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Abstract. We construct an efficient numerical scheme for solving obstacle problems in diver-
gence form. The numerical method is based on a reformulation of the obstacle in terms of an L1-like
penalty on the variational problem. The reformulation is an exact regularizer in the sense that for
a large (but finite) penalty parameter, we recover the exact solution. Our formulation is applied to
classical elliptic obstacle problems as well as some related free boundary problems, for example, the
two-phase membrane problem and the Hele–Shaw model. One advantage of the proposed method is
that the free boundary inherent in the obstacle problem arises naturally in our energy minimization
without any need for problem specific or complicated discretization. In addition, our scheme also
works for nonlinear variational inequalities arising from convex minimization problems.
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1. Introduction. In this work we are concerned with the construction and im-
plementation of an unconstrained minimization problem which gives the same solution
as a corresponding obstacle problem. The classical obstacle problem models the equi-
librium state of an elastic membrane stretched atop of a physical obstacle with fixed
boundary conditions. This has a direct mathematical interpretation as an energy
minimization (i.e., the classical elastic energy of the membrane) with the addition
of a constraint (i.e., the solutions are bounded below by the obstacle). The general
obstacle framework has found applications in steady state fluid interaction, thin-plate
fluid dynamics, geometry, elastostatics, etc.

The original theory for obstacle problems centered around minimizations of the
form

min
u∈K

a(u, u)− 〈f, u〉 ,

where a(−,−) is a bounded and coercive bilinear form on some Sobolev space V ,
K = {v ≥ ϕ} for some smooth ϕ, and 〈, 〉 is the standard L2 inner product [47, 34, 23].
This minimization problem is equivalent to the problem of finding a u ∈ K satisfying
the variational inequality

a(u, v − u) ≥ 〈f, v − u〉 for all v ∈ K,
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which can be considered as the Euler–Langrange equation for the constrained problem.
In this work, we will use an L1-like penalty on the original variational form:

min
u
a(u, u)− 〈f, u〉+ μ

∫
max(ϕ− u, 0) dx,

which is an exact penalty for sufficiently large μ > 0; see [22, 39]. For more details
on general theoretical results including regularity of solutions for the obstacle and
related free boundary problems, see, for example, [11, 10, 9].

Over the years, there have been many numerical methods for solving various
types of obstacle problems. A list of numerical methods for variational inequalities
are discussed in [24, 53]. A vast majority of those algorithms use the weak variational
inequality characterization to approximate the solutions numerically. For example, in
[29], the authors construct a finite difference scheme based on the variational inequal-
ity and use a multigrid algorithm to speed up computations. In [2] the finite element
formulation of the variational inequality is solved using the Schwarz domain decom-
posion method. The convergence of the Schwarz domain decomposition for nonlinear
variational inequalities is established in [51, 1]. Multilevel preconditioners to solve
the resulting linear subproblems generated by the finite element discretization were
used in [30, 35, 36]. Also, in [54] an adaptive finite element method was proposed to
solve the variational inequality for one-body contact problems. To solve variational
inequalities of the second kind, a semismooth Newton method is explained and an-
alyzed in [19]. In another approach [18], continuation methods were introduced to
approximate the solutions to obstacle problems.

Alternative approaches use the constrained optimization formulation to construct
appropriate algorithms. For example, in [28], the constraint is incorporated into the
energy via a Langrange multiplier. To solve the resulting saddle point problem a
primal-dual active set algorithm is used. It should be noted that the existence of
solutions to their saddle point problem relies on regularizing the functional, due to
the lack of differentiability. A penalty formulation (different from the one we used
here) was proposed in [49] in order to encourage solutions to satisfy the constraint.
However, that method is not exact and requires the penalty parameter to be O(h−2),
where h is the grid spacing.

It is also possible to solve the obstacle problem using the complementarity condi-
tions [47]. A primal-dual active set based algorithm (which is related to a semismooth
Newton method) is used to solve the complementarity problem in [27]. With the help
of the level set method [43], the authors of [38] construct a method to locate the
contact set of the obstacle problem. Once the contact set is located, the solution
to the obstacle problem can be found directly without the need for the variational
inequalities.

For the two-phase membrane problem, which is a double obstacle problem, the
author of [3] introduces two algorithms. The first method uses finite differences. The
solution is split into two parts, a positive and a negative part, which results in a
coupled system of PDEs with matching conditions. In the second method, a finite
element approach is used on a regularized version of the problem so as to avoid the
nondifferentiablity of the L1-like functions.

Methods and models using L1-like terms are quite common in the fields of imaging
science and optimization [16, 15, 20, 14]. An important aspect of such methods is
their efficiency and robustness, which is due in part to the works of [25, 13, 17].
Recently, the use of L1-based optimization (and the related low-rank models) has
been revived following the early work of [4, 5, 6] and introduced to numerical PDEs
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1426 G. TRAN, H. SCHAEFFER, W. M. FELDMAN, S. J. OSHER

and computational physics because of its connections to sparsity and compressive
sensing. The goal is to construct an efficient representation and to create fast solvers
for numerical solutions of PDEs. For example, L1 optimization was used in [48] for
multiscale PDEs and in [40, 44, 45] for quantummechanical models. Also, in [32] an L1

regularized least squares model was constructed to approximate coefficients of a second
order ODE whose solutions are associated with intrinsic mode functions. Efficient
(sparse) solution representation using low-rank libraries was applied to dynamical
systems with bifurcations [8]. And the use of compressive sensing for fluid dynamics
models has seen some recent success; for an example, see [7].

In this work, we connect the L1-based methodology used in imaging science and
optimization to obstacle problems and free boundary problems. In particular, we
provide some theoretical results on solutions of L1 regularized variational methods
to the solutions of obstacle problems with zero obstacle. We derive bounds on the
exactness of the penalty formulation as well as construct a fast and simple algorithm
to solve the nondifferentiable unconstrained problem. Unlike other penalty methods,
we do not require the penalty parameter to go to ∞ (for sufficiently smooth obstacles)
and no regularization of the penalty is required.

The outline of this work is as follows. In section 2, we relate L1 optimization to
various obstacle problems. We review the obstacle problem formation in section 3,
and derive a concrete bound for our penalty parameter. In section 4, we show how
to construct an obstacle problem from a class of free boundary problems. We provide
proofs of some basic results that underlie our numerical method. It is likely that these
results can be found in various other classical texts on variational problems but we
have attempted a self-contained presentation. The numerical method and results are
described in sections 5 and 6, respectively. Concluding remarks are given in section 7.

2. Motivation. In this section, we motivate the use of L1-based optimization for
obstacle problems by establishing a connection between solutions of an L1 penalized
variational method and the solutions of obstacle problems with zero obstacle. These
problems were considered in [6, 12] and can be used for finding compactly supported
functions. Given f ∈ L2(Rd) and μ ≥ 0, consider the following functional defined for
v ∈ H1(Rd) ∩ L1(Rd),

(2.1) J (v) =

∫
Rd

1

2
|∇v|2 − fv + μ|v| dx.

Then for all test functions ψ ∈ H1(Rd) ∩ L1(Rd), its unique minimizer u,

(2.2) u = argmin{J (v) | v ∈ H1(Rd) ∩ L1(Rd)},

satisfies the following equation:

(2.3)

∫
Rd

∇u · ∇ψ − fψ + μp(u)ψ dx = 0,

where p(u) is an element of the subdifferential of the L1 term in (2.1) and can be
identified by (see [12])

p(u) =

{
sign(u) if u 	= 0,
−f/μ if u = 0.

We also consider the solution of the following obstacle problem,

(2.4) ū = argmin{J (v) | v ∈ H1(Rd) ∩ L1(Rd) and v ≥ 0}.
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As a minimizer, ū satisfies the variational inequality

(2.5)

∫
Rd

∇ū · ∇ψ − fψ + μψ dx ≥ 0

for all test functions ψ ∈ H1(Rd)∩L1(Rd) with ψ ≥ 0. One can analogously define u
as the minimizer of J over v ∈ H1(Rd) ∩ L1(Rd) with v ≤ 0. We will show that the
solutions to the variational problems above, u, ū, and u, are related. For the rest of
the paper, we denote

u+ := max(u, 0) and u− := min(u, 0).

Theorem 2.1. Let u and ū be the solutions of (2.2) and (2.4), respectively; then
ū = u+. Moreover, if f ≥ 0 then ū = u. Similarly, we have u = u− and if f ≤ 0 then
u = u.

Proof. Let w ≥ 0 be a solution of the variational inequality

(2.6)

∫
Rd

∇w · ∇ψ − fψ + μψ dx ≥ 0

for all ψ ∈ H1(Rd)∩L1(Rd) with ψ ≥ 0. Next, since (u−w)+ is a valid test function
for (2.3) the following holds:

0 =

∫
Rd

∇u · ∇(u − w)+ − f(u− w)+ + μp(u)(u− w)+ dx.

Since p(u) = 1 on {(u− w)+ 	= 0} ⊂ {u > 0}, we have

0 =

∫
Rd

∇(u− w) · ∇(u − w)+ +∇w · ∇(u− w)+ − f(u− w)+ + μ(u − w)+ dx.

Note that (u−w)+ is also a valid test function for (2.6), so the sum of the last three
terms in the above equation is nonnegative. Therefore

0 ≥
∫
Rd

∇(u− w) · ∇(u − w)+ dx =

∫
Rd

|∇(u− w)+|2 dx.

Thus (u − w)+ = c a.e. for some nonnegative constant c. Since (u − w)+ ∈ L1(Rd),
we have c = 0, which means u+ ≤ w. In particular, since ū is also a supersolution of
(2.6), we have u+ ≤ ū.

As for ū, after noting that for any ε the perturbation ū−ε(ū−w)+ is an admissible
function in the minimization (2.4), a similar calculation shows that

0 ≤ d

dε

∣∣∣∣
ε=0

J (ū− ε(ū− w)+) ≤ −
∫
Rd

|∇(ū− w)+|2dx.

Taking the derivative in ε above can be justified by writing out the difference quotients.
Using the same argument as before, we conclude that ū ≤ w. Finally, to prove
that u+ ≥ ū, we will show that u+ is also a supersolution of (2.6). Indeed, since
−f + μp(u+) ≤ −f + μ, so long as ψ ∈ H1(Rd) ∩ L1(Rd) is nonnegative,∫

Rd

∇u+ · ∇ψ + (−f + μ)ψ dx ≥
∫
Rd

∇u+ · ∇ψ − fψ + μp(u+)ψ dx = 0.

We have proven that ū = u+. In particular, if f > 0, one can show that u is non-
negative [6, 12]. In this case we have ū = u. This completes the proof.
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3. Obstacle problem. In this section, we recall the classical obstacle problem
as well as its penalty formulation which contains an L1-like term. It is shown in
[22, 39] that if the penalty parameter is large enough, the solution of the penalized
problem is identical to the solution of the constrained optimization problem (the
obstacle problem in our case). In addition, we provide a lower bound on the size of
the penalty parameter of the unconstrained problem as a function of the obstacle.

We will consider the obstacle problem in a bounded domain Ω ⊂ R
d with Dirichlet

boundary conditions. The results we describe in this case will also hold on the whole
space Rd under similar assumptions. Consider the problem of minimizing the Dirichlet
energy,

(3.1) J (v) =

∫
Ω

1

2
|∇v|2 dx,

among all functions v such that v−g ∈ H1
0 (Ω) and v ≥ ϕ, where ϕ : Ω → R is a given

smooth function, called the obstacle, which has ϕ ≤ g on ∂Ω. Its unique minimizer ū
satisfies the complementarity problem [47]

−Δū ≥ 0, ū ≥ ϕ , (−Δū)(ū − ϕ) = 0, ū− g ∈ H1
0 (Ω).

Let uμ be the unique minimizer in H1
0 (Ω) of

(3.2) Jμ(v) =

∫
Ω

1

2
|∇v|2 + μ(ϕ− v)+ dx.

In [22, 39], the authors showed that uμ = ū, for μ large enough and provided a lower
bound for μ which is the L∞ norm of any dual optimal multiplier of (3.1). That is
if μ ≥ −Δv, for any dual optimal multiplier v ≥ ϕ of the optimization (3.1), then
uμ = ū. Here we provide a concrete lower bound for μ, which can also be derived
from Theorem 2.1.

Theorem 3.1. Let u and uμ be the optimal minimizers of (3.1) and (3.2),
respectively. Then for any μ such that −Δϕ ≤ μ we have uμ = u.

Proof. For any v ∈ H1
0 (Ω), define w = v + (ϕ − v)+. Then w is a valid test

function for (3.1), i.e., w ≥ ϕ. Compute

Jμ(w) =

∫
Ω

1

2
|∇v|2 +∇(ϕ − v)+ · ∇v + 1

2
|∇(ϕ− v)+|2 dx

=

∫
Ω

1

2
|∇v|2 +∇(ϕ − v)+ · ∇ϕ− 1

2
|∇(ϕ− v)+|2 dx

≤
∫
Ω

1

2
|∇v|2 + μ(ϕ − v)+ −

∫
Ω

1

2
|∇(ϕ− v)+|2 dx

= Jμ(v)−
∫
Ω

1

2
|∇(ϕ − v)+|2 dx.

The inequality in the third line holds since −Δϕ ≤ μ in the weak sense. Therefore,
Jμ(v+(ϕ− v)+) < Jμ(v) unless ∇(ϕ− v)+ is zero, which implies (ϕ− v)+ = 0 since
(ϕ− v)+ ∈ H1

0 (Ω). In particular, we have

Jμ(uμ + (ϕ− uμ)+) ≤ Jμ(uμ).

Since uμ is the uniqueness minimizer of (3.2), (ϕ− uμ)+ = 0 which means uμ ≥ ϕ is
a valid test function for (3.1). In addition, we observe

J (uμ) = Jμ(uμ) ≤ Jμ(u) = J (u).

Since u is the unique minimizer of J , we conclude that u = uμ.
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Remark 3.2. It is worth noting that in the numerical experiments provided in
this work, the smaller the value of μ is, the faster the iterative scheme converges
to the steady state. Therefore, an explicit lower bound on μ greatly improves the
convergence rate of the method.

4. Free boundary problem. In this section, we show how to put a class of
free boundary problems into a form where the methodology of sections 2 and 3 can
be directly applied. We emphasize that for these problems our primary interest is in
the location of the free boundary ∂{u > 0} as opposed to the solution itself. For a
concrete example, we will focus our attention on the Hele–Shaw model.

4.1. Turning a class of free boundary into an obstacle. Consider the
solution u ≥ 0 of the following free boundary problem in R

d:

(4.1)

{ −Δu = f − γ in {u > 0},
u = |∇u| = 0 on ∂{u > 0},

with some given source function f and constant γ. In this form, we can see the
connection to an L1 minimization problem ((2.1) with γ = μ). In general, this can be
difficult to solve numerically because of the free boundary ∂{u > 0}. We will show
that our method naturally treats the free boundary conditions thereby avoiding any
difficulty in directly tracking or approximating it. The details are described below.

First let us define the obstacle:

ϕ := − γ
2d |x|2 − (−Δ)−1f(x).

Here (−Δ)−1 is shorthand for convolution with the Newtonian potential in R
d. Then

the function w = u+ ϕ will be the least superharmonic majorant of ϕ in R
d, that is,

it solves the free boundary problem

(4.2)

{ −Δw = 0 in {w > ϕ},
∇w = ∇ϕ on ∂{w > ϕ}.

By transforming the PDE (4.1), we replace the source term with an obstacle. Indeed,
the solution w of (4.2) is the unique minimizer of the following optimization problem:

(4.3) w = argmin
v∈H1(Rd)

∫
1

2
|∇v|2 + μ(ϕ− v)+ dx

for some parameter μ. Therefore, by finding the solution to the unconstrained op-
timization problem (4.3), we can locate the free boundary to the original problem
directly.

4.2. Hele–Shaw. Let us recall the classical Hele–Shaw problem with a free
boundary. Let K ⊂ R

d be a compact set and Ω0 ⊃ K be open and bounded. Fluid
initially occupies Ω0 and is injected at a constant rate of 1 per unit length through the
surface K. The fluid expands and occupies the region Ωt with the free boundary Γt.
Let p(x, t) : Rd × [0,∞) → R be the pressure of the fluid. For simplicity we consider
a slight variant of the Hele–Shaw model where p(x, t) instead of its normal derivative

is equal to 1 on ∂K; see [33]. Then the time integral of p, u(x, t) =
∫ t

0 p(x, τ)dτ ,
formally satisfies (see also [21, 26])

(4.4)

⎧⎨
⎩

−Δu = χΩ0 − 1 in Ωt(u) \K,
u = t on K,
u = |∇u| = 0 on Γt(u).
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Note that Ωt(u) = {u > 0}. We are free to solve (4.4) only since the free boundary
is the same as the free boundary of the pressure p. Here we consider the stable flow
examples. For an example of a numerical method to solve the unstable Hele–Shaw
flow (with the known fingering effect), see [31].

Let us define the obstacle:

ϕ0 := − 1
2d |x|2 − (−Δ)−1χΩ0 .

Similarly to section 4.1, the function w = u+ ϕ0 solves

w = argmin
v∈Vt

∫
Rd\K

1

2
|∇v|2 + μ(ϕ0 − v)+ dx,

where the admissible set is defined as follows:

Vt = {(v − ϕ0) ∈ (H1 ∩ L1)(Rd \K) : v = ϕ0 + t on ∂K}.
For computational purposes, it is desirable to avoid solving a minimization problem
in a possibly complicated domain R

d \K. We formulate a penalization procedure to
include the boundary condition on K as a second obstacle. To do so, we define new
obstacles ϕ1 ≤ ϕ2,

ϕ1 = ϕ0 + tχK and ϕ2 = ϕ1χK + t(1− χK)

with the associated double penalized energy

(4.5) Jγ(v) =

∫
Rd

1

2
|∇v|2 + γ1(ϕ1 − v)+ − γ2(ϕ2 − v)− dx

for some parameters γ1, γ2 > 0. Note that the true solution of (4.4) has u ≤ t in R
d

and ϕ1 ≤ 0 thus v = u+ϕ1 ≤ t as well. Thus the true solution satisfies v ≤ ϕ2 in R
d.

Since ϕ is not smooth, the argument of the previous section, namely, that −Δϕ−
γ1 is subharmonic for γ1 sufficiently large, is not directly applied. However, we can
build a smooth approximation for the obstacle using a mollifier. Heuristically when
one minimizes a discretization of Jγ with grid spacing h, the minimizer of the dis-
cretization is as good an approximation to Jγ as it is to

J h
γ (v) =

∫
Rd

|∇v|2 + γ1(ρh ∗ ϕ1 − v)+ − γ2(ρh ∗ ϕ2 − v)− dx,

where ρh = h−dρ(h−1x) with ρ ∈ C∞(Rd) being a standard mollifier. Note that since
mollifying preserves ordering, ρh ∗ ϕ1 ≤ ρh ∗ ϕ2. Now one can estimate

‖Δρh ∗ ϕ1‖L∞ ≤ ‖Δϕ0‖L∞ + t‖Δρh‖L1‖χK‖L∞ ≤ 1 + th−2‖Δρ‖L1(Rd).

For the mollified functional J h
γ , as long as

γ1 ≥ th−2‖Δρ‖L1(Rd) + 1,

the global minimizer solves the obstacle problem with ρh ∗ ϕ1 as the obstacle from
below. A similar argument holds for γ2. We are using a slight extension of the result
of section 3 to include an obstacle from above and from below.

Remark 4.1. The solution of (4.4) can also be viewed as the minimizer of

J (v) =

∫
Rd\K

1

2
|∇v|2 − χΩ0v + |v| dx
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over the admissible set

Vt = {v ∈ (H1 ∩ L1)(Rd \K) : v = t on ∂K}.
Let us call

ũ(·, t) = argmin{J (v) : v ∈ Vt};

then, as in the section 2, ũ will be the same as the solution of the obstacle problem
(4.4) obtained as the infimal nonnegative supersolution. Simulations based on this
observation yield similar results to those of the penalized energy.

5. Numerical method. For the numerical method, we employ the energy min-
imization formulation and discretize the energy using a uniform fixed grid on a given
domain. The energies are convex, so we construct an algorithm via [25] to decouple
the problem into an explicit part and a strictly convex part. In the explicit part, the
optimal value can be computed directly using shrink-like operators. For the strictly
convex part, we can use either a conjugate gradient method or an accelerated gra-
dient descent method to quickly solve the subproblem. The detailed algorithm and
its construction are described here. Note that for each problem, there could be slight
variations in the algorithm, which we will explain in each subsection.

For a domain Ω ⊂ R
d, we approximate functions u ∈ H1(Ω) ∩ L1(Ω) by taking

an N -point uniformly spaced discretization of the domain and defining the discrete
approximation of u by uh ∈ R

N , where h > 0 is the space step. The discrete spatial
gradient is defined by

∇huh :=

[
(uh)i+1,j − (uh)i,j

h
,
(uh)i,j+1 − (uh)i,j

h

]

but any standard finite difference scheme can be used. Consider the following discrete
energy

min
u≥ϕ

F (∇hu),

where F : RNd → R is a convex function of its input. For simplicity we drop the
subscript h on the functions. To solve this problem, we first convert it into an uncon-
strained problem by using the penalty method

min
u
F (∇hu) + μ‖(ϕ− u)+‖L1

for some parameter μ > 0. Here the L1 norm, || · ||L1 , is approximated using the
quadrature rule

∫
Ω

v dx =
N∑
j=1

vj h
d.

Since (·)+ is not differentiable, we construct an equivalent minimization problem
using [25]. We first introduce an auxiliary variable v = ϕ−u then apply the Bregman
iteration:{

(uk+1, vk+1) = argmin
u,v

F (∇hu) + μ |v+|+ λ
2 ||v − ϕ+ u+ bk||22,

bk+1 = bk + uk+1 + vk+1 − ϕ.
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Now we can efficiently solve the minimization by splitting it into two subproblems
with respect to u and v:

⎧⎨
⎩
Step 1: un+1 = argmin

u
F(u) = F (∇hu) +

λ
2 ||vn − ϕ+ u+ bn||22,

Step 2: vn+1 = argmin
v

μ |v+|+ λ
2 ||v − ϕ+ un+1 + bn||22.

The solution for v is given explicitly:

v = S+

(
ϕ− un+1 − bn,

μ

λ

)
,

where S+(z, c) := (z − c) if z > c, z if z < 0, and 0 otherwise.
To solve the u subproblem, we consider two cases for the first variation, G, of F .

If G is linear, for example, taking the continuous functional F (∇u) = 1
2

∫ ∇u ·A∇u dx
and A is positive semidefinite, then the first variation is

(λI −∇ ·A∇)u = λ(ϕ − vn − bn),

which can be solved by using the conjugate gradient method. In the case where G is
nonlinear, for example, taking the continuous functional F (∇u) = ∫ √1 + |∇u|2 dx,
we leverage the strict convexity of the functional to quickly solve the substep by using
Nesterov’s acceleration method [41]. The resulting scheme for u is as follows:

{
wk = Uk +

√
L−√

λ√
L+

√
λ
(Uk − Uk−1),

Uk+1 = wk − τ(G(wk) + λ(vn − ϕ+ wk + bn)),
(5.1)

where τ > 0 is a psuedotime step, L is the Lipschitz norm of F , and w is an auxiliary
variable. This scheme has the following convergence bound:

F(Uk)−F(U∗) ≤ 2

(
1−

√
λ

L

)k (F(U0)−F(U∗)
)
,

where un = U0, un+1 = U∗, and U∗ is the steady state solution of (5.1). Both
algorithms are summarized below.

Algorithm linear.

Given: u0, b0, tol and parameters λ, μ

while ||un − un−1||∞ > tol do

un+1 = (I − λ−1G)−1(ϕ− vn − bn)

vn+1 = S+

(
ϕ− un+1 − bn,

μ

λ

)
bn+1 = bn + un+1 + vn+1 − ϕ

end while
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Algorithm nonlinear.

Given: u0, b0, tol and parameters λ, μ

while ||un − un−1||∞ > tol do

U0 = un

while ||Uk − Uk−1||∞ > tol do

wk = Uk +
√
L−√

λ√
L+

√
λ
(Uk − Uk−1)

Uk+1 = wk − τ(G(wk) + λ(vn − ϕ+ wk + bn))

end while

un+1 = U∗

vn+1 = S+

(
ϕ− un+1 − bn,

μ

λ

)
bn+1 = bn + un+1 + vn+1 − ϕ

end while

5.1. Obstacle problem. Given an obstacle ϕ : Rd → R and μ satisfying the
condition from Theorem 3.1, we solve the following obstacle problem:

min
u

∫
1

2
|∇u|2 + μ(ϕ− u)+ dx.

The corresponding discrete problem (where we factor the hd constant) is given by

min
u

∑
j

1

2
|∇huj|2 + μ(ϕj − uj)+ ,

where uj = u(xj) and h > 0 is the uniform grid spacing. Since the functional is
quadratic, the Euler–Lagrange equation for the subproblem in terms of u satisfies a
Poisson equation

(λI −Δh)u = λ(ϕ− v + b)(5.2)

with Dirichlet boundary conditions which will be specified for each problem. To
approximate the solution of the linear system, we use a few iterations of the conjugate
gradient method. It was noted in [25] that full convergence is not necessary within
the main iterations, thus we are not required to solve (5.2) exactly.

5.2. Two-phase membrane problem. Consider the following optimization
problem arising from finding the equilibrium state of a thin film:

min
u

∫
1

2
|∇u|2 + μ1u+ − μ2u− dx

for some positive and continuous Lipschitz functions μ1(x) and μ2(x). The corre-
sponding Euler–Lagrange equation is

Δu = μ1χ{u>0} − μ2χ{u<0}.

The regularity of this problem was studied in [50, 46]. Here we are concerned with
the numerical approximation of this problem as well as computing the zero level set.
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The corresponding discrete minimization problem is given by

min
u

∑
j

1

2
|∇huj|2 + μ1(uj)+ − μ2(uj)− .

Now one can apply the split Bregman method by introducing two auxiliary variables
v1 = u+ and v2 = u−. However, the algorithm can be further simplified by using the
following relations:

u+ =
u+ |u|

2
and u− =

u− |u|
2

.

Now we can rewrite the problem as

min
u

∑
j

1

2
|∇huj |2 + αuj + β|uj |,

where α = μ1−μ2

2 and β = μ1+μ2

2 . In this form, we have a slightly different numerical
scheme. As before, the splitting leads to

min
u

∑
j

1

2
|∇huj|2 + αuj + β|vj |+ λ

2
|vj − uj − bj|2,

and the iterative scheme is written as follows:

un+1 = (λI −Δh)
−1(λ(vn − bn)− α),

vn+1 = S

(
un+1 + bn,

β

λ

)
,

bn+1 = bn + un+1 − vn+1,

where the shrink function is defined as S(z, c) := (|z| − c)+ sign(z).

5.3. Hele–Shaw. As described in section 4.2, we minimize the obstacle problem
transformation of the Hele–Shaw flow:

min

∫
1

2
|∇u|2 + γ1(ϕ− u)+ − γ2(tχK − u)− dx

with ϕ given by (4.2). The corresponding discretization problem is

min
u

∑
j

1

2
|∇huj |2 + γ1(ϕj − uj)+ − γ2(t χK,j − uj)− .

Once again, we construct an equivalent minimization problem by introducing two
auxiliary variables v1 = ϕ − u and v2 = u − tχK . For convenience, we drop the
subscript j in all terms:

min
u,v1,v2,b1,b2

∑
j

1

2
|∇hu|2+γ1(v1)++γ2(v2)++λ1

2
(v1−ϕ+u+b1)2+λ2

2
(v2−u+tχK+b2)

2.
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The iterative scheme is written as follows:

un+1 = ((λ1 + λ2)I −Δh)
−1 (λ1(ϕ− vn1 − bn1 ) + λ2(v2 + tχK + b2)) ,

vn+1
1 = S+

(
ϕ− un+1 − bn1 ,

γ1
λ1

)
,

vn+1
2 = S+

(
un+1 − tχK − bn2 ,

γ2
λ2

)
,

bn+1
1 = bn1 + vn+1

1 − ϕ+ un+1,

bn+1
2 = bn2 + vn+1

2 − un+1 + tχK .

Each substep is either a linear system of equations or an explicit update using the
shrink-like operators, making it easy to solve.

6. Computational simulations. In this section, we apply the methods from
section 5 to various examples. The iterative schemes stop when the difference between
two consecutive iterations in the L∞ norm is less than a set tolerance, tol. We will
specify the tolerance parameter for each problem. In general, tol is set to be Ch2 for
some constant C. Unless otherwise specified, the solutions are zero on the boundary.

6.1. Obstacle problem. For our first examples, we show some numerical results
for the minimization problem:

min
u

∫
1

2
|∇u|2 + μ(ϕ− u)+ dx

with different types of obstacles. In particular, consider the following one-dimensional
(1D) obstacles:

(6.1) ϕ1(x) :=

⎧⎪⎨
⎪⎩
100x2 for 0 ≤ x ≤ 0.25,

100x(1− x)− 12.5 for 0.25 ≤ x ≤ 0.5,

ϕ1(1− x) for 0.5 ≤ x ≤ 1.0,

and

(6.2) ϕ2(x) :=

⎧⎪⎨
⎪⎩
10 sin(2πx) for 0 ≤ x ≤ 0.25,

5 cos(π(4x− 1)) + 5 for 0.25 ≤ x ≤ 0.5,

ϕ2(1− x) for 0.5 ≤ x ≤ 1.0.

In both cases, the parameter μ is determined discretely (see Theorem 3.1) and u
is initialized using the obstacle, i.e., u0 = ϕ. The results are shown in Figure 1. In
both cases the numerical solutions are linear away from their corresponding obstacles,
which agrees with the analytic solutions:

u1,exact(x) =

⎧⎪⎨
⎪⎩
(100− 50

√
2)x for 0 ≤ x ≤ 1

2
√
2
,

100x(1− x)− 12.5 for 1
2
√
2
≤ x ≤ 0.5,

u1,exact(1− x) for 0.5 ≤ x ≤ 1.0,

and

u2,exact(x) =

⎧⎪⎨
⎪⎩
10 sin(2πx) for 0 ≤ x ≤ 0.25,

10 for 0.25 ≤ x ≤ 0.5,

u2,exact(1− x) for 0.5 ≤ x ≤ 1.0.
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Fig. 1. The dashed curves are the obstacles and the black ones are our numerical solutions
associated with (6.1) (left) and (6.2) (right) after 50 iterations. The grid size is 256, the parameters
are (μ, λ) = (300, 45) and (2.5× 104, 250), respectively.

Fig. 2. The plots show the error between our numerical iterates (from Figure 1) and the
analytic solutions versus number of iterations. More precisely, the error is measured by En =
||un

h − uexact||L∞ and we plot log(En) versus n.

These simple examples are used to verify the numerical convergence of our method.
The errors between the analytic solutions and the numerical solutions versus the
number of iterations associated with obstacle problems (6.1) and (6.2) are shown in
Figure 2. Notice that the numerical scheme has nearly exponential error decay in the
beginning.

Next, we consider a two-dimensional (2D) problem on the domain Ω = [−2, 2]×
[−2, 2] with the following obstacle:

(6.3) ϕ(x, y) =

{√
1− x2 − y2 for x2 + y2 ≤ 1,

−1 otherwise.

Since the obstacle is radially symmetric, the analytical solution can be solved directly:

u(x, y) =

{√
1− x2 − y2 for r ≤ r∗,

−(r∗)2 log(r/2)/
√
1− (r∗)2 for r ≥ r∗,

where r =
√
x2 + y2, and r∗ is the solution of

(r∗)2(1− log(r∗/2)) = 1.
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Fig. 3. The plots above are our numerical solution (left) and the difference with the analytic
solution (right) associated with (6.3). The grid size is 256 by 256, the parameters are (μ, λ) =
(10/h2, 20.3), and tol = 10−6.

Fig. 4. The plots above are our numerical solution (left) and its level curves (right) of the
obstacle problem associated with (6.4). The grid size is 256 by 256, the parameters are (μ, λ) =
(6.5× 105, 1.3× 104), and tol = 5× 10−4.

Our numerical solution and the difference from the analytic solution are presented in
Figure 3. For comparison see [38]. We can see that the error is concentrated along
the contact set, where the function is no longer C2, and is relatively small everywhere
else.

Next, to examine the behavior of nonsmooth obstacles, we consider

(6.4) ϕ3(x, y) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
5.0 for |x− 0.6|+ |y − 0.6| < 0.04,

4.5 for (x− 0.6)2 + (y − 0.25)2 < 0.001,

4.5 for y = 0.57 and 0.075 < x < 0.13,

0 otherwise,

which consists of different disjoint shapes inside the domain [0, 1]× [0, 1]. The numer-
ical result and its level curves are shown in Figure 4. One can see that the solution is
smooth away from the obstacle and agrees well with the obstacle on its support set.

Finally, in Figure 5, an obstacle consisting of two intersecting planes with a bump
on each plane in the domain [−1, 1]× [−1, 1] is examined:

(6.5) ϕ4 = min(x+y−2, 2x+0.5y−2.5)−2e−60(x2+y2)−1.5e−200((x−0.75)2+(y+0.5)2).

In this case, the solution agrees with the obstacle in a large portion of the domain.
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Fig. 5. The plots above are the level curves of the obstacle (left) and our numerical solution
(right) associated with (6.5). The grid size is 256 by 256, the parameters are (μ, λ) = (105, 5× 103),
and tol = 5× 10−4.

Table 1

The errors for our method and the method found in [37] are calculated for the obstacle in
Figure 4. The error for our method, in the L2 and L∞ norms, is lower than the error for the
method used in [37].

Grid size L2 error (Our) L2 error [37] L∞ error (Our) L∞ error [37])

64× 64 6.83× 10−4 1.06× 10−3 1.21× 10−3 1.21× 10−3

128× 128 1.11× 10−4 2.29× 10−4 2.71× 10−4 3.36× 10−4

256× 256 1.56× 10−5 4.26× 10−5 4.7× 10−5 7.34× 10−5

Order 2.7 2.3 2.3 2.0

The analytic solution is given by the two intersecting planes, which can be seen by
the linear level curves.

6.2. Comparison. We compare our method to the one found in [37], which uses
an indicator function to enforce the obstacle inequality. The addition of an indicator
function to the variational problem may be found in many of the models cited in the
introduction of this paper. We choose to compare directly with the method from [37],
since their algorithm also uses operator splitting (in particular the Douglas–Rachford
algorithm) which is closely related to the algorithm we use here. Also, their method
can be seen as a representative for indicator based methods found in the literature.

In Table 1, we calculate the lowest achievable errors for our method and the
method in [37] applied to the problem found in Figure 4. The errors for our method,
in the L2 and L∞ norms, are lower than the errors for the method used in [37].
Additionally, our method seems to converge at a faster rate. This is likely due to
the differences in continuity between the penalty functions. In Table 2 the time and
iteration complexity are examined. Note that although the complexities are similar,
which is expected for these two algorithms, the absolute CPU times and number of
iterations are lower in our method.

Also, the error between the analytic solution and the numerical solution computed
by both methods versus the number of iterations is shown in Figure 6. Our method
quickly achieves a relatively low error (10−3) compared to the method in [37]. A
partial explanation for this fast initial decay can be found in [25]. The more rapid

D
ow

nl
oa

de
d 

09
/2

4/
15

 to
 1

31
.2

15
.7

0.
23

1.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

AN L1 PENALTY METHOD FOR GENERAL OBSTACLE PROBLEMS 1439

Table 2

The CPU times and number of iterations for our method and the method found in [37] to
achieve the errors in Table 1 are shown here. The complexity is measured as a function of the
number of nodes used in the discretization.

Grid size Time (ours) Time [37] Iterations (ours) Iterations [37]
64× 64 20.8 sec 55.1 sec 315 3508

128× 128 57.7 sec 193.7 sec 337 3997
256× 256 222.3 sec 1158.3 sec 469 4383
Complexity 0.85 1.1 0.14 0.08

Fig. 6. The plots correspond to the log error between the analytic solution and the numerical
iterates computed by our method (left) and method from [37] (right) versus the number of iterations.
Both algorithms are applied to (6.3) on a grid of size 256 by 256, with the error measured in the L2

norm.

convergence of our method might be due to the “error forgetting” property of L1

regularization combined with Bregman iteration, which is analyzed in [55].

6.3. Nonlinear obstacle. We would like to show that the methodology here
can be easily applied to nonlinear problems, so as a proof of concept we minimize the
surface tension:

min
v≥ϕ

∫ 1

0

√
1 + |∇v|2 dx,

which is the energy associated with the classical model of stretching an elastic mem-
brane over a fixed obstacle. The obstacle ϕ is given by the oscillatory function

(6.6) ϕ = 10 sin2(π(x + 1)2), x ∈ [0, 1].

The boundary data for this example are taken to be u(0) = 5 and u(1) = 10. The
numerical solution is linear away from the contact set as can be seen in Figure 7.

6.4. Two-phase membrane problem. We examine the two-phase membrane
problem:

min
u

∫
1

2
|∇u|2 + μ1u+ − μ2u− dx,

with different sets of (μ1, μ2) and boundary conditions. First, in the symmetric case,
we consider the following 1D problem:

(6.7) u′′ = 8χ{u>0} − 8χ{u<0} with u(1) = 1, u(−1) = −1,
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Fig. 7. The dashed curve is the obstacle and the black one is the numerical solution of the
nonlinear obstacle problem (6.6). The grid size is 512, λ = 5.3, μ = 1.1× 103, τ = 1/L = h2/2.

Fig. 8. Left: The black curve is the final numerical solution, the dotted one is the numerical
solution after 3 iterations of the two-phase membrane associated with (6.7). The grid size is 512, λ =
204.8, and tol = 5×10−5. Right: The log error in L∞ norm between the numerical and the analytic
solutions.

whose analytic solution is given by:

u(x) =

⎧⎪⎨
⎪⎩
−4x2 − 4x− 1 for − 1 ≤ x ≤ −0.5,

0 for − 0.5 ≤ x ≤ 0.5,

4x2 − 4x+ 1 for 0.5 ≤ x ≤ 1.

In Figure 8 (left), we plot our numerical solution at the third iteration and the
final state. Within a few iterations, our numerical method is able to locate the correct
zero set. The error versus the number of iterations is shown in Figure 8 (right), and
converges nearly exponentially. For comparison of the numerical results, see [3].

Next we consider a nonsymmetric equation

(6.8) u′′ = 2χ{u>0} − χ{u<0} with u(1) = 1, u(−1) = −1.

The calculated free boundary is at the point x ≈ 0.141, which was also observed in
[50] (see Figure 9).
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Fig. 9. The plot above is our numerical solution of the two-phase membrane associated with
(6.8). The free boundary point (the dot) is located at x ≈ 0.141. The grid size is 212, λ = 3072, and
tol = 5× 10−7.

Fig. 10. Left: Our numerical solution associated with (6.9). Right: the boundaries between the
regions {u > 0} (top), {u < 0} (bottom), and {u = 0}. The grid size is 256 by 256, λ = 100.0, and
tol = 10−6.

For an example in 2D, we set μ1 = μ2 = 1 with Dirichlet boundary condition g
given by

(6.9) g(x, y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1− x)2/4, −1 ≤ x ≤ 1 and y = 1,

−(1− x)2/4, −1 ≤ x ≤ 1 and y = −1,

y2, 0 ≤ y ≤ 1 and x = −1,

−y2, −1 ≤ y ≤ 0 and x = −1,

0, −1 ≤ y ≤ 1 and x = 1.

In this case, the zero set has nonzero measure; see Figure 10 (right). The boundary
between the regions {u > 0}, {u < 0}, and {u = 0} contains a branching point, which
we are able to resolve numerically.

6.5. Hele–Shaw. We present three examples of the Hele–Shaw problem

min
u

∫
1

2
|∇u|2 + γ1(ϕ− u)+ − γ2(tχK − u)− dx
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Table 3

The error between the radius of the free boundary of our numerical solution and the exact
radius associated with (K,Ω0) defined in (6.10) at time t = 0.25. The parameters are fixed at
γ1 = γ2 = 1.5× 104, λ1 = λ2 = 150, tol = 10−6. The convergence rate is approximately O(h0.8).

Grid size 128× 128 256× 256 512× 512 1024 × 1024
Error (radius) 0.0238 0.0124 0.0083 0.0044

Fig. 11. From inside to outside: boundaries of the sets K, Ω0 and the free boundary of the
Hele–Shaw problem. The grid size is 256 by 256, γ1 = γ2 = 1.5 × 104, λ1 = λ2 = 150, tol = 10−5,
and times t = 0.1, and t = 0.06, respectively.

with different sets of (K,Ω0). The parameters are fixed at γ1 = γ2 = 1.5× 104, λ1 =
λ2 = 150. The free boundary starts moving from Ω0.

To validate our numerical scheme, in the first example we compare the boundary
of our numerical solution and that of the analytic solution. In particular, when both
K and Ω0 are circles centered at the origin,

(6.10) K = {(x, y) ∈ [−5, 5]2 | x2+ y2 ≤ 1}, Ω0 = {(x, y) ∈ [−5, 5]2 | x2+ y2 ≤ 2},

the free boundary remains a circle centered at the origin for all time. Thus the radius
of Ω, Rexact, can be calculated explicitly. In Table 3, we compute the error between
the radius of the free boundary of our numerical solution and the analytic solution at
time t = 0.25 using different grid sizes. The experimental error in the radius is about
O(h0.8), which is expected for a low-dimensional structure.

Next, we present two numerical results for more complicated cases of (K,Ω0). In
Figure 11 (left), the free boundary ∂Ω is pinned at the two acute vertices along ∂Ω0.
As expected, the free boundary opens up to right angles then smooths out and moves
away from Ω0. For more details on this short time behavior as well as singularities
in the Hele–Shaw model see [33, 52, 42]. Finally, in Figure 11 (right), we take the
boundary of Ω0 to be smooth but concave. The free boundary moves away from the
initial state and begins to smooth out.

7. Conclusion. Using an L1 penalty method, we are able to construct an un-
constrained problem whose solutions correspond exactly to those of the obstacle prob-
lems. We provide a lower bound on the value of the penalty parameter and use this
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to guide our numerical calculations. We present several experimental results showing
the applicability of our method to various physical problems.
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