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An LMS Adaptive Array for 

Multipath Fading Reduction 
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Hokkaido University 

Multipath fading often poses a serious hindrance in radio 

communication. The application of a least~mean·square (LMS) 

adaptive array to the problem of multipath fading reduction is 

discussed. However, it Is known that multipath components are in 

general correlated with one another. We examine the effect orthe 

correlation on the performance of the LMS adaptive array. When 

the correlation coefficient does not equal or approximate 1, the 

LMS adaptive array suppresses the multlpath signals signi~~antly 

by nUlling. On the other hand, when the correlation coefficient 

nearly equals I, the LMS adaptive array prevents the output signal 

power from decreasing. Therefore, the LMS adaptive array may 

reduce the multipath fading effectively for any correlation 

coefficient value. A reference signal in the LMS adaptive, array is 

also discussed. It is shown that synchronization in the reference 

signal generation must be extremely accurate. Moreover, a 

processor configuration is proposed which may generate the 

reference signal with the required accuracy. 
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I. INTRODUCTION 

Radio communications suffer from multipath fading. 
It has been reported that only a rew multipath 

components are often dominant in strength and play an 

important role in the multipath fading phenomena [1] . 

Thus, an adaptive array [2] has a potential to reduce the 

multipath fading. 

A least-mean-square (LMS) adaptive array 

automatically tracks a desired signal and nulls 

interference signals. The LMS adaptive array, however, 

requires a reference signal in order to control each 

weight. Let us aSSume that the desired signal contains a 

detenninistic component which is fully known at the 

receiver. Then, the detenninistic component may be used 

for the adaptive array reference signal. An example of the 

detenninistic component is a pilot signal which is added 

to the transmitted communication signal [3, 6]. According 

to the literature [3], the LMS adaptive array may 

eliminate the undesired multipath signals by nulling, in a 

case where a modulated pilot signal has a sufficient 

bandwidth to discriminate between multipath propagation 

modes. This means that the LMS adaptive array may 

suppress the undesired multipath components when the 

incident components are not correlated with one another. 

In mobile communications, however, we do not know the 

time delay differences between multipath components. 

Then, the required bandwidth of the pilot signal is in 

general unknown. Even though we know the time delay 

differences, an unrealistically wide bandwidth might be 

required. Thus, in order to reduce the multipath fading by 
the adaptive array, we must consider the effect of the 

correlation between multipath components on the 

performance of the adaptive array. 

The literature [4] proposed a preprocessing scheme for 

the adaptive array which may suppress the coherent 

signais. A disadvantage of this scheme is that it needs 

more antenna elements than the conventional adaptive 
array. 

We show that an LMS adaptive array may reduce the 

multipath fading effectively for any correlation coefficient 

value between multipath signals. First, we examine the 

behavior of the LMS adaptive array in the presence of the 

correlated multipath signals. Second, we find required 

synchronization accuracy in reference signal generation. 

Third, we propose a processor configuration which 

generates the reference signal. 

II. FORMULATION OF THE PROBLEM 

We consider the N-element linear LMS adaptive array 
shown in Fig, I. We assume that two multipath 

components s(l) and 1;'(1) are incident on the array from 

angles e, and em relative to broadside, respectively. The 

antenna elements are assumed to be isotropic and a half­

wavelength apart. We represent both signals on the kth 

element by s,(I) and ",,(I) (k = I-N). Thennal noise 

" .(1) is assumed to be present on each element signal. 
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Fig. I. LMS adaptive array. 

Then, the complex-valued element signal is given by 

X,(I) = s,(t) + ,;,,(/) + ;',(1). (1) 

We assume that the thennal noise components on 

different elements are independent and that they are also 

independent of the signals ,(t) and m(/). 

We define an N-dimensional signal vector as 

(2) 

where T denotes transpose. Furthennore, we express the 

complex weight for the kth element as w. and the N­

dimensional weight vector as W, i.e., 

(3) 

We assume that the parameter G in Fig. 1 is 

detennined adequately so that the deviation of the weight 

vector W from the ensemble average is negligibly small. 

Thus, we consider the weight vector W to have the 

ensemble average. 
We represent the power of ,,(I), m,(/), and n,(t) by 

Si ' M i , and N i , respectively. Namely, we have 

i nfor.ation 
Signal 

.' e Angul ar 
Frequenc y 

Fig. 2. Spectrum of signal. 

is almost the same as that of the infonnation signal. For 

simplicity, we consider only the pilot portion. 

We express the reference signal as 

(6) 

When Tr = 0, the reference signal coincides with ,(I). 

Similarly, when Tr=7, it coincides with lii(f). 

Now, we represent the complex envelopes of ,,(I) and 

m,(I) by S,(I) and M,(I), respectively. Then, we have 

., (f) = S, (I) ej~,' 

lii,(/) = Mj(/) eJ~". 

From (5), (7), (8), we may obtain 

M,(f) = \lM/SiS,(f-") e - j(~,H'¥'>. 

(7) 

(8) 

(9) 

We define the nonnalized autocorrelation function of 

S,(f) as 

p(t') = (Sf(f) S, (f + I') )IS, (10) 

where * denotes the complex conjugate. 

Moreover, we define the covariance matrix Rxx and 

correlation vector Vxr as Si = ( 1.,(1)1'), 

Ni = (I n,(fJ!2 ) fork=I-N 

where (.) denotes the ensemble average. 

(4) Rxx = (X*(t) XT(f) ) 

Vxr = (X*(/) r(f) ). 

(II) 

(12) 

It is assumed that mj(/) is delayed from ,,(I) by 7. 

Then, Iii, (I) is expressed as 

m,(f) = \lM;lS,s,(f-,,)e-P'" 

where 'IF' is a phase delay which occurs by a reason 

other than the propagation delay difference. 

(5) 

In order to generate a reference signal ;(/) in the LMS 

adaptive array, a pilot signal is always transmitted 

together with an infonnation signal [3, 6]. The power 

spectrum of the signal is illustrated in Fig. 2. The pilot 

signal is modulated by a signal which is fully known at 

the receiver. Both bands are located very closely to each 

other. Namely, let we and w~ be the center angular 

frequencies of the pilot and infonnation portions, 

respectively. Then, IWe - w~l/we « 1 holds. The 

reference signal which is generated by the reference 

signal processor is a replica of the pilot portion of the 

signal. We assume that the bandwidth of the pilot signal 

Here, we assume that the bandwidth of the pilot 

signal is narrow enough that the interelement delay does 

not change the envelope. 

From these results, the (p,q)th element of Rxx is 

given by 

( x; (t)Xq(t) ) 

= S· ej(p-q)~ , + M · ej(P - q)~m + N· ll 
I I I pq 

where 

+ \lSi Mi p'(") e j{(rl)~ , - (q-I)~m - ~" - '¥ ' ) 

+ \lSi M, p(7) ej{(r') ~m - (q-j )$,+w "+,,,'} 

<P, = 'IT sin e, 

<Pm = 'IT sin em 

and llpq is the Kronecker's ll. 

(13) 

(14) 

(15) 
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Similarly, the kth element of Vxr is given by 

(ifCt)I'Ct) ) 

= Sj p*(Tr) ej{(k-I)q.J - w,Tr} 

+ \/S;M; p(T-Tr) e j {(k-I)$.+woT+ ... ·-woT<I. (16) 

Here, it should be noted that the following equation 

holds. 

(sret) m,Ct) )I\/S; M; = p*CT) e-j{W' . + ... ·) (17) 

This means that pOeT) e - j(Wo'+"") is the complex- . 

valued correlation coefficient between .i\ (t) and m, (t). 
As stated previously, we consider that the weight 

vector has the ensemble average. Thus, the steady-state 

weight vector is given by the Wiener solution, i.e., 

W = Rxx-' Vxr. (18) 

This is Ime whether the incident signals are correlated 

with or not. 

We represent the array output of set), met), and the 

thermal noise by so(l), mort), and no(t), respectively. 

Moreover, we represent the power of them by So, Mo, 
and No. Namely, we have 

So = ( Iso(lW )/2; 

No = (I,io(l)!, )/2. (19) 

When So ;;,: Mo, we consider that set) is the desired 

signal and met) is the undesired one. On the other hand, 

when Mo > So, we consider that met) is the desired 

signal and set) is the undesired one. Here, we represent 

the desired-to-undesired-signal-ratio by DUR. Note that 

the output DUR is given by SolMo when So ;;,: Mo and 

that it is given by Mo/So when Mo > So. Moreover, we 

add that all of the numerical results which are shown later 

are computed values. 

Ill. MULTIPATH FADING REDUCTION 

Now we discuss the steady-state. performance of the 

LMS adaptive array. In this section we assume that 

Tr=O holds. Namely, we assume that the reference 

signal coincides with sCt). 

In order to simplify the notation, we introduce the 

real-valued symbols C (0 s C s I) and 'I" which satisfy 
(20). 

(20) 

From (17), it is seen that C and 'I" are the magnitude 

and phase delay of the correlation coefficient of ,,(t) and 

m, (t), respectively. 

Fig. 3 shows the output DUR versus C for several 

values of '1". Since So ;;,: Mo holds for these parameters, 

set) is the desired signal and In(t) is the undesired one. I! 

is seen that the output DUR depends on the correlation 

coefficient (C e-j "'). The undesired signal is, however, 

suppressed significantly by the LMS adaptive array 

OGAWA ET AL: LMS ADAPTIVE ARRAY 

7.~-------, 

•• •. 5 

C 

, .. 
Fig. 3. OutputDURversusC.N=2, 6s =0". Om=~ C)' Tr=O , 

S;lN; = M;lNI = 20 dB. 

provided that C does not equal or approximate 1. The 

output DUR is above 20 dB when C s 0.9. 

Fig. 4 illustrates the effect of C on the array pattern. 

I! is apparent that when C S 0.9 , the null is pointed 

almost exactly toward met). However, when C > 0.9 , the 

null is shifted or lost. 

Now we discuss the case where C nearly equals I. 

When C = I, T is significantly less than the reciprocal of 

the frequency bandwidth of the signal. In this case, the 

fading is not frequency-sele~tive but frequency-flat. 

Furthermore, we may regard do(t) defined by (21) as the 

approximate output desired signal. 

do(t) = so(l) + Ino(I). (21) 

Let Do denote the power of do(t), i.e., 

Do = ( Ido(tW )/2. (22) 

The output D'NR (D'oINo) represents the approximate 

output desired-signal-to-noise-ratio when C = 1. 

Fig. 5 shows the output D 'NR versus C for several 

values of '1". From these curves, it is seen that the LMS 

adaptive array prevents the output signal power from 

decreasing. Namely, the frequency-flat fading is reduced. 

When C = I, the weights are determined in such a way 

s{t ) 

I 
e' 

Fig. 4. Array pattern. N=2, Os=O°, 6", =30°, 'IJf='O", Tr = D, 

S;lN; = M;lN/ = 20 dB. 

~ 5.,-------, 
~ 

~ <Ie 

~3·~4~~~ ~ 
• 2. , 
~ 10 

6 .~~~~~~~ 
.9 .95 .99 .999 .9999 

c 

Fig. 5. OUIPUI D'NR versus C. N = 2, 0.1 = 00, 8",=30<', Tr=O, 

S;lN, = M;lN, = 20 dB. 
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that the weighted signals Wk{Sk(t) + ,nk(t)} (k = I-N) are 

added in-phase at the array output. This means that the 

LMS adaptive array realizes space diversity when C = I. 

Here we consider the physical reason why the 

weighted signals are added in-phase at the array output. 

As is shown later, the waveform distortion of the output 

signal component do(t) = 2:~_, W,{S,(I) + m,(t)} is 

negligibly small. In other words, when C = I, the output 

signal component has almost the same waveform as that 

of the reference signal f(l) = s, (t). The LMS adaptive 

array shown in Fig. I realizes the weights which 

minimize the mean-square error ( le(l) l' ). We see that 

the error is given by 

e(l) = ret) - Y(I) 

N 

= s, (t) - do(t) 2: w"i,(I). 
,~, 

The last term 2:~_, w,",(I) is the thermal noise. If the 

weighted signals are added in-phase at the array output, 

the output signal component do(l) coinsides almost 

petfectly with the reference signal keeping the weight 

norm vwrw small value (t denotes complex conjugate 

transpose). This means that the thermal noise power N; 

wtw in the error e(t) has a lower value. Thus, the mean­

square error is minimized by adding the weighted signals 

in-phase at the array output when C = I. 

According to the literarure [4], the signal cancellation 

phenomenon occurs when the desired signal is correlated 

with one or more interfering signals. When the incident 

signals are correlated with one another, the desired signal 

is canceled in adaptive arrays other than the LMS 

adaptive array shown in Fig. I. Even though the incident 

signals are not correlated with one another, the desired 

signal may be canceled [7]. Under some circumstances, 

the weigbts do not converge to the Wiener solution. The 

"non-Wiener" effects cause signal cancellation [7]. 

However, as stated previously, the parameter G in Fig. I 

is determined in such a way that the deviation of the 

weight vector from the ensemble average is negligibly 

small. Namely, the steady-state weight vector is given by 

the Wiener solution (18). Thus, the signal cancellation 

phenomenon due to the non-Wiener effects does not 

occur in the LMS adaptive array discussed in this paper. 

The LMS adaptive array does not cancel the desired 

signal even when the incident signals are correlated with 

one another. This is because the signal cancellation 

increases the mean-square error in the LMS adaptive 

array. It is shown analytically in the Appendix that the 

weighted signals W,{S,(I) + ,n,(t)} (k = I -N) are added 

in-phase at the array output when T = 0 (C = I) and that 

the signal cancellation phenomenon does not occur in the 

LMS adaptive array. 

Moreover, we investigate the distortion contained in 

do(I). We define the distortion power Eo as 

(23) 

Fig. 6 shows the output E'NR (EoINo) as a function 

of C for several values of 'Y. We see that the output 

E 'NR is less than 0 dB . Namely, Eo is less than the 

output thermal noise power. Therefore, we may say that 

although the multipath signal is not suppressed when C = 

I, the waveform distortion is negligible. 

IV. REFERENCE SIGNAL GENERATION 

Thus far, T,. has been assumed to be O. Namely ; we 

have assumed that the reference signal coincides exactly 

with S(I). In this section we discuss the problem of the 

reference signal generation. In the remainder of this 

paper, we assume that the pilot signal is biphase 

modulated by a pseudonoise (PN) sequence with a long 

period. Then, we express the normalized autocorrelation 

function pet) as 

p(l) = {I - ItIIT, 
0, 

for It! :S T 

elsewhere 

where T denotes a clock pulse duration. 

(24) 

A local PN sequence generator at the receiver 

modulates the carrier which is recovered from the array 

output. However, the reference signal in general does not 

coincide with the incident signal in time, i.e., Tr '" 0 and 

Tr '" T. Thus we must synchronize it to the time of 

arrival of set) or met). 

A. Synchronization Accuracy 

From the above assumptions, we examine the effect 

of Tr on the steady-state petformance of the LMS 

adaptive array. 

Fig. 7 shows the output DUR versus TrIT. When 

TIT = 0.5, set) and met) are correlated with each other 

~ 20,------------, 
~ 

~ 10 

'" . 
• :'j l~~~;::~~ 
..,-UI 
o 
:-20 
o 
0_ 3 0L-~-'-~~~-' 

.9 .95 .99 .999 .9995 

c 

Fig. 6. Outpul E'NR versus C. N = 2. a~ = 0° I 8m = 30° I Tr = 0, 

S/N; = M;lN;= 20 dB. 

5 • .-----~-------, 

Fig. 7. Output OUR versus TrIT. N=2, 81 =00, 9m = 30°, "'=0°, 

S;lN , ~M , !N, ~ 20 dB. 
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according to (17) and (24). When TIT= 5, they are 

independent of each other. When TrlT = 0, the reference 

signal coincides with &(1). Similarly, when TIT = 0.5 and 

TrlT = 0.5, it coincides with rii(t). It is seen that 

satisfactory output DUR is obtained around TrIT = a or 

TrlT = 0.5 for TIT = 0.5. On the other hand, the output 
DUR has a steady and satisfactory value for - 1 < TrlT 

< 1 when TIT= 5. 

Fig. 8 shows each output power normalized by N;l2 

versus TrlT for TIT = 0.5. The period for which the 

output undesired signal power is suppressed less than No 

is about 0.2 T around TrIT= a or TrIT= 0.5. 

From these results , we say that the synchronization of 

the reference signal must be extremely accurate in the 

case where the input multipath components are correlated 

with one another. 

B. Reference Signal Processor 

Now we propose the configuration of the reference 

signal processor. The reference signal generation consists 

of two parts just like the synchronization process in a 

spread spectrum receiver [5]. One is acquisition and the 

other is tracking. The acquisition is implemented by a 

sliding correlator [5] which performs the search process 

and calculates the correlation between the received pilot 

signal and reference signal. The sliding correlator makes 

the reference signal coincide with the pilot signal within 

T. During the initial acquisition, the reference signal is 

not correlated with the input signal and all of the weights 

are driven to 0, if the LMS adaptive processor operates. 

Thus, until the initial acquisition is achieved, we do not 

make it operate. Namely, the weights are frozen,in fixed 

values, for example, WI = 1, W2 = W3 = ... = WN = O. 
Now we discuss the tracking process which is the 

second part of the synchronization. The tracking circuit 

operates in such a way that the reference signal coincides 

with the transmitted pilot signal as precisely as possible. 

When the multipath components are correlated with each 

other, the correlation function between the array output 

signal and generated reference signal is not a symmetric 

triangular function. Thus, a delay-lock loop [5] may not 

be employed. Also, it is difficult to achieve an accurate 

synchronization by use of the conventional tau-dither 

clo~k-tracking loop [5]. Thus, we must configure the new 

tracking circuit. 

• 2 
Tr/T 

Fig. 8. Power ratio versus TrIT. N = 2, as = 0", am = 30", 'I' = 0", 

'iIT=O.5, S,INi = M;fNi = 20 dB. 
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Fig. 9 shows the normalized MSE (mean-square error) 

in the LMS adaptive array versus TrIT. Here, the MSE is 

defined as 

MSE = ( le(I)12). (25) 

It is seen that when the reference signal coincides 

with &(t) or rii(t) (TrIT = a or TrlT = 0.5), the MSE has 

an extremely low minimal value. Then, the MSE may be 

used for the recognition of the synchronization. ' 

After the initial acquisition is achieved by the sliding 

correlator, we make the LMS adaptive processor and 

tracking circuit operate. The configuration of the tracking 

circuit is shown in Fig. 10. Note that each signal in 
Fig. 10 has a real value. The yeO (voltage-controlled 

oscillator) is controlled in such a way that the MSE has a 

minimal value. This circuit is analogous to the tau-dither 

clock-tracking loop used in a spread spectrum receiver. 

Fig. 11 shows an example of waveforms in the tracking 

circuit. We set the duration time (T') of the rectangular 

wave a(l) longer than the convergence time of the 

weights. The amplitude of a(l) is \IN,12. Then, a(l) = 

± \IN,12 holds. At a leading edge of a(I), the clock 

phase of the reference signal is shifted back by a fraction 

(AT) of the clock pulse duration. It is shifted forth by the 

same amount at a trailing edge of a(I). At the output 

,.,---------------, 
m 
~ 213 

.~ 113 
Z , 
W • 
m 
1:_1 a '-~____!,___~__!_--~__:' 

-1 111 2 
Tr/T 

Fig. 9. MSE/Ni versus TrlT. N=2, 9$=0", 9m = 30", '1'=0°, 

-rJT= 0.5 S;lN; = M,/Ni = 20 dB. 

HIS 
Adaptive 
Processor 

Local 
Oscillator 

a (t) 

h (t) 

Fig. 10. Tracking circuit. 

a (t) 

b (t) 

L 
~ h('l 

v (t) 

Time 

LPF 

Fig. 11. Waveforms in tracking circuit. 

b (t) 
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from the LPF (low-pass filter) placed behind the squaring 

device, we may obtain the waveform b(l) which is almost 

proportional to the MSE « le(t)J' ». We assume that b(l) 

= V2 ( le(l)[2 )1 VN; balds. Then , we have h(l) = 

± ( 1 e(t)[2 ). The LPF placed in front of the yeO 

extracts the DC component v(l) from h(I). Since the yeO 

is controlled by v(t) in such a way that the MSE has a 

minimal value, the reference signal coincides with s(l) or 

In(l) in time. By using the tracking circuit, we may 

generate a highly accurate reference signal. 

We assume that the transfer function of the LPF in 

front of the yeO is KI /(l + sTI ). Since the phase of the 

yeO-output signal is proportional to the integral of the 

control signal V(I), we may have 

d(Tr) . di T = K v(t). (26) 

Fig. 12 and 13 show the variations of TrlT and the 

output OUR, respectively, in a case where the tracking 

circuit operates. It is seen that TrlT reaches the range 

from -0.005 (-t:.TI2T) to 0.005 (t:.TI2T). This means 

that the reference signal is synchronized with the time of 

arrival of s(I). It is also seen that the output OUR takes 

on satisfactory values when TriT approaches O. The 

output OUR ranges from 32.3 dB to 3S.6 dB even after 

convergence. This is because Tr is vibrated. 

y. CONCLUSIONS 

We have examined the fading reduction performance 

of the LMS adaptive array. Moreover, we have discussed 

the problem of the reference signal generation and we 

have the following results. 

0.5',------, 

~ 0.0 

- 0 '01;---.-, -', --;;.-~, 
Time x~ 

Fig. 12. TrlT versus time. N = 2, 6~ = 00, 6m = 300. "I' = 0", 

TIT= 0.5, S,IN, = M,tN, = 20 dB, "TIT = 0.01, T' = 10/(G'N,), 

T, = lOO/(G·N,) , K, = V2iN" K= -5V2GYN, x JO-'. 

50,-- - - --, 

~ 40 

~ 30 

~ 20 

<3
10 

OO!;----:;-""",;:---,.,--!, 
Time x¥.H 

Fig. 13. Output OUR versus time. N=2, os=O°, 6,.,=300, ~=O° . 

TIT= 0.5, S,tN,= M,IN, = 20 dB , "TIT = 0.01, T' = JO/CG'N,) 

T, = IOO/(G 'N,), K, = V2iN" K = -5V2GYN, x JO - '. 

I) The behavior of the LMS adaptive array depends ani 
the correlation coefficient of the incident signals. 

However, if the reference signal is generated properly, 

the LMS adaptive array may reduce the multi path .. ' .. , .. 1· 
fading effectively for any correlation coefficient value. 

2) The synchronization in the reference signal generation 11 

must be very accurate in the case where the multipath ;. 

components are correlated with one another. 

3) We proposed a processor configuration which 

generates the reference signal. We showed satisfactory 

performance of the tracking circuit. 

APPENDIX. THEORETICAL ANALYSIS FOR 
T=O (C=1) 

We assume that T = 0 balds. From (10) and (20), we 

obtain C = 1. Namely, m(l) is perfectly coherent with 

S(I). In this case, the following equations hold. 

(AI) 

(A2) 

Then, the combined signal on each antenna element is 

given by 

S.(I) + n,.(t) = b • .i'. (I) e
jW

", 

where 

(k=I-N) 

b. = e-iCk-IJ<!o, + ·YM,IS,e - j {(k - I)$.+'1>'} . 

We define an N-dimentional vector as 

S = [b l , b2 ••• , bNV. 

From these results, we have 

Rxx = S, B * BT + Nil 

where I denotes an N X N identity matrix. 

Also, assuming that Tr = 0 holds, we obtain 

Vxr = S, B* 

(A3) 

(A4) 

(AS) 

(A6) 

(A7) 

Even when the signals s(l) and In (I) are correlated 

with each other, the steady-state ensemble average of the 

weight vector is given by the Wiener solution Rxx-I Vxr. 

Then, from (A6) and (A 7), we may obtain 

W = (S, B* BT + N, I) -I S, B* 

S, 
= B* 

StBT S* + N, 

Furthermore, from (A3) and (AS), eacb weighted 

signal is given by 

(k= I-N). 

(AS) 

(A9) 
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We see that the phase of each weighted signal has the 

same value. Therefore, it may be said that the weighted 

signals are added in-phase at the array output and that the 

signal cancellation phenomenon does not occur. 

[4] 

IEEE Transactions on Antennas and Propagation, AP-29, 6 

(Nov. 1981), 836-841. 

Shan, T.]., and Kailath, T. 0'985). 

Adaptive beamfonning for coherent signals and interference. 

IEEE Transactions on Acoustics, Speech, and Signal 

Processing, ASSP-33, 3 (June 1985), 527-53'6. 

REfERENCES 
[5] Dixon, R.C. (1984) 

[1] Jkegami, F., and Yoshida, S. (1980) 
Spread Spectrum Systems (2nd ed.) 

New York: Wiley, 1984. 
Analysis of multipath propagation structure in urban mobile 

radio environments. 
[6] Ogawa, Y., Ohmiya, M., and Itoh, K. (1985) 

An LMS adaptive array using a pilot signal. 
IEEE Transactions on Antennas and Propagation, AP-28, 4 

(July 1980), 531-537. 
IEEE Transactions on Aerospace and Electronic Systems, 

AES-21, 6 (Nov. 1985),777-782. 

[2] Monzingo, R.A., and Miller, T.W. (1980) [7] Widrow, B., Duvall, K., Gooch, R.P., and Newman, w.e. 
(1982) Introduction to Adaptive Arrays. 

New York: Wiley, 1980. 

[3] Hansen, P.M., and Loughlin, J.P. (1981) 

Signal cancellation phenomena in adaptive antennas: causes 

and cures. 

Adaptive array for elimination of multipath interference at 

HF. 
IEEE Transactions Oil Antennas and Propagation, AP-30, 3 

(May 1982), 469-478. 

Yasutaka Ogawa (S'73-M'78) was born in Sapporo, Japan, on March 22, 1950. He 

received the B.S., M.S., and Ph.D. degrees from Hokkaido University, Sapporo, 

Japan, in 1973, 1975, and 1978, respectively. 

Since 1979, he has been with Hokkaido University, where he is presently an 

Associate Professor of Electronic Engineering. His special interests are in adaptive 

array antennas, frequency and time comparison using a broadcasting satellite, and 

digital communication systems. 

Dr. Ogawa is a member of the Institute of Electronics and Communication 

Engineers of Japan. 

Manabu Ohmiya was born in Sapporo, Japan, on December 6, 1957. He received the 

B.S.E.E. and M.S. degrees from Hokkaido University, Sapporo, Japan, in 1981 and 

1983, respectively. 

Since 1983, he has been with Hokkaido University, where he is presently an 

Instructor of Electronic Engineering. His special interests are in adaptive array 

antenna, signal processing, and optical communication. 

Mr. Ohmiya is a member of the Institute of Electronics and Communication 

Engineers of Japan. 

Kiyohiko Itoh (M'71) was born in Sapporo, Japan, on May 15, 1939. He received the 

B.S.E.E. degree in 1963, the M.S. degree in 1965, and Ph.D. degree in 1973 from 

Hokkaido University, Sapporo, Japan. 

Since 1965, he has been on the Faculty of Engineering at Hokkaido University, 

where he is a Professor of Electronic Engineering. During 1970-1971, he was with 

the Department of Electrical and Computer Engineering, Syracuse University, 

Syracuse, N.Y., as a Res.arch Associate on leave from Hokkaido University. His 

special interests are in electromagnetic radiation, frequency and time comparison using 

a broadcasting satellite, wave optics, mobile radio communications, and solar power 

satellite. . 

Dr. Itoh is a member of the Institute of Electronics and Communication Engineers 

of Japan and also an international coordinator of the Antennas and Propagation Society 

of IEEE. 

OGAWA ET AL: LMS ADAPTIVE ARRAY 23 


	p17.pdf
	p18.pdf
	p19.pdf
	p20.pdf
	p21.pdf
	p22.pdf
	p23.pdf

