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ABSTRACT Complicatedweather conditions lead to intermittent, random and volatility in photovoltaic (PV)

systems, which makes PV predictions difficult. A recurrent neural network (RNN) is considered to be an

effective tool for time-series data prediction. However, when the weather changes intensely, the long-term

sequence of multivariate may cause gradient vanishing (exploding) during the training of RNN, leading the

prediction results to local optimum. Long short-termmemory (LSTM) network is the deep structure of RNN.

Due to its special hidden layer unit structure, it can preserve the trend information contained in the long-

term sequence, which is allowed to solve the problems of RNN and improve performance. An LSTM-based

approach is applied for short-term predictions in this study based on a timescale that encompasses global

horizontal irradiance (GHI) one hour in advance and one day in advance. Inaccurate forecasts usually occur

on cloudy days, and the results of ANN and SVR in the literature prove this. To improve prediction accuracy

on cloudy days, the clearness-index was introduced as an input data for the LSTM model and to classify

the type of weather by k-means during the data processing, where cloudy days are classified as the cloudy

and the mixed(partially cloudy). NN models are established to compare the accuracy of different approaches

and the cross-regional study is to prove whether the method can be generalizable. From the results of hourly

forecast, the R2 coefficient of LSTM on cloudy days and mixed days is exceeding 0.9, while the R2 of RNN

is only 0.70 and 0.79 in Atlanta and Hawaii. From the results of daily forecast, All R2 on cloudy days is

about 0.85. However, the LSTM is still very effective in improving of RNN and more accurate than other

models.

INDEX TERMS LSTM, forecasting short-term solar irradiance, complicated weather, comparative research.

I. INTRODUCTION

Distributed PV systems refer to a power generation applica-

tion system with decentralized resources, a small installed

scale and distributed around the users. The voltage of the con-

nected network is usually lower than 35 kV or lower [1], [2].

It mainly uses PV arrays to directly convert solar energy

into electrical energy required for power station systems. The

characteristics of low loss and low pollution can effectively

alleviate the contradiction between energy and environment,

which makes it become an important part of the future energy

system [3]. The uncontrollable factors such as climate and

seasonality lead to the intermittent, random and volatility

of PV power generation [4]. The incorporation of unstable
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distributed PV systems into the grid will interfere with the

smooth operation of the grid [5], [6]. As the proportion

of solar energy in power systems has gradually increased

[7], [8], PV power prediction technology has become crucial.

To scientifically formulate the operating mode and schedul-

ing plan of the power system, it is necessary to predict the

output power value of PV power generation in the future.

Accurate forecasts can help power administrations and com-

panies personnel adjust and optimize power generation plans

promptly, improving utilization and economic efficiency of

new energy [9], [10].

Generally, methods of PV prediction mainly focus on PV

power or solar irradiance. PV power prediction is achieved

by constructing a predictive model that maps historical data

to PV output power through a deep analysis of a large

amount of historical data, mining the potential rules of data.
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The methods include linear regression [11], k-means cluster-

ing[12], ARIMA [13], grey theory [14] and artificial neural

network (ANN) [15]. PV power forecasting is supported by

massive historical power data, which is not suitable for new

power plants that are built soon. Several factors are known

to influence PV power generation, including the size and the

type of module as well as the installation and arrangement of

arrays. Once these electrical characteristics have been opti-

mized, however, subsequent PV power generationwill mainly

depend on meteorological factors, including the proportion

of solar irradiance received on the surface of a module [16].

This means that the effective distribution capacity of a PV

system can be attained by predicting the likely amount of

solar irradiance it will experience and then calculating output

power. The meteorological data required for this method can

be easily obtained by local weather stations without the need

for on-site collection, so it is widely used in distributed PV

systems [17]. PV power prediction methods can also be used

to predict solar irradiance by simply changing the input data

to historical solar irradiance. The following is an introduction

to the related works on PV forecasting methods.

Time-series methods are the most common in the field of

PV forecasting. The work of Reikard et al. [18] focused on

ARIMA, as well as a combination of dynamic integrated fore-

cast (DICast) systems and weather research forecast (WRF)

models, which allowed regression coefficients to vary over

time can capture a great deal of nonlinear variability. In a

direct comparison of meteorological and time series models,

the ARIMA is more accurate at short horizons, while the

numerical weather prediction model is more accurate as the

horizon extends. The numerical weather prediction model

performed better on a time scale of more than about 2 hours

because it was able to predict changes in clouds and weather.

Models using supervised machine learning (ML), such as

random forest (RF) and support vector machine (SVM), are

becoming increasingly popular and often show promising

accuracy. Benali et al. [19] used RFmethods to predict global

horizontal irradiation (GHI), beam normal irradiation (BNI)

and diffusion horizontal irradiation (DHI) for time horizons

from h+1 to h+6. The improvement brought by the use of

RF compared to ANN and smart persistence (SP) increases

with the forecasting horizon. A seasonal study is realized and

shows that the forecasting of solar irradiation during spring

and autumn is less reliable than during winter and summer.

De Leone et al. [20] used historical data of solar irradiance,

environmental temperature, and past energy production to

predict the PV energy production for the next day with an

interval of 15 min. The technique used is based on v-SVR,

a support vector regression model. The forecasts for energy

production obtained with the proposed methodology are very

accurate, with the R2 coefficient exceeding 90%. The quality

of the predicted values strongly depends on the goodness

of the weather forecast, and the R2 value decreases if the

predictions of irradiance and temperature are not very accu-

rate. Although this method is easy to implement, the SVR

algorithm is difficult for large-scale training samples.

As ANN has strong nonlinear fitting capabilities, these

approaches can be utilized to map complex relationships of

this type and also encapsulate simple learning rules that are

easily computer-implemented. It has become a trend in the

research of forecasting [21]. Leva et al. [22] measured the

correlation between weather and PV power and introduced

a clearness-index to divide the sky state into clear, cloudy

and partially cloudy conditions to guide the supervised learn-

ing of the ANN and to classify the prediction results to

evaluate. Durrani et al. [23] and Alfadda et al. [24] estab-

lished models of multi-layer perceptron (MLP). Forecasting

results of the above three all showed that ANN and MLP

cannot solve the problem of unstable PV power in cloudy

conditions.

Deep learning as an advancement of neural networks, mak-

ing its structure more complex and deep, enhanced the ability

to solve complicated problems. Sun et al. [25] employs a

specialized convolutional neural network (CNN) model that

utilizes both sky images and solar panel output history as

input to predict 15-minute ahead solar panel generation. On a

full year database, the model achieves 26.2% forecast skill

on the sunny test set, and 16.1% forecast skill on the cloudy

dataset. An RNN is considered to be an effective tool for

time-series data prediction. Yu et al. [26] demonstrated in

previous work that RNN has better prediction performance

than backpropagation NN (BPNN) and radial basis function

NN (RBFNN) in sunny, rainy and cloudy days. To improve

the prediction accuracy, more variables and longer time series

need to be added. However, when dealing with multi-variable

long-term sequences, RNN has a gradient exploding (vanish-

ing) problem, which leads to a local optimal result. LSTM

is a solution for the above problem due to its special hidden

layer design, which allowed the RNN with LSTM units to

model both short and long term temporal dependencies in

time-series data [27]. LSTM has successful applications in

Computer Vision, Speech Recognition and Natural Language

Processing [28]–[34]. In the field of power research, such as

load forecasting [35] and electricity price forecasting [36],

it also shows advantages [36], [37].

According to the above literature, inaccurate forecasts usu-

ally occur on cloudy days and the accuracy increases depend-

ing on the weather forecast. Therefore, an LSTM-based

approach is applied for short-term predictions in this study,

using historical meteorology as input instead of weather

forecasting. To improve prediction accuracy on cloudy days,

the clearness-index was introduced as an input data for the

LSTM model and to classify the type of weather by k-means

during the data processing, where cloudy days are classi-

fied as the cloudy and the mixed(partially cloudy). Since

the accuracy decreases when time passes, the timescale of

forecasts encompasses GHI one hour in advance and one

day in advance, including a mesoscale forecast, to verify

the persistence of the LSTM model. ARIMA, SVR, BPNN,

CNN and RNN models established as a comparative study

facilitates the validation of LSTMmodels in varying climate/

location.
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FIGURE 1. LSTM Unit.

II. METHODOLOGY

A. LSTM

Long Short-term Memory Neural Network was proposed

by Hochreiter and Schmidhuber in 1997 to avoid long-term

dependencies through targeted design. Unlike a single hidden

layer of an RNN, LSTM stores information in a control unit

outside the normal flow of the RNN, introducing a new state

unit C [39]. As shown in Fig. 1, LSTM divides the hidden

state of RNN into two parts, memory cells ct and working

memory ht . The memory cell is responsible for the reten-

tion of the sequence features. The memory of the previous

sequence is controlled by the forgetting gate f . The working

memory ht is used as the output, and the output gate o controls

the portion of the current memory ct to be written. The input

gate i is responsible for controlling the portion of the current

state information ht−1 and the current input xt to be written

to the memory cells. The above three kinds of gates are

not static. The former state information ht−1 and the current

input xt are jointly determined by non-linear activation after

linear combination. The LSTM architecture can be defined as

follows:

ft = σ (wf × [ht−1, xt ] + bf ) (1)

it = σ (wi × [ht−1, xt ] + bi) (2)

c̃t = tanh(wc × [ht−1, xt ] + bc) (3)

ct = ft × ct−1 + it × c̃t (4)

ot = σ (wo × [ht−1, xt ] + bo) (5)

ht = ot × tanh(ct ) (6)

where wf , wi, wc and wo are weight matrices. bf , bi, bc and

bo are bias vectors. c̃t is a new candidate state, which is

generated by xt and ht−1 through a tanh layer. σ () is the

Sigmoid activation function.

B. PERFORMANCE METRICS

Four error metrics were proposed to evaluate the performance

of the forecasting model:

Root mean square error (RMSE): measures the difference

between the actual values to the forecasting values. A lower

RMSE indicates better forecasting result, and is defined:

RMSE =

√

1

N

∑N

i=1

(

Pf − Pa
)2

(7)

where N is the amount of observations; Pf is the forecast

value; Pa is the actual value.

Mean Absolute Error (MAE): MAE is the average of abso-

lute errors. It can better reflect the accuracy of the forecasting

value error, and is defined:

MAE =

∑N
i=1

∣

∣Pf − Pa
∣

∣

N
(8)

Mean Absolute Percentage Error (MAPE): MAPE reflects

the ratio of error to true value in percentage.

MAPE =
1

N

∑N

i=1

∣

∣Pf − Pa
∣

∣

Pa
× 100% (9)

R-Square (R2): R-Squared judges whether the predictive

model is fitting and reflects the prediction deviates from

reality, which ranges from [0, 1]. If R2 = 0, the model fits

poorly; if R2 = 1, the model has no errors.

R2 = 1 −

∑N
i=1

(

Pf − Pa
)2

∑N
i=1

(

P̄a − Pa
)2

(10)

Among them, RMSE and MAE evaluate the hourly fore-

cast. Problems can occur when calculating the MAPE using

the small denominator. MAPE is used to evaluate the daily

forecast.

III. DATA PROCESSING

A. DATA COLLECTION

The location determines the climate of the PV station and the

distribution and generation of solar irradiance of regions that

differ greatly at different latitudes. To explore the scalability

of LSTM models, the cross-regional study is necessary. The

total amount of daily solar irradiance data from 2013 to

2017 in Atlanta, New York, and Hawaii, USA, was shown

in Fig. 2, which was used to plot box plots for observation

and filtering of anomalous data. The solar power data is from

the National Solar Radiation Data Base (NSRDB) and the

collection interval is once per hour. Fig. 2 shows that the

median distribution of Atlanta and New York from January to

June is gradually increasing, and gradually decreasing from

July to December. The median of Hawaii from January to

August is 6000 W/m2, and the number from September to

December is 5000 W/m2. The distribution of GHI in Hawaii

is not as seasonal as in Atlanta and New York. The location

of each station is shown in Fig. 3.

B. METEOROLOGICAL DATA

In addition to solar irradiance, NSRDB provides us with

meteorological data, which are also added as inputs to

increase sequence characteristics to improve prediction accu-

racy. The details of the meteorological data are shown

in Table 1. Since LSTM is sensitive to data scales [40],
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FIGURE 2. Distribution of solar irradiance in each month from 2013 to 2017.
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FIGURE 3. Locations and climate types of meteorological station.

TABLE 1. Meteorological data.

the data is normalized by Min-Max and transformed to [0, 1],

calculated by:

xnorm =
x − xmin

xmax − xmin
(11)

Among these, the cloud is the main cause of the ran-

domness and volatility of the PV system. According to the

NSRDB standard, the cloud is divided into 10 types according

to the weather type and cloud level [41]. As shown in Table 2,

this is a label encoding. For categorical variables that do

not have an ordinal relationship, integer encoding is not

sufficient. Using this encoding and allowing the model to

assume a natural ordering between categories can lead to poor

performance or unexpected results (predictions between cat-

egories). In this case, one-hot encoding is applied to integer

representations. This is where the integer-encoded variables

are removed and a new binary variable is added for each

unique integer value. The ‘‘1’’ value is placed in the binary

TABLE 2. Cloud type.

variable of the cloud type, and the value of ‘‘0’’ is placed on

the other cloud type.

The clearness-index is also used as an important data to

identify the type of weather. In meteorology, the clearness-

index is determined by the ratio of GHI to extraterrestrial

solar radiation [42]. In the field of PV, more and more

researchers have given a broader definition of ‘‘clear-sky’’:

in a certain period of time, there is no cloud between the path

between the photovoltaic system and the sun, then the sky

condition can also be considered It is ‘‘clear-sky’’ and is also

called equivalent clear-sky [43]. Therefore, the ratio between

GHI and Clear-sky GHI is also used as a description of the

amount of cloud. It is defined as:

kt =
GHI

Clear − skyGHI
(12)
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FIGURE 4. LSTM-based GHI prediction framework.

IV. MODEL IMPLEMENTATION

Meteorological data from 2013 to 2016 will be used to train

the model, and GHI in 2017 will be used to evaluate the accu-

racy of the forecast. GHI, meteorological data, and clearness-

index for the previous 24 hours will be used as input data for

the predictive model. The output data is the total GHI for the

next hour and the total GHI for the next 24 hours. Fig. 4 shows

the LSTM-based GHI prediction framework. Since this study

focuses on the prediction accuracy of the LSTM model in

complicated weather, it is necessary to know the distribution

of solar radiation in 2017 and classify the weather on the test

samples.

The model in this study is a single hidden layer structure.

From equations (1) to (3), the selection of the threshold

activation function σ (·) is the key to the model establish-

ment. Since the ReLU [44] function can alleviate the gradient

dispersion problem and the calculation speed is fast, it is

chosen as the activation function. Over-fitting is a serious

problem in multi-variable multi-parameter deep neural net-

work training [45]. We add the dropout [46] algorithm to

the hidden layer, which allows cells (and their connections)

to be randomly discarded from the neural network during

training. This method can effectively alleviate the over-fitting

problem. The output layer calculates the Mean Absolute

Error (MAE) as the loss function for the predicted output

Pf and the target output Pa. The hidden layer will calculate

the gradient calculated by the loss function, and the BP

algorithm adjusts the weights in the network [47]. The Adam

[48] algorithm is used to generate optimization parameters

for each iteration learning until the loss function converges.

After the model training is finished, the output layer per-

forms anti-normalization on the result and restores the pre-

dicted value to the time-series data corresponding to the

input.

The establishment of the LSTM model in the article is

based on the keras package. ARIMA, SVR, BPNN, CNN,

and RNN forecasting models were also established as com-

parative experiments, in which BPNN is implemented by

MATLAB. The models’ configurations are shown in Table 3.

There are as many as thirty-three types of weather defined

by the meteorological department [49]. If they are not sorted,

the corresponding database of each type requires a large

amount of observation data of solar irradiance, and the

workload will be very large. Specifically for some very

rare weather types, almost no historical data are available.

To solve the above problems, we sort types of weather defined

by the meteorological department. The K-means was used

according to the total GHI of a day and equivalent clearness-

index, and the result of classification is as shown in Fig. 5.

The weather type is simplified to 3 categories, sunny, cloudy,

mixed (partially cloudy), and Table 4 counts the days of the

test samples in different types.
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FIGURE 5. Weather classification results of K-means.

V. RESULTS AND DISCUSSION

Fig. 6, Fig. 7, Fig. 8 and Table 5 provide RMSE and MAE for

hourly forecasts across regions, ranging from 8:00 to 17:00,

as the predicted results at sunset are not shown. Seasons

are divided into spring (March to May), summer (June to

August), fall (September to November), and winter (Jan-

uary to February, December). In Table 5, All represents the

prediction error for all weather conditions.

On sunny days: in Atlanta, the RMSEs for ARIMA,

BPNN, RNN and LSTM are 30.44 W/m2, 31.34 W/m2,

30.10 W/m2, 28.65 W/m2, and MAE is 24.26 W/m2,

23.07W/m2, 26.28W/m2, 22.82W/m2, which are very close.

Their performance differs in the forecasts of New York and

Hawaii. From Fig. 7(a), BPNN had problems in prediction

on spring, autumn and winter compared with other models.

In New York, when LSTM’s RMSE and MAE are only

TABLE 3. Models and configuration.

TABLE 4. Days of the test samples in different types.

32.05 W/m2 and 22.56 W/m2, BPNN and RNN’s RMSE

are 59.04 W/m2 and 54.93 W/m2, MAE is 43.35 W/m2 and

44.81 W/m2, which shows significant deviations. R2

On cloudy days: from Fig. 6(b) and Fig. 7(b), the RNN

and LSTM model showed the same excellent predictive

performance as LSTM in Atlanta and New York when

GHI is low. However, LSTM’s RMSE and MAE in Atlanta

are 29.18 W/m2 and 19.11 W/m2, which is better than

RNN’s 38.69 W/m2 and 30.65 W/m2. From Fig. 8(b),

Atlanta’s GHI has some volatility on cloudy days, and

the results of the predictive model are affected, when

the RMSE and MAE of the LSTM are 73.07 W/m2 and

54.34 W/m2. Despite the increased error, the predictive per-

formance of LSTM shows advantages compared to other

models.

On mixed days: from Table. 5, the MAE and RMSE of

all forecasting models multiplies on mixed days compared to

sunny and cloudy days, indicating a decrease in prediction

accuracy. Fig. 6(c), Fig. 7(c) and Fig. 8(c), LSTM’s forecast

is closer to the true value, especially at 16:00 in Atlanta on

Apr. 17th and 15:00 on Jul. 30th, at 14:00 on Mar. 12th in

Hawaii. From Table 5, the RMSE of the LSTM in Atlanta
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FIGURE 6. Forecasts in Atlanta.
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FIGURE 6. (Continued.) Forecasts in Atlanta.

is 68.89 W/m2, whereas the best RMSE between BPNN,

CNN and RNN is 130.66 W/m2, which belongs to RNN.

In Hawaii, the advantages of LSTM are even more obvious.

The RMSE of LSTM is 86.68 W/m2, when the RMSE of

BPNN, CNN, and RNN are 178.44 W/m2, 195.92 W/m2

and 183.29 W/m2, which almost reduces the error

of 100 W/m2.

Usually, the hourly forecast is to calculate the photovoltaic

power by forecasting the solar irradiance at various moments,

to adjust the grid configuration and ensure its safe operation.

Forecasting the PV power in the next 24 hours is also impor-

tant for PV power plants to enhance operational efficiency

and improve the economy. Table 6 provides the MAPE for

daily forecasts across regions. BPNN’s best performance

occurs in Atlanta on sunny days, but its MAPE is as high

as 16.2%, which means it is not suitable for solving this

problem. The CNN model performs better on daily forecasts

than it does on hourly forecasts, especially in Hawaii, where

its MAPE is 12.2% on sunny days and 7.3% on mixed days,

which is close to RNN’s under the same conditions. RNN’s

performance is the best among all forecasting models on

sunny days with little volatility in weather or GHI. In Atlanta

and New York, its MAPE is 5.6% and 7.5%, exceeding the

LSTM model. From all days, RNN’s MAPE is only 14.5%

in New York and less than 10% in Atlanta and New York.

The performance gap between RNN and LSTM is revealed

on cloudy days and mixed days. RNN has more than 20%

of MAPE in all regions and even 27.2% in New York on

cloudy days. TheMAPE of the LSTMmodel in Atlanta, New

York, and Hawaii on cloudy days is 14.9%, 20.1%, and 18.1,

respectively. The LSTM unit is very effective in improving

the prediction accuracy of RNN. On mixed days, RNN’s

MAPE in New York is up to 25.5%, while LSTM’s MAPE is

15.3%,which is 10.2%better thanRNN.On all days, LSTM’s

MAPE is the lowest, which is 8.0%, 11.1%, 8.2% in Atlanta,

New York, and Hawaii.

As can be seen from the above, the difficulty of daily fore-

casting is mainly in the prediction of low GHI. Table 7 pro-

vides theMAPE for daily forecasts of eachmonth. The results

show that LSTM has the vast majority of best predictive

performance. We also observed that the MAPE of the LSTM

model is up to 20% in New York from January to March and

October to December. This result is consistent with the GHI

distribution provided in Fig. 3, with low GHI during these

times. Despite this, LSTM’s annual MAPE is 11.1% in New

York, which still has higher prediction accuracy and better

performance than other predictive models.

Table 5 and Table 6 also provide the R2 of the hourly

and daily forecasting under different weather conditions.

Although ARIMA and SVR’s R2 is about 0.9 in New York,
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FIGURE 7. Forecasts in New York.
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FIGURE 7. (Continued.) Forecasts in New York.

TABLE 5. Evaluation of hourly forecast for chosen locations.
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FIGURE 8. Forecasts in Hawaii.
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FIGURE 8. (Continued.) Forecasts in Hawaii.

FIGURE 9. R2 of LSTM model per month.

they are not good at dealing with daily forecasts. In most

instances, their R2 is below 0.8, especially in Hawaii on

cloudy days, their R2 is only 0.53 and 0.54. The R2 coeffi-

cient of LSTM on cloudy days and mixed days is exceed-

ing 0.9, especially, the R2 of hourly forecasting on sunny

days reaches 0.99, which reflects the LSTM model is fit-

ting well. On mixed days, the R2 of RNN is only 0.70 and

0.79 inAtlanta andHawaii, which further proves the improve-

ment. Significantly, all R2 of the daily forecasting on cloudy

days is about 0.8. Although these values are below aver-

age, the LSTM model still has better predictive performance

than other models. The R2 of LSTM per month is shown

in Fig. 9. In Hawaii, the R2 of LSTM is about 0.9. However,

the high value of R2 in Atlanta and New York is concentrated

between April and September, referring to Fig. 3, which is

exactly when the daily GHI value is high. LSTM still has

the potential to improve predictive performance when GHI

is low.
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TABLE 6. Evaluation of daily forecast for chosen locations.

TABLE 7. Mape of daily forecast per month.

VI. CONCLUSION

The distributed photovoltaic system has the characteristics

of intermittent, random and volatility, which is reflected in

the distribution of solar irradiance in different seasons and

weathers. Yu et al. [26] demonstrated in previous work that

RNN has better prediction performance than BPNN and

RBFNN in sunny, rainy and cloudy days. LSTM, as the deep

structure of RNN, is a solution for vanishing gradient and

exploding gradient caused due to its special hidden layer

cell structure design, which allowed the RNN models with
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LSTM units to model both short and long term temporal

dependencies in time-series data. This study established a

short-term prediction model based on LSTM to verify its

potential to predict solar irradiance. In order to ensure the

safe operation of the grid and improve the economics of

the PV system, the timescale encompasses the amount of

GHI one hour in advance and one day in advance. Samples

used for forecasts were subdivided into spring, summer, fall,

and winter, and the forecast results of sunny and cloudy as

well as mixed days in different seasons, were investigated.

In comparison with ARIMA, SVR and NN models, LSTM

has a strong competitive advantage, especially on cloudy days

and mixed days.

In areas with large latitude differences, their solar irra-

diance distribution and climate are significantly different.

To verify the stability of LSTM, this study collected meteoro-

logical data from Atlanta, New York, and Hawaii, and further

explored the scalability of LSTM. LSTM has demonstrated

excellent forecasting performance for hourly forecasts on

all weather, where the RMSE in Atlanta and New York is

45.84W/m2 and 41.37W/m2. Especially on mixed days, The

RMSE of LSTM in Hawaii is 86.68 W/m2, when the RMSE

of BPNN, CNN, and RNN are 178.44 W/m2, 195.92 W/m2

and 183.29W/m2. From the results of daily forecast, LSTM’s

ability to predict on days with low solar irradiance is reduced,

mainly in cloudy days. The MAPE of the LSTM model in

Atlanta, New York, and Hawaii on cloudy days is 14.9%,

20.1%, and 18.1%. All R2 on cloudy days is about 0.85.

From Fig. 9, the high value of R2 in Atlanta and New York

is concentrated between April and September, referring to

Fig. 3, which is exactly when the daily GHI value is high.

LSTM still needs to improve predictive performance when

GHI is low. However, the LSTM is still very effective in

improving the prediction accuracy of RNN and has better

prediction accuracy than other predictive models. On mixed

days, RNN’s MAPE in New York is up to 25.5%, while

LSTM’s MAPE is 15.3%, which is 10.2% better than RNN.

On all days, LSTM’s MAPE is the lowest, which is 8.0%,

11.1%, 8.2% in Atlanta, New York, and Hawaii.
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