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Abstract. We introduce a new iterative regularization procedure for inverse problems based on
the use of Bregman distances, with particular focus on problems arising in image processing. We are
motivated by the problem of restoring noisy and blurry images via variational methods by using total
variation regularization. We obtain rigorous convergence results and effective stopping criteria for
the general procedure. The numerical results for denoising appear to give significant improvement
over standard models, and preliminary results for deblurring/denoising are very encouraging.
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1. Introduction. The aim of this paper is to introduce a new iterative regular-
ization procedure for inverse problems based on the use of Bregman distances, with
particular focus on problems arising in imaging. We are motivated by the following
classical problem in image restoration:

Given a noisy image f : Ω → R, where Ω is a bounded open subset of R
2, we

want to obtain a decomposition,

f = u + v,

where u is the true signal and v is the noise.
This problem has a very long history (cf. [30]). One of the most successful and

popular techniques for approximating the solution of this problem is due to Rudin,
Osher, and Fatemi [38], and is defined as follows:

(1.1) u = arg min
u∈BV (Ω)

{

|u|BV + λ||f − u||2L2

}

for some scale parameter λ > 0, where BV (Ω) denotes the space of functions with
bounded variation on Ω and | · | denotes the BV seminorm, formally given by

|u|BV =

∫

Ω

|∇u|,

which is also referred to as the total variation of u. We call this variational problem
the Rudin-Osher-Fatemi (ROF) model. It has been used and analyzed by several
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authors in several different contexts (cf. [1, 8, 12, 17, 31, 36, 47]). Also, in [12] and
subsequently in [31, 32, 33, 36] the “staircasing” effect of this model was analyzed.
No completely satisfying remedy has yet been found; e.g., see our results in Figures
1(c)-1(f) in this work for 0 ≤ x ≤ 120. In spite of this phenomenon, the ROF model
is still quite popular.

The use of the BV seminorm is essential since it allows us to recover images with
edges. It is well known that this would be impossible if the first term in (1.1) were
replaced by Jp(u) :=

∫

Ω
|∇u|p for any p > 1, which might seem more attractive at first

glance due to differentiability and strict convexity. The main reason for this effect is
that for p > 1 the derivative of Jp corresponds to a nondegenerate elliptic differential
operator of second order and thus has a smoothing effect in the optimality condition,
whereas for total variation the operator is degenerate and affects only the level lines
of the image.

The main results in this work concern an iterative regularization procedure de-
signed to improve ROF restoration and its generalizations. Instead of stopping after
recovering the minimizer u in (1.1), we call this solution u1 and use it to compute
u2, u3, etc. This is done using the Bregman distance [6] which we shall define in our
context in Section 3.1. If we call D(u, v) the Bregman distance between u and v

associated with the functional J , our algorithm designed to improve (1.1) is:

(1.2) uk = arg min
u∈BV (Ω)

{

D(u, uk−1) + λ||f − u||2L2

}

.

We obtain a sequence {uk} which we show monotonically converges to f , the noisy
image. However as k increases, for λ sufficiently small the values uk also monotonically
get closer to ũ, the true noise-free image, in a strong sense defined below, until

||uk̄ − f ||L2 < τ ||ũ − f ||L2 ,

for any τ > 1. The ideal situation is to take λ small and k̄ large so that k̄λ converges to
a critical time t̄ at which the estimate above is satisfied. These results are generalized
and made precise in Section 3.

Iterative procedures involving Bregman distance have been used before in signal
processing algorithms , e.g., in [9, 10]. There, and in all the other applications that
we are aware of, the goal was to accelerate the computation of the solution to a fixed
problem, e.g., to solve the ROF minimization equation (1.1). The approach probably
closest to our iterative method is the one in [9], where each iteration step consists in
computing

uk = arg min
u

D(u, uk−1) subject to ‖Ku − f‖ ≤ ǫ

for some ǫ > 0. The difference, however, is that for increasing iteration, the residual
‖Ku − f‖ will, in general, not decrease further during the iteration, and hence the
iteration procedure yields a smoothing of the solution rather than a closer approx-
imation of the data f . Here our apparently novel idea is to replace the variational
problem (1.1) by a sequence (1.2) so as to obtain an improved restoration, or indeed
improved solution, to a wide class of inverse problems. Another new aspect of our
approach is that we use an iteration with a Bregman distance (in the generalized
sense) corresponding to a nondifferentiable functional, the total variation.

We also note that previously in [43] the authors constructed a sequence of approx-
imations {uk} using ROF with a quite different approach, used more to decompose
images than to restore them. We comment on this in Section 3.5.
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The ideal result of the minimization procedure (1.1) would be to decompose f

into the true signal u and the additive noise v. In practice, this is not fully attainable.
We must expect to find some signal in v, and some smoothing of textures in u. The
concept “texture” is imprecise so far, and the decomposition depends on the scale
parameter λ. Large λ corresponds to very little noise removal, and hence u is close
to f . Small λ yields a blurry, oversmoothed u. These statements can be quantified,
as discussed below.

In his book [30], Meyer did some very interesting analysis on the ROF model. He
began by characterizing textures which he defines as “highly oscillatory patterns in
image processing” as elements of the dual space of BV (Ω). This can be motivated by
using the rigorous definition of the BV seminorm

(1.3)

∫

|∇u| = |u|BV = sup
|g|∞≤1, g∈C1

c (Ω)2

∫

u(∇ · g).

Here |g| =
√

g2
1 + g2

2 . Defining the space G as the distributional closure of the set

{

w = ∂xg1 + ∂yg2 = ∇ · g | g ∈ C1
c (Ω)2

}

,

equipped with the norm ‖w‖∗ = infg supx,y |g|, Meyer showed that elements of this
dual space G can be regarded as textures. He also showed that the space G arises
implicitly in the ROF model as follows: For f = u + v, with u defined by (1.1), we
have

||f ||∗ <
1

2λ
=⇒ u = 0, v = f ;(1.4)

||f ||∗ ≥
1

2λ
=⇒ ‖v‖∗ =

1

2λ
,

∫

uv =
1

2λ
|u|BV .(1.5)

The Euler–Lagrange equation arising in the ROF minimization is

(1.6) −
1

2λ
∇ ·

(

∇u

|∇u|

)

= f − u = v.

Of course the expression on the left in (1.6) needs to be defined when |∇u| = 0. This
is easily done; see [30].

We see that the term v, which was usually thrown away and which represents
noise, is an element of G with ∗-norm ≤ 1

2λ . This expression is (formally) − 1
2λ times

the curvature of the level contour of u(x, y) at each point. Moreover, by (1.5), it does
have ∗−norm 1

2λ if ‖f‖∗ ≥ 1
2λ , as was shown in [30].

The following interesting example of the effect of ROF minimization was ana-
lyzed in [30, p. 36]: Let f(x, y) = αχR(x, y), where χR(x, y) ≡ 1 if

√

x2 + y2 ≤

R, χR(x, y) ≡ 0 otherwise. Meyer showed that (a) ‖f‖∗ = (αR)
2 and (b) the f = u+v

decomposition is as follows: If αλR ≥ 1, then

u =

(

α −
1

λR

)

χR, v =
1

λR
χR.

Notice that v is independent of α, which is quite surprising. If αλR ≤ 1, then
u = 0, v = f . Clearly, the ROF u + v decomposition is defective in this case. The
function v is certainly not noise.
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Meyer then suggested a modified variational problem:

(1.7) u = arg min
u∈BV (Ω)

{

|u|BV + λ||f − u||∗

}

.

Here we can think of a decomposition, f = u + v where u is a cartoon, or primal
sketch, and v is texture plus noise. This model is difficult to minimize using the
usual Euler–Lagrange equation approach due to the nonsmoothness of both terms
involved in the functional. However, it can be solved effectively as the minimization
of a smooth function subject to constraints and, in particular, as a second-order cone
program [23].

Vese and Osher [45] approximated Meyer’s model by

(1.8) (u, g) = arg min
(u,g)

{

∫

|∇u| + λ

∫

|f − u −∇ · g|2 + µ

(∫

|g|p
)

1
p

}

,

with p ≥ 1 and λ, µ > 0. As λ, p → ∞ (1.8) approaches Meyer’s model. The
results displayed in [45] were quite good, especially in separating texture from cartoon.
Analytical results were also obtained in [45] (following Meyer’s approach in [30]):

f = u + v + w, with v = ∇ · g.

If u = 0, then ||f −∇ · g||∗ ≤
1

2λ
;(1.9)

If g = 0, then ||∇(u − f)||q ≤
µ

2λ
, where q =

p

p − 1
;(1.10)

Both u = 0, g = 0, ⇐⇒ ||f ||∗ ≤
1

2λ
, ||∇f ||q ≤

µ

2λ
.(1.11)

Yet another approximation to (1.8) was later constructed by Osher, Sole, and
Vese [35]:

(1.12) u = arg min
u∈BV (Ω)

{

|u|BV + λ||∇∆−1(f − u)||2
}

,

see [35] for details. The (L2)2-fitting term used in the ROF model is replaced by an
(H−1)2-fitting term. This is also an f = u + v model. The resulting Euler–Lagrange
equation is equivalent to

1

2λ
∆

(

∇ ·
∇u

|∇u|

)

= f − u = v,

which is easy to solve, e.g., by using gradient descent [35]. This time v is 1
2λ times

the Laplacian of the curvature of the level contours of u, the cartoon version of f .
Following [35], we can easily show for this model that

||∆−1f ||∗ ≤
1

2λ
⇐⇒ u = 0, v = f ;(1.13)

||∆−1f ||∗ >
1

2λ
⇐⇒ ||∆−1v||∗ =

1

2λ
and

∫

(−∆−1v)u =
1

2λ
|u|BV .(1.14)

We have found experimentally by looking at the error term v found for optimal
choice of parameters that this model does a somewhat better job at denoising images
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than the ROF model (although there is more computational effort involved), but it
does not do as well in separating cartoon from texture as the Vese–Osher model [45].
See also [3] for an explanation of this phenomenon.

Additional work on a cartoon/texture decomposition was done in [2] using duality
and in [41] using a combination of sparse representations and total variation regular-
ization. One of the many reasons to separate cartoon from texture is to improve
image inpainting algorithms. See [5] for a successful approach to this and [4] for a
pioneering paper on this subject.

We also mention here that using duality, Chambolle [11] constructed an algorithm
solving for v directly in a way that simplifies the calculations needed to solve (1.1),
(1.8), and (1.12). Duality was also used in [14] to solve (1.1).

We note that for each choice of λ there is a δ such that problem (1.1) is equivalent
to the constrained minimization problem

(1.15) u = arg min
u∈BV (Ω)

{

|u|BV subject to ||f − u||2L2 = δ2

}

.

Often, one has a reasonable estimate of δ, whereas it is difficult to know how to choose
λ in (1.1), which corresponds to the Lagrange multiplier for the noise constraint
in (1.15). The original ROF paper [38] used a projected gradient method to solve
(1.15). However, the results using the new procedure described in the next section
are invariably much better than the constrained denoising of ROF [38]. The error is
much smaller and the edges are sharper with our new model.

We will also show how our new procedure can be used for other image restoration
tasks, e.g., restoring blurry and noisy images, thus improving the results of [39]. The
decomposition in this case becomes

f = Au + v,

where A is a given compact operator, often a convolution using, e.g., a Gaussian
kernel. If A is not known, this becomes a blind deconvolution problem. See [16] for
an interesting approach to blind deconvolution, also minimizing functionals involving
the BV seminorm.

2. Using Geometry and Iterative Regularization. Our present work has
several immediate antecedents. In [44], Tasdizen et al. processed deformable surfaces
via the level set method [34]. The idea used was to

(a) first process the unit normals to a given initial surface and
(b) deform the surface so as to simultaneously process it and fit it to the previ-

ously computed surface.

The results were visually very pleasing, but no detailed theoretical analysis has yet
been obtained.

In [29], Lysaker, Osher, and Tai borrowed the basic idea discussed above and
applied it to images as follows. (This is purely formal analysis, see [29] for implemen-
tation details).

• Step 1: Given f , compute an approximate normal to the ideal denoised image
u1, computed by carrying out the minimization in (1.1):

(2.1) ~n1 =
∇u1

|∇u1|
.
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• Step 2: Replace the ROF minimization in (1.1) by

u2 = arg min
u∈BV (Ω)

{∫

(|∇u| − ~n1 · ∇u) + λ

∫

(f − u)2
}

.

This minimization procedure attempts to match normals as well as grey level
values.

In [29] the denoised normal ~n1 was computed by using a one-harmonic map as in
[46]:

~n1 = arg min
|~n|=1

{

∫

|∇~n| + λ

∫ (

~n −
∇f

|∇f |

)2
}

.

Unlike all the other methods discussed in this paper, this is not a convex minimiza-
tion problem, and it does not produce an image u1 satisfying (2.1). Because of this
nonconvexity, we decided here to compute ~n1 by using ROF itself:

• Step 1: First, solve the ROF model to obtain

u1 = arg min
u∈BV (Ω)

{∫

|∇u| + λ

∫

(f − u)2
}

.

Then define ~n1 = ∇u1

|∇u1|
.

• Step 2: Perform a correction step to obtain

u2 = arg min
u∈BV (Ω)

{∫

(|∇u| − ~n1 · ∇u) + λ

∫

(f − u)2
}

.

Then we make the following obvious, but crucial, observation:

−

∫

~n1 · ∇u =

∫

u∇ · ~n1 =

∫

u

(

∇ ·
∇u1

|∇u1|

)

.

But, from the Euler–Lagrange equations for ROF, we have:

∇ ·
∇u1

|∇u1|
= −2λ(f − u1) = −2λv1

(recall f = u1 + v1), and hence −
∫

~n1 · ∇u = −
∫

2λuv1.
We can thus rewrite Step 2 as

u2 = arg min
u∈BV (Ω)

{∫

|∇u| + λ

∫

[(f − u)2 − 2uv1]

}

= arg min
u∈BV (Ω)

{∫

|∇u| + λ

∫

(f + v1 − u)2 − λ

∫

(v2
1 + 2v1f)

}

.

Since the last integral above is independent of u, we have

u2 = arg min
u∈BV (Ω)

{∫

|∇u| + λ

∫

(f + v1 − u)2
}

.

Remarkably, we are led to the concept that v1, the “noise” computed by the ROF
procedure, should be added back to f , the original noisy image, and the sum then
processed by the ROF minimization procedure.
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2.1. Iterative Regularization: Total Variation Denoising. Clearly, the
above regularization process can be repeated. Moreover, the first step can be put into
this iterative framework by choosing initial values u0 = 0 and v0 = 0. We shall give
precise reasons why this is a good procedure, using the concept of Bregman distance
[6, 18] from convex programming, in the next section. Specifically, we are proposing
the following iterative regularization procedure:

• Initialize: u0 = 0 and v0 = 0.
• For k = 0, 1, 2, . . .: compute uk+1 as a minimizer of the modified ROF model,

i.e.,

(2.2) uk+1 = arg min
u∈BV (Ω)

{

|u|BV + λ‖f + vk − u‖2
L2

}

,

and update

(2.3) vk+1 = vk + f − uk+1.

We certainly need a stopping criterion, which gives some information for which
k we would obtain an approximation as close as possible to the true noise-free image
g. In the next section we shall show that the discrepancy principle is a reasonable
stopping rule; it consists in stopping the iterative procedure the first time the residual
‖uk − f‖L2 is of the same size as the noise level δ. We will prove that some distance
measure between the iterate and the true image decreases monotonically until the
stopping index is reached and that the regularization procedure enjoys the usual
semiconvergence properties of iterative regularization methods; i.e., the reconstructed
image obtained at the stopping index converges to the true noise-free image as the
noise level tends to zero (in a stronger topology than the one of L2(Ω)). Note that
if we do not stop the iteration properly, the iterates would just converge to the noisy
image f in L2(Ω), and the total variation of the iterates could become unbounded,
which is clearly undesirable.

These facts indicate that, for denoising f , a good strategy is to proceed iteratively
until the result gets noisier, say, until uk+1 is more noisy than uk. Of course, if we
happen to have a good estimate of δ, we can use the discrepancy principle.

It is interesting to further understand how the iterative procedure (2.2), (2.3)
works. If we consider why u2 might look less noisy than u1, we have

u2 = f + v1 − v2 = u1 + 2v1 − v2.

This implies that for u2 to be less noisy than u1, we need 2v1−v2 to have more signal
than noise. This is indeed the case if the stopping index is greater than one.

It is also clear that our results depend on λ. If λ is very large, we may approximate
the noisy image too much, and the stopping index may be satisfied already after the
first step. In such a case we may expect a bad reconstruction. If λ is small we
oversmooth initially and can make sure that the stopping index is not satisfied after
one step. Our numerical results confirm that the images uk, k = 1, 2, . . ., become less
blurry and noisy until we reach the stopping index. Later they eventually become
noisy, converging to the original noisy image f . In numerical experiments we also
found out that if λ is sufficiently small, a further decrease does not have a large
impact on the final reconstruction. Roughly speaking, by dividing λ by two, the
number of iterations needed until the stopping index is reached doubles, and the final
reconstruction is almost the same. This fact induces the conjecture that there exists
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a limiting flow of images on which our procedure can be interpreted as an implicit
time discretization with time step λ. If this is the case, then the dependence of the
results on λ is somehow one-sided, i.e., only too large large values of λ will create bad
reconstructions. The existence and approximation of a continuous flow of images is
beyond the scope of this paper, but we plan to investigate it in future research.

Example. It is instructive to see what this procedure does to the the specific
clean image mentioned in the previous section:

(2.4) f = αχR =

{

α if
√

x2 + y2 ≤ R;

0 if
√

x2 + y2 > R.

If αλR ≥ 1, Meyer’s result gives us

f = u1 + v1 =

(

α −
1

λR

)

χR +
1

λR
χR.

Then

f + v1 =

(

α +
1

λR

)

χR = αχR +
1

λR
χR = u2 + v2.

This follows because we merely replace α by α+ 1
λR in the equation above. So u2 = f ,

as do all the uk, k ≥ 2. The objection that ROF degrades clean images by shrinking
extrema is no longer valid.

If αλR < 1, we have

f = u1 + v1 = 0 + αχR;

f + v1 = 2αχR.

Let n be the smallest integer for which nαλR ≥ 1. We have un−1 = 0, vn−1 =
(n−1)αχR. But un =

(

nα − 1
λR

)

χR, vn = 1
λRχR. Finally, un+1 = f , as do all uk for

k ≥ n + 1. This illustrates the strongly nonlinear nature of this iterative procedure.
We go from a sequence of ”restored” images, all of which are totally black, to the true
result in two steps.

The above results also apply to the radially symmetric piecewise constant image f

(2.4) if radially symmetric noise that is not too large is added to it. This follows from
an analysis of the ROF model by Strong and Chan [42]. Strong and Chan present
numerical results that show that their analytical results predict quite well the actual
performance of ROF, even on digital images with no radial symmetry.

Chambolle [11] has shown that the problem dual to the total variation regular-
ization (restoration) problem (1.1) is

(2.5) v = arg min
p∈K

{

‖p − f‖2
L2

}

,

where

(2.6) K ≡ cl

{

1

2λ
∇ · g | g ∈ C1

c (Ω, R2), |g(x)| ≤ 1∀x ∈ Ω

}

,

with closure taken in the space G; i.e., v is a projection of f onto the convex set K.
A simple alternative proof of this in the finite-dimensional case can be found in [23].
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This minimization problem determines the ”noise” v in f , whereas the minimization
problem (1.1) determines the ”signal” u = f−v in f . The dual version of the iterative
regularization procedure (2.2)–(2.3) becomes the following:

• Initialize: v0 = 0.
• For k = 0, 1, 2, . . .: compute vk+1 as the minimizer of the modified dual

problem, i.e.,

(2.7) vk+1 = arg min
p∈K

{

‖p − (f + vk)‖2
L2

}

.

Note that

(2.8) uk+1 = (f + vk) − vk+1.

Although we do not use this procedure in this paper, we include it for its simplicity
and elegance.

Note that had we not introduced the dual iterates vk and the update (2.3) for
them, the expression (2.2) for uk+1, in terms of only the primal iterates uk, would
have had the much more complicated form

(2.9) uk+1 = arg min
u∈BV (Ω)







|u|BV + λ

∥

∥

∥

∥

(k + 1)f −
k

∑

j=0

uj − u

∥

∥

∥

∥

2

L2







, for k = 0, 1, . . . ,

where u0 = 0.

2.2. Iterative Regularization: General Case. The above regularization pro-
cedure generalizes to other inverse problems and other regularization models, as we
will outline in the following and detail in succeeding papers. Specifically, the algorithm
can be generalized to regularization models of the form

min
u

{

J(u) + H(u, f)

}

,

where J is a convex nonnegative regularization functional (for total variation regu-
larization we have J(u) =

∫

|∇u|) and the fitting functional H is convex nonnegative
with respect to u for fixed f . As usual for convex functionals (cf. [20]) we shall denote
the subdifferential of J at a point u by

∂J(u) := { p ∈ BV (Ω)∗ | J(v) ≥ J(u) + 〈p, v − u〉 ∀ v ∈ BV (Ω) }.

After initializing u0 = 0 and p0 = 0 ∈ ∂J(u0), the iterative procedure is given by
the sequence of variational problems

uk = arg min
u

{

J(u) + H(u, f) − 〈u, pk−1〉

}

for k = 1, 2, . . ., where 〈·, ·〉 denotes the standard duality product and pk−1 is a
subgradient of J at uk−1.

As particular examples we may consider the following:
• The Vese–Osher model (1.8), where we recall that we also minimize over g at

each step. The kth step yields the decomposition f +wk = uk+1 +∇· gk+1 +
wk+1, with w0 = 0, via the minimization problem (1.8), with f replaced by
f + wk for k ≥ 0.
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• The Osher–Sole–Vese model, where we merely decompose f = u1 + v1 and
iterate via f + vk = uk+1 + vk+1 for k ≥ 1.

In principle, the iteration procedure can be written down for arbitrary functionals
H and J , but the well-definedness of the algorithm is not obvious since one needs the
existence of uk as the minimizer of a variational problem and the existence of an
associated subgradient pk for the next step. This will introduce some conditions on
J and H that we shall discuss in further detail below.

3. Analyis of the Iterative Regularization Procedure. In the following we
shall provide a detailed analysis for the most important case of functionals we are
interested in, namely

(3.1) J(u) := |u|BV

and

(3.2) H(u, f) :=
λ

2
||f − Ku||2,

with K : L2(Ω) → H being a bounded linear operator whose kernel does not include
the space of continuous functions, and H being some Hilbert space. In this case it is
easy to see that N(u) := J(u)+

√

H(u, 0) is an equivalent norm on BV (Ω). We shall
discuss the case of more general J and H in section 3.4. For quadratic H we can use
Fréchet–derivatives instead of subgradients, they are given by

∂uH(·, f) = λK∗(Ku − f),

where K∗ denotes the adjoint of K.

Note that due to the definition of H(·, f) on the larger space L2(Ω), its gradients
can be considered as elements of this space, too, while the gradients of J are in the
larger space BV (Ω)∗, in general. This will have some interesting implications for
the regularity of subgradients of J(uk) we obtain through our iterative minimization
procedure. Moreover, note that we can extend J to a convex functional on L2(Ω) by
setting J(u) = ∞ for u ∈ L2(Ω)\BV (Ω). The identity

∂u(J + H(·, f)) = ∂J + ∂uH(·, f)

holds (in BV (Ω)∗) for any f ∈ L2(Ω). For a proof of this assertion we refer the reader
to [20, Proposition 5.6].

Our general iterative regularization procedure can be formulated as follows.

Algorithm 1: Let u0 = 0, p0 = 0, and for k = 1, 2, . . .

• compute uk as a minimizer of the convex functional

(3.3) Qk(u) := H(u, f) + J(u) − J(uk−1) − 〈pk−1, u − uk−1〉,

where 〈·, ·〉 denotes the usual duality product;
• compute pk = pk−1 + λK∗(f − Kuk) ∈ ∂J(uk).

Note that in principle we could also start with different initial values that satisfy
p0 ∈ ∂J(u0). Since for u0 6= 0 an analytic expression for the subgradient is not known,
one would have to solve another complicated optimization problem to determine p0,
which seems to not be desirable from a practical standpoint.
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3.1. Iterative Regularization and Bregman Distances. Before considering
the well-definedness of the above algorithm, we establish the connection to Bregman
distances. For p ∈ ∂J(v), we define the (nonnegative) quantity

Dp(u, v) ≡ D
p
J(u, v) ≡ J(u) − J(v) − 〈p, u − v〉,

which is known as a generalized Bregman distance associated with J(·) (cf. [6, 18, 28]
for an extension to nonsmooth functions). For simplicity, we will drop the dependence
on J(·) from the notation D

p
J(u, v) in the following.

For a continuously differentiable functional, there is a unique element in the sub-
differential and consequently a unique Bregman distance. In this case the distance is
just the difference at the point u between J(·) and the first-order Taylor series ap-
proximation to J(·) at v. Moreover, if J(u) is strictly convex, Dp(u, v) is also strictly
convex in u for each v, and as a consequence Dp(u, v) = 0 if and only if u = v.

Even for a continuously differentiable and strictly convex functional, the quantity
Dp(u, v) is not a distance in the usual (metric) sense, since, in general, D(u, v) 6=
D(v, u) and the triangle inequality does not hold. However, it is a measure of closeness
in the sense that Dp(u, v) ≥ 0 and Dp(u, v) = 0 if u = v (if and only if for strictly
convex functionals). For the case of a nonsmooth and not strictly convex functional
such as the total variation, it is not clear if one can introduce a Bregman distance
for arbitrary u and v, since ∂J(v) might be empty or multivalued. However, one can
consider a multivalued version of the Bregman distance in this case, i.e., as the set
including all Dp(u, v) for all p ∈ ∂J(v). As we shall prove below, this issue is not
important for our purpose, since the iterative regularization algorithm automatically
selects a unique subgradient.

As we shall see below, we shall obtain convergence of the reconstructions in the
weak-∗ topology of BV (Ω) (and by compact embedding also in L2(Ω)), which is the
same kind of convergence one obtains for the reconstructions of the ROF model (cf.
[1]). From this viewpoint one may consider the Bregman distance only as an auxiliary
term used in the convergence analysis. However, we also obtain monotone decrease of
some Bregman distances between the true image and the computed reconstruction.
This may be interpreted as an additional indicator of the quality of the reconstruction,
though the meaning of the Bregman distance associated with the total variation is
difficult to interpret. However, at least for some cases the convergence of Bregman
distances can be used to interpret the convergence speed of discontinuities (cf. [7]).

3.2. Well-Definedness of the Iterates. In the following we show that the
iterative procedure in Algorithm 1 is well defined, i.e., that Qk has a minimizer uk

and that we may find a suitable subgradient pk. The latter will be obtained from
the optimality condition for the minimization of Qk, which yields an interesting de-
composition of f involving ”noise” at levels k and k − 1 and signal at each level
k.

Proposition 3.1. Assume that J and H are given by (3.1) and (3.2), respec-
tively, and let u0 = 0 and p0 := 0 ∈ ∂J(u0). Then, for each k ∈ N there exists a min-
imizer uk of Qk, and there exists a subgradient pk ∈ ∂J(uk) and qk = ∂uH(uk, f) =
λK∗(uk − f) such that

(3.4) pk + qk = pk−1.

If, in addition, K has no null space, then the minimizer uk is unique.
Proof. We prove the above result by induction. For k = 1, we have Q1(u) =

J(u) + H(u, f), and the existence of minimizers, as well as the optimality condition
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p1 + q1 = p0 = 0, is well-known [1]. Moreover, with r1 := λ(f − Ku1) ∈ H we have
p1 = K∗r1.

Now we proceed from k − 1 to k and assume that pk−1 = K∗rk−1 for rk−1 ∈ H.
Under the above assumptions, the functional

Qk : u 7→ J(u) − J(uk−1) + H(u, f) − 〈pk−1, u − uk−1〉

is weak-∗ lower semicontinuous (due to convexity and local boundedness; cf. [20]) and
it is bounded below by H(u, f) due to the properties of subgradients. Moreover, we
can estimate

Qk(u) = J(u) − J(uk−1) − 〈rk−1, f − Kuk−1〉

+
λ

2
‖Ku − f − λ−1rk−1‖

2 −
1

2λ
‖rk−1‖

2

≥ J(u) − J(uk−1) − 〈rk−1, f − Kuk−1〉 −
1

2λ
‖rk−1‖

2.

Since only the first term on the right-hand side of this inequality is not constant,
the boundedness of Qk(u) implies the boundedness of J(u), and consequently the
boundedness of N(u). This shows that the level sets of Qk are bounded in the norm
of BV (Ω), and therefore they are weak-∗ compact. Hence, there exists a minimizer
of Qk due to the fundamental theorem of optimization. Moreover, if K has no null
space, the strict convexity of H(·, f) and convexity of the other terms imply the strict
convexity of Qk, and therefore the minimizer is unique. Since

∂(−〈pk−1, ·〉) = {−pk−1},

the optimality conditions for this problem imply

pk−1 ∈ ∂J(uk) + ∂uH(uk, f),

which yields the existence of pk ∈ ∂J(uk) and qk = ∂uH(uk, f) = λK∗(Kuk − f)
satisfying (3.4). With rk := rk−1 − λ(Kuk − f) ∈ L2(Ω) and pk := K∗rk we obtain
(3.4).

Note that as a result of (3.4) we obtain that

pk = −
k

∑

j=1

qj = λ

k
∑

j=1

K∗(f − Kuj);

i.e., the subgradient pk is equal to the adjoint applied the sum of residuals f − Kuj .
Moreover, the iterative algorithm constructs a sequence of minimizers uk such that
there exists pk ∈ L2(Ω) ∩ ∂J(uk) (for smoothing K we even have pk in the image of
K∗), which can be thought of as a regularity property of uk, with respect to its level
sets. This corresponds to the results of Meyer [30] for the ROF-model showing that
the indicator function of a ball may be a solution but not the indicator function of a
square. In the same way we could show that the indicator function of a square (or
more generally a function whose level sets are squares) cannot arise as an iterate in our
regularization procedure. However, the method may still converge to such solutions
as k → ∞.

We again consider some special cases:
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• Denoising: If

(3.5) H(u, f) = λ

∫

(f − u)2,

i.e., K is the identity, we have ∂uH(u, f) = 2λ(u − f), and hence

pk + 2λ(uk − f) = pk−1, k = 1, 2, . . . , p0 = 0.

If we set pk ≡ 2λvk, we obtain our usual decomposition:

f + vk−1 = uk + vk.

• Deblurring: If

(3.6) H(u, f) = λ

∫

(Au − f)2

for A : L2(Ω) → L2(Ω) being a compact linear operator (typically a con-
volution operator), we have ∂Hu(u, f) = 2λ(A∗(Au − f)), where A∗ is the
L2-adjoint operator, and hence

pk + 2λA∗(Auk − f) = pk−1.

Notice that since p0 = 0 = A∗0 we may conclude inductively that pk ∈ R(A∗),
and hence there exist vk with pk = 2λA∗vk. Hence, we can alternatively write
an update formula for vk given by

f + vk−1 = Auk + vk.

Finally we mention that the Osher–Sole–Vese model (1.12) can also be inter-
preted as deblurring, with the compact operator A = ∇∆−1 and transformed
output f̃ = Af .

3.3. Convergence Analysis. We shall now study some convergence properties
of the iterative regularization process. Our analysis below is motivated by that of
Hanke [25], who analyzed Levenberg–Marquardt methods for ill-posed problems (also
related to nonstationary iterative Tikhonov regularization, (cf. [26, 24]) and inverse
scale space methods (cf. [40])), which turns out to be a special case of our iterative
regularization strategy when using a quadratic regularization functional J(u) = ‖u‖2

for some Hilbert space norm.
First, we show two important monotonicity properties of the residual and of the

Bregman distance.
Proposition 3.2. Under the above assumptions, the sequence H(uk, f) obtained

from the iterates of Algorithm 1 is monotonically nonincreasing; we even have

(3.7) H(uk, f) ≤ H(uk, f) + Dpk−1(uk, uk−1) ≤ H(uk−1, f).

Moreover, let u be such that J(u) < ∞; then we have

(3.8) Dpk(u, uk) + Dpk−1(uk, uk−1) + H(uk, f) ≤ H(u, f) + Dpk−1(u, uk−1).
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Proof. From the definition of subgradient and because uk minimizes Qk(u) we
have

H(uk, f) ≤ H(uk, f) + J(uk) − J(uk−1) − 〈uk − uk−1, pk−1〉

= Qk(uk) ≤ Qk(uk−1) = H(uk−1, f),

which implies (3.7).
Next we use the following interesting identity for Bregman distances, which seems

to have first been pointed out in [18]:

Dpk(u, uk) − Dpk−1(u, uk−1) + Dpk−1(uk, uk−1)

= J(u) − J(uk) + 〈uk − u, pk〉

−J(u) + J(uk−1) − 〈uk−1 − u, pk−1〉

+J(uk) − J(uk−1) + 〈uk−1 − uk, pk−1〉

= 〈uk − u, pk − pk−1〉.

Replacing pk − pk−1 by −qk, using equation (3.4), and using the fact that qk is a
subgradient of H(·, f) at uk, we obtain

Dpk(u, uk) − Dpk−1(u, uk−1) + Dpk−1(uk, uk−1) = 〈qk, u − uk〉.

≤ H(u, f) − H(uk, f),

which is equivalent to (3.8).
If there exists a minimizer ũ of H(., f) with J(ũ) < ∞, then we obtain, in par-

ticular from the choice u = ũ in (3.8),

Dpk(ũ, uk) ≤ Dpk(ũ, uk) + Dpk−1(uk, uk−1)

≤ Dpk(ũ, uk) + Dpk−1(uk, uk−1) − H(uk, f) + H(ũ, f)

≤ Dpk−1(ũ, uk−1).(3.9)

This result allows us to conclude a general convergence theorem.
Theorem 3.3 (Exact Data). Assume that there exists a minimizer ũ ∈ BV (Ω)

of H(., f) such that J(ũ) < ∞. Then

(3.10) H(uk, f) ≤ H(ũ, f) +
J(ũ)

k
,

and, in particular, uk is a minimizing sequence.
Moreover, uk has a weak-∗ convergent subsequence in BV (Ω), and the limit of

each weak-∗ convergent subsequence is a solution of Ku = f . If ũ is the unique
solution of Ku = f , then uk → ũ in the weak-* topology in BV (Ω).

Proof. We now sum (3.8) arriving at

(3.11) Dpk(ũ, uk)+
k

∑

ν=1

[Dpν−1(uν , uν−1) + H(uν , f) − H(ũ, f)] ≤ D0(ũ, u0) = J(ũ).

¿From Dpν−1(uν , uν−1) ≥ 0 and the monotonicity of H(uν , f) due to (3.7), we further
conclude that

Dpk(ũ, uk) + k [H(uk, f) − H(ũ, f)] ≤ J(ũ),
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and the nonnegativity of the first term implies (3.10).
For f = Kũ, (3.10) implies (together with the monotonicity of ‖Kuk − f‖2)

kλ‖Kuk − f‖2 ≤ λ

k
∑

ν=1

‖Kuν − f‖2 ≤ J(ũ).

From (3.10) and (3.4) we obtain

J(ũ) ≥
k

∑

ν=1

Dpν−1(uν , uν−1) = J(uk) −
k

∑

ν=1

〈pν−1, uν − uν−1〉

= J(uk) − J(u0) − 〈pk−1, uk − ũ〉 +
k−1
∑

ν=1

〈pν − pν−1, uν − ũ〉

= J(uk) −
k−1
∑

ν=1

〈qν , uk − ũ〉 −
k−1
∑

ν=1

〈qν , uν − ũ〉.

Since qν = 2λK∗(Kuν − f) in this case, we may further estimate

J(ũ) ≥ J(uk) − 2λ

k−1
∑

ν=1

〈Kuν − f,Kuk − f〉 − 2λ

k−1
∑

ν=1

‖Kuν − f‖2

≥ J(uk) − kλ‖Kuk − f‖2 − 3λ

k−1
∑

ν=1

‖Kuν − f‖2

≥ J(uk) − 4J(ũ).

Thus, J(uk) ≤ 5J(ũ), and by equivalence of norms we obtain that

‖uk‖BV ≤ C(J(uk) + ‖Kuk‖),

whose right-hand side is uniformly bounded. The further assertions then follow by
standard weak-* convergence techniques.

The above result is a typical convergence result for exact data. In the special case
of denoising it would mean that f = ũ is of bounded variation; i.e., it does not include
any noise that is not of bounded variation. For the specific models of denoising and
deblurring considered above, this yields a rate of convergence.

Corollary 3.4. Under the assumptions of Theorem 3.3, the following results
hold:

• For denoising, i.e., for H given by (3.5), we have

(3.12) ‖f − uk‖L2 ≤

√

J(f)

λk
= O

(

k−1/2
)

if J(f) < ∞.
• For deblurring, i.e., for H given by (3.6), we have

(3.13) ‖f − Auk‖L2 ≤

√

J(ũ)

λk
= O

(

k−1/2
)

if f = Aũ and J(ũ) < ∞.
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Next, we consider the noisy case; i.e., we suppose that g is the true noise-free
image and that ũ is a minimizer of H(., g) with H(ũ, g) = 0, which satisfies

(3.14) H(ũ, f) ≤ δ2.

The positive number δ2 can be considered as the noise level (or rather as an estimate
for the noise level, which is easier to obtain in practice); we shall specify its meaning
for the special cases below.

In medical imaging, for example, one often has a very good estimate of the noise
induced by the imaging apparatus obtained by imaging known objects (phantoms). In
general, a procedure we have found satisfactory to estimate δ is to restrict the image
to a square region which is “quiet” and contains no edges and compute the standard
deviation of this restriction of the image.

Theorem 3.5 (noisy data). Let ũ, f , and g be such that ũ is a minimizer of
H(., g) and such that (3.14) holds. Then, as long as H(uk, f) > δ2 (i.e., the residual
lies above the noise level), the Bregman distance between uk and ũ is decreasing; more
precisely,

Dpk(ũ, uk) ≤ Dpk(ũ, uk) + Dpk−1(uk, uk−1) < Dpk−1(ũ, uk−1).

Proof. From (3.8) we obtain by inserting (3.14)

Dpk(ũ, uk) + Dpk−1(uk, uk−1) + H(uk, f) ≤ δ2 + Dpk−1(ũ, uk−1).

Thus, for H(uk, f) > δ2 we may conclude the decrease of Dpk(ũ, uk). Note that, due
to Theorem 3.5, we obtain that if g is the noise-free image and ũ is the true solution,
iterations actually approach the true solution until the residual in the iteration drops
below the noise level.

The result of Theorem 3.5 yields a natural stopping rule, the so-called generalized
discrepancy principle (cf. [21]), which consists in stopping the iteration at the index
k∗ = k∗(δ, f) given by

(3.15) k∗ = max{ k ∈ N | H(uk, f) ≥ τδ2 },

where τ > 1. Note that due to the monotone decrease of H(uk, f), which is guaranteed
by (3.7), the stopping index k∗ is well defined. We also mention that the choice τ = 1
that would seem obvious with respect to the noise estimate is too severe to guarantee
the boundedness of J(uk∗

) and the semi-convergence of the regularization method, as
we shall see below, but this statement is also true for other iterative regularization
methods (cf. [21]).

If we sum the inequality in the proof of Theorem 3.5, we obtain

kH(uk, f) ≤ Dpk(ũ, uk) +
k

∑

ν=1

H(uν , f) ≤ δ2k + J(ũ),

i.e.,

H(uk, f) ≤ δ2 +
J(ũ)

k
.

As a consequence, k∗(δ) is finite for τ > 1, and, since H(uk∗(δ)+1, f) ≤ τδ2, we have

(3.16) δ2(k∗(δ) + 1) ≤
J(ũ)

τ − 1
.
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Theorem 3.6 (semiconvergence for noisy data). Let the assumptions of Theorem
3.5 be satisfied, and let the stopping index k∗ be chosen according to (3.15). Moreover,
let Kũ = f . Then J(uk∗(δ)) is uniformly bounded in δ, and hence, as δ → 0, there
exists a weak-∗ convergent subsequence (uk∗(δℓ)) in BV (Ω). If the set {k∗(δ)}δ∈R+ is
unbounded, the limit of each weak-* convergent subsequence is a solution of Ku = g.

Proof. By analogous reasoning, as in the proof of Theorem 3.3, we can derive an
estimate of the form

J(uk) ≤ C(J(ũ) + kδ2)

for k ≤ k∗(δ) and some positive constant C. From (3.16) we further obtain

J(uk∗(δ)) ≤
τC

τ − 1
,

and hence J(uk∗(δ)) is bounded. The existence of converging subsequences then follows
from standard weak-* convergence techniques. In order to show that a weak-* limit
u satisfies Ku = g, we use again the estimate

H(uk∗(δ), f) ≤ δ2 +
J(ũ)

k∗(δ)

derived above. If k∗(δℓ) → ∞ for some subsequence δℓ, then clearly H(uk∗(δ), f) → 0,
and from the lower semicontinuity of H in this case we obtain H(u, g) = 0 for the
limit; i.e., Ku = g for the special H we consider.

We again consider this relation for the special cases:
• Denoising: for H given by (3.5) we obviously have ũ = g, and hence (3.14)

becomes

H(g, f) = λ

∫

(f − g)2 ≤ δ2.

Thus, σ =
√

δ2

λ is an estimate for the variance of the noise, which can be

obtained from statistical tests in typical applications. The stopping rule con-
sits in terminating the iteration when the residual ‖u − f‖ drops below this
variance estimate σ. For k ≤ k∗ we actually have the stronger estimate

D(g, uk) + D(uk, uk−1) + λ

(

1 −
1

τ

)

‖uk − f‖2
L2 ≤ D(g, uk−1).

• Deblurring: for H given by (3.6) we have Aũ = g, and hence (3.14) is again

H(ũ, f) = λ

∫

(f − g)2 ≤ δ2,

and σ =
√

δ2

λ is an estimate for the variance of the noise in the output image.

For k ≤ k∗ we have

D(ũ, uk) + D(uk, uk−1) + λ

(

1 −
1

τ

)

‖Auk − f‖2 ≤ D(ũ, uk−1).

Note that in the particular case of the Osher–Sole–Vese model [35] in (1.12)
we have A = ∇∆−1 and f = ∇∆−1f0, where f0 is the actual noisy image we
obtain, and therefore the noise estimate is

λ‖∇∆−1(f0 − ũ)‖2
L2 ≤ δ2;

i.e., we need an estimate of the variance of the noise in the H−1-norm.
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3.4. Further Generalizations. In the following we discuss some possible gen-
eralizations of the above procedure with respect to the fitting functional H, the reg-
ularization functional J and additional constraints.

We start with different regularization functionals J . The above analysis is not
restricted to the space BV (Ω) and J being the BV seminorm. One can easily gen-
eralize the results to other locally bounded, convex, and nonnegative regularization
functionals J defined on a Banach space U ⊂ L2(Ω). The conditions needed on J are
that

• the level sets

{ u ∈ U | J(u) ≤ M }

are compact in L2(Ω) (or any stronger topology than the one of L2(Ω)) for
all M ∈ R and nonempty for M > M0 > 0;

• J can be extended to a weakly lower semicontinuous functional from L2(Ω)
to R ∪ {+∞}.

Under these conditions, then by similar reasoning as above there exists a min-
imizer of the functional Qk, which is the minimal property we need for the well-
definedness of the iterative procedure. If, in addition, J + H(., f) is strictly convex,
then this minimizer is unique, and we obtain a unique iterate uk. ¿From standard
optimality theory for convex problems (cf. [20]), we may also conclude the decom-
position (3.4) and the regularity pk ∈ L2(Ω) ⊂ U∗. The convergence analysis with
the same stopping rule can be carried out as above, with the modification that the
weak-* topology in BV has to be replaced by the topology in which the level sets of
J are compact.

Possible generalizations of the regularization functional include the following:
• Anisotropic Total Variation: In order to obtain different minimizers such as

indicator functions of squares as minimizers, one can use anisotropic regular-
ization functionals of the form

J(u) =

∫

Ω

G(∇u),

with G : R
2 → R

+ being a continuous one-homogeneous function (cf. [22]).
An example of particular interest is G(∇u) = |ux| + |uy|. Of course, we can
also use functions, which are not one-homogeneous, such as G(∇u) = ||∇u||2,
thus including standard Tikhonov-type regularization techniques.

• Approximations of Total Variation: In several instances, one rather minimizes
the smooth approximation

Jǫ(u) =

∫

Ω

√

|∇u|2 + ǫ2

for some ǫ > 0 (cf., e.g., [19]). Such an approximation simplifies numerical
computations due to the differentiability of Jǫ and may help to avoid the
staircasing effect in some cases. The analysis can be carried out in the same
way as above, and due to the strict convexity of Jǫ for ǫ > 0 one even obtains
that the Bregman distance is a strict distance.

• Bounded variation norms: Instead of taking the seminorm in BV (Ω), one
might also use a full norm for the regularization, i.e.,

(3.17) J(u) = |u|BV + ρ‖u‖2
L2 ,
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for ρ > 0. In this case, the Bregman distance Dp(u, v) is bounded below
by ρ‖u − v‖2

L2 , and hence convergence of the Bregman distance implies L2-
convergence, which is interesting, in particular, for deblurring and for more
general fitting functionals as outlined below.

• Derivatives of bounded variation: Another obvious generalization considered
by several authors (cf. [15, 27]) is to use the bounded variation of ∇u, i.e.,

J(u) =

∫

Ω

|D2u|,

where D2u denotes the Hessian of u, or even more general functionals of the
form

J(u) =

∫

Ω

ϕ(u,∇u,D2u),

with convex ϕ : R×R
2 ×R

2×2 → R+. The analysis can be carried out in the
Banach space U = BV 2(Ω) of functions with second-order bounded variation.

• Finite-dimensional approximations: By analogous reasoning, one can consider
the discrete version of all the models introduced above and obtain the same
type of convergence results.

For generalizations with respect to the fitting functional, the situation is more
delicate. In general, even under rather strong assumptions on H, the compactness of
level sets of the functional Qk is not guaranteed, so that the iterates in Algorithm
1 are possibly not well defined. Moreover, we do not know any argument showing
that the total variation of uk remains bounded (even for exact data), so that the
convergence analysis cannot be carried out as above.

Finally, generalizations to additional constraints would be of interest in practice.
The iterative procedure then consists in minimizing Qk subject to the additional con-
straints. This is of importance, e.g., for nonnegativity constraints or for multiplicative
noise, where one wants to choose

H(u, f) =

∫

Ω

(

f

u

)2

subject to the constraint (cf. [37])

C(u) = −1 +

∫

Ω

f

u
= 0.

If the constraint set is not empty, the analysis of well-definedness of the iterates is
of similar difficulty as in the unconstrained case, but the convergence analysis can-
not be carried over easily to additional constraints; in particular the update formula
(3.4) must involve additional terms corresponding to Lagrange multipliers of the con-
straints. Since preliminary numerical experiments demonstrate the success of the
iterative regularization procedure also for multiplicative denoising, such an analysis
seems to be an important task for future research.

3.5. Related Work. In interesting earlier work, [43], the authors propose an
iterative procedure also based on the ROF model. They also generate a sequence uk

which converges to the given image f . It is interesting to compare the two approaches.
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To recall, our approach is to compute uk as a minimizer of the convex functional

Qk(u) =
λ

2

∫

(u − f)2 + J(u) − J(uk−1) − 〈pk−1, u − uk−1〉

for k = 1, 2, . . ., with u0 = 0, p0 = 0, and to compute pk ε {pk−1}−λ(uk−f)∩∂J(uk).
The Tadmor–Nezzar–Vese (TNV) approach is (in our language) as follows: set

u0 = 0 and compute uk as a minimizer of the convex functional

Q̃k(u) =
λ

2
2k

∫

(u − f)2 + J(u − uk−1)

for k = 1, 2, . . ..
For J(u) homogeneous of degree one, as in the ROF model, this can be rewritten

as follows: minimize

Q̃k(u) =
λ

2

∫

(u − f)2 + J

(

u − uk−1

2k

)

.

Thus we see the differences: (1) The TNV algorithm uses a hierarchical decom-
position where the difference in total variation between u and the previous iterate is
computed. (2) A dyadic sequence of scales, λ2k, is used to obtain convergence.

The differences in performance can also be seen. If we define f = αxR for αλR ≥ 1
as in section 2, our algorithm recovers uk ≡ f for all k ≥ 2. The TNV algorithm finds

uk =

(

α −
1

λ2k−1R

)

χR, k = 1, 2, . . .

Also, our algorithm has a denoising aspect to it. Theorem 3.5 indicates that our
sequence of iterates uk has the property that Bregman distance between uk and ũ,
the true restored solution, decreases until the discrepancy principle is satisfied. There
is no such result in [43]. Finally, we mention that a similar approach as in [43], but
without proofs, can also be found in the earlier paper [40].

4. Numerical Results. In this section we present some of the results we have
obtained using our iterative regularization procedure. We will concentrate on total
variation denoising.

We use the following notation and formula: f = u + v (denoise) or f = Au +
v (deblur/denoise). v ∼ N (0, δ2) is Gaussian noise, ‖v‖L2 ≈ δ.

SNR := 20 ∗ log10

(

‖f − f̄‖L2

‖v − v̄‖L2

)

is the signal-to-noise ratio, measured in decibels. f̄ and v̄ are the means of f and
v over Ω. Knowledge of the noise level is useful for us only as a stopping criterion
via our discrepancy principle. Our results are otherwise independent of the noise
level. Variational methods applied to image processing often use noise estimates as
constraints.

All solutions to the variational problem (1.1) were obtained using gradient descent
in a standard fashion; see, e.g., [38]. This amounts to solving a parabolic equation
to steady state with normal derivative zero imposed at the boundaries. The only
nontrivial difficulty comes when |∇u| ≈ 0. We fix this, as is usual, by perturbing
J(u) =

∫

|∇u| to J(u) =
∫ √

|∇u|2 + ǫ, where ǫ is a small positive number; see, e.g.,
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[19]. In our calculations we took ǫ = 10−12. The initial guess for the first step was the
noisy data f . For succeeding iterates in the Bregman procedure, we merely replace
f by f + vk−1 and proceed with ROF again, with the initial guess f + vk−1 or the
previous iterate uk−1.

We first compare the results of our procedure with the constrained denoising used
in the original ROF paper [38].

Example 1: In our first test we considered denoising a one-dimensional (1D)
signal f . Figure 1(a) displays the original signal. Figure 1(b) displays the noisy
signal with δ = 9.4544. In Figure 1(c) we present the restored u obtained using
ROF with the constraint ‖u − f‖L2 ≤ δ. We see the typical loss of accuracy in
regions where there are narrow peaks and valleys. In Figures 1(d), 1(e) and 1(f), we
present the results of our iterative regularization procedure with λ = 0.005, 0.001,
and 0.0005, respectively. We display the results for those values of k = k̄(λ, δ) that
are obtained from the stopping rule. All four of these results are more accurate than
the result obtained with the single step ROF minimization subject to a constraint
on the L2-norm of the removed noise, especially near local minima and maxima of f .
The results also confirm numerically the assertion that using a smaller λ (i.e., initially
oversmoothing) requires more regularization steps to get the optimal restoration.

Example 2: We next considered another 1D signal. First, we exhibit the restora-
tion of a clean signal. With λ = 0.005 we obtained u1 in Figure 2(a) and u2 in Figure
2(b). The improvement is obvious. Next, for the noisy signal in Figure 2(c) containing
Gaussian noise with δ = 10, we display the iterative regularization results u1, u2, u3 in
Figures 2(d), 2(e), 2(f) respectively. From u1 to u2, the results improved considerably.
Succeeding uk become noisy again for k > 3.

Example 3: We considered the noisy fingerprint image with δ = 10 and SNR =
14.8 and applied the ROF model with λ = 0.085. This produced a restored image u

with ||f − u||L2 = 10.2 ≈ δ. We can see that the removed noise component v = f − u

contains some signal. This is a common problem for the ROF model. Figures 3(a)-
3(f) display the original image, noisy image f , and noise η, u, f − u, and u-original,
respectively. To make the small values of η, f − u, and u-original more visible, we
added 128 to their values in Figures 3(c), 3(e) and 3(f), respectively. Next, we applied
our iterative regularization procedure with λ = 0.013 to the noisy image in Figure
3(b). Notice that this value of λ is much smaller than the one used to obtain the
one-step ROF results in Figures 3(a)-3(f). Figures 4(a)-4(k) display these results.
u1 is oversmoothed, and uk improves steadily as k increases, with u4 in Figure 4(g)
giving the best restoration. Figure 4(j) shows the residual f −u4, which contains only
very little visible signal. In Figure 4l we plot ||f − uk||L2 as a function of the iterate
k. This plot shows that ||f − uk||L2 decreases monotonically with k, first dropping
below δ at the optimal iterate k̄ = 4, hence validating Theorem 3.5.

Example 4: For this example, we created an image containing various shapes
and patterns to test our procedure. Figure 5(a) shows the original image and Figure
5(b) the noisy image with δ = 40 and SNR = 7.4. First we took a small λ = 0.002. As
can be seen in Figures 5(d)-5(r) the results uk improve until the fifth step, at which
point the inequality ||f − u5||L2 < δ first becomes satisfied. Then the succeeding
uk(k ≥ 6) become noisier, again validating Theorem 3.5. Next, to illustrate the
relationship between λ and the optimal step k̄(λ), we chose different λ values and
denoised the same noisy image, Figure 5(b). Figure 6 displays the results for λ =
0.004. The restoration u3 is the best, k̄(0.004) = 3. Figure 7 presents the results
for λ = 0.006 and shows that u2 is the best, k̄(0.006) = 2. Moreover, as previously
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Figure 1. 1D denoising comparison: constrained ROF vs. ROF with iterative regularization

stated, k̄(0.002) = 5. This verifies that k̄(λ) monotonically decreases as λ increases
or, equivalently, as the amount of initial oversmoothing decreases. In this example
we also showed the plots of ||f − uk||L2 , ||u − uk||L2 and D(u, uk) versus k for u the
original clean image. As we can see ||u− uk||L2 also attains its minimum at k̄. (This
is not generally true for all of our examples. Often the smallest true L2 error occurs
for one or two more regularization iterations.) As predicted by Theorem 3.5, D(u, uk)
is decreasing for k < k̄. It is interesting that this quantity sometimes continues to
decrease well after noise has returned to the iterate uk; see Figure 5(r).
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Figure 2. ROF and iterative regularization on a 1D signal (noise-free and noisy) .

Example 5: In this example, we applied our approach to the denoising of a
textured image. We used the same noisy data as in Lysaker, Osher, and Tai [29],
δ = 17.2 and SNR = 9.8. As can be seen in Figure 8, for λ = 0.02, the results
improved considerably from u1 to u2, and u2 gave the best restoration.

Example 6: Here we considered denoising a satellite image. We added noise with
δ = 40 and SNR = 6.3. For λ = 0.0055, u2 yields the best restoration, with almost
all signal restored and very little visible signal in the residual. In u3 and succeeding
uk, k > 3, some noise comes back. This is displayed in Figure 9.
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(a) original (b) noisy f, SNR = 14.8 (c) noise+128, δ=10.0

(d) u: ROF (e) f−u+128, ||f−u||
L

2=10.2 (f) u−original+128

Figure 3. ROF with λ = 0.085, ||f − u||
L2 ≈ δ, and signal contained in v = f − u.

Example 7: We have also used our procedure to restore blurry, noisy images.
This will be described in greater detail in future joint work with L. He and A. Mar-
quina, and we thank them for their help in obtaining these results. Here we illustrate
the use of our approach on a satellite image blurred by a Gaussian kernel with added
noise (δ = 10). Figure 10 shows the results for λ = 0.1. With iterative regularization,
u2 recovers more signal than u1, especially small details. The restored image u2 has
the least noise, but u3 appears to be sharper. Succeeding iterations (k ≥ 4) become
noisier.
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