Department of Electrical Engineering at the McGill University, Montréal,
Canada. His research interests include computer vision, neural networks, and
pattern recognition, where he has published over 40 papers in refereed journals
and conference proceedings.

Prof. Pelillo is currently the Program Cochair of theInternational Workshop
on Energy Minimization Methods in Computer Vision and Pattern Recognition
that will be held in Venice, Italy, in May 1997. He is a Member of the IEEE
Computer Society and the Pattern Recognition Society.

