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Abstract. Consider the problem of time-periodic strong solutions of the Stokes and
Navier-Stokes system modelling viscous incompressible fluid flowpast or around a rotating
obstacle in Euclidean three-space. Introducing a rotating coordinate system attached to the
body, a linearization yields a system of partial differential equations of second order involving
an angular derivativenot subordinate to the Laplacian. In this paper we find an explicit solution
for the linear whole space problem when the axis of rotation is parallel to the velocity of the
fluid at infinity. For the analysis of this solution inLq -spaces, 1< q < ∞, we will use tools
from harmonic analysis and a special maximal operator reflecting paths of fluid particles past
or around the obstacle.

1. Introduction. In recent years the analysis of the Navier-Stokes equations and of
models of non-Newtonian fluids describing the flow around or past a rotating body has at-
tracted much attention. Here we consider the Navier-Stokes equations modelling viscous
flow eitherpast a rotating bodyK in Euclidean 3-spaceR3 with axis of rotationω = ω̃e3 =
ω̃(0,0,1)T , ω̃ �= 0, and with velocityu∞ = ke3 �= 0 at infinity oraround a rotating bodyK
which is moving in the direction of its axis of rotation. In each case a coordinate transform
and a linearization yield the system of partial differential equations

ut − ν�u+ k∂3u− (ω ∧ x) · ∇u+ ω ∧ u+ ∇p=f ,
divu= 0

(1.1)

in a time-independent exterior domainΩ = R3\K together with the initial-boundary condi-
tion

u(x, t) = ω ∧ x − u∞, u(x,0) = u0, u → 0 as |x| → ∞ .

Hereu = (u1, u2, u3)
T andp denote the velocity and pressure of the fluid, resp.,f is a given

external force, andν > 0 is the constant coefficient of viscosity. In the stationary case to
be analyzed in this paper, we are led to an elliptic equation in the sense of Agmon-Douglis-
Nirenberg in which the term(ω ∧ x) · ∇u is not subordinate to−ν�u in the exterior domain
Ω . Note that a stationary solution(u, p) of (1.1) will lead to a time-periodic solution of the
original linearized problem.
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To be more precise, consider the Navier-Stokes equations

vt − ν�v + v · ∇v + ∇q = f̃ in Ω(t), t > 0 ,

div v= 0 in Ω(t), t > 0 ,

v(y, t)=ω ∧ y on ∂Ω(t), t > 0 ,

v(y, t) → u∞ �= 0 as |y| → ∞

(1.2)

with an initial valuev(y,0) = v0(y) andω = ω̃e3 �= 0 in the time-dependent exterior domain

Ω(t) = Oω(t)Ω ,

whereOω(t) denotes the orthogonal matrix

Oω(t) =

cosω̃t − sinω̃t 0

sinω̃t cosω̃t 0
0 0 1


 .

Then, introducing

x = OT
ω (t)y , u(x, t) = OT

ω (t)(v(y, t)− u∞) , p(x, t) = q(y, t) ,(1.3)

(u, p) will satisfy the modified Navier-Stokes system

ut − ν�u+ u · ∇u+ (OT
ω (t)u∞) · ∇u

− (ω ∧ x) · ∇u+ ω ∧ u+ ∇p = f in Ω × (0,∞) ,

divu = 0 in Ω × (0,∞) ,

u(x, t) = ω ∧ x −OT
ω (t)u∞ on ∂Ω × (0,∞) ,

u(x, t) → 0 as |x| → ∞ .

(1.4)

For details of the elementary calculation, see [9] whenu∞ = 0; for u∞ �= 0 the additional
termu∞·∇yu(OT

ω (t)y, t) = (OT
ω (t)u∞)·∇xuwill appear. In the case,u∞ ‖ω, sayu∞ = ke3,

to be considered here,OT
ω (t)u∞ = ke3 for all t > 0. Thus (1.4) will lead to the system

ut − ν�u+ u · ∇u+ k∂3u

− (ω ∧ x) · ∇u+ ω ∧ u+ ∇p = f in Ω ,

divu = 0 in Ω ,

u = ω ∧ x − ke3 on ∂Ω ,

u→ 0 as |x| → ∞ ,

(1.5)

a stationary solution of which corresponds to a time-periodic solution of the original system
(1.2). However, ifu∞ is not parallel to the axis of rotatione3, the termOT

ω (t)u∞ depends on
t. Therefore, in this paper, we will study the linearized and stationary version of (1.4) only
whenu∞ is parallel toω.

Finally, we may consider the problem of a rotating body with axis of rotationω and
with an additional translational velocity−u∞. In this case,Ω(t) = Oω(t)Ω − u∞t and
v(y, t) → 0 as|y| → ∞ in (1.1). Then the transformation

x = OT
ω (t)(y + u∞t), u(x, t) = OT

ω (t)v(y, t), p(x, t) = q(y, t)
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again will lead to (1.4) (observer invariance)with the same fundamental difference between
the casesu∞ ‖ ω andu∞ ∧ ω �= 0.

The mathematical analysis of viscous flow past or around rotating obstacles started with
[1], where weak instationary solutions have been constructed in an even more general setting
allowing for time-dependent functionsω(t) andu∞(t). Decay results for this problem in the
whole space are discussed in [2]. Using semigroup theory, local mild and unique solutions
are constructed in [9], [10] whenu∞ = 0; since the corresponding semigroup is strongly
continuous, butnot analytic, it is not clear whether the mild solution is a strong one. A
different approach in homogeneous Besov spaces is used in [13], where the term(ω∧ x) · ∇u
has been replaced by the more general term(Mx) · ∇uwith an arbitrary traceless 3×3-matrix
M; here a local classical and unique solution is found for nondecaying initial data. Several
linear and stationary auxiliary problems in the whole space and in exterior domains have
been analyzed in [11]; to some extent the results are generalized to the nonlinear case and
the problem including the term(ω ∧ x) · ∇u in [12]. Several advanceda priori estimates
of stationary and instationary solutions can be found in [7], including even non-Newtonian
fluids; in particularL2-estimates for (1.1) are established.Pointwise estimates yielding decay
rates such as|v(x)| ≤ c(1 + |x|)−1 are obtained in [8] for the stationary nonlinear problem
whenu∞ = 0. With regard to further developments, e.g., to the discussion of stability,Lq -
estimates, 1< q < ∞, are presented in [3] for the linearized whole space problem (1.1)
whenu∞ = ke3 = 0. For the physical background and for applications to the free fall
of particles in fluids, see [7] and references therein. In [17] the time-dependent fundamental
solution (Green’s function)Γ (z, y; t) is calculated for the caseu∞ �= 0, and several pointwise
estimates are given fort → 0, t → ∞ and for small and large spatial dataz, y.

The main results of this paper are the following.

THEOREM 1.1. (1) Let 1< q < ∞, f ∈ Lq(R3)3 and g ∈ W1,q(R3) such that even
|(x1, x2)|g ∈ Lq(R3). Furthermore, let ν > 0, k ∈ R and ω = (0,0, ω̃)T ∈ R3\{0}. Then the
linear problem in R3,

−ν�u+ k∂3u− (ω ∧ x) · ∇u+ ω ∧ u+ ∇p = f , divu = g ,(1.6)

has a solution (u, p) ∈ Ŵ2,q(R3)3 × Ŵ1,q(R3) satisfying the a priori estimates

‖ν∇2u‖q + ‖∇p‖q ≤ c(‖f ‖q + ‖ν∇g + (ω ∧ x)g − kge3‖q) ,(1.7)

‖k∂3u‖q + ‖(ω ∧ x) · ∇u− ω ∧ u‖q
(1.8) ≤ c

(
1 + k4

ν2|ω|2
)
(‖f ‖q + ‖ν∇g + (ω ∧ x)g − kge3‖q)

with a constant c > 0 independent of ν, k and ω.
(2) In addition to the assumptions in (1) and given a solution (u, p) ∈ Ŵ2,q (R3)3 ×

Ŵ1,q(R3) of (1.6), suppose that f ∈ Lr(R3)3, g ∈ W1,r (R3), |(x1, x2)|g ∈ Lr(R3), and let
(u1, p1) ∈ Ŵ2,r (R3)3 × Ŵ1,r (R3) be another solution of (1.6). Then p − p1 is constant and
u− u1 equals αe3 + βω ∧ x, α, β ∈ R.
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COROLLARY 1.2. (1) Let 1 < q < 4, f ∈ Lq(R3)3 and g ∈ W1,q(R3) such that
|(x1, x2)|g ∈ Lq(R3), and let (u, p) ∈ Ŵ2,q(R3)3 × Ŵ1,q (R3) be the solution of (1.6). Then
there exists β ∈ R such that

∇′(u− βω ∧ x) ∈ Lr(R3)6 for all r > 1,
1

r
∈ 1

q
−

[1

4
,

1

3

]
.

Moreover,

‖∇′(u− βω ∧ x)‖r ≤ C(‖f ‖q + ‖ν∇g + (ω ∧ x)g − kge3‖q)
with a constant C = C(ν, k, ω; r) > 0.

(2) In (1) assume that even 1< q < 2. Then there exist α, β ∈ R such that

u− βω ∧ x − αe3 ∈ Ls(R3)3 for all s > 1,
1

s
∈ 1

q
−

[1

2
,

2

3

]
.

Moreover,

‖u− βω ∧ x − αe3‖s ≤ C(‖f ‖q + ‖ν∇g + (ω ∧ x)g − kge3‖q)
with a constant C = C(ν, k, ω; s) > 0.

REMARK 1.3. (1) In Theorem 1.1 fixf andg and let(uν,k,ω, pν,k,ω) denote a solu-
tion of (1.6) forν > 0, k �= 0 andω = ω̃e3, ω̃ �= 0. Furthermore, letν0 > 0, k0 ∈ R and
ω̃0 = ω̃0e3, ω̃0 ∈ R. Then

uν,k,ω ⇀ uν0,k0,ω0 in Ŵ2,q (R3)3, pν,k,ω ⇀ pν0,k0,ω0 in Ŵ1,q (R3)

weakly as(ν, k, ω) → (ν0, k0, ω0), where(uν0,k0,ω0, pν0,k0,ω0) solves (1.6) withν0 replacing
ν, k0 replacingk andω0 replacingω. This result extends to the case off, g depending on
ν, k, ω such thatfν,k,ω ⇀ fν0,k0,ω0 andgν,k,ω ⇀ gν0,k0,ω0 in suitable weak topologies.

(2) Compared to the casek = 0 considered in [3], the results in Theorem 1.1 are
stronger. The uniqueness assertion does not allow for a termγ (x1, x2,−2x3)

T , γ ∈ R, as in
[3] due to the termk∂3u.

(3) In (1.6) it is not possible to estimate the terms(ω∧ x) · ∇u andω∧ u separately in
Lq unlessf andg satisfy an infinite set of compatibility conditions. The argument is based
on the simple identity

(ω ∧ x) · ∇u− ω ∧ u = ω̃Oe3(θ)∂θ (O
T
e3
(θ)u) ;

for more details see Remark 2.3, Proposition 2.4 in [3] whenk = 0.
(4) The fundamental solution of (1.5) which will be computed “explicitly" in Section

2 below will not lead to a classical Calderón-Zygmund integral operator, when considering
�u in terms off (andg). See Section 2 in [3] for more details whenk = 0; in this case the
fundamental solution has a slightly simpler form.

(5) It is not evident that for the solutionu of (1.6) both lower order termsk∂3u and
(ω ∧ x) · ∇u − ω ∧ u can be estimated inLq -norms from the right-hand side. On the other
hand, it is remarkable that thea priori estimate (1.8) depends on(k/

√
ν|ω|)4. The proof

in Section 2 using Marcinkiewicz’ multiplier theorem implies that forq = 2 the term
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C(1 + (k/
√
ν|ω|)2) will suffice. Thus complex interpolation will slightly improve (1.8).

Finally, an explicit example will indicate that the termC(1 + (k/
√
ν|ω|)2) is optimal, see

the end of Section 2.

In this paper we use standard notation for Lebesgue spaces and Sobolev spaces, namely
Lq(Ω) andWk,q(Ω),1 ≤ q ≤ ∞, for bounded and unbounded domainsΩ ⊂ R3. To
control problems also in unbounded domains we need the spaceL

q

loc(Ω̄) of functions which
areLq -integrable on every compact subset ofΩ̄ and homogeneous Sobolev spaces

Ŵk,q(Ω) = {u ∈ L1
loc(Ω̄)/Πk−1 ; ∂αu ∈ Lq(Ω) for all α ∈ Nn0, |α| = k} ,

where∂α = ∂
α1
1 · · · · · ∂αnn for a multi-indexα = (α1, . . . , αn) ∈ Nn0 andΠk−1 denotes the

set of all polynomials onRn of degree≤ k − 1. The spaceŴk,q(Ω) consists of equivalence
classes ofL1

loc-functions being unique only up to elements fromΠk−1 and is equipped with

the norm
∑

|α|=k ‖∂αu‖q . SinceŴk,q (Ω) can be considered as a closed subspace ofLq(Ω)N

for someN = N(k, n) ∈ N, it is reflexive and separable for everyq ∈ (1,∞). For more
details on these spaces see Chapter II in [6], Chapter III in [14] and also [4], [5]. However,
sometimes being less careful, we will considerv ∈ Ŵk,q(Ω) as a function (representative)
rather than an equivalence class of functions, i.e.,v ∈ L1

loc(Ω) such that∂αv ∈ Lq(Ω) for
every multi-indexα with |α| = k.

The Fourier transform onR3 of a function or distributionu is denoted byFu = û, i.e.,
formally

û(ξ) = (2π)−3/2
∫

R3
e−ix·ξu(x)dx , ξ ∈ R3 .

The Fourier transform and its inverseF−1 will be needed in particular on Schwartz’s space
S(R3) of rapidly decreasing functions and on its dual spaceS ′(R3) of tempered distributions.
Furthermore,D(Ω) = C∞

0 (Ω), andD′(Ω) denotes the set of all distributions onΩ. The
application of a distributionT on a test functionu (or of a functionalT ∈ X′ in a dual space
X′ of a given Banach spaceX on an elementu ∈ X) is denoted by〈T , u〉. Givenq ∈ (1,∞),
let Ŵ−1,q(Ω) be the dual space of̂W1,q ′

(Ω), q ′ = q/(q − 1).
FinallyBr(y) = {x ∈ R3 ; |x − y| < r}, r > 0, denotes a ball inR3 with respect to the

Euclidean norm| · |; moreover,Br = Br(0) andBcr = R3 \Br. The vectory = (y1, y2) ∈ R2

rotated through+π/2 is denoted byy⊥ = (−y2, y1). If y = (y1, y2, y3) ∈ R3, theny ′ =
(y1, y2), and∇′ = (∂1, ∂2) is the corresponding partial gradient onR3. As usual,c denotes a
generic positive constant which may change its value from line to line.

2. The whole space problem. To solve the whole space problem (1.6), i.e.,

−ν�u+ k∂3u− (ω ∧ x) · ∇u+ ω ∧ u+ ∇p = f , divu = g in R3 ,(2.1)

we eliminate the pressure term. Applying div to (2.1)1, p is seen to be a weak solution of the
equation

�p = div f + ν�g + (ω ∧ x) · ∇g − k∂3g ,
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that is,

(∇p,∇ϕ) = (f,∇ϕ)+ (ν∇g + (ω ∧ x)g,∇ϕ)− k(g, ∂3ϕ)(2.2)

for all test functionsϕ ∈ C∞
0 (R

3). By the assumptions of Theorem 1.1 the right-hand side

defines a functionalF on Ŵ1,q ′
(R3) satisfying the estimate

‖F‖
Ŵ−1,q (R3)

≤ ‖f ‖q + ‖ν∇g + (w ∧ x)g − kge3‖q .
Since the operator−� is well-known to be an isomorphism from̂W1,q(R3) ontoŴ−1,q (R3),
there exists a uniquep ∈ Ŵ1,q(R3) solving (2.2) and satisfying thea priori estimate

‖∇p‖q ≤ ‖f ‖q + ‖ν∇g + (ω ∧ x)g − kge3‖q .(2.3)

Thenu in (2.1) is a solution of the equation

−ν�u+ k∂3u− (ω ∧ x) · ∇u+ ω ∧ u = f − ∇p .(2.4)

A uniqueness argument below will prove that even divu = g.
To find an explicit solution of (2.4) we omit the term∇p and writef instead off −∇p;

furthermore, we assumẽω > 0, divide byω̃ and get that

− ν

ω̃
�u+ k

ω̃
∂3u− (e3 ∧ x) · ∇u+ e3 ∧ u = 1

ω̃
f .(2.5)

Next introduce cylindrical coordinates(r, θ, x3) ∈ R+ × [0,2π) × R, r =
√
x2

1 + x2
2, for

x = (x1, x2, x3)
T and observe that

∂θu = (e3 ∧ x) · ∇u .
To apply the Fourier transformF =∧ to (2.5) we use cylindrical coordinates(s, ϕ, ξ3) ∈
R+ × [0,2π)× R, s =

√
ξ2
1 + ξ2

2 , for ξ = (ξ1, ξ2, ξ3)
T as well and note that̂∂θu = ∂ϕû. Thus

û satisfies the equation

1

ω̃
(ν|ξ |2 + ikξ3)û− ∂ϕû+ e3 ∧ û = 1

ω̃
f̂ ,

andv̂(ϕ) = OT
e3
(ϕ)û(s, ϕ, ξ3) solves the problem

1

ω̃
(ν|ξ |2 + ikξ3)v̂ − ∂ϕv̂ = 1

ω̃
OT
e3
(ϕ)f̂ .(2.6)

This inhomogeneous, linear ordinary differential equation of first order with respect toϕ has
a unique 2π-periodic solution

v̂(ϕ) = 1/ω̃

1 − e−2π(ν|ξ |2+ikξ3)/ω̃

∫ 2π

0
e−(ν|ξ |2+ikξ3)t/ω̃OT

e3
(ϕ + t)f̂ (Oe3(t)ξ)dt ,

whereξ=̂(s, ϕ, ξ3). Consequently,

û(ξ) = 1

1 − e−2π(ν|ξ |2+ikξ3)/ω̃

∫ 2π/ω̃

0
e−(ν|ξ |2+ikξ3)tOT

ω (t)f̂ (Oω(t)ξ)dt ,(2.7)
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or, using the geometric series and the 2π/ω̃-periodicity of the mapt �→ OT
ω (t)f̂ (Oω(t)ξ),

û(ξ) =
∫ ∞

0
e−(ν|ξ |2+ikξ3)tOT

ω (t)f̂ (Oω(t)ξ)dt .(2.8)

Since the termeitkξ3 ∈ S ′(R3) is the Fourier transform of the shift operatorf �→ f (· − kte3)

onS ′(R3), we may also write

û(ξ) =
∫ ∞

0
e−ν|ξ |2tOT

ω (t)(Ff (Oω(t)· − kte3))(ξ)dt .(2.9)

Finally, note thate−ν|ξ |2t is the Fourier transform of the heat kernel

Et (x) = 1

(4πνt)3/2
e−|x|2/4νt ,

yielding

u(x) =
∫ ∞

0
Et ∗OT

ω (t)f (Oω(t)· − kte3)(x)dt .(2.10)

The fundamental solution given by (2.10) coincides—up to the Helmholtz projection—with∫ ∞
0 Γ (z, y; t)dt, whereΓ (z, y; t) denotes the time-dependent fundamental solution in [17].

To prove the a priori estimate (1.7) of∇2u it suffices—due to the well-known estimate
‖∂i∂ju‖q ≤ c‖�u‖q for all 1 ≤ i, j ≤ n, 1 < q < ∞—to consider�u only. Given
f ∈ S(R3)3, by (2.9)

−̂ν�u(ξ) = ν|ξ |2û(ξ) =
∫ ∞

0
ψ̂νt (ξ)O

T
ω (t)Ff (Oω(t)· − kte3)(ξ)

dt

t

=
∫ ∞

0
ψ̂t (ξ)O

T
ω/ν(t)Ff

(
Oω/ν(t)· − k

ν
te3

)
(ξ)
dt

t
,

where

ψ̂(ξ) = 1

(2π)3/2
|ξ |2e−|ξ |2 and ψ̂t (ξ) = ψ̂(

√
tξ) for t > 0

are the Fourier transforms of a functionψ ∈ S(R3) and ofψt (x) = t−3/2ψ(x/
√
t), t > 0,

respectively. Next we decomposêψt by choosing a cut-off functioñχ ∈ C∞
0 (1/2,2) such

that 0 ≤ χ̃ ≤ 1 and
∑∞
j=−∞ χ̃(2−j r) = 1 for all r > 0. Then letχ̂j (ξ) := χ̃ (2−j |ξ |),

yieldingχj ∈ S(R3) with

suppχ̂j ⊂ A(2j−1,2j+1) := {ξ ∈ R3 ; 2j−1 ≤ |ξ | ≤ 2j+1} .
Finally, defineψj ∈ S(R3) by

ψj = (2π)−3/2χj ∗ ψ or equivalently ψ̂j = χ̂j · ψ̂, j ∈ Z ,

yieldingψ = ∑+∞
j=−∞ ψj . Usingψj , we define the operator

Tjf (x) =
∫ ∞

0
ψ
j
t ∗OT

ω/ν(t)f (Oω/ν(t)· − k

ν
te3)(x)

dt

t
.(2.11)

Now we have to prove that the series
∑∞
j=−∞ Tj converges in the operator norm topology on

Lq(R3)3.
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LEMMA 2.1. The function ψjt , j ∈ Z, t > 0, has the following properties:
(1) suppψjt ⊂ A(2j−1/

√
t,2j+1/

√
t).

(2) ‖ψj‖1 ≤ c2−2|j | and |ψj (x)| ≤ c2−2|j |h2−2|j |(x) for all x ∈ R3, where h(x) =
(1 + |x|2)−2, ht (x) = t−3/2h(x/

√
t) and c > 0 is a constant independent of j ∈ Z and of

x ∈ R3.

PROOF. See Lemma 3.1 in [3]. �

LEMMA 2.2. For j ∈ Z let Mj denote the maximal operator

Mjg(x) = sup
r>0

∫
Ar

(|ψjt | ∗ |g|)
(
OT
ω/ν(t)x + k

ν
te3

)
dt

t
,(2.12)

where Ar = [r/16,16r]. Then for q ∈ (2,∞) the operator Tj satisfies the estimate

‖Tjf ‖q ≤ c2−|j |‖Mj‖1/2
(q/2)′‖f ‖q(2.13)

with a constant c > 0 independent of j ∈ Z. The term ‖Mj‖(q/2)′ denotes the operator norm

of the sublinear operator Mj on L(q/2)
′
(R3)3, the dual of Lq/2(R3)3.

PROOF. To estimate‖Tjf ‖q we use the Littlewood-Paley decomposition ofTjf , i.e.,
‖Tjf ‖q will be replaced by the equivalentLq -norm∥∥∥∥

( ∫ ∞

0
|ϕs ∗ Tjf (·)|2ds

s

)1/2∥∥∥∥
q

,(2.14)

whereϕ ∈ S(R3), ϕs(x) = s−3/2ϕ(x/
√
s) for s > 0, ϕ̂s(ξ) = ϕ̃(

√
s|ξ |) and whereϕ̃ ∈

C∞
0 (1/2,2) satisfies 0≤ ϕ̃ ≤ 1 and

∫ ∞
0 ϕ̃(s)2(ds/s) = 1/2, see I §8.23 in [16]. Thus there

exists 0≤ g ∈ L(q/2)′(R3) with ‖g‖(q/2)′ = 1 such that

‖Tjf ‖2
q ∼

∥∥∥∥
∫ ∞

0
|ϕs ∗ Tjf (·)|2ds

s

∥∥∥∥
q/2

=
∫

R3
g(x)

∫ ∞

0
|ϕs ∗ Tjf (x)|2ds

s
dx

=
∫ ∞

0

( ∫
R3

|ϕs ∗ Tjf (x)|2g(x)dx
)
ds

s
.

By (2.11) and the radial symmetry ofϕs and ofψjt

ϕs ∗ Tjf (x)=
∫ ∞

0
OT
ω/ν(t)ϕs ∗ ψjt ∗

[
f (Oω/ν(t) · −k

ν
te3)

]
(x)

dt

t

=
∫
A(s,j)

OT
ω/ν(t)(ϕs ∗ ψjt ∗ f )

(
Oω/ν(t)x − k

ν
te3

)
dt

t
,

(2.15)

since

ϕs ∗ ψjt = 0 unless t ∈ A(s, j) := [22j−4s,22j+4s] .
Note that

∫
A(s,j)

(dt/t) = log 28 for everyj ∈ Z ands > 0. Thus the inequality of Cauchy-
Schwarz, the associativity of convolutions, the inequality

|ψjt ∗ (ϕs ∗ f )(y)|2 ≤ ‖ψjt ‖1(ψ
j
t ∗ |ϕs ∗ f |2)(y)
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and Lemma 2.1 imply that

|ϕs ∗ Tjf (x)|2 ≤ c
∫
A(s,j)

∣∣∣∣(ψjt ∗ (ϕs ∗ f ))
(
Oω/ν(t)x − k

ν
te3

)∣∣∣∣2 dtt
≤ cj

∫
A(s,j)

(|ψjt | ∗ |ϕs ∗ f |2)
(
Oω/ν(t)x − k

ν
te3

)
dt

t
,

(2.16)

wherecj = c2−2|j |. Consequently, by (2.15) and (2.16)

‖Tjf ‖2
q ≤ cj

∫ ∞

0

∫
A(s,j)

∫
R3

|ψjt | ∗ |ϕs ∗ f |2
(
Oω/ν(t)x − k

ν
te3

)
g(x)dx

dt

t

ds

s

= cj

∫ ∞

0

∫
A(s,j)

∫
R3

|ψjt | ∗ |ϕs ∗ f |2(x)g
(
OT
ω/ν(t)x + k

ν
te3

)
dx
dt

t

ds

s

= cj

∫
R3

∫ ∞

0
|ϕs ∗ f |2(y)

∫
A(s,j)

|ψjt | ∗ g
(
OT
ω/ν(t)y + k

ν
te3

)
dt

t

ds

s
dy

≤ cj

∫
R3

( ∫ ∞

0
|ϕs ∗ f |2(y)ds

s

)
Mjg(y)dy ,

where also the identity
∫

R3 |ψjt | ∗ v(x)h(x)dx = ∫
R3 v(y)|ψjt | ∗ h(y)dy has been used. Now,

by Hölder’s inequality

‖Tjf ‖2
q ≤ c2−2|j |

∥∥∥∥
∫ ∞

0
|ϕs ∗ f |2(·)ds

s

∥∥∥∥
q/2

‖Mjg‖(q/2)′ ,

and the Littlewood-Paley decomposition off , cf. (2.14) forTjf , completes the proof. �

LEMMA 2.3. The maximal operator Mj , cf. (2.12),satisfies on Lp(R3)3,1 < p <

∞, the operator norm estimate

‖Mj‖p ≤ c2−2|j |, j ∈ Z ,

where c = c(p) is independent of j ∈ Z.

PROOF. By Lemma 2.1 together with the trivial inequalityht2−2|j |(x) ≤ chs2−2|j | (x) for
all j ∈ Z, t ∈ As = [s/16,16s], s > 0, andx ∈ R3, wherec > 0 is independent ofj, t, s and
x,

Mjg(x) ≤ c2−2|j | sup
s>0

hs2−2|j | ∗
∫
As

|g|
(
OT
ω/ν(t)x + k

ν
te3

)
dt

t

≤ c2−2|j | sup
r>0

hr ∗ sup
s>0

1

s

∫
As

|g|
(
OT
ω/ν(t)x + k

ν
te3

)
dt .

Next we will use the classical Hardy-Littlewood maximal operatorM onLp(R3) defined by

Mg(x) := sup
s>0

1

|Bs(x)|
∫
Bs(x)

|g(y)|dy
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and a “helical" maximal operator

Mhelg(θ, x3) := sup
s>0

1

s

∫
As

|g|
(
θ − ω

ν
t, x3 + k

ν
t

)
dt

for functionsg depending on(θ, x3) which are 2π-periodic inθ . Since 0≤ h ∈ L1(R3) is
radially symmetric and strictly decreasing,

sup
r>0

hr ∗ u(x) ≤ cMu(x) ,

cf. II §2.1 in [16]. Hence

Mjg(x) ≤ c2−2|j |M(Mhelgr (·, ·))(x) ,
wheregr (θ, x3) = g(r, θ, x3) = g(x) is considered as a function ofθ, x3 only, and

‖Mjg‖p ≤ c2−2|j |‖Mhelgr (·, ·)‖Lp(R3)(2.17)

due to theLp-continuity ofM. To estimateMhelgr (·, ·) in Lp(R3), fix r > 0 and use the
2π-periodicity ofgr with respect toθ to get that∫

R

∫ 2π

0
|Mhelgr (θ, x3)|pdθdx3

≤
∫

R

∫ 2π

0

∣∣∣∣∣sup
s>0

1

s

∫ 16s

−16s
|gr |

(
θ − ω

k

(
x3 + k

ν
t
)
, x3 + k

ν
t
)
dt

∣∣∣∣∣
p

dθdx3

=
∫

R

∫ 2π

0

∣∣∣∣∣sup
s>0

1

s

∫ 16s

−16s
γr,θ

(
x3 + k

ν
t
)
dt

∣∣∣∣∣
p

dθdx3 ,

whereγr,θ (y3) = |gr |(θ − (ω/k)y3, y3). Thus a variant of the Hardy-Littlewood maximal
operator onR1 applied toγr,θ (·) yields a constantc > 0 independent ofr, θ and ofk/ν such
that ∫

R

∫ 2π

0
|Mhelgr (θ, x3)|pdθdx3 ≤ c

∫ 2π

0

∫
R

∣∣γr,θ (x3)
∣∣pdx3dθ

= c

∫ 2π

0

∫
R

∣∣gr (θ, x3)
∣∣pdx3dθ .

Now a further integration with respect to the measurerdr, r ∈ (0,∞), proves theLp-estimate

‖Mhelgr (·, ·)‖Lp(R3) ≤ c‖g‖Lp(R3) .(2.18)

Combining (2.17) and (2.18) completes the proof. �

PROOF OFTHEOREM 1.1 (1). By Lemma 2.2 and Lemma 2.3 the operatorTj , see
(2.11), satisfies the estimate

‖Tjf ‖q ≤ c2−2|j |‖f ‖q, j ∈ Z , f ∈ S(R3)3 ,
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for q ∈ (2,∞) and with a constantc = c(q) > 0. HenceT = ∑∞
j=−∞ Tj converges in the

operator norm onLq(R3)3 and‖Tf ‖q ≤ c‖f ‖q , i.e., for everyf ∈ S(R3)3 the equation (2.4)
with p = 0 has a solutionu ∈ S ′(R3)3 ∩ Ŵ2,q (R3)3 satisfying the inequality

‖ν∇2u‖q ≤ c‖ν�u‖q ≤ c‖f ‖q, f ∈ S(R3)3 .(2.19)

To prove an analogous inequality for∂3u we use a representation ofk∂3u induced by (2.7),
i.e., using

k′ = k/ω̃ , ν′ = ν/ω̃ and D(ξ) = 1 − e−2π(ν ′|ξ |2+ik′ξ3) ,

we have

k̂∂3u(ξ) = ik′ξ3
D(ξ)

∫ 2π

0
e−(ν ′|ξ |2+ik′ξ3)tOT

e3
(t)f̂ (Oe3(t)ξ)dt(2.20)

for f ∈ S(R3)3. Choose a cut-off functionη ∈ C∞
0 (B1(0)) with η(ξ) = 1 for ξ ∈ B1/2(0)

and recall the effect of the multiplicative terme−ik′tξ3 in (2.7) through (2.9). Thus we may
write

k̂∂3u(ξ) = m0(ξ)Î0(ξ)+m1(ξ)Î1(ξ) ,(2.21)

where, usingην ′(ξ) = η(
√
ν′ξ),

m0(ξ) = ik′ξ3ην ′(ξ)

D(ξ)
, m1(ξ) = k′

√
ν′

1 − ην ′(ξ)

D(ξ)
(2.22)

and

I0(x) =
∫ 2π

0
E′
t ∗OT

e3
(t)f (Oe3(t)· − k′te3)(x)dt ,

I1(x) = √
ν′

∫ 2π

0
∂3E

′
t ∗OT

e3
(t)f (Oe3(t)· − k′te3)(x)dt ,

whereE′
t (·) denotes the heat kernel withν′ replacingν. Since‖E′

t‖1 = 1, |∂3E
′
t (x)| ≤

(c/
√
ν′t)E′

t (x/2) and‖f (Oe3(t)· − k′te3)‖p = ‖f ‖p, Young’s inequality yields

‖I0‖q ≤ 2π‖f ‖q and ‖I1‖q ≤ c‖f ‖q ,(2.23)

wherec > 0 is independent ofk, ω andν. Furthermore, an elementary, but lengthy calculation
will show thatm0,m1 satisfy the following pointwise estimates

max
j=0,1

max
α

sup
ξ �=0

|ξαDαξ mj (ξ)| ≤ c

(
1 +

(
k′

√
ν′

)4)
= c

(
1 + k4

ν2|ω|2
)

(2.24)

with a constantc > 0 independent ofν, ω andk; hereα ∈ N3
0 runs through the set of all

multi-indicesα ∈ {0,1}3.
The proof of (2.24) form1 is immediate, sincem1(ξ) = 0 unlessν′|ξ |2 ≥ 1/2 yielding

a uniform pointwise lower bound of the denominatorD(ξ); hence, e.g.,

ξ3∂3m1(ξ) = k′ξ3√
ν′

(
−

√
ν′

D(ξ)
(∂3η)(

√
ν′ξ)−(1−ην ′(ξ))

2π

D(ξ)2
(2ν′ξ3+ik′)e−2π(ν ′|ξ |2+ik′ξ3)

)
,
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and consequently,

|ξ3∂3m1(ξ)| ≤ c

(
k′

√
ν′ +

(
k′

√
ν′

)2)
≤ c

(
1 +

(
k′

√
ν′

)2)
.

Concerningm0 note thatm0(ξ) = 0 unlessν′|ξ |2 ≤ 1. However, sincek′ξ3 may take arbitrary
values, the denominatorD needs a more careful analysis. For eachξ ∈ R3 there exists an
n ∈ Z such that|k′ξ3 − n| ≤ 1/2, yielding due to Taylor’s expansion of 1− e−z

D(ξ) ∼ 2π(ν′|ξ |2 + i(k′ξ3 − n)) .

If n = 0, i.e.,|k′ξ3| ≤ 1/2, then

|m0(ξ)| ≤ c
|ik′ξ3|

|ν′|ξ |2 + ik′ξ3| ≤ c .

If n �= 0 and|k′ξ3 − n| ≤ 1/4, then

|m0(ξ)| ≤ c
|ik′ξ3|

|ν′|ξ |2 + i(k′ξ3 − n)| ≤ c
|k′ξ3|
ν′|ξ |2 ≤ c

∣∣∣∣ k′

ν′ξ3

∣∣∣∣ ≤ c

(
k′

√
ν′

)2

,

since|k′ξ3| ≥ 3/4. Finally, if 1/4 < |k′ξ3 − n| ≤ 1/2 andn �= 0, then |D| has a uniform
positive lower bound and

|m0(ξ)| ≤ c|k′ξ3| ≤ c
|k′|√
ν′ ,

sinceν′ξ2
3 ≤ 1. Summarizing, we get that

‖m0‖∞ ≤ c

(
1 +

(
k′

√
ν′

)2)
.(2.25)

However, the derivativeξ3∂3m0(ξ) yields a term

2π
ik′ξ3
D(ξ)2

(2ν′ξ2
3 + ik′ξ3)e−2π(ν ′|ξ |2+ik′ξ3) ,

which can be estimated by the fourth order termc(1 + (k′/
√
ν′)4). Since the application of

the derivativesξ1∂1 andξ2∂2 does not require further powers ofk′/
√
ν′ , the inequality (2.24)

is proved.
Now, Marcinkiewicz’ multiplier theorem [15] and (2.21) through (2.24) yield for every

q ∈ (1,∞) thea priori estimate

‖k∂3u‖q ≤ c

(
1 + k4

ν2|ω|2
)

‖f ‖q , f ∈ S(R3)3 ,(2.26)

with a constantc > 0 independent off, k, ν andω.
To extend (2.19) and (2.26) to arbitraryf ∈ Lq(R3)3, q > 2, and to get a vector field

u ∈ L1
loc(R

3)3 with ∇2u, ∂3u ∈ Lq(R3) solving

Lu := −ν�u+ k∂3u− (ω ∧ x) · ∇u+ ω ∧ u = f ,
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choose a sequence(fj ) ⊂ S(R3)3 such thatfj → f in Lq(R3)3 asj → ∞. Let (uj ) ⊂
L1

loc(R
3)3 denote the corresponding solutions ofLuj = fj satisfying

sup
j

(‖ν∇2uj‖q + ‖k∂3uj‖q) < ∞ .(2.27)

Now there are constant vectorscj , d1j , d2j ∈ R3 such that∫
B1

(∂1uj − d1j )dx =
∫
B1

(∂2uj − d2j )dx =
∫
B1

(uj − (cj + d1jx1 + d2jx2))dx = 0 .

Then Poincaré’s inequality and thea priori estimate (2.27) imply that for allm ∈ N

sup
j

(‖∇2(uj − rj )‖q + ‖∂3(uj − rj )‖q + ‖uj − rj‖Lq(Bm)) ≤ Cm

for some constantCm > 0; hererj denotes the linear polynomialrj (x) = cj +d1jx1+d2jx2.
Using concepts of weak convergence and compact embeddings, we find a subsequence—
again denoted by(uj − rj )—andũ ∈ L1

loc(R
3)3 such that

‖∇2(uj − rj )− ∇2ũ‖q + ‖∂3(uj − rj )− ∂3ũ‖q → 0 ,

uj − rj → ũ in Lq(Bm) for all m ∈ N
(2.28)

asj → ∞. In particular,L(uj − rj ) → Lũ in the sense of distributions, and sinceLuj = fj ,
alsoLrj → Lũ− f in D′(R3)3. Since the space of linear polynomialsΠ1 and alsoL(Π3

1) ⊂
Π3

1 are finite-dimensional,Lrj → Lr for somer ∈ Π3
1 asj → ∞. Hence, withu = ũ+ r,

we get thatLu = f and by (2.28) that

‖ν∇2u‖q ≤ c‖f ‖q , ‖k∂3u‖q ≤ c

(
1 + k4

ν2|ω|2
)

‖f ‖q(2.29)

whenq > 2.
To prove (2.29) also forq ∈ (1,2), we use a standard duality argument. The adjointT ∗

of T is given by

T ∗g(x) =
∫ ∞

0
(ψt ∗Oω/ν(t)g)

(
OT
ω/ν(t)x + k

ν
te3

)
dt

t
, g ∈ S(R3)3 .

Checking the proofs of Lemmata 2.2 and 2.3, we easily see that‖T ∗g‖q ′ ≤ c‖g‖q ′ in the dual
spaceLq

′
(R3)3. Thus‖Tf ‖q ≤ c‖f ‖q for all q ∈ (1,2) andf ∈ S(R3)3. Since (2.26) has

been proved for allq ∈ (1,∞), we get (2.29) forq ∈ (1,2), f ∈ Lq(R3)3 and a solutionu of
Lu = f .

The remaining caseq = 2 can be proved by complex interpolation or by Plancherel’s
Theorem.

Now the proof of part (1) is complete (except for the equation divu = g, see below).�

PROOF OFTHEOREM 1.1 (2). To prove this uniqueness and regularity assertion it suf-
fices to consider a solution(u, p) ∈ S ′(R3)4 of (1.6) whenf = 0 undg = 0. Then it has to
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be shown thatu equals a linear polynomialαe3 + βω ∧ x for suitableα, β ∈ R and thatp is
constant. In Fourier space (1.6) yields the equations

ν|ξ |2û+ ikξ3û− (ω ∧ ξ) · ∇ξ û+ ω ∧ û+ iξ p̂ = 0, iξ · û = 0 ,

and hence|ξ |2p̂ = 0. Thus supp̂p ⊂ {0} andp is a polynomial. Since∇p is assumed to be
contained inLq(R3)3 + Lr(R3)3 for 1 < q, r < ∞, p must be constant. To analyzeû we
introduce cylindrical coordinates(s, ϕ, ξ3) for ξ and letv̂(ϕ) := OT

e3
(ϕ)û(s, ϕ, ξ3) as before.

Sincep̂ = p̂0δ0, wherep̂0 ∈ C andδ0 denotes Dirac’sδ-distribution,

1

ω̃
(ν|ξ |2 + ikξ3)v̂ − ∂ϕv̂ = − ip̂0

ω̃
δ0 in S(R3)3 ,(2.30)

cf. (2.6). Now consider an arbitrary test functionψ ∈ C∞
0 (R

3\{0})3, and let

ψ0(s, ϕ, ξ3) := e−(ν ′|ξ |2+ik′ξ3)ϕ
∫ ϕ

−∞
e(ν

′|ξ |2+ik′ξ3)ϕ′
ψ(s, ϕ′, ξ3)dϕ′ ,

whereν′ = ν/ω̃, k′ = k/ω̃. Obviously,ψ0 ∈ C∞
0 (R

3\{0})3 and(ν′|ξ |2 + ik′ξ3)ψ0 + ∂ϕψ0 =
ψ. Consequently,

〈v̂, ψ〉 = 〈v̂, (ν′|ξ |2 + ik′ξ3 + ∂ϕ)ψ0〉 = 〈(ν′|ξ |2 + ikξ3 − ∂ϕ)v̂, ψ0〉 = 0

due to (2.30) and since suppψ0 ⊂ R3\{0}. Hence supp̂v ⊂ {0} and also supp̂u ⊂ {0},
implying thatu is a polynomial. Since by assumption∇2u are contained inLq(R3)+Lr(R3),
∇2u = 0 andu is a linear polynomial, say,u(x) = a + Bx with a ∈ R3 and a real 3× 3-
matrixB = (bij )1≤i,j≤3. Then an elementary calculation will show thata = αe3, α ∈ R, and
Bij = 0 except forB21 = −B12 = β ∈ R. Henceu(x) = αe3 + βω ∧ x. �

PROOF OFCOROLLARY 1.2 (1). Since∇2u, ∂3u ∈ Lq(R3),1 < q < 4, there exists a
unique real 3× 3-matrixB = (

bij
)
1≤i,j≤3 such that

∇(u− Bx) ∈ Lr(R3)9 for all r > 1,
1

r
∈ 1

q
−

[
1

4
,

1

3

]
,(2.31)

see Theorem 2.3 in [4] or Chapter VII.4 in [6]. Moreover, divu ∈ Lq(R3) by assumption
and divu − trB ∈ Lr(R3), yielding trB = 0. Analogously, the assumption∂3u ∈ Lq(R3)3

implies that the coefficientsb13, b23, and b33 vanish. Concerningu3 the inequality (1.8)
shows that−x2∂1u3 + x1∂2u3 ∈ Lq(R3), yielding

1

|x|(−x2∂1u3 + x1∂2u3) ∈ Lq(Bc1) ;
on the other hand,∇′u3 − (b31, b32)

T ∈ Lr(Bc1)2 . Hence

1

|x|(−x2b31 + x1b32) ∈ Lq(Bc1)+ Lr(Bc1) ,

which is possible if and only ifb31 = b32 = 0.Summarizing the previous results, we conclude
from (2.31) the existence of constantsβ, γ, δ ∈ R such that

v′ := u′ − β

(−x2

x1

)
− γ

(
x1

−x2

)
− δ

(
x2

x1

)
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satisfies∇v′ ∈ Lr(R3)6 for all r > 1, 1/r = 1/q − [1/4,1/3] . Furthermore, by (1.8)

L′u′ := − 1

|x|(−x2∂1u
′ + x1∂2u

′)+ 1

|x|(−u2, u1)
T ∈ Lq(Bc1)2 .

Note that

L′
(
x1

−x2

)
= 2

|x|
(
x2

x1

)
and L′

(
x2

x1

)
= − 2

|x|
(
x1

−x2

)
,

but that

L′
(−x2

x1

)
= 0 .

Case 1. 1 < q < 12/7 . In this case,r defined by 1/r = 1/q − 1/4 satisfies
1 < r < 3. Hence the result∇′v′ ∈ Lr(Bc1)4 and Theorem II5.1 in [6] yield the existence of
a vectorv′∞ ∈ R2 such that

v′ − v′∞
|x| ∈ Lr(Bc1)2 .

Thus

L′(u′ − (v′ − v′∞)) = 2γ

|x|
(
x2

x1

)
− 2δ

|x|
(
x1

−x2

)
+ 1

|x|v
′∞
⊥ ∈ Lq(Bc1)2 + Lr(Bc1)

2 ,

proving thatγ = δ = 0 andv′∞ = 0. Consequently,v = u− β̃ω ∧ x with β̃ = β/ω̃ satisfies
∇v ∈ Lr(R3)9 .

Case 2. 12/7 ≤ q < 4 . If q < 3, definer > 1 by 1/r = 1/q − 1/3, yielding
r ≥ 4 ; however, if 3≤ q < 4, let 1/r = 1/q − 1/4, yieldingr ≥ 12. Hencer > 3 and
v′ ∈ Ŵ1,r (R3)2 ⊂ C

0,α
loc (R

3)2, whereα = 1 − 3/r > 0. Then, by Lemma 2.4 below,

v′ − v′
0

|x| ∈ Lr(R3)2 ,

wherev′
0 ∈ R2 is well-defined. Arguing as in Case 1, we get that

L′(u′ − (v′ − v′
0)) = 2γ

|x|
(
x2

x1

)
− 2δ

|x|
(
x1

−x2

)
+ 1

|x|v
′
0
⊥ ∈ Lq(Bc1)2 + Lr(Bc1)

2 .

Although (1/|x|)v′
0
⊥ ∈ Lr(Bc1)

2, we may conclude thatγ = δ = 0. Consequently,v =
u− β̃ω ∧ x with β̃ = β/ω̃ satisfies∇v ∈ Lr(R3)9.

(2). By Theorem 2.3 in [4] there existsa ∈ R3 such that

v = u− a ∈ Ls(R3) for all s > 1,
1

s
∈ 1

q
−

[
1

2
,

2

3

]
;

here we assume for simplicity thatβ ∈ R from part (1) vanishes, yielding∇v ∈ Lr(R3)9 for
all r > 1,1/r = 1/q − [1/4,1/3]. Let

L̃u′ := −(−x2∂1u
′ + x1∂2u

′)+ u′⊥ = −∂θu′ + u′⊥ .
SinceL̃v′ = −∂θv′ +v′⊥ = L̃u′−a′⊥,we get from an integration with respect toθ ∈ [0,2π]
that

2πa′⊥ =
∫ 2π

0
L̃u′dθ −

∫ 2π

0
v′⊥dθ ∈ Lq(R3)2 + Ls(R3)2 .
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Hencea′ = 0. �

LEMMA 2.4. Let r > n and v ∈ Ŵ1,r (Rn). To be more precise, choose v ∈ Lrloc(R
n)

such that ∇v ∈ Lr(Rn)n. Then v0 = v(0) is well-defined and∫
Rn

|v − v0|r
|x|r dx ≤ c

∫
Rn

|∇v|rdx .

PROOF. Sincer > n, v ∈ C
1,α
loc , α = 1 − n/r, and there exists a constantc > 0

independent ofε > 0 such that|v(x) − v0| ≤ c|x|α‖∇v‖Lr (Bε) for all x ∈ Bε . Then, for all
0< ε < R < ∞,∫

BR\Bε
|v − v0|r

|x|r dx = 1

n− r

∫
BR\Bε

|v − v0|rdiv

(
x

|x|r
)
dx

= − r

n− r

∫
BR\Bε

(v − v0)|v − v0|r−2∇v · x

|x|r dx

+R1−r

n− r

∫
∂BR

|v − v0|rdo− ε1−r

n− r

∫
∂Bε

|v − v0|rdo .

Sincen− r < 0, we omit the integral on∂BR and get from the Hölder continuity ofv(x) and
from Hölder’s inequality that∫

BR\Bε
|v − v0|r

|x|r dx

≤ r

r − n

( ∫
BR\Bε

|v − v0|r
|x|r dx

)1/r ′( ∫
BR\Bε

|∇v|rdx
)1/r

+ c‖∇v‖rLr (Bε) .

As ε → 0 andR → ∞, we get the assertion with the constantc = (r/(r − n))r . �

PROOF OFREMARK 1.3 (1). For(ν, k, ω̃) ∈ (R∗+ × R × R) letLν,k,ω denote the oper-
ator

Lν,k,ω(u, p) = (−ν�u+ k∂3u− (ω ∧ x) · ∇u+ ω ∧ u+ ∇p,divu) .

Consider any sequence(νj , kj , ω̃j ) ⊂ R∗+ × R × R such that(νj , kj , ω̃j ) → (ν0, k0, ω0) ∈
R∗+ × R × R asj → ∞. Givenf ∈ Lq(R3)3 andg ∈ W1,q(R3) with |(x1, x2)|g ∈ Lq(R3),

let (uj , pj ) ∈ Ŵ2,q(R3)3 × Ŵ1,q(R3) denote a solution of the equationLj(uj , pj ) = (f, g)
whereLj = Lνj ,kj ,ωj . If kj = 0 and/orωj = 0, we refer to [3] or to classical results for the

Oseen or Stokes system inR3 [4, 5, 6, 14]. Thus we get thea priori estimate

‖∇2uj‖q + ‖∇pj‖q ≤ C(‖f ‖q + ‖g‖W1,q (R3) + ‖(x1, x2)g‖q )
with a constantC independent ofj ∈ N, i.e., the sequence(uj , pj ) is bounded in the reflexive
spaceŴ2,q(R3)3 × Ŵ1,q (R3). Hence there exists a subsequence of(uj , pj )—again denoted
by (uj , pj )—and a pair(u, p) ∈ Ŵ2,q (R3)3 × Ŵ1,q (R3) such thatuj ⇀ u in Ŵ2,q (R3)3 and
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pj ⇀ p in Ŵ1,q (R3) asj → ∞. Furthermore, we find polynomialsrj ∈ Π3
1 and constants

πj ∈ R such that

uj − rj → u in W1,q(Bm) , pj − πj → p in Lq(Bm)

for all m ∈ N, cf. (2.27) through (2.28). Then, in the sense of distributions,

Lj (uj − rj , pj − πj ) → Lν0,k0,ω0(u, p) asj → ∞ .

ThusLj(rj , πj ) → (f, g) − Lν0,k0,ω0(u, p) in the sense of distributions. Since the se-
quence(Lj (rj , πj )) runs in the finite-dimensional spaceΠ4

1 , we conclude that(f, g) −
Lν0,k0,ω0(u, p) ∈ Lq(R3)4 ∩ Π4

1 and consequently thatLν0,k0,ω0(u, p) = (f, g). Given any
other weakly convergent subsequence of(uj , pj ) with weak limit (ũ, p̃), it is straightforward
to see that̃u = u in Ŵ2,q(R3)3 and p̃ = p in Ŵ1,q(R3). Henceuν,k,ω converges weakly
to uν0,k0,ω0. Furthermore, the proof may easily be extended to weakly convergent right-hand
sides(fν,k,ω, gν,k,ω) with limit (f, g). �

PROOF OF THEEQUATION divu = g IN (1.6). The solution(u, p) constructed so far
satisfies (2.2) and (2.4). Applying div to (2.4), we get thatv = divu− g solves the equation

−ν�v + k∂3v − (ω ∧ x) · ∇v = 0 in R3 .

The arguments of the proof of uniqueness in Theorem 1.1(2) imply that

v = const,

since∇v ∈ Lq(R3)3. Analogously, a solutionu ∈ Ŵ2,q (R3)3 of (2.4) is uniquely determined
up to the affine termαe3 +βω∧x+γ (x1, x2,0)T , whereα, β, γ ∈ R. Note thatγ = 0 in the
proof of Theorem 1.1(2), where divu = 0 has been used. Here divu is uniquely determined
up to div(γ (x1, x2,0)T ) = 2γ . Hence

v = divu− g = 0 ,

when replacingu by u− γ (x1, x2,0)T for a suitable constantγ ∈ R. �

REMARK 1.3 (5). Finally, we discuss the termc(1 + (k/
√
ν|ω|)4) in the a priori

estimate (1.8). Forq = 2 the properties of the multiplierm1, see (2.22), and the estimate
(2.25) prove that (1.8) holds withc(1 + (k/

√
ν|ω|)2).

Under the additional assumption thatOT
ω (t)f (Oω(t)x) and consequently also its Fourier

transformOT
ω (t)f̂ (Oω(t)ξ) aret-independent, the formula (2.20) simplifies to

k̂∂3u(ξ) = ik′ξ3
ν′|ξ |2 + ik′ξ3

f̂ (ξ) .

Hence, in this special case, by Marcinkiewicz’ multiplier theorem,‖k∂3u‖q ≤ c‖f ‖q ,1 <
q < ∞, with a constantc > 0 independent ofν, k andω.

A final example will show that even in theL2-case the constantc in (1.8) needs the term
k2/(ν|ω|). We start with a functionf = (f ′,0) ∈ L2(R3)3 such that in Fourier space

f̂ ′(ξ) =
{
ξ ′⊥, 0< ϕ < π ,

−ξ ′⊥, π < ϕ < 2π ,
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whenν′|ξ |2 ≤ 1/4 but f̂ ′(ξ) = 0 whenν′|ξ |2 > 1/4, whereϕ is the angular part ofξ in
cylindrical coordinates. Note thatf is solenoidal in the weak sense; hence the pressurep

satisfying (2.2) vanishes (wheng = 0) andf = f − ∇p . Then (2.20) and an elementary
integration imply that for 0< ϕ < π

k̂∂3u′(ξ) = f̂ ′(ξ) ik′ξ3
ν′|ξ |2 + ik′ξ3

(
1 − 2e−(π−ϕ)(ν ′|ξ |2+ik′ξ3) 1 − e−π(ν ′|ξ |2+ik′ξ3)

1 − e−2π(ν ′|ξ |2+ik′ξ3)

)
.

For fixedk andν, choose|ω| > 0 sufficiently small and considerξ = (ξ ′, ξ3) such that∣∣∣∣|ξ ′| − ω

k

∣∣∣∣ ≤ ω

2k
and

∣∣∣∣ξ3 − ω

k

∣∣∣∣ ≤ ω

4k

νω

k2
≤ ω

2k
,

yielding |k′ξ3 − 1| ≤ νω/(4k2) ∼ ν′|ξ |2 ≤ 1/4 and|ν′|ξ |2 + ik′ξ3| ∼ |k′ξ3| ∼ 1, but
|ν′|ξ |2 + i(k′ξ3 − 1)| ∼ ν′|ξ |2. Hence, for theseξ ∈ R3 satisfyingν′|ξ |2 ∼ νω/k2

|k̂∂3u′(ξ)| ∼ |f̂ ′(ξ)| 1

|ν′|ξ |2 + ik′(ξ3 − 1)| ∼ |f̂ ′(ξ)| 1

ν′|ξ |2 ∼ |f̂ ′(ξ)| k
2

νω
.

This rough estimate and Plancherel’s theorem show that

‖k∂3u
′‖2 ∼ k2

νω
‖f ′‖2 . �
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