
An LMI Approach to Structured Sparse Feedback Design
in Linear Control Systems

BORIS POLYAK, MIKHAIL KHLEBNIKOV, PAVEL SHCHERBAKOV

Abstract— Consider the classical state feedback design in the
linear system ẋ = Ax + Bu subject to performance specifica-
tions with an additional requirement that the control input
vector u = Kx has as many zero entries as possible. The
corresponding gain K is referred to as a row-sparse controller.
We propose an approach to approximate solution of this kind
of nonconvex problems by formulating the proper convex
surrogate,—the minimization of a certain matrix norm subject
to LMI constraints. The novelty of the paper is the problem
formulation itself and the construction of the surrogate. The two
main contributions are the design of low-dimensional output
to be used in static output feedback, and suboptimal design
illustrated via LQR. The results of preliminary numerical
experiments are twofold. First, in many test problems, the num-
ber of controls was considerably reduced without significant
loss in performance. Second, the number of nonzero entries
obtained by our method is either very close to or coincide with
the minimum possible amount. The approach can be further
extended to handle numerous problems of optimal and robust
control in sparse formulation.

I. INTRODUCTION

In the recent years, the sparsification concept became
popular in many fields of system theory and practice. In
the optimization context, this concept arises naturally in
problems with integer-valued cost, while the constraints are
continuous. Such problems are known to be nonconvex and
NP-hard; a possible approach is to formulate a related convex
surrogate problem and adopt its solution as an approximation
to that of the original one. As a rule, no strict assertions can
be made about the accuracy of the estimates, but usually
there is a sound heuristic behind such an approach.

One of the first and most striking areas of application
of sparsity is the theory and practice of l1-optimization,
the framework formulated in [15] and later extended and
generalized in many directions, just to mention compressed
sensing [2], l1-filtering [6] and many other fields.

The idea behind this approach is to give the “simplest”
explanation of the observed data using functions in a
given basis, which reduces to minimizing the number of
nonzero entries of a vector subject to convex constraints.
This hard problem is substituted by its convex surrogate,
the minimization of the l1-norm, which is shown to be an
efficient heuristic, the term proposed in [3], where similar
ideology was demonstrated to be fruitful in many problems
in system theory.

Here we consider yet another heuristic; it is related to the
minimization of the number of nonzero rows or columns of
a matrix. Such matrices will be referred to as row-sparse and
column-sparse; it is what we mean by structured sparse gain
matrix or structured sparse feedback.
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Such minimization problems arise in multi-task learning
and simultaneous sparse approximation, where it is required
to approximate several data arrays simultaneously by a small
number of elementary signals, [16]. A nice convex surrogate
for this combinatorial problem is a special matrix norm often
referred to as l1,∞-norm. It penalizes the sum of maximum
absolute values of each row, and efficient numerical methods
for optimization of l1,∞-regularized convex objectives have
been proposed; e.g., see [13]. In the recent paper [12], this
norm was used in the sparse identification framework.

While in signal processing, image recognition, optimiza-
tion, natural language processing, computer vision, etc., the
sparsity concept is widely used, there seem to be very little
related control literature. Among the few recent papers on
sparse feedback we mention [9], [10], where the sparsity
structure was specified in advance thus leading to nonconvex
optimization problems; the emphasis in these works was put
on algorithmic optimization issues.

In this paper, we exploit the sparse ideology in the design
of linear control systems via a nonstandard integer-valued
criterion, e.g., the number of the nonzero components of
the control input vector. In contrast to the classical optimal
control problems such as the linear quadratic regulation
(LQR), this performance index is hard to optimize, since
it involves the combinatorial search. We show that solving
the convex surrogate based on l1,∞-norm heuristic leads to
a suboptimal solution in a straightforward way. Similarly,
special formulations of the static output feedback (SOF)
design related to the construction of the appropriate output
vector can be solved easily with this heuristic.

A transparent motivation for use of sparsity in control
design can be found in the so-called C3 paradigm, which
considers the triad Control, Communication, Computation
as an integrated compound to be analyzed from a unified
point of view, [5], [4], [11]. Within this concept, reducing the
number of states required to control the plant is synonymous
with the number of sensors; the number of controls is
associated with the number of actuators, while reducing the
number of outputs is equivalent to minimizing the amount
of information transmitted through control channels.

Sensors

Actuators

←−−−−−−−−−−−−−−−→
Information←−−−−−−−−−−−−−−−→ Control Body

We propose a regular suboptimal approach to control
problems of this sort by formulating an appropriate convex
surrogate and show via examples that the exploited heuristic
is efficient. Overall, our method is a fusion of the quadratic
stabilization concept and the ideas of l1-optimization in the
matrix formulation.

The approach is characterized by simplicity (the surrogates
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are formulated as low-dimensional semidefinite programs,
and the standard MATLAB tools are used in the numerical
implementation), versatility (continuous and discrete time
problems are solved along the same lines; static feedback
laws can be designed both from the state and output sig-
nals), and, most importantly, extendability to various optimal
control problems such as LQR, H∞-optimization, optimal
rejection of exogenous bounded disturbances, etc. Robust
formulations are also made possible.

To the best of our knowledge, the very statement of the
problem is new, thus constituting the first contribution of this
paper. Second, we propose a simple and numerically efficient
approximate solution method based on the associated heuris-
tic. Third, as shown via examples, the method exposes quite
a nice performance.

II. EFFICIENT MATRIX NORM HEURISTICS

We start with recalling the well-known problem of mini-
mizing the l0 vector (quasi)norm defined as

∥x∥0
.
=
∑
i

|signxi|,

which is the number of nonzero entries of x. The l0-norm
is not a convex function, hence, is hard to optimize. Instead,
a convex surrogate based on the vector l1-norm is used.
Specifically, the following classical result from linear algebra
is in the basis of the l1 approach to sparse optimization.

Theorem 1 (Vector norm heuristic): If the problem

min ∥x∥1 s. t. Ax = b,

where A ∈ Rm,n, b ∈ Rm, x ∈ Rn, m < n, is feasible, then
there exists a solution x̂ having no more than m nonzero
components. �

The vector l1-norm is known to represent an efficient
heuristic for the l0-quasinorm, meaning that the minimum
of ∥x∥1 over a set specified by convex constraints that differ
from the linear ones as in the theorem above, is a “good”
approximation for sparse solutions.

To formulate the main result of this section, a matrix
analog of Theorem 1, we introduce special matrix norms.

First, as counterparts of the vector l0-quasinorm, we
introduce the matrix quasinorms, ∥X∥r0 and ∥X∥c0 , which
are defined as the number of nonzero rows and columns of
the matrix X , respectively.

We next consider the row and column norms of X ∈ Rn,p:

∥X∥r1 =
n∑

i=1

max
1≤j≤p

|xij |, ∥X∥c1 =

p∑
j=1

max
1≤i≤n

|xij |.

The former is sometimes referred to as rx-norm or l1,∞-
norm. Its main feature is the ability to recover row-sparse
solutions of matrix equations, [16], [13]. Similarly, the c1-
norm recovers column-sparse solutions.

The theorem below presents an efficient heuristic for use
in all the constructions in this paper.

Theorem 2 (Matrix norm heuristic): If the problem

min ∥X∥r1 s. t. AX = B,

with A∈Rm,n, m < n, B∈Rm,p, X∈Rn,p is feasible, then
there exists a solution having at most m nonzero rows. �

The proof follows from the two lemmas below.

Lemma 1: The vertices of the set

Q = {X ∈ Rn,p : ∥X∥r1 ≤ 1}

are defined by the matrices with all but one zero rows, with
the nonzero row having all entries equal to unity in absolute
value. �

Proof: For given cij , consider the problem

max
∑
ij

xijcji s. t. − ti ≤ xij ≤ ti,
∑
i

ti ≤ 1,

which is finding the maximum of a linear function over the
set Q. Clearly, for the fixed values of the ti’s, the solution
is given by x∗

ij = ti sign cij . Hence, the problem reduces to
the minimization of a linear function on the unit simplex:

max
∑
i

aiti s. t.
∑
i

ti ≤ 1, ti ≥ 0,

where ai =
∑

j |cij |. The solution t∗ of this problem is
attained at the point with t∗k = 1, k = argmax

i
ai, and the

rest of the components being zeros. This point corresponds
to a vertex of Q.

Lemma 2: Let Q be a polytope in Rn. Consider the
following linear program in the variables t ∈ R, x ∈ Rn:

min t s. t. x ∈ tQ, t ≥ 0, Ax = b,

where A ∈ Rm,n, b ∈ Rm, m < n. Then there exists a
solution (t∗, x∗) such that x∗ belongs to the convex hull
of m vertices of the polytope t∗Q. �

Proof: The polytope can be represented as the convex
hull of its vertices xi; hence, introducing the new variable
α = 1/t we arrive at the equivalent LP w.r.t. α∈R, λ∈Rn:

maxα s. t. A
∑
i

λix
i = αb,

∑
i

λi ≤ 1, λi ≥ 0.

The solution is attained at a point (α∗, λ∗) having no more
than m+1 nonzero components (the number of equality
constraints in the LP above). Since α∗ ̸= 0, we have no
more than m nonzero components in λ∗, which means that

α∗x∗ .
=

n∑
i=1

λ∗
i x

i

belongs to the convex hull of no more than m points xi.
In other words, x∗ belongs to the convex hull of no more
than m vertices of the polytope t∗Q.

Theorem 2 can be formulated for the c1-norm and zero
columns. If X is a column vector, we arrive at Theorem 1.

In the sections to follow we show how a systematic use
of r1- or c1-norm facilitates the sparsification of controllers.
In other words, in the control setup, ∥ · ∥r1 will be shown
to be an efficient heuristic for ∥ · ∥r0 in the sense that the
minimization of ∥ · ∥r1 subject to certain convex inequality
constraints leads to the reduction of ∥ · ∥r0 ; the same for the
column norm.

Note that both norms are linear functions of the entries of a
matrix, and minimizing either of them (call it r1-optimization
and c1-optimization) subject to LMI constraints is a standard
semidefinite program, SDP.

834



III. DESIGN OF SPARSE CONTROLLERS

A. Reduced Number of Control Inputs
We start with the continuous time linear system

ẋ = Ax+Bu, u = Kx, (1)

with state vector x ∈ Rn and control u ∈ Rm, so that
A ∈ Rn,n, B ∈ Rn,m; the pair (A,B) is assumed to
be controllable. The goal is to find a stabilizing control
which is sparse in the sense that it has zero components.
This is equivalent to finding a row-sparse stabilizing gain
matrix K ∈ Rm,n.

Remark 1: A generic controllable system can be stabilized
by a scalar control, so that the optimal solution can be found
by setting all but one rows of K to zeros, and there is no need
in using our technique. This simple problem is discussed here
in order to introduce the required machinery in a transparent
way and illustrate the principle underlying our approach. In
Sections IV and V we show how Theorem 2 can be used in
the nontrivial problems where the straightforward approach
unavoidably requires the combinatorial search, while our
method will be shown to be simple yet efficient.

We follow the Lyapunov approach to the state feedback
design, e.g., see [1]. Namely, the closed-loop system is stable
iff there exist K and Q ≻ 0 such that

(A+BK)
⊤
Q+Q(A+BK) ≺ 0.

Pre- and post-multiplying this inequality by P = Q−1 and
introducing the new variable Y = KP , we arrive at the LMI

AP + PA⊤ +BY + Y ⊤B⊤ ≺ 0, P ≻ 0, (2)

in the matrix variables P = P⊤ ∈ Rn,n, Y ∈ Rm,n. A
stabilizing controller for system (1) is then given by

K̂ = Ŷ P̂−1, (3)

where P̂ , Ŷ is a solution of (2).
Assume now that Ŷ is row-sparse, then the corresponding

controller K̂ is row-sparse as well, since post-multiplication
preserves the zero-row structure. Hence, we force Y to be
row-sparse by minimizing its r1-norm.

Assertion 1: The solution P̂ , Ŷ of the SDP

min ∥Y ∥r1 s. t. (2)

in the matrix variables P, Y , defines a row-sparse stabilizing
Ksp = Ŷ P̂−1 and hence, zero components of u. �

We thus detected the control inputs which are sufficient for
stabilization; these active controls correspond to the indices
of nonzero rows of Ksp. There is no guarantee that the
solution is sparse, and we give no claims on how sparse
this Ksp might be; however we expect it to be sparse because
of Theorem 2.

B. State Feedback from Incomplete State Vector
We consider now the system in the simplified form

ẋ = Ax+ u (4)

and design a state feedback u = Kx from an incomplete
state vector. In this case, the zero-column structure of the
gain matrix defines the redundant components of x; i.e., we
are interested in finding a column-sparse stabilizing K.

Again, the fulfillment of the Lyapunov inequality

(A+K)
⊤
Q+Q(A+K) ≺ 0, Q ≻ 0,

is necessary and sufficient for K to be stabilizing. With the
new variable Y = QK, we arrive at the LMI

A⊤Q+QA+ Y + Y ⊤ ≺ 0, Q ≻ 0, (5)

in the matrix variables Q = Q⊤, Y , so that its solution Q̂, Ŷ
defines the stabilizing controller

K̂ = Q̂−1Ŷ .

Clearly, if there are zero columns in the solution Ŷ of this
LMI, then the corresponding controller K̂ is column-sparse.

Assertion 2: The solution Q̂, Ŷ of the SDP

min ∥Y ∥c1 s. t. (5)

in the variables Q,Y , gives a column-sparse controller

Ksp = Q̂−1Ŷ

which implements the state feedback u = Kspx from an
incomplete state vector of system (4). �

In other words, we detected the states which are sufficient
for use in the state feedback design; these correspond to the
indices of nonzero columns of Ksp.

Remark 2 (Weights): Assume that some specific compo-
nents of x are expensive to measure. Then instead of the
c1-norm, a weighted c1-norm

∥X∥c1,w =
n∑

j=1

wj max
1≤i≤m

|xij |, wj ≥ 0,

should be used, where the higher values of the weights
correspond to more expensive components.

C. Static Output Feedback
As a ramification of the result in Section III-B, we now

show how the use of the Lyapunov matrix Q can be exploited
in the SOF problem. Consider the system

ẋ = Ax+ u, y = Cx (6)

and note that if the pair (A,C) is observable, then the static
output stabilization is possible, i.e., there exists K such that
A+KC is stable (e.g., see [14]).

Again, within the sparsification framework, our goal is
to find a static output controller from an incomplete output
vector. With the Lyapunov approach we require that there
exist Q ≻ 0 and K such that

(A+KC)
⊤
Q+Q(A+KC) ≺ 0.

Introducing the new variable Y = QK leads to the LMI

A⊤Q+QA+ Y C + C⊤Y ⊤ ≺ 0, Q ≻ 0, (7)

and we arrive at
Assertion 3: The solution Q̂, Ŷ of the SDP

min ∥Y ∥c1 s.t. (7),

in the variables Q,Y , defines the column-sparse controller
Ksp = Q̂−1Ŷ which implements the SOF u = Kspy from
an incomplete output vector of system (6). �

We thus detected the outputs which are sufficient for use
in the static output feedback design. Clearly, with C = I we
arrive at the problem in the previous subsection.
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IV. MAIN RESULT I: DESIGN OF A LOW-DIMENSIONAL
OUTPUT

A. Low-dimensional Output
In the problems considered above, the structure of the

system was fixed, i.e., the matrices A,B,C were given.
Assume now that the exact measurements of the full state
vector x are available and the goal is to construct a linear
low-dimensional output y = Cx from which an SOF u = Ky
can be designed.

To solve this problem, consider in more detail the structure
of the static state controller K̂ (3). By changing the r1-norm
in the objective function in Assertion 1 to the c1-norm, we
expect to obtain zero columns in Ŷ :

u= Ŷ P̂−1x=


× 0 × 0 ×
× 0 × 0 ×
. . . . . . . . . . . . . . . .
× 0 × 0 ×



× × · · · ×
. . . . . . . . . . . . . . .
× × · · · ×
. . . . . . . . . . . . . . .
× × · · · ×

x.

Let us now shape the two matrices: K̃ which is composed
of the nonzero columns of Ŷ , and C̃ composed of the rows
of P̂−1 having the same indices. We then have

u = Kx = K̃C̃x = K̃y.

Assertion 4: Let P̂ , Ŷ be the solution of the SDP

min ∥Y ∥c1 s.t. (2), (8)

in the variables P, Y . Denote by K̃ the matrix composed of
the nonzero columns of Ỹ , and by C̃ the matrix composed
of the rows of P̃−1 with the same indices. Then the quantity
y = C̃x represents a low-dimensional output of the system
ẋ = Ax + Bu, for which the stabilizing output feedback is
given by u = K̃y.

B. Example
We illustrate the efficiency of our approach to SOF design

via a benchmark example from [14], where the system

ẋ = Ax+Bu, y = Cx,

with matrices

A =

(
0 1 0
0 0 1
0 13 0

)
, B =

(
0
0
1

)
, C =

(
0 5 −1

−1 −1 0

)
,

was considered. Using the nontrivial quantifier elimination
considerations, the authors of [14] obtained a parametrization
of SOF controllers in the form

Ksof =
(
2 k

)
, k > 46. (9)

We follow the approach formalized in Assertion 4. Instead
of inequality (2) in Assertion 1, we will use the LMI

AP + PA⊤ +BY + Y ⊤B⊤ 4 −2σP, P ≻ 0, (10)

with a user-specified σ > 0, to guarantee the desired degree
of stability of the closed-loop system.

Letting σ = 0.05, we solve the SDP (8) to obtain

Ŷ =
(
1.7400 −15.6830 0

)
,

P̂−1 =

 0.3997 0.1531 0.0118
0.1531 0.8991 0.2375
0.0118 0.2375 0.0652

 ;

hence, we adopt

K̃ =
(
1.7400 −15.6830

)
as the gain matrix and

C̃ =

(
0.3997 0.1531 0.0118
0.1531 0.8991 0.2375

)
as the output matrix, which is composed of the first two
rows of P̂−1. We thus constructed the output and designed
the associated SOF; with this controller K̃, the degree of
stability of the closed loop system is σ̃ ≈ 0.0509. Using
controllers of the form (9), the same degree of stability is
attained with

Ksof =
(
2 49

)
having three times higher magnitude.

Next, noting that the first entry of the Ŷ matrix is much
less in absolute value than the second entry, we may consider
discarding this small entry:

Ŷ =
(
0 −15.6830 0

)
and adopting K̃ = −15.6830 as a candidate SOF gain with

C̃ =
(
0.1531 0.8991 0.2375

)
composed of only the second row of P̂−1. This leads to the
stable closed loop system with σ̃ ≈ 0.0603.

Therefore, we designed a synthetic scalar output and the
associated stabilizing controller.

C. Row-sparse Output Feedback
We can go further in the constructions of the previous

subsection by “trimming” the output controller K̃ obtained
above to have zero rows. Similarly to Subsection III-A this is
accomplished via r1-optimization of K̃ and gives a reduced
number of controls which are sufficient for stabilization.

Assertion 5: Let Pr, Yr be the solution of the following
SDP in the variables P and Y :

min ∥Y ∥r1 s.t. (2),

where the variable Y is restricted to have the zero-column
structure of the solution Ŷ of (8). Denote by K̃sp the matrix
composed of the nonzero columns of Yr and by Cr the matrix
composed of the rows of P−1

r having the same indices. Then
the quantity y = Crx represents a low-dimensional output
of the system ẋ = Ax+Bu, for which the stabilizing output
feedback is given by u = K̃spy, where the controller K̃sp is
row-sparse so that the control vector u has zero entries.

V. MAIN RESULT II: OPTIMAL CONTROL

We now consider the application of our approach to the
standard LQR problem for system (1) with initial conditions
x(0) = x0; in this case, the method consists of three steps.

First, the optimal value of the quadratic functional

J =

∞∫
0

(x⊤Rx+ u⊤Su) dt
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on the system’s trajectories over all stabilizing controllers K
can be obtained by solving the SDP

min γ (11)

subject to(
AP + PA⊤ +BY + Y ⊤B⊤ P Y ⊤

∗ −R−1 0
∗ ∗ −S−1

)
4 0 (12)

and (
γ x⊤

0

x0 P

)
< 0, (13)

in the matrix variables P, Y and the scalar variable γ, e.g.,
see [1]. The solution P̂ , Ŷ , γ̂, defines the optimal gain

K̂ = Ŷ P̂−1

and the associated optimal value of the functional:

J∗ = γ̂ = x⊤
0 P̂

−1x0.

Though the controller K̂ is seen to be x0-dependent, there
are ways to get rid of this dependence, for example, by using
the “averaging” arguments as suggested in [8]. Alternatively,
a different LMI formulation can be proposed, which is the
subject of a separate prospective paper by the authors. To
save space and retain the uniformity of the exposition, we
do not discuss here these issues.

Having obtained the optimal value of J∗, at the second
step of the method we introduce a scalar relaxation coeffi-
cient α > 1 and consider the SDP

min ∥Y ∥r1 s. t. (12), (13), γ 4 αJ∗ (14)

in the variables P, Y, γ. Since r1-norm is an efficient heuris-
tic, we expect appearance of zero rows in the solution Ŷ .
Hence, this zero row detection step of the method leads to a
zero-row structure of the new sparse variable Y0 to be used
at the third optimization step.

Specifically, we solve the original SDP (11)–(13) with the
variables P, Y0, γ, where Y0 is restricted to have zero rows
at the same positions as Ŷ does.

Overall, the three-stage procedure has the following form:

1) solve the original LQR problem to obtain the optimal
value of the performance index;

2) solve the r1-optimization problem with a relaxed
bound on the performance to detect candidate zero
rows;

3) solve the original LQR problem over the set of row-
structured controllers.

To obtain a sparse solution in the LQR problem with
brute force, one has to solve it for all possible zero-row
structures of the gain matrix K and choose the one with
the acceptable performance. In contrast, our method yields
quite sparse controllers at the expense of a small loss in the
performance as demonstrated via examples below.

VI. PRELIMINARY NUMERICAL EXPERIMENTS

We consider Problem HE3 from COMPleib, a collection
of test examples for control system engineering applica-
tions, see [7]. Problem HE3 relates to the dynamics of the
Bell201A-1 helicopter and its linearized state space model
of eighth order with four inputs and six outputs.

Due to space limitations we do not present here the data
matrices A,B,C; the interested reader is referred to [7]. By
the same reason, we do not discuss various numerical im-
plementation issues and other examples (borrowed from [7]
as well as many randomly generated ones) which we tested;
the results were of the same flavor.

A. Example 1: Reduced Number of Controls

We first solve the illustrative problem in Assertion 1,
i.e., reduce the number of controls required for static state
stabilization.

Taking σ = 0.1 and minimizing ∥Y ∥r1 subject to (10), we
obtain

Ŷ ⊤ =



−0.0000 −4.9404 0.7277 0.0000
0.0000 −4.9251 1.1654 0.0000

−0.0004 4.9573 −1.1798 0.0003
0.0000 0.9207 1.1351 −0.0000

−0.0001 −4.5201 −1.1806 −0.0006
−0.0000 4.9471 −1.1793 −0.0001
−0.0003 4.9572 −1.1805 −0.0003
0.0001 −4.9568 −1.1806 −0.0007

 .

The first and the last rows of the solution are candidates for
being zeros, so we put them to be zeros and arrive at the
row-sparse controller

K⊤
sp =



0 −0.0620 0.0217 0
0 0.0027 0.0123 0
0 6.1903 −1.0867 0
0 −0.0643 −0.0132 0
0 −3.0816 −1.1929 0
0 −0.2488 −0.1320 0
0 3.4015 −1.3406 0
0 −5.0415 −1.1951 0

 ,

which leads to the desired degree of stability σsp ≈ 0.1.
Hence, only two out of the four control inputs are used.

B. Example 2: Design of the Output

We illustrate the design of low-dimensional output as
proposed in Section IV; LMI (10) will be used instead of (2).

The solution of the c1-optimization problem in Assertion 4
gives a P̂ and a sparse Ŷ which has only the 3rd and 8th
nonzero columns:

Ŷ ⊤ =



0 0 0 0
0 0 0 0

−6.7592 6.7606 −4.1366 6.7562
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

−2.3352 −2.3668 −2.3677 −2.3674

 .

Hence, we accept

K̃ =

 −6.7592 −2.3352
6.7606 −2.3668

−4.1366 −2.3677
6.7562 −2.3674


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as the SOF controller for the designed two-dimensional
output y = C̃x, where the matrix

C̃⊤ =



−0.0080 −0.0044
0.0000 −0.0007
0.7356 −0.0809
0.0125 0.0185

−0.0433 0.4307
−0.0088 0.0310
0.3908 0.0603

−0.0809 0.6480


is composed of the 3rd and 8th rows of the matrix P̂−1.

We now move to the second step and make the SOF
controller K̂ row-sparse. Namely, with the zero-column
structure of the variable Y being fixed as dictated by Ŷ (i.e.,
only the 3rd and the 8th columns are nonzero), we turn to
the r1-optimization problem in Assertion 5 to obtain

Y ⊤
r =



0 0 0 0
0 0 0 0

−0.0005 7.8141 −2.8073 0.0014
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

0.0001 −7.8134 −2.9244 −0.0022


and a certain Pr. So we discard the 1st and 4th rows of Yr

(put them to be zeros) and adopt

K̃sp =

 0 0
7.8141 −7.8134

−2.8073 −2.9244
0 0


as a row-sparse output controller, where the output matrix in
y = Crx is composed of the 3rd and 8th rows of P−1

r . A
direct test shows that this controller is stabilizing with the
desired degree of stability.

Overall, with our method, we designed a two-dimensional
output for use in static output feedback with the row-sparse
gain matrix having only two (out of the four) nonzero rows.
Note that, in the original form, the output controller is
represented by a full 4× 6 matrix.

C. Example 3: LQR
Solution of the LQR problem with R = S = I and initial

x0 = (1 1 . . . 1)
⊤ gives the optimal controller

K⊤
opt =



−0.0832 −0.9284 0.1896 0.0176
0.6154 −0.0447 0.0225 0.0652

−1.0050 18.9601 −1.3921 1.2860
0.0259 −0.1157 −0.6600 −0.4619

−0.1685 0.1597 −6.2891 −2.9303
−0.0213 0.1222 −0.7592 0.0900
−0.9011 20.6687 −4.7282 −0.1442
0.2389 −3.7814 −11.2563 −6.3896

 .

At stage 2 of the method, we let α = 1.25 and solve the
r1-optimization problem (14) to obtain a Ŷ matrix with the
1st and 4th zero rows. With these two rows being fixed at
zeros, we pass on to stage 3 and re-solve the original LQR
problem; this gives the row-sparse controller

K⊤
sp =



0 −0.9634 0.1979 0
0 −0.0317 0.0401 0
0 19.5523 −0.6174 0
0 −0.1405 −0.7753 0
0 −0.1253 −7.5970 0
0 0.1533 −0.7700 0
0 21.2335 −4.8240 0
0 −4.3546 −13.6827 0



yielding the performance Jsp ≈ 1.0529J∗, i.e., the degrada-
tion is about 5%.

Note that sparsity did not change significantly neither the
magnitude of the controller (∥Kopt∥ ≈ 28.5695, ∥Ksp∥ ≈
29.2932), nor the degree of stability of the closed loop
system (σopt ≈ 0.4002, σsp ≈ 0.3976).

By way of comparison, we performed stage 3 with the Y
variable having all two-zero-row structures different from the
one obtained by the method (1st and 4th zero rows); the
resulting sparse controllers exposed the degradation ranging
from 73% to 1600%. This testifies to a reasonable behavior
of the method.

VII. CONCLUSIONS

We presented a new framework for control system de-
sign with the emphasis on sparsity, which can be broadly
interpreted as reduction of the control resource required for
handling a system. The method is very transparent and is
easy to implement; it leans on the LMI technique combined
with the use of special matrix norms, so that the design
reduces to solving simple semidefinite programs. As per
our computational experience, the results are pretty much
promising.
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