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Abstract— We study the joint optimization of the quantizer and
the iterative Decision Feedback Equalizer (IDE) for the flat multi-
input multi-output (MIMO) channel with quantized outputs.
Our design is based on a minimum mean square error (MMSE)
approach, taking into account the effects of quantization. Our
derivation does not make use of the assumption of uncorrelated
white quantization errors and considers the correlations of the
quantization error with the other signals of the system. Through
simulation, we compare the provided IDE to the conventional
spatial DFE operating on quantized data in terms of uncoded
BER.

I. INTRODUCTION

Multi-input multi-output (MIMO) technology constitutes
a breakthrough in the design of wireless communication
systems, and is already at the core of several wireless
standards. A considerable research effort is being spent
towards performance enhancements in term of data
transmission rate and interference reduction, as well as
the reduction of receiver complexity in MIMO systems.

However, most of the contributions on receiver design
for MIMO systems assumes that the receiver has access to
the channel data with infinite precision. In practice, tough,
a quantizer is applied to the received signal, which limits
the accuracy of continuous valued channel measurements,
so that they can be proceeded in the digital domain. So far,
the effect of the quantization has been neglected in most of
the research work due to the complexity of the theoretical
analysis, and since signal quantization is a non-linear
operation. Furthermore, there exist rather high-resolution
analog-to-digital converters (ADC) which are believed to
produce a quantized signal of such a fine granularity, that
its effects can either be neglected completely or taken into
account by a linear model considering the quantization error
as an additive noise, which is nearly uncorrelated (or even
nearly independent) with the received signal [1]. However,
the reliance on fine analog-to-digital converters (ADCs)
granularity easily becomes unjustified as soon as we have
to do with high-speed MIMO channels [2]. In this case, the
needed ADCs to fulfill this assumption are expensive and
even no more feasible. In fact, in order to reduce circuit
complexity and save power and area, low resolution ADCs
have to be employed [3]. Therefore, the proposed receiver
designs do not necessarily have good performance when
operating on quantized data in a real system. In [2] and [4],
the effects of quantization are studied from an information
theoretical point of view. In [5], the authors examined these
effects experimentally by using a standard Zero-Forcing filter
at the receiver.

In this work, we focus on the receive signal processing for
quantized MIMO systems. The receive equalizers will be then
designed upon the knowledge of the Channel State Information

(CSI) and the a priori defined transmit filter (in the simple
case, the transmit matrix is equal to the identity matrix). Linear
equalization techniques used for MIMO-receivers design are
only optimum in some special cases and can be outperformed
by nonlinear receivers in term of bit error ratio, and are
therefore not efficient in some wireless applications. The
optimum non-linear technique is the Maximum Likelihood
(ML) detection, that has an exponential complexity [6] which
is prohibitive in general, and hence becomes quickly incon-
venient to high signal constellations and high numbers of
transmit antennas. Among non-linear equalization techniques,
Decision Feedback Equalization (DFE) is the most common
suboptimum solution, since it is fairly simple to implement and
generally performs well. The Iterative Decision Equalization
(IDE) [7] has been also developed to mitigate this complexity
problem, and it is appropriate for large systems (high num-
ber of antennas). The IDE detectors cancel iteratively the
interference from the received signal and generate symbol
decisions whose reliability increases monotonically with each
iteration. The concept of combining the iterative equalization
with decoding technique for coded data transmission (Turbo
Equalization), can achieve impressive performance gains in
communication systems. The main contribution of this paper is
the application of this technique for quantized MIMO systems
while taking the effects of quantization in a systematic way.
Our paper is organized as follows. First, we introduce the
system model and some notational issues in section II. In
section III, we discuss the properties of the chosen quantizer,
then we present the modified IDE receiver in section IV.
Finally, we present some simulation results in section V.

II. SYSTEM MODEL AND NOTATION

We consider a point-to-point MIMO Gaussian channel
where the transmitter employs 𝑀 antennas and the receiver
has 𝑁 antennas. Fig. 1 shows the general form of a quantized
MIMO system, where 𝑯 ∈ ℂ

𝑁×𝑀 is the channel matrix.
The vector 𝒙 ∈ ℂ

𝑀 comprises the 𝑀 transmitted symbols,
which are uncorrelated and have zero-mean and covariance
matrix 𝑹𝑥𝑥 = E[𝒙𝒙H] = 𝜎2

𝑥I. The vector 𝜼 refers to zero-
mean complex circular Gaussian noise with covariance 𝑹𝜂𝜂 =
E[𝜼𝜼H]. 𝒚 ∈ ℂ

𝑁 is the unquantized channel output:

𝒚 = 𝑯𝒙+ 𝜼. (1)

In our system, the real parts 𝑦𝑖,𝑅 and the imaginary parts 𝑦𝑖,𝐼
of the receive signals 𝑦𝑖, 1 ≤ 𝑖 ≤ 𝑁 , are each quantized by
a 𝑏-bit resolution uniform/non-uniform scalar quantizer. Thus,
the resulting quantized signals read as:

𝑟𝑖,𝑙 = 𝑄(𝑦𝑖,𝑙) = 𝑦𝑖,𝑙 + 𝑞𝑖,𝑙, 𝑙 ∈ {𝑅, 𝐼}, 1 ≤ 𝑖 ≤ 𝑁, (2)

where 𝑄(⋅) denotes the quantization operation and 𝑞𝑖,𝑙 is the
resulting quantization error.
In the IDE structure shown in Fig. 1, the received quantized
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vector 𝒓 is multiplied at the 𝑙-th iteration by the forward filter
matrix 𝑮(𝑙) ∈ ℂ

𝑀×𝑁

𝒓(𝑙) = 𝑮(𝑙)𝒓, (3)

then rectified from the constructed estimate 𝑭 (𝑙) �̂�(𝑙−1) of the
interference at the previous iteration (𝑙 − 1), producing the
𝑀 -dimensional vector

�̃�(𝑙) = 𝑮(𝑙)𝒓 − 𝑭 (𝑙)�̂�(𝑙−1), (4)

or , equivalently,

�̃�
(𝑙)
𝑘 = 𝒈

(𝑙),T
𝑘 𝒓 − 𝒇

(𝑙),T
𝑘 �̂�(𝑙−1), ∀𝑘 = 1, 2, ...,𝑀. (5)

Our aim is to choose the quantizer, the receive matrix 𝑮, and
the feedback matrix 𝑭 , minimizing the MSE =E[∥�̂�−𝒙∥22],
taking into account the quantization effect. Throughout this
paper, 𝑟𝛼𝛽 denotes E[𝛼𝛽∗].. The operators (∙)T, (∙)H, (∙)∗,
Re(∙), Im(∙) stand for transpose, Hermitian transpose, com-
plex conjugate, real and imaginary parts of a complex number,
respectively.

Dec
𝑯 𝑮(𝑙)

𝑭 (𝑙)

�̃�(𝑙)

�̂�(𝑙)
𝒙

𝒚 𝒓
𝑄( )

𝜼
𝑀𝑀 𝑁

Fig. 1. Iterative Decision Equalizer on a quantized MIMO Channel.

III. QUANTIZER DESCRIPTION

Each quantization process is given a distortion factor 𝜌
(𝑖,𝑙)
𝑞

to indicate the relative amount of quantization noise generated,
which is defined as follows

𝜌(𝑖,𝑙)𝑞 =
E[𝑞2𝑖,𝑙]

𝑟𝑦𝑖,𝑙𝑦𝑖,𝑙

, (6)

where 𝑟𝑦𝑖,𝑙𝑦𝑖,𝑙
= E[𝑦2𝑖,𝑙] is the variance of 𝑦𝑖,𝑙 and the distortion

factor 𝜌(𝑖,𝑙)𝑞 depends on the number of quantization bits 𝑏, the
quantizer type (uniform or non-uniform) and the probability
density function of 𝑦𝑖,𝑙. Note that the signal-to-quantization
noise ratio (SQNR) has an inverse relationship with regard to
the distortion factor

SQNR(𝑖,𝑙) =
1

𝜌
(𝑖,𝑙)
𝑞

. (7)

Similar to our work [8] concerning the Wiener filter for quan-
tized data, the uniform/non-uniform quantizer design is based
on minimizing the mean square error (distortion) between the
input 𝑦𝑖,𝑙 and the output 𝑟𝑖,𝑙 of each quantizer. In other words,
the SQNR values are maximized. Under this optimal design of
the scalar finite resolution quantizer, whether uniform or not,
the following equations hold for all 0 ≤ 𝑖 ≤ 𝑁 , 𝑙 ∈ {𝑅, 𝐼}
[9], [10]:

E[𝑞𝑖,𝑙] = 0 (8)

E[𝑟𝑖,𝑙𝑞𝑖,𝑙] = 0 (9)

E[𝑦𝑖,𝑙𝑞𝑖,𝑙] = −𝜌(𝑖,𝑙)𝑞 𝑟𝑦𝑖,𝑙𝑦𝑖,𝑙
. (10)

Obviously, Eq. (10) follows from Eqs (6) and (9). For the
uniform quantizer case, Eq. (8) holds only if the probability
density function of 𝑦𝑖,𝑙 is even.

Under multipath propagation conditions and for large number
of antennas, the quantizer input signals 𝑦𝑖,𝑙 are approximately
Gaussian distributed and thus, they undergo nearly the same
distortion factor 𝜌𝑞 , i.e., 𝜌

(𝑖,𝑙)
𝑞 = 𝜌𝑞 ∀𝑖∀𝑙. Furthermore,

the optimal parameters of the uniform as well as the non-
uniform quantizer and the resulting distortion factor 𝜌𝑞 for
Gaussian distributed signal are tabulated in [9] for different bit
resolutions 𝑏. Recent research work on optimally quantizing
the Gaussian source can be found in [11].

Now, let 𝑞𝑖 = 𝑞𝑖,𝑅+ j𝑞𝑖,𝐼 be the complex quantization error.
Under the assumption of uncorrelated real and imaginary part
of 𝑦𝑖, we easily obtain:

𝑟𝑞𝑖𝑞𝑖 = E[𝑞𝑖𝑞
∗
𝑖 ] = 𝜌𝑞𝑟𝑦𝑖𝑦𝑖

, and 𝑟𝑦𝑖𝑞𝑖 = E[𝑦𝑖𝑞
∗
𝑖 ] = −𝜌𝑞𝑟𝑦𝑖𝑦𝑖

.
(11)

For the uniform quantizer case, it was shown in [11], that the
optimal quantization step Δ for a Gaussian source decreases as√
𝑏2−𝑏 and that 𝜌𝑞 is asymptotically well approximated by Δ2

12
and decreases as 𝑏2−2𝑏. On the other hand, the optimal non-
uniform quantizer achieves, under high-resolution assumption,
approximately the following distortion [12]

𝜌𝑞 ≈ 𝜋
√
3

2
2−2𝑏. (12)

This particular choice of the (non-)uniform scalar quantizer
minimizing the distortion between 𝒓 and 𝒚, combined with the
receiver of the next section turns to be optimal with respect to
the total MSE between the transmitted symbol vector 𝒙 and
the estimated symbol vector �̃�(𝑙) at each iteration 𝑙.

IV. NEAR OPTIMAL IDE RECEIVER FOR THE QUANTIZED

SYSTEM

Among the possible criteria to optimize the receive filter
𝑮(𝑙) and the feedback matrix 𝑭 (𝑙) for the IDE detection on
quantized data, we consider here the minimization of the MSE
between the sent vector 𝒙 and the estimated vector �̃�(𝑙), taking
into account the reliability of tentative decisions as well as the
effect of quantization.
The MSE minimization is extended by an unbiasedness con-
straint to avoid direct feedback of the detected symbols, so
that from each input symbol �̃�(𝑙)

𝑘 at the decision module only
the interference, caused by others symbols �̂�

(𝑙−1)
𝑗 for 𝑗 ∕= 𝑘,

is subtracted. In this case, the MSE minimization can be
mathematically expressed as

min
{𝑮(𝑙) ,𝑭 (𝑙)}

E
[
∥�̃�(𝑙) − 𝒙∥22

]
s.t. : 𝒈

(𝑙),T
𝑘 𝒉𝑘 =

1

1− 𝜌𝑞
.

(13)

The MSE between each sent symbol 𝑥𝑘 and its estimated
symbol �̃�(𝑙)

𝑘 (1 ≤ 𝑘 ≤ 𝑀) reads as

MSE(𝑙)
IDEQ,𝑘 = 𝜀

(𝑙)
𝑘 = E

[
∥�̃�(𝑙)

𝑘 − 𝑥𝑘∥22
]
, (14)

where,

�̃�
(𝑙)
𝑘 −𝑥𝑘 = 𝒈

(𝑙),T
𝑘 𝜼+𝒈

(𝑙),T
𝑘 𝒒+(𝒈

(𝑙),T
𝑘 𝑯−𝒆T𝑘 )𝒙−𝒇

(𝑙),T
𝑘 �̂�(𝑙−1),

(15)
with 𝒆T𝑘 being the 1 × 𝑀 row vector that is zero except for
the 𝑘-th element, which is one, and 𝒒 denotes the quantization
error vector. The calculation of the MSE needs the correlation
matrix

𝑹𝑥𝑟 = E[𝒙𝒓H] = E[𝒙(𝒚 + 𝒒)H] = 𝑹𝑥𝑦 +𝑹𝑥𝑞, (16)
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and the covariance matrix of the quantized signal given by

𝑹𝑟𝑟 = E[(𝒚+𝒒)(𝒚+𝒒)H] = 𝑹𝑦𝑦+𝑹𝑦𝑞+𝑹H
𝑦𝑞+𝑹𝑞𝑞, (17)

as well as the correlation matrix between the exact input vector
𝒙 and its reconstructed value �̂�(𝑙−1) at step 𝑙 − 1

E
[
𝒙 ⋅ �̂�(𝑙−1),H

]
𝜎2
𝑥

= 𝝆(𝑙−1) = diag(𝜌(𝑙−1)
1 , 𝜌

(𝑙−1)
2 , ..., 𝜌

(𝑙−1)
𝑀 ),

(18)
where 𝜌

(𝑙−1)
𝑘 can be interpreted as a measure of the reliability

of �̂�(𝑙−1)
𝑘 . More generally, 𝝆(𝑙−1) describes our confidence in

the quality of the estimate �̂�(𝑙−1). If �̂�(𝑙−1) is a poor estimate
of 𝒙, then 𝝆(𝑙−1) correspondingly be close to zero, and
consequently a smaller weighting is applied to the interference
estimate that is to be subtracted from 𝒓(𝑙). Otherwise, if �̂�(𝑙−1)

is an excellent estimate of 𝒙, then 𝝆(𝑙−1) ≈ 𝑰 , and almost the
complete interference is removed from 𝒓(𝑙). For square 𝐿-
QAM modulation, we use the following approximation based
on the nearest neighbor error assumption

𝜌
(𝑙)
𝑘 ≈ 1− 3

𝐿− 1
Pr(Error), (19)

with

Pr(Error) ≈ 1−
(
1− 2

(
1− 1√

𝐿

)
𝒬
(√

3𝜎2
𝑥

(𝐿− 1)𝜖
(𝑙)
𝑘

))2

.

(20)

A. Derivation of the DFEQ Receiver

Before investigating the MMSE optimization, we first derive
all needed covariance matrices by using the fact that the quan-
tization error 𝑞𝑖, conditioned on 𝑦𝑖, is statistically independent
from all other random variables of the system.
First we calculate 𝑟𝑦𝑖𝑞𝑗 = E[𝑦𝑖𝑞

∗
𝑗 ] for 𝑖 ∕= 𝑗:

E[𝑦𝑖𝑞
∗
𝑗 ] = E𝑦𝑗

[
E[𝑦𝑖𝑞

∗
𝑗 ∣𝑦𝑗 ]

]
= E𝑦𝑗

[
E[𝑦𝑖∣𝑦𝑗 ]E[𝑞∗𝑗 ∣𝑦𝑗 ]

]
≈ E𝑦𝑗

[
𝑟𝑦𝑖𝑦𝑗

𝑟−1
𝑦𝑗𝑦𝑗

𝑦𝑗E[𝑞
∗
𝑗 ∣𝑦𝑗 ]

]
(21)

= 𝑟𝑦𝑖𝑦𝑗
𝑟−1
𝑦𝑗𝑦𝑗

E[𝑦𝑗𝑞
∗
𝑗 ]

= −𝜌𝑞𝑟𝑦𝑖𝑦𝑗
. (22)

In (21), we approximate the Bayesian estimator E[𝑦𝑖∣𝑦𝑗 ] with
the linear estimator 𝑟𝑦𝑖𝑦𝑗

𝑟−1
𝑦𝑗𝑦𝑗

𝑦𝑗 , which holds with equality if
the vector 𝒚 is jointly Gaussian distributed. Eq. (22) follows
from (11). Summarizing the results of (11) and (22), we obtain:

𝑹𝑦𝑞 ≈ −𝜌𝑞𝑹𝑦𝑦. (23)

Similarly, we evaluate 𝑟𝑞𝑖𝑞𝑗 for 𝑖 ∕= 𝑗 to end up in:

E[𝑞𝑖𝑞
∗
𝑗 ] = E𝑦𝑗

[
E[𝑞𝑖𝑞

∗
𝑗 ∣𝑦𝑗 ]

] ≈ 𝜌2𝑞𝑟
∗
𝑦𝑗𝑦𝑖

= 𝜌2𝑞𝑟𝑦𝑖𝑦𝑗
, (24)

where we used Eqs (23) and (11). From (24) and (11) we
deduce the covariance matrix of the quantization error:

𝑹𝑞𝑞 ≈ 𝜌𝑞diag(𝑹𝑦𝑦) + 𝜌2𝑞nondiag(𝑹𝑦𝑦)

= 𝜌𝑞𝑹𝑦𝑦 − (1− 𝜌𝑞)𝜌𝑞nondiag(𝑹𝑦𝑦),
(25)

with diag(𝑨) denotes a diagonal matrix containing only the
diagonal elements of 𝑨 and nondiag(𝑨) = 𝑨 − diag(𝑨).
Inserting the expressions (23) and (25) into Eq. (17), we
obtain:

𝑹𝑟𝑟 ≈ (1− 𝜌𝑞)(𝑹𝑦𝑦 − 𝜌𝑞nondiag(𝑹𝑦𝑦)). (26)

In a very similar way, we get the covariance matrix 𝑹𝑥𝑞 =
E[𝒙𝒒H] as

E[𝒙𝒒H] ≈ −𝜌𝑞𝑹𝑥𝑦. (27)

Thus, Equation (16) becomes

𝑹𝑥𝑟 ≈ (1− 𝜌𝑞)𝑹𝑥𝑦. (28)

Finally, 𝑹𝑦𝑦 and 𝑹𝑥𝑦 can be easily obtained from our system
model:

𝑹𝑦𝑦 = 𝑹𝜂𝜂 + 𝜎2
𝑥𝑯𝑯H, (29)

𝑹𝑥𝑦 = 𝜎2
𝑥𝑯

H. (30)

Having calculated the correlation matrices, we use the
Lagrangian multiplier method to solve the MSE minimization
problem. We omit the derivation and we provide the following
final solution for the filters

𝒈
(𝑙),T
𝑘 =

1

1− 𝜌𝑞
𝛼
(𝑙)
𝑘 𝒉H

𝑘 𝑻 (𝑙), (31)

with

𝑻 (𝑙) =
[
𝜎2
𝜂𝑰 + 𝜎2

𝑥𝑯
(
𝑰 − 𝝆(𝑙−1)𝝆(𝑙−1),H

)
𝑯H

]−1

∈ ℂ
𝑁×𝑁 .

(32)
and

𝛼
(𝑙)
𝑘 =

1

𝒉H
𝑘 𝑻 (𝑙) 𝒉𝑘

. (33)

Therefore, the optimal receive filter 𝑮(𝑙) for the IDE
detection on an unquantized MIMO system reads as

𝑮
(𝑙)
IDEQ =

1

1− 𝜌𝑞
Θ(𝑙) 𝑯H 𝑻 (𝑙), (34)

where Θ(𝑙) is a diagonal matrix with the elements 𝛼(𝑙)
𝑘 . On the

other hand, the resulting optimal feedback matrix is obtained
as:

𝑭
(𝑙)
IDEQ =

(
Θ(𝑙) 𝑯H 𝑻 (𝑙) 𝑯 − 𝑰

)
𝝆(𝑙−1). (35)

We notice that the diagonal elements of the feedback matrix
are equal to zero

[
𝑭

(𝑙)
IDE

]
𝑘𝑘

= 0, so that we avoid direct
feedback of the detected symbols as we have mentioned
before.

Some comments can be made about the special case when
𝑙 = 1. During the first pass, the feedback loop is not used
because 𝝆(0) = 0, so the vector �̂�(0) does not need to be
defined, and is never required for the first iteration. Moreover,
the filter 𝑮(1)

IDEQ takes the form

𝑮
(1)
IDEQ =

1

1− 𝜌𝑞
Θ(1) 𝑯H [𝑹𝑦𝑦 − 𝜌𝑞nondiag(𝑹𝑦𝑦)]

−1
,

(36)
which is an expression for the unbiased linear MMSE receiver
(Wiener Filter) with quantized channel output derived in [8].
Thus the performance of the iterative decision receiver, after
just one iteration, is identical to the performance of the linear
MMSE receiver for quantized systems. However, with more
iterations, we show later that the iterative decision detector
performs significantly better than the linear MMSE detector.
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V. SIMULATION RESULTS

We consider a Rayleigh fading channel, where the entries of
𝑯 are complex-valued realizations of independent zero-mean
Gaussian random variables. For each channel realization, 100
QPSK modulated symbols are transmitted. The simulated bit
error ratio (BER) is averaged over 105 channels realizations.
The noise covariance matrix is 𝑹𝜂𝜂 = 𝜎2

𝜂I.
In Fig. 2, the uncoded-BER is plotted as a function of the

SNR for 1, 2, 3, 4, 5 and 10 iterations. We choose a MIMO
system where the transmitter employs 𝑀 = 10 antennas and
the receiver 𝑁 = 12 antennas. We see clearly that, few passes
are required to converge to the target BER. We emphasize that
the performance of the first iteration is that of an unbiased
linear MMSE receiver for quantized MIMO system (WFQ)
[8], so we obtain with more iterations, significantly better
performance than the linear WFQ detector.

In Fig. 3, we compare the uncoded-BER of the proposed
IDE-detection for a 3- and 4-bit quantized MIMO system
(IDEQ) to the IDE ignoring the quantization process [7],
the decision feedback filter (DFEQ) [13] and the Wiener
filter (WFQ) [8]. We take again a MIMO system where
the transmitter employs 𝑀 = 10 antennas and the receiver
𝑁 = 12 antennas. First of all, we see clearly an improvement
in the achieved BER with the IDE-detection compared to the
DFE and WF at moderate SNR. This means that, similarly
to the unquantized case, the blockwise interference suppres-
sion becomes more advantageous than successive interference
cancellation for a higher number of antennas. On the other
hand, the modified IDE-detection (IDEQ) outperforms clearly
the IDE-detection that not considers the quantization at high
SNR, where the quantization error is more important than
the additive Gaussian noise. Thus, the consideration of the
quantization effect enables better performance and improves
the quality of the Iterative Decision Equalization at high SNR.

−10 −5 0 5 10 15 20 25 30 35
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

 

 

1st Iteration       
2nd Iteration
3rd Iteration
4th Iteration
5th Iteration
10th Iteration

U
nc

od
ed

B
E

R

10log10(
𝜎2
𝑥

𝜎2
𝜂
)

Fig. 2. IDE detector performance (BER) as a function of SNR for 1, 2, 3, 4,
5 and 10 decoding iterations, QPSK modulation with 𝑀 = 10 and 𝑁 = 12,
3-(𝜌𝑞 = 0.037411) bit uniform quantizer.

VI. CONCLUSION

We addressed the problem of designing an iterative decision
feedback receiver for MIMO channels with quantized outputs.
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Fig. 3. IDEQ vs. IDE detection (5-th iteration), DFEQ and WFQ receivers,
QPSK modulation with 𝑀 = 10 and 𝑁 = 12, 3-(𝜌𝑞 = 0.037411) and
4-(𝜌𝑞 = 0.01154) bit uniform quantizer.

We provided an approximation of the correlation matrices
needed for evaluating the mean squared error, where the
quantizer is optimized for a Gaussian input. Then, we proposed
an optimized IDE receiver operating on quantized data, which
shows better performance in terms of BER than the previously
designed filter especially for large number of antennas. An
essential aspect of our derivation is that we do not make the
assumption of uncorrelated white quantization error. Moreover,
our receiver does not present much extra complexity from the
implementation point of view.
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