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Abstract—We propose a supervised nonparametric technique, poral raw satellite images; changes can be detected by using
based on the “compound classification rule” for minimum er- sypervised classifiers.
ror, to detect land-cover transitions between two remote-sensing Many change detection algorithms are based on the former

images acquired at different times. Thanks to a simplifying L . .
hypothesis, the compound classification rule is transformed into approach [2], [5]-[9]. TheUnivariate Image Differencing

a form easier to compute. In the obtained rule, an important algorithm [2], [7]-[9], for example, performs change detection
role is played by the probabilities of transitions, which take into by subtracting, on a pixel basis, the images acquired at
account the temporal dependence between two images. In order to two times to produce a further image (“difference image”).
avoid requiring that training sets be representative of all possible Under the hypothesis of few changes between the two times,

types of transitions, we propose an iterative algorithm which . - - .
allows the probabilities of transitions to be estimated directly changes can be detected in the tails of the probability density

from the images under investigation. Experimental results on two function of the pixel values in the difference image; this
Thematic Mapper images confirm that the proposed algorithm technique is usually applied to a single spectral band. Other
may provide remarkably better detection accuracy than the techniques, likevegetation Index Differencinf?], [5], make
Post-Classification Comparison” algorithm, which is based on o same kind of comparison by using, instead of a spectral
the separate classifications of the two images. . - .
band, vegetation indices [1] or other linear (e.g., Tasselled
Cap Transformation [1], [8]) or nonlinear combinations of
|. INTRODUCTION original bands. Also the widely usedhange Vector Analysis
ETECTION of land-cover changes is one of the most i echnique [2] e?<pI0|ts an analpgous concept. In this case,
owever, the pixels at each time are represented by their

teresting aspects of the analysis of multitemporal remo i )
vectors in the feature space. Then, for each couple of pixels,

sensing images [1]. In particular, it is very useful in man led * A e q h
applications, like land use change analysis, study on shififfff SO called “spectral change vector” is computed as the
erence between the feature vectors at the two times.

cultivation, monitoring of pollution, assessment of burne - ; X
statistical analysis of the magnitudes of the spectral

areas, assessment of deforestation, and so on [2]-[4]. Ma I q h ¢ oh
of these applications relate to the analysis of large areas nge vectors allows one 1o detect the presence of changes,

the Earth surface; then, it is important to exploit automat?ﬁ’_h'le their directions make it possible to distinguish among

techniques to detect land-cover changes in order to reduce Gifferent kinds of transitions. Another technique similar to the
effort required by manual image analysis above-described ones image Ratioing?2]; in this case, the

comparison between spectral bands at two times is performed
i by computing the ratio, instead of the difference, between
A. Previous Work images. The techniques based on fréncipal Component
Usually, change detection involves a couple of spatiallknalysis[2], [6], [9] can be used to perform change detection
registered remote-sensing images acquired on the same graoyepplying the principal component transformation separately
area at two different times. Two main approaches to detectittgthe feature space at single times or to the merged feature
land-cover changes can be distinguished: changes canspace at two times. In the first case, change detection is
detected by comparing the spectral reflectances of multiteperformed according tuegetation Index Differencinigy using
principal components instead of vegetation indices. In the
Manurfcript fecei(\ﬁgte%e?gem;gffwli%inlagg;f;g\r/]iqse?l:liomagf?hthle7'0(1)292-ra2§écond case, land-cover changes can be detected by analyzing
:zzzg:gh V\;I)?zjecc(:n “Integratedp assessment of environmental degradaﬁlﬁﬁ minor components of the transformed feature space [2].
connected with forest fires in European areas,” which was supported byThe above techniques usually do not aim to identify ex-

the EEC (Environment Programme I, Contract EV5V-CT94-0481), and iPlicitly what kinds of land-cover transitions have taken place
part within the framework of the Italian project “Sviluppo di metodi integrat the fact that tated h b
di classificazione agroecologica tramite dati di telerilevamento per la gestidlrfle an area (e.g., the fac at a vegetated aréa has been

delle risorse naturali,” supported by the Italian Space Agency. urbanized). Only th€hange Vector Analysigchnique allows
The authors are with the Department of Biophysical and Electronigne to distinguish among different kinds of changes but, being

Engineering, University of Genoa, 1-16145, Genova, ltaly (e-mail: vul- ised. it d licitly id . h logi

cano@dibe.unige.it). not supervised, it does not explicitly identify the typologies

Publisher Item Identifier S 0196-2892(97)04476-8. of transitions. Then, the above techniques are suitable for

0196-2892/97$10.001 1997 IEEE



BRUZZONE AND SERPICO: MULTITEMPORAL REMOTE-SENSING IMAGES 859

applications like, for example, detection of burned area$his technique belongs to the type of approaches based on
detection of pollution, detection of deforestation, and so osupervised classification and is designed to reduce the prob-
However, they cannot be applied when the only informatidems of some of the techniques of this type. In particular,
on the presence of change is not sufficient, like, for examplgith respect toPost-Classification Comparisonye are able
in the monitoring of shifting cultivation, where it is necessarjo take into account the time dependency between ghe
to recognize the kinds of changes that have taken place in tlt@ri probabilities of classes at two times by applying a
agricultural area investigated. In addition, the performancémmpound classification” to the images acquired at two times.
of such techniques are generally degraded by several factdfith respect to th&upervised Direct Multidata Classification
(like differences in illumination at two times, differences itechnique, we aim to relax the constraints on training sets.
atmospheric conditions, in sensor calibration and in groud® this end, we propose an iterative technique aimed to
moisture conditions) that make difficult a direct comparisoestimate the probabilities of land-cover transitions among
between raw images acquired at different times. classes not from training sets but directly from the images
In order to overcome these problems, one can use theder analysis.
techniques based on a supervised classification of multitemdn order to evaluate the performances of our approach, we
poral images [2]. The simplest technique of this categoselected a multitemporal data set, composed of two Landsat
is Post-Classification Comparisof2]. It performs change Thematic Mapper images, related to an agricultural area.
detection by comparing the classification maps obtained Bxperimental results are reported and compared with those
classifying independently two remote-sensing images of theovided by thePost-Classification Comparisaechnique.
same area acquired at different times. In this way, it is This paper is organized into five sections. In the next
possible to detect changes and to understand the kindsse€tion, we derive the simplified compound classification rule
transitions that have taken place. Furthermore, the classifigee utilize to perform the detection of land-cover transitions
tion of multitemporal images avoids the need to normalize fon multitemporal images. In Section Ill, we indicate how
atmospheric conditions, sensor differences and so on, betwégimplement the simplified compound classification rule; in
the two acquisitions. However, the performances ofRlost- particular, we propose an algorithm to estimate iteratively the
Classification Comparisotechnique critically depends on theprobabilities of land-cover transitions. The data set used for
accuracies of the classification maps. In particular, the finekperiments is described in Section 1V, where experimental
change detection map exhibits an accuracy close to the prod@siults are also reported. In Section V results are discussed
of the accuracies yielded at the two times [2]. This is dugnd conclusions are drawn.
to the fact thatPost-Classification Comparisotioes not take
into account the dependence existing between two images of
the same area acquired at two different tim8sipervised
Direct Multidata Classification[2] is able to overcome this Il. DETECTION OF LAND-COVER
problem. In this technique, pixels are characterized by a vector ~ TRANSITIONS BY COMPOUND CLASSIFICATION
obtained by “stacking” the feature vectors related to the imagesTwo multispectral remote-sensing images acquired at times
acquired at two times. Then, change detection is performgd and ¢, on the same area on the ground are examined.
by considering each transition as a class and by trainingLet us consider couples of pixels made up of a pixel of the
classifier to recognize the transitions. Appropriate training setultispectral image acquired at tinte and a spatially corre-
are required: the training pixels at the two times should Bgonding pixel of the multispectral image acquired at time
related to the same points on the ground and should repredeniuch pixels be characterized by tiaimensional feature
accurately the proportions of all the transitions in the wholgectors X; and X, respectively. Lef? = {w1, wa, - -+, wy
images. Usually, in real applications, it is difficult to havébe the set of possible land-cover classes at timeand let
training sets with such characteristics. N = {1, v2, -+, vm} be the set of possible land-cover
In general, the approach based on supervised classificaiifsisses at timet,. A land-cover change in the considered
is more flexible than that based on the comparison of multiterweuple of pixels is detected if the two classesand v;, to
poral raw data. In addition to the already mentioned capabilityhich such pixels are assigned, are different.
to explicitly recognize land-cover transitions and to reduce If we disregard contextual information in the spatial domain,
the effects of different acquisition conditions at two times, ite., if we classify each couple of pixels independently of
allows one to perform change detection also by using differeaty other on the basis only of its feature vectdfs and
sensors at two times. This is a useful property when changg, the optimal classification, in the sense of minimum
detection on a large temporal scale has to be performed amtbr probability, is given by the Bayes rule for the case of
available images are provided by different sensors. Finally, Bgmpound classification problems [10]. Such a rule requires
exploiting appropriate nonparametric classifiers, this approagtat the couple of classes( ;) be selected that provides the
is able to utilize also images of the multisensorial type acquirgdaximuma posterioriprobability, given the observed feature
at both single times. vectors X; and X, [10], [11]:

B. Content of the Paper

In this paper, we present a technique to explicitly identify max {P( Wi, Vj )} 1)
land-cover transitions in multitemporal remote-sensing images. wis ¥ Xi, Xo
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The couple of classes.{, ;) that provides the maximum in variate, conditional probabilitie®(w;/X;) and P(v; /X,) at

(1) is the same that provides the following maxima:

X
p< 17X2>P<
Wi, Vj

v

Wi

max

wi, V5 p(X1, Xo2)

the two times, and the probabilities of transitiaRév; /w;).

Il. | TERATIVE DETECTION OF LAND-COVER TRANSITIONS

The approach we propose to the detection of land-cover
transitions is of the supervised nonparametric type, that is, we

assume to have a training set at our disposal for each of the
image acquired at the two times and we do not hypothesize
any model of probability density functions of data. We require

that these two training sets be representative of the data in

X1, X i
w p(GE2VP(L )} @
iV 1y j )
the whole images, in the sense that: i) the number of pixels
belonging to each class is approximately proportional to the

where the ternp(X;, X5) can be neglected, as it is indepen=" » " L SO
dent of w; and ;. prior probability of that class; ii) the probability distribution

Both (1) and (2) involve the estimations fx m functions of training data is the same as that of the data in the whole

which are defined in a2(x d)-dimensional space. TheseMages. It is worth noting that these two assumptions are the

estimations could be carried out by using a set of trainirﬁ‘me that are usually adopted ir_l t_he supervised classific_ation of
pixels (“training set”). Unfortunately, in real situations, it is>"9le-date images. The two training sets may refer to different
difficult to have suitable training sets available, as a Iargﬁ?'ms on the ground.

number of training pixels for each possible combination of _

classesw; and v; are required. In order to simplify theA. Class Prior Probabilities

estimation of such functions, we introduce the following In the above assumptions about the training setsa héori
hypothesis. Let us consider the feature vector(i = 1, 2), class probabilitiesP(y;) at t> can be easily estimated from
related to timet;, be composed of a signal componéhtand the related training set by considering the relative frequency
of a noise componen¥,, i.e., of the pixels of each class:

. no. of training pixels at, that belong ta;
Xi=5+M () total no. of training pixels at, ©)
and
X =855+ N, (3) B. Posterior Class Probabilities

According to theoretical results reported in [12] and [13], a
Let us assume that the signé] depends only on the land-neural network appropriately trained by using a mean-square-
cover class at time;, and that the nois&/; depends only on the error criterion gives network outputs that, after normalization,
land-cover class at timg and possibly onS; (as occurs, for approximate posterior class probabilities. In order to estimate
example, for multiplicative noise in SAR images). Under thi®(w;/X,) and P(v;/X>), we utilize two different multilayer
hypothesis, the probabilistic dependence between the imageseateptron neural networks [14], [15] trained with the data sets
the two times derives only from the dependence of the classeailable at timeg; andt,, respectively. Training is carried
at the two times, and one can write out by using the backpropagation learning procedure [14].

(G) - (G(5)
Wi,y Vy Wy vy

(An assumption analogous to that defined by (4) was in-

(4) C. Probabilities of Land-Cover Transitions

We have to estimate the elements of the following m
.matrix of probabilities of land-cover transitions:

troduced by Swain [11] in the context of multitemporal
classification.)

o

1
w1

)

g

vi

w1

)

g

Vm \ 7]
w1

By substituting (4) into (2) and by applying some transfor-
mations, we obtain that the following maximum can be used :
in the decision rule: I = P<V1>

P(2)(2)0(2)
max X1 X Wi . (5)

w;
Wi, Vj P(l/j)

(2) - o) @
Wi Wi

p<>_1) . P(ﬁ) . P(@)
L wn wn wn =

where the element; represents the probability that a pixel
According to (5), under the above-defined hypothesis, belonging to the class; at¢; may belong to the class; at
perform the compound classification of two multitemporah.
remote-sensing images we need to estimateathgori prob- In general, it is not possible to estimate the above-mentioned
abilities P(r;) of the classes at tim&, the single-date, multi- probabilities of land-cover transitions directly from the training
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set because in real applications it is difficult to have trainingstimate L*~! of the L matrix computed at thek(— 1)th
sets that verify the following two necessary conditions: ijeration.P(w;/X1), P(r;/X2), andP(v;), which are already
training pixels at the two dates should correspond to the sagwmputed in the initialization step, are used to this purpose
points on the ground; ii) the relative frequency of thec m  (without any need to compute them again). Then, a new
land-cover transitions in the training sets should provide estimateL* can be derived from the new classification maps.
reasonable approximation to the probabilities of land-cover Stop Criterion: The estimation process stops when, be-
transitions in the whole image. In many real cases, this daggeen two iterations, the largest difference among the esti-
not occur. In particular, the latter of the above conditionmates of all probabilities of transitions is below a selected
is not equivalent to the former condition we assumed at tiieresholde:
beginning of this section, and it is more difficult that it should

be verified by training sets.

Some information about the probabilities of land-cover . o
transitions could be obtained by interviews to experts in tﬁ/(g’heres is in the range 0-1 :?md tunes the estimation accu.racy.
applications or by analyzing historical databases. However, The outputs of the algorithm are the land-cover transi-
also in this case, it is difficult that, for all the probabilities of tions that are detected by comparing the two classifica-
land-cover transitions, reasonable estimates may be obtainedlion maps generated at the last iteration.

Consequently, we propose to estimate the probabilities ofWith reference to the classification provided by the first
transitions from the whole images under investigation. Thtgration, it is worth noting that the assumption of the hy-
problem is that, in order to estimate such probabilities fropthesis of independence afpriori class probabilities in (8),
the images, one needs to detect the transitions that occur indigether with the previous hypothesis on feature vectors we
them, but the proposed technique to detect transitions, in ifigroduced in Section Il, makes the compound classification
turn, requires such estimates of probabilities of transitions &de in (5) equivalent to the single-time Bayes classification
inputs. To solve this problem, we propose, in the followingule applied separately to the two images [as is easy to verify
an iterative algorithm which does not require aaypriori by substituting (8) into (5)]. In other words, (5) becomes
knowledge about probabilities of transitions. equivalent to the independent maximization/¢ft;/ X, ) and
P(v;/Xs).

Concerning convergence, we cannot provide a proof that the
o ) . estimates obtained by the above algorithm converge to the true

Initialization: We start by estimatingP(w;/X1) and y4yes of the probabilities of transitions. Further experiments
P(rj/X2) (e.g., by using two neural networks). Then Wep,wed that, if the first estimate is very far from the true value
compute P(v;) (j = 1, ---, m) from the training set as in of the matrixZ, for example, due to very inaccurate estimates
(6) and, assuming the independence of each alas ¢, of o the posterior class probabilities in (5), the estimates of some
each classy; att;, we initialize the matrix of probabilities gjements ofL may not converge to true values. However,

ko_ k-1
Ig{ajx{llij -l <e (10)

D. The Iterative Compound Classification Algorithm

of transitions as follows: starting from reasonable first estimates, we always obtained
N e convergence. We note that a similar concept to that applied
li; = <w) in our iterative algorithm was applied Recursive Contextual
T

Classification[16]; also in that case, the author left the study

=P(v)) (k=0) of the convergence proof as an open point for further research.

wherek indicates the number of the iteration.

First Iteration: The above initialization allows the appli-
cation of the first iteration of the compound classification as o
defined by (5). As a result, a classification map is obtained f6r Data Set bescription
each of the images at the two times; it can be used to comput& he study area is located in the delta of the Po River in the
the first estimate of probabilities of transitions (see (9), showrorth of Italy. The climate in the area is Xerofil with two main
at the bottom of the page) fdr = 1 and allw; andy;. rainy seasons: autumn and spring. July is the driest month. The

If the first estimaté}j is more accurate than the initializationstudy area is mostly characterized by extended cultivation of
in (8), we expect that it will be used to obtain more accuratgheat, corn, soybean, sugar beet, alpha-alpha, meadows and
classification maps and a more precise detection of land-coberticulture.
transitions by applying again the compound classification rule.We considered a section (350 500 pixels) of a couple
This process can be further iterated. of multispectral images (Fig. 1) acquired with the Thematic

kth lteration: In general, at thé:th iteration, a couple of Mapper (TM) scanner, mounted on board of Landsat, in May
updated classification maps can be generated by using #1988 (timet¢;) and July 1988 (timet;), respectively. The

IV. EXPERIMENTAL RESULTS

no. of couples of pixels assigned to clagsat¢; and to class/; att,
total no. of couples of pixels assigned to clagsat ¢;

ko _

(9)
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(b)
Fig. 1. Data utilized for experiments: channel 4 of the Landsat Thematic Mapper images acquired (a) in May 1988 and (b) in July 1988.

images were registered to an average accuracy on the ground TABLE |

control points of about 0.5 pixel. The ground-truth of the stud AND-COVER TRANSITIONS OF THEPIXELS OF THE TEST SETS BETWEEN MAY
988AND JuLy 1988. THE NUMBER OF PIXELS FOR EACH TRANSITION IS GIVEN

area was collected for some of the land-cover types during the

days of the passages of the Landsat. The available ground Data Class Data Class Number of pixels
truth was used to prepare two thematic maps of the selected (May 1988) (July 1988) in the test sets
test site (one for each date) which were us_ed as reference Urban Urban 310
maps to assess the accuracy of the detection of the land-

. . . Corn 387
cover transitions. To this end, we selected couples of pixels _
corresponding to the same positions on the ground and for Bare soil Soybean 3322
which the ground truth was available at both times. Such Sugar beet 255
pixels, which were used to generate both the training and Wheat Bare soil 1534

the test sets, belonged to one among three possible classes
at timet, (i.e., bare soil, wheat, and urban) and five classes at ) )
time #» (i.e., sugar beet, corn, soybean, bare soil, and urban)Each pixel was represented by a vector of six features
Between the two times, the following transitions took placg®"mesponding to six channels of the TM in the visible and in
(see Table I): bare soil in May became corn or soybean the infrared spectrum (the thermal channel was disregarded).

sugar beet in July, and wheat in May became bare soil in
July; urban areas did not change. To better approximate fRe
independence condition between training and test sets, w&he performances of the propodéerative Compound Clas-
subdivided into regions the image areas with ground truffification (ICC) technique are assessed in the following and
available at both times, then we grouped these regions imtompared with those of thPost-Classification Comparison
two disjoint sets, and we took 7215 training pixels from théPCC) technique [2] on the above-described data set.
regions of one set and 6308 test pixels from the regions ofConcerning the ICC algorithm, we used the training set re-
the other set. lated to the image acquired at timgto derive the estimations

Results
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TABLE 1l
TRUE VALUE OF THE MATRIX L OF THE PROBABILITIES OF LAND-COVER TRANSITIONS
July 1988
May 1988 Urban Corn Bare soil Soybean | Sugar beet
Urban 1.000 0.000 0.000 0.000 0.000
Bare soil 0.000 0.098 0.000 0.838 0.064
Wheat 0.000 0.000 1.000 0.000 0.000
TABLE Il

ESTIMATE OF THE VALUE OF THE MATRIX L OF THE PROBABILITIES OF LAND-COVER TRANSITIONS
PROVIDED BY THE ICC ALGORITHM AT THE FIRST ITERATION

July 1988
May 1988 Urban Corn Bare soil Soybean | Sugar beet
Urban 0.727 0.000 0.159 0.114 0.000
Bare soil 0.137 0.073 0.014 0.718 0.058
Wheat 0.190 0.003 0.768 0.039 0.000
TABLE IV

ESTIMATE OF THE VALUE OF THE MATRIX L OF THE PROBABILITIES OF LAND-COVER TRANSITIONS
ProvVIDED BY THE ICC ALGORITHM AT THE CONVERGENCE

July 1988
May 1988 Urban Corn Bare soil Soybean | Sugar beet
Urban 1.000 0.000 0.000 0.000 0.000
Bare soil 0.016 0.084 0.000 0.831 0.069
Wheat 0.091 0.000 0.895 0.014 0.000

of the a priori probabilities of classed’(r;) at that time. vided by the ICC at the first iteration and at convergence, re-
Then, we used two different neural networks trained on thlspectively. Some of the estimates of probabilities of land-cover
training sets related to times andt,, respectively, in order to transitions obtained at the first iteration of the ICC (Table IlI)
estimate the posterior class probabilities at the two times [i.are quite different from the corresponding real values (see, for
P(w;/X1) and P(v,;/X5)]. Both neural networks were fully- example, the urban-urban and wheat-bare soil transitions,
connected multilayer perceptrons with three layers of neuromghich exhibit errors of 0.273 and 0.232, respectively).
an input layer, a hidden layer, and an output layer. In the inpNbnetheless, the estimates of the probabilities of land-cover
layer we had as many neurons as the dimension of the vedransitions provided by the ICC technique at convergence are,
of features (i.e., six neurons). The choice of the number oh an average, close to the true values, with a maximum
neurons in the hidden layer was made after performing trigdsror of 0.105. In Fig. 2, the diagrams of the behaviors of the
with different numbers of neurons. We selected three neuroestimates of probabilities of land-cover transitions are plotted
as, when we increased the number of neurons, the classificatiensus the number of iterations of the ICC algorithm for the
accuracies on the training sets did not significantly improvéive transitions that really occurred. On the considered data
In the output layer we used as many neurons as the numbesef, the convergence was reached in four iterations.
data classes, that is, three and five neurons for the network3able V shows the error matrix of the land-cover transitions
related to timeg; andt,, respectively. Finally, we initialized for the ICC algorithm. This matrix was computed by compar-
the matrixL of the probabilities of land-cover transitions withing, for each couple of pixels in the test sets, the classification
the estimates of tha priori probabilities of classes at tintfg maps provided by the ICC algorithm at convergence with
[i.e., l?j = I:’(z/j)Vi, 7] given by (6). The ICC technique wasthe corresponding ground truth. In this matrix, we give the
then run on the test sets to assess performances; a value egual land-cover transitions (as determined from the ground
to 0.01 was selected for the thresheldn (10). truth) on the rows and the land-cover transitions detected
It is interesting to analyze the behavior of the estimatdyy the considered algorithms on the columns. The terms on
of probabilities of land-cover transitions. To this endthe diagonal of this matrix give correctly recognized land-
Tables II-1V give the true value of the matrix of the proba- cover transitions, while the other terms give the errors on the
bilities of land-cover transitions and the related estimates pn@cognition of transitions.
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Fig. 2. Diagrams of the behaviors of the estimates of probabilities of land-cover transitions plotted versus the number of iterations of thethdC algor
Only the transitions that really occurred are considered: (a) urban—urban, (b) bare soil-corn, (c) bare soil-soybean, (d) bare soil-sug) eetabrhre
soil. Note that different scales are utilized for the vertical axes.

For the comparison with the PCC technique, we needétir;/X,)] provided by the two neural networks described
classification maps obtained by independent classificationsatifove; then, we performed the classification (independently
the test sets at the two times. To this end, we utilized tla the two times) according to the maximuan posteriori
estimates of posterior class probabilities [i.B(w;/X;) and probability. By comparing the classification maps at the two
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TABLE V
ERRORMATRIX OF THE LAND-COVER TRANSITIONS OF THEPIXELS OF THE TEST SETS FOR THEICC ALGORITHM. THE TRUE LAND-COVER TRANSITIONS (AS DETERMINED
FROM THE GROUND TRUTH) ARE GIVEN IN THE Rows AND THE LAND-COVER TRANSITIONS DETECTED BY THE ICC ALGORITHM ARE GIVEN IN THE COLUMNS. (MAY
1988:w; = URBAN, wo = BARE SOIL, wz = WHEAT; JuLy 1988:r; = URBAN, 2 = CORN, vz = BARE SOIL, 4 = SOYBEAN, v5 = SUGAR BEET)

Ground truth

ICC oV WV V3 V4 Vs V) oV, V3 M—IVy Vs MV W3V V3 W3—IVy Vs
oV a7 0 0 0 0 0 2 0 0 4 0 0 13 0 0
oV, 0 0| o 0 0 0 0 0 0 0 0 0 0 0 0
PR 0 0 o o 0 0 0 0 0 0 0 0 0 0 0
@OV, 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Vs 0 0 0 0 »  0 0 0 0 0 0 0 0 0 0 0
1vi 57 0 0 0 0 0 2 0 % I 0 0 0 0 0
Vs 21 0 0 0 0 o Pl o 6 9 0 0 1 0 0
Vs 0 0 0 0 0 0 0o | & 0 0 0 0 0 0 0
v 16 0 0 0 0 0 27 | o0 | BB n» 0 0 1 0 0
Vs 1 0 ) 0 0 0 52 0 58 [ 169 | 0 0 0 0 0
P 43 0 0 0 0 0 2 0 1 0 0 0 99 0 0
oV, 0 0 0 0 0 0 0 0 0 0 o [ 8 [ o 0 0
V3 22 0 0 0 0 0 0 0 2 0 o | o [ 8| o 0
v 3 0 0 0 0 0 0 0 8 0 0 0 2 o] o
Vs 0 0 0 0 0 0 0 0 0 0 0 0 0 o 0

times with the ground truth, we computed, also for the PC@nages. The introduction of a simplifying hypothesis about the
the error matrix of land-cover transitions (Table VI). feature vectors allowed the compound classification rule for
Comparing the two matrices, it is easy to observe that tktee minimum error to be transformed into a form which can be
ICC algorithm provided a better accuracy than the PCC one.rtore easily computed. In particular, the dependence between
particular, a notable improvement was obtained for the urbaie images is taken into account only in the probability of
urban transition. The reason is that, at timehe distribution |and-cover transitions between the two times.
of the urban class in the feature space strongly overlaps thafrhe novelty of the proposed approach lies in the iterative
of the bare-soil class. Therefore, it is very difficult for gechnique to estimate the probabiliies of land-cover tran-
classifier to distinguish between these two classes on the bagig g directly from the images under investigation. As a
of the single-date spectral information acquired;atOn the consequence, both in the presentation of the approach and in

contrary, at timet,, it is easier to separate the urban clas&s] e :
L e description of experimental results, we focused on such
from the other classes. Consequently, the PCC exhibits IQ P P

accracy o he wban lassind igh acuracy a, The 51 (ET8Ve stimatr, rther tan o he ober probatily
ICC, by jointly utilizing information at the two times, may q ' d

yield improved classification accuracy for the urban class alf@nd in the literature. In particular, we suggested adopting
at time ¢,. neural networks to estimate posterior class probabilities at a
In order to synthesize the differences between the perf&‘ngle time; however, one can utilize different techniques for

mances provided by the two algorithms, we computed tﬁgtmatlng these probabilities. Furthermore, one may rewrite

Kappa coefficients of agreement [17]-[19] (Table VII) relatel]'® C_qmpound cla.s.5|f|cat|o_n rule as a function of the class-
. : : conditional probability density functions of the feature vectors
to the two error matrices in Tables V and VI. A con5|derabclh@

improvement in the Kappa coefficient with respect to the P e ];](X.l/.wi) and p(.XQ/g.j)] _an utilize parametric ((_a.g., .
(i.e., 0.19) was obtained by using the proposed algorithm. ypothesizing Gaussian distributions) or nonparametric esti-

Wi | ider th ¢ h classificati mation techniques.
€ can also consider the accuracy of each classitication ma‘Experimental results on the selected real data set confirmed

(related to a single time) independently of the other. At botis even if the dependence between the multitemporal images
times, the accuracy provided by the ICC a!gorlthm is bet‘@ﬁay be partially lost due to the simplifying hypothesis we
than that provided by the PCC (Table VIIl): improvements ifhiroduced, the use of the iterative probability estimates of
the overall classification accuracies of about 10% and 3.4%q-cover transitions inside the classification rule allows a sig-
were obtained at time# andt,, respectively. nificant improvement in the detection of such transitions with
respect to the independent classification of the multitemporal
images performed by theost-Classification Comparison

In this paper, we have presented an iterative approach td.ike any other classification-based technique, our approach
the detection of land-cover transitions which is based @squires that a training set be available for each of the
the compound classification of multitemporal remote-sensimgultitemporal images; on the other hand, it also exhibits the

V. CONCLUSIONS
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TABLE VI
ERROR MATRIX OF THE LAND-COVER TRANSITIONS OF THE PIXELS OF THE TEST SETS FOR THEPCC ALGORITHM. THE TRUE LAND-COVER TRANSITIONS (AS
DETERMINED FROM THE GROUND TRUTH) ARE GIVEN IN THE Rows AND THE LAND-COVER TRANSITIONS DETECTED BY THE PCC ALGORITHM ARE GIVEN IN THE
CoLUMNS. (MAY 1988:w; = URBAN, wy = BARE SOIL, w3 = WHEAT JuLy 1988:; = URBAN, o2 = CORN, 3 = BARE SOIL, 4 = SOYBEAN, /5 = SUGAR BEET)

Ground truth
PCC W —V) V2 V3 OV, W;—IVs =V V) V3 Wy—Vy M—IVs IV 3—V3 03—V GV W3—Vs
P L 0 0 0 0 0 0 0 0 0 0 0 0 0
v, "o 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Dr—vs 6 0 0 0 0 0 0 0 0 0 0 0 1 0 0
o—vy 5 o | o [ 8| o 0 0 0 0 0 0 0 0 0 0
Vs 0 0 0 0 [T B 0 0 0 0 0 0 0 0 0
vy 607 0 0 0 0 4 6 0 8 5 0 0 12 0 0
Vs 24 0 0 0 0 0 32 | o 5 10 0 0 0 0 0
@133 59 0 0 0 0 0 e 2 0 0 0 2 0 0
Vs 14 0 0 0 0 0 % | 0 | 213 | 74 0 0 1 0 0
Vs 1 0 0 0 0 0 46 0 56 s | 0 0 0 0 0
RN 55 0 0 0 0 0 2 0 o T o0 % 0 | 251 | o 0
-y 0 0 0 0 0 0 2 0 0 0 0 0 3 0 0
@—oVs 2 0 0 0 0 0 0 0 0 0 0 ] 244 | 0 0
@V 5 0 0 0 0 0 0 0 38 1 0 0 » T o
or3vs 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
TABLE VII Concerning the computational load, the only time-

KAPPA COEFFICIENT OF AGREEMENT RELATED TO THE ERROR MATRICES FOR consuming step of the ICC is the initialization, which requires
THE ICC (Sck TaBLE V) AND PCC (%E TABLE VI) ALGORITHMS . . . ’ e
the separate estimation of the posterior class probabilities
P(w;/X1) and P(v;/X>) (e.g., by neural networks). The
other iterations of the ICC utilize the estimation of the

Kappa coefficient of agreement

ICC PCC posterior probabilities computed in the initialization step and,
therefore, they are very fast. Since the PCC also requires the

086 0.67 estimation of posterior class probabilities, we may conclude
that the proposed approach does not require a significant

increase in the computational load with respect to the PCC.
TABLE VIII As further developments, we are studying how to make the
CLASSIFICATION ACCURACIES OF CLASSIFICATION MAPS AT convergence of the iterative estimates of transition probabil-
EAcH TiME PROVIDED BY THE ICC AND PCC ALGORITHMS ities more reliable. In addition, we are investigating if some
of the hypotheses we made on the feature vectors and on the
Algorithm Overall Classification Accuracy (%) training sets can be removed. For example, we are considering
the estimation of prior class probabilities directly from the

May 1988 July 1988 . . o .
o o images under investigation in order to remove the hypothesis
ICC 96.88 93.17 that the number of training pixels of each class is proportional
PCC 86.91 89.74 to the corresponding class probabilities.
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typical advantages of this kind of techniques, which have
already been pointed out in the Introduction.

In the context of classification-based methods, the advant
of the proposed approach over to thRost-Classification
Comparisonies mainly in the higher accuracy it may provide
With respect to th&upervised Direct Multidate Classification
in our case the training sets can be generated independently, as
they need not refer to the same points on the ground, nor be
representative of all possible types of land-cover transitionB] J. A. RichardsRemote Sensing Digital Image Analystsd ed. New
(as, instead, is required by tfupervised Direct Multidate York: Springer-Verlag, 1993.

o [2] A. Singh, “Digital change detection techniques using remotely-sensed
Classification. data,” Int. J. Remote Sensingol. 10, no. 6, pp. 989—-1003, 1989.
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