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This paper analyzes anM/M/2 queueing systemwith two heterogeneous servers, one of which is
always available but the other goes on vacation in the absence of customers waiting for service. The
vacationing server, however, returns to serve at a low rate as an arrival finds the other server busy.
The system is analyzed in the steady state using matrix geometric method. Busy period of the sys-
tem is analyzed and mean waiting time in the stationary regime computed. Conditional stochastic
decomposition of stationary queue length is obtained. An illustrative example is also provided.

1. Introduction

Queueingmodels with vacation have gained significance in the last three decades due to their
wide range of applications, especially in the communication and the manufacturing systems.
Doshi [1] provides an excellent survey of related works prior to 1986. Takagi [2] and Tian and
Zhang [3] provide a good account of developments in this field since then. The literature on
the vacation queueing models is growing rapidly.

In multiserver queueing models, we come across two classes of vacation mechanisms:
station vacation and server vacation. In the first case, all servers take vacation simultaneously
whenever the system becomes empty and they return to the system all together. Thus, station
vacation is group vacation for all servers. For example, when a system consists of a number of
machines operated by a single individual this scenario occurs. In such a situation, the whole
station needs to be treated as a single unit for vacation, when the system is utilized for a
secondary task. In the second case, each server takes its own vacation whenever it completes
a service and finds no customers waiting for service. This phenomenon also occurs in practice.
For example, in a post office or bank, when a clerk completes a service and finds no customer
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waiting, he or she might go to attend another task. This is what we refer to as the server
vacationmodel. Analysis of a server vacationmodel is more complicated than that of a station
vacation model. This is because at any time point, in the latter, we may have any number of
servers between 0 and c on vacation. We need to track individual servers going on vacation
and completing their vacation. Upon returning from a vacation some servers may find no cus-
tomers waiting for service. These servers take another vacation. But if any server finds a wait-
ing customer on returning from a vacation, it immediately starts service. For further details
on queues with station and server vacations, we refer the reader to Chao and Zhao [4].

Most of the earlier work on multiserver queueing models deal with homogeneous
servers; that is, the individual service rates are same for all servers in the system. But this
assumption may be valid only when the service process is mechanically or electronically
controlled. In a queueing system with human servers the above assumption is highly
unrealistic. Often servers providing identical service, serves at different rates. This motivated
the researchers to study multiserver queueing system with heterogeneous servers. Several
authors have analyzed multiserver queues with vacation. Levy and Yechiali [5], Vinod
[6], and Kao and Narayanan [7] discuss asynchronous multiple vacation models with
exponentially distributed vacation times. They study the scenario, where any server goes
on vacation whenever there are no customers waiting in the system at a service completion
epoch. At a vacation termination instant, if there are no waiting customers, the server takes
another vacation; if there is a customer waiting for service, the server resumes service. It
should be remarked that Vinod [6] was the first to use matrix geometric solutions method to
analyze multiserver vacation models. But none of the above models deal with heterogeneous
servers.

Servi and Finn [8] introduced a working vacation model with the idea of offering
services but at a lower rate, whenever the server is on vacation. Their model was generalized
to the case ofM/G/1 in [9, 10] and to GI/M/1 model in [11]. A survey of working vacation
models with emphasis on the use of matrix analytic methods is given in Tian et al. [12].
Working vacation models have a number of applications in practice. Two such examples are
given in [12]. Recently, Li and Tian [13] studied anM/M/1 queue with working vacations in
which vacationing server offers services at a lower rate, for the first customer arriving during
a vacation. Very recently, Zhang and Hou [14] studied a MAP/G/1 queue with working
vacations and vacation interruptions using supplementary variable method. In this model,
the authors assume that the vacation times are exponentially distributed and that the server
gets back to normal service mode, when at a service (offered during a vacation) completion,
the system has at least one customer waiting in the queue. The server is allowed to take
multiple vacations. However, no work on multiserver working vacation model has come to
our notice.

Neuts and Takahashi [15] observed that for queueing systems with more than two
heterogeneous servers analytical results are intractable and only algorithmic approach could
be used to study the steady state behavior of the system. Based on this observation, Krishna
Kumar and Pavai Madheswari [16] analyzed M/M/2 queueing system with heterogeneous
servers, where the servers go on vacation in the absence of customers waiting for service.
In this paper, we discuss an M/M/2 queueing model with heterogeneous servers where
one server remains idle but the other goes on working vacation in the absence of waiting
customers.

This paper is organized as follows. In Section 2, model description is provided. In
Section 3, the steady state analysis of the model is presented. In Section 4, we discuss an
illustrative example.



International Journal of Stochastic Analysis 3

2. Mathematical Model

We consider an M/M/2 queueing model with heterogeneous servers, server 1 and server 2.

Server 1 is always available, whereas server 2 goes on vacation whenever there are no cus-

tomers waiting for service. Let the service rates of servers 1 and 2 be µ1 and µ2, respectively,

where µ1 /=µ2. Customers arrive to the system according to a Poisson process with parameter

λ. The duration of vacation is exponentially distributed with parameter η. At the end of a

vacation, service commences if there is a customer waiting for service. Otherwise the server

goes on another vacation. During vacation, if an arrival finds server 1 busy, server 2 returns

to serve the customer but at a lower rate. To be precise, server 2 serves this customer at the

rate θµ2, 0 < θ ≤ 1. As this vacation gets over, server 2 instantaneously switches over to the

normal service rate µ2, if there is at least one customer waiting for service. Upon completion

of a service at low rate, the server will (a) continue the current vacation if it is not finished

and no customer is waiting for service; (b) continue the slow service if the vacation has not

expired and if there is at least one customer waiting for service. For clarity, we make it clear

that if an arriving customer finds a free server, he enters service immediately. Else he joins

the queue.

2.1. The QBD Process

The model discussed in Section 2 can be studied as a quasi-birth-and-death (QBD) process.
First, we set up the necessary notations.

At time t, let N(t) be the number of customers in the system and

J(t) =

⎧
⎪⎪⎨
⎪⎪⎩

0, if the server 2 is on vacation,

1, if the server 2 is working in vacation mode,

2, if the server 2 is working in normal mode,

(2.1)

Let X(t) = (N(t), J(t)). Then (X(t) : t ≥ 0) is a continuous time Markov chain (CTMC) with
states space

Ω = {(0, 0), (1, 0), (1, 1), (1, 2)}
⋃ ∞⋃

i=2

l(i), (2.2)

where

l(i) =
{(

i, j
)
: i ≥ 2, j = 1 or 2

}
. (2.3)

Note that when N(t) = 0, the only possible value of J(t) is 0 and when N(t) = 1, J(t) has
three possible values 0, 1, and 2.
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The infinitesimal generator matrix Q of this Markov chain is given by

Q =

⎡
⎢⎢⎢⎢⎢⎢⎣

B00 B01

B10 B11 B12

B21 A1 A0

A2 A1 A0

. . .
. . .

. . .

⎤
⎥⎥⎥⎥⎥⎥⎦
, (2.4)

where the block matrices appearing in Q are as follows:

B00 = −λ, B01 =
[
λ 0 0

]
,

B10 =

⎡
⎢⎣

µ1

θµ2

µ2

⎤
⎥⎦, B11 =

⎡
⎢⎢⎣

−λ − µ1 0 0

0 −λ − θµ2 − η η

0 0 −λ − µ2

⎤
⎥⎥⎦, B12 =

⎡
⎢⎣
λ 0

λ 0

0 λ

⎤
⎥⎦,

B21 =

[
θµ2 µ1 0

µ2 0 µ1

]
, A0 =

[
λ 0

0 λ

]
,

A1 =

[
−λ − µ1 − θµ2 − η η

0 −λ − µ1 − µ2

]
, A2 =

[
µ1 + θµ2 0

0 µ1 + µ2

]
.

(2.5)

3. Steady State Analysis

In this section, we will discuss the steady state analysis of the model under study.

3.1. Stability Condition

Theorem 3.1. The queueing system described above is stable if and only if ρ < 1 where ρ = λ/(µ1 +

µ2).

Proof. To establish the stability condition we use Pakes’ lemma (see [17]). Let Ni be the
number of customers in the system immediately after the departure of the ith customer. Then
{Ni : i ∈ N} satisfies the equation

Ni =

{
Ni−1 − 1 + Vi if Ni−1 ≥ 1

Vi if Ni−1 = 0,
(3.1)

where Vi is the number of arrivals during the service of ith customer. Clearly {Ni : i ∈ N}

is an irreducible aperiodic Markov chain. Pakes’ lemma asserts that an aperiodic irreducible
Markov chain is ergodic, if there exists an ǫ > 0 such that the mean drift

φj = E
[
(Ni+1 −Ni) | Ni = j

]
(3.2)
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is finite for all j ∈ N and φj ≤ −ǫ for all j ∈ N except perhaps for a finite number. In the present
model, value of the mean drift is

φj =

{
−1 + ρ if j ≥ 1

ρ if j = 0.
(3.3)

Thus, if ρ < 1, the Markov chain {Ni : i ∈ N} is ergodic and hence the condition is sufficient.
To prove the necessity of the condition, assume that ρ ≥ 1. We use Theorem 3.1 in

Sennot et al. [18], which states that {Ni : i ∈ N} is nonergodic if it satisfies Kaplan’s condition,
φj < ∞, for j ≥ 0 and there is a j0 such that φj ≥ 0, for j ≥ j0. When ρ ≥ 1 Kaplan’s condition
is readily satisfied. Hence, the Markov chain is not ergodic.

3.2. Steady State Probability Vector

Let x, partitioned as x = (x0, x1, x2, . . .), be the steady state probability vector of Q. Note that
x0 is a scalar, x1 = (x10, x11, x12) and xi = (xi1, xi2) for i ≥ 2. The vector x satisfies the condition
xQ = 0 and xe = 1, where e is a column vector of 1’s of appropriate dimension. Apparently
when the stability condition is satisfied, the subvectors of x, corresponding to the different
levels, are given by the equation xj = x2R

j−2, j ≥ 3, where R is the minimal nonnegative
solution of the matrix quadratic equation (see [20])

R2A2 + RA1 +A0 = 0. (3.4)

Knowing the matrix R, x0, x1 and x2 are obtained by solving the equations

x0B00 + x1B10 = 0, (3.5)

x0B01 + x1B11 + x2B21 = 0, (3.6)

x1B12 + x2(A1 + RA2) = 0, (3.7)

subject to the normalizing condition

x0 + x1e + x2(I − R)−1e = 1, (3.8)

Theorem 3.2. The matrix R of (3.4) is given by R =
[
R11 R12

0 R22

]
, where R11 = (λ + µ1 + θµ2 + η −

√
(λ + µ1 + θµ2 + η)2 − 4λ(µ1 + θµ2))/2(µ1+θµ2), R12 = ρ−(µ1+θµ2)R11/(µ1+µ2) and R22 = ρ.

Proof. Since A0, A1, and A2 are upper triangular, R is essentially an upper triangular matrix.
The value of R11, follows from the assertion that R is the minimal nonnegative solution of
(3.4). The rest of the proof is an easy consequence of the condition RA2e = A0e.

Remark 3.3. Though R has a nice structure which enables us to make use of the properties

like Rk =

[
Rk
11 R12

∑k−1
j=0 R

j

11R
k−j−1

22

0 Rk
22

]
, for k ≥ 1, due to the form of the expression for R11 it may not
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be easy to carry out the computations required in the forthcoming discussions. Hence, we
explore the possibility of algorithmic computation of R. The computation of R matrix can be
carried out using a number of well-known methods such as logarithmic reduction. We list
here only the main steps involved in logarithmic reduction algorithm for computation of R.
For full details on the logarithmic reduction algorithm we refer the reader to [19].

Logarithmic Reduction Algorithm for R:

Step 0. H ← (−A1)
−1A0, L ← (−A1)

−1A2, G = L, and T = H.

Step 1.

U = HL + LH

M = H2

H ←− (I −U)−1M

M ←− L2

L ←− (I −U)−1M

G ←− G + TL

T ←− TH,

(3.9)

continue Step 1 until ‖e −Ge‖∞ < ǫ.

Step 2. R = −A0(A1 +A0G)−1.

3.3. Busy Period Analysis

For the system under study, busy period is the interval between arrival of a customer to the
empty system and the first epoch thereafter when the system becomes empty again. Thus, it is
precisely the first passage time from the state (1, 0) to the state (0, 0). For the working vacation
model, busy cycle for the system is the time interval between two successive departures,
which leave the system empty. Thus, the busy cycle is the first return time to state (0, 0) with
at least one visit to any other state. But before analyzing the busy period structure we need
to introduce the notion of fundamental period. For the QBD process under consideration, it
is the first passage time from level i, where i ≥ 3, to the level i − 1. The cases i = 2, i = 1, and
i = 0, corresponding to the boundary states, need to be discussed separately. It should be
noted that due to the structure of the QBD process, the distribution of the first passage time
is invariant in i.

LetGjj ′(k, x) denote the conditional probability that a QBD process starting in the state
(i, j) at time t = 0 reaches the level i − 1 for the first time no later than time x, after exactly k
transitions to the left and does so by entering the state (i−1, j ′). For convenience we introduce
the joint transform

G̃jj ′(z, s) =
∞∑

k=1

zk
∫∞

0

e−sxdGjj ′(k, x); |z| ≤ 1, Re(s) ≥ 0, (3.10)
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and the matrix

G̃(z, s) =
(
G̃jj ′(z, s)

)
. (3.11)

The matrix G̃(z, s) is the unique solution to the equation (see [20])

G̃(z, s) = z(sI −A1)
−1 A2 + (sI −A1)

−1A0G̃
2(z, s). (3.12)

The matrix G = G̃(1, 0) takes care of the first passage times, except for the boundary states. If
we know the R matrix then G matrix can be computed using the result (see [19])

G = −(A1 + RA2)
−1A2. (3.13)

Otherwise, we may use logarithmic reduction method to compute G. For the boundary level

states 2, 1, and 0, let G
(2,1)
jj ′ (k, x), G

(1,0)
jj ′ (k, x), and G

(0,0)
jj ′ (k, x) be the conditional probability

discussed above for the first passage times from level 2 to level 1, level 1 to level 0, and the
first return time to the level 0, respectively. Then as in (3.12)we get

G̃(2,1)(z, s) = z(sI −A1)
−1B21 + (sI −A1)

−1A0G̃(z, s)G̃(2,1)(z, s), (3.14)

G̃(1,0)(z, s) = z(sI − B11)
−1B10 + (sI − B11)

−1B12G̃
(2,1)(z, s)G̃(1,0)(z, s), (3.15)

G̃(0,0)(z, s) =

[
λ

s + λ
0 0

]
G̃(1,0)(z, s). (3.16)

Note that G̃(1,0)(z, s) is a 3 × 1 matrix. Thus, the Laplace Stieltjes transform (LST) of the busy

period is the first element of G̃(1,0)(1, s). For convenience, we use the notations

G21 = G̃(2,1)(1, 0), G10 = G̃(1,0)(1, 0), G00 = G̃(0,0)(1, 0). (3.17)

Due to the positive recurrence of the QBD process, matrices G, G21, G10, and G00 are all sto-
chastic. If we let

C0 = (−A1)
−1A2, C2 = (−A1)

−1A0, (3.18)

then G is the minimal nonnegative solution (see [20]) to the matrix equation

G = C0 + C2G
2. (3.19)
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From (3.14), (3.15), and (3.16), we get

G21 = −(A1 +A0G)−1B21,

G10 = −(B11 + B12G21)
−1B10,

G00 =
[
1 0 0

]
G10

(3.20)

respectively. Equation (3.12) is equivalent to

zA2 − (sI −A1)G̃(z, s) +A0G̃
2(z, s) = 0. (3.21)

Let

M = −
∂G̃(z, s)

∂s

∣∣∣∣∣
z=1,s=0

,

M̃ =
∂G̃(z, s)

∂z

∣∣∣∣∣
z=1,s=0

.

(3.22)

Differentiation of (3.21) with respect to s and z followed by setting z = 1 and s = 0 leads to
(see [20])

M = −A−1
1 G + C2(GM +MG),

M̃ = C0 + C2

(
GM̃ + M̃G

)
,

(3.23)

with 0 as starting value for M and M̃, successive substitutions in the above equations yield

the values of M and M̃. Applying an exactly similar reasoning to (3.14), (3.15), and (3.16),
we get

M21 = −(A1 +A0G)−1(I +A0M)G21,

M10 = (B11 + B12G21)
−1(I + B12M21)G10,

M00 =

[
1

λ
0 0

]
G10 +

[
1 0 0

]
M10,

(3.24)
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where

M21 = −
∂G̃(2,1)(z, s)

∂s

∣∣∣∣∣
z=1,s=0

,

M10 = −
∂G̃(1,0)(z, s)

∂s

∣∣∣∣∣
z=1,s=0

,

M00 = −
∂G̃(0,0)(z, s)

∂s

∣∣∣∣∣
z=1,s=0

.

(3.25)

Note that M10 is a 3 × 1 matrix and M00 is a scalar. The first element of the matrix M10 and
M00 are mean lengths of a busy period and a busy cycle, respectively. The second and third
elements of the matrix M10 are the first passage times to the state (0, 0) from (1, 1) and (1, 2),
respectively. With the notations

M̃21 =
∂G̃(2,1)(z, s)

∂z

∣∣∣∣∣
z=1,s=0

,

M̃10 =
∂G̃(1,0)(z, s)

∂z

∣∣∣∣∣
z=1,s=0

,

(3.26)

it follows from (3.14) and (3.15) that

M̃21 = −(A1 +A0G)−1(B21 +A0MG21),

M̃10 = −(B11 + B12G21)
−1(B10 + B12M21G10).

(3.27)

The first component of the vector M̃10 is the mean number of service completions in a busy
period.

3.4. Stationary Waiting Time Distribution in the Queue

LetW(t) be the distribution function for the waiting time in the queue of an arriving (tagged)
customer. Note that if there is no customer in the system, the arrival receives service imme-
diately. If either of the two servers is not busy then also there would be no delay in getting
service. Thus, the probability that the customer gets his service without waiting is x0 + x10 +

x11+x12. Hence, with probability 1−x0−x10−x11−x12, the customer has to wait before getting
the service. The waiting time may be viewed as the time until absorption in a Markov chain
with state space

Ω1 = {∗}
⋃

{2, 3, . . .}. (3.28)

Here ∗ is the absorbing state, which corresponds to taking the tagged customer into service
and is obtained by lumping together the level states 0 = {(0, 0)} and 1 = {(1, 0), (1, 1), (1, 2)}.



10 International Journal of Stochastic Analysis

For i ≥ 2, the level i is given by i = {(i, j), j = 1 or 2}. The states other than the absorbing
state correspond to the number of customers present in the system as the tagged customer
arrives. Once the tagged customer joins the queue, the subsequent arrivals will not affect his
waiting time in the queue. Hence the parameter λ does not show up in the generator matrix

Q̃ of this Markov process, given by

Q̃ =

∗

2
3
...

∗ 2 3 . . .⎛
⎜⎜⎜⎝

A2e D
A2 D

. . .
. . .

⎞
⎟⎟⎟⎠,

where D =

[
−µ1 − θµ2 − η η

0 −µ1 − µ2

]
. (3.29)

Define vector

y(t) =
(
y∗(t),y2(t),y3(t), . . .

)
, (3.30)

where

yi(t) =
(
yi1(t), yi2(t)

)
, for i ≥ 2. (3.31)

The components of the yi(t) are the probabilities that at time t, the CTMCwith generator Q̃ is
in the respective states of level i. Note that the scalar y∗(t) is the probability that the process
is in the absorbing state at time t. By the PASTA property, we get

y(0) = (x0 + x11 + x10 + x12, x2, x3, . . .). (3.32)

Clearly

W(t) = y∗(t), for t ≥ 0. (3.33)

The LST of W(t) is given by (see [20])

W̃(s) =
∞∑

i=2

yi(0)
[
(sI −D)−1A2

]i−2
(sI −D)−1A2e. (3.34)

The mean waiting time can be obtained from W̃(s) as

E(W) = −W̃ ′(0) =
∞∑

i=1

x2+i

i−1∑

j=0

Uj(−D)−1Ui−jUe +
∞∑

i=0

x2+iU
i(−D)−2A2e, (3.35)
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where U = (−D)−1A2 is a stochastic matrix. Hence, (3.34) can be simplified as

E(W) = −W̃ ′(0) =
∞∑

i=1

x2+i

i−1∑

j=0

Uj(−D)−1e +
∞∑

i=0

x2+iU
i(−D)−1e. (3.36)

Let

H =
∞∑

i=0

x2+iU
i, (3.37)

Since U is stochastic, we get

He = x2(I − R)−1e = 1 − x0 − x10 − x11 − x12 (3.38)

This result can be used to find an approximate value of H and hence that of the second term
in (3.36) to any desired degree of accuracy. Thus, only the first term in (3.36) demands serious
computation. For this we make use of the ideas in [15, 16, 21].

Now consider the matrix

U2 =

[
0 1
0 1

]
, (3.39)

which has the property that

UU2 = U2U = U2. (3.40)

Then we get

i−1∑

j=0

Uj(I −U +U2) = I −Ui + iU2, for i ≥ 1. (3.41)

By the classical theorem on finite Markov chains, the matrix (I −U +U2) is nonsingular (see
[22]). In view of the last equation, the first term in (3.36) becomes

[
∞∑

i=1

x2+i
(
I −Ui + iU2

)]
(I −U +U2)

−1(−D)−1e. (3.42)

With this simplification, we get

E(W) =
[
x2
(
R(I − R)−1 + I + R(I − R)−2U2

)
−H

]
(I −U +U2)

−1(−D)−1e

+H(−D)−1e.

(3.43)
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3.5. Conditional Stochastic Decomposition of Queue Length

In this section, we provide a stochastic decomposition of queue length in the stationary
regime, subject to the condition that both servers are busy. Note that from (3.5)–(3.8) we get
x0, x10, x11, x12, x21, and x22. Let Qv be the queue length of the vacation model under study,
subject to the condition that both servers are busy. Then we have the following.

Theorem 3.4. If ρ < 1, thenQv = Q0+Qd, whereQ0 andQd are two independent random variables.
Q0 is the queue length of the M/M/2 queueing model with heterogeneous servers without vacation and
Qd can be interpreted as the additional queue length due to vacation and slow service, subject to the
condition that both servers are busy.

Proof. Let Pb denote the Probability that both servers are busy. Then

Pb =
∞∑

n=2

xn2 =
∞∑

n=2

x22ρ
n−2 +

∞∑

n=3

x21R12

n−3∑

j=0

R11
jρn−j−3

= x22ρ
∞∑

k=0

ρk + x21R12

∞∑

k=0

R11
k

∞∑

k=0

ρk; k = n − 3

=
(
1 − ρ

)−1(
x22ρ + x21R12(1 − R11)

−1
)
,

(3.44)

so that

1

Pb
=
(
1 − ρ

)(
x22ρ + x21R12(1 − R11)

−1
)−1

=
(
1 − ρ

)
δ, (3.45)

where

δ =
(
x22ρ + x21R12(1 − R11)

−1
)−1

, (3.46)

Qv(z), the generating function of the queue length subject to the condition that both servers
are busy, is given by

Qv(z) =
1

Pb

∞∑

n=2

xn1z
n−2 =

1

Pb

∞∑

n=2

x22ρ
n−2zn−2

+
1

Pb

∞∑

n=3

⎛
⎝x21R12

n−3∑

j=0

R11
jρn−j−3

⎞
⎠zn−3.

(3.47)

By following a computational procedure similar to that of Pb, we arrive at

Qv(z) =
1 − ρ

1 − ρz

{
δ

(
x22ρz +

x21R12

1 − R11z

)}

= Q0(z)Qd(z),

(3.48)



International Journal of Stochastic Analysis 13

where

Q0(z) =
1 − ρ

1 − ρz
, (3.49)

Qd(z) = δ

(
x22ρz +

x21R12

1 − R11z

)
. (3.50)

From (3.49) it follows that Q0(z) is the generating function of an M/M/2 heterogeneous
queuing model without vacations, which is precisely the case β = 1 in [23]. Equation (3.50)
suggests that Qd has a geometric distribution with parameter 1 − R11.

Remark 3.5. Due to the algorithmic approach used in the derivation stationary waiting time
distribution, a similar decomposition result for the waiting time distribution is far from
reality.

3.6. Key System Performance Measures

In this section, we list a number of key system performance measures along with their for-
mulae in addition to the busy period structure and the mean waiting time discussed above.

(1) The probability that the system is empty: PEMP = x0.

(2) The probability that the server 1 is idle: PIDL = x0 + x11 + x12.

(3) The probability that the server 2 is on vacation: PVAC = x0 + x10.

(4) The probability that the server 2 is working in vacation mode: PSLOW =∑∞
j=1 xj1 = x11 + x21/(1 − R11).

(5) The probability that the server 2 is working in normal mode: PNORM = 1 − x0 −

PSLOW.

(6) The mean number of customers in the system: µNS =
∑∞

j=1 jxje = x10+x11+x12+

x2(I − R)−2R−1e − x2R
−1e.

4. Numerical Results

4.1. Illustrative Example

We analyze the effect of the parameters λ, η and θ on the key performance measures. Table 1
analyzes the effect of λ, Table 2 explains the effect of η, and Table 3 examines the effect of θ
on the performance measures. To this end, we use the following abbreviations in addition to
the notations used in Section 3.6.

µWTQ: Mean waiting time in the queue.
µLBP: Mean length of a busy period.
µLBC: Mean length of a busy cycle.
µNSBP: Mean number of service completions in a busy period.

(i) Since µ1 and µ2 are fixed, the traffic intensity ρ increases with λ. Due to this PNORM,
µNS and µWTQ increase and PVAC and PIDL decrease as λ increases. Note that the
busy period starts with the Markov chain in the state (1, 0); that is, with server 2
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Table 1: Case A: µ1 = 10, µ2 = 5, η = 1 and θ = 0.6. Case B: µ1 = 5, µ2 = 10, η = 1 and θ = 0.6.

λ A/B PIDL PVAC PSLOW PNORM µNS µWTQ µLBP µLBC µNSBP

2
A 0.829 0.913 0.065 0.022 1.676 0.002 0.080 0.496 1.167

B 0.707 0.916 0.070 0.014 2.176 0.005 0.125 0.482 1.17

4
A 0.687 0.745 0.168 0.087 1.934 0.009 0.067 0.246 1.128

B 0.520 0.755 0.188 0.057 2.301 0.016 0.097 0.236 1.156

6
A 0.550 0.568 0.246 0.186 2.189 0.017 0.062 0.166 1.121

B 0.374 0.574 0.296 0.130 2.60 0.031 0.088 0.164 1.203

8
A 0.414 0.405 0.285 0.311 2.547 0.027 0.062 0.132 1.172

B 0.251 0.399 0.363 0.238 3.178 0.047 0.094 0.143 1.362

10
A 0.282 0.262 0.278 0.460 3.193 0.036 0.072 0.122 1.340

B 0.150 0.245 0.365 0.390 4.282 0.062 0.120 0.153 1.755

12
A 0.158 0.141 0.218 0.641 4.702 0.043 0.106 0.144 1.849

B 0.074 0.123 0.282 0.595 6.626 0.069 0.191 0.216 2.818

14
A 0.049 0.042 0.092 0.866 11.885 0.047 0.294 0.324 4.659

B 0.020 0.034 0.113 0.853 16.043 0.064 0.566 0.585 8.418

Table 2: Case A: λ = 12, µ1 = 10, µ2 = 5 and θ = 0.6. Case B: λ = 12, µ1 = 5, µ2 = 10 and θ = 0.6.

η A/B PIDL PVAC PSLOW PNORM µNS µWTQ µLBP µLBC µNSBP

0.1
A 0.112 0.092 0.333 0.575 5.575 0.059 0.137 0.174 2.20

B 0.028 0.044 0.451 0.506 14.857 0.209 0.536 0.56 6.952

0.2
A 0.125 0.104 0.306 0.589 5.314 0.054 0127 0.165 2.086

B 0.04 0.064 0.408 0.528 10.582 0.137 0.365 0.39 4.907

0.3
A 0.133 0.113 0.287 0.600 5.169 0.051 0.121 0.159 2.019

B 0.048 0.078 0.379 0.543 9.044 0.111 0.301 0.326 4.137

0.4
A 0.140 0.119 0.272 0.608 5.066 0.049 0.117 0.155 1.974

B 0.054 0.088 0.357 0.555 8.232 0.097 0.266 0.290 3.714

0.5
A 0.144 0.125 0.26 0.615 4.983 0.047 0.114 0.152 1.941

B 0.059 0.097 0.340 0.564 7.724 0.088 0.243 0.268 3.442

0.6
A 0.148 0.129 0.250 0.622 4.914 0.046 0.112 0.150 1.915

B 0.063 0.103 0.325 0.572 7.374 0.082 0.227 0.252 3.248

on vacation. Hence, initially PSLOW increases with λ. For this reason µLBP, µLBC, and
µNSBP show an early downward trend. But as λ further increases PSLOW declines as
expected due to the high traffic intensity. Hence, µLBP and µNSBP reverse the direc-
tion of change. Due to the effect of PVAC and PIDL, this reversal occurs only at a later
stage for µLBC. It is worth comparing the values of the measures in cases A and B.
Even though the net service rate µ1 +µ2 = 15 in both cases, the effect of the vacation
parameter η becomes more predominant when µ1 < µ2. Due to this the measures
PVAC and PIDL take smaller values and the measures µNS, µWTQ, µLBP, and µNSBP take
larger values in case B, compared to their values in case A.

(ii) As η increases, the mean duration of vacation 1/η decreases. But as the mean dura-
tion of vacation decreases, the probability of the expiry of the vacation without ini-
tiating the slow service increases. The chance of an early expiry of vacation always
results in an increase in PNORM and PVAC and a decrease in PSLOW. Note that PVAC +

PSLOW decreases as η increases and PVAC + PSLOW < PNORM for any value of η in
the given range. So PIDL increases with η. Thus, the proportion of time in which
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Table 3: Case A: λ = 12, µ1 = 10, µ2 = 5 and η = 1. Case B: λ = 12, µ1 = 5, µ2 = 10 and η = 1.

θ A/B PIDL PVAC PSLOW PNORM µNS µWTQ µLBP µLBC µNSBP

0.1
A 0.112 0.073 0.167 0.761 4.402 0.044 0.158 0.195 2.439

B 0.034 0.042 0.188 0.770 8.45 0.105 0.507 0.531 6.601

0.2
A 0.121 0.085 0.178 0.737 4.504 0.044 0.144 0.182 2.286

B 0.039 0.053 0.207 0.740 8.126 0.098 0.420 0.444 5.556

0.3
A 0.13 0.098 0.190 0.713 4.581 0.044 0.133 0.171 2.152

B 0.046 0.066 0.226 0.708 7.762 0.091 0.345 0.370 4.664

0.4
A 0.139 0.112 0.200 0.689 4.638 0.044 0.123 0.161 2.036

B 0.054 0.082 0.246 0.673 7.379 0.084 0.283 0.308 3.918

0.5
A 0.149 0.126 0.209 0.664 4.678 0.044 0.114 0.152 1.936

B 0.063 0.101 0.265 0.635 6.995 0.076 0.232 0.257 3.307

0.6
A 0.158 0.141 0.218 0.641 4.702 0.043 0.106 0.144 1.849

B 0.074 0.123 0.282 0.595 6.626 0.069 0.191 0.216 2.818

both servers work at the normal rate increases as η increases. Hence, the measures
µNS, µWTQ, µLBP, µLBC, and µNSBP decrease as η increases. The argument given the
last paragraph holds good for the difference in magnitude of the measures in cases
A and B.

(iii) As θ increases, the service rate θµ2 of the second server during vacationmode of ser-
vice increases. As a result, server 2 clears out customers at an increased rate in slow
service mode. This produces an increase in PVAC, PSLOW, and PIDL and a decrease in
PNORM as expected. Consequently, µLBP, µLBC and µNSBP decrease as θ increases. The
huge difference in the value of net service rate µ1 + θµ2 between cases A and B,
during vacation mode of service, is the reason for the pattern of behavior of µNS

in these two cases. Increase in θ does not affect µWTQ significantly in case A but it
affects the measure in case B. This is because the effect of θ becomes significant only
when µ2 is large compared to µ1.

5. Concluding Remarks

In this paper, we studied anM/M/2 queueingmodel with heterogeneous servers. One server
follows multiple vacation policy. But this server offers service at a lower rate during vacation
if customers arrive. The other server remains in the system even when it is empty. The busy
period of the system was analyzed in the stationary regime. Mean waiting time of a customer
has been computed. Conditional stochastic decomposition of queue length has been derived.
An illustrative numerical example to bring out the qualitative nature of the model has been
presented.
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