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An Iterative Technique for the
Detection of Land-Cover Transitions in
Multitemporal Remote-Sensing Images
Lorenzo Bruzzone,Student Member, IEEE,and Sebastiano B. Serpico,Member, IEEE

Abstract—We propose a supervised nonparametric technique,
based on the “compound classification rule” for minimum er-
ror, to detect land-cover transitions between two remote-sensing
images acquired at different times. Thanks to a simplifying
hypothesis, the compound classification rule is transformed into
a form easier to compute. In the obtained rule, an important
role is played by the probabilities of transitions, which take into
account the temporal dependence between two images. In order to
avoid requiring that training sets be representative of all possible
types of transitions, we propose an iterative algorithm which
allows the probabilities of transitions to be estimated directly
from the images under investigation. Experimental results on two
Thematic Mapper images confirm that the proposed algorithm
may provide remarkably better detection accuracy than the
“Post-Classification Comparison” algorithm, which is based on
the separate classifications of the two images.

I. INTRODUCTION

DETECTION of land-cover changes is one of the most in-
teresting aspects of the analysis of multitemporal remote-

sensing images [1]. In particular, it is very useful in many
applications, like land use change analysis, study on shifting
cultivation, monitoring of pollution, assessment of burned
areas, assessment of deforestation, and so on [2]–[4]. Many
of these applications relate to the analysis of large areas on
the Earth surface; then, it is important to exploit automatic
techniques to detect land-cover changes in order to reduce the
effort required by manual image analysis.

A. Previous Work

Usually, change detection involves a couple of spatially
registered remote-sensing images acquired on the same ground
area at two different times. Two main approaches to detecting
land-cover changes can be distinguished: changes can be
detected by comparing the spectral reflectances of multitem-
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poral raw satellite images; changes can be detected by using
supervised classifiers.

Many change detection algorithms are based on the former
approach [2], [5]–[9]. TheUnivariate Image Differencing
algorithm [2], [7]–[9], for example, performs change detection
by subtracting, on a pixel basis, the images acquired at
two times to produce a further image (“difference image”).
Under the hypothesis of few changes between the two times,
changes can be detected in the tails of the probability density
function of the pixel values in the difference image; this
technique is usually applied to a single spectral band. Other
techniques, likeVegetation Index Differencing[2], [5], make
the same kind of comparison by using, instead of a spectral
band, vegetation indices [1] or other linear (e.g., Tasselled
Cap Transformation [1], [8]) or nonlinear combinations of
original bands. Also the widely usedChange Vector Analysis
technique [2] exploits an analogous concept. In this case,
however, the pixels at each time are represented by their
vectors in the feature space. Then, for each couple of pixels,
the so called “spectral change vector” is computed as the
difference between the feature vectors at the two times.
The statistical analysis of the magnitudes of the spectral
change vectors allows one to detect the presence of changes,
while their directions make it possible to distinguish among
different kinds of transitions. Another technique similar to the
above-described ones isImage Ratioing[2]; in this case, the
comparison between spectral bands at two times is performed
by computing the ratio, instead of the difference, between
images. The techniques based on thePrincipal Component
Analysis[2], [6], [9] can be used to perform change detection
by applying the principal component transformation separately
to the feature space at single times or to the merged feature
space at two times. In the first case, change detection is
performed according toVegetation Index Differencingby using
principal components instead of vegetation indices. In the
second case, land-cover changes can be detected by analyzing
the minor components of the transformed feature space [2].

The above techniques usually do not aim to identify ex-
plicitly what kinds of land-cover transitions have taken place
in an area (e.g., the fact that a vegetated area has been
urbanized). Only theChange Vector Analysistechnique allows
one to distinguish among different kinds of changes but, being
not supervised, it does not explicitly identify the typologies
of transitions. Then, the above techniques are suitable for
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applications like, for example, detection of burned areas,
detection of pollution, detection of deforestation, and so on.
However, they cannot be applied when the only information
on the presence of change is not sufficient, like, for example,
in the monitoring of shifting cultivation, where it is necessary
to recognize the kinds of changes that have taken place in the
agricultural area investigated. In addition, the performances
of such techniques are generally degraded by several factors
(like differences in illumination at two times, differences in
atmospheric conditions, in sensor calibration and in ground
moisture conditions) that make difficult a direct comparison
between raw images acquired at different times.

In order to overcome these problems, one can use the
techniques based on a supervised classification of multitem-
poral images [2]. The simplest technique of this category
is Post-Classification Comparison[2]. It performs change
detection by comparing the classification maps obtained by
classifying independently two remote-sensing images of the
same area acquired at different times. In this way, it is
possible to detect changes and to understand the kinds of
transitions that have taken place. Furthermore, the classifica-
tion of multitemporal images avoids the need to normalize for
atmospheric conditions, sensor differences and so on, between
the two acquisitions. However, the performances of thePost-
Classification Comparisontechnique critically depends on the
accuracies of the classification maps. In particular, the final
change detection map exhibits an accuracy close to the product
of the accuracies yielded at the two times [2]. This is due
to the fact thatPost-Classification Comparisondoes not take
into account the dependence existing between two images of
the same area acquired at two different times.Supervised
Direct Multidata Classification[2] is able to overcome this
problem. In this technique, pixels are characterized by a vector
obtained by “stacking” the feature vectors related to the images
acquired at two times. Then, change detection is performed
by considering each transition as a class and by training a
classifier to recognize the transitions. Appropriate training sets
are required: the training pixels at the two times should be
related to the same points on the ground and should represent
accurately the proportions of all the transitions in the whole
images. Usually, in real applications, it is difficult to have
training sets with such characteristics.

In general, the approach based on supervised classification
is more flexible than that based on the comparison of multitem-
poral raw data. In addition to the already mentioned capability
to explicitly recognize land-cover transitions and to reduce
the effects of different acquisition conditions at two times, it
allows one to perform change detection also by using different
sensors at two times. This is a useful property when change
detection on a large temporal scale has to be performed and
available images are provided by different sensors. Finally, by
exploiting appropriate nonparametric classifiers, this approach
is able to utilize also images of the multisensorial type acquired
at both single times.

B. Content of the Paper

In this paper, we present a technique to explicitly identify
land-cover transitions in multitemporal remote-sensing images.

This technique belongs to the type of approaches based on
supervised classification and is designed to reduce the prob-
lems of some of the techniques of this type. In particular,
with respect toPost-Classification Comparison,we are able
to take into account the time dependency between thea
priori probabilities of classes at two times by applying a
“compound classification” to the images acquired at two times.
With respect to theSupervised Direct Multidata Classification
technique, we aim to relax the constraints on training sets.
To this end, we propose an iterative technique aimed to
estimate the probabilities of land-cover transitions among
classes not from training sets but directly from the images
under analysis.

In order to evaluate the performances of our approach, we
selected a multitemporal data set, composed of two Landsat
Thematic Mapper images, related to an agricultural area.
Experimental results are reported and compared with those
provided by thePost-Classification Comparisontechnique.

This paper is organized into five sections. In the next
section, we derive the simplified compound classification rule
we utilize to perform the detection of land-cover transitions
in multitemporal images. In Section III, we indicate how
to implement the simplified compound classification rule; in
particular, we propose an algorithm to estimate iteratively the
probabilities of land-cover transitions. The data set used for
experiments is described in Section IV, where experimental
results are also reported. In Section V results are discussed
and conclusions are drawn.

II. DETECTION OF LAND-COVER

TRANSITIONS BY COMPOUND CLASSIFICATION

Two multispectral remote-sensing images acquired at times
and on the same area on the ground are examined.

Let us consider couples of pixels made up of a pixel of the
multispectral image acquired at time and a spatially corre-
sponding pixel of the multispectral image acquired at time;
let such pixels be characterized by the-dimensional feature
vectors and , respectively. Let
be the set of possible land-cover classes at time, and let

be the set of possible land-cover
classes at time . A land-cover change in the considered
couple of pixels is detected if the two classesand , to
which such pixels are assigned, are different.

If we disregard contextual information in the spatial domain,
i.e., if we classify each couple of pixels independently of
any other on the basis only of its feature vectors and

, the optimal classification, in the sense of minimum
error probability, is given by the Bayes rule for the case of
compound classification problems [10]. Such a rule requires
that the couple of classes ( ) be selected that provides the
maximuma posterioriprobability, given the observed feature
vectors and [10], [11]:

(1)
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The couple of classes ( ) that provides the maximum in
(1) is the same that provides the following maxima:

(2)

where the term can be neglected, as it is indepen-
dent of and .

Both (1) and (2) involve the estimations of functions
which are defined in a ( )-dimensional space. These
estimations could be carried out by using a set of training
pixels (“training set”). Unfortunately, in real situations, it is
difficult to have suitable training sets available, as a large
number of training pixels for each possible combination of
classes and are required. In order to simplify the
estimation of such functions, we introduce the following
hypothesis. Let us consider the feature vector ,
related to time , be composed of a signal componentand
of a noise component , i.e.,

and

(3)

Let us assume that the signal depends only on the land-
cover class at time , and that the noise depends only on the
land-cover class at time and possibly on (as occurs, for
example, for multiplicative noise in SAR images). Under this
hypothesis, the probabilistic dependence between the images at
the two times derives only from the dependence of the classes
at the two times, and one can write

(4)

(An assumption analogous to that defined by (4) was in-
troduced by Swain [11] in the context of multitemporal
classification.)

By substituting (4) into (2) and by applying some transfor-
mations, we obtain that the following maximum can be used
in the decision rule:

(5)

According to (5), under the above-defined hypothesis, to
perform the compound classification of two multitemporal
remote-sensing images we need to estimate thea priori prob-
abilities of the classes at time , the single-date, multi-

variate, conditional probabilities and at
the two times, and the probabilities of transitions .

III. I TERATIVE DETECTION OFLAND-COVER TRANSITIONS

The approach we propose to the detection of land-cover
transitions is of the supervised nonparametric type, that is, we
assume to have a training set at our disposal for each of the
image acquired at the two times and we do not hypothesize
any model of probability density functions of data. We require
that these two training sets be representative of the data in
the whole images, in the sense that: i) the number of pixels
belonging to each class is approximately proportional to the
prior probability of that class; ii) the probability distribution
of training data is the same as that of the data in the whole
images. It is worth noting that these two assumptions are the
same that are usually adopted in the supervised classification of
single-date images. The two training sets may refer to different
points on the ground.

A. Class Prior Probabilities

In the above assumptions about the training sets, thea priori
class probabilities at can be easily estimated from
the related training set by considering the relative frequency
of the pixels of each class:

no. of training pixels at that belong to
total no. of training pixels at

(6)

B. Posterior Class Probabilities

According to theoretical results reported in [12] and [13], a
neural network appropriately trained by using a mean-square-
error criterion gives network outputs that, after normalization,
approximate posterior class probabilities. In order to estimate

and , we utilize two different multilayer
perceptron neural networks [14], [15] trained with the data sets
available at times and , respectively. Training is carried
out by using the backpropagation learning procedure [14].

C. Probabilities of Land-Cover Transitions

We have to estimate the elements of the following
matrix of probabilities of land-cover transitions:

...
...

...
...

...

...
...

...
...

...

(7)

where the element represents the probability that a pixel
belonging to the class at may belong to the class at

.
In general, it is not possible to estimate the above-mentioned

probabilities of land-cover transitions directly from the training
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set because in real applications it is difficult to have training
sets that verify the following two necessary conditions: i)
training pixels at the two dates should correspond to the same
points on the ground; ii) the relative frequency of the
land-cover transitions in the training sets should provide a
reasonable approximation to the probabilities of land-cover
transitions in the whole image. In many real cases, this does
not occur. In particular, the latter of the above conditions
is not equivalent to the former condition we assumed at the
beginning of this section, and it is more difficult that it should
be verified by training sets.

Some information about the probabilities of land-cover
transitions could be obtained by interviews to experts in the
applications or by analyzing historical databases. However,
also in this case, it is difficult that, for all the probabilities of
land-cover transitions, reasonable estimates may be obtained.

Consequently, we propose to estimate the probabilities of
transitions from the whole images under investigation. The
problem is that, in order to estimate such probabilities from
the images, one needs to detect the transitions that occur inside
them, but the proposed technique to detect transitions, in its
turn, requires such estimates of probabilities of transitions as
inputs. To solve this problem, we propose, in the following,
an iterative algorithm which does not require anya priori
knowledge about probabilities of transitions.

D. The Iterative Compound Classification Algorithm

Initialization: We start by estimating and
(e.g., by using two neural networks). Then we

compute from the training set as in
(6) and, assuming the independence of each classat of
each class at , we initialize the matrix of probabilities
of transitions as follows:

(8)

where indicates the number of the iteration.
First Iteration: The above initialization allows the appli-

cation of the first iteration of the compound classification as
defined by (5). As a result, a classification map is obtained for
each of the images at the two times; it can be used to compute
the first estimate of probabilities of transitions (see (9), shown
at the bottom of the page) for and all and .

If the first estimate is more accurate than the initialization
in (8), we expect that it will be used to obtain more accurate
classification maps and a more precise detection of land-cover
transitions by applying again the compound classification rule.
This process can be further iterated.

th Iteration: In general, at the th iteration, a couple of
updated classification maps can be generated by using the

estimate of the matrix computed at the ( )th
iteration. and , which are already
computed in the initialization step, are used to this purpose
(without any need to compute them again). Then, a new
estimate can be derived from the new classification maps.

Stop Criterion: The estimation process stops when, be-
tween two iterations, the largest difference among the esti-
mates of all probabilities of transitions is below a selected
threshold :

(10)

where is in the range 0–1 and tunes the estimation accuracy.

The outputs of the algorithm are the land-cover transi-
tions that are detected by comparing the two classifica-
tion maps generated at the last iteration.

With reference to the classification provided by the first
iteration, it is worth noting that the assumption of the hy-
pothesis of independence ofa priori class probabilities in (8),
together with the previous hypothesis on feature vectors we
introduced in Section II, makes the compound classification
rule in (5) equivalent to the single-time Bayes classification
rule applied separately to the two images [as is easy to verify
by substituting (8) into (5)]. In other words, (5) becomes
equivalent to the independent maximization of and

.
Concerning convergence, we cannot provide a proof that the

estimates obtained by the above algorithm converge to the true
values of the probabilities of transitions. Further experiments
showed that, if the first estimate is very far from the true value
of the matrix , for example, due to very inaccurate estimates
of the posterior class probabilities in (5), the estimates of some
elements of may not converge to true values. However,
starting from reasonable first estimates, we always obtained
convergence. We note that a similar concept to that applied
in our iterative algorithm was applied inRecursive Contextual
Classification[16]; also in that case, the author left the study
of the convergence proof as an open point for further research.

IV. EXPERIMENTAL RESULTS

A. Data Set Description

The study area is located in the delta of the Po River in the
north of Italy. The climate in the area is Xerofil with two main
rainy seasons: autumn and spring. July is the driest month. The
study area is mostly characterized by extended cultivation of
wheat, corn, soybean, sugar beet, alpha-alpha, meadows and
horticulture.

We considered a section (350 500 pixels) of a couple
of multispectral images (Fig. 1) acquired with the Thematic
Mapper (TM) scanner, mounted on board of Landsat, in May
1988 (time ) and July 1988 (time ), respectively. The

no. of couples of pixels assigned to classat and to class at
total no. of couples of pixels assigned to classat

(9)
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(a) (b)

Fig. 1. Data utilized for experiments: channel 4 of the Landsat Thematic Mapper images acquired (a) in May 1988 and (b) in July 1988.

images were registered to an average accuracy on the ground
control points of about 0.5 pixel. The ground-truth of the study
area was collected for some of the land-cover types during the
days of the passages of the Landsat. The available ground
truth was used to prepare two thematic maps of the selected
test site (one for each date) which were used as reference
maps to assess the accuracy of the detection of the land-
cover transitions. To this end, we selected couples of pixels
corresponding to the same positions on the ground and for
which the ground truth was available at both times. Such
pixels, which were used to generate both the training and
the test sets, belonged to one among three possible classes
at time (i.e., bare soil, wheat, and urban) and five classes at
time (i.e., sugar beet, corn, soybean, bare soil, and urban).
Between the two times, the following transitions took place
(see Table I): bare soil in May became corn or soybean or
sugar beet in July, and wheat in May became bare soil in
July; urban areas did not change. To better approximate the
independence condition between training and test sets, we
subdivided into regions the image areas with ground truth
available at both times, then we grouped these regions into
two disjoint sets, and we took 7215 training pixels from the
regions of one set and 6308 test pixels from the regions of
the other set.

TABLE I
LAND-COVER TRANSITIONS OF THEPIXELS OF THE TEST SETS BETWEEN MAY

1988AND JULY 1988. THE NUMBER OF PIXELS FOR EACH TRANSITION IS GIVEN

Each pixel was represented by a vector of six features
corresponding to six channels of the TM in the visible and in
the infrared spectrum (the thermal channel was disregarded).

B. Results

The performances of the proposedIterative Compound Clas-
sification (ICC) technique are assessed in the following and
compared with those of thePost-Classification Comparison
(PCC) technique [2] on the above-described data set.

Concerning the ICC algorithm, we used the training set re-
lated to the image acquired at timeto derive the estimations
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TABLE II
TRUE VALUE OF THE MATRIX L OF THE PROBABILITIES OF LAND-COVER TRANSITIONS

TABLE III
ESTIMATE OF THE VALUE OF THE MATRIX L OF THE PROBABILITIES OF LAND-COVER TRANSITIONS

PROVIDED BY THE ICC ALGORITHM AT THE FIRST ITERATION

TABLE IV
ESTIMATE OF THE VALUE OF THE MATRIX L OF THE PROBABILITIES OF LAND-COVER TRANSITIONS

PROVIDED BY THE ICC ALGORITHM AT THE CONVERGENCE

of the a priori probabilities of classes at that time.
Then, we used two different neural networks trained on the
training sets related to times and , respectively, in order to
estimate the posterior class probabilities at the two times [i.e.,

and ]. Both neural networks were fully-
connected multilayer perceptrons with three layers of neurons:
an input layer, a hidden layer, and an output layer. In the input
layer we had as many neurons as the dimension of the vector
of features (i.e., six neurons). The choice of the number of
neurons in the hidden layer was made after performing trials
with different numbers of neurons. We selected three neurons
as, when we increased the number of neurons, the classification
accuracies on the training sets did not significantly improve.
In the output layer we used as many neurons as the number of
data classes, that is, three and five neurons for the networks
related to times and , respectively. Finally, we initialized
the matrix of the probabilities of land-cover transitions with
the estimates of thea priori probabilities of classes at time
[i.e., ] given by (6). The ICC technique was
then run on the test sets to assess performances; a value equal
to 0.01 was selected for the thresholdin (10).

It is interesting to analyze the behavior of the estimates
of probabilities of land-cover transitions. To this end,
Tables II–IV give the true value of the matrix of the proba-
bilities of land-cover transitions and the related estimates pro-

vided by the ICC at the first iteration and at convergence, re-
spectively. Some of the estimates of probabilities of land-cover
transitions obtained at the first iteration of the ICC (Table III)
are quite different from the corresponding real values (see, for
example, the urban-urban and wheat-bare soil transitions,
which exhibit errors of 0.273 and 0.232, respectively).
Nonetheless, the estimates of the probabilities of land-cover
transitions provided by the ICC technique at convergence are,
on an average, close to the true values, with a maximum
error of 0.105. In Fig. 2, the diagrams of the behaviors of the
estimates of probabilities of land-cover transitions are plotted
versus the number of iterations of the ICC algorithm for the
five transitions that really occurred. On the considered data
set, the convergence was reached in four iterations.

Table V shows the error matrix of the land-cover transitions
for the ICC algorithm. This matrix was computed by compar-
ing, for each couple of pixels in the test sets, the classification
maps provided by the ICC algorithm at convergence with
the corresponding ground truth. In this matrix, we give the
true land-cover transitions (as determined from the ground
truth) on the rows and the land-cover transitions detected
by the considered algorithms on the columns. The terms on
the diagonal of this matrix give correctly recognized land-
cover transitions, while the other terms give the errors on the
recognition of transitions.
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(a) (b)

(c) (d)

(e)

Fig. 2. Diagrams of the behaviors of the estimates of probabilities of land-cover transitions plotted versus the number of iterations of the ICC algorithm.
Only the transitions that really occurred are considered: (a) urban–urban, (b) bare soil–corn, (c) bare soil–soybean, (d) bare soil–sugar beet, and(e) wheat–bare
soil. Note that different scales are utilized for the vertical axes.

For the comparison with the PCC technique, we needed
classification maps obtained by independent classifications of
the test sets at the two times. To this end, we utilized the
estimates of posterior class probabilities [i.e., and

] provided by the two neural networks described
above; then, we performed the classification (independently
at the two times) according to the maximuma posteriori
probability. By comparing the classification maps at the two
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TABLE V
ERRORMATRIX OF THE LAND-COVER TRANSITIONS OF THEPIXELS OF THETESTSETS FOR THEICC ALGORITHM. THE TRUE LAND-COVER TRANSITIONS(AS DETERMINED

FROM THE GROUND TRUTH) ARE GIVEN IN THE ROWS AND THE LAND-COVER TRANSITIONS DETECTED BY THE ICC ALGORITHM ARE GIVEN IN THE COLUMNS. (MAY

1988:!1 = URBAN, !2 = BARE SOIL, !3 = WHEAT; JULY 1988:�1 = URBAN, �2 = CORN, �3 = BARE SOIL, �4 = SOYBEAN, �5 = SUGAR BEET)

times with the ground truth, we computed, also for the PCC,
the error matrix of land-cover transitions (Table VI).

Comparing the two matrices, it is easy to observe that the
ICC algorithm provided a better accuracy than the PCC one. In
particular, a notable improvement was obtained for the urban-
urban transition. The reason is that, at timethe distribution
of the urban class in the feature space strongly overlaps that
of the bare-soil class. Therefore, it is very difficult for a
classifier to distinguish between these two classes on the basis
of the single-date spectral information acquired at. On the
contrary, at time , it is easier to separate the urban class
from the other classes. Consequently, the PCC exhibits low
accuracy on the urban class atand high accuracy at . The
ICC, by jointly utilizing information at the two times, may
yield improved classification accuracy for the urban class also
at time .

In order to synthesize the differences between the perfor-
mances provided by the two algorithms, we computed the
Kappa coefficients of agreement [17]–[19] (Table VII) related
to the two error matrices in Tables V and VI. A considerable
improvement in the Kappa coefficient with respect to the PCC
(i.e., 0.19) was obtained by using the proposed algorithm.

We can also consider the accuracy of each classification map
(related to a single time) independently of the other. At both
times, the accuracy provided by the ICC algorithm is better
than that provided by the PCC (Table VIII): improvements in
the overall classification accuracies of about 10% and 3.4%
were obtained at times and , respectively.

V. CONCLUSIONS

In this paper, we have presented an iterative approach to
the detection of land-cover transitions which is based on
the compound classification of multitemporal remote-sensing

images. The introduction of a simplifying hypothesis about the
feature vectors allowed the compound classification rule for
the minimum error to be transformed into a form which can be
more easily computed. In particular, the dependence between
the images is taken into account only in the probability of
land-cover transitions between the two times.

The novelty of the proposed approach lies in the iterative
technique to estimate the probabilities of land-cover tran-
sitions directly from the images under investigation. As a
consequence, both in the presentation of the approach and in
the description of experimental results, we focused on such
an iterative estimation rather than on the other probability
estimations required, for which suitable techniques can be
found in the literature. In particular, we suggested adopting
neural networks to estimate posterior class probabilities at a
single time; however, one can utilize different techniques for
estimating these probabilities. Furthermore, one may rewrite
the compound classification rule as a function of the class-
conditional probability density functions of the feature vectors
[i.e., and ] and utilize parametric (e.g.,
hypothesizing Gaussian distributions) or nonparametric esti-
mation techniques.

Experimental results on the selected real data set confirmed
that, even if the dependence between the multitemporal images
may be partially lost due to the simplifying hypothesis we
introduced, the use of the iterative probability estimates of
land-cover transitions inside the classification rule allows a sig-
nificant improvement in the detection of such transitions with
respect to the independent classification of the multitemporal
images performed by thePost-Classification Comparison.

Like any other classification-based technique, our approach
requires that a training set be available for each of the
multitemporal images; on the other hand, it also exhibits the
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TABLE VI
ERROR MATRIX OF THE LAND-COVER TRANSITIONS OF THEPIXELS OF THE TEST SETS FOR THEPCC ALGORITHM. THE TRUE LAND-COVER TRANSITIONS (AS

DETERMINED FROM THE GROUND TRUTH) ARE GIVEN IN THE ROWS AND THE LAND-COVER TRANSITIONS DETECTED BY THE PCC ALGORITHM ARE GIVEN IN THE

COLUMNS. (MAY 1988:!1 = URBAN,!2 = BARE SOIL,!3 =WHEAT JULY 1988:�1 = URBAN, �2 = CORN, �3 = BARE SOIL, �4 = SOYBEAN, �5 = SUGAR BEET)

TABLE VII
KAPPA COEFFICIENT OFAGREEMENT RELATED TO THE ERROR MATRICES FOR

THE ICC (SEE TABLE V) AND PCC (SEE TABLE VI) A LGORITHMS

TABLE VIII
CLASSIFICATION ACCURACIES OFCLASSIFICATION MAPS AT

EACH TIME PROVIDED BY THE ICC AND PCC ALGORITHMS

typical advantages of this kind of techniques, which have
already been pointed out in the Introduction.

In the context of classification-based methods, the advantage
of the proposed approach over to thePost-Classification
Comparisonlies mainly in the higher accuracy it may provide.
With respect to theSupervised Direct Multidate Classification,
in our case the training sets can be generated independently, as
they need not refer to the same points on the ground, nor be
representative of all possible types of land-cover transitions
(as, instead, is required by theSupervised Direct Multidate
Classification).

Concerning the computational load, the only time-
consuming step of the ICC is the initialization, which requires
the separate estimation of the posterior class probabilities

and (e.g., by neural networks). The
other iterations of the ICC utilize the estimation of the
posterior probabilities computed in the initialization step and,
therefore, they are very fast. Since the PCC also requires the
estimation of posterior class probabilities, we may conclude
that the proposed approach does not require a significant
increase in the computational load with respect to the PCC.

As further developments, we are studying how to make the
convergence of the iterative estimates of transition probabil-
ities more reliable. In addition, we are investigating if some
of the hypotheses we made on the feature vectors and on the
training sets can be removed. For example, we are considering
the estimation of prior class probabilities directly from the
images under investigation in order to remove the hypothesis
that the number of training pixels of each class is proportional
to the corresponding class probabilities.
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