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Abstract: This paper mainly deals with the problems of data packet dropout and transmission delays induced by

communication channel in networked control systems (NCSs). Two approaches are introduced to deal with the

problems. One is the delay system approach, the other is the switched system approach. Sufficient conditions

on the stabilization of the NCSs are established in terms of linear matrix inequality (LMI), which can be

easily solved with the efficient LMI toolbox. Attention is focused on the design of memoryless state feedback

controller that guarantee stability of the closed-loop systems in spite of data packet loss and transmission

delays.
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1 Introduction

Networks have received increasing attentions in recent years because of the popularization and advantages

of using network cables in control systems [5, 16, 21, 27, 34]. Since the traditional point-to-point controller

architectures are being replaced by those based on serial communication channel and the price of microcon-

troller in such architecture has dropped, networks can bring new functionalities that were not available in

the past: the cost for cabling, installation, and maintenance can be reduced drastically. Examples include

industrial automation, intelligent vehicle systems and advanced aircraft and spacecraft, etc.

Networked control systems (NCSs) are sampled-date systems which are composed of digital controllers

interfaced to continuous-time physical plants, but NCSs do not satisfy the condition that the plant output and

control inputs are delivered at the same time, which is true for the conventional sampled-data system. Due

to network channel nondeterminism, the controller may not be able to receive all of the plant output updates

at the time of the control calculation. NCSs are nonlinear systems, but they are different to the conventional
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nonlinear systems because of their discontinuous, nondeterminism, and the variety of control mechanism.

Thus, the insertion of communication network in the feedback control loop complicates the application of

standard results in analysis and design of an NCS because many ideal assumptions made on the traditional

control theories can’t be applied to NCSs directly (see, e.g., [29]-[32] and the references therein).

When designing an NCS, however, a new constraint must be accommodated-the limited bandwidth of the

communication network that are affected mainly by four factors: the sampling rates at which the devices on

the network send information, the message size of the information, the network protocol that controls the

transmission and the topology of the network. We assume that the actuator and sensor used to measure the

process’ output are connected through a communication channel with finite bandwidth, which is shared by

several NCSs. The problem of stabilization with finite communication bandwidth was introduced by Wong

and Brockett [30, 31] and further pursued by [9, 10]. In [11, 12], a dwell-time switching method was proposed

to reduce the data rate of the network. Moreover, [11, 13] introduced signal quantization into the design of

the systems, thus reduced the data rate transmitted by the communication channel. [20] made use of a model

of the plant to reduce the network usage. A new framework for distributed control systems was introduced in

[32], which used estimators at each node to achieve a significant savings in the required bandwidth.

One of the issues raised in NCSs is the unreliable transmission paths because of limited bandwidth and large

amount of data packet transmitted over one line, which may result in data packet dropout. This may happen

while exchanging data among devices, and can degrade performance and destabilize the system even without

network inserted. The augmented state space method is the significant methods proposed in the literature to

deal with the problem of data packet dropout [35]. The performance of real-time NCSs with data dropouts was

considered in [17]. [1] used an uncertainty threshold principle to show that under certain conditions there was

a rate dropped packets for which an undisturbed NCS was mean square stable. A packet dropping network

was modelled as an erasure channel in [7]. However, the research mentioned above is concerned primarily

with analysis issues rather than control design.

Another challenge in the NCSs is the network-induced delay effect on the control loop, which may degrade

the performance of the NCSs and may result in instability, too. So far, various methodologies have been

formulated to deal with the problem of network delays. An augmented state vector method was proposed in

[25] to control a linear system over a periodic delay network. Queuing mechanisms was developed in [6, 18],

which utilized some deterministic or probabilistic information of NCSs for the control. Random delays were

treated in [23] via an optimal stochastic control methodology. See [3, 15] and the references therein for

related works. However, no method has been given in the above references on how to estimate the maximum

allowable value of the network-induced delay that does not violate the stability of the NCS.

Because data packet dropout and transmission delays may be potential sources to the instability and poor

performance of NCSs, this paper considers stabilization of NCSs with the problem under consideration. Two

kinds of approaches are introduced to deal with the problem considered in this paper. One is the delay system

approach, the other is the switched system approach. We mean that the NCSs with data packet dropout and

transmission delays are modelled as those two kinds of systems, and different techniques will be used to deal
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with them.

First, the NCSs (for the continuous case and discrete case) with such problems are modelled as linear systems

with time-varying delays (continuous and discrete, respectively), which may subject to fast time-varying. This

paper construct the feedback controller via solving a set of linear matrix inequalities (LMIs) which can be

easily solved using the LMI toolbox [2]. The admissible bound of data packet loss and of delays can be

obtained in terms of LMIs. Then, the NCSs (continuous case and discrete case) with data packet dropout and

transmission delays are modelled as linear switched systems (continuous and discrete, respectively), similar

results are obtained, what makes difference is that the transmission delays are constant in this part.

One technical comment should mentioned. In the first part, the continuous-time NCS with data packet

dropout is modelled as a linear system with time-varying input delay. There are two main methods to deal

with the continuous-time linear systems with time-varying delays: one is the Krasovskii-based method and the

other is the Razumikhin-based method. Usually, Krasovskii-based method requires the varying delay satisfy

τ̇(t) < 1, where τ(t) is the delay part, while τ(t) modelled from the real practice in this paper does not satisfy

this condition. For the Razumikhin-based method, there are results to design feedback controller to stabilize

a time-varying input delay system that satisfies above condition [22], unfortunately, the equations can not be

directly solved and the procedure requires the tuning of parameters. The controller constructed in this paper

can be directly obtained via solving the quasi-convex optimization problem [2].

2 Delay system approach

In this section, for continuous-time case and discrete-time case, we model NCSs with data packet dropout and

transmission delays as linear systems with input delay, thus the theory and conclusion for the delay system

can be applied to the design of such NCSs. The primary objective of this section is to design explicit express

of stabilizing state feedback controllers and find the admissible upper bound of the dropped packets and

transmission delays for the NCSs transmitted in single-packet manner and multiple-packet manner.

2.1 The continuous-time case

Data packet dropout in an NCS is unavoidable because of limited bandwidth. When packet collision occurs,

it might be more advantageous to drop the old packet and transmit a new one than repeated retransmission

attempt. We first consider the case where controller and the actuator are combined into one node and there are

no transmission delays between the sensor and the combined node. An NCS with the possibility of dropping

data packet can be described as in Fig. 1. The model consists of a continuous plant

ẋ(t) = Ax(t)+Bu(t), (1)

and a continuous controller (realized by a zero-order hold (ZOH))

u(t) = Fx̄(t), t ∈ [tk, tk−1), k = 1,2, · · · , (2)
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Figure 1: An NCS with data packet dropout

where x(t) ∈ Rn, u(t) ∈ Rm are the plant state and the plant input respectively. F is the state feedback gain

matrix to be designed, A,B are known real constant matrices with appropriate dimensions, and it is assumed

in this paper that the pair (A,B) is controllable. We assume the sampling period is a positive constant scalar

h. The sensor shown in Fig. 1 takes on the work of sampling and transmission, thus the output of network is

the sampling value of the state. tk is the sampling instant, and x̄(t) is the output of the network.

The network is modelled as a switch. When the switch is closed (in position S1), network packet (containing

x(tk)) is transmitted, and the controller utilizes the updated data, whereas when it is open (in position S2), the

output of the switch is held at the previous value and the packet is lose, and the controller uses the old data.

For a fixed sampling period, what we are concerned is the maximum quantity of packet loss, which will not

destabilize the closed-loop system. The dynamics of the switch can be expressed as follows:

The NCS (1) with no packet dropout at time tk: x̄(t) = x(tk);

The NCS (1) with one packet dropout at time tk: x̄(t) = x(tk−h);

...

The NCS (1) with d(k) packets dropout at time tk: x̄(t) = x(tk−d(k)h).

The quantity of dropped packets is accumulated from the latest time when x̄(t) has been updated.

Thus the closed-loop system with the network packet loss effect is described as

ẋ(t) = Ax(t)+BFx(tk−d(k)h), t ∈ [tk, tk+1).

Let τ(t) = t− tk +d(k)h, then the system can be expressed as:

ẋ(t) = Ax(t)+BFx(t− τ(t)), t ∈ [tk, tk+1). (3)

The quantity d(k) ∈ Z+ may vary with time t and it is assumed that

0≤ d(k)≤ dk, dk ∈ Z+.

Hence the delay τ(t) satisfies

0≤ τ(t) = t− tk +d(k)h≤ (d̄ +1)h, t ∈ [tk, tk+1),

where d̄ = maxk{dk}< ∞. Also it is assumed that (d̄ +1)h≤ τ̄ , where τ̄ is a positive scalar.
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Remark 1. The NCS (1)–(2) with data packet dropout is modelled as a linear system (3) with time-varying

input delay, and this enables us to apply the theory of delay systems to the analysis and design of such NCSs.

Remark 2. It can be easily verified that τ(t) does not satisfying the condition: τ̇(t) < 1, and thus the

Razumikhin-based approach will be use to deal with the problem under consideration.

2.1.1 Stabilization of the NCSs with data packet dropout

The following lemma will be used in the proof of our main result.

Lemma 1. [24] For any positive definite matrix Q ∈ Rn×n, the following inequality holds:

2xT y≤ xT Q−1x+ yT Qy,

where x ∈ Rn, y ∈ Rn.

The following result will ensure the stabilization of NCS (1)–(2) with data packet dropout.

Theorem 1. If there exist symmetric positive definite matrices X , R1, R2 ∈Rn×n, a symmetric positive definite

matrix Q ∈ Rm×m, a matrix Y ∈ Rm×n satisfying the following LMIs
[

1
τ̄ (XAT +AX +Y T BT +BY )+2X BQ

QBT −Q

]

< 0, (4)

[

−X Y T BT

BY −R2

]

≤ 0, (5)

[

−X XAT

AX −R1

]

≤ 0, (6)

[

Q Y

Y T X

]

≤ 0, (7)

R1 +R2−X ≤ 0. (8)

then system (1) can be asymptotically stabilized via state feedback

u(t) = Y X−1x(t)

whenever the data packet dropout satisfying 0≤ dk ≤
τ̄
h −1.

Proof. From the last section, the NCS (1)–(2) can be modelled as (3), thus we turn to consider system (3). By

Newton-Leibniz formula, equation (3) can be written as

ẋ = (A+BF)x(t)−BF
∫ t

t−τ(t)
(Ax(θ)+BFx(θ − τ(θ)))dθ (9)
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with the initial condition x(t0 +θ) = φ(θ), ∀ θ ∈ ξt0,2τ , where φ is a continuous norm-bounded initial function

and ξt0,2τ = {t ∈ R : t = η−2τ(η)≤ to, η ≥ to}. As is shown in [19], asymptotic stability of system (3) can

be guaranteed by asymptotic stability of system (9). Next we proceed to analyze system (9).

Consider the following Lyapunov function

V (xt) = xT (t)Px(t),

where P is a symmetric positive definite matrix. The time derivative of V (xt) along the trajectory of system

(9) is given by

V̇ (xt) = xT (t)(P(A+BF)+(A+BF)T P)x(t)−2xT (t)PBF
∫ t

t−τ(t)
(Ax(θ)+BFx(θ − τ(θ)))dθ . (10)

Let X = P−1, F = Y P. Pre- and post-multiplying (5) and (6) by block-diag [P P], using the standard Schur

complement, we can get the following inequalities:

AT R−1
1 A≤ P, (BF)T R−1

2 BF ≤ P. (11)

To use Razumikhin-type theorem [19], we evaluate V̇ (xt) for the case

V (xη) < δV (xt), t−2τ ≤ η ≤ t, (12)

where δ > 1. From (12) and Lemma 1, it follows that

−2xT (t)PBF
∫ t

t−τ(t) Ax(θ)dθ ≤
∫ t

t−τ(t) xT (θ)AT R−1
1 Ax(θ)dθ + τ(t)xT (t)PBFR1FT BT Px(t)

≤
∫ t

t−τ(t) xT (θ)Px(θ)dθ + τ(t)xT (t)PBFR1FT BT Px(t)

≤ xT (t)τ(t)(δP+PBFR1FT BT P)x(t),

(13)

−2xT (t)PBF
∫ t

t−τ(t) BFx(θ − τ(θ))dθ ≤
∫ t

t−τ(t) xT (θ − τ(θ))FT BT R−1
2 BFx(θ − τ(θ))dθ

+τ(t)xT (t)PBFR2FT BT Px(t)

≤ xT (t)τ(t)(δP+PBFR2FT BT P)x(t).

(14)

Inserting (13) and (14) into (11) yields

V̇ (xt)≤ xT (t)(P(A+BF)+(A+BF)T P+ τ(t)(2δP+PBF(R1 +R2)FT BT P))x(t).

Note that LMIs (7), (8) can be easily transformed into the following inequalities,

P−1− (R1 +R2)≥ 0, Q−FP−1FT ≥ 0.

Hence V̇ (xt) < 0 for V (xη) < δV (xt) (t−2τ ≤ η ≤ t) if

P(A+BF)+(A+BF)T P+ τ(t)(2δP+PBQBT P) < 0. (15)

Pre- and post-multiplying (4) by P, and by Schur complement, we can get that (4) is equivalent to

P(A+BF)+(A+BF)T P+ τ(t)(2P+PBQBT P) < 0.

Using the continuity of (15) in δ , (4) guarantees that there exists a δ > 1 sufficiently small such that (15)

holds for τ(t)≤ τ̄ . Furthermore, the explicit expression of feedback gain F can be given as Y X−1. From the

modelling process we know that to guarantee the stabilization of NCS (1), data packet dropout should satisfy

0≤ dk ≤
τ̄
h −1.
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Theorem 1 provides a method of designing a state feedback controller to stabilize an NCS with the possibility

of data packet loss, and the bound τ̄ , which is related to the allowable data packet drops that does’t destabilize

the NCS, can be solved via the quasi-convex optimization algorithm [2].

Remark 3. Although high sampling rates improve performance in conventional control systems, this also

induce high traffic load on the network medium. High traffic loads may lead to high packet drop rate, which

increases time delays and degrades control performance. With a certain performance, there must be a trade-

off between the sampling rate and the data packet dropout, which will be our future research work.
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Figure 2: The relationship between sampling rate and data packet dropout

Example 1. Consider the state-space plant model
[

ẋ1

ẋ2

]

=

[

−0.8 −0.01

1 0.1

][

x1

x2

]

+

[

0.4

0.1

]

u

The feedback controller takes the form u =−Fx̄(t) with F be designed.

Based on Theorem 1, we can solve the corresponding LMIs (4)–(8) and obtain the feedback gain F =

[−4.7298 − 4.7820]. By solving the quasi-convex optimization problem using LMI toolbox, we get the

admissible bound τ̄ 0.6011. Therefore, if the sampling period h = 0.2s, then the closed-loop system is still

stable even in the case of two data packets dropped in every three packets. For the system under consideration,

the relationship between sampling period and data packet loss is illustrated in Fig. 2, from which we can see

that with the sampling period increased, the data packet dropout have to be decreased in order to guarantee

the stability of the NCS.

2.1.2 Stabilization of NCSs with transmission delays and data packet dropout

The NCS model with transmission delays and data packet dropout is shown in Fig. 3. Here the controller and

the actuator are assumed to be separated. We consider two kinds of delays induced by the network: sensor-to-

controller delay τsc and controller-to-actuator delay τca, which may be less than or greater than one sampling
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Figure 3: An NCS with delay and data packet dropout

period h. In fact, if the feedback controller is static, these two delays can be lumped together. The model

consists of a continuous plant

ẋ(t) = Ax(t)+Bu(t), (16)

and a continuous controller (realized by a ZOH)

u(t) =−Fx̄(t− τca), t ∈ [tk, tk−1), k = 1,2, · · · . (17)

The network can also be modelled as a switch and the dynamic of the switch with transmission delay can be

described as follows:

The NCS (16)–(17) with no packet dropout at time tk: x̄(t) = x(tk− τsc);

The NCS (16)–(17) with one packet dropout at time tk: x̄(t) = x(tk− τsc−h);

...

The NCS (16)–(17) with d(k) packets dropout at time tk: x̄(t) = x(tk− τsc−d(k)h).

In this mode of switch, the quantity of dropped packet is accumulated from the latest time when x̄(t) has been

updated.

Thus the closed-loop system with transmission delays and network packet loss effect is described as

ẋ(t) = Ax(t)−BFx̄(t− τca)

= Ax(t)−BFx(tk− τca− τsc−d(k)h), t ∈ [tk, tk+1).

Let τ(t) = t− tk + τca + τsc +d(k)h, then the closed-loop system can be given as:

ẋ(t) = Ax(t)−BFx(t− τ(t)). t ∈ [tk, tk−1) (18)

The quantity d(k) ∈ Z+ may vary with time t and it is assumed that

0≤ d(k)≤ dk, dk ∈ Z+.

Hence the delay τ(t) satisfies

0≤ τ(t) = t− tk + τca + τsc +d(k)h≤ (d̄ +1)h+ τca + τsc, t ∈ [tk, tk+1),
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Figure 4: network with multiple packet transmission

where d̄ = maxk{dk}< ∞.

Again, NCS (16)–(17) with transmission delays and data packet dropout is modelled as a linear system (18)

with time-varying input delay, so we can use the existing theory of delay systems to the system (18).

Now, we develop a sufficient condition for the stabilization of the NCS with transmission delays and data

packet dropout.

Theorem 2. If there exist symmetric positive definite matrices X , R1, R2 ∈Rn×n, a symmetric positive definite

matrix Q ∈ Rm×m and a matrix Y ∈ Rm×n satisfying the following LMIs:
[

1
τ̄ (XA+AX +Y T BT +BY )+2X BQ

QBT −Q

]

< 0,

[

−X Y T BT

BY −R2

]

≤ 0,

[

−X XAT

AX −R1

]

≤ 0,

[

Q Y

Y T X

]

≤ 0,

R1 +R2−X ≤ 0.

then NCS (16)–(17) is asymptotically stable via a state feedback controller

u(t) = Y X−1x(t)

whenever the delay and data packet dropout satisfying 0≤ (dk +1)h+ τca + τsc ≤ τ̄ .

Proof. The proof of Theorem 2 is analogous to that of Theorem 1 and is thus omitted.
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2.1.3 Stabilization of NCSs with multiple-packet transmission

An NCS with multiple-packet transmission and data packet dropout can also be modelled as a linear multiple

delay system. In multiple-packet transmission mode, plant state or output are split into separate packets. Here

for simplicity we consider the case that the actuator and controller are combined into one node and there are

no transmission delays.

The NCS model of multiple-packet transmission with the possibility of dropping data packets is shown in

Fig. 4. The model consists of a continuous plant (1) and a continuous controller (2) (realized by a ZOH).

Here, matrix B is assumed to be of full column rank. For simplicity, we assume that x(t) =
[

XT
1 (t) XT

2 (t)
]T ,

where X1(t) = [x1(t) · · · xr(t)] and X2(t) = [xr+1(t) · · · xn(t)], r < n. Then the output of network is given

by x̄(t) =
[

X̄T
1 (t) X̄T

2 (t)
]T , where X̄1(t) = [x̄1(t) · · · x̄r(t)] and X̄2(t) = [x̄r+1(t) · · · x̄n(t)]. When the switch

being in position S1, the output of S1 and S2 are held at the previous value and these two packets are lose;

When the switch being in position S2, network packet containing X1(tk) is transmitted, and X̄1(tk) is updated,

whereas the output of switch S2 is held at the previous value; similarly analysis can be undergone when the

switch being in position S3. The dynamics of the network are described as

X̄1(t) = X̄1(tk−h), X̄2(t) = X̄2(tk−h) if the switch is in position S1;

X̄1(t) = X̄1(tk−h), X̄2(t) = X2(tk) if the switch is in position S2;

X̄1(t) = X1(tk), X̄2(t) = X̄2(tk−h) if the switch is in position S3.

So, the output of the network can be given by:

x̄(tk) =

[

X̄1(t)

X̄2(t)

]

=

[

X1(tk−d1(k)h)

X2(tk−d2(k)h)

]

=

[

X1(t− τ1(t))

X2(t− τ2(t))

]

,

where τ1(t) = t− tk + d1(k)h, τ2(t) = t− tk + d2(k)h. Thus the closed-loop system with the network packet

loss effect is modelled as

ẋ = Ax(t)+BFx̄(t) = Ax(t)+BFC1x(t− τ1(t))+BFC2x(t− τ2(t)), (19)

where

C1 =

[

Ir 0

0 0

]

, C2 =

[

0 0

0 In−r

]

.

The quantity di(k) ∈ Z+ (i = 1,2) may vary with time t and it is assumed that

0≤ di(k)≤ dik, dik ∈ Z+.

Hence the delay τi(t) (i = 1,2) satisfy the following property:

0≤ τi(t) = t− tk +di(k)h≤ (d̄i +1)h, t ∈ [tk, tk+1),

where d̄i = maxk{dik}< ∞.

Remark 4. The multiple-packet transmission NCS (1)–(2) with data packet dropout can also be modelled as

a linear system with time-varying multiple delay (19) to which the existing theory of delay systems applies.

10



The following result gives a sufficient condition for the stabilization of the NCS (19) with data packet

dropout in multiple-packet transmission.

Theorem 3. If there exist symmetric positive definite matrices P, Ui ∈Rn×n (i = 1, · · · ,6), a matrix M ∈Rm×m

and a matrix N ∈ Rm×n satisfying

PB = BM, (20)

and the following LMIs:

ATU1A≤ P,ATU4A≤ P, (21)

U2 ≤ P, U3 ≤ P, U5 ≤ P, U6 ≤ P, (22)
[

P CT
1 NT BT

BNC1 P

]

≥ 0, (23)

[

P CT
2 NT BT

BNC2 P

]

≥ 0, (24)































Λ τ̄1BNC1 τ̄1BNC1 τ̄1BNC1 τ̄2BNC2 τ̄2BNC2 τ̄2BNC2

∗ −τ̄1U1 0 0 0 0 0

∗ ∗ −τ̄1U2 0 0 0 0

∗ ∗ ∗ −τ̄1U3 0 0 0

∗ ∗ ∗ ∗ −τ̄2U4 0 0

∗ ∗ ∗ ∗ ∗ −τ̄2U5 0

∗ ∗ ∗ ∗ ∗ ∗ −τ̄2U6































< 0. (25)

where Λ = PA+AT P+BNC1 +BNC2 +CT
1 NT BT +CT

2 NT BT +3(τ̄1 + τ̄2)P, then the NCS (24) with B being

full column rank is asymptotically stable via a state feedback controller

u(t) = Y X−1x(t)

for data packet dropout satisfying 0≤ dik ≤
τ̄i
h −1.

Proof. As shown in Theorem 1, (19) can be written as

ẋ = (A+BFC1 +BFC2)x(t)−BFC1
∫ t

t−τ1(t)(Ax(θ)+BFC1x(θ − τ1(θ))+BFC2x(θ − τ2(θ))dθ
−BFC2

∫ t
t−τ2(t)(Ax(θ)+BFC1x(θ − τ1(θ))+BFC2x(θ − τ2(θ))dθ

(26)

with the initial condition x(t0 +θ) = φ(θ), ∀ θ ∈ ξt0 , where φ is a continuous norm-bounded initial function

and ξt0 =
⋃2

i=1 ξ i
t0 =

⋃2
i=1{t ∈ R : t = η−2τi(η)≤ to, η ≥ to}. From [19], global uniform asymptotic stability

of system (19) will be guaranteed by global uniform asymptotic stability of system (26).

Consider the following Lyapunov function

V (xt) = xT (t)Px(t),
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where P is a symmetric positive definite matrix. The time derivative of V (xt) along the trajectory of system

(26) is given by

V̇ (xt) = xT (P(A+BFC1 +BFC2)+(A+BFC1 +BFC2)
T P)x

−2xT PBFC1
∫ t

t−τ1(t)(Ax(θ)+BFC1x(θ − τ1(θ))+BFC2x(θ − τ1(θ)))dθ
−2xT PBFC2

∫ t
t−τ2(t)(Ax(θ)+BFC1x(θ − τ2(θ))+BFC2x(θ − τ2(θ)))dθ .

(27)

Let Ri = U−1
i , i = 1, · · · ,6, from (21)-(22), we obtain

AT R−1
1 A≤ P, AT R−1

4 A≤ P, (28)

R−1
2 ≤ P, R−1

3 ≤ P, R−1
5 ≤ P, R−1

6 ≤ P. (29)

Because B is full column rank, then it follows from (20) that M is also full rank, and thus invertible. Using

this and Schur complement, we can deduce from (23)-(24) and (29) that

CT
1 FT BT R−1

2 BFC1 ≤CT
1 FT BT PP−1PBFC1 = CT

1 NT BT P−1BNC1 ≤ P, (30)

CT
2 FT BT R−1

3 BFC2 ≤CT
2 FT BT PP−1PBFC2 = CT

2 NT BT P−1BNC2 ≤ P, (31)

CT
1 FT BT R−1

5 BFC1 ≤CT
1 FT BT PP−1PBFC1 = CT

1 NT BT P−1BNC1 ≤ P, (32)

CT
2 FT BT R−1

6 BFC2 ≤CT
2 FT BT PP−1PBFC2 = CT

2 NT BT P−1BNC2 ≤ P, (33)

where N = MF . To use the Razumikhin-type theorem [19], we evaluate V̇ (xt) for the case

V (xη) < δV (xt), t−2τ ≤ η ≤ t, (34)

where δ > 1. From this and Lemma 1, it follows from (28) and (30)-(34) that

−2xT PBFC1
∫ t

t−τ1(t) Ax(θ)dθ ≤
∫ t

t−τ1(t) xT (θ)AT R−1
1 Ax(θ)dθ

+τ1(t)xT (t)PBFC1R1CT
1 FT BT Px(t)

≤
∫ t

t−τ1(t) xT (θ)Px(θ)dθ
+τ1(t)xT (t)PBFC1R1CT

1 FT BT Px(t)

≤ xT (t)τ1(t)(δP+PBFC1R1CT
1 FT BT P)x(t),

−2xT PBFC1
∫ t

t−τ1(t) BFC1x(θ − τ1(θ))dθ ≤
∫ t

t−τ1(t) xT (θ − τ1(θ))CT
1 FT BT R−1

2 BFC1x(θ − τ1(θ))dθ
+τ1(t)xT (t)PBFC1R2CT

1 FT BT Px(t)

≤ xT (t)τ1(t)(δP+PBFC1R2CT
1 FT BT P)x(t),

−2xT PBFC1
∫ t

t−τ1(t) BFC2x(θ − τ2(θ))dθ ≤
∫ t

t−τ1(t) xT (θ − τ2(θ))CT
2 FT BT R−1

3 BFC2x(θ − τ2(θ))dθ
+τ1(t)xT (t)PBFC1R3CT

1 FT BT Px(t)

≤ xT (t)τ1(t)(δP+PBFC1R3CT
1 FT BT P)x(t),

−2xT PBFC2
∫ t

t−τ2(t) Ax(θ)dθ ≤
∫ t

t−τ2(t) xT (θ)AT R−1
4 Ax(θ)dθ

+τ2(t)xT (t)PBFC2R4CT
2 FT BT Px(t)

≤ xT (t)τ2(t)(δP+PBFC2R4CT
2 FT BT P)x(t),
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−2xT PBFC2
∫ t

t−τ2(t) BFC1x(θ − τ1(θ))dθ ≤
∫ t

t−τ2(t) xT (θ − τ1(θ))CT
1 FT BT R−1

5 BFC1x(θ − τ1(θ))dθ
+τ2(t)xT (t)PBFC2R5CT

2 FT BT Px(t)

≤ xT (t)τ2(t)(δP+PBFC2R5CT
2 FT BT P)x(t),

−2xT PBFC2
∫ t

t−τ2(t) BFC2x(θ − τ2(θ))dθ ≤
∫ t

t−τ2(t) xT (θ − τ2(θ))CT
2 FT BT R−1

6 BFC2x(θ − τ2(θ))dθ
+τ2(t)xT (t)PBFC2R6CT

2 FT BT Px(t)

≤ xT (t)τ2(t)(δP+PBFC2R6CT
2 FT BT P)x(t).

From above, we obtain that

V̇ (xt)≤ xT (P(A+BFC1 +BFC2)+(A+BFC1 +BFC2)
T P

+τ1(t)(3δP+PBFC1(R1 +R2 +R3)CT
1 FT BT P)

+τ2(t)(3δP+PBFC2(R4 +R5 +R6)CT
2 FT BT P))x

= xT (PA+BNC1 +BNC2 +AT P+CT
1 NT BT +CT

2 NT BT

+τ1(t)(3δP+BNC1(R1 +R2 +R3)CT
1 NT BT )

+τ2(t)(3δP+BNC2(R4 +R5 +R6)CT
2 NT BT ))x.

Hence, V̇ (xt) < 0 for V (xη) < δV (xt) (t−2τ ≤ η ≤ t) if








PA+BNC1 +BNC2 +AT P+CT
1 NT BT +CT

2 NT BT

+τ1(t)(3δP+BNC1(R1 +R2 +R3)CT
1 NT BT )

+τ2(t)(3δP+BNC2(R4 +R5 +R6)CT
2 NT BT )









< 0. (35)

Using Schur complement, (25) is equivalent to








PA+BNC1 +BNC2 +AT P+CT
1 NT BT +CT

2 NT BT

+τ̄1(3P+BNC1(R1 +R2 +R3)CT
1 NT BT )

+τ̄2(3P+BNC2(R4 +R5 +R6)CT
2 NT BT )









< 0. (36)

Using the continuity of (36) in δ , (25) guarantees that there exists a δ > 1 sufficient small such that (36) holds

for τi(t)≤ τ̄i, i = 1,2, and the conclusion thus follows.

For the NCSs with multiple-packet transmission, the feedback gain can be obtained by Theorem 3. If τ̄1 is

fixed, the bound τ̄2, which is related to the allowable data packet drops that does’t destabilize the NCS, can be

solved via the quasi-convex optimization algorithm [2]. It is the same the other way round.

2.2 Discrete-time case

Now, we extend continuous-time case to the discrete-time case. The manner of the modelling and the conclu-

sions in this part are similar to that of the continuous case, while the proofs are quite different.

An NCS shown as in Fig. 5 consists of a discrete plant and a discrete controller

x(k +1) = Ax(k)+Bu(k)

u(k) = Fx̄(k), k = 1,2, · · · ,
(37)
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- x(k +1) = Ax(k)+Bu(k) x(k)

? network
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S2
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SS

¾ x̄(k)
F

Figure 5: An NCS with data packet dropout

where x(k) ∈ Rn and u(k) ∈ Rm are the plant state and the plant input, respectively. x̄(k) is the output of

the network. F is the state feedback gain matrix to be designed, A, B are known real constant matrices with

appropriate dimensions. We first consider the case that controller and actuator are combined onto a single node

and there are no transmission delays between the sensor and the combined node. The network is modelled as

a switch. When the switch is closed (in position S1), network packet (containing x(k)) is transmitted and the

actuator utilizes the fresh data, whereas when it is open (in position S2), the output of the switch is held at the

previous value (the packet is lose), and the actuator uses the old data. If x̄(k) has not updated for d(k) times

at step k, the dynamics of the switch can be described as: x̄(k) = x(k−d(k)). Thus NCS (37) with the packet

loss effect can be modelled as

x(k +1) = Ax(k)+BF(k−d(k)). (38)

The quantity d(k) ∈ Z+ may vary with time step k and it is assumed that

0≤ d(k)≤ dk ≤ m̄, dk ∈ Z+.

where m̄ = max
k
{dk}< ∞.

Remark 5. The NCS (37) with data packet dropout is modelled as a linear time delay system (38), and this

enables us to apply the theory of delay systems to the analysis of such NCSs [26, 33].

2.2.1 Stabilization of the NCS with data packet dropout

We present the following result that ensures stabilization of NCS (37) with data packet dropout.

Theorem 4. For a given positive integer m̄ > 0, NCS (37) can be asymptotically stabilized for data packet

dropout satisfying 0 ≤ dk ≤ m̄ if there exist symmetric positive definite matrices X , Z ∈ Rn×n and a matrix

Y ∈ Rm×n satisfying the following LMI:
























−X 0 · · · 0 XAT m̄Y T

0 −Z · · · 0 ZBT 0
...

...
...

...
...

...

0 0 · · · −Z ZBT 0

AX BZ · · · BZ −X 0

m̄Y 0 · · · 0 0 −m̄Z

























< 0. (39)
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Furthermore the feedback control law is given by u(kh) = Y X−1x̄(kh).

Proof. From analysis in the previous subsection, the closed-loop system of the system (37) with u(k) = Fx̄(kh)

can be written as (dropping h for simplicity in the following):

Σc1 : x(k +1) = Ax(k)+BF
m̄

∑
i=1

δ (d(k)− i)x(k− i),

where

δ (n) =

{

1 if n = 0,

0 if n 6= 0.

Define a Lyapunov function V (k) as follows:

V (k) = xT (k)Px(k)+
m̄

∑
i=1

k−1

∑
j=k−i

x( j)T FT QFx( j),

where P and Q are positive definite matrices, then

4V (k) = V (k +1)−V (k)

= xT (k)[AT PA+ m̄FT QF−P]x(k)+2xT (k)AT P∑m̄
i=1 δ (d(k)− i)BFx(k− i)

+∑m̄
i=1 ∑m̄

j=1 δ (d(k)− i)δ (d(k)− j)xT (k− i)FT BT PBFx(k− i)

−∑m̄
i=1 xT (k− i)FT QFx(k− i).

Since
m̄

∑
i=1

xT (k− i)FT QFx(k− i)≥
m̄

∑
i=1

δ (d(k)− i)δ (d(k)− i)xT (k− i)FT QFx(k− i),

the following inequality holds,

4V (k)≤ xT (k)[AT PA+ m̄FT QF−P]x(k)+2xT (k)AT P∑m̄
i=1 δ (d(k)− i)BFx(k− i)

+∑m̄
i=1 ∑m̄

j=1 δ (d(k)− i)δ (d(k)− j)xT (k− i)FT BT PBFx(k− i)

−∑m̄
i=1 δ (d(k)− i)δ (d(k)− i)xT (k− i)FT QFx(k− i).

= W (k)T















AT PA+ m̄FT QF−P AT PB · · · AT PB

BT PA −Q+BT PB · · · BT PB
...

...
...

...

BT PA BT PB · · · −Q+BT PB















W (k),

where W (k) =
[

x(k)T x(k−1)T FT δ (d(k)−1) · · · x(k− m̄)T FT δ (d(k)− m̄)
]T

. Hence4V (k) < 0, if















AT PA+ m̄FT QF−P AT PB · · · AT PB

BT PA −Q+BT PB · · · BT PB
...

...
...

...

BT PA BT PB · · · −Q+BT PB















< 0,
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which can be written as














AT

BT

...

BT















P[A B · · · B]+















m̄FT QF−P 0 0 0

0 −Q · · · 0
...

...
...

...

0 0 · · · −Q















< 0.

By Schur complement, it is equivalent to




















m̄FT QF−P 0 · · · 0 AT

0 −Q · · · 0 BT

...
...

...
...

...

0 0 · · · −Q BT

A B · · · B −P−1





















< 0.

Pre- and Post- multiplying both sides of the above inequality by diag [P−1 Q−1 · · · Q−1 I], letting X =

P−1, Y = FX , Z = Q−1 and applying Schur complement again yield matrix inequality (39).

Remark 6. For NCS (37) with transmission delays and data packet dropout, we can get analogous conclusion

as that of Theorem 2 by combining the result of Theorem 4 and the modelling technique as that of continuous.

To illustrate the feasibility of the proposed method, we give an illustrative example.

Example 2. Consider the state-space plant model

x(k +1) =

[

0.6 0.5

0 0.71

]

x(k)+

[

0.1

0.1

]

u(k),

u(k) = F x̄(k).

(40)

with F to be designed.

For simplicity, we only consider NCS (40) with data packet dropout effect. First, we obtain the upper bound

of data packet dropout m̄ = 3 by search the largest m̄ that does not violate condition in Theorem 4. Then,

solving the LMI in Theorem 4 with LMI toolbox [2], we have

P =

[

5.0447 0.1629

0.1629 14.1394

]

, Q = 1.8780, F = [0.7001 0].

So the NCS (40) with up to 75% arbitrary data packet dropout can be asymptotically stabilized.

2.2.2 Stabilization of the NCS with multiple-packet transmission

For the NCS transmitted in a multiple-packet manner we also consider the case that the actuator and controller

are combined into one node and there are no transmission delays.
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- x((k +1)h) = Ax(kh)+Bu(kh)
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X2(kh)

q q

network
¶¶/S1 S2 S3

ee
q

¾ x̄(kh)
F

Figure 6: An NCS with multiple-packet transmission

First, we assume that x(k) =
[

XT
1 (k) XT

2 (k)
]T , where X1(k) = [x1(k) · · · xr(k)]

T and X2(k) = [xr+1(k) · · · xn(k)]
T .

Fig. 6 illustrates the case where the plant state is transmitted in two packets. When the switch in the position

S1, the output of positions S1 and S2 are held at the previous value and these two packets are lose; When the

switch in the position S2, network packet containing X2(k) is transmitted, whereas the output of the switch S1

is held at the previous value; otherwise, network packet containing X1(k) is transmitted, and the output of the

switch S2 is held at the previous value. The dynamics of the switch can be modelled as

X̄1(k) = X̄1(k−1), X̄2(k) = X̄2(k−1) if the switch is in the position S1;

X̄1(k) = X̄1(k−1), X̄2(k) = X2(k) if the switch is in the position S2;

X̄1(k) = X1(k), X̄2(k) = X̄2(k−1) if the switch is in the position S3.

Thus the output of the network can be given as:

x̄(k) =

[

X̄1(k)

X̄2(k)

]

=

[

X1(k−d1(k))

X2(k−d2(k))

]

,

and NCS (37) transmitted in two packets with the network packet lose effect can be described as

x(k +1) = Ax(k)+BFx̄(k) = Ax(k)+BFC1x(k−d1(k))+BFC2x(k−d2(k)), (41)

where

C1 =

[

Ir 0

0 0

]

, C2 =

[

0 0

0 In−r

]

.

The quantity di(k) ∈ Z+ (i = 1,2) may vary with k and it is assumed that

0≤ di(k)≤ dik ≤ m̄i, dik ∈ Z+,

where m̄i = max
k
{dik}< ∞.

The following result gives a sufficient condition on the stabilization of NCS (37) transmitted in two packets

with data packet dropout effect.

Theorem 5. For given positive integers m̄i > 0 (i=1,2), NCS (37) transmitted in two packets can be asymp-

totically stabilized for data packet dropout satisfying 0 ≤ dik ≤ m̄i if there exist symmetric positive definite
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matrices X , Zi ∈ Rn×n (i = 1,2) and a matrix Y ∈ Rm×n satisfying the following LMI:















































−X 0 · · · 0 0 · · · 0 XAT m̄1Y TCT
1 m̄2Y TCT

2

0 −Z1 · · · 0 0 · · · 0 Z1BT 0 0
...

...
. . .

...
...

...
...

...
...

...

0 0 · · · −Z1 0 · · · 0 Z1BT 0 0

0 0 · · · 0 −Z2 · · · 0 Z2BT 0 0
...

...
...

...
...

. . .
...

...
...

...

0 0 · · · 0 0 · · · −Z2 Z2BT 0 0

AX BZ1 · · · BZ1 BZ2 · · · BZ2 −X 0 0

m̄1C1Y 0 · · · 0 0 · · · 0 0 −m̄1Z1 0

m̄2C2Y 0 · · · 0 0 · · · 0 0 0 −m̄2Z2















































< 0. (42)

Furthermore the feedback control law is given by u(k) = Y X−1x̄(k).

Proof. From above analysis, the closed-loop system of the system (1) with u(k) = Fx̄(kh) can be written as:

Σc2 : x((k +1)) = Ax(k)+BFC1

m̄1

∑
i=1

δ (d1(k)− i)x(k− i)+BFC2

m̄2

∑
i=1

δ (d2(k)− i)x(k− i),

where

δ (n) =

{

1 if n = 0,

0 if n 6= 0.

Define a Lyapunov function V (k) as follows:

V (k) = xT (k)Px(k)+
2

∑
κ=1

m̄κ

∑
i=1

k−1

∑
j=k−i

x( j)T FTCT
κ QκCκFx( j),

where P and Qκ are positive definite matrices. Let X = P−1, Y = FX , Z = Q−1 and use similar technique as

that of Theorem 4, the conclusion can be easily obtained.

For the NCS (37) transmitted in two packets, we can find the upper bound of data packet dropout of each

transmission channel by search the largest m̄i that does not violate the condition of Theorem 5.

Remark 4. Similarly, an NCS transmitted in S packets with data packet dropout effect can be modelled as

x(k +1) = Ax(k)+BFx̄(k) = Ax(k)+
S

∑
i=1

BFCix(k−di(k)), (43)

where

Ci =





















0
. . .

0

Ii

0
. . .

0





















← the ith block.
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and d(k) is assumed to satisfy di(k)≤ dik ≤ m̄i for i = 1,2, · · · ,S, where dik ∈ Z+, m̄i = max
k
{dik}< ∞.

We briefly summarize the stabilization conclusion.

Theorem 6. For given positive integers m̄i > 0 (i = 1, · · · , S), NCS (37) transmitted in S packets can be

stabilized for data packet dropout satisfying 0 ≤ dik ≤ m̄i if there exist symmetric positive definite matrices

X , Z ∈ Rn×n and a matrix Y ∈ Rm×n satisfying the following LMI:




























































−X 0 · · · 0 · · · 0 · · · 0 XAT m̄1Y TCT
1 · · · m̄SY TCT

S

0 −Z1 · · · 0 · · · 0 · · · 0 Z1BT 0 · · · 0
...

...
. . .

... · · ·
...

...
...

...
... · · ·

...

0 0 · · · −Z1 · · · 0 · · · 0 Z1BT 0 · · · 0
...

...
...

...
. . .

...
...

...
...

... · · ·
...

0 0 · · · 0 · · · −ZS · · · 0 ZSBT 0 · · · 0
...

...
...

... · · ·
...

. . .
...

...
... · · ·

...

0 0 · · · 0 · · · 0 · · · −ZS ZSBT 0 · · · 0

AX BZ1 · · · BZ1 · · · BZS · · · BZS −X 0 · · · 0

m̄1C1Y 0 · · · 0 · · · 0 · · · 0 0 −m̄1Z1 · · · 0
...

...
...

...
...

...
...

...
...

...
. . .

...

m̄SCSY 0 · · · 0 · · · 0 · · · 0 0 0 · · · −m̄SZS





























































< 0.

Furthermore the feedback control law is given by u(k) = Y X−1x̄(k).

Remark 7. The result of this section may be applied in lossless network to save network bandwidth or to

obtain the maximum delay between state update.

3 Switched system approach

In this section, we propose an iterative approach to model NCSs with data packet dropout as switched lin-

ear systems for continuous-time case and discrete-time case, thus the existing theory and conclusion for the

switched systems can be applied to the design of such NCSs. We focus our attention on the designing of

explicit express of stabilizing state feedback controllers and find the admissible upper bound of the dropped

packets for the NCSs. For the discrete-time NCSs with constant transmission delays and data packet dropout,

similar model and results can be obtained.

3.1 Continuous-time case

We consider the set up with a clock-driven sensor, and both the controller and the actuator are combined into

one event-driven node. That is, network communication only occurs between the sensor and the controller

through a communication channel with finite bandwidth. We assume that there are no transmission delays

between the sensor and the combined node.
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An NCS with the possibility of data packet dropout is shown in Fig. 1. The sensor shown in Fig. 1 takes

on the work of sampling and transmission, and the output of network is the sampling value of the state. It is

assumed that the maximum data packet loss between two successive transmission within a bound d, where d

is a positive integer.

The controlled plant is given by

ẋ(t) = Ax(t)+Bu(t), (44)

where x(t) ∈ Rn, u(t) ∈ Rm are the plant state and the plant input, respectively. A,B are known real constant

matrices with appropriate dimensions, and the pair (A,B) is stabilizable. The sampling period h is a positive

constant scalar and tk = kh (k = 0,1, · · · ) is the sampling instant. The output of the network is

x̄(t) =

{

x(tk), t ∈ [tk, tk+1), if x(tk) is transmitted successfully;

x(tk−1), t ∈ [tk, tk+1), otherwise,
(45)

which is used to construct the state feedback controller.

With a set of candidate state feedback gains {F0, F1, · · · ,Fd} to be designed, we give Feedback Mechanism

1 to stabilize the NCS:

For sampling instant tk (k = 0,1, · · · ), if the register updates successfully, i.e., there is no date dropout, then

we choose F0 as the feedback gain; otherwise, if the register has not update for i times, we choose Fi as the

feedback gain.

Now, we propose the iterative approach. First, we assume that the packet containing x(0) is transmitted to

the controller safely, that is x̄(0) = x(0) , then

x(t) = Φ(t)x(0)+Γ(t)F0x(0) t ∈ [0,h),

x(h) = Φ(h)x(0)+Γ(h)F0x(0),

where Φ(t) ∆
= eAt , and Γ(t) ∆

=
∫ t

0 eAsdsB. In the next sampling period, if the packet containing x(h) is trans-

mitted to the controller successfully, we obtain

x(t) ∆
= x(h+ τ) = Φ(τ)x(h)+Γ(τ)F0x(h) τ ∈ [0,h),

x(2h) = Φ(h)x(h)+Γ(h)F0x(h);

otherwise

x(t) ∆
= x(h+ τ) = Φ(τ)x(h)+Γ(τ)F1x(0) τ ∈ [0,h),

x(2h) = Φ(h)x(h)+Γ(h)F1x(0).

Suppose that tk1 = k1h is the latest update time of x̄(t) from the initial time, then the states of plant (44) at the

sampling instants from tk0 = 0 to tk1 = k1h can be described as

x(ih) = (Φi(h)+Φi−1(h)Γ(h)F0 + · · ·+Γ(h)Fi−1)x(0); i = 1, · · · ,k1,
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and the state of plant (44) between two successive sampling instants wh and (w + 1)h (0 ≤ w < k1) can be

expressed as

x(t) ∆
= x(wh+ τ) = Φ(τ)x(wh)+Γ(τ)Fw−1x(0)

= Φ(τ)(Φw(h)+Φw(h)Γ(h)F0 + · · ·+Γ(h)Fw−1)x(0)

+Γ(τ)Fw−1x(0), τ ∈ [0,h).

Suppose that the successive update time of x̄(t) is tk0 = 0, tki = kih, i = 1,2, · · · . In this pattern of transmission,

the states of plant (44) at these update instants can be described as follows:

x(k jh) = (Φk j−k j−1(h)+Φk j−k j−1−1(h)Γ(h)F0 + · · ·+Γ(h)Fk j−k j−1−1)x(k j−1h), j = 1,2, · · ·

The state of the plant (44) between two successive transmission instants tk j−1 and tk j can be described as

x(t) ∆
= x(wh+ τ) = Φ(τ)x(wh)+Γ(τ)Fw−k j−1x(k j−1h)

= Φ(τ)(Φw−k j−1(h)+Φw−k j−1−1(h)Γ(h)F0 + · · ·+Γ(h)Fw−k j−1−1)x(k j−1h)

+Γ(τ)Fw−k j−1−1x(k j−1h), (46)

where t ∈ [wh,(w+1)h), w ∈ [k j−1,k j), τ ∈ [0,h).

We refer to the time interval between two successive update instants tki and tki+1 as one transmission period.

Because the maximum data packet loss between two transmission instants is d, then the maximum transmis-

sion period of the sensor is d +1 sampling period. Let us define another sequence

z(0) = x(0), z(1) = x(k1h), · · · ,z( j) = x(k jh), · · · , (47)

it follows that

z( j)
4
= A( j)y( j−1), j = 1,2, · · · , (48)

where

A( j) = Φk j−k j−1(h)+Φk j−k j−1−1(h)Γ(h)F0 + · · ·+Γ(h)Fk j−k j−1−1. (49)

Then it must be true that

A( j) ∈Ω, Ω = {Ā0, Ā1, · · · , Ād}, (50)

where

Āi = Φi+1(h)+Φi(h)Γ(h)F0 + · · ·+Γ(h)Fi, i = 0,1,2, · · · ,d. (51)

It is easy to see that the behavior of plant (44) at the transmission instants with arbitrary but finite data packet

dropout can be described by the following switched system

z(k +1) = Āi z(k), i = 0, · · · ,d (52)

for arbitrary switching, where Āi ∈Ω.
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3.1.1 Stabilization of the NCS with data packet dropout

Without loss of generality, we assume that 0 is an equilibrium of plant (44), and plant (44) starts at t0 = 0 with

the initial condition x(0). The following result will ensure the asymptotically stability of the NCS (44) with

data packet dropout. It is a consequence of the state boundedness between transmission instants and Theorem

2.3 in [4].

Definition 1. [28] A function φ : R+→ R+ is of class K if it is continuous, strictly increasing, and φ(0) = 0.

Lemma 2. If there exists a continuous differentiable, locally positive definite function V : Rn 7→ R+ and

functions α,β ,γ of class K such that for all x ∈ Br (Br
∆
= {x : ‖x‖ ≤ r})

α(‖x‖)≤V (x)≤ β (‖x‖), (53)

and

∆Vk j

∆
= V (x(tk j+1))−V (x(tk j))≤−γ(‖x(tk j)‖), (54)

then NCS (44) is uniformly asymptotically stable.

Proof. See Appendix A.

Using the method of multiple Lyapunov functions, Lemma 2 is only concerned with the Lyapunov function’s

decreasing at transmission instants; it does not require the Lyapunov function to be strictly decreasing over

time, i.e. V̇ (x(t)) < 0.

From Lemma 2 and the discussion in the last section, the asymptotic stability of plant (44) with arbitrary but

finite data packet dropout can be guaranteed by that of switched system (52) for arbitrary switching. Now we

extend the stability result to the problem of stabilization.

Theorem 7. If there exist a symmetric positive definite matrices Q ∈ Rn×n and matrices Yi ∈ Rm×n satisfying

the following LMIs
[

−Q XT
i

Xi −Q

]

< 0, (55)

for i = 0,1, · · · ,d, where Xi = Φi+1(h)Q+Φi(h)Γ(h)Y0 + · · ·+Γ(h)Yi, then the NCS (37) can be asymptotically

stabilized via Feedback Mechanism 1 with

Fi = YiQ−1, i = 0,1, · · · ,d.

Proof. To prove the stabilization of the NCS (44), we only need to find a Lyapunov function and a state

feedback controller that satisfy the conditions of Lemma 2. Consider Lyapunov function

V (x(t)) = x(t)T Px(t) (56)
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where P is a symmetric positive definite matrix. The difference of function V along the trajectory of the NCS

(44) at the update instants is given by

∆Vj
∆
= V (x(tk j+1))−V (x(tk j))

= z( j)T (A( j)T PA( j)−P)z( j),

where we used (47) and (48) in the last equality. Thus ∆V j < 0 if

A( j)T PA( j)−P < 0. (57)

Using (50), (51), and by Schur complement, (57) is equivalent to
[

−P ĀT
i P

PĀi −P

]

< 0, (58)

for i = 0,1, · · · ,d. We set P−1 = Q. Pre- and post-multiplying (58) by block-diag [Q Q], and substituting

Yi = FiQ into Āi given by (51), (58)is equivalent to (55). Furthermore, when the LMIs (55) are feasible, the

explicit express of the desired state feedback gains are given by Fi = YiQ−1. The conclusion follows.

This theorem provides a method of designing a controller to stabilize plant (44) for arbitrary data packet

dropout within the bound d. The explicit express of the feedback gains can be easily obtained by solving a set

of LMIs via the efficient LMI toolbox [2].

The upper bound of data packet dropout d can be obtained as follows.

Remark 8. For the plant (44), we can find the upper bound of data packet dropout by search the largest d

that does not violate the condition of Theorem 7. That is,

max d

subject to: ∃ Q > 0 and Yi (i = 0, · · · ,d) satisfying (55).

Example 3. Consider the state-space plant model (Example 5 in [35])
[

ẋ1(t)

ẋ2(t)

]

=

[

0 1

0 −0.1

][

x1(t)

x2(t)

]

+

[

0

0.1

]

u(t),

y(t) = [1 0]

[

x1(t)

x2(t)

]

,

(59)

with the state feedback gains Fi (i = 0, · · · ,d) be designed.

With sampling period h = 1s (h = 0.3s in [35]), we obtain

Φ(1) =

[

1.0000 0.9516

0 0.9048

]

, Γ(1) =

[

10× exp(−1/10)−9

−exp(−1/10)+1

]
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With d = 4, solving the LMIs problem in Theorem 7 with LMI toolbox [2], we have

Y0 =

[

−5.2294

−12.7666

]T

, Y1 =

[

3.4450

1.6938

]T

, Y2 =

[

1.1501

0.5655

]T

,

Y3 =

[

0.3884

0.1910

]T

, Y4 =

[

0.1446

0.0711

]T

, Q =

[

0.9017 −0.0839

−0.0839 1.0311

]

.

Therefore, the NCS with only 20% data packet transmission can be asymptotically stabilized with the follow-

ing feedback gains:

F0 =
[

−7.0049 −12.9520
]

, F1 =
[

4.0039 1.9686
]

, F2 =
[

1.3367 0.6572
]

,

F3 =
[

0.4514 0.2220
]

, F4 =
[

0.1681 0.0826
]

,

and feedback mechanism: if the data packet (containing the information of state measurement) is transmitted

instantly, we use the feedback gain F0 and the fresh state measurement to construct the controller; otherwise,

if the register has not update for i times, we choose Fi as the feedback gain for i = 0,1, · · · ,4. This means that

an effective sampling period of h = 5s can be used in this system.
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Figure 7: The output of NCS (59) with 80% data packet dropout

Suppose data packet dropout of the system within the bound d = 4 is distributed in a random sequence 4,

3, 1, 0, 2, 0, · · · , that is, the update instants of plant (59) are t0 = 0, t1 = 5h, t2 = 9h, t3 = 11h, · · · . In this

pattern of transmission, with above feedback mechanism and the initial condition x0 = [1 −1]T , the output of

plant (59) at the update instants is shown in Fig. 7. It can be seen from Fig. 7 that plant (59) with 80% data

packet dropout can be asymptotically stabilized in 9 steps. In [35], the system is stabilized in 25 steps though

their sampling period is much smaller than ours. Obviously, our result is less conservation than the one based

on the method in [35].

The setup in Fig. 1 has also been studied in [29]. Using the approach in [29], the maximum allowable

transfer interval can be computed as 4.5× 10−4s. This will consume a lot of network bandwidth if it is

implemented in a real application.
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The result in the former can be generalized to include rate constraints on the convergence of the trajectory

to the origin. This introduces some primitive performance measure into the framework.

It is well known that if the Lyapunov function satisfying

V (x(tk j+1)) < α2V (x(tk j)) (60)

for 0 < α ≤ 1, then

‖x(tk j)‖ ≤ α j‖x(0)‖. (61)

We can now extend Theorem 7 by applying the same arguments to inequality (60). Here we briefly summarize

the conclusion.

Corollary 1. If there exist a symmetric positive definite matrix P ∈ Rn×n and matrices Yi ∈ Rm×n satisfying

the following LMIs
[

−α2Q XT
i

Xi −Q

]

< 0, (62)

for i = 0, · · · ,d, where Xi is defined as that of Theorem 7, then the NCS (44) can be asymptotically stabilized

with a decay rate α via Feedback Mechanism 1 with

Fi = YiQ−1, i = 0,1, · · · ,d.

3.2 Discrete-time case

In this part the NCSs with packet dropout and constant transmission delays will be studied.

3.2.1 Stabilization with packet dropout and transmission delays via state feedback

Depending on the medium access protocol of the control network, network induced delays can be constant or

time varying. Here, we consider the constant case, which is often appeared in the scheduling networks. We

also assume that the maximum data packet loss between two successive safe transmission within a bound d,

where d is a positive integer. For simplicity, the feedback gain is designed to be constant in this part.

First, we consider NCS (37) with one step delay. We assume that the packet containing x(0) with one step

delay is transmitted to the controller successfully, then

x(1) = Ax(0),

x(2) = Ax(1)+BFx(0).

Suppose that the successive transmitted state measurements are x(0), x(k1), · · · ,x(ki), · · · , the evolution of

25



these states can be described as follows:

x(k1) = (Ak1 +Ak1−2BF + · · ·+BF)x(0),

x(k2) = (Ak2−k1 +Ak2−k1−2BF + · · ·+BF)x(k1)+Ak2−k1−1BFx(0),

...

x(k j) = (Ak j−k j−1 +Ak j−k j−1−2BF + · · ·+BF)x(k j−1)+Ak j−k j−1−1BFx(k j−2),

...

Let us define another sequence

z(0) = x(0), z(1) = x(k1), · · · ,z( j) = x(k j), · · · . (63)

It follows that

z( j) = (Ak j−k j−1 +Aki−k j−1−2BF + · · ·+BF) z( j−1)+Aki−k j−1−1BFz( j−2)

4
= A( j)z( j−1)+B( j)z( j−2), j = 1,2, · · · ,

where

A( j) = Ak j−k j−1 +Ak j−k j−1−2BF + · · ·+BF,

B( j) = Aki−k j−1−1BF.

Let w( j) = [zT ( j) zT ( j−1)]T be the augmented state vector; the evolution of the NCS (37) at the transmission

instants with the effect of network packet dropout and one step delay can be described by

w( j +1) =

[

A( j) B( j)

I 0

]

w( j) ∆
= Λ( j)w( j), j = 1,2, · · · ,

it must be true that

Λ( j) ∈Ω, Ω = {Λ0, Λ1, · · · ,Λd},

where

Λi =

[

Ai+1 +Ai−1BF + · · ·+BF AiBF

I 0

]

. (64)

Similarly to the discussion of continuous case, it can be easily verified that the asymptotic stability of the

NCS (37) with one step delay and arbitrary but finite data packet dropout can be guaranteed by the asymptotic

stability of the following switched linear system

w(k +1) = Λiw(k), k = 1,2, · · · . (65)

for arbitrary switching, where Λi ∈ Ω. Therefore, we next proceed to analyze the switched system (65) for

arbitrary switching. The following result gives a sufficient condition on the stability of the switched system

(65), which is a special case of [14].
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Lemma 3. [14] If there exists a symmetric positive definite matrix P ∈ Rn×n satisfying the following LMIs
[

−P ΛT
i P

PΛi −P

]

< 0, ∀ i = 0,1, · · · ,d, (66)

then the switched system (65) is asymptotically stable.

We now present a solution to the problem of stabilization of the system (37) with the effect of one step delay

and arbitrary but finite data packet dropout.

Theorem 8. If there exist a symmetric positive definite matrix Q ∈ Rn×n and a matrix W ∈ Rm×n satisfying

the following LMIs














[

−Q 0

0 −Q

]

ΨT
i

Ψi

[

−Q 0

0 −Q

]















< 0, (67)

for i = 0,1, · · · ,d, where

Ψi =

[

Ai+1Q+Ai−1BW + · · ·+BW AiBW

Q 0

]

,

then the NCS (37) with one step delay and data packet dropout within the bound d can be asymptotically

stabilized via the state feedback

u(k) = WQ−1x̄(k).

Proof. Noting that the asymptotic stability of the NCS (37) can be ensured by that of the switched system

(65), by Lemma 3, we only need to prove that (66) holds. Set

P−1 =

[

Q 0

0 Q

]

∆
= Q̄, (68)

where Q is a symmetric positive definite matrix. Pre- and post-multiplying inequality (66) by block-diag

[Q̄ Q̄], it is easy to see that (66) is equivalent to
[

−Q̄ Q̄ΛT
i

ΛiQ̄ −Q̄

]

< 0, i = 0,1, · · · ,d. (69)

Let W = FQ, by the definition of Λi in (64), we know that (69) is equivalent to (67). The conclusion follows.

Above result can further be generalized to the case of s step delays.
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Figure 8: An NCS via static output feedback

Corollary 2. If there exist a symmetric positive definite matrix Q ∈ Rn×n and a matrix W ∈ Rm×n satisfying

the following LMIs














[

−Q 0

0 −Q

]

ΘT
i

Θi

[

−Q 0

0 −Q

]















< 0,

for i = 0,1, · · · ,d, where

Θi =

[

Ai+1Q+Ai−sBW + · · ·+BW AiBW + · · ·+Ai−s+1BW

Q 0

]

,

then the NCS (37) with s step delays and data packet dropout within the bound d can be asymptotically

stabilized via the state feedback

u(k) = WQ−1x̄(k).

3.2.2 Stabilization with packet dropout via Output feedback

In this section, we consider the problem of stabilization of an NCS with data packet dropout via static output

feedback. As shown in Fig. 8, the NCS consists of a discrete plant and a discrete static output feedback

controller

x(k +1) = Ax(k)+Bu(k),

y(k) = Cx(k),

u(k) = Fȳ(k), k = 1,2, · · · , (70)

where y(k) ∈Rm is the output of the plant. F ∈Rm×n is the output feedback gain matrix to be designed, C is a

known real constant matrix with appropriate dimensions and ȳ(k) is the successfully transmitted data that will

be used to construct the controller. Similarly, we propose the following iterative approach for the case without

delays.
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Suppose that the successive update steps of ȳ(k) are 0, k1, · · · ,ki, · · · . In this pattern of transmission, the

states of the NCS at the update steps can be described as follows:

x(k j) = (Ak j−k j−1 +Ak j−k j−1−1BFC + · · ·+BFC)x(k j−1), j = 1, · · · .

Let us define another sequence

z(0) = x(0), z(1) = x(k1), · · · ,z( j) = x(k j), · · · . (71)

It follows that

z( j) = (Ak j−k j−1 +Ak j−k j−1−1BFC + · · ·+BFC) z( j−1)
4
= A( j)z( j−1), (72)

where A( j) = Ak j−k j−1 +Ak j−k j−1−1BFC + · · ·+BFC. Because the upper bound of data packet dropout is d, it

must be true that

A( j) ∈Ω, Ω = {Ā0, Ā1, · · · , Ād}, (73)

where

Āi = Ai+1 +AiBFC + · · ·+BFC. (74)

As the discussion in the previous sections, the asymptotic stability of the NCS (70) with arbitrary but finite

data packet dropout will be guaranteed by the asymptotic stability of the following switched system

z(k +1) = Āiz(k) (75)

for arbitrary switching, where Āi ∈Ω.

Now, we are ready to present the following result.

Theorem 9. We assume that C is of full row rank. If there exist a symmetric positive definite matrix Q∈Rn×n,

and matrices W ∈ Rm×m,M ∈ Rm×m satisfying

CQ = MC, (76)

and the following LMIs
[

−Q Q(Ai+1)T +CTW T BT (Ai)T + · · ·+CTW T BT

Ai+1Q+AiBWC + · · ·+BWC −Q

]

< 0, (77)

for i = 0,1, · · · ,d, then the NCS (70) can be asymptotically stabilized for data packet dropout within the bound

d via the static output feedback

u(k) = WM−1ȳ(k). (78)
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Proof. As the proof of Theorem 8, we only need to prove that the given conditions guarantee that (66) holds.

Consider the following Lyapunov function

V (x(k)) = x(k)T Px(k) (79)

where P is a symmetric positive definite matrix. The difference of function V along the trajectory of the

system (70) at the update steps is given by

∆Vj
∆
= V (x(k j+1))−V (x(k j))

= z( j)T (A( j)T PA( j)−P)z( j),

where we used (71) and (72) in the last equality. Thus ∆V j < 0 if

A( j)T PA( j)−P < 0. (80)

Using Schur complement together with (73), (80) is equivalent to
[

−P ĀT
i P

PĀi −P

]

< 0, ∀ i = 0,1, · · · ,d. (81)

Set P−1 = Q. Pre- and post-multiplying (81) by block-diag [Q Q], it follows from (74) that (81) is equivalent

to
[

−Q Q(Ai)T +QCT FT BT (Ai−1)T + · · ·+QCT FT BT

AiQ+Ai−1BFCQ+ · · ·+BFCQ −Q

]

< 0. (82)

Because C is of full row rank, we obtain from (76) that M is also of full rank, and thus invertible. Let W = FM,

it follows from (76) that (77) is equivalent to (82). The conclusion follows.

The following remark gives an approach to finding the maximum data packet dropout bound.

Remark 9. For the NCS (70) stabilized via the static output feedback (78), we can find the maximum bound

of data packet dropout by search the largest d that does not violate the conditions of Theorem 9. That is,

max d

subject to ∃ Q > 0, W and M satisfying (76)–(77).

Example 4. Consider the state-space plant model

x(k +1) =

[

2 0.8

0 0.99

]

x(k)+

[

0.2

1

]

u(k),

y(k) = [2 1]x(k),

(83)

the feedback controller takes the form u = Fȳ(k) with F to be designed.
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Figure 9: The step response of NCS (83) via output feedback

For simplicity, we consider the case that the transmission periods are identical. By Remark 9, we obtain

d = 2. Using Theorem 9, we have

Q =

[

2.6700 −3.3603

−3.3603 4.2835

]

, W =−0.0143, M = 0.3044, F =−0.0469.

With the initial state x(0) = [−2 2]T , for one data packet dropped in every two packets, the step response of

the NCS (83) is shown in Fig. 9, from which we know that the system can be stabilized in 12 steps.

4 Conclusions

This paper mainly considers the problems induced by communication channel in networked control systems:

data packet dropout and transmission delays. We modelled NCSs with these problem into delay time systems

and linear switched systems. We construct the feedback controllers via solving the corresponding linear

matrix inequalities (LMIs) which can be easily solved using the LMI toolbox [2]. The admissible bound of

data packet loss and transmission delays can also be obtained in terms of LMIs.
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Appendix A

Proof. The state of the plant (44) between two successive transmission instants tk j−1 and tk j can be described

as

x(t) ∆
= x(wh+ τ) = Φ(τ)x(wh)+Γ(τ)Fw−k j−1−1x(k j−1h)

= Φ(τ)(Φw−k j−1(h)+Φw−k j−1−1(h)Γ(h)F0 + · · ·+Γ(h)Fw−k j−1−1)x(k j−1h)

+Γ(τ)Fw−k j−1−1x(k j−1h), (84)

where t ∈ [wh,(w + 1)h), w ∈ [k j−1,k j), τ ∈ [0,h), then the state of the NCS, x(t), between successive

transmission instants is bounded by

‖x(t)‖ = ‖(Φ(τ)(Φw−k j−1(h)+Φw−k j−1−1(h)Γ(h)BF0 + · · ·+Γ(h)Fw−k j−1−1 +Γ(τ)Fw−k j−1−1)x(k j−1h)‖

≤ c‖x(k j−1h)‖, (85)

where

c = max
i=0,1,··· ,d,τ∈[0,h)

{‖(Φ(τ)(Φi+1(h)+Φi(h)Γ(h)F0 + · · ·+Γ(h)Fi +Γ(τ)Fi)‖}.

First we prove that the NCS is uniformly stable. Given any ε > 0, let ε̄ = min{ε,r}, because x(t) and V (x(t))

is a continuous function of time and V (0) = 0, we can find a δ (ε) > 0 such that

β̄ (δ ) = sup
‖x(t)‖≤δ

V (x(t)) < α(ε̄/c)≤ α(ε/c). (86)

Now we claim that for all ‖x(0)‖ ≤ δ , ‖x(t)‖ < ε, ∀t ≥ 0. This can be proved by contradiction. Suppose

at t∗ > 0, ‖x(t∗)‖ = ε . Again this is sufficient because x(t) is continuous. If t∗ ∈ [tk j , tk j+1) then by the

boundedness of x(t) during transmissions given by (85), we have

‖x(tk j)‖ ≥ ε/c.

By (54) and the fact that α is a function of class K, we have

V (x(tk j))≥ α(‖x(tk j)‖)≥ α(ε/c).

However, since V decreases at updates, and by (86),

V (x(tk j))≤V (x(0))≤ β̄ (δ ) < α(ε/c).
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Now we have a contradiction, and hence the NCS is uniformly stable.

To show asymptotic stability, observe that the sequence V (x(tk j))( j = 1,2, · · ·) is decreasing and positive,

and therefore has a limit L≥ 0. We have

0 = L−L = lim
j→∞

V (x(tk j+1))− lim
j→∞

V (x(tk j))

= lim
j→∞

[V (x(tk j+1))−V (x(tk j))].

Because γ(.) is a function of class K, it follows from (54) that

V (x(tk j+1))−V (x(tk j))≤−γ(‖x(tk j‖)≤ 0,

which implies that

lim
k→∞

γ(‖x(tk j)‖) = 0.

Thus, we have

lim
j→∞
‖x(tk j)‖= 0.

From (85) we finally obtain that

lim
k→∞
‖x(t)‖= 0.

This completes the proof.
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