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An M-estimator for Robust Centroid Estimation on

the Manifold of Covariance Matrices
Ioana Ilea, Lionel Bombrun, Romulus Terebes, Monica Borda, and Christian Germain

Abstract—This paper introduces a new robust estimation
method for the central value of a set of N covariance matrices.
This estimator, called the Huber’s centroid, is described starting
from the expression of two well-known methods, that are the
center of mass and the median. In addition, a computation
algorithm based on the gradient descent is proposed. Moreover,
the Huber’s centroid performances are analyzed on simulated
data, to identify the impact of outliers on the estimation process.
In the end, the algorithm is applied to brain decoding, based on
magnetoencephalography (MEG) data. For both simulated and
real data, the covariance matrices are considered as realizations
of Riemannian Gaussian distributions and the results are com-
pared to those given by the center of mass and the median.

Index Terms—centroid, classification, center of mass, median,
Huber’s centroid.

I. INTRODUCTION

C
OVARIANCE matrices are used in a wide variety of

applications in signal and image processing, including

array processing [1], radar detection [2], [3], medical image

segmentation [4], face detection [5], vehicle detection [6],

etc. Another research direction concerns the signal and image

classification, where covariance matrices can be used to model

different kind of dependence, like spatial, temporal, spectral,

polarimetric dependence, etc [7]–[10].

Recently, covariance matrices have been modeled as realiza-

tions of Riemannian Gaussian distributions (RGDs) and used

in classification algorithms such as k-means or Expectation-

Maximization (EM) [9]. This kind of classification procedures

are based on the partition of the dataset in subsets, or clusters,

characterized by their central values, also called centroids.

The dataset’s partition is accomplished by assigning each

observation to the closest cluster in terms of a predefined

distance [11]. This is a recursive procedure and for each

iteration, the centroid’s value is recomputed and the assig-

nation step is repeated. Usually, the cluster’s centroid is the

center of mass, computed by using the squared Euclidean

distance. Despite its popularity, this method is not appropriate

for covariance matrices having a Riemannian geometry. To

solve this problem, the Euclidean distance can be replaced

by an intrinsic metric such as the Riemannian distance. The

main disadvantage of the center of mass is its non-robust

behavior to outliers that can exist in the dataset [11]–[13]. A

robust alternative for the centroid’s computation is the median,

which has been also generalized for Riemannian manifolds [3],

[14], [15]. This estimator is computed by using a gradient
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descent algorithm. Nonetheless, in this algorithm, a division

by the distance between each observed covariance matrix in

the dataset and the median is needed. If those two points are

too close, this distance tends toward zero and may lead to

numerical instability. In such case, Yang propose to exclude

those points, at each iteration of the algorithm [14]. Another

possibility for determining robust centroids in the space of

covariance matrices is the use of the trimming methods [16].

These algorithms imply the elimination of a fixed percentage

of outliers, according to their distance with respect to the

dataset’s mean or median, and the computation of the mean

or the median on the remaining data. Nevertheless, the main

difficulty of the trimmed estimators relies on the way to tune

the percentage of discarded data.

The main contribution of the paper is to propose a novel

centroid estimator, based on the theory of M-estimators. By

considering the so-called Huber’s function [17], [18], we intro-

duce the definition of this estimator and present an algorithm

to estimate it from a sample of N covariance matrices. The

proposed estimator is a trade-off between the center of mass

and the median, where the former is efficient, while the

latter is robust to outliers. Moreover, based on the median

abosolute deviation (MAD) concept, this paper presents a way

to automatically determine the Huber’s threshold.

The paper is structured as follows. Section II recalls the

definition of the centroid from a sample of N observations.

A brief overview of the center of mass and the median

are given. Next, we introduce the proposed Huber’s centroid

estimator and present a gradient descent algorithm to estimate

it. The performance of these estimators is then evaluated on

simulated data. Section III introduces an application to brain

decoding, based on MEG data. Finally, Section IV reports

some conclusions and perspectives of this work.

II. THE HUBER’S ESTIMATOR FOR CLUSTER CENTROIDS

A. Centroids and estimation methods

Many signal and image processing applications including

classification [9], segmentation [19], or filtering [3] require

the computation of the central value of a covariance matrix

dataset, which represents the subject of this section. Let

{M1, . . . ,MN} be a random sample of N covariance matri-

ces. The centroid estimator of this set, denoted ̂̄
M, is defined

as being the minimizer of the following cost function f(M):

̂̄
M = argmin

M

f(M). (1)

Depending on the choice of f(M), different estimators of

the centroids have been introduced in the literature. In the
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following, we briefly recall the definition of the center of mass

(CM) [20]–[22] and the median (Med) [2], [15] and next we

introduce the proposed M-estimator.

a) The center of mass is one of the most popular estimators,

for which the cost function is:

fCM (M) =
1

N

N∑

i=1

d2(M,Mi), (2)

where d(·) represents the Rao’s Riemannian distance between

two covariance matrices defined as [23]:

d(M1,M2) =

[
1

2

m∑

i=1

(lnλi)
2

] 1

2

, (3)

where λi, i = 1 . . .m are the eigenvalues of M−1
2 M1.

Even though this method is largely used, it has a major

drawback: it is easily influenced by the outliers present in the

dataset [14], [15]. In order to reduce the impact of aberrant

data on the estimated centroid’s value, several possibilities

are available. Some authors have proposed in [15], [16] the

use of some trimming based methods to remove the outliers

before the computation of (2). By deleting the elements that

differ from the rest of the dataset, some new ones will become

oultiers. If the removal procedure is repeated, the dataset may

become too small for further reliable analysis. Therefore, a

more appropriate solution is the use of robust methods for

computing the centroid, like the median [15].

b) The median is defined by using the distance function:

fMed(M) =
1

N

N∑

i=1

d(M,Mi). (4)

It has to be mentioned that the estimation of the center of

mass and the median from a set of covariance matrices have

been recently studied in [3], [14], [15].

The center of mass and the median are two extreme solu-

tions: the first one is efficient for datasets with no outliers,

while the second one is robust to the presence of aberrant

observations. In the following, we propose a trade-off between

these two methods by introducing a Huber-like estimator.

B. The Huber’s estimator

1) Definition of the Huber’s centroid

In this section, we introduce a novel centroid estimator on

the manifold of covariance matrices, based on the theory of

M-estimators [17], [18], [24]. In this case, the cost function

in (1), denoted fu(M) for the M-estimator, can be expressed

by means of a scalar weight function u(·), as follows:

fu(M) =
1

N

N∑

i=1

u
(
d(M,Mi)

)
d2(M,Mi), (5)

where u(·) is a positive-valued function which gives a weight

to each observation Mi in the computation of the centroid.

Obviously, the weight function u(·) should decrease to zero

to ensure that the outliers have a smaller contribution to

the centroid’s estimate than the other observations. Note that

even if the center of mass (2) and the median (4) have

expressions similar to (5) for respectively u(d(M,Mi)) = 1
and u(d(M,Mi)) = 1

d(M,Mi)
, they do not belong to the

family of M-estimators since the regularity conditions of their

corresponding weight function u(·) defined in [24] are not

satisfied.

In [17], Huber introduces the so-called Huber’s function

u(·) defined as:

u
(
d(M,Mi)

)
= min

(
1,

T

d(M,Mi)

)
(6)

where T is a threshold value controlling the contribution of

outliers in the estimation. By combining (5) and (6), the

proposed Huber’s centroid estimator is the covariance matrix

M, which minimizes the following cost function:

fH(M) =
1

N

N∑

i=1

d2(M,Mi) 1{d(M,Mi)≤T}+

+
T

N

N∑

i=1

d(M,Mi) 1{d(M,Mi}>T}, (7)

where 1{a≤b} is the indicator function, which equals 1 if

a ≤ b and 0 otherwise. Threshold T represents a measure

for discriminating between normal and aberrant data and

therefore, it controls the estimator’s behavior. In other words,

for a large value of T , the Huber’s estimator behaves as the

center of mass, while for a small value it is equivalent to the

median.

In this paper, we propose an algorithm to estimate the

Huber’s centroid by means of a gradient descent algorithm

which minimizes the distance function given in (7). The

gradient of fH(M) with respect to M that is ∇(fH(M)) can

be written as:

∇(fH(M)) = −
2

N

N∑

i=1

Log
M
(Mi) 1{d(M,Mi)≤T}

−
T

N

N∑

i=1

Log
M
(Mi)

d(M,Mi)
1{d(M,Mi}>T}, (8)

where Log
M

is the Riemannian logarithm mapping [25], [26].

Once that this value is obtained, the centroid can be updated

as:

Mit+1 = Exp
Mit

(−sit ∇(fH(Mit))), (9)

with sit being the descent step and Exp
M

the Riemannian

exponential mapping [25], [26]. In practice, the Armijo’s

backtracking procedure [27] is used to fix sit at each iteration

of the algorithm.

This recursive process is repeated as long as the norm

of ∇(fH(Mit)), denoted Dit, is greater than a precision

parameter ǫ, or until a maximum number of iterations Nmax

is reached. Practically, Dit is given as:

Dit = ||∇(fH(Mit))|| = tr
(
(M−1

it ∇(fH(Mit)))
2
)
. (10)

In the end, the Huber’s centroid ̂̄
MH estimator is obtained.

A pseudo-code description of the Huber’s centroid estimation

is given in Algorithm 1.

As observed in (8), the first and the second terms correspond

respectively to the gradient of the cost function for the center
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Algorithm 1 Huber’s centroid estimator

1: Input: M1, . . . ,MN , T , ǫ, Nmax

2: Initialize M using the sample mean

3: it = 1
4: while (Dit > ǫ) and (it ≤ Nmax) do

5: Estimate M using one iteration of (9).

6: Compute the gradient norm, Dit, according to (10).

7: it = it+ 1
8: end while

9: Output: M

of mass and median centroids. For the second term, it can

be seen that the division by distance d(Mit,Mi) is needed.

In some cases, that is when an observation Mi is close to

the current centroid’s estimate Mit, their distance is close

to 0 yielding to potential numerical unsuitability. To avoid

this, in [14] the author proposes to exclude, at each iteration

it, the observations Mi that are too close from Mit. By

using the proposed Huber’s centroid, this problem is solved

automatically by considering the threshold T . In conclusion,

by choosing an appropriate value for T , the division by zero in

the gradient (8) will be avoided, which represents an important

advantage of the proposed method.

2) Determination of an automatic Huber’s threshold

As explained before, the performance of the Huber’s cen-

troid estimator depends greatly on the threshold T that dis-

criminates between aberrant and normal data. There is hence

a need to fix it automatically or at least to give an idea of

the order of magnitude of T . In practice, T is application

dependent and is related to the intrinsic variability of the

observed data. By considering first and second order statis-

tics, the Riemannian Gaussian distribution (RGD) has been

introduced in [26]. This distribution is characterized by two

parameters: the central value M̄ and the dispersion σ. Its

probability density function of the RGD is given by

p(M|M̄, σ) =
1

Z(σ)
exp

{
−

d2(M, M̄)

2σ2

}
, (11)

where Z(σ) is a normalization factor independent of the

centroid M̄, and d(M, M̄) is the Riemannian distance defined

in (3).

In order to estimate the threshold’s value, a robust estimator

of the dispersion parameter σ is required. Inspired by previous

works on robust statistics [28], we propose to extend the

concept of median absolute deviation (MAD) to the case of

covariance matrices which live in a Riemannian space. The

MAD of the set M1, . . . ,MN is defined as the median of

the Riemannian distances d computed between each sample

Mi and the Riemannian median (denoted RMed(M)):

MAD = median(d(Mi, RMed(M)). (12)

Once the MAD is computed, the robust estimate σ̂ of the

RGD’s dispersion can be obtained as:

σ̂ =
K

m
×MAD, (13)

where m is the size of covariance matrices and K is a con-

stant depending on the distribution of d
(
Mi, RMed(M)

)
/σ.

More precisely, K is obtained by studying the statistics of

z = d(M,M̄)
mσ

since by definition of the MAD, we have:

1

2
= p

(
d(M, M̄) ≤ MAD

)
= p

(
d(M, M̄)

mσ
≤

MAD

mσ

)
.

(14)

In practice, it has been observed on simulated data that the dis-

tribution of z is independent of M̄ and σ1. By combining (13)

and (14), the constant K = 1/
(
φ−1(0.5)

)
, knowing that φ−1

is the inverse of the cumulative distribution function of z.

Experiments have shown that K ≈ 1.312. Finally, the Huber’s

threshold is obtained by multiplying the estimated standard

deviation σ̂ by a constant c, which will give T = c × σ̂. A

common value for c is 1.5 as recommended in [28].

C. Performance Analysis

In the following, the influence of outliers on the proposed

Huber’s centroid estimator is studied. The obtained results are

presented in this section and they are compared to those given

by the center of mass and the median.

For this experiment, covariance matrices are generated as

realizations of RGDs. For more information concerning the

generation of samples from an RGD, the interested reader is

referred to section III-A of [26]. In our case, the simulated

covariance matrix datasets are obtained for centroids M̄ of

size m×m having the form M̄(i, j) = ρ|i−j| for i, j ∈ J1,mK.
Since the centroid is a covariance matrix, the manifold

of the space of covariance matrices should be taken into

account for the estimators’ performance evaluation. In the

literature, many authors have proposed to define the concept

of intrinsic analysis for statistical estimation [29]–[31]. To this

aim, the notions of intrinsic root-mean square error (RMSE)

and intrinsic bias vector field have been introduced. We briefly

recall here their definitions.

Let ̂̄
M be the estimated centroid of the dataset, that is

the estimate of the centroid M̄. The intrinsic RMSE is given

by [29]–[31]:

RMSE =

√
E
[
d2(̂̄M, M̄)

]
, (15)

where d(·) is the Riemannian distance defined in (3). In

addition, the bias vector field b(M̄) of ̂̄
M is given by [29]–

[31]:

b(M̄) = Log
M̄
EM̄

[̂̄
M

]
= E

[
Log

M̄

̂̄
M

]
, (16)

knowing that EM̄

[̂̄
M

]
= Exp

M̄
E
[
Log

M̄

̂̄
M

]
. Since the bias

vector field b(M̄) in (16) is a covariance matrix, we compute

its norm according to (10) to plot it in the following figures.

To study the influence of outliers on the centroid’s esti-

mation, a dataset containing 1000 matrices of size 2 × 2 is

created. These matrices have an RGD distribution of dispersion

σ = 0.1 and centroid M̄ obtained for ρ = 0.7. To this original

data set, some outliers are added. They are i.i.d. covariance

matrices samples issued from an RGD of centroid 10 ×Mo,

with Mo obtained for ρo = 0.1. Here, the dispersion for the

outlier samples σo is set to 0.1.

1The use of z is equivalent to the standardization step z =
x−µ

σ
for a

univariate normal distribution.
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Fig. 1. The RMSE (a) and the bias vector field (b) as functions of the outlier
percentage.

Figs. 1 draws the results obtained for the intrinsic RMSE

(a) and for the intrinsic bias vector field (b) as functions of

the percentage of outliers, knowing that 5000 Monte Carlo

runs have been used to evaluate the estimators’ performance.

The behavior of the center of mass (in blue), the median (in

black) and the Huber’s centroid with fixed threshold T = 1
and T = 0.5 (in green) and automatically computed value

for T (in red) are analyzed, when the percentage of aberrant

data varies from 0 to 40%. As observed, the center of mass

is clearly influenced by the presence of outliers while for

robust estimators, like the median or the Huber’s centroid,

this influence in less important.

III. APPLICATION TO MEG BASED BRAIN DECODING

In this section, we apply the proposed centroid estimator

to brain decoding, based on MEG data. The database used

for the Biomag 2014 Decoding Challenge: Brain Decoding

Across Subjects (DecMeg2014) [32] has been considered. The

idea of brain decoding consists in predicting the stimulus

presented to the subject from the concurrent brain activity [33].

For this experiment, two categories of visual stimulus have

been considered: face and scrambled face. Therefore, the

problem to solve can be viewed as a two-class classification

task. A detailed description of the neuroscientific experiment

implemented to collect the data can be found in [34].

The database contains 16 training and 7 testing subjects.

For each training subject, approximately 580 trials have been

considered, giving a training set of 9414 trials. Next, for each

trial, covariance matrices of size 16× 16 have been extracted,

as described in [35]. Further on, a modified version of the

unsupervised classification method presented in [35] has been

implemented. First, a regularized logistic regression model has

been trained to obtain the initial labels for the unsupervised

classification algorithm (k-means). Second, the centroids of

each class (face or scrambled face) are computed. For this step,

several estimators have been considered: the center of mass,

the median, the Huber’s estimator with both fixed (T = 0.2
and T = 0.5) and automatically computed thresholds and also

the trimmed based methods [16], when d = 5% of discarded

extreme data. For this latter, only the best result has been

retained, that is the mean-based trimmed median. Next, for

each testing subject, covariance matrices have been computed

and the classification has been performed by two approaches.

First, the winner method of the DecMeg2014 competition has

been implemented, for which the test trials have been assigned

to the closest class, by using the minimum distance to mean

TABLE I
CLASSIFICATION RESULTS FOR MEG BASED BRAIN DECODING.

Estimator MDM MGD

CM 74.106 73.845
Med 73.627 74.150

Huber T = 0.2 74.847 75.109

Huber T = 0.5 74.063 73.976
Huber T = auto 74.455 74.106

Trimming (d = 5%) [16] 74.412 74.542

(MDM) Riemannian classifier [36]. Second, the covariance

matrices have been modeled as RGDs and each trial has

been assigned to the centroid maximizing the log-likelihood

criterion derived from (11).

The obtained results are shown in Table I and several

remarks can be made. By analyzing the above table, it can

be seen that the use of Huber’s estimator may increase the

classification performance. The obtained values are compara-

ble or higher to those given by the other robust estimators, but

without their disadvantages: division by zero for the median,

or choice of the percentage d of discarded observation for

the trimmed estimators. Interestingly, note that the estimated

Hubers’s threshold T is recomputed at each k-means iter-

ation. And in this experiment, it varies between 0.38 and

0.46 across the test subjects and the classes. Moreover, the

proposed estimated value of T by the MAD gives an order

of magnitude of the threshold we may consider in the Huber

estimation algorithm. This value can be readjusted to improve

the classification performance as observed in Table I.

IV. CONCLUSION

In this article, a new method called the Huber’s centroid,

for the estimation of the central value of a covariance matrix

dataset has been introduced. This estimator is a trade-off

between the center of mass and the median. The definition

of the Huber’s centroid and its computational algorithm have

been detailed. In addition, an algorithm for choosing the

appropriate threshold value for the Huber’s estimator has been

developed. Further on, the Huber’s centroid, has been applied

to the case of covariance matrices representing realizations of

Riemannian Gaussian distributions. The robustness to outlier

values has been studied on simulated data, but also in the

context of brain decoding, that is a two-class classification

experiment. The results have been compared to those given

by two well-known estimators that are the center of mass and

the median but also to those given by trimmed based methods.

Further works will include the statistical modeling of z =
d
(
Mi, M̄

)
/mσ to derive the analytical expression of K. In

addition, the proposed centroid will be used to build the

codebook for patch-based image classification algorithms.
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mixtures on tensor fields for segmentation: Applications to medical
imaging,” Computerized Medical Imaging and Graphics, vol. 35, no. 1,
pp. 16–30, 01 2011.

[5] J. Robinson, “Covariance matrix estimation for appearance-based
face image processing,” Proceedings of the British Machine

Vision Conference 2005, pp. 389–398, 2005. [Online]. Available:
http://www.intuac.com/userport/john/pubs/covestbmvc.pdf

[6] K. Mader and G. Reese, “Using covariance matrices as feature descrip-
tors for vehicle detection from a fixed camera,” ArXiv e-prints, Feb.
2012.

[7] P. Formont, F. Pascal, G. Vasile, J. Ovarlez, and L. Ferro-Famil,
“Statistical classification for heterogeneous polarimetric SAR images,”
IEEE Journal of Selected Topics in Signal Processing, vol. 5, no. 3, pp.
567–576, June 2011.

[8] A. Barachant, S. Bonnet, M. Congedo, and C. Jutten, “Classification of
covariance matrices using a Riemannian-based kernel for BCI applica-
tions,” NeuroComputing, vol. 112, pp. 172–178, 2013.

[9] S. Said, L. Bombrun, and Y. Berthoumieu, “Texture classification using
Rao’s distance on the space of covariance matrices,” in Geometric

Science of Information (GSI), 2015.

[10] M. Faraki, M. Harandi, and F. Porikli, “More about VLAD: A leap from
Euclidean to Riemannian manifolds,” in IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), 2015, June 2015, pp. 4951–
4960.

[11] C. M. Bishop, Pattern Recognition and Machine Learning (Information

Science and Statistics), 1st ed. Springer, Oct. 2007.

[12] B. Afsari, “Riemannian lp center of mass: existence, uniqueness and
convexity,” Proceedings of the American Mathematical Society, vol. 139,
no. 2, pp. 655–673, 2011.

[13] P. Formont, J.-P. Ovarlez, and F. Pascal, “On the use of matrix infor-
mation geometry for polarimetric SAR image classification,” in Matrix

Information Geometry, F. Nielsen and R. Bhatia, Eds. Springer Berlin
Heidelberg, 2013, pp. 257–276.

[14] L. Yang, “Riemannian median and its estimation,” LMS Journal of

Computation and Mathematics, vol. 13, pp. 461–479, 2010.

[15] P. T. Fletcher, S. Venkatasubramanian, and S. C. Joshi,
“Robust statistics on Riemannian manifolds via the geometric
median,” in 2008 IEEE Computer Society Conference on

Computer Vision and Pattern Recognition (CVPR 2008), 24-26

June 2008, Anchorage, Alaska, USA, 2008. [Online]. Available:
http://dx.doi.org/10.1109/CVPR.2008.4587747

[16] T. Uehara, T. Tanaka, and S. Fiori, Advances in Cognitive Neurodynam-

ics (V): Proceedings of the Fifth International Conference on Cognitive

Neurodynamics - 2015. Singapore: Springer Singapore, 2016, ch.
Robust averaging of covariance matrices by Riemannian geometry for
motor-imagery brain–computer interfacing, pp. 347–353.

[17] P. J. Huber, “Robust estimation of a location parameter,” The Annals of

Mathematical Statistics, vol. 35, no. 1, pp. 73–101, 1964.

[18] D. E. Tyler, “A distribution-free M-estimator of multivariate scatter,”
The Annals of Statistics, vol. 15, no. 1, pp. 234–251, 03 1987. [Online].
Available: http://dx.doi.org/10.1214/aos/1176350263

[19] X. Gu, J. Deng, and M. Purvis, “Improving superpixel-based image
segmentation by incorporating color covariance matrix manifolds,” in
IEEE International Conference on Image Processing (ICIP), Oct 2014,
pp. 4403–4406.

[20] H. Karcher, “Riemannian center of mass and mollifier
smoothing,” Communications on Pure and Applied Mathematics,
vol. 30, no. 5, pp. 509–541, 1977. [Online]. Available:
http://dx.doi.org/10.1002/cpa.3160300502

[21] F. Nielsen and R. Bhatia, Matrix Information Geometry. Springer Berlin
Heidelberg, 2012.
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