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Abstract: This work is motivated by the challenge to develop an adaptive strategy for systems that are complex, have actuator faults and 

are difficult to control using linear methods.  The novelty lies in combined use of LPV fault estimation and LPV fault compensation to meet 

active FTC performance requirements. The paper proposes a new design approach for systems which can be characterized via sets of LMIs 

and can be obtained using efficient interior-point algorithms. A polytopic LPV estimator is synthesized for generating actuator fault estimates 

used in an active FTC scheme to schedule the nominal system state feedback gain as a function of fault effect factors, thereby maintaining 

the system performance over a wide operating range within a proposed polytopic model. The method is demonstrated through a nonlinear 

two-link manipulator system with torque input faults at each joint. 
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1. INTRODUCTION 

There is a significant interest in the control of time-varying 

systems ([1] and [2]). LPV modelling methods have gained a 

great deal of interest, especially for applications related to 

vehicle, robust and aerospace control ([3] and [4]). The LPV 

approach is appealing when nonlinear plants can be modelled 

as time-varying systems with on-line measurable (or 

estimated) state-dependent parameters. 

Bokor and Balas (2004) ([5]) introduced the concept of the 

use of fault detection filters for LPV systems and many other 

investigators have followed different aspects of this approach 

([6], [7], [8] and [9]). Recently, the idea of extending the 

control approach using LPV to encompass Fault-tolerant 

Control (FTC) schemes has been the subject of a number of 

studies ([10], [11], [12], [13] and [14]). 

Most FTC studies are based on LPV focus on active 

approaches and others on the passive fault tolerance. Active 

methods use control system adaption or reconfiguration (or 

both) subject to detectable faults, whilst passive FTC has no 

provision for actively reacting to a fault once it occurs [15].  

Ganguli, Marcos and Balas (2002) ([4]) use LPV ideas for the 

active FTC problem based on actuator faults in aircraft. 

This paper proposes a new design of an active FTC and 

polytopic LPV estimator for systems which can be 

characterized via a set of LMIs and can be obtained using 

efficient interior-point algorithms ([17]). A polytopic LPV 

estimator is synthesized for providing actuator fault 

estimation which is used in an FTC scheme to schedule the 

state feedback gain. The gain is calculated using LMIs in the 

fault-free case in order to maintain the system performance 

over a wide operating range within a proposed polytopic 

model. The active FTC controller is a function of the fault 

effect factors as defined by [15] and [16] which can be 

derived on-line (in this case) from the residual vector of a 

polytopic LPV estimator mechanism. This work uses results 

from [17] and has mainly been motivated by: 

(a) The work of Weng et al (2008) ([14]) on LPV fault 

estimation for rate bounded time-delay systems. 

(b) The use of fault effect factors as described by Chen 

et al (1999) ([15]) and Chen and Patton (2001) ([16]). 

The work [14] is limited only to fault estimation and does not 

include the full FTC problem, whilst the work of [15]  and 

[16] pre-dates the development of the LPV approach to 

control and FTC in particular. The new contribution is the 

combined use of fault estimation and fault compensation for 

FTC within an LPV framework. The proposed method is 

demonstrated through a nonlinear two-link manipulator 

system with a fault in the torque inputs at each manipulator 

joint. The system can be represented by a polytopic model. 

Section 2 overviews the LPV concept. Section 3 gives a 

statement of the mathematical problem to be solved. Section 

4 details the polytopic LPV estimator design strategy that is 

to be used in the active FTC scheme. Section 5 describes the 

polytopic model structure of the two-link manipulator as a 

tutorial example, based on the LPV estimator theory. This 

example (with fault estimation) is used for active FTC 

design, via the polytopic LPV controller synthesis in Section 

6. Section 7 gives concluding comments. 

2. OVERVIEW OF LPV APPROACH 

An LPV system is a mathematical description of the linear 

parameter-varying nature of a nonlinear system. LPV systems 

have state-space matrices that are fixed with some vector of 

varying parameters ([1] and [3]). From a practical point of 

view, a nonlinear system can be reduced to an LPV 

representation by using the linearization along trajectories of 

the parameters. In other words, the idea in LPV is to obtain 

smooth semi–linear models that can vary or be scheduled 

using a parameter, for example an altitude and/or speed of an 

aircraft, so that the LPV model will mimic the actual 

nonlinear plant ([14], [18] and [19]). Instead of choosing a 

combination of predefined linear models, the models change 

parametrically. The LPV model has the structure of a time-

varying linear system with the parameter-dependent matrix 

quadruple )](),(),(),([ θθθθ DCBA ,  

where: nxn
A ℜ∈)(θ , nxm

B ℜ∈)(θ , pxn
C ℜ∈)(θ and pxm

D ℜ∈  as: 
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θ  is a vector of smoothly changing system parameters. An 

LPV system can also be reduced to a Linear Time-Varying 

(LTV) system with a given parameter trajectory and it can be 

reformulated as a Linear Time-Invariant (LTI) system with a 

given a constant trajectory [i.e. θ  is a constant]. The LPV 

control is related to gain-scheduling ([1] and [17]) and 

motivated by the problem of designing multiple models but 

LPV controllers are set against the lack of performance and 

stability proofs for classical gain-scheduling ([2] and [4]). 

LPV controllers are dependent on system parametric changes 

and are not designed for all linearization points ([1] and [3]). 

3. PROBLEM STATEMENT 

Consider the LPV state space system described as follows: 
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n
p tx ℜ∈)( , p

tu ℜ∈)( , m
p ty ℜ∈)( , and q

td ℜ∈)(  are the states, 

control inputs, outputs, and disturbances. g
tf ℜ∈)(  is the fault 

vector where each element gi ,,2,1 K= corresponds to a 

specific fault. sℜ∈θ  is a time-varying parameter vector, and 

)(θpA , )(θpB , )(θpC , )(θpD , )(θpE , )(θpF , )(θpG  and )(θpH  

are the matrices with appropriate dimensions. Assumptions 

applicable to (2) are ([17]): 

(A.1)  The system (2) is stable. 

(A.2)  The vector )(tθ varies in a polytope Θ  with  

vertices 
rθθθ ,,, 21 K   ( sr 2= ), i.e.:    
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(A.3)  The state-space matrices depend affinely on )(tθ . 

System (2) is stable and assumed polytopic, i.e.: 
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(A.4)  )(),(),( θθθ ppp GDC , and )(θpH  are parameter 

independent, i.e. 
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4.  THE POLYTOPIC LPV ESTIMATOR 

We propose a structure fitting the objective of finding an 

estimator in order that the 2L -induced norm of the operator 

mapping )](),(),([ tftdtu  into the estimation error )(te f  is 

bounded by a scalar number γ , ∀ for all parameter 

trajectories. The LPV estimator design is given by ([14]): 
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)(,)( tytu p are defined by (1). n
f Rtx ∈)( )(ˆ tf  is the estimate 

of fault )(tf . )(),(),( θθθ fff CBA , and )(θfD  are design 

matrices with appropriate dimensions. (5) is rewritten as: 
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The following is obtained by combining (2) with (5) and (6): 
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Eqs (6) to (12) can be rewritten in the form: 
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LPV approach to robust fault estimation 

It can be verified that (13) is a polytopic system in 

accordance with (A.2)-(A.4). Lemma 1 can be used as an 

adaptation of the results from [17]. 

Lemma 1 

For (13), the following statements are equivalent: 

(1) 2L -induced norm of the operator mapping )(twudf  into 

)(te f is bounded by a scalar number γ  for all parameter 

trajectories )(tθ  in the polytope Θ, 

(2) There exists 0>= T
XX  satisfying the system of LMIs: 

ri

IDC

DIXB

CBXXAAX

ii

i
T

i
T

i
T

ii
T

i

,,10

)()(

)()(

)()()()(

L=<

















−

−

+

γθθ

θγθ

θθθθ
 (16) 

The main results of this work can be stated through Theorem 

1 which provides the conditions leading to the solution of (6). 

Theorem 1   ([17]) 

Consider the LPV system in (2) with assumptions (A.1)-

(A.4). There exists a polytopic LPV estimator in (5) that can 

determine the solution of (6) if there exist matrices: 
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By Lemma 1 [see (6)] and considering the notations in (14) 

and (15), there exists a polytopic LPV fault estimator (5) 

which solves the Lemma 1 if: 
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Once the matrices oR  and oS  are obtained, the LPV 

estimator of (5) can be constructed as follows: 

Algorithm 1   ([17]) 



 

 

     

 

Step1.  Use SVD to compute the full rank matrices oo NM , : 

oo
T
oo SRINM −=      (24) 

Step 2.  Compute X  as the unique solution of: 
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Step 3.  Compute )( iθF  by solving (20). 

Step 4.  Solve the polytopic LPV estimator: 
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i
pα  is any solution of the convex decomposition problem: 

  ∑
=

=
r

i
i

i
p

1

θαθ    (27) 

5. TWO-LINK ROBOT CASE STUDY 

To illustrate the mathematical discussion above, a tutorial 

example of the actuator fault compensation problem is 

considered using a nonlinear simulation of the two-link 

manipulator/robot. The robot manipulators are familiar 

examples of position-controllable mechanical systems ([21]). 

Their nonlinear dynamics present a challenging control 

problem, since traditional linear control approaches do not 

easily apply. The objective is to model the nonlinear 

dynamics for a two-joint manipulator, so that the movement 

control, e.g. from one point to another on is facilitated. 

Two-link Manipulator Dynamics 

Three types of dynamic torques arise from the motion of a 

manipulator system: Inertial, Centripetal, and Coriolis 

torques ([20] and [21]). Inertial torques are proportional to 

acceleration of each joint in accordance with Newton’s 

second law. Centripetal torques arise from the centripetal 

forces which constrain a body to rotate about a point.  
 

 

Fig. 1. Two-link manipulator structure 

Centripetal torques are directed towards the centre of the 

uniform circular motion, and are proportional to the square of 

the velocity. Coriolis torques result from vertical forces 

derived from the interaction of two rotating links and are 

proportional to the product of the joint velocities of those 

links. For simplicity, the two-link robotic manipulator is 

considered to rotate in the vertical plane, and the equilibrium 

point is considered to be the upper vertical position, whose 

position can be described by a 2-vector T),( 21 ϕϕϕ = of joint 

angles, and whose actuator inputs consist of a 2-vector 

T
uuu ),( 21=  of torques applied at the manipulator joints as 

shown in Fig. 1. ϕ& , ϕ&&  denote the joint velocities and 

accelerations and the manipulator dynamics can be written in 

the more general form ([20], [21] and [22]) as: 

uO =++Ξ )(),()( ϕϕϕϕϕϕ g&&&&    (28) 

22)( xℜ∈Ξ ϕ  is the SPD manipulator inertia tensor, the 

function 2),( ℜ∈ϕϕϕ &&O contains the Centripetal/Coriolis 

torques. 2
)( ℜ∈ϕg  are the gravitational torques. The 

following numerical example taken from ([21] and [22]) and 

modified here for the proposed design strategy in Section 4. 

The polytope model representation is now described. 

The equations of motion are described by: 
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Parameters I1 I2 l1 lc1 lc2 m1 m2 G 

Values 0.83 0.41 1 0.5 0.5 10 5 9.8 

Units 
Kg*
m2 

Kg*
m2 

m m m Kg 
K
g 

m/s
2 

Table 1: Parameter values of two-link manipulator system 

1I :  Inertia of arm-1 and load, and 2I :  Inertia of arm-2 

1l  :  Distance between joint-1 and joint-2 

1lc :  Distance of joint-1 from centre of mass arm-1 

2lc :  Distance of joint-2 from centre of mass arm-2 

1m :  Mass of arm-1 and load & 2m : Mass of arm-2 

Note that in this study the quadratic terms ),( ϕϕ &O  are not 

considered because they are not bounded. This is different 

from [23] in which the ),( ϕϕ &O term is taken into account in 

the robust control design for a two-link flexible manipulator. 

With this limitation (28) becomes: 
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The nonlinear term in )(ϕΞ  is clearly a bounded function: 

)cos()( 211 ϕϕϕφ −=     (33) 

where: 11 1 ≤≤− φ .  Hence, )(ϕΞ can be represented by a 

polytope whose vertices are defined by: 
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To facilitate a state-space formulation, the vector 

field )(ϕg with 2ℜ∈ϕ can be arranged in the form of 

ϕϕ)(
g

G . The bounded function )(2 ϕφ can now be defined as: 
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where  1)(2.0 2 ≤≤− ϕφ  

From the boundedness of functions )(2 ϕφ  in terms of the 

angleϕ , )(ϕgG is considered as a polytope as follows: 
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The two-link system state space representation is defined as: 
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The state feedback LMI constraints, according to (29) and 

(30) are given by the following descriptor system: ([21] and 

[22]): 
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 (38) 

or the state space equation is presented as follows: 

)()()()()( tuBtxAtx ϕϕ +=&    (39) 

Let the matrix Π  be a non-singular matrix given by: 
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it then follows that: 
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Actuator fault estimation 

Consider a nominal time-varying model [depending smoothly 

on the angleϕ ] of the nonlinear dynamical system of (39), 

subject to actuator faults )(tfF aa , as follows:  

4,,2,12,1                   

)()()(

)()()()()()(

K

&

==

++=

++=

ji

tfFtuBtxA

tfFtuBtxAtx

aaiij

aaϕϕ

   (41) 

aF  is the fault distribution matrix and the vectored 

signal af represents actuator faults. These gives rise to a 

polytopic controller with 8-vertex systems. Therefore, the 

actuator fault estimate )(ˆ tfa  in system (41) can be 

implemented by using Algorithm 1 and solved using the 

MATLAB
© 

LMI toolbox in (24)-(27). The solution 

for 7550.2=γ , after 39 iterations. An estimator in (5) can be 

constructed by the Algorithm 1. The polytopic LPV estimator 

parameters in (26) are: 























=

02+-3.438E02+1.193E01+9.297E01+7.742E
06+1.827E05+-9.783E05+4.078E05+3.342E

06+4.979E05+-9.206E05+-5.788E05+5.748E-

05+6.172E06+-1.323E06+1.018E05+8.665E

05+-1.667E06+-1.463E06+1.359E06+1.171E

02--1.721E01-1.115E02--4.086E02-5.344E-
02+-2.271E02+-6.757E01+1.170E02+1.479E

02+-1.098E03+-1.420E02+5.495E02+8.814E

02+-3.387E02+-4.662E02+-2.727E02+2.174E-

02+-3.982E02+-3.126E02+-4.365E02+4.347E-

)(θF
 

Figs. 2 & 3 show the result of the fault estimation, with a 

zero-mean Gaussian random disturbance )(td with variance 

0.015. The polytopic system is simulated with scalar faults 

acting on the torque inputs at the manipulator joint-1 and 2, 

with the parameter trajectories of )(1 ϕφ , and )(2 ϕφ , and the 

actuator fault signals [i.e. )](),([)( 21 tftfcoltf aaa = as shown. 

The fault signals are: 

]00.0),5.0sin(1050.2[)(
2

tecoltfa
−=  and 

)]2sin(1025.1,00.0[)( 2 tecoltfa
−= , 

Simulation results show that the designed polytopic LPV 

fault estimators provide very good estimation performance. 
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Fig. 2. The fault and its estimate using LPV estimator 
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Fig. 3. The fault and its estimate using LPV estimator 

After verifying the fault estimation performance the fault-free 

LPV controller design can be described as a basis for the 

Active FTC system. 
 

6. POLYTOPIC LPV CONTROLLER DESIGN 

The case study robot manipulator as described in Section 5 is 

used to illustrate various control polytopic modelling issues 

and FTC design. The control is developed for the nominal 

(fault-free) system (31). The objective is to compute the 



 

 

     

 

required actuator inputs to perform desired tasks (e.g. move 

the manipulated load to a desired position), given the 

measured system states, namely the vector ϕ  of joint angles, 

and the vector ϕ&  of joint velocities. 

 

  Controller design for nominal (fault-free case) 

Let a nominal state feedback control vector be 

)()( txKtu lpvnom = [i.e. for the fault-free case], where 

lpvK 42xℜ∈ is controller gain matrix of the polytopic system 

to be designed.  Before the nominal controller design can be 

completed it is first necessary to develop a stability condition 

that will be satisfied by all the LPV vertices. The nominal 

(fault-free) control system can be developed from (39) as: 

4,3,2,12,1 )(][

)(])()([)(

==+=

+=

jitxKBA

txKBAtx

lpviij

lpvϕϕ&
  (42) 

The following quadratic stability conditions are now defined 

at each vertex for the SPD Lyapunov matrix cS : 

4,3,2,12,10)()( ==<+++ jiKBASSKBA
T

lpviijcclpviij
 (43) 

Let clpvc SKL = , then 1−= cclpv SLK  and (43) is linear in cL  

and
lpvK : 

4,3,2,12,10 ==<+++ jiBLASLBSA
T
i

T
c

T
ijccicij  (44) 

(43) & (44) lead to a polytopic controller with 8 vertex 

systems, with each system having 4 states, 2 inputs, and 2 

outputs. cS  and cL  in (44) are computed using the 

MATLAB
©
LMI toolbox after 24 iterations and the controller 

can be constructed as: 









=

39.2184-0.0000135.2864-0.0000

0.0000129.8775-0.0000550.0309-
lpvK

 

Fig. 4 shows that the polytopic LPV system remains stable 

with the movement from (20, 40) to (0, 0), although the 

quadratic terms, ),( ϕϕ &O  are neglected in the model design. 
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Fig. 4. The output responses of the nominal system 

  Design of control for active FTC scheme 

From Section 5, the dynamic system of in (41) includes an 

additive description of the actuator faults. However, the faults 

can have a multiplicative effect in the system representation. 

A multiplicative actuator fault representation is defined as: 

4,3,2,12,1)()]([)()( ==−+= jitutIBtxAtx
a

miij η&        (45) 

where aη  is the so-called fault-effect factor, and 

],,,[ 21
a
m

aaa
diag ηηηη K= , and 10 <≤ a

iη  represents a fault in 

the th
i  actuator and 0=a

iη  means that th
i actuator operates 

fault-free, whilst for 0>a
iη  some degree of actuator fault 

effect occurs ([15] and [16]). (41) and (45) are equivalent to: 

)()()( tutBtfF
a

aa η−=     (46) 

aF  is identical to the matrix B  in the actuator fault case. The 

estimation of fault-effect factor )(ˆ t
aη  is determined from the 

fault estimation )(ˆ tfa  provided by the fault estimator as 

described in Section 4. The adaptive active FTC scheme can 

be developed by considering the system with the actuator 

fault vector )(tf a
 described in (45) in terms of )(ˆ t

aη , based 

on the nominal controller synthesized in Section 6 and 

achieved under the assumption that the fault effect factors 
aη  are provided by the estimator (5). 

Theorem 2  From a design consideration consider the system 

in (45) with mi ,,2,1 K=  actuator faults ( 0≠aη ) acting 

independently within each of the m  vertex control systems 

with identical gain matrix 
lpvK  The new control (assuming 

non-zero fault effects) is given as: 

)()ˆ(

)()](ˆ[)(

txK

txKtItu

a
FTC

FTC

lpv
a

FTC

K

η

η

=

−= +

44 344 21    (47) 

where +− )ˆ( a
I η  is the Pseudo-Inverse of )ˆ( a

I η−  [see Fig. 5]. 

)ˆ(
a

FTCK η  is the adaptive FTC controller gain, depending on 

the on-line estimation aη̂ . 

 

Fig. 5: Active fault-tolerant control scheme  

Fig. 5 shows the active FTC structure, for the polytopic LPV 

system with exogenous disturbances and actuator faults as 

defined in (2). )ˆ( a
FTCK η  is the active FTC on-line adaptive 

gain matrix as in (47), and the aη̂  is an estimate of aη , 

generated on-line using the polytopic LPV estimator (5). 
 

Proof of Theorem 2:  Consider (45) When an actuator fault 

occurs in a given vertex system, the controller of the 

complete polytope system is given by: 

)()]([)()( tutIBtAxtx
aη−+=&    (48) 

The new closed-loop LPV system is determined by 

substituting the new control law from (47) into the fault-

corrupted system of (48), yielding:  

)ˆ(
a

FTCK η

Polytopic System

LPV estimator 

)(ˆ t
aη

)(tuFTC )(ty

2ϕ  
1ϕ  



 

 

     

 

)()(

)()](ˆ)][(([()(

)]([)()(

tButAx

txKtItIBtAx

utIBtAxtx

nom

lpv
aa

FTC
a

+=

−−+=

−+=

+ηη

η&

  (49) 

It can be seen that the term )( aI η−  acting on the system of 

(45) is removed by replacing u  with
FTCu in (47). ▄ 
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Fig.6. The control/output responses with active FTC
  

[ )sin(1025.1)(
2

1 tetfa
−=  and )5.1sin(1050.2)(

2
2 tetfa

−= ] 

Fig. 6 shows that if the polytopic LPV controller is employed 

under the assumption that the aη̂ can be estimated perfectly 

by the polytopic LPV estimator in ( 5), then the actuator fault 

can be compensated using new LPV control law in (47).  It 

can be seen that the output performances of the angles; 1ϕ  

and 2ϕ soon return to their nominal/reference values with a 

very small amount of oscillation after LPV controller is 

activated at 10>t and 30>t , respectively. This demonstrates 

very well the fault-tolerance of the LPV active FTC system. 
 

7. CONCLUSION 

This paper proposes a new strategy of an active FTC and 

polytopic LPV estimator for systems which can be 

implemented via a set of LMIs using efficient interior-point 

algorithms ([17]). A polytopic LPV estimator is synthesized 

for providing actuator fault estimates for use in an active FTC 

strategy to schedule predefined state feedback gains. The 

gains are calculated using LMIs for nominal and faulty cases 

in order to maintain the system performance over a wide 

operating range within according to a proposed polytopic 

model. The active FTC scheme is designed using the 

MATLAB©LMI toolbox, is a function of fault effect factors 

derived on-line from the polytopic LPV estimator. The 

scheme is investigated using a two-link manipulator with 

actuator faults acting on each torque input. Results show that 

the polytopic LPV estimator can follow the fault rapidly and 

effectively with robustness to disturbance signals, giving the 

system continued safe operation via the on-line FTC scheme. 
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