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An Iterative SAR Image Filtering Method
Using Nonlocal Sparse Model
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Abstract—In this letter, we propose an iterative synthetic aper-
ture radar (SAR) image filtering method using the nonlocal sparse
model. The original SAR image is first transformed to the log-
arithmic SAR image domain. Then, we use the nonlocal sparse
model and the iterative regularization technique to denoise the
log-intensity image. In each iteration, we update the noisy image
and then estimate the noise variance. For each patch in the noisy
image, we find several similar patches and stack them together
in a group. This noisy group is filtered by simultaneous sparse
coding. Then, all of the filtered groups are aggregated to form the
denoised image. Experimental results demonstrate that the pro-
posed method can achieve state-of-the-art SAR image despeckling
performance.

Index Terms—Despeckling, iterative regularization, nonlocal
sparse model, synthetic aperture radar (SAR).

I. INTRODUCTION

SYNTHETIC aperture radar (SAR) image filtering is an
important preprocessing step and can improve the per-

formance in many applications of SAR image processing.
During the past three decades, numerous methods have been
proposed to reduce the speckle in SAR imagery. Many classical
filters utilize the pixels in local sliding windows to denoise
SAR images based on the minimum mean square error crite-
rion [1]–[3] or the maximum a posteriori criterion [4]. With
the development of image denoising techniques, it has been
proven that transform-domain filtering methods can achieve
better results than the spatial-domain filtering methods. Many
transform-domain techniques have been already applied to SAR
image despeckling, such as wavelet shrinkage [5], [6], principal
component analysis [7], and sparse representation [8]–[12].

Recently, the nonlocal means algorithm [13] has opened an
exciting new vision for image filtering. This method calculates
the similarity between the patches surrounding the selected and
estimated pixels and then performs weighted averaging in a
nonlocal region. Nonlocal-based image filtering methods [13],
[14] have been already extended to SAR image despeckling,
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such as the probabilistic patch-based (PPB) algorithm [15], the
SAR-oriented version of block-matching 3-D (SAR-BM3D)
algorithm [6], and the nonlocal framework for SAR denoising
(NLSAR) [16]. On the other hand, sparse-representation-based
image filtering methods [17], [18] also provide a breakthrough
to tackle the filtering problem. Mairal et al. [18] combined
the nonlocal method [14] and the simultaneous sparse coding
(SSC) and then proposed the nonlocal sparse model, which has
been also applied to SAR image filtering [9] and found to be
very promising.

In our previous work [12], we proposed a patch-ordering-
based SAR image despeckling method via transform-domain
filtering (POTDF). This method consists of two stages, a coarse
filtering stage, which utilizes patch ordering and SSC to denoise
the input image, and then a refined filtering stage, which uses
wavelet shrinkage to remove small artifacts. In this letter,
we also propose a sparse-representation-based SAR image
despeckling method. However, unlike that in [12], this new
method is an iterative algorithm, which combines the nonlocal
sparse model and the iterative regularization technique. In each
iteration, we update the noisy image and estimate the noise vari-
ance. Then, the noisy image is denoised by the nonlocal sparse
model. The iterative regularization technique can efficiently
improve the filtering performance, particularly for single-look
images. The effectiveness of the proposed method will be
verified both visually and numerically in Section IV.

The rest of this letter is organized as follows. Section II
introduces the logarithmic SAR image statistics and the non-
local sparse model. The proposed algorithm is described in
Section III. Section IV presents the experimental results.
Finally, we conclude this letter in Section V.

II. LOGARITHMIC SAR IMAGE STATISTICS

AND NONLOCAL SPARSE MODEL

Here, we introduce some related work, including the loga-
rithmic SAR image statistics and the nonlocal sparse model.

A. Logarithmic SAR Image Statistics

It is well established that the speckle in SAR images is
characterized by the multiplicative noise model [19], i.e.,

I = Rv (1)

where I is the observed intensity, R is the underlying target
backscattering coefficient, and v is the speckle.

In general, fully developed speckle is assumed to be a unit
mean random variable of Gamma distribution parameterized
by the equivalent number of looks (ENL) [19]. The ENL of
a homogeneous region is estimated by

L =
(mean)2

var
. (2)
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The purpose of despeckling is to recover R from I . To
make this problem easier, the multiplicative model can be
transformed into the additive model by logarithmic transforma-
tion, i.e.,

ln(I) = ln(R) + ln(v). (3)

However, ln(v) is not a zero-mean noise process. In fact, the
mean of ln(v) [20] is

E [ln(v)] = ψ(0)(L)− ln(L) (4)

where ψ(0)(L) is the polygamma function of order zero.
Thus, we can establish the following additive model:

y = x+ n (5)

where

y = ln(I)− ψ(0)(L) + ln(L) (6)

x = ln(R) (7)

n = ln(v)− ψ(0)(L) + ln(L). (8)

Here, n is a zero-mean additive noise process, and the following
filtering process will work on y.

B. Nonlocal Sparse Model

The nonlocal sparse model consists of three steps: grouping,
collaborative filtering via SSC, and aggregation.

1) Grouping: Suppose that the size of an image patch is√
m×√

m and y is the column stacked version of the patch ex-
tracted from y. For each reference patch yi, the step of grouping
aims to find several similar patches in a large search range and
then stack them together in a group Yi. In general, the search
range is restricted to a C × C neighborhood surrounding the
reference patch.

For SAR images, the block similarity measure (BSM) [6]
is widely used as the similarity measurement. It should be
noted that y is the bias-corrected log-intensity data. However,
to calculate BSM, we need to use the amplitude data. Let
A and Ai be the amplitude data corresponding to I and yi,
respectively. Thus, we have

A =
√
I (9)

Ai(j) =
√
exp

[
yi(j) + ψ(0)(L)− ln(L)

]
. (10)

Then, the BSM of yi and yl can be obtained by

BSMi,l = (2L− 1)
∑
j

ln

[
Ai(j)

Al(j)
+

Al(j)

Ai(j)

]
. (11)

From (11), we can find that the smallest BSM corresponds to
the most similar patch.

2) Collaborative Filtering via SSC: In the nonlocal sparse
model, the noisy group Y is filtered by SSC. The core idea of
SSC [21] is that several similar patches can be represented by
different linear combinations of the same atoms in a redundant

dictionary. Suppose that the number of patches in Y is N (g).
Then, denoising Y ∈ R

m×N(g)
aims to solve

min
Λ

‖Λ‖0,∞ s.t. ‖Y −DΛ‖2F ≤ ε (12)

where D ∈ R
m×K (K > m) is an overcomplete dictionary,

Λ ∈ R
K×N(g)

is the sparse representation of Y, ‖ ‖F stands
for the Frobenius norm, ‖Λ‖0,∞ is a pseudonorm [21], which
stands for the number of nonzero rows of Λ, and ε is related
to the noise variance. The estimation of ε will be discussed in
Section III.

The dictionary D can be trained by the K-means SVD
(K-SVD) algorithm [22], whereas the SSC problem (12) can
be solved by the simultaneous orthogonal matching pursuit
(S-OMP) algorithm [21]. Then, the filtering result of Y is

Ŷ = DΛ. (13)

3) Aggregation: Aggregate all of the estimation results to
form the denoised image by using a weighted average.

III. ALGORITHM

In this letter, we propose an iterative SAR image filtering
algorithm. The input SAR image I is first transformed to the
logarithmic SAR image domain. Then, the log-intensity image
y is filtered by using the nonlocal sparse model and the iterative
regularization technique.

Suppose that x̂k(k = 0, 1, . . . , N (it)) stands for the filtering
result in the kth iteration and N (it) is the number of iterations.
Then, x̂0 is initialized as

x̂0 = y. (14)

The general idea of iterative regularization [23], [24] is to
add a part of filtered noise to the denoised image, i.e.,

yk = x̂k−1 + δ(y − x̂k−1) (15)

where yk is the noisy image in the kth iteration, and δ is a
predefined parameter used to regulate the added noise.

Let s0 and sk be the noise variances of y and yk, respectively.
From [20], we have

s0 = ψ(1)(L) (16)

where ψ(1)(L) is the polygamma function of order 1. Suppose
that the size of y is M ×N . Then, sk can be approximatively
estimated by [24]

sk = s0 −
1

MN
‖yk − y‖2F . (17)

In (12), ε is related to the noise variance. Then, εk, which
corresponds to the kth iteration, can be obtained by

εk = γmN (g)sk (18)

where γ is a scaling factor controlling the depth of filtering.
In the kth iteration, we first calculate the noisy image yk by

(15) and then estimate sk and εk by (17) and (18), respectively.
For each patch yi in yk, we find similar patches and stack
them in the group Yi. Then, the noisy group Yi is denoised by
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SSC. By aggregating the filtering results of all the noisy groups,
we can obtain the denoised image x̂k in the kth iteration. The
final filtering result Î can be calculated by applying exponential
transformation to x̂N(it) , i.e.,

Î = exp (x̂N(it)) . (19)

The complete procedure of the proposed SAR image filtering
algorithm is summarized in Algorithm 1.

Algorithm 1 The proposed SAR image filtering algorithm.

Input: The input SAR image I , the ENL L.
Calculate the log-intensity image y by taking the
logarithmic transformation with bias correction to I .
Initialize x̂0 = y.
for k = 1 to N (it) do
yk = x̂k−1 + δ(y − x̂k−1).
Estimate the noise variance sk by (17).
Calculate εk by (18).
for each patch yi in yk do

Find similar patches and form the group Yi.
Denoise Yi via SSC, and obtain the filtering result Ŷi.

end for
Aggregate all of the filtered groups to form the denoised
image x̂k.

end for
Calculate the final filtering result Î by applying exponential
transformation to x̂N(it) .

Output: The final filtering result Î .

IV. EXPERIMENTS

Here, we compare the proposed method with several state-
of-the-art SAR image despeckling methods, including PPB
[15], SAR-BM3D [6], POTDF [12], and NLSAR [16]. Two
images are used to test the filtering performance of the proposed
method. They are a 256 × 256 optical image, namely, Monarch
[see Fig. 1(a)], and a 600 × 600 1-look TerraSAR-X image [see
Fig. 1(b)] taken over Dalian in China. For Monarch, we have
simulated four images with L = 1, 2, 4, and 8, using the same
method in [6].

A. Parameter Setting

In the proposed algorithm, there are several free parameters
that need to be set. For different values of the ENL, the patch
size is different. When L is small, we should choose big
patches. Here, we set m to 81, 64, and 49 for L ≤ 1, 1 < L ≤ 3,
and L > 3, respectively. In the step of grouping, the search
range is restricted to an 81 × 81 neighborhood, i.e., C = 81.
In the step of SSC, we set N (g) = 15 and K = 4 m. In the step
of iterative regularization, δ, γ, and N (it) are set to 0.03, 0.15,
and 6, respectively.

B. Experimental Results

For simulated images, we mainly use the peak signal-to-noise
ratio (PSNR) and the structural similarity (SSIM) index [25] to

Fig. 1. Images used in the experiments. (a) Monarch (256 × 256). (b) Dalian
(600 × 600), L = 1.00. The pixels in the red box are used to analyze the ratio
image, and the pixels in the white box are used for ENL estimation.

evaluate the filtering performance. Table I reports the PSNR
and SSIM results for Monarch. When L = 1, the proposed
method is a little inferior to SAR-BM3D, but performs better
than the other methods. When L = 2, 4, and 8, the proposed
method outperforms the other methods. Fig. 2 presents the
filtered images for Monarch contaminated by 1-look speckle.
Although PPB has very strong speckle-reduction ability, it
removes a lot of details and generates artifacts around the
edges. SAR-BM3D has the strongest detail-preserving ability.
However, its speckle-reduction ability is not good enough, and
it generates some artifacts in flat regions. As shown in Fig. 2(d),
POTDF removes some details and introduces some pointwise
artifacts. NLSAR has the strongest speckle-reduction ability.
However, it removes some details and generates some pointwise
artifacts. From Fig. 2(f), we can find that the proposed method
has very strong speckle-reduction ability and detail-preserving
ability. Moreover, it only introduces few artifacts. For simulated
images, the proposed method performs similar to SAR-BM3D
and achieves state-of-the-art despeckling performance.

The speckle in simulated images is white. However, the
speckle in real SAR images is usually correlated. Thus, we
will mainly use real SAR images to evaluate the despeckling
performance. Fig. 3 presents the filtered images for Dalian.
It can be seen that all of these methods have very strong
detail-preserving ability in urban areas. However, the speckle-
reduction ability of SAR-BM3D in flat areas is not as good as
that in the simulated case because SAR-BM3D is developed
under the hypothesis of uncorrelated speckle. PPB has very
strong speckle-reduction ability. However, it introduces some
artifacts in flat areas. In Fig. 3(c), POTDF also produces some
pointwise artifacts like that in the simulated case. NLSAR has
the strongest speckle-reduction ability in flat regions. However,
it blurs some details such as the edges and strong targets in
flat areas. The proposed method obtains very good results in
flat regions and preserves the details well. Thus, from the view
of visual effect, we can conclude that the proposed method
outperforms the other methods.

To further evaluate the despeckling performance, we adopt
two commonly used indicators [26], i.e., the ENL and the
ratio image. The ENL is used to evaluate the speckle-reduction
ability in homogeneous areas. The method that corresponds
to the largest ENL has the strongest speckle-reduction ability.
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TABLE I
PSNR (dB) AND SSIM RESULTS FOR MONARCH. THE BEST RESULTS ARE IN BOLDFACE

Fig. 2. Filtered images for Monarch contaminated by 1-look speckle.
(a) Noisy. (b) PPB. (c) SAR-BM3D. (d) POTDF. (e) NLSAR. (f) Proposed.

In Fig. 1(b), two homogeneous areas in the white boxes are
selected to estimate the ENL. The ENL results of filtered
images with different filtering methods are reported in Table II.
It can be found that NLSAR has the strongest speckle-reduction
ability in homogeneous areas, and the proposed method is the
second best. The ratio image, which is defined as the pointwise
ratio between the noisy image I and the denoised image Î ,
stands for the noise removed by SAR image filtering. The

best result corresponds to the ratio image that is the closest to
the actual speckle. Suppose that r denotes the ratio image. To
judge which one is the closest to the actual speckle, we adopt
the mean and the ENL of r, which represent the bias and the
speckle power suppression [26], respectively. To analyze the
ratio image, a big region where the speckle is fully developed
should be selected. In Fig. 1(b), the region in the red box is
selected. Table II also reports the mean value and the ENL of
ratio images. From the results of E[r], one can see that the mean
values of the POTDF ratio image and the NLSAR ratio image
are the closest to 1. Thus, POTDF and NLSAR have the small-
est bias, and the proposed method is a little inferior to POTDF
and NLSAR. From the results of ENLr, we can find that the
ENL of the ratio image acquired by the proposed method is
the closest to 1.00, which is the measured ENL of the original
image. Thus, the speckle power suppression of the proposed
method is the best. From the view of quantitative analysis, we
can also conclude that the proposed method achieves state-of-
the-art despeckling performance with real SAR images.

Since both POTDF and the proposed method are based on
simultaneous sparse representation, we would like to detail the
reason why the proposed method performs better than POTDF,
particularly for single-look images. The reasons are twofold.
First, the iterative regularization technique can improve the fil-
tering performance, and this point has been already reported in
many image denoising methods [24], [27]. Second, as pointed
out in [12], the learned dictionary is not very suitable for SSC
when L = 1 because it has a lot of meaningless patches. In
the proposed method, the efficiency of dictionary learning is
improved during the iterations, particularly when L = 1.

Since both the nonlocal sparse model and the iterative regu-
larization technique are quite time consuming, the computation
complexity of the proposed method is higher than that of the
other methods. Processing the SAR image in Fig. 1(b) takes
around 7 min, using a personal computer of Intel Core i5
processor with 2.80-GHz main frequency and 8.00-GB main
memory. With the help of the parallel computing technology,
we can further reduce the computing time of the proposed
method.

V. CONCLUSION

In this letter, an iterative SAR image filtering method has
been proposed. The input SAR image was first transformed
to the logarithmic SAR image domain. Then, the log-intensity
image was iteratively filtered by the nonlocal sparse model.
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Fig. 3. Filtered images for Dalian. (a) PPB. (b) SAR-BM3D. (c) POTDF. (d) NLSAR. (e) Proposed.

TABLE II
ENL OF THE FILTERED IMAGES AND THE MEAN VALUE AND THE ENL OF

THE RATIO IMAGES. MEASURED ENL OF THE ORIGINAL IMAGE IS 1.00.
THE BEST RESULTS ARE IN BOLDFACE

Experimental results with both simulated and real SAR images
demonstrated the effectiveness of the proposed method. Future
work will further explore the potential of the iterative regular-
ization technique. We will also extend the proposed method to
polarimetric SAR image filtering.
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