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Abstract: - In OFDM systems, the problems associated with a high ratio of peak-to-average power still exist. A search for 

a simple and practical method to reduce the ratio continues. In this paper, a robust sub-optimal tone reservation method 

based on iterative re-weighted least-squares minimization of infinity norm is proposed. The method is simple and has a 

fast quadratic convergence and per iteration complexity       lower than that of the FFT, where   and   are, respectively, 

the number of reserved subcarriers, and nonzero elements in the desired peak-reducing signal. In addition, the method does 

not experience peak re-growth problems and achieves high PAPR reductions of 3.9 dB and 5.6 dB for 1.6% and 5% 

reserved subcarriers respectively. For 20% reserved subcarriers, the method reaches 7.4 dB PAPR reductions. These 

reductions are at a small cost of 0.6 dB increase in the average transmitted power. The PAPR reductions from the proposed 

method compare well with the highly slow and complex optimal tone reservation methods but are far much higher than 

from sub-optimal methods reported in literature. Simulation results also show that the method has PAPR reductions that 

are linear with the binary logarithm of the number of subcarriers, and this can help to predict PAPR reductions for 

different OFDM systems with different number of reserved subcarriers. 

 

Keywords: - Orthogonal Frequency Division Multiplexing (OFDM); High Power Amplifier (HPA); Peak-to-Average 

Power Ratio (PAPR); Iterative Re-weighted Least-Squares (IRLS); Tone Reservation (TR) 

 

1 Introduction 
Multicarrier transmission techniques employ parallel low 

data rate streams to achieve high data rate on aggregation, 

and  to avoid multipath interference. OFDM is one such 

technique, which in addition, has mutually orthogonal 

subcarriers. Orthogonality of subcarriers makes OFDM 

spectrally efficient and if preserved over the radio channel, 

only a simple single-tap equalizer is required at the receiver 

to restore each of the subcarrier signals. In order to 

eliminate both inter-subcarrier and inter-symbol 

interferences, the inter-subcarrier spacing and symbol 

duration values are normally set above the maximum 

Doppler spread and multipath delay. These noble properties 

of OFDM have made it the preferred multiplexing 

technique for high data rate transmissions in many radio 

systems including Digital Audio Broadcasting (DAB), 

Digital Video Broadcasting (DVB), IEEE 802.11 Wireless 

Local Area Networks (WLAN), IEEE 802.16a Wireless 

Metropolitan Area Networks (WMAN), 4G, and 5G mobile 

communication networks. Despite the numerous 

competitive advantages, OFDM signals tend to exhibit high 

peak-to-average power ratio (PAPR) [1] . Distortionless 

processing of high PAPR signals through the transmitter 

section requires the nonlinear transmitter devices mainly 

the digital-to-analogue converter and high power amplifier 

(HPA) to have a costly wide dynamic range in order to 

accommodate all the signal amplitudes. 

In addition, the high PAPR signal affects the point of 

operation of the HPA. Ideally, the HPA should be operated 

near the saturation region in order to have high power 

efficiency. However, this will cause nonlinear amplification 

of the high signal amplitudes and in turn results to in-band 

and out-of-band radiations, and consequently the 

degradation of the bit-error rate (BER) and frequency 

interference in the adjacent channels. To avoid the 

nonlinear amplification, the HPA can be forced to operate 

deep in the linear region by providing it with an input 

power back-off as determined by the PAPR of the input 

signal. However, this will lower the power efficiency and in 

turn raise the power consumption and hence the cost of the 

transmitter in addition to reducing the lifetime of the battery 

power at the user terminals [2] . For these above reasons, it 

is desirable to reduce the PAPR to suitable levels, more so 

for OFDM systems with large number of subcarriers as 

they are more susceptible to unacceptably high PAPR. 

Recently, different methods for PAPR reduction in 
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OFDM systems have been proposed in literature. They 

include signal coding and companding [3] , [4] , selective 

mapping (SLM) [4] , signal scaling [5] , partial transmit 

sequence (PTS) [7]  and tone reservation [8] . The focus of 

the research is now more on the development of simple 

practical techniques that have low computational 

complexity, fast convergence rate, and high PAPR 

reduction. 

The tone reservation (TR) approach is quite promising 

as it involves reserving a few subcarriers, referred to as 

peak reduction tones, for use to generate and carry a peak-

reducing signal that reduces PAPR. Since the user data and 

the peak-reducing signal are on separate subcarriers, there 

is no distortion on the data and hence no degradation of 

BER. In addition, the technique does not require 

transmission of any side information because for 

demodulation, the receiver needs only the locations of the 

data-bearing subcarriers.  

Depending on the derivation of the peak-reducing 

signal, tone reservation methods are either optimal or sub-

optimal. Optimal methods such as the linear programmed 

TR (LP-TR) [8]  and second order cone programmed TR 

(SOCP-TR) [9]  have high computational complexity and 

slow convergence rate but can achieve high PAPR 

reduction that can help to benchmark the performance of 

the sub-optimal methods. The sub-optimal curve fitting TR 

(CF-TR) [11]  iteratively solves a least-squares 

approximation (LSA) problem to generate the peak-

reducing signal. However, in the CF-TR, the PAPR 

reduction depends on the clipping threshold and degrades if 

the number of reserved subcarriers is set lower than the 

number of zeros in the clipping noise. The scaling signal-

to-clipping noise ratio (S-SCR and MS-SCR) TR [12]  

methods utilizes a time-domain kernel together with LSA 

optimized scaling factor and peak regeneration constraints. 

However, the two S-SCR and MS-SCR methods are still 

prone to peak re-growth and their PAPR reduction 

performance depends on the clipping ratio in use. The sub-

optimal weighted TR (WTR) method [13]  solves a 

weighted least squares optimization to generate the peak-

reducing signal. However, the WTR method has difficulties 

finding the optimal weights, experiences peak re-growth 

and has poor PAPR reduction performance.  

In this paper, a fast iterative re-weighted least-squares 

based tone reservation (IRLS-TR) method that offers high 

PAPR reductions in OFDM systems is proposed. The 

method generates the required peak-reducing signal by 

utilizing a robust iterative re-weighted least-squares 

algorithm for minimization of the infinity norm to 

approximate the desired peak-reducing signal. This IRLS-

TR technique has low computational complexity and fast 

quadratic convergence in addition to offering better PAPR 

reductions than the CF-TR, MS-SCR and WTR methods. 

The technique has great potential for practical 

implementations in the current and future multicarrier 

transmission techniques.  

The organization of the rest of the paper is as follows. 

Section II describes the OFDM signal and statistical 

distribution of PAPR. Section III outlines the general 

concept of tone reservation techniques. Section IV 

describes the proposed technique while simulation results, 

analysis, and comparison with other techniques are in 

section V. Section VI concludes the paper and gives 

suggestion for future work.  

 

 

2 OFDM Signal and PAPR 
The OFDM signal is a superimposition of N mutually 

orthogonal subcarrier signals. At the baseband level, and 

during the symbol duration  , the signal has the following 

analytical expression:       √ ∑      
        √ ∑        

            (1) 

Here,       is the kth modulated subcarrier signal with 

frequency       , and      is the subcarrier-

modulating symbol. The modulating symbols are either 

binary phase-shift keying or M-ary quadrature amplitude 

modulation symbols [14] . To achieve mutual 

orthogonality between subcarriers, the subcarrier 

spacing    is set to    ⁄ . The relationship given in (1) 

conveniently ensures the same signal power in the time and 

frequency domains. Since (1) is similar to the standard 

inverse discrete Fourier transform (IDFT) equation, signal 

processing of OFDM signal is via the well-known fast 

Fourier transform algorithms. Due to the addition of N 

subcarrier signals in (1), the OFDM signal experiences 

envelope fluctuations that may have profound effect on the 

linear processing by the nonlinear devices in the 

transmitter. The nonlinear device of concern in this work is 

the high power amplifier (HPA).  

Our main interest then, is to find the probability of the 

maximum instantaneous power of      being out of the 

linear range of the HPA. A good measure of temporal 

power fluctuations of a signal is the PAPR, and is defined 

as the ratio of the maximum instantaneous power to the 

average power i.e.      {    }      {       } {       }   (2) 
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where E {
.
} denotes the expectation operation.  

Considering that the subcarrier signals       are 

statistically independent and assuming that   is large, then 

from the central limit theorem, the real and imaginary parts 

of      are Gaussian distributed and accordingly, the 

amplitudes of      are Rayleigh distributed [15] . This in 

turn implies that      could have high PAPR or in other 

words, has some high amplitude values that are well above 

the average value of the signal amplitudes.  

In practice, the signal      is processed digitally. 

Therefore, there is need to approximate the continuous-

time PAPR in (2) with its discrete-time counterpart given 

by      { }          {       } {       }  (3) 

where   [                  ] , is the discrete-time 

signal obtained after sampling of signal     .  

The signal samples      have magnitudes that are still 

Rayleigh distributed. Equation (3) is valid if signal      is 

sampled at a rate sufficiently greater than the Nyquist rate 

by a factor of at least four in order to avoid missing the 

peak value [16] . Another important measure of PAPR is 

the complementary cumulative distribution function 

(CCDF), which is the probability that PAPR exceeds a 

certain threshold. The derivation of CCDF has been well 

treated in [9]  and is given by 

        { }                (4) 

where   is the threshold PAPR,   is the total number of 

subcarriers, and       denotes the probability operator. The 

CCDF metric is a performance tool widely used to measure 

how well a proposed method reduces the PAPR. 

 

 

3 Tone Reservation Concept 
All tone reservation methods follow the same concept of 

adding one signal, referred here to as peak-reducing signal, 

to another signal having high PAPR in order to reduce the 

PAPR. Figure 1 is an illustration of the concept and 

has      and      as the frequency-domain subcarrier 

modulating data symbols and peak-reducing coefficients 

respectively. The modulating symbols form the data 

vector   [                  ]  with all nonzero 

values except in   positions reserved for peak-reducing 

signal. Similarly, the peak-reducing coefficients form the 

vector   [                  ]  with all zero 

values except in   positions reserved for peak power 

reduction. After the IDFT operation on   and  , the 

resulting time signals   [                  ]  and 

  [                  ] , are combined to generate a 

low-PAPR signal i.e.     {   }      { }.  
 

 

Figure 1: Tone reservation concept 

 

 From the foregoing discussion, the signal processing 

operations can be described by the equation                 √ ∑            ⁄   
    

  

(5) 

or in matrix notation by 

           (6) 

where        is the IDFT matrix with elements  √          and all         . Since   has     zeros, 

the computational complexity of (6) can be reduced further 

by expressing the peak-reducing signal in the form 

    ̂ ̂  (7) 

Here  ̂     contains only the nonzero values of   

and   ̂       is a submatrix of   formed by choosing the   columns corresponding to the reserved subcarriers.  

The task now is to find the peak-reducing coefficients or 

vector  ̂ that minimizes the PAPR of    This problem can 

be formulated as a minimax [17]  optimization problem of 

the form 

      ̂        ̂ ̂   (8) 

Here,  ̂     is the optimization variable while       and  ̂       are the problem parameters. To date, sub-optimal 

algorithms to solve the problem in (8) at a reduced 

computational complexity and short convergence time and 

at the same time achieve high PAPR reductions continue 

originating. 

Although tone reservation methods offer quite an 

attractive approach for reducing PAPR, they are not 

without drawbacks. First, the average power of the PAPR-

reduced signal increases. This calls for one to limit the 

increase to a minimum as the algorithm executes to ensure 

compatibility with HPA specifications. Second, the number 

of reserved subcarriers    reduces the data rate because the 
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reserved subcarriers do not carry any user data. Therefore, 

to avoid a high data rate loss,   should be small as can be 

practically possible. 

 

 

4 Proposed Method 
This paper proposes a novel sub-optimal tone reservation 

method, hereafter referred to as the iterative re-weighted 

least-squares tone reservation (IRLS-TR) method, which 

performs fast approximation of peak-power reducing 

signals. The method approximates a desired peak-reducing 

signal with a signal designed in accordance with the 

frequency allocation constraints as imposed by the tone 

reservation concept discussed in section III.  

 

 

4.1 Algorithm 
Any PAPR reducing method attempts to reduce the peak 

power to a value close to the average power. With this 

consideration, the desired peak-reducing signal that is 

required to cancel the high peaks of the OFDM signal can 

be posed as the OFDM signal amplitudes above the 

average value. Subsequently, the desired peak-reducing 

signal has the analytical equation 

     {                    ̅           ̅                                           ̅                (9) 

Here,  ̅ is the average value of the discrete-time OFDM 

signal. The elements of   ̂ are then determined to have the 

time-domain peak-reducing signal in (7) equal to the signal 

in (9) by solving the matrix equation 

  ̂ ̂   . (10) 

However, since  ̂      ,  ̂     and     , the system 

of linear equations in (10) is rectangular and hence 

overdetermined. For such a system, there is in general no 

exact solution to  ̂ and therefore, the time-domain peak-

reducing signal    ̂ ̂  can only be determined to 

approximate the desired signal vector   i.e. 

  ̂ ̂   , (11) 

by minimizing the residual error 

    ̂ ̂    (12) 

using some norm as a measure of the error size.  

In addition to the minimization of the error in (12), for 

the problem at hand, the high peaks of the designed peak-

reducing signal    ̂ ̂  should approximate those of the 

signal   in (9) as practically as is possible in order to 

cancel all the high peaks in the original OFDM signal and 

thereby reduce the PAPR. The design of the peak-reducing 

signal will therefore involve finding the elements of  ̂ that 

minimizes the    norm of the error. This is equivalent to 

the minimization of the    norm of the error for a large 

value of   [18]  as given by the equation 

      ̂    ̂ ̂                  (13) 

In practice, the solution to the    problem approximates 

that of    if (13) is solved for      [19] . However, 

there is no analytical method for finding the optimal 

approximation solution for any norm other than 

the    norm. For this reason, it is necessary to transform 

the    problem into an equivalent simple weighted least 

squares (WLS) problem that can be solved analytically. 

This WLS problem has the form 

      ̂      ̂ ̂        (14) 

where   is a real     diagonal weighting matrix that 

applies large weights on the high signal peaks to 

emphasize their minimization. If the diagonal weights 

in   are known, then equation (14) can be solved by a 

simple method that has the closed form solution [20]  

  ̂  [ ̂     ̂]   ̂       (15) 

Here, the superscripts T and * denote matrix transpose and 

conjugate transpose respectively.  

In order to make (14) to be equivalent to (13), there is 

need for careful selection of the diagonal weights      of 

the weighting matrix  . Rewriting the    norm of the 

weighted error,    ( ̂ ̂   )  in (14) as 

          ∑                       , (16) 

and assigning the error to the weights according to 

                     (17) 

then (16) becomes the    norm of the error as in (13), i.e. 

         (∑                     
   )     (18) 

Therefore, solving the WLS problem in (14) is identical to 

solving the    problem in (13).   

However, solving problem (14) cannot be done in one-

step because one needs to find the weights that give the 

optimal approximation. To this end, this work employs a 

robust iterative re-weighted least squares (IRLS) algorithm 
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to find the solution to the WLS problem. The algorithm 

builds from the analytical solution in (15) but with per 

iteration re-weighting until convergence to the large    

norm of (13). In its most basic form, the IRLS algorithm 

starts by solving for  ̂     from (15) with all initial 

weights set to one i.e.       . Then, it computes the 

error vector from (12), followed by new weights from (17) 

that are for use in the next iteration. Using the new 

weights, the algorithm finds a new solution  ̂ and this 

process repeats until convergence when the    norm of the 

error is quite small e.g. less than      or until the number 

of iterations reaches a predetermined maximum iteration 

number.  

The basic IRLS algorithm presented above has two 

concerns that need to be addressed. Firstly, the algorithm 

may not converge and/or is numerically unstable for some    norms. Secondly, it has linear convergence and 

therefore if it converges and is numerically stable, it does 

so very slowly as to be of any practical use. To overcome 

these two shortcomings, the basic algorithm is transformed 

into a form of the Newton’s method [21]  in which the 

solution is only partially updated at each iteration. With 

this update, the solution at     iteration becomes 

  ̂     ̂          ̂     (19) 

where             is the update parameter [22]  [23]  

and  ̂      is the current WLS solution. However, as is 

common with most Newtonian methods, this modification 

makes the algorithm sensitive to initial approximations and 

this may affect the initial convergence rate. 

In order to improve on the initial convergence rate, the 

value of   is increased gradually from its initial value of 

two to the final value of the    norm that is being used to 

approximate the    norm. This modification is quite 

similar to the homotopy [24]  [25]  and is done iteratively 

by multiplying   with a convergence parameter  , of 

between one and two depending on the required rate of 

convergence. The value of   at the  -   iteration is then 

determined by 

                  (20) 

In addition, the convergence parameter is determine by the 

value of   in the    norm and the maximum iteration 

number according to 

            ⁄    (21) 

where   and   are, respectively, the    approximation 

norm and maximum iteration number. The settings in (20) 

and (21) guarantee reliable convergence of the algorithm to 

the optimal approximation solution. This is because 

as   progressively increases from the initial value, the 

difference from one    solution to the next is small, and 

when the algorithm approaches the neighbourhood of the 

desired    approximation norm it iterates several times at 

the same  . 

 

The IRLS-TR algorithm can be summarized as follows. 

Algorithm: IRLS-TR 

1. Set the     approximation norm  , initial weights to     and the     norm error threshold    .  

2. Set the maximum iteration number   and convergence 

parameter            ⁄  . 
3. Choose reserved subcarrier locations and compute the 

IFFT submatrix  ̂. 

4. Generate the original OFDM time-domain signal  . 

5. Calculate the desired peak-reducing signal   from the 

signal  . 

6. Initialize the iteration counter     set the initial p-

norm value     . 

7. Calculate the initial LS solution  ̂   ̂   . 

8. Calculate the error vector     ̂ ̂   . 

9. Calculate the new weighting matrix elements 

using                      . 

10. Calculate the LS solution  ̂   [ ̂       ̂]   ̂       . 

11. Calculate the new update parameter             . 
12. Update the LS solution to  ̂     ̂          ̂    . 
13. Calculate the     norm error           ∑                   .  

14. Set      . If     or            , update the p-

norm value to                 and go to step 8.  

Otherwise, transmit     ̂ ̂  and terminate algorithm. 

15. End 

 
 

4.2 Convergence  
With the modifications in (19), (20) and (21), the algorithm 

quadratically converges in just a few iterations as 

illustrated in Fig. 2. The figure depicts a typical plot of the 

convergence curve of the error in (18) at each iteration as 

the algorithm was executed. As shown in the figure, the 

algorithm converged after about 10 iterations. 

 

 

4.3 Computational Complexity 
At each iteration, the algorithm spends most of the 

computational time to find the solution in (15) for the WLS 

problem  

   ̂ ̂      (22) 

WSEAS TRANSACTIONS on COMMUNICATIONS Stephen Kiambi, Elijah Mwangi, George Kamucha

E-ISSN: 2224-2864 157 Volume 18, 2019



Since the matrices       ,  ̂        and  ̂    , the 

computational complexity of the algorithm per iteration is 

then given by      . This complexity can be reduced 

further if the algorithm computes the solution from only 

the non-zero elements in vector  . Denoting the number of 

non-zeros elements in   by  , the computational 

complexity of the algorithm will then become      . 

Now, since   is always less than    , with a few reserved 

subcarriers for PAPR reduction, the algorithm’s 
complexity of       is less than           of the fast 

Fourier transform algorithms. 

 

 

Figure 2: Convergence curve 

 

 

5 Results and Discussion 
The IRLS-TR method proposed in section IV yields the 

frequency-domain vector  ̂    . The product of this 

vector and the IDFT submatrix  ̂ is the time-domain signal 

used to reduce the PAPR of the OFDM signal. Matlab 

simulations using the OFDM parameters in Table 1 

assessed the performance of the method when applied to 

reduce the PAPR in OFDM systems comprising different 

subcarrier modulations and different numbers of reserved 

subcarriers. The locations of the reserved subcarriers were 

randomly selected in all OFDM symbols. 

 
Table 1: OFDM Parameters 

FFT size, N 

 

16, 32, 64, 128, 256, 512, 

1024, 2048 

Subcarrier modulation 

 

QPSK, 16-QAM, 64-QAM, 

256-QAM, 1024-QAM 

Number of OFDM symbols 

 
10,000 

Number of reserved subcarriers, L 

 
5%, 10%, 15%, and  20% of N 

Reserved subcarrier locations 

 
random 

 

To achieve high PAPR reductions, the method generates 

a peak-reducing discrete-time signal with the highest peaks 

approximating those of the desired peak-reducing signal as 

illustrated in Fig. 3. For example, at       the 

magnitude of the highest peak of the generated peak-

reducing signal is 1.214 and this approximates 1.806 of the 

desired signal. Thus, subtracting the generated signal from 

the original high PAPR OFDM signal reduces the PAPR. In 

addition, the peaks of the designed signal are below all the 

major spikes of the desired signal. This then avoids the 

peak re-growth problem where the cancellation of one peak 

regenerates a new peak at a different position as reported in 

methods that utilize peak-cancelling kernels [7]  [26]  [27]  

to reduce PAPR.  

The proposed IRLS-TR method achieves high PAPR 

reduction by utilizing only a small number of reserved 

subcarriers to generate and carry the PEAK-REDUCING 

SIGNAL. The CCDF curves in Fig. 4 illustrates this point 

for the cases where out of 256 total number of subcarriers, 

2, 4, 8, 13, 20, and 52 subcarriers were reserved. For 

example, with 4 and 13 reserved subcarriers, corresponding 

to 1.6% and 5% of the total subcarriers, the method 

achieved 3.9 dB and 5.6 dB PAPR reductions at CCDF =     . Compared to the SOCP-TR by Kiambi et al and LP-

TR by Tellado, with 5% reserved subcarriers, the reduction 

of 5.6 dB from the proposed IRLS-TR method is better than 

the 4.6 dB and 5.3 dB from the two methods respectively.  

For the case with 20% reserved subcarriers, the IRLS-

TR method proposed here achieved a PAPR reduction of 

7.4 dB, and this again is close to the 8.0 dB from the 

optimal methods. 

 

 

Figure 3: Desired and designed peak-reducing discrete-time signals 

 

To compare the performance of the proposed IRLS-TR 

method to the sub-optimal methods, the actual results 

reported in CF-TR by Jiang et al, MS-SCR by Wang et al, 

and WTR by Xin and Yi were considered. From the results 
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for the PAPR reduction reported by Jiang et al for the CF-

TR, it is clear that the proposed IRLS-TR has a better 

performance. For example, at CCDF=     and 6.25% 

reserved subcarriers in a 16-QAM system, the CF-TR 

method achieved 4.4 dB that is lower than the 5.6 dB from 

the proposed IRLS-TR method. In addition, in the proposed 

IRLS-TR, the number of reserved subcarriers can be freely 

set unlike in the CF-TR in which PAPR reduction degrades 

if the number is set to a value lower than the number of 

zeros, which varies per iteration, in the clipping noise.  

The MS-SCR by Wang et al generates a kernel signal to 

cancel multiple peaks and has fast convergence but still can 

exhibit peak re-growth and has lower PAPR reductions than 

the proposed IRLS-TR. For example, for a 16-QAM system 

with 12.5% reserved subcarriers at CCDF=    , the MS-

SCR  could only manage 4.7 and 5.2 dB PAPR reductions 

when using high clipping ratios of 2 and 3 respectively, 

which reductions are quite low compared to the 6.6 dB 

from the proposed IRLS-TR method for the same system.  

For the new WTR method by Xin and Yi, which also 

tries to mitigate the peak re-growth problem in the 

traditional WTR method [28] , the PAPR reduction 

performance is quite poor. The WTR method reported a 

PAPR reduction of 2.7 dB at CCDF of      for 5% 

reserved subcarriers in QPSK-modulated OFDM system. 

This reduction is less than half of the 5.6 dB given by the 

proposed IRLS-TR method for the same OFDM system.  

In summary therefore, based on the results reported for 

the CF-TR, MS-SCR and new WTR methods, the proposed 

IRLS-TR method has better and improved PAPR reduction 

performance than the three methods. In addition, the 

proposed IRLS-TR method does not experience peak re-

growth problem and the required number of reserved 

subcarriers can be freely set. 

 

 

Figure 4: CCDF curves for QPSK-modulated OFDM with 256 

subcarriers 

 

On the issue of the increase in the average transmitted 

power that is expected with all tone reservation methods, 

the proposed IRLS-TR method exhibits only a small 

increase of about 0.6 dB. The sub-optimal CF-TR by Jiang 

et al method reported the same value while the optimal LP-

TR method by Tellado had an increase of 1 dB. Due to the 

high PAPR reductions achieved by the proposed IRLS-TR 

method, the small increase of 0.6 dB in the transmitted 

power is tolerable. 

Lastly, the simulation results for the same subcarrier 

modulation but with different number of OFDM 

subcarriers revealed that the PAPR reduction from the 

proposed IRLS-TR method increases almost linearly 

with       as illustrated in Fig. 5. The figure shows 

PAPR reductions for 5%, 10%, 15% and 20% reserved 

subcarriers against the binary logarithm of the number of 

OFDM subcarriers. Since all the plots resemble straight-

line graphs, each of them can be estimated analytically by 

a linear function. This makes it easier to estimate the 

PAPR reductions for different total number of OFDM 

subcarriers for a fixed number of reserved subcarriers.  

Similarly, since the lines have almost the same slope, 

one can estimate the increase in the PAPR reduction 

accruing from an increase in the number of reserved 

subcarriers. For example, for the 5% and 15% reserved 

subcarriers, the PAPR reductions are respectively given by 

the linear equations               , and               . The difference of 1.1 dB between the two equations is 

the PAPR reduction achieved due to the increase of the 

number of reserved subcarriers from 5% to 15%. 

 

 

Figure 5: PAPR reduction variation with number of subcarriers 

 

 

6 Conclusion 
In this paper, a new sub-optimal tone reservation technique 

for PAPR reduction in OFDM systems, referred to as IRLS-

TR, is proposed. Investigation into its PAPR reduction 

capability has found that with only 1.6% and 5% of total 

subcarriers reserved for PAPR reduction, it respectively 

achieves 3.9 dB and 5.6 dB of PAPR reduction at a small 

WSEAS TRANSACTIONS on COMMUNICATIONS Stephen Kiambi, Elijah Mwangi, George Kamucha

E-ISSN: 2224-2864 159 Volume 18, 2019



cost of 0.6 dB increase in the average transmitted power. 

The method has a fast quadratic convergence and a low 

computational complexity per iteration of        which is 

less than           of FFT. Here, L is the number of 

reserved subcarriers, N is the total number of subcarriers, 

and P is the number of nonzero elements in the desired 

peak-reducing signal.  

In addition, the proposed method does not experience 

the peak re-growth problem associated with TR methods 

that cancel signal peaks using a time-domain kernel signal 

and the traditional weighted tone reservation methods. 

Further investigations revealed that the method has PAPR 

reductions that are linear with       and therefore one can 

predict PAPR reductions for different OFDM systems with 

different number of reserved subcarriers.  

The effect of the choice of the desired peak-reducing 

signal on the PAPR reduction capabilities of the proposed 

method shall be investigated in future work. 
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