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Abstract

We consider linear inverse problems where the solution is assumed to have a

sparse expansion on an arbitrary preassigned orthonormal basis. We prove that

replacing the usual quadratic regularizing penalties by weighted �p- penalties on

the coefficients of such expansions, with 1 ≤ p ≤ 2, still regularizes the prob-

lem. Use of such �p-penalized problems with p < 2 is often advocated when one

expects the underlying ideal noiseless solution to have a sparse expansion with

respect to the basis under consideration. To compute the corresponding regular-

ized solutions, we analyze an iterative algorithm that amounts to a Landweber

iteration with thresholding (or nonlinear shrinkage) applied at each iteration step.

We prove that this algorithm converges in norm. c© 2004 Wiley Periodicals, Inc.

1 Introduction

1.1 Linear Inverse Problems

In many practical problems in the sciences and applied sciences, the features of

most interest cannot be observed directly, but have to be inferred from other, ob-

servable quantities. In the simplest approximation, which works surprisingly well

in a wide range of cases and often suffices, there is a linear relationship between

the features of interest and the observed quantities. If we model the object (the

traditional shorthand for the features of interest) by a function f , and the derived

quantities or image by another function h, we can cast the problem of inferring f

from h as a linear inverse problem, the task of which is to solve the equation

K f = h .

This equation and the task of solving it make sense only when placed in an appro-

priate framework. In this paper we shall assume that f and h belong to appropriate

function spaces, typically Banach or Hilbert spaces, f ∈ BOBJECT, h ∈ BIMAGE,
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and K is a bounded operator from the space BOBJECT to BIMAGE. The choice of the

spaces must be appropriate for describing real-life situations.

The observations or data, which we shall model by yet another function, g, are

typically not exactly equal to the image h = K f , but rather to a distortion of h.

This distortion is often modeled by an additive noise or error term e, i.e.,

g = h + e = K f + e .

Moreover, one typically assumes that the “size” of the noise can be measured by

its L2-norm, ‖e‖ = (
∫
�

|e|2)1/2 if e is a function on �. (In a finite-dimensional

situation one uses ‖e‖ = (
∑N

n=1 |en|2)1/2 instead.) Our only “handle” on the image

h is thus via the observed g, and we typically have little information on e = g − h

beyond an upper bound on its L2-norm ‖e‖. (We have here implicitly placed our-

selves in the “deterministic setting” customary to the inverse problems community,

of which this introduction is only a brief overview; see, e.g., [2, 3] or [23] for a

comprehensive treatment. In the stochastic setting more familiar to statisticians,

one assumes instead a bound on the variance of the components of e.) Therefore it

is customary to take BIMAGE = L2(�); even if the “true images” h (i.e., the images

K f of the possible objects f ) lie in a much smaller space, we can only know them

up to some (hopefully) small L2-distance.

We shall consider in this paper a whole family of possible choices for BOBJECT,

but we shall always assume that these spaces are subspaces of a basic Hilbert space

H (often an L2-space as well), and that K is a bounded operator from H to L2(�).

In many applications, K is an integral operator with a kernel representing the re-

sponse of the imaging device; in the special case where this linear device is trans-

lation invariant, K reduces to a convolution operator.

To find an estimate of f from the observed g, one can minimize the discrepancy

�( f ),

�( f ) = ‖K f − g‖2 ;
functions that minimize �( f ) are called pseudosolutions of the inverse problem.

If the operator K has a trivial null space, i.e., if N(K ) = { f ∈ H : K f =
0} = {0}, there is a unique minimizer, given by f̃ = (K ∗K )−1 K ∗g, where K ∗ is

the adjoint operator. If N(K ) �= {0} it is customary to choose, among the set of

pseudosolutions, the unique element f † of minimal norm, i.e., f † = arg-min{‖ f ‖ :
f minimizes �( f )}. This function belongs to N(K )⊥ and is called the generalized

solution of the inverse problem. In this case the map K † : g �→ f † is called

the generalized inverse of K . Even when K ∗K is not invertible, K †g is well-

defined for all g such that K ∗g ∈ R(K ∗K ). However, the generalized inverse

operator may be unbounded (for so-called ill-posed problems) or have a very large

norm (for ill-conditioned problems). In such instances, it has to be replaced by

bounded approximants or approximants with smaller norm, so that numerically

stable solutions can be defined and used as meaningful approximations of the true

solution corresponding to the exact data. This is the issue of regularization.
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1.2 Regularization by Imposing Additional Quadratic Constraints

The definition of a pseudosolution (or even, if one considers equivalence

classes modulo N(K ), of a generalized solution) makes use of the inverse of the

operator K ∗K ; this inverse is well-defined on the range R(K ∗) of K ∗ when K ∗K is

a strictly positive operator, i.e., when its spectrum is bounded below away from 0.

When the spectrum of K ∗K is not bounded below by a strictly positive constant,

R(K ∗K ) is not closed, and not all elements of R(K ∗) lie in R(K ∗K ). In this case

there is no guarantee that K ∗g ∈ R(K ∗K ); even if K ∗g belongs to R(K ∗K ), the

unboundedness of (K ∗K )−1 can cause severe numerical instabilities unless addi-

tional measures are taken.

This blowup or these numerical instabilities are regarded as “unphysical” in the

sense that we typically know a priori that the true object would not have had a huge

norm in H or other characteristics exhibited by the unconstrained “solutions.” A

standard procedure to avoid these instabilities or to regularize the inverse problem

is to modify the functional to be minimized so that it incorporates not only the

discrepancy but also the a priori knowledge one may have about the solution. For

instance, if it is known that the object is of limited “size” in H, i.e., if ‖ f ‖H ≤ ρ ,

then the functional to be minimized can be chosen as

�( f ) + µ‖ f ‖2
H = ‖K f − g‖2

L2(�)
+ µ‖ f ‖2

H

where µ is some positive constant called the regularization parameter. The mini-

mizer is given by

(1.1) fµ = (K ∗K + µI )−1 K ∗g

where I denotes the identity operator. The constant µ can then be chosen appropri-

ately, depending on the application. If K is a compact operator, with singular value

decomposition given by K f = ∑∞
k=1 σk〈 f, vk〉uk , where (uk)k∈N and (vk)k∈N are

the orthonormal bases of eigenvectors of K K ∗ and K ∗K , respectively, with corre-

sponding eigenvalues σ 2
k , then (1.1) can be rewritten as

(1.2) fµ =
∞∑

k=1

σk

σ 2
k + µ

〈g, uk〉vk .

This formula shows explicitly how this regularization method reduces the impor-

tance of the eigenmodes of K ∗K with small eigenvalues, which otherwise (if

µ = 0) lead to instabilities. If an estimate of the “noise” is known, i.e., if we

know a priori that g = K f + e with ‖e‖ ≤ ε, then one finds from (1.2) that

‖ f − fµ‖ ≤
∥∥∥∥ ∞∑

k=1

µ〈 f, vk〉
σ 2

k + µ
vk

∥∥∥∥ +
∥∥∥∥ ∞∑

k=1

σk

σ 2
k + µ

〈e, uk〉vk

∥∥∥∥ ≤ �(µ) + ε√
µ

,

where �(µ) → 0 as µ → 0. This means that µ can be chosen appropriately, in an

ε-dependent way, so that the error in estimation ‖ f − fµ‖ converges to 0 when ε

(the estimation of the noise level) shrinks to 0. This feature of the method, usually



1416 I. DAUBECHIES, M. DEFRISE, AND C. DE MOL

called stability, is one that is required for any regularization method. It is similar

to requiring that a statistical estimator be consistent.

Note that the “regularized estimate” fµ of (1.2) is linear in g. This means that

we have effectively defined a linear regularized estimation operator that is espe-

cially well adapted to the properties of the operator K ; however, it proceeds with

a “one method fits all” strategy, independent of the data. This may not always be

the best approach. For instance, if H is an L2-space itself, and K is an integral

operator, the functions uk and vk are typically fairly smooth; if, on the other hand,

the objects f are likely to have local singularities or discontinuities, an approxi-

mation of type (1.2) (effectively limiting the estimates fµ to expansions in the first

N vk , with N determined by, say, σ 2
k < µ/100 for k > N ) will of necessity be a

smoothed version of f , without sharp features.

Other classical regularization methods with quadratic constraints may use qua-

dratic Sobolev norms involving a few derivatives, as the “penalty” term added to the

discrepancy. This introduces a penalization of the highly oscillating components,

which are often the most sensitive to noise. This method is especially easy to use

in the case where K is a convolution operator diagonal in the Fourier domain. In

this case the regularization produces a smooth cutoff on the highest Fourier com-

ponents, independently of the data. This works well for recovering smooth objects

that have their relevant structure contained in the lower part of the spectrum and

have spectral content homogeneously distributed across the space or time domain.

However, the Fourier domain is clearly not the appropriate representation for ex-

pressing smoothness properties of objects that are either spatially inhomogeneous,

with varying “local frequency” content, and/or present some discontinuities, be-

cause the frequency cutoff implies that the resolution with which the fine details of

the solution can be stably retrieved is necessarily limited; it also implies that the

achievable resolution is essentially the same at all points (see, e.g., the book [3] for

an extensive discussion of these topics).

1.3 Regularization by Nonquadratic Constraints

That Promote Sparsity

The problems with the standard regularization methods described above are

well known and several approaches have been proposed for dealing with them.

We discuss in this paper a regularization method that, like the classical methods

just discussed, minimizes a functional obtained by adding a penalization term to

the discrepancy; typically this penalization term will not be quadratic, but rather a

weighted �p-norm of the coefficients of f with respect to a particular orthonormal

basis in H, with 1 ≤ p ≤ 2. More precisely, given an orthonormal basis (ϕγ )γ∈�

of H, and given a sequence of strictly positive weights w = (wγ )γ∈�, we define
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the functional 
w,p by


w,p( f ) = �( f ) +
∑
γ∈�

wγ |〈 f, ϕγ 〉|p

= ‖K f − g‖2 +
∑
γ∈�

wγ |〈 f, ϕγ 〉|p .
(1.3)

For the special case p = 2 and wγ = µ for all γ ∈ � (we shall write this as

w = µw0, where w0 is the sequence with all entries equal to 1), this reduces to the

quadratic functional minimized by (1.1). If we consider the family of functionals


µw0,p( f ), keeping the weights fixed at µ, but decreasing p from 2 to 1, we grad-

ually increase the penalization on “small” coefficients (those with |〈 f, ϕγ 〉| < 1)

while simultaneously decreasing the penalization on “large coefficients” (for which

|〈 f, ϕγ 〉| > 1). As far as the penalization term is concerned, we are thus putting

a lesser penalty on functions f with large but few components with respect to the

basis (ϕγ )γ∈�, and a higher penalty on sums of many small components, when

compared to the classical method of (1.1). This effect is the more pronounced the

smaller p is. By taking p < 2, and especially for the limit value p = 1, the pro-

posed minimization procedure thus promotes sparsity of the expansion of f with

respect to the ϕγ .

This sparsity-promoting feature can also be interpreted in other ways. The min-

imization of the same variational functional (1.3) arises in the derivation of a penal-

ized maximum-likelihood solution for problems with a Gaussian noise model and

a Laplacian (or generalized Laplacian) prior; it is known that such priors promote

sparsity. Moreover, natural image data when transferred on the wavelet domain are

known to have a non-Gaussian distribution with density c exp(−|〈 f, ϕγ 〉|p) with p

close to 1, so that this function is a natural prior for this application. The variational

functional (1.3) also comes up in some formulations of independent component

analysis in which the pth power cost term is chosen when selecting for sparsity,

such as in the FastICA and InfoMax algorithms [26]. Although some applications

in signal analysis also use values of p with 0 < p < 1, we shall restrict ourselves

to p ≥ 1 because the functional ceases to be convex if p < 1.

The bulk of this paper deals with an iterative algorithm to obtain minimizers f ∗

for the functional (1.3) for general operators K . In the special case where K hap-

pens to be diagonal in the ϕγ -basis, Kϕγ = κγ ϕγ , the analysis is easy and straight-

forward. Introducing the shorthand notation fγ for 〈 f, ϕγ 〉 and gγ for 〈g, ϕγ 〉, we

then have


w,p( f ) =
∑
γ∈�

[|κγ fγ − gγ |2 + wγ | fγ |p
]

.

The minimization problem thus uncouples into a family of one-dimensional mini-

mizations and is easily solved. Of particular interest is the almost trivial case where

K is the identity operator, w = µw0, and p = 1, which corresponds to the practical

situation where the data g are equal to a noisy version of f itself, and we want to
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remove the noise (as much as possible); i.e., we wish to denoise g. In this case the

minimizing f � is given by [7]

(1.4) f � =
∑
γ∈�

f �
γ ϕγ =

∑
γ∈�

Sµ(gγ )ϕγ ,

where Sµ is the (nonlinear) thresholding function from R to R defined by

(1.5) Sµ(x) =


x + µ

2
if x ≤ −µ

2

0 if |x | <
µ

2

x − µ

2
if x ≥ µ

2
.

(We shall revisit the derivation of (1.4) below. For simplicity, we are assuming

that all functions are real-valued. If the fγ are complex, a derivation similar to

that of (1.4) then leads to a complex thresholding operator, which is defined as

Sµ(reiθ ) = Sµ(r)eiθ ; see Remark 2.5 below.)

In more general cases, especially when K is not diagonal with respect to the ϕγ -

basis, it is not as straightforward to minimize (1.3). Minimizers can be obtained by

an iterative procedure proposed and applied in, e.g., [11, 24, 35, 38, 39]. We shall

discuss an appropriate functional framework in which this iterative approach arises

naturally and use it to prove convergence in norm of the iterates. To our knowledge

this is the first such proof.

An approach that promotes sparsity with respect to a particular basis makes

sense only if we know that the objects f that we want to reconstruct do indeed

have a sparse expansion with respect to this basis. In the next section we list some

situations in which this is the case and to which the algorithm that we propose in

this paper could be applied.

1.4 Possible Applications for Sparsity-Promoting Constraints

1.4.1 Sparse Wavelet Expansions

This is the application that was the primary motivation for this paper. Wavelets

provide orthonormal bases of L2(Rd) with localization in space and in scale; this

makes them more suitable than, e.g., Fourier expansions for an efficient represen-

tation of functions that have space-varying smoothness properties. Appendix A

gives a very succinct overview of wavelets and their link with a particular family

of smoothness spaces, the Besov spaces. Essentially, the Besov space Bs
p,q(R

d) is a

space of functions on R
d that “have s derivatives in L p(Rd)”; the index q provides

some extra fine-tuning. The precise definition involves the moduli of continuity of

the function, defined by finite differencing, instead of derivatives, and combines

the behavior of these moduli at different scales. The Besov space Bs
p,q(R

d) is well-

defined as a complete metric space even if the indices p, q ∈ (0,∞) are < 1,

although it is no longer a Banach space in this case. Functions that are mostly

smooth but that have a few local “irregularities” nevertheless can still belong to a
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Besov space with high smoothness index. For instance, the one-dimensional func-

tion F(x) = sign(x)e−x2
can belong to Bs

p,q(R) for arbitrarily large s provided

0 < p < (s + 1
2
)−1. (Note that this same example does not belong to any of the

Sobolev spaces W s
p(R) with s > 0, mainly because these can be defined only for

p ≥ 1.) Wavelets provide unconditional bases for the Besov spaces, and one can

express whether a function f on R
d belongs to a Besov space by a fairly simple and

completely explicit requirement on the absolute values of the wavelet coefficients

of f . This expression becomes particularly simple when p = q; as reviewed in

Appendix A, f ∈ Bs
p,p(R) if and only if

f s,p =
( ∑

λ∈�

2σ p|λ||〈 f, �λ〉|p
) 1

p

< ∞ ,

where σ depends on s and p and is defined by σ = s + d( 1
2

− 1
p
), and where

|λ| stands for the scale of the wavelet �λ. (The 1
2

in the formula for σ is due to

the choice of normalization of the �λ, ‖�λ‖L2 = 1.) For p = q ≥ 1, · s,p

is an equivalent norm to the standard Besov norm on Bs
p,q(R

d); we shall restrict

ourselves to this case in this paper.

It follows that minimizing the variational functional for an inverse problem with

a Besov space prior constraint falls exactly within the category of problems studied

in this paper: for such an inverse problem, with operator K and with the a priori

knowledge that the object lies in some Bs
p,p, it is natural to define the variational

functional to be minimized by

�( f ) + f
p
s,p = ‖K f − g‖2 +

∑
λ∈�

2σ p|λ||〈 f, �λ〉|p ,

which is exactly of the type 
w,p( f ), as defined in (1.3). For the case where K is

the identity operator, it was noted already in [7] that the wavelet-based algorithm

for the denoising of data with a Besov prior, derived earlier in [19], amounts exactly

to the minimization of 
µw0,1( f ), where K is the identity operator and the ϕγ -basis

is a wavelet basis; the denoised approximant given in [19] then coincides exactly

with (1.4)–(1.5).

It should be noted that if d > 1, and if we are interested in functions that are

mostly smooth, with possible jump discontinuities (or other “irregularities”) on

smooth manifolds of dimension 1 or higher (i.e., not point irregularities), then the

Besov spaces do not constitute the optimal smoothness space hierarchy. For d = 2,

for instance, functions f that are C∞ on the square [0, 1]2, except on a finite set

of smooth curves, belong to B1
1,1([0, 1]2) but not to Bs

1,1([0, 1]2) for s > 1. In

order to obtain more efficient (sparser) expansions of this type of function, other

expansions have to be used, employing, e.g., ridgelets or curvelets [6, 18]. One can

then again use the iterative approach discussed in this paper with respect to these

more adapted bases [38].
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1.4.2 Other Orthogonal Expansions

The framework of this paper applies to enforcing sparsity of the expansion of

the solution on any orthonormal basis. We provide here three (nonwavelet) exam-

ples that are particularly relevant for applications, but this is of course not limita-

tive.

The first example is the case where it is known a priori that the object to be

recovered is sparse in the Fourier domain; i.e., f has only a few nonzero Fourier

components. It then makes sense to choose a standard Fourier basis for the ϕγ

and to apply the algorithms explained later in this paper. (They would have to be

adapted to deal with complex functions, but this is easily done; see Remark 2.5

below.) In the case where K is the identity operator, this is a classical problem,

sometimes referred to as “tracking sinusoids drowned in noise,” for which many

other algorithms have been developed.

For other applications, objects are naturally sparse in the original (space or

time) domain. Then the same framework can be used again if we expand such

objects in a basis formed by the characteristic functions of pixels or voxels. Once

the inverse problem is discretized in pixel space, it is regularized by penalizing the

�p-norm of the object with 1 ≤ p ≤ 2. Possible applications include the restoration

of astronomical images with scattered stars on a flat background. Objects formed

by a few spikes are also typical of some inverse problems arising in spectroscopy

or in particle sizing. In medical imaging, �p-norm penalization with p larger than

but close to 1 has been used for the imaging of tiny blood vessels [31].

The third example refers to the case where K is compact and the use of SVD

expansions is a viable computational approach, such as for solving relatively small-

scale problems or for operators that can be diagonalized in an analytic way. As

already stressed above, the linear regularization methods as, for example, the one

given by (1.2) have the drawback that the penalization or cutoff eliminates the

components corresponding to the smallest singular values independently of the

type of data. In some instances, the most significant coefficients of the object may

not correspond to the largest singular values; it may then happen that the object

possesses significant coefficients beyond the cutoff imposed by linear methods. In

order to avoid the elimination of such coefficients, it is preferable to use instead a

nonlinear regularization analogous to (1.4)–(1.5), with basis functions ϕγ replaced

by the singular vectors vk . The theorems in this paper show that the thresholded

SVD expansion

f ∗ =
+∞∑
k=1

Sµ/σ 2
k

(〈g, uk〉
σk

)
vk =

+∞∑
k=1

1

σ 2
k

Sµ(σk〈g, uk〉)vk ,

which is the minimizer of the functional (1.3) with w = µw0 and p = 1, provides

a regularized solution that is better adapted to these situations.
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1.4.3 Frame Expansions

In a Hilbert space H, a frame {ψn}n∈N is a set of vectors for which there exist

constants A, B > 0 so that, for all v ∈ H,

B−1
∑
n∈N

|〈v, ψn〉|2 ≤ ‖v‖2 ≤ A−1
∑
n∈N

|〈v,ψn〉|2 .

Frames always span the whole space H, but the frame vectors ψn are typically

not linearly independent. Frames were first proposed by Duffin and Schaeffer in

[21]; they are now used in a wide range of applications. For particular choices of

the frame vectors, the two frame bounds A and B are equal; one then has, for all

v ∈ H,

(1.6) v = A−1
∑
n∈N

〈v, ψn〉ψn .

In this case, the frame is called tight. An easy example of a frame is given by

taking the union of two (or more) different orthonormal bases in H; these unions

always constitute tight frames, with A = B equal to the number of orthonormal

bases used in the union.

Frames are typically “overcomplete”; i.e., they still span all of H even if some

frame vectors are removed. It follows that, given a vector v in H, one can find

many different sequences of coefficients such that

(1.7) v =
∑
n∈N

znψn .

Among these sequences, some have special properties for which they are preferred.

There is, for instance, a standard procedure to find the unique sequence with mini-

mal �2-norm; if the frame is tight, then this sequence is given by zn = A−1〈v,ψn〉,
as in (1.6).

The problem of finding sequences z = (zn)n∈N that satisfy (1.7) can be con-

sidered as an inverse problem. Let us define the operator K from �2(N) to H that

maps a sequence z = (zn)n∈N to the element K z of H by

K z =
∑
n∈N

znψn .

Then solving (1.7) amounts to solving K z = v. Note that this operator K is

associated with, but not identical to, what is often called the “frame operator.” One

has, for v ∈ H,

K K ∗v =
∑
n∈N

〈v, ψn〉ψn ;

for z ∈ �2, the sequence K ∗K z is given by

(K ∗K z)k =
∑
l∈N

zl〈ψl, ψk〉 .
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In this framework, the sequence z of minimum �2-norm that satisfies (1.7) is given

simply by z† = K †v. The standard procedure in frame lore for constructing z†

can be rewritten as z† = K ∗(K K ∗)−1v, so that K † = K ∗(K K ∗)−1 in this case.

This last formula holds because this inverse problem is in fact well-posed: even

though N(K ) �= {0}, there is a gap in the spectrum of K ∗K between the eigenvalue

0 and the remainder of the spectrum, which is contained in the interval [A, B]; the

operator K K ∗ has its spectrum completely within [A, B]. In practice, one always

works with frames for which the ratio B/A is reasonably close to 1, so that the

problem is not only well-posed but also well-conditioned.

It is often of interest, however, to find sequences that are sparser than z†. For

instance, one may know a priori that v is a “noisy” version of a linear combination

of ψn with a coefficient sequence of small �1-norm. In this case, it makes sense to

determine a sequence zµ that minimizes

(1.8) ‖K z − v‖2
H + µ‖z‖�1 ,

a problem that falls exactly in the category of problems described in Section 1.3.

Note that although the inverse problem for K from �2(N) to H is well-defined, this

need not be the case with the restriction K |�1 from �1(N) to H. One can indeed

find tight frames for which sup{‖z‖�1 : z ∈ �1 and ‖K z‖ ≤ 1} = ∞, so that

for arbitrarily large R and arbitrarily small ε, one can find ṽ ∈ H, z̃ ∈ �1, with

‖ṽ − K z̃‖ = ε, yet inf{‖z‖�1 : ‖ṽ − K z‖ ≤ ε
2
} ≥ R‖z̃‖�1 . In a noisy situation

it therefore may not make sense to search for the sequence with minimal �1-norm

that is “closest” to v; to find an estimate of the �1-sequences of which a given v is

known to be a small perturbation, a better strategy is to compute the minimizer zµ

of (1.8).

Minimizing the functional (1.8) as an approach to obtain sequences that provide

sparse approximations K z to v was proposed and applied to various problems by

Chen, Donoho, and Saunders [8]; in the statistical literature, least-squares regres-

sion with �1-penalty has become known as the “lasso” [40]. Note that whereas [8]

used quadratic programming methods to minimize (1.3), [38] attacks the problem

by the iterative approach for which we prove convergence in this paper. Another

block iterative technique has been proposed in [37] for a dictionary formed by the

union of several orthonormal bases.

1.5 Summary of Our Approach and Results

Given an operator K from H to itself (or, more generally, from H to H′) and

an orthonormal basis (ϕγ )γ∈�, our goal is to find minimizing f � for the functionals


w,p defined in Section 1.3. The corresponding variational equations are

(1.9) ∀γ ∈ �, 〈K ∗K f, ϕγ 〉−〈K ∗g, ϕγ 〉+ wγ p

2
|〈 f, ϕγ 〉|p−1sign(〈 f, ϕγ 〉) = 0 .

When p �= 2 and K is not diagonal in the ϕγ -basis, this gives a coupled system

of nonlinear equations for the 〈 f, ϕγ 〉. To solve this system, we introduce in Sec-

tion 2 a sequence of “surrogate” functionals that are all easy to minimize, and for
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which we expect, by a heuristic argument, that the successive minimizers have our

desired f � as a limit. The formula that gives each minimizer as a function of the

previous one is the same as the algorithm proposed in [11, 38, 39] and derived

in the framework of an expectation-maximization (EM) approach to a maximum

penalized likelihood solution in [24, 35].

The two main contributions of this paper are presented in Sections 3 and 4.

In Section 3 we show that the successive minimizers of the “surrogate” functionals

defined in Section 2 do indeed converge to f �; we first establish weak convergence,

but conclude the section by proving that the convergence also holds in norm. Next,

in Section 4, we show that this iterative method leads to a stable solution in the

sense given in Section 1.2: if we apply the algorithm to data that are a small per-

turbation of a “true image” K fo, then the algorithm will produce f � that converge

to fo as the norm of the perturbation tends to 0.

These results will be established for the general case 1 ≤ p ≤ 2, but it may be

enlightening to summarize here the two main theorems in the specific case p = 1.

Let K be a bounded linear operator from H to H′, with norm strictly bounded by 1

and with a trivial null space, let g be an element of H′, and consider the functional

(1.10) 
µ( f ) = ‖K f − g‖2 + µ
∑
γ∈�

|〈 f, ϕγ 〉| .

Then:

(1) Consider the sequence of iterates

f n = Sµ( f n−1 + K ∗(g − K f n−1)) , n = 1, 2, . . . ,

where the nonlinear operator Sµ is defined componentwise by

(1.11) Sµ(g) =
∑
γ∈�

Sµ(〈g, ϕγ 〉)ϕγ

with Sµ the soft-thresholding function defined in (1.5), and with f 0 arbi-

trarily chosen in H. Then f n converges strongly to the unique minimizer

f �
µ of the functional 
µ.

(2) If µ = µ(ε) satisfies the requirements

(1.12) lim
ε→0

µ(ε) = 0 and lim
ε→0

ε2

µ(ε)
= 0 ,

then we have, for any fo ∈ H,

(1.13) lim
ε→0

[
sup

‖g−K fo‖≤ε

‖ f �
µ(ε) − fo‖

] = 0 .

1.6 Related Work

Exploiting the sparsity of the expansion on a given basis of an unknown signal,

in order to assist in the estimation or approximation of the signal from noisy data,

is an idea that has arisen in many different approaches and applications. The key

role played by sparsity to achieve superresolution in diffraction-limited imaging
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was already emphasized by Donoho [15] more than a decade ago. Since the sem-

inal paper by Donoho and Johnstone [19], the use of thresholding techniques for

sparsifying the wavelet expansions of noisy signals in order to remove the noise

(the so-called “denoising” problem) has been abundantly discussed in the litera-

ture, mainly in a statistical framework (see, e.g., the book [33]). Of particular

importance for the background of this paper is the article by Chambolle et al. [7],

which provides a variational formulation for denoising through the use of penalties

on a Besov norm of the signal; this is the perspective adopted in the present paper.

Several approaches have been proposed to generalize the denoising framework

to solve inverse problems. A first approach was to construct wavelet or “wavelet-

inspired” bases that are in some sense adapted to the operator to be inverted. The

wavelet-vaguelette decomposition (WVD) proposed by Donoho [17], as well as

the twin vaguelette-wavelet decomposition method [1], and also the deconvolution

in mirror wavelet bases [27, 33] can all be viewed as examples of this strategy. For

the inversion of the Radon transform, Lee and Lucier [30] formulated a generaliza-

tion of the WVD decomposition that uses a variational approach to set thresholding

levels. A drawback of these methods is that they are limited to special types of op-

erators K (essentially convolution-type operators under some additional technical

assumptions).

Other papers have explored the application of Galerkin-type methods to inverse

problems, using an appropriate but fixed wavelet basis [10, 14, 32]. The underlying

intuition is again that if the operator lends itself to a fairly sparse representation in

wavelets, e.g., if it is an operator of the type considered in [5], and if the object is

mostly smooth with some singularities, then the inversion of the truncated operator

will not be too onerous, and the approximate representation of the object will do

a good job of capturing the singularities. In [10] the method is made adaptive, so

that the finer-scale wavelets are used where lower scales indicate the presence of

singularities.

The mathematical framework in this paper has the advantage of not presup-

posing any particular properties for the operator K (other than boundedness) or the

basis (ϕγ )γ∈� (other than its orthonormality). We prove, in complete generality,

that generalizing Tikhonov’s regularization method from the �2-penalty case to a

�1-penalty (or, more generally, a weighted �p-penalty with 1 ≤ p ≤ 2) provides

a proper regularization method for ill-posed problems in a Hilbert space H, with

estimates that are independent of the dimension of H (and are thus valid for infinite-

dimensional separable H). To our knowledge, this is the first proof of this fact.

Moreover, we show that the Landweber-type iterative algorithm used in [11, 24,

35, 38, 39], which involves a denoising procedure at each iteration step, provides a

sequence of approximations converging in norm to the variational minimizer, and

we give estimates of the rate of convergence in particular cases.
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2 The Iterative Algorithm: A Derivation from Surrogate Functionals

It is the combined presence of K ∗K f (which couples all the equations) and

the nonlinearity of the equations that makes system (1.9) unpleasant. For this rea-

son, we borrow a technique of optimization transfer (see, e.g., [12, 29]) and con-

struct surrogate functionals that effectively remove the term K ∗K f . We first pick

a constant C so that ‖K ∗K‖ < C , and then we define the functional �( f ; a) =
C‖ f − a‖2 − ‖K f − K a‖2, which depends on an auxiliary element a of H. Be-

cause CI − K ∗K is a strictly positive operator, �( f ; a) is strictly convex in f for

any choice of a. If ‖K‖ < 1, we are allowed to set C = 1; for simplicity, we

will restrict ourselves to this case, without loss of generality since K can always be

renormalized. We then add �( f ; a) to 
w,p( f ) to form the following “surrogate

functional”:


SUR
w,p ( f ; a) = 
w,p( f ) − ‖K f − K a‖2 + ‖ f − a‖2

= ‖K f − g‖2

+
∑
γ∈�

wγ |〈 f, ϕγ 〉|p − ‖K f − K a‖2 + ‖ f − a‖2

= ‖ f ‖2 − 2〈 f, a + K ∗g − K ∗K a〉

+
∑

γ

wγ |〈 f, ϕγ 〉|p + ‖g‖2 + ‖a‖2 − ‖K a‖2

=
∑

γ

[
f 2
γ − 2 fγ (a + K ∗g − K ∗K a)γ + wγ | fγ |p

]
+ ‖g‖2 + ‖a‖2 − ‖K a‖2

(2.1)

where we have again used the shorthand vγ for 〈v, ϕγ 〉 and implicitly assumed

that we are dealing with real functions only. Since �( f ; a) is strictly convex in

f , 
SUR
w,p ( f ; a) is also strictly convex in f and has a unique minimizer for any

choice of a. The advantage of minimizing (2.1) in place of (1.9) is that the varia-

tional equations for the fγ decouple. We can then try to approach the minimizer

of 
w,p( f ) by an iterative process that goes as follows: starting from an arbitrarily

chosen f 0, we determine the minimizer f 1 of (2.1) for a = f 0; each successive

iterate f n is then the minimizer for f of the surrogate functional (2.1) anchored

at the previous iterate, i.e., for a = f n−1. The iterative algorithm thus goes as

follows:

(2.2) f 0 arbitrary; f n = arg-min
(

SUR

w,p ( f ; f n−1)
)
, n = 1, 2, . . . .

To gain some insight into this iteration, let us first focus on two special cases.
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In the case where w = 0 (i.e., the functional 
w,p reduces to the discrepancy

only), one needs to minimize


SUR
0,p ( f ; f n−1) = ‖ f ‖2 − 2〈 f, f n−1 + K ∗(g − K f n−1)〉

+ ‖g‖2 + ‖ f n−1‖2 − ‖K f n−1‖2 ;
this leads to

f n = f n−1 + K ∗(g − K f n−1) .

This is nothing else than the standard Landweber iterative method, the conver-

gence of which to the (generalized) solution of K f = g is well-known ([28];

see also [3, 23]).

In the case where w = µw0 and p = 2, the nth surrogate functional reduces to


SUR
w,2 ( f ; f n−1) = (1 + µ)‖ f ‖2 − 2〈 f, f n−1 + K ∗(g − K f n−1)〉

+ ‖g‖2 + ‖ f n−1‖2 − ‖K f n−1‖2 ;
the minimizer is now

(2.3) f n = 1

1 + µ
[ f n−1 + K ∗(g − K f n−1)] ,

i.e., we obtain a damped or regularized Landweber iteration (see, e.g., [3]). The

convergence of the function f n defined by (2.3) follows immediately from the

estimate ‖ f n+1 − f n‖ = (1 + µ)−1‖(I − K ∗K )( f n − f n−1)‖ ≤ (1 + µ)−1‖ f n −
f n−1‖, showing that we have a contractive mapping, even if N(K ) �= {0}.

In these two special cases we thus find that the f n converge as n → ∞. This

permits one to hope that the f n will converge for general w and p as well; when-

ever this is the case, the difference ‖ f n − f n−1‖2 − ‖K ( f n − f n−1)‖2 between


SUR
w,p ( f n; f n−1) and 
w,p( f n) tends to 0 as n → ∞, suggesting that the mini-

mizer f n for the first functional could well tend to a minimizer f � of the second.

In Section 3 we shall see that all this is more than a pipedream; i.e., we shall prove

that the f n do indeed converge to a minimizer of 
w,p.

In the remainder of this section we derive an explicit formula for the computa-

tion of the successive f n . We first discuss the minimization of the functional (2.1)

for a generic a ∈ H. As noted above, the variational equations for the fγ decou-

ple. For p > 1, the summand in (2.1) is differentiable in fγ , and the minimization

reduces to solving the variational equation

2 fγ + pwγ sign( fγ )| fγ |p−1 = 2(aγ + [K ∗(g − K a)]γ ) ;
since for any w ≥ 0 and any p > 1, the real function

(2.4) Fw,p(x) = x + wp

2
sign(x)|x |p−1

is a one-to-one map from R to itself, we thus find that the minimizer of (2.1) satis-

fies

(2.5) fγ = Swγ ,p(aγ + [K ∗(g − K a)]γ ) ,
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where Sw,p is defined by

(2.6) Sw,p = (Fw,p)
−1 for p > 1 .

When p = 1, the summand of (2.1) is differentiable in fγ only if fγ �= 0;

except at the point of nondifferentiability, the variational equation now reduces to

2 fγ + wγ sign( fγ ) = 2(aγ + [K ∗(g − K a)]γ ) .

For fγ > 0, this leads to fγ = aγ + [K ∗(g − K a)]γ − wγ /2; for consistency we

must impose in this case that aγ +[K ∗(g − K a)]γ > wγ /2. For fγ < 0, we obtain

fγ = aγ +[K ∗(g−K a)]γ +wγ /2, valid only when aγ +[K ∗(g−K a)]γ < −wγ /2.

When aγ +[K ∗(g − K a)]γ does not satisfy either of the two conditions, i.e., when

|aγ + [K ∗(g − K a)]γ | ≤ wγ /2, we put fγ = 0. Summarizing,

(2.7) fγ = Swγ ,1(aγ + [K ∗(g − K a)]γ ) ,

where the function Sw,1 from R to itself is defined by

(2.8) Sw,1(x) =


x − w

2
if x ≥ w

2

0 if |x | < w
2

x + w
2

if x ≤ −w
2
.

(Note that this is the same nonlinear function encountered earlier in Section 1.3, in

definition (1.5).)

The following proposition summarizes our findings and proves (the case p = 1

is not conclusively proven by the variational equations above) that we have indeed

found the minimizer of 
SUR
w,p ( f ; a):

PROPOSITION 2.1 Suppose the operator K maps a Hilbert space H to another

Hilbert space H′, with ‖K ∗K‖ < 1, and suppose g is an element of H′. Let

(ϕγ )γ∈� be an orthonormal basis for H, and let w = (wγ )γ∈� be a sequence of

strictly positive numbers. Pick arbitrary p ≥ 1 and a ∈ H. Define the functional


SUR
w,p ( f ; a) on H by


SUR
w,p ( f ; a) = ‖K f − g‖2 +

∑
γ∈�

wγ | fγ |p + ‖ f − a‖2 − ‖K ( f − a)‖2 .

Then 
SUR
w,p ( f ; a) has a unique minimizer in H. This minimizer is given by f =

Sw,p(a + K ∗(g − K a)), where the operators Sw,p are defined by

(2.9) Sw,p(h) =
∑

γ

Swγ ,p(hγ )ϕγ ,

with the functions Sw,p from R to itself given by (2.6) and (2.8). For all h ∈ H, one

has


SUR
w,p ( f + h; a) ≥ 
SUR

w,p ( f ; a) + ‖h‖2 .
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PROOF: The cases p > 1 and p = 1 should be treated slightly differently. We

discuss here only the case p = 1; the simpler case p > 1 is left to the reader.

Take f ′ = f + h, where f is as defined in the proposition, and h ∈ H is

arbitrary. Then


SUR
w,1 ( f + h; a) = 
SUR

w,1 ( f ; a) + 2〈h, f − a − K ∗(g − K a)〉
+

∑
γ∈�

wγ (| fγ + hγ | − | fγ |) + ‖h‖2 .

Define now �0 = {γ ∈ � : fγ = 0}, and �1 = � \ �0. Substituting the explicit

expression (2.7) for the fγ , we then have


SUR
w,1 ( f + h; a) − 
SUR

w,1 ( f ; a)

= ‖h‖2 +
∑
γ∈�0

[
wγ |hγ | − 2hγ (aγ + [K ∗(g − K a)]γ )

]
+

∑
γ∈�1

(
wγ | fγ + hγ | − wγ | fγ | + hγ [−wγ sign( fγ )]) .

For γ ∈ �0, 2|aγ + [K ∗(g − K a)]γ | ≤ wγ , so that wγ |hγ | − 2hγ (aγ + [K ∗(g −
K a)]γ ) ≥ 0.

If γ ∈ �1, we distinguish two cases, according to the sign of fγ . If fγ > 0,

then

wγ | fγ + hγ | − wγ | fγ | + hγ [−wγ sign( fγ )] = wγ [| fγ + hγ | − ( fγ + hγ )] ≥ 0 .

If fγ < 0, then

wγ | fγ + hγ | − wγ | fγ | + hγ [−wγ sign( fγ )] = wγ [| fγ + hγ | + ( fγ + hγ )] ≥ 0 .

It follows that 
SUR
w,1 ( f +h; a)−
SUR

w,1 ( f ; a) ≥ ‖h‖2, which proves the proposition.

�

For later reference it is useful to point out the following:

LEMMA 2.2 The operators Sw,p are nonexpansive, i.e.,

∀v, v′ ∈ H , ‖Sw,pv − Sw,pv
′‖ ≤ ‖v − v′‖ .

PROOF: As shown by (2.9),

‖Sw,pv − Sw,pv
′‖2 =

∑
γ∈�

|Swγ ,p(vγ ) − Swγ ,p(v
′
γ )|2 ,

which means that it suffices to show that, ∀x, x ′ ∈ R, and all w ≥ 0,

(2.10) |Sw,p(x) − Sw,p(x ′)| ≤ |x − x ′| .
If p > 1, then Sw,p is the inverse of the function Fw,p; since Fw,p is differentiable

with derivative uniformly bounded below by 1, (2.10) follows immediately in this

case.
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If p = 1, then Sw,1 is not differentiable in x = w
2

or x = −w
2

, and another

argument must be used. For the sake of definiteness, let us assume x ≥ x ′. We will

just check all the possible cases. If x and x ′ have the same sign and |x |, |x ′| ≥ w
2

,

then |Sw,p(x) − Sw,p(x ′)| = |x − x ′|. If x ′ ≤ −w
2

and x ≥ w
2

, then |Sw,p(x) −
Sw,p(x ′)| = x + |x ′| − w < |x − x ′|. If x ≥ w

2
and |x ′| < w

2
, then |Sw,p(x) −

Sw,p(x ′)| = x − w
2

< |x − x ′|. A symmetric argument applies to the case |x | < w
2

and x ′ ≤ −w
2

. Finally, if both |x | and |x ′| are less than w
2

, we have |Sw,p(x) −
Sw,p(x ′)| = 0 ≤ |x − x ′|. This establishes (2.10) in all cases. �

Having found the minimizer of a generic 
SUR
w,p ( f ; a), we can apply this to the

iteration (2.2), leading to the following:

COROLLARY 2.3 Let H, H′, K , g, w, and (ϕγ )γ∈� be as in Proposition 2.1. Pick

f 0 in H, and define the functions f n recursively by the algorithm (2.2). Then

(2.11) f n = Sw,p( f n−1 + K ∗(g − K f n−1)) .

PROOF: This follows immediately from Proposition 2.1. �

Remark 2.4. In the argument above, we used essentially only two ingredients: the

(strict) convexity of ‖ f − a‖2 − ‖K ( f − a)‖2 and the presence of the negative

−‖K f ‖2 term in this expression, canceling the ‖K f ‖2 in the original functional.

We can use this observation to present a slight generalization, in which the identity

operator used to upper bound K ∗K is replaced by a more general operator D that

is diagonal in the ϕγ -basis,

Dϕγ = dγ ϕγ ,

and that still gives a strict upper bound for K ∗K , i.e., satisfies

D ≥ K ∗K + ηI for some η > 0 .

In this case, the whole construction still carries through, with slight modifications;

the successive f n are now given by

f n
γ = Swγ /dγ ,p

(
f n−1
γ + [K ∗(g − K f n−1)]γ

dγ

)
.

Introducing the notation w/d for the sequence (wγ /dγ )γ , we can rewrite this as

f n = Sw/d,p

(
f n−1 + D−1[K ∗(g − K f n−1)]) .

For the sake of simplicity of notation, we shall restrict ourselves to the case D = I.

Remark 2.5. If we deal with complex rather than real functions, and the fγ ,

(K ∗g)γ , . . . , are complex quantities, then the derivation of the minimizer of


SUR
w,1 ( f ; a) has to be adapted somewhat. Writing fγ = rγ eiθγ , with rγ ≥ 0,
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θγ ∈ [0, 2π), and likewise (a + K ∗g − K ∗K a)γ = Rγ ei�γ , we find, instead of

expression (2.1),


SUR
w,p ( f ; a) =

∑
γ

[
r2
γ + wγ r p

γ − 2rγ Rγ cos(θγ − �γ )
]

+ ‖g‖2 + ‖a‖2 − ‖K a‖2 .

Minimizing over rγ ∈ [0,∞) and θγ ∈ [0, 2π) leads to θγ = �γ and rγ =
Swγ ,p(Rγ ). If we extend the definition of Sw,p to complex arguments by setting

Sw,p(reiθ ) = Sw,p(r)eiθ , then this still leads to fγ = Swγ ,p

(
aγ + [K ∗(g − K a)]γ

)
,

as in (2.5) and (2.7). The arguments of the different proofs still hold for this com-

plex version after minor and straightforward modifications.

Remark 2.6. Iterative formula (2.11) is the same as (17) in [38] or (26) in [24].

3 Convergence of the Iterative Algorithm

In this section we discuss the convergence of the sequence ( f n)n∈N defined by

(2.11). The main result of this section is the following theorem:

THEOREM 3.1 Let K be a bounded linear operator from H to H′, with norm

strictly bounded by 1. Take p ∈ [1, 2], and let Sw,p be the shrinkage operator

defined by (2.9), where the sequence w = (wγ )γ∈� is uniformly bounded below

away from 0; i.e., there exists a constant c > 0 such that ∀γ ∈ � : wγ ≥ c. Then

the sequence of iterates

f n = Sw,p( f n−1 + K ∗(g − K f n−1)) , n = 1, 2, . . . ,

with f 0 arbitrarily chosen in H, converges strongly to a minimizer of the functional


w,p( f ) = ‖K f − g‖2 + ||| f |||p
w,p ,

where ||| f |||w,p denotes the norm

(3.1) ||| f |||w,p =
[∑

γ∈�

wγ |〈 f, ϕγ 〉|p
] 1

p

, 1 ≤ p ≤ 2 .

If either p > 1 or N(K ) = {0}, then the minimizer f � of 
w,p is unique, and every

sequence of iterates f n converges strongly to f � (i.e., ‖ f n − f �‖ → 0), regardless

of the choice of f 0.

This theorem will be proven in several stages. To start, we prove weak conver-

gence, and we establish that the weak limit is indeed a minimizer of 
w,p. Next,

we prove that the convergence holds in the norm topology as well as in the weak

topology. To lighten our formulae, we introduce the shorthand notation

T f = Sw,p( f + K ∗(g − K f )) ;
with this new notation we have f n = Tn f 0.
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3.1 Weak Convergence of the f n

To prove weak convergence of the f n = Tn f 0, we apply the following theorem,

due to Opial [36]:

THEOREM 3.2 Let the mapping A from H to H satisfy the following conditions:

(i) A is nonexpansive: ∀v, v′ ∈ H, ‖Av − Av′‖ ≤ ‖v − v′‖,

(ii) A is asymptotically regular: ∀v ∈ H, ‖An+1v − Anv‖ −−−→
n→∞

0 ,

(iii) the set F of the fixed points of A in H is not empty.

Then, ∀v ∈ H, the sequence (Anv)n∈N converges weakly to a fixed point in F .

Opial’s original proof can be simplified; we provide the simplified proof (still

mainly following Opial’s approach) in Appendix B. (The theorem is slightly more

general than what is stated in Theorem 3.2 in that the mapping A need not be

defined on all of space; it suffices that it map a closed convex subset of H to itself;

see Appendix B. Reference [36] also contains additional refinements, which we

shall not need here.) One of the lemmas stated and proven in the appendix will be

invoked in its own right, further below in this section; for the reader’s convenience,

we state it here in full as well:

LEMMA 3.3 Suppose the mapping A from H to H satisfies conditions (i) and (ii)

in Theorem 3.2. If a subsequence of (Anv)n∈N converges weakly in H, then its limit

is a fixed point of A.

In order to apply Opial’s theorem to our nonlinear operator T, we need to verify

that it satisfies the three conditions in Theorem 3.2. We do this in the following

series of lemmas. We first have the following:

LEMMA 3.4 The mapping T is nonexpansive, i.e., ∀v, v′ ∈ H,

‖Tv − Tv′‖ ≤ ‖v − v′‖ .

PROOF: It follows from Lemma 2.2 that the shrinkage operator Sw,p is nonex-

pansive. Hence we have the following:

‖Tv − Tv′‖ ≤ ‖(I − K ∗K )v − (I − K ∗K )v′‖
≤ ‖I − K ∗K‖ ‖v − v′‖ ≤ ‖v − v′‖

because we assumed ‖K‖ < 1. �

This verifies that T satisfies the first condition (i) in Theorem 3.2. To verify the

second condition, we first prove some auxiliary lemmas.

LEMMA 3.5 Both (
w,p( f n))n∈N and (
SUR
w,p ( f n+1; f n))n∈N are nonincreasing se-

quences.
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PROOF: For the sake of convenience, we introduce the operator L =√
I − K ∗K , so that ‖h‖2 − ‖K h‖2 = ‖Lh‖2. Because f n+1 is the minimizer

of the functional 
SUR
w,p ( f ; f n) and therefore


w,p( f n+1) + ‖L( f n+1 − f n)‖2 = 
SUR
w,p ( f n+1; f n)

≤ 
SUR
w,p ( f n; f n) = 
w,p( f n) ,

we obtain


w,p( f n+1) ≤ 
w,p( f n) .

On the other hand,


SUR
w,p ( f n+2; f n+1) ≤ 
w,p( f n+1) ≤ 
w,p( f n+1) + ‖L( f n+1 − f n)‖2

= 
SUR
w,p ( f n+1; f n) .

�

LEMMA 3.6 Suppose the sequence w = (wγ )γ∈� is uniformly bounded below by a

strictly positive number. Then the ‖ f n‖ are bounded uniformly in n.

PROOF: By Lemma 3.5 we have

||| f n|||p
w,p ≤ 
w,p( f n) ≤ 
w,p( f 0) .

Hence the f n are bounded uniformly in the ||| · |||w,p-norm. Moreover, since wγ ≥ c,

uniformly in γ , for some c > 0,

‖ f ‖2 ≤ c
− 2

p max
γ∈�

[
w(2−p)/p

γ | fγ |2−p
]||| f |||p

w,p ≤ c
− 2

p ||| f |||2−p
w,p ||| f |||p

w,p

= c
− 2

p ||| f |||2w,p ,(3.2)

and we also have a uniform bound on the ‖ f n‖. �

LEMMA 3.7 The series
∑∞

n=0 ‖ f n+1 − f n‖2 is convergent.

PROOF: This is a consequence of the strict positive-definiteness of L , which

holds because ‖K‖ < 1. We have, for any N ∈ N,

N∑
n=0

‖ f n+1 − f n‖2 ≤ 1

A

N∑
n=0

‖L( f n+1 − f n)‖2

where A is a strictly positive lower bound for the spectrum of L∗L . By Lemma 3.5,

N∑
n=0

‖L( f n+1 − f n)‖2 ≤
N∑

n=0

[
w,p( f n) − 
w,p( f n+1)]

= 
w,p( f 0) − 
w,p( f N+1) ≤ 
w,p( f 0) ,

where we have used that (
w,p( f n))n∈N is a nonincreasing sequence. It follows

that
∑N

n=0 ‖ f n+1 − f n‖2 is bounded uniformly in N , so that the infinite series

converges. �
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As an immediate consequence, we have the following:

LEMMA 3.8 The mapping T is asymptotically regular, i.e.,

‖Tn+1 f 0 − Tn f 0‖ = ‖ f n+1 − f n‖ → 0 for n → ∞ .

We can now establish the following:

PROPOSITION 3.9 The sequence f n = Tn f 0, n = 1, 2, . . . , converges weakly,

and its limit is a fixed point for T.

PROOF: Since, by Lemma 3.6, the f n = Tn f 0 are uniformly bounded in n,

it follows from the Banach-Alaoglu theorem that they have a weak accumulation

point. By Lemma 3.3, this weak accumulation point is a fixed point for T. It

follows that the set of fixed points of T is not empty. Since T is also nonexpansive

(by Lemma 3.4) and asymptotically regular (by Lemma 3.8), we can apply Opial’s

theorem (Theorem 3.1 above), and the conclusion of the proposition follows. �

By the following proposition this fixed point is also a minimizer for the func-

tional 
w,p.

PROPOSITION 3.10 A fixed point for T is a minimizer for the functional 
w,p.

PROOF: If f � = T f �, then by Proposition 2.1, we know that f � is a minimizer

for the surrogate functional 
SUR
w,p ( f ; f �), and that ∀h ∈ H,


SUR
w,p ( f � + h; f �) ≥ 
SUR

w,p ( f �; f �) + ‖h‖2 .

Observing that 
SUR
w,p ( f �; f �) = 
w,p( f �) and


SUR
w,p ( f � + h; f �) = 
w,p( f � + h) + ‖h‖2 − ‖K h‖2 ,

we conclude that ∀h ∈ H, 
w,p( f � + h) ≥ 
w,p( f �) + ‖K h‖2, which shows that

f � is a minimizer for 
w,p( f ). �

The following proposition summarizes this subsection.

PROPOSITION 3.11 (Weak Convergence) Make the same assumptions as in The-

orem 3.1. Then, for any choice of the initial f 0, the sequence f n = Tn f 0,

n = 1, 2, . . . , converges weakly to a minimizer for 
w,p. If either N(K ) = {0}
or p > 1, then 
w,p has a unique minimizer f �, and all the sequences ( f n)n∈N

converge weakly to f �, regardless of the choice of f 0.

PROOF: The only thing that hasn’t been proven yet above is the uniqueness

of the minimizer if N(K ) = {0} or p > 1. This uniqueness follows from the

observation that ||| f |||w,p is strictly convex in f if p > 1, and that ‖K f − g‖2 is

strictly convex in f if N(K ) = {0}. In both these cases 
w,p is thus strictly convex,

so that it has a unique minimizer. �
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Remark 3.12. If one has the additional prior information that the object lies in

some closed convex subset C of the Hilbert space H, then the iterative procedure

can be adapted to take this into account by replacing the shrinkage operator Sw,p

by PCSw,p, where PC is the projector on C. For example, if H = L2, then C could

be the cone of functions that are positive almost everywhere. The results in this

section can be extended to this case; a more general version of Theorem 3.2 can

be applied, in which A need not be defined on all of H, but only on C ⊂ H; see

Appendix B. We would, however, need to use other tools to ensure or assume

outright that the set of fixed points of T = PCSw,p is not empty; see also [22].

Remark 3.13. If 
w,p is strictly convex, then one can prove the weak convergence

more directly, as follows: By the boundedness of the f n (Lemma 3.6), we must

have a weakly convergent subsequence ( f nk )k∈N. By Lemma 3.8, the sequence

( f nk+1)k∈N must then also be weakly convergent, with the same weak limit f̃ . It

then follows from the equation

f nk+1
γ = Swγ ,p

(
f nk
γ + [K ∗(g − K f nk )]γ

)
,

together with limk→∞ f nk
γ = limk→∞ f nk+1

γ = f̃γ , that f̃ must be the fixed point

f � of T. Since this holds for any weak accumulation point of ( f n)n∈N, the weak

convergence of ( f n)n∈N to f � follows.

Remark 3.14. The proof of Lemma 3.6 is the only place, so far, where we have

explicitly used p ≤ 2. If it were possible to establish a uniform bound on the ‖ f n‖
by some other means (e.g., by showing that the ‖Tn f 0‖ are bounded uniformly in

n), then we could dispense with the restriction p ≤ 2, and Proposition 3.11 would

hold for all p ≥ 1.

3.2 Strong Convergence of the f n

In this section we shall prove that the convergence of the successive iterates

{ f n} holds not only in the weak topology, but also in the Hilbert space norm.

Again, we break up the proof into several lemmas. For the sake of convenience,

we introduce the following notation:

(3.3) f � = w-lim
n→∞

f n , un = f n − f � , h = f � + K ∗(g − K f �) .

Here and below, we use the notation w-lim as a shorthand for weak limit.

LEMMA 3.15 ‖K un‖ → 0 for n → ∞ .

PROOF: Since

un+1 − un = Sw,p(h + (I − K ∗K )un) − Sw,p(h) − un

and ‖un+1 − un‖ = ‖ f n+1 − f n‖ → 0 for n → ∞ by Lemma 3.8, we have

(3.4) ‖Sw,p(h + (I − K ∗K )un) − Sw,p(h) − un‖ → 0 for n → ∞ ,

and hence also

(3.5) max
(
0, ‖un‖ − ‖Sw,p(h + (I − K ∗K )un) − Sw,p(h)‖) → 0 for n → ∞ .
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Since Sw,p is nonexpansive (Lemma 2.2), we have

‖Sw,p(h + (I − K ∗K )un) − Sw,p(h)‖ ≤ ‖(I − K ∗K )un‖ ≤ ‖un‖ ;
therefore the “max” in (3.5) can be dropped, and it follows that

(3.6) ‖un‖ − ‖(I − K ∗K )un‖ → 0 for n → ∞ .

Because

‖un‖ + ‖(I − K ∗K )un‖ ≤ 2‖un‖ = 2‖ f n − f �‖
≤ 2

(‖ f �‖ + sup
k

‖ f k‖) = C

where C is a finite constant (by Lemma 3.6), we obtain

0 ≤ ‖un‖2 − ‖(I − K ∗K )un‖2 ≤ C(‖un‖ − ‖(I − K ∗K )un‖) ,

which tends to 0 by (3.6). The inequality

‖un‖2 − ‖(I − K ∗K )un‖2 = 2‖K un‖2 − ‖K ∗K un‖2 ≥ ‖K un‖2

then implies that ‖K un‖2 → 0 for n → ∞. �

Remark 3.16. Note that if K is a compact operator, the weak convergence to 0 of

the un automatically implies that ‖K un‖ tends to 0 as n tends to ∞, so that we

don’t need Lemma 3.15 in this case.

If K had a bounded inverse, we could conclude from ‖K un‖ → 0 that ‖un‖ →
0 for n → ∞. However, when K has no bounded inverse (and therefore for all

ill-posed linear inverse problems), we need some extra work to show the norm

convergence of f n to f �.

LEMMA 3.17 For h given by (3.3), ‖Sw,p(h+un)−Sw,p(h)−un‖ → 0 for n → ∞.

PROOF: We have

‖Sw,p(h + un) − Sw,p(h) − un‖
≤ ‖Sw,p(h + un − K ∗K un) − Sw,p(h) − un‖

+ ‖Sw,p(h + un) − Sw,p(h + un − K ∗K un)‖
≤ ‖Sw,p(h + un − K ∗K un) − Sw,p(h) − un‖ + ‖K ∗K un‖ ,

where we used the nonexpansivity of Sw,p (Lemma 2.2). The result follows since

both terms in this last bound tend to 0 for n → ∞ because of Lemma 3.15 and

statement (3.4). �

LEMMA 3.18 If for some a ∈ H and some sequence (vn)n∈N, w-limn→∞ vn = 0

and limn→∞ ‖Sw,p(a + vn) − Sw,p(a) − vn‖ = 0, then ‖vn‖ → 0 for n → ∞.

PROOF: The argument of the proof is slightly different for the cases p = 1 and

p > 1, and we treat the two cases separately.

We start with p > 1. Since the sequence {vn} is weakly convergent, it has to be

bounded: there is a constant B such that ∀n, ‖vn‖ ≤ B, and hence also ∀n,∀γ ∈ �,
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|vn
γ | ≤ B. Next, we define the set �0 = {γ ∈ � : |aγ | ≥ B}; since a ∈ H, this is

a finite set. We then have ∀γ ∈ �1 = � \ �0, that |aγ | and |aγ + vn
γ | are bounded

above by 2B. Recalling the definition of Swγ ,p = (Fwγ ,p)
−1, we observe that,

because p ≤ 2,

F ′
wγ ,p(x) = 1 + wγ

p(p − 1)|x |p−2

2
≥ 1 + wγ

p(p − 1)

2(2B)2−p

if |x | ≤ 2B. Hence we have∣∣Swγ ,p(aγ + vn
γ ) − Swγ ,p(aγ )

∣∣ ≤ (
max
|x |≤2B

|S′
wγ ,p(x)|)∣∣vn

γ

∣∣
≤

(
1 + wγ

p(p − 1)

2(2B)2−p

)−1∣∣vn
γ

∣∣
≤

(
1 + c

p(p − 1)

2(2B)2−p

)−1∣∣vn
γ

∣∣ ;
in the second inequality, we have used that |Swγ ,p(x)| ≤ |x |, a consequence of the

nonexpansivity of Swγ ,p (see Lemma 2.2) to upper bound the derivative S′
wγ ,p on

the interval [−2B, 2B] by the inverse of the lower bound for F ′
wγ ,p on the same

interval; in the last inequality we used the uniform lower bound on the wγ , i.e., ∀γ ,

wγ ≥ c > 0. Rewriting (1 + cp(p − 1)/[2(2B)2−p])−1 = C ′ < 1, we have thus,

∀γ ∈ �1, C ′|vn
γ | ≥ |Swγ ,p(aγ + vn

γ ) − Swγ ,p(aγ )|, which implies∑
γ∈�1

∣∣vn
γ

∣∣2 ≤ 1

(1 − C ′)2

∑
γ∈�1

∣∣vn
γ − Swγ ,p(aγ + vn

γ ) + Swγ ,p(aγ )
∣∣2

→ 0 as n → ∞ .

On the other hand, since �0 is a finite set, and the vn tend to 0 weakly as n tends to

∞, we also have ∑
γ∈�0

∣∣vn
γ

∣∣2 → 0 as n → ∞ .

This proves the proposition for the case p > 1.

For p = 1, we define a finite set �0 ⊂ � so that
∑

γ∈�\�0
|aγ |2 ≤ ( c

4
)2, where c

is again the uniform lower bound on the wγ . Because this is a finite set, the weak

convergence of the vn implies that
∑

γ∈�0
|vn

γ |2 −−−→
n→∞

0, so that we can concentrate

on
∑

γ∈�\�0
|vn

γ |2 only.

For each n, we split �1 = �\�0 into two subsets: �1,n = {γ ∈ �1 : |vn
γ +aγ | <

wγ /2} and �̃1,n = �1 \ �1,n . If γ ∈ �1,n , then Swγ ,1(aγ + vn
γ ) = Swγ ,1(aγ ) = 0

(since |aγ | ≤ c
4

≤ wγ /2), so that |vn
γ − Swγ ,1(aγ + vn

γ ) + Swγ ,1(aγ )| = |vn
γ |. It

follows that∑
γ∈�1,n

∣∣vn
γ

∣∣2 ≤
∑
γ∈�

∣∣vn
γ − Swγ ,1(aγ + vn

γ ) + Swγ ,1(aγ )
∣∣2 → 0 as n → ∞ .
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It remains to prove only that the remaining sum,
∑

γ∈�̃1,n
|vn

γ |2, also tends to 0 as

n → ∞.

If γ ∈ �1 and |vn
γ + aγ | ≥ wγ /2, then |vn

γ | ≥ |vn
γ + aγ | − |aγ | ≥ wγ /2 − c

4
≥

c
4

≥ |aγ |, so that vn
γ + aγ and vn

γ have the same sign; it then follows that∣∣vn
γ − Swγ ,1(aγ + vn

γ ) + Swγ ,1(aγ )
∣∣ =

∣∣vn
γ − Swγ ,1(aγ + vn

γ )
∣∣

=
∣∣∣∣vn

γ − (aγ + vn
γ ) + wγ

2
sign(vn

γ )

∣∣∣∣
≥ wγ

2
− |aγ | ≥ c

4
.

This implies that∑
γ∈�̃1,n

∣∣vn
γ − Swγ ,1(aγ + vn

γ ) + Swγ ,1(aγ )
∣∣2 ≥

(c

4

)2

#�̃1,n ;

since ‖vn − Sw,1(a + vn) + Sw,1(a)‖ −−−→
n→∞

0, we know on the other hand that∑
γ∈�̃1,n

∣∣vn
γ − Swγ ,1(aγ + vn

γ ) + Swγ ,1(aγ )
∣∣2

<

(c

4

)2

when n exceeds some threshold N , which implies that �̃1,n is empty when n > N .

Consequently,
∑

γ∈�̃1,n
|vn

γ |2 = 0 for n > N . This completes the proof for the case

p = 1. �

Combining the lemmas in this section with the results of Section 3.1 gives a

complete proof of Theorem 3.1 as stated at the start of Section 3.

4 Regularization Properties and Stability Estimates

In the preceding section we discussed the iterative algorithm (2.11) that con-

verges towards a minimizer of the functional

(4.1) 
w,p( f ) = ‖K f − g‖2 + ||| f |||p
w,p .

For simplicity, let us assume, until further notice, that either p > 1 or N(K ) = {0},
so that there is a unique minimizer.

In this section we shall discuss to what extent this minimizer is acceptable as

a regularized solution of the (possibly ill-posed) inverse problem K f = g. Of

particular interest to us is the stability of the estimate. For instance, if N(K ) =
{0}, we would like to know to what extent the proposed solution, in this case the

minimizer of 
w,p, deviates from the ideal solution fo if the data are a (small)

perturbation of the image K fo of fo. (If N(K ) �= {0}, then there exist other f

that have the same image as fo, and the algorithm might choose one of those; see

below.) In this discussion both the “size” of the perturbation and the weight of the

penalty term in the variational functional, given by the coefficients (wγ )γ∈�, play

a role. We argued earlier that we need w �= 0 in order to provide a meaningful
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estimate if, e.g., K is a compact operator; on the other hand, if g = K fo, then

the presence of the penalty term will cause the minimizer of 
w,p to be different

from fo. We therefore need to strike a balance between the respective weights of

the perturbation g − K fo and the penalty term. Let us first define a framework in

which we can make this statement more precise.

Because we shall deal in this section with data functions g that are not fixed,

we adjust our notation for the variational functional to make the dependence on g

explicit where appropriate; with this more elaborate notation, the right-hand side

of, for instance, (4.1) is now 
w,p;g( f ). (Because we work with one fixed operator

K , the dependence of the functional on K remains “silent.”) In order to make it

possible to vary the weight of the penalty term in the functional, we introduce an

extra parameter µ. We shall thus consider the functional

(4.2) 
µ,w,p;g( f ) = ‖K f − g‖2 + µ||| f |||p
w,p .

Its minimizer will likewise depend on all these parameters. In its full glory, we

denote it by f �
µ,w,p;g; when confusion is impossible we abbreviate this notation.

In particular, since w and p typically will not vary in the limit procedure that de-

fines stability, we may omit them in the heat of the discussion. Notice that the

dependence on w and µ arises only through the product µw.

As mentioned above, if the “error” e = g− K fo tends to 0, we would like to see

our estimate for the solution of the inverse problem tend to fo; since the minimizer

of 
µ,w,p;g( f ) differs from fo if µ �= 0, this means that we shall have to consider

simultaneously a limit for µ → 0. More precisely, we want to find a functional

dependence of µ on the noise level ε, µ = µ(ε), such that

(4.3) µ(ε) −−→
ε→0

0 and sup
‖g−K fo‖≤ε

‖ f �
µ(ε),w,p;g − fo‖ −−→

ε→0
0

for each fo in a certain class of functions. If we can achieve this, then the ill-

posed inverse problem will be regularized (in norm or “strongly”) by our iterative

method, and f �
µ,w,p;g will be called a regularized solution. One also says in this

case that the minimization of the penalized least-squares functional (4.1) provides

us with a regularizing algorithm or regularization method.

4.1 A General Regularization Theorem

If the wγ tend to ∞, or more precisely, if

(4.4) ∀C > 0, #{γ ∈ � : wγ ≤ C} < ∞ ,

then the embedding of Bw,p = { f ∈ H : ∑
γ∈� wγ | fγ |p < ∞} in H is com-

pact. (This is because the identity operator from Bw,p to H is then the norm-

limit in L(Bw,p,H), as C → ∞, of the finite rank operators PC defined by

PC f = ∑
γ∈�C

wγ 〈 f, ϕγ 〉ϕγ , where �C = {γ ∈ � : wγ ≤ C}.) In this case,

general compactness arguments can be used to show that (4.3) can be achieved.

(See also further below.) We are, however, also interested in the general case,
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where the wγ need not grow unboundedly. The following theorem proves that we

can then nevertheless choose the dependence µ(ε) so that (4.3) holds:

THEOREM 4.1 Assume that K is a bounded operator from H to H′ with ‖K‖ < 1,

that 1 ≤ p ≤ 2, and that the entries in the sequence w = (wγ )γ∈� are bounded

below uniformly by a strictly positive number c. Assume that either p > 1 or

N(K ) = {0}. For any g ∈ H′ and any µ > 0, define f �
µ,w,p;g to be the minimizer

of 
µ,w,p;g( f ). If µ = µ(ε) satisfies the requirements

(4.5) lim
ε→0

µ(ε) = 0 and lim
ε→0

ε2

µ(ε)
= 0 ,

then we have, for any fo ∈ H,

lim
ε→0

[
sup

‖g−K fo‖≤ε

‖ f �
µ(ε),w,p;g − f †‖] = 0 ,

where f † is the unique element of minimum ||| · |||w,p-norm in S = N(K ) + fo =
{ f : K f = K fo}.

Note that under the conditions of Theorem 4.1, f † must indeed be unique: if

p > 1, then the ||| · |||w,p-norm is strictly convex, so that there is a unique minimizer

for this norm in the hyperspace N(K ) + fo; if p = 1, our assumptions require

N(K ) = {0}. Note also that if N(K ) = {0} (whether or not p = 1), then necessarily

f † = fo.

To prove Theorem 4.1, we will need the following two lemmas:

LEMMA 4.2 The functions Sw,p from R to itself, defined by (2.6) and (2.8) for

p > 1 and p = 1, respectively, satisfy

|Sw,p(x) − x | ≤ wp

2
|x |p−1 .

PROOF: For p = 1, the definition (2.8) implies immediately that |x − Sw,1(x)|
= min(w

2
, |x |) ≤ w

2
, so that the proposition holds for x �= 0. For x = 0, Sw,1(x) =

0.

For p > 1, Sw,p = (Fw,p)
−1, where Fw,p(y) = y + wp

2
|y|p−1 sign(y) satisfies

|Fw,p(y)| ≥ |y|, and |Fw,p(y)− y| ≤ wp

2
|y|p−1. It follows that |Sw,p(x)| ≤ |x | and

|x − Sw,p(x)| ≤ wp

2
|Sw,p(x)|p−1 ≤ wp

2
|x |p−1. �

LEMMA 4.3 If the sequence of vectors (vk)k∈N converges weakly in H to v, and

limk→∞ |||vk |||w,p = |||v|||w,p, then (vk)k∈N converges to v in the H-norm, i.e.,

limk→∞ ‖v − vk‖ = 0.

PROOF: It is a standard result that if w-limk→∞ vk = v and limk→∞ ‖vk‖ =
‖v‖, then it follows that limk→∞ ‖v −vk‖2 = limk→∞ (‖v‖2 +‖vk‖2 −2〈v, vk〉) =
‖v‖2 + ‖v‖2 − 2〈v, v〉 = 0. We thus need to prove only that limk→∞ ‖vk‖ = ‖v‖.

Since the vk converge weakly, they are uniformly bounded. It follows that the

|vk,γ | = |〈vk, ϕγ 〉| are bounded uniformly in k and γ by some finite number C .

Define r = 2/p. Since, for x, y > 0, we have |xr − yr | ≤ r |x − y| max(x, y)r−1,
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it follows that ||vk,γ |2 − |vγ |2| ≤ rC p(r−1)||vk,γ |p − |vγ |p|. Because the wγ are

uniformly bounded below by c > 0, we obtain∣∣‖vk‖2 − ‖v‖2
∣∣ ≤

∑
γ∈�

∣∣|vk,γ |2 − |vγ |2
∣∣

≤ 2

cp
C2−p

∑
γ∈�

wγ

∣∣|vk,γ |p − |vγ |p
∣∣ ,

so that it suffices to prove that this last expression tends to 0 as k tends to ∞.

Define now uk,γ = min(|vk,γ |, |vγ |). Clearly ∀γ ∈ �, limk→∞ uk,γ = |vγ |;
since

∑
γ∈� wγ |vγ |p < ∞, it follows by the dominated convergence theorem that

limk→∞
∑

γ∈� wγ u
p

k,γ = ∑
γ∈� wγ |vγ |p. Since∑

γ∈�

wγ

∣∣|vk,γ |p − |vγ |p
∣∣ =

∑
γ∈�

wγ

(|vγ |p + |vk,γ |p − 2u
p

k,γ

) −−−→
k→∞

0 ,

the lemma follows. �

We are now ready to prove Theorem 4.1.

PROOF OF THEOREM 4.1: Let’s assume that µ(ε) satisfies the requirements

in (4.5).

We first establish weak convergence. For this it is sufficient to prove that

if (gn)n∈N is a sequence in H′ such that ‖gn − K fo‖ ≤ εn , where (εn)n∈N is

a sequence of strictly positive numbers that converges to 0 as n → ∞, then

w-limn→∞ f �
µ(εn);gn

= f †, where f �
µ;g is the unique minimizer of 
µ,w,p;g( f ). (As

announced, we have dropped here the explicit indication of the dependence of f �

on w and p; these parameters will keep fixed values throughout this proof. We will

take the liberty to drop them in our notation for 
 as well, when this is convenient.)

For the sake of convenience, we abbreviate µ(εn) as µn .

Then the f �
µn;gn

are uniformly bounded in H by the following argument:

‖ f �
µn;gn

‖p ≤ 1

c
||| f �

µn;gn
|||p

w,p ≤ 1

µnc

µn;gn

( f �
µn;gn

)

≤ 1

µnc

µn;gn

( f †)

= 1

µnc

[‖K fo − gn‖2 + µn||| f †|||p
w,p

]
≤ 1

c

(
ε2

n

µn

+ ||| f †|||p
w,p

)
,

(4.6)

where we have used, respectively, the bound (3.2), the fact that f �
µn;gn

minimizes


µn;gn
( f ), K f † = K fo, and the bound ‖K fo − gn‖2 ≤ ε2

n . By assumption (4.5),

ε2
n/µn tends to 0 for n → ∞ and hence can be bounded by a constant independent

of n.
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It follows that the sequence ( f �
µn;gn

)n∈N has at least one weak accumulation

point, i.e., there exists a subsequence ( f �
µnl

;gnl
)l∈N that has a weak limit. This se-

quence is bounded in the ||| · |||-norm, so that, by passing to a subsequence

( f ∗
µnl(k)

;gnl(k)
)k∈N, we can ensure that the ||| f ∗

µnl(k)
;gnl(k)

|||w,p constitute a converging

sequence. To simplify notation, we define µ̃k = µnl(k)
and f̃k = f �

µnl(k)
;gnl(k)

;

the f̃k have the same weak limit f̃ as the f ∗
µnl

;gnl
. We also define g̃k = gnl(k)

,

ẽk = g̃k − K fo, and ε̃k = εnl(k)
. We shall show that f̃ = f †.

For each k, f̃k is the minimizer of the functional 
µ̃k ;g̃k
. Under the conditions of

Theorem 4.1 this minimizer is unique; on the other hand, every fixed point of the

operator T̃k (defined as the nonlinear operator T corresponding to the functional


µ̃k ;g̃k
) is a minimizer for 
µ̃k ;g̃k

, by Proposition 3.10. Since the set of fixed points

of T̃k is nonempty by Proposition 3.9, it follows that each f̃k is a fixed point of its

corresponding T̃k . Therefore, for any γ ∈ �, f̃γ = 〈 f̃ , ϕγ 〉 satisfies

f̃γ = lim
k→∞

( f̃k)γ = lim
k→∞

Sµ̃kwγ ,p[(̃hk)γ ]

with h̃k = f̃k + K ∗(g̃k − K f̃k) = f̃k + K ∗K ( fo − f̃k) + K ∗ẽk . We now rewrite

this as

(4.7) f̃γ = lim
k→∞

(
Sµ̃kwγ ,p[(̃hk)γ ] − (̃hk)γ

) + lim
k→∞

(̃hk)γ .

By Lemma 4.2 the first limit in the right-hand side is 0, since∣∣Sµ̃kwγ ,p[(̃hk)γ ] − (̃hk)γ

∣∣ ≤ pwγ µ̃k

|(̃hk)γ |p−1

2

≤ pCµ̃k

[3C + ε̃k]p−1

2
−−−→
k→∞

0 ,

where we have used ‖K‖ < 1 (C is some constant depending on wγ ). Because

limk→∞ ‖̃ek‖ = 0, and w-limk→∞ f̃k = f̃ , it then follows from (4.7) that

f̃γ = lim
k→∞

(̃hk)γ = f̃γ + [K ∗K ( f † − f̃ )]γ .

Since this holds for all γ , it follows that K ∗K ( f † − f̃ ) = 0. If N(K ) = {0},
then this allows us immediately to conclude that f̃ = f †. When N(K ) �= {0},
we can conclude only that f † − f̃ ∈ N(K ). Because f † has the smallest |||·|||w,p-

norm among all f ∈ S = { f : K f = K fo}, it follows that ||| f̃ |||w,p ≥ ||| f †|||w,p.

On the other hand, because the f̃k weakly converge to f̃ , and therefore, for all γ ,

( f̃k)γ → f̃γ as k → ∞, we can use Fatou’s lemma to obtain

||| f̃ |||p
w,p =

∑
γ

wγ | f̃γ |p ≤ lim sup
k→∞

∑
γ

wγ |( f̃k)γ |p

= lim sup
k→∞

||| f̃k |||p
w,p = lim

k→∞
||| f̃k |||p

w,p .

(4.8)
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It then follows from (4.6) that

(4.9) lim
k→∞

||| f̃k |||p
w,p ≤ lim

k→∞

[
ε̃2

k

µ̃k

+ ||| f †|||p
w,p

]
= ||| f †|||p

w,p ≤ ||| f̃ |||p
w,p .

Together, the inequalities (4.8) and (4.9) imply that

(4.10) lim
k→∞

||| f̃k |||w,p = ||| f †|||w,p = ||| f̃ |||w,p .

Since f † is the unique element in S of minimal |||·|||w,p-norm, it follows that f̃ =
f †. The same argument holds for any other weakly converging subsequence of

( f �
µn;gn

)n∈N; it follows that the sequence itself converges weakly to f †. Similarly

we conclude from (4.10) that limn→∞ ||| f �
µn;gn

|||w,p = ||| f
†
µn;gn

|||w,p. It then follows

from Lemma 4.3 that the f �
µn;gn

converge to f † in the H-norm. �

Remark 4.4. Even when p = 1 and N (K ) �= {0}, it may still be the case that, for

any fo ∈ H, there is a unique element f † of minimal norm in S = { f ∈ H : K f =
K fo}. (For instance, if K is diagonal in the ϕγ -basis with some zero eigenvalues,

then the unique minimizer f † in S is given by setting to 0 all the components of

fo corresponding to γ for which Kϕγ = 0.) In this case the proof still applies, and

we still have norm-convergence of the f �
µ(ε),w,p;g to f † if µ(ε) satisfies (4.5) and

‖g − K fo‖ ≤ ε → 0.

4.2 Stability Estimates

The regularization theorem of the previous subsection gives no information on

the rate at which the regularized solution approaches the exact solution when the

noise (as measured by ε) decreases to 0. Such rates are not available in the general

case but can be derived under additional assumptions discussed below. For the

remainder of this section we shall assume that the operator K is invertible on its

range, i.e., that N(K ) = {0}. Suppose that the unknown exact solution of the

problem, fo, satisfies the constraint ||| fo|||w,p ≤ ρ, where ρ > 0 is given; in other

words, we know a priori that the unknown solution lies in the ball around the origin

with radius ρ in the Banach space Bw,p; we shall denote this ball by Bw,p(0, ρ). If

we also know that g lies within a distance ε of K fo in H′, then we can localize the

exact solution within the set

F(ε, ρ) = { f ∈ H : ‖K f − g‖ ≤ ε, ||| f |||w,p ≤ ρ} .

The diameter of this set is a measure of the uncertainty of the solution for a given

a priori constraint and a given noise level ε. The maximum diameter of F , namely

diam(F) = sup{‖ f − f ′‖ : f, f ′ ∈ F} is bounded by 2M(ε, ρ), where M(ε, ρ),

defined by

(4.11) M(ε, ρ) = sup{‖h‖ : ‖K h‖ ≤ ε, |||h|||w,p ≤ ρ} ,

is called the modulus of continuity of K −1 under the a priori constraint. (The

introduction of the modulus of continuity is a standard technique for the derivation

of convergence rates; see [2, 25]. Note that we have once more dropped the explicit
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reference in our notation to the dependence on w and p.) If (4.4) is satisfied,

then the ball Bw,p(0, ρ) is compact in H, and it follows from a general topological

lemma (see, e.g., [23]) that M(ε, ρ) → 0 when ε → 0; the uncertainty on the

solution thus vanishes in this limit. However, this topological argument, which

holds for any regularization method enforcing the a priori constraint ||| fo|||w,p ≤ ρ,

does not tell us anything about the rate of convergence of any specific method.

In what follows we shall systematically assume that (4.4) is satisfied. We shall

also make additional assumptions that will make it possible to derive more pre-

cise convergence results. Our specific regularization method consists in taking the

minimizer f ∗
µ;g of the functional 
µ;g( f ) given by (4.2) as an estimate of the exact

solution fo, where we leave any links between µ and ε unspecified for the moment.

(Because of the compactness argument above, we could conceivably dispense with

(4.5); see below.) An upper bound on the reconstruction error ‖ f ∗
µ;g − fo‖, valid for

all g such that ‖g − K fo‖ ≤ ε, as well as uniformly in fo, is given by the following

modulus of convergence:

(4.12) Mµ(ε, ρ) =
sup

{‖ f ∗
µ;g − f ‖ : f ∈ H, g ∈ H

′, ‖K f − g‖ ≤ ε, ||| f |||w,p ≤ ρ
}
.

The decay of this modulus of convergence as ε → 0 is governed by the decay of

the modulus of continuity (4.11), as shown by the following proposition:

PROPOSITION 4.5 The modulus of convergence (4.12) satisfies

(4.13) M(ε, ρ) ≤ Mµ(ε, ρ) ≤ M(ε + ε′, ρ + ρ ′)

where

(4.14) ε′ = (ε2 + µρ p)
1
2 , ρ ′ =

(
ρ p + ε2

µ

) 1
p

,

and M(ε, ρ) is defined by (4.11).

PROOF: We first note that 
µ;g( f ∗
µ;g) ≤ 
µ;g( fo) ≤ ε2 + µρ p because f ∗

µ;g is

the minimizer of 
µ;g( f ) and fo ∈ F(ε, ρ). It follows that

‖K f ∗
µ;g − g‖2 ≤ 
µ;g( f ∗

µ;g) ≤ ε2 + µρ p

and

µ||| f ∗
µ;g|||p

w,p ≤ 
µ;g( f ∗
µ;g) ≤ ε2 + µρ p

or, equivalently, f ∗
µ;g ∈ F(ε′, ρ ′) with ε′ and ρ ′ given by (4.14). The modulus of

convergence (4.12) can then be bounded as follows, using the triangle inequality.

Indeed, for any f ∈ F(ε, ρ) and f ′ ∈ F(ε′, ρ ′), we have ‖K ( f − f ′)‖ ≤ ε+ε′ and

||| f − f ′|||w,p ≤ ρ +ρ ′, and we immediately obtain from the definition of (4.11) the

upper bound in (4.13). To derive the lower bound, observe that for the particular

choice g = 0, the minimizer f ∗
µ;g of the functional (4.2) is f ∗

µ;0 = 0. The desired

lower bound then follows immediately upon inspection of the two definitions (4.11)

and (4.12). �
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Let us briefly discuss the meaning of the previous proposition. The modulus

of continuity M(ε, ρ) yields the best possible convergence rate for any regulariza-

tion method that enforces the error bound and the a priori constraint defined by

(4.11). Proposition 4.5 provides a relation between the modulus of continuity and

the convergence rate Mµ(ε, ρ) of the specific regularization method considered in

this paper, which is defined by the minimization of the functional (4.2). Optimiz-

ing the upper bound in (4.13) suggests the choice µ = ε2/ρ p, yielding ε′ =
√

2 ε

and ρ ′ = 21/pρ. With these choices, we ensure that f ∗
µ;g → fo when ε → 0,

i.e., that the problem is regularized, provided we can show that the modulus of

continuity tends to 0 with ε. Moreover, once we establish its rate of decay (see

below), we know that our regularization method is (nearly) optimal in the sense

that the modulus of convergence (4.12) will decay at the same rate as the opti-

mal rate given by the modulus of continuity M(ε, ρ). (We call it nearly optimal

because, although the rate of decay is optimal, the constant multiplier probably is

not.) Note that because of the assumption of compactness of the ball Bw,p(0, ρ)

(which amounts to assuming that (4.4) is satisfied), we achieve regularization even

in some cases where ε2/µ does not tend to 0 for ε → 0, which is a case not covered

by Theorem 4.1.

In order to derive upper or lower bounds on M(ε, ρ), we must know more

information about the operator K . The following proposition illustrates how such

information can be used.

PROPOSITION 4.6 Suppose that there exist sequences b = (bγ )γ∈� and B =
(Bγ )γ∈� satisfying, ∀γ ∈ �, 0 < bγ , Bγ < ∞, and such that for all h in H,

(4.15)
∑
γ∈�

bγ |hγ |2 ≤ ‖K h‖2 ≤
∑
γ∈�

Bγ |hγ |2 .

Then the following upper and lower bounds hold for M(ε, ρ):

M(ε, ρ) ≥ max
γ∈�

[
min

(
ρw−1/p

γ , εB−1/2
γ

)]
,(4.16)

M(ε, ρ) ≤ min
�=�1∪�2

√
ε2

minγ∈�1
bγ

+ ρ2

minγ∈�2
w

2/p
γ

.(4.17)

PROOF: To prove the lower bound, we need only exhibit one particular h such

that ‖K h‖ ≤ ε and |||h|||w,p ≤ ρ, for which ‖h‖ is given by the right-hand side of

(4.16). For this we need only identify the index γm such that ∀γ ∈ �,

ν = min
(
ρw−1/p

γm
, εB−1/2

γm

) ≥ min
(
ρw−1/p

γ , εB−1/2
γ

)
,

and choose h = νϕγm
. Then |||h|||w,p = νw1/p

γm
≤ ρ and ‖K h‖ ≤ νB1/2

γm
≤ ε; on the

other hand, ν equals the right-hand side of (4.16).
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On the other hand, for any partition of � into two subsets, � = �1 ∪�2, and for

any h ∈ {u : ‖K u‖ ≤ ε, |||u|||w,p ≤ ρ}, we have∑
γ∈�

|hγ |2 =
∑
γ∈�1

|hγ |2 +
∑
γ∈�2

|hγ |2

≤ max
γ ′∈�1

[
b−1

γ ′
] ∑

γ∈�1

bγ |hγ |2

+ max
γ ′∈�2

[
w

−2/p

γ ′
][

max
γ ′′∈�2

wγ ′′ |hγ ′′ |p
] 2

p
−1

∑
γ∈�2

wγ |hγ |p

≤ max
γ ′∈�1

[
b−1

γ ′
]
ε2 + max

γ ′∈�2

[
w

−2/p

γ ′
]
ρ2 .

Since this is true for any partition � = �1 ∪ �2, we still have an upper bound,

uniformly valid for all h ∈ {u : ‖K u‖ ≤ ε, |||u|||w,p ≤ ρ}, if we take the minimum

over all such partitions. The upper bound on M(ε, ρ) then follows upon taking the

square root. �

To illustrate how Proposition 4.6 could be used, let us apply it to one particular

example, in which we choose the (ϕγ )-basis with respect to which the |||·|||w,p-norm

is defined to be a wavelet basis (�λ)λ∈�. As already pointed out in Section 1.4.1

the Besov spaces Bs
p,p(R

d) can then be identified with the Banach spaces Bw,p for

the particular choice wλ = 2σ p|λ|, where σ = s + d( 1
2

− 1
p
) is assumed to be

nonnegative. For f ∈ Bs
p,p(R

d), the Banach norm ||| f |||w,p then coincides with the

Besov norm f s,p = [∑λ∈� wλ|〈 f, �λ〉|p]1/p. Let us now consider an inverse

problem for the operator K with such a Besov a priori constraint. If we assume that

the operator K has particular smoothing properties, then we can use these to derive

bounds on the corresponding modulus of continuity, and thus also on the rate of

convergence for our regularization algorithm. In particular, let us assume that the

operator K is a smoothing operator of order α, a property that can be formulated

as an equivalence between the norm ‖K h‖ and the norm of h in a Sobolev space of

negative order H−α, i.e., in a Besov space B−α
2,2 ; see, e.g., [10, 13, 23, 32]. In other

words, we assume that for some α > 0, there exist constants A� and Au such that

for all h ∈ L2(Rd),

(4.18) A2
�

∑
λ

2−2|λ|α|hλ|2 ≤ ‖K h‖2 ≤ A2
u

∑
λ

2−2|λ|α|hλ|2 .

The decay rate of the modulus of continuity is then characterized as follows:

PROPOSITION 4.7 If the operator K satisfies the smoothness condition (4.18), then

the modulus of continuity M(ε, ρ), defined by

M(ε, ρ) = max{‖h‖ : ‖K h‖ ≤ ε, h s,p ≤ ρ} ,
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satisfies

(4.19) c

(
ε

Au

) σ
σ+α

ρ
α

σ+α ≤ M(ε, ρ) ≤ C

(
ε

A�

) σ
σ+α

ρ
α

σ+α

where σ = s + d( 1
2

− 1
p
) ≥ 0 and c and C are constants depending on σ and α

only.

PROOF: By (4.18), the operator K satisfies (4.15) with bλ = A2
� 2−2|λ|α and

Bλ = A2
u 2−2|λ|α.

It then follows from (4.16) that

M(ε, ρ) ≥ max
λ

[
min

(
ρ2−σ |λ|,

ε

Au

2α|λ|
)]

;

if x = |λ| could take on all positive real values, then one easily computes that this

max-min would be given for x = −[log2(ε/ρ Au)]/(α + σ) and would be equal to

(ε/Au)
σ/(α+σ)ρα/(α+σ). Because |λ| is constrained to take only the values in N, the

max-min is guaranteed only to be within a constant of this bound (corresponding

to an integer neighbor of the optimal x), which leads to the lower bound in (4.19).

For the upper bound (4.17), we must partition the index set. Splitting � into

�1 = {λ : |λ| < J } and �2 = {λ : |λ| ≥ J }, we find that

ε2

minλ∈�1
bλ

+ ρ2

minλ∈�2
w

2/p

λ

= ε2

A2
�

22α(J−1) + ρ22−2σ J .

The minimizing partition for � thus corresponds with the minimizing J for the

right-hand side of this expression. This value for J is an integer neighbor of y =
−[log2(ε/ρ A�)]/(α + σ), which leads to the upper bound in (4.19). �

The stability estimates we have derived are standard in regularization theory for

the special case p = 2. The case p < 2, K = I , was treated in [16, 20]; these

two papers discuss a wider range of Besov spaces than considered here, as well

as Triebel spaces; in addition, they treat other than L2-norms for the discrepancy.

In [11] the classical bounds for general K and p = 2 were extended to the case

1 ≤ p < 2.

The bounds show the interplay between the smoothing order of the operator

characterized by α and the assumed smoothness of the solutions characterized by

σ = s + d( 1
2

− 1
p
) (for Besov spaces, we recall that this amounts to solutions

having s derivatives in L p). For σ/(σ + α) close to 1, the problem is mildly ill-

posed, whereas the stability degrades for large α. Note that if the bound (4.18)

were replaced by another one, in which the decay of the bλ and Bλ was given by

an exponential decay in D = 2|λ| (instead of the much slower decaying negative

power D−2α of (4.18)), then the modulus of continuity would tend to 0 only as an

inverse power of |log ε|. This is the so-called logarithmic continuity, which has

been extensively discussed in the case p = 2, and which extends, as shown by an

easy application of Proposition 4.6, to 1 ≤ p < 2.
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5 Generalizations and Additional Comments

The algorithm discussed in this paper can be generalized in several directions,

some of which we list here with brief comments.

The penalization functionals ||| f |||w,p we have used are symmetric; i.e., they are

invariant under the exchange of f for − f . We can equally well consider penal-

ization functionals that treat positive and negative values of the fγ differently. If

(w+
γ )γ∈� and (w−

γ )γ∈� are two sequences of strictly positive numbers, then we can

consider the problem of minimizing the functional

(5.1) 
w+,w−,p( f ) = ‖K f − g‖2 +
∑
γ∈�

(
w+

γ [ fγ ]p
+ + w−

γ [ fγ ]p
−
)

where, for r ∈ R, r+ = max(0, r) and r− = max(0,−r). One easily checks that all

the arguments in this paper can be applied equally well (after some straightforward

modifications) to the general functional (5.1), provided we replace the thresholding

functions Swγ ,p in the iterative algorithm by Sw+
γ ,w−

γ ,p, where, for p > 1,

Sw+,w−,p = (Fw+,w−,p)
−1

with

Fw+,w−,p(x) = x + p

2
w+[x]p−1

+ − p

2
w−[x]p−1

− ,

and for p = 1,

Sw+,w−,1 =


x + w−

2
if x ≤ −w−

2

0 if − w−
2

< x < w+
2

x − w+
2

if x ≥ w+
2

.

The above applies when the fγ are all real; a generalization to complex fγ is

not straightforward. When dealing with complex functions, one could generalize

the penalization
∑

γ∈� wγ | fγ |p to
∑

γ∈�,| fγ |�=0 wγ (arg fγ )| fγ |p, where the weight

coefficients have been replaced by strictly positive 2π-periodic C1-functions on the

1-torus T = {x ∈ C, |x | = 1}. It turns out, however, that the variational equation

for ei arg fγ = fγ | fγ |−1 then no longer uncouples from that for | fγ | (as it does in the

case where wγ is a constant), leading to a more complicated “generalized thresh-

olding” operation in which the absolute value and phase of the complex number

Sw,p( fγ ) are given by a system of two coupled nonlinear equations.

When the (ϕγ )γ∈�-basis is chosen to be a wavelet basis, then we saw in Sec-

tion 1.4.1 that is is possible to make the |||·|||w,p-norm equivalent to the Besov norm

· s,p by choosing the weight wλ = 2|λ|σ p for |〈 f, �λ〉|p, where |λ| is the scale of

wavelet �λ. The label λ contains much more information than just the scale, how-

ever, since it also indicates the location of the wavelet, as well as its “species” (i.e.,

exactly which combination of one-dimensional scaling functions and wavelets is

used to construct the product function �λ). One could choose the wλ so that cer-

tain regions in space are given extra weight, or on the contrary deemphasized,

depending on prior information. In pixel space, prior information on the support
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of the object to be reconstructed can be easily enforced by simply setting the cor-

responding weights to very small values or by choosing very large weights outside

the object support. This type of constraint is of uttermost importance to achieve

superresolution in inverse problems in optics and imaging; see, e.g., [4]. When

thresholding in the wavelet domain, a constraint on the object support can be en-

forced in a similar way due to the good spatial localization of the wavelets. If no a

priori information is known, one could even imagine repeating the wavelet thresh-

olding algorithm several times, adapting the weights wλ after each pass, depending

on the results of the previous pass; this could be used, e.g., to emphasize certain

locations at fine scales if coarser scale coefficients indicate the possible existence

of an edge. The results of this paper guarantee that each pass will converge.

In this paper we have restricted ourselves to penalty functions that are weighted

�p-norms of the fγ = 〈 f, ϕγ 〉. The approach can be extended naturally to include

penalty functions that can be written as sums, over γ ∈ �, of more general func-

tions of fγ , so that the functional to be minimized is then written as


̃W( f ) = ‖K f − g‖2 +
∑
γ∈�

Wγ (| fγ |) .

The arguments in this paper will still be applicable to this more general case if the

functions Wγ : R+ → R+ are convex and satisfy some extra technical conditions,

which ensure that the corresponding generalized component-shrinkage functions

S̃γ are still nonexpansive (used in several places), and that, for some c > 0,

inf
‖v‖≤1

inf
‖a‖≤c

‖v‖−2
∑
γ∈�

∣∣vγ + S̃γ (aγ ) − S̃γ (vγ + aγ )
∣∣2

> 0

(used in Lemma 3.18). To ensure that both conditions are satisfied, it is sufficient

to choose functions Wγ that are convex, with a minimum at 0 and, e.g., twice

differentiable, except possibly at 0 (where they should nevertheless still be left and

right differentiable), and for which W ′′
γ > 1 on V \ {0}, where V is a neighborhood

of 0.

We conclude this section with some comments concerning the numerical com-

plexity of the algorithm.

At each iteration step, we must compute the action of the operator K ∗K on the

current object estimate, expressed in the ϕγ -basis. In a finite-dimensional setting

where the solution is represented by a vector of length N , this necessitates in prin-

ciple a matrix multiplication of complexity O(N 2) if we neglect the cost of the

shrinkage operation in each iteration step. After sufficient accuracy is attained and

the iterations are stopped, the resulting ( f n)γ must be transformed back into the

standard representation domain of the object function except in the special case

where the ϕγ are already the basis for the standard representation (e.g., if the ϕγ

correspond to the pixel representation for images). This adds one final O(N 2)-

matrix multiplication. In this scenario, the total cost equals that of the classical
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Landweber algorithm on the basis of a comparable number of iterations. It fol-

lows that this method can become computationally competitive with the O(N 3)

SVD algorithms only when N is large compared to the number of iterations neces-

sary; since it is known that Landweber’s algorithm typically requires a substantial

number of iterations, this will happen only for very large N .

Several methods have been proposed in the literature to accelerate the conver-

gence of Landweber’s iteration, which could be used for the present algorithm as

well. For instance, one could use some form of preconditioning (using the oper-

ator D of Remark 2.4) or group together k Landweber iteration steps and apply

thresholding only every k steps; see, e.g., the book [23].

Much more substantial gains can be obtained when the operator K ∗K can be

implemented via fast algorithms. In a first important class of applications, the

matrix (〈K ∗Kϕγ , ϕγ ′ 〉)γ,γ ′∈� is sparse; if, for instance, there are only O(N ) non-

vanishing entries in this matrix, then standard techniques to deal with the action

of sparse matrices will reduce the cost of each iteration step to O(N ) instead of

O(N 2). If the ϕγ -basis is a wavelet basis, this is the case for a large class of in-

tegrodifferential operators of interest; see, e.g., [5]. Even if K ∗K is sparse in the

ϕγ -basis but has an even simpler expression in another basis, and if the transforms

back and forth between the two bases can be carried out via fast algorithms, then it

may be useful to implement the action of K ∗K via these back-and-forth transfor-

mations. For instance, if the object is of a type that will have a sparse representation

in a wavelet basis, and the operator K ∗K is a convolution operator, then we can

pick the ϕγ -basis to be a wavelet basis and implement the operator K ∗K by do-

ing, successively, a fast reconstruction from wavelet coefficients, followed by an

FFT, a multiplication in the Fourier domain, an inverse FFT, and a wavelet trans-

form, for a total complexity of O(N log N ). One can obtain similar complexity

estimates if the algorithm is modified to not only take the nonlinear thresholding

into account, but also additional projections PC on a convex set, such as the cone

of functions that are a.e. positive; in this case, after the thresholding operation, one

needs to carry out an additional fast reconstruction from, say, the wavelet domain,

take the positive part, and then perform the fast transform back, without affecting

the O(N log N ) complexity estimate.

6 Conclusions

We have discussed in this paper the functional


w,p( f ) = ‖K f − g‖2 +
∑
γ∈�

wγ |〈 f, ϕγ 〉|p ,

and we have shown that the iterative algorithm

f n = Sw,p( f n−1 + K ∗(g − K f n−1))

with Sw,p as defined by (2.9) combined with (2.6) and (2.8) generates a sequence

that converges in norm to a minimizer of 
w,p. In the particular case p = 1,
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each iteration corresponds to a soft-thresholding of the standard Landweber iterate

obtained by adding the backprojected residual error to the previous iterate. Such

soft-thresholded iterative algorithms have been proposed by several authors [24,

35, 38, 39] with very good results for the simultaneous deblurring and denoising of

images. It is gratifying that, as our mathematical analysis shows, the convergence

“scales” well, i.e., holds irrespective of the dimension.

Unless the operator K can be implemented sparsely, the iteration may be too

heavy, computationally, to compete effectively with, e.g., modern high-dimensional

optimization methods applied to the minimization of 
w,p if the number of vari-

ables is extremely large. On the other hand, it is conceptually so simple, and so

easy to implement, that it is an excellent way of testing whether, and for what pa-

rameters, the variational approach is sensible for a problem at hand. Moreover,

helped by the present speed of computing, the convergence of the algorithm is still

sufficiently fast to permit a high-quality convolutional deblurring combined with

denoising of 256 × 256 images in a few seconds [35], so that even for moderate-

sized problems it may be an attractive method.

Appendix A: Wavelets and Besov Spaces

We give a brief review of basic definitions of wavelets and their connection with

Besov spaces. This will be a sketch only; for details, we direct the reader to, e.g.,

[9, 13, 33, 34].

For simplicity we start with dimension 1. Starting from a (very special) function

ψ we define

ψj,k(x) = 2
j
2 ψ(2 j x − k) , j, k ∈ Z ,

and we assume that the collection {ψj,k : j, k ∈ Z} constitutes an orthonormal

basis of L2(R). For all wavelet bases used in practical applications, there also exists

an associated scaling function φ that is orthogonal to its translates by integers and

such that, for all j ∈ Z,

(A.1) Span{φj,k; k ∈ Z} ⊕ Span{ψj,k; k ∈ Z} = Span{φj+1,k; k ∈ Z} ,

where the φj,k are defined analogously to the ψj,k . Typically, the functions φ

and ψ are very well localized in the sense that ∀N ∈ N,
∫

R
(1 + |x |)N (|φ(x)| +

|ψ(x)|)dx < ∞; one can even choose φ and ψ such that they are supported on a

finite interval. This can be achieved with arbitrary finite smoothness; i.e., for any

preassigned L ∈ N, one can find such φ and ψ that are in C L(R). Because of (A.1),

one can consider (inhomogeneous) wavelet expansions in which not all scales j are

used, but a cutoff is introduced at some coarsest scale, often set at j = 0. More

precisely, we shall use the following wavelet expansion of f ∈ L2,

(A.2) f =
+∞∑

k=−∞
〈 f, φ0,k〉φ0,k +

+∞∑
j=0

+∞∑
k=−∞

〈 f, ψj,k〉ψj,k .
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Wavelet bases in higher dimensions can be built by taking appropriate products of

one-dimensional wavelet and scaling functions. Such d-dimensional bases can be

viewed as the result of translating (by elements k of Z
d) and dilating (by integer

powers j of 2) of not just one, but several (finite in number) “mother wavelets,”

typically numbered from 1 to 2d − 1. It will be convenient to abbreviate the full

label (including j , k, and the number of the mother wavelet) to just λ, with the

convention that |λ| = j . We shall again cut off at some coarsest scale, and we

shall follow the convenient slight abuse of notation used in [9] that sweeps up the

coarsest- j scaling functions (as in (A.2)) into the �λ as well. We thus denote the

complete d-dimensional, inhomogeneous wavelet basis by {�λ : λ ∈ �}.
It turns out that {�λ : λ ∈ �} is not only an orthonormal basis for L2(Rd), but

also an unconditional basis for a variety of other useful Banach spaces of functions,

such as Hölder spaces, Sobolev spaces, and, more generally, Besov spaces. Again,

we review only some basic facts; a full study can be found in [9, 13, 34]. The Besov

spaces Bs
p,q(R

d) consist, basically, of functions that “have s derivatives in L p”; the

parameter q provides some additional fine-tuning to the definition of these spaces.

The norm ‖ f ‖Bs
p,q

in a Besov space Bs
p,q is traditionally defined via the modulus

of continuity of f in L p(R), of which an additional weighted Lq-norm is then

taken, in which the integral is over different scales. We shall not give its details

here; for our purposes it suffices that this traditional Besov norm is equivalent with

a norm that can be computed from wavelet coefficients. More precisely, let us

assume that the original one-dimensional φ and ψ are in C L(R), with L > s, that

σ = s + d( 1
2

− 1
p
) ≥ 0, and define the norm · s;p,q by

(A.3) f s;p,q =
( ∞∑

j=0

(
2 jσ p

∑
λ∈�,|λ|= j

|〈 f, �λ〉|p
) q

p

) 1
q

.

Then this norm is equivalent to the traditional Besov norm, f s;p,q ∼ ‖ f ‖Bs
p,q

,

that is, there exist strictly positive constants A and B such that

(A.4) A f s;p,q ≤ ‖ f ‖Bs
p,q

≤ B f s;p,q .

The condition that σ ≥ 0 is imposed to ensure that Bs
p,q(R

d) is a subspace of

L2(Rd); we shall restrict ourselves to this case in this paper. From (A.3) one can

gauge the fine-tuning role played by the parameter q in the definition of the Besov

spaces. A particularly convenient choice, to which we shall stick in the remainder

of this paper, is q = p, for which the expression simplifies to

f s,p =
( ∑

λ∈�

2σ p|λ||〈 f, �λ〉|p
) 1

p ;

to alleviate notation, we shall drop the extra index q wherever it normally occurs

on the understanding that q = p when we do so.
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When 0 < p, q < 1, the Besov spaces can still be defined as complete metric

spaces, although they are no longer Banach spaces (because (A.3) no longer is a

norm). This allows for more local variability in local smoothness than is typical for

functions in the usual Hölder or Sobolev spaces. For instance, a real function f on

R that is piecewise continuous, but for which each piece is locally in Cs , can be an

element of Bs
p(R), despite the possibility of discontinuities at the transition from

one piece to the next, provided p > 0 is sufficiently small, and some technical

conditions are met on the number and size of the discontinuities and on the decay

at ∞ of f .

Wavelet bases are thus closely linked to a rich class of smoothness spaces; they

also provide a good tool for high-accuracy, nonlinear approximation of a wide vari-

ety of functions. For instance, if the bounded function f on [0, 1] has only finitely

many discontinuities and is Cs elsewhere, then one can find a way of renumbering

(dependent on f itself) the wavelets in the standard wavelet expansion of f , so that

the distance in, say, L2([0, 1]) between f and the first N terms of this reordered

wavelet expansion decreases proportionally to N−s . If s is large, it follows that a

very accurate approximation to f can be obtained with relatively few wavelets; this

is possible because the smooth patches of the piecewise continuous f will be well

approximated by coarse scale wavelets, which are few in number; to capture the

behavior of f near the discontinuities, much more localized finer scale wavelets

are required, but only those wavelets located close to the discontinuities will be

needed, which amounts again to a small number.

In higher dimensions, d > 1, the suitability of wavelets is influenced by the

dimension of the manifolds on which singularities occur. If the singularities in

the functions of interest are solely point singularities, then expansions using N

wavelets can still approximate such functions with distances that decrease like

N−s , depending on their behavior away from the singularities. If, however, we

are interested in f that may have, e.g., discontinuities along manifolds of dimen-

sion higher than 0, then such wavelet approximations are not optimal. For instance,

if f : R
2 → R is piecewise C L , with possible jumps across the boundaries of the

smoothness domains, which are themselves smooth (say, C L again) curves, then

N -term wavelet approximations to f cannot achieve an error rate decay faster than

N−1/2, regardless of the value of L > 1.

It follows that whenever we are faced with an inverse problem that needs reg-

ularization, in which the objects to be restored are expected to be mostly smooth,

with very localized lower-dimensional areas of singularities, we can expect that

their expansions into wavelets will be sparse. This sparsity can be expressed by re-

quiring that the wavelet coefficients (possibly with some scale-dependent weight)

have a finite (or small) �p-norm, with 1 ≤ p ≤ 2, or equivalently that the Besov-

equivalent norm f s,p is finite (or small), where f s,p is exactly of the form

defined in (1.3).
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Appendix B: A Fixed-Point Theorem

We provide here the proof of the theorem needed to establish the weak conver-

gence of the iterative algorithm. The theorem is given in [36]; we give a simplified

proof here (see the remark at the end), which nevertheless still follows the main

lines of Opial’s paper.

THEOREM B.1 Let C be a closed convex subset of the Hilbert space H and let the

mapping A : C → C satisfy the following conditions:

(i) A is nonexpansive: ‖Av − Av′‖ ≤ ‖v − v′‖ ∀v, v′ ∈ C,

(ii) A is asymptotically regular: ‖An+1v − Anv‖ −−−→
n→∞

0 ∀v ∈ C,

(iii) the set F of the fixed points of A in C is not empty.

Then, ∀v ∈ C, the sequence (Anv)n∈N converges weakly to a fixed point in F .

The proof of the main theorem will follow from a series of lemmas. As before,

we use the notation w-lim to indicate a weak limit.

LEMMA B.2 If u, v ∈ H, and if (vn)n∈N is a sequence in H such that w-limn→∞ vn

= v, and u �= v, then lim infn→∞ ‖vn − u‖ > lim infn→∞ ‖vn − v‖.

PROOF: We have

lim inf
n→∞

‖vn − u‖2 = lim inf
n→∞

‖vn − v‖2 + ‖v − u‖2

+ 2 lim
n→∞

Re(vn − v, v − u)

= lim inf
n→∞

‖vn − v‖2 + ‖v − u‖2 ,

whence the result. �

LEMMA B.3 Suppose that A : C → C satisfies condition (i) in Theorem B.1. If

w-limn→∞ un = u and limn→∞ ‖un − Aun − h‖ = 0, then h = u − Au.

PROOF: Because of the nonexpansivity of A (assumption (i)), we have

‖un − (h + Au)‖ ≤ ‖un − h − Aun‖ + ‖Aun − Au‖
≤ ‖un − h − Aun‖ + ‖un − u‖ .

Hence,

lim inf
n→∞

‖un − (h + Au)‖ ≤ lim
n→∞

‖h − (un − Aun)‖ + lim inf
n→∞

‖un − u‖
= lim inf

n→∞
‖un − u‖ .

It then follows from Lemma B.2 that u = h + Au or h = u − Au. �

LEMMA B.4 Suppose that A : C → C satisfies conditions (i) and (ii) in Theo-

rem B.1. If a subsequence of (Anv)n∈N, with v ∈ C, converges weakly in C, then its

limit is in F .
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PROOF: Suppose w-limk→∞ Ank v = u. Since, by assumption (ii) of asymp-

totic regularity, limn→∞ ‖Anv − AAnv‖ = 0, we have limk→∞ ‖Ank v − AAnk v‖ =
0. By Lemma B.3, it follows that u − Au = 0, i.e., that u is in F . �

LEMMA B.5 Suppose that A : C → C satisfies conditions (i) and (iii) in Theo-

rem B.1. Then, for all h ∈ F and all v ∈ C, the sequence (‖Anv − h‖)n∈N is

nonincreasing and thus has a limit.

PROOF: Since A is nonexpansive, we have indeed

‖An+1v − h‖ = ‖AAnv − Ah‖ ≤ ‖Anv − h‖ .

�

We can now proceed to prove Theorem B.1.

PROOF OF THEOREM B.1: Let v be any element in C. Take an arbitrary h ∈ F .

By Lemma B.5, we then have

lim sup
n→∞

‖Anv‖ ≤ lim sup
n→∞

‖Anv − h‖ + ‖h‖
= ‖h‖ + lim

n→∞
‖Anv − h‖ < ∞ .

Since the Anv are thus uniformly bounded, it follows from the Banach-Alaoglu

theorem that they must have at least one weak accumulation point.

The following argument shows that this accumulation point is unique. Suppose

we have two different accumulation points:

w-lim
k→∞

Ank v = u and w-lim
�→∞

Añ�v = ũ with u �= ũ .

By Lemma B.4, u and ũ must both lie in F , and by Lemma B.5, the limits

limn→∞ ‖Anv − u‖ and limn→∞ ‖Anv − ũ‖ both exist. Since ũ �= u, we ob-

tain from Lemma B.2 that lim infk→∞ ‖Ank v − ũ‖ > lim infk→∞‖Ank v − u‖. On

the other hand, because (‖Ank v − ũ‖)k∈N and (‖Ank v − u‖)k∈N are each a subse-

quence of a convergent sequence, lim infk→∞ ‖Ank v−ũ‖ = limn→∞ ‖Anv−ũ‖ and

lim infk→∞ ‖Ank v−u‖ = limk→∞ ‖Ank v−u‖. It follows that limn→∞ ‖Anv−ũ‖ >

limn→∞ ‖Anv−u‖. In a completely analogous way (working with the subsequence

Añl v instead of Ank v) one derives the opposite strict inequality. Since both cannot

be valid simultaneously, the assumption of the existence of two different weak ac-

cumulation points for (Anv)n∈N is false. It thus follows that Anv converges weakly

to this unique weak accumulation point. �

Remark B.6. It is essential to require that the set F is not empty since there are

asymptotically regular, nonexpansive maps that possess no fixed point. However,

the only place where we used this assumption was in showing that the ‖Anv‖ were

bounded. If one can prove this boundedness by some other means (e.g., by a vari-

ational principle as we did in the iterative algorithm), then we automatically have

a weakly convergent subsequence (Ank v)k∈N, and thus, by Lemma B.4, an element

of F .
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Remark B.7. The simplification of the original argument of [36] (obtained through

deriving the contradiction in the proof of Theorem B.1) avoids having to appeal

to the convexity of F (which is true but not immediately obvious) and having to

introduce the auxiliary sets Fδ used in [36].
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