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This paper is the first application of Best Worst Method in could service selection. 

A Markov chain is employed to find a pattern of uncertain customer needs.  

The method results in less consistency in comparison with other similar methods.  
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Cloud Service Selection Using a Markov Chain and the  

Best-Worst Method 
Abstract 

Due to the increasing number of cloud services, service selection has become a challenging decision for many 

organisations. It is even more complicated when cloud users change their preferences based on the requirements 

and the level of satisfaction of the experienced service. The purpose of this paper is to overcome this drawback 

and develop a cloud broker architecture for cloud service selection by finding a pattern of the changing priorities 

of User Preferences (UPs). To do that, a Markov chain is employed to find the pattern. The pattern is then 

connected to the Quality of Service (QoS) for the available services. A recently proposed Multi Criteria 

Decision Making (MCDM) method, Best Worst Method (BWM), is used to rank the services. We show that the 

method outperforms the Analytic Hierarchy Process (AHP). The proposed methodology provides a prioritized 

list of the services based on the pattern of changing UPs. The methodology is validated through a case study 

using real QoS performance data of Amazon Elastic Compute (Amazon EC2) cloud services.  

Keywords: Cloud Service Selection; MCDM methods; Best Worst Method; Markov chain 

1 Introduction 
Cloud computing is defined as a model that enables ubiquitous, convenient, and on-demand network access to a 

shared pool of configurable computing resources. Such resources can be rapidly provisioned through 

virtualization and released with minimal management effort [1]. Cloud computing has changed the perception of 

how computational resources can be procured and provisioned with scalability and efficiency [2][3]. As a result, 

cloud users are now able to focus on their core competencies and leave management of their computational 

resources to the cloud providers. 

As the number of cloud services is constantly growing, a user is exposed to many choices. Having such choices 

leads to the challenge of selecting the right service from the right cloud provider at the right time [4]. A cloud 

broker architecture (Figure 1) that takes into account the user requirements gives a ranked list of potential cloud 

services is proposed in order to reduce the complexity of service selection for the cloud user. Equinix [5] is one 

such example of a cloud broker architecture which has more than 500 registered cloud providers, each of which 

provides different types of cloud services. Amazon provides more than 70 [6]. Various cloud service selection 

algorithms have been employed in cloud broker-based recommendation engines. To the best of our knowledge 

none of them takes into account the changing needs of the cloud user for best service recommendation. 

Traditionally, cloud service selection is considered the process of finding the most suitable cloud service [7] by 

matching the functional and Quality of Service (QoS) requirements of a user with the description of available 

cloud services provided by different cloud providers [8]. Existing research [9]–[14] has typically focused on 

what criteria are to be considered (e.g. performance, price) and the preferences of the user (e.g. which criteria 

are important to the cloud user). Although different decision-making methods are then applied to the criteria and 

user requirements to help cloud users to find a suitable cloud service, some uncertainties in the cloud 

environment hinder the service users from relying on such methods [15]. One such uncertainty is that User 

Preferences (UPs) are dependent on the user requirements, which dictate the user’s level of satisfaction with the 

service. This level of satisfaction may change over a period of time during service consumption. None of the 

approaches in current literature captures this information and uses it to improve the service recommendation for 

future users. For example, when users are utilizing a cloud service, they may change their preferences based on 

their experience with the service being used. The changed preferences can be collected from the users to 

understand their satisfaction before and after using the recommended service. Then by grouping the users with 

similar service requirements, their level of satisfaction can be analyzed to determine any pattern, as shown in a 

previous study [16]. This would help in the recommendation and selection of the most appropriate cloud service 

for other users having similar service requirements. 
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Figure 1. An overview of Cloud Brokerage Architecture 

In this paper, we propose a cloud broker architecture for cloud service selection by taking into account the 

changing UPs over time. We use a Markov chain to capture and track the changes in UPs and find transition 

patterns in them. The identified patterns are then used for recommendation and selection of the suitable services. 

Finally, Best Worst Method (BWM) [17] which is a Multi Criteria Decision Making (MCDM) method, is used 

to rank the services. The main contributions of our work are as follows: 

 By using a Markov chain, we capture and model the uncertainty in changes to find the transitioning 

patterns within them. 

 We use a Markov chain in conjunction with BWM to rank the services based on changing user 

preferences. 

 We evaluate our proposed model on real cloud services data. Results show our proposed method results 

in greater consistency when compared to Analytic Hierarchy Process (AHP)-based approaches that are 

currently used in cloud service selection.  

This paper is organized as follows. In the next section, the related research on cloud service selection is 

discussed. The framework for cloud service selection is proposed in section 3. In section 4, the implementation 

of the proposed methodology is presented in algorithmic form. The approach is then validated using a case study 

in section 5. Section 6 presents a discussion and the performance evaluation of the proposed methodology. 

Finally, a conclusion is presented in section 7. 

2 Related Work 
In recent years, a number of research efforts have started solving the problem of cloud service selection. In this 

section, we present an overview of some of these studies. Existing research is divided into QoS-based and non-

QoS-based service selection. QoS-based service selection approaches consider the QoS criteria for decision-

making. Table 1 provides the categorization of existing service selection methods used in the literature. 

An approach for selecting cloud services was proposed by Rehman, Hussain and Hussain [12] in which they 

argue that in order to make an informed decision, it is necessary to apply a cloud service selection methodology 

that utilizes QoS history over different time periods. The proposed approach ranks all services using MCDM in 

each time period and aggregates the results to determine the overall rank of all available options for cloud 

service selection.  

The variations in the historic QoS are considered by assigning weights using the logistic decay function. A 

cloud service recommender system is employed by Han, Mehedi Hassan, Yoon, Lee and Huh [18] for the cloud 

market that matches a specific user’s requirements with a suitable cloud service. The method, therefore, selects 

the best combination of services from different cloud providers. The proposed system maintains a record of all 

the available resources in the cloud market and uses this information to rank and calculate the QoS values of 

services. Zeng, Zhao and Zeng [13] designed a cloud service selection algorithm using the maximized-gain and 



minimized-cost approach. The algorithm first uses a service discoverer to find all available services and then 

processes the cloud service user’s request. The maximized-gain and minimized-cost service selection algorithm 

aggregates the gain and cost values by a weighted sum where weights represent the relative importance of 

involved factors. Yu [19] presented a framework for personalized service recommendation in cloud that 

implements a user-centric strategy to achieve personalized QoS assessment of cloud services. The proposed 

framework uses a collaborative filtering technique for a community-based QoS assessment model. 

Table 1. Categorization of existing approaches to service selection 

 Multi-criteria Decision Making (MCDM) Optimization-based Methods 

Focus MCDM-based methods focus on translating 

decision-maker’s preferences into a set of 
variables and then finds the best option from a 

set of finite alternatives [20]. 

Optimization-based methods seek to find the 

set of values for decision variables which 

maximize or minimize the objective function 

without violation of constraints [21]. 

Examples Techniques such as Analytic Hierarchy 

Process (AHP) [22], Analytic Network 

Process (ANP) [23], Multi-Attribute Utility 

Theory (MAUT) [24] and outranking [25] fall 

into this category. 

Techniques such as Dynamic Programming 

[26], Integer Linear Programming (ILP) [27], 

Genetic Algorithm (GA) [28] and Stochastic 

Programming [29] fall into this category. 

 
Many existing approaches for QoS-based cloud service selection use the AHP technique to assign ranks to cloud 

services. Garg, Versteeg and Buyya [7] proposed SMICloud, which is based on Service Measurement Index 

(SMI) [30], for comparing and ranking cloud services on the basis of common characteristics defined as SMI 

criteria. The proposed framework measures all the QoS attributes in SMI and then uses AHP to rank the cloud 

services. Another approach for selecting cloud services was proposed by Godse and Mulik [11] in which they 

applied AHP using QoS criteria such as functionality, architecture, usability, vendor reputation, and cost for 

service selection. Sun, Ma, Zhang, Dong and Hussain [14] presented a fuzzy decision-making framework and 

MCDM-based approach for cloud service selection. That approach was based on a fuzzy ontology that models 

uncertain relationships between objects in databases for service matching, calculates the semantic similarity 

between concepts using AHP, and then uses multi-criteria decision-making to rank cloud services.  

Non-QoS-based approaches define and measure different attributes and metrics for cloud service selection. Li, 

Yang, Kandula and Zhang [31] discussed the cloud service selection problem and identified the basic attributes 

for each type of cloud service (such as IaaS, SaaS) that must be taken into consideration when comparing one 

cloud service with another. Kang and Sim [32] developed a semantic-based cloud service search engine called 

Cloudle using a cloud ontology. The proposed system maintains a record of all the services in a database. The 

user’s search query is sent to an engine that performs similarity reasoning between the query and the concepts in 

the database using cloud ontology. The output of the Cloudle search engine is an ordered list of cloud services 

based on concept similarity, price and cost utility. A similar study for semantic web service ranking was 

proposed in [33]. Wang, Cao and Xiang [34] proposed a dynamic cloud service selection using an adaptive 

learning technique in multi-cloud computing. In their proposed approach, each cloud service broker manages 

some clustered cloud services. The dynamic service selection (DCS) strategy, which consists of a set of dynamic 

service selection algorithms, uses an adaptive learning mechanism that comprises the incentive, forgetting and 

degenerate functions. The mechanism is formulated to dynamically optimize the cloud service selection and to 

return the best service result. 

Some of the non-QoS-based approaches also used AHP to rank the attributes and metrics for decision-making. 

Nie, She and Chen [9] presented an evaluation system of cloud service selection using AHP that calculates the 

weights of attributes for service evaluation. They also presented a number of qualitative models for decision 

making in cloud service selection. Filepp, Schwartz, Ward, Kearney, Cheng, Young and Ghosheh [35] proposed 

virtual machine (VM) image selection service for cloud computing. Their algorithm orders the image based on 

conformance with specified user requirements and policies by best-fit and least-cost optimization. 



Table 2. Comparison of Cloud service selection approaches 

Authors Area Ranking Method QoS based 

Nie et al. [9] Cloud service selection Evaluation index system using AHP No 

Godse and Mulik [11] Cloud service selection SaaS selection using AHP No 

Garg et al. [7] Cloud comparison and 

ranking 

QoS attributes and AHP based ranking Yes 

Z. Rehman et al. [12] Cloud service selection Parallel MCDM approach based on QoS 

history  

Yes 

Han et al. [18] Cloud service composition Selecting best service by matching user 

requirements and QoS values from 

multiple services 

Yes 

Li et al. [31] Cloud service composition Highlights the problems and identifies the 

attributes for cloud comparison 

No 

Kang and Sim [32] Cloud search engine An ontology-based database and uses 

concept similarity, price and cost utility 

for ordering 

No 

Filepp et al. [35] VM image selection Image configuration repository and 

minimum-cost maximum-gain approach 

No 

Zeng et al. [13] Cloud service selection Uses maximum-gain and minimum-cost 

algorithm 

Yes 

Chen et al. [36] Cloud service selection Conflict detection and constraint 

programming  

- 

Sun et al. [14] Cloud service selection Fuzzy ontology and MCDM Yes 

Wang et al. [34] Cloud service selection Adaptive learning mechanism No 

Ghosh et al. [37] Cloud service selection Risk assessment based  

Lin et al. [38] Cloud service selection Risk assessment and cloud focus theory Yes 

Gui et al. [10] Cloud brokering and 

recommender 

Cloud classification model for filtering 

and categorization for cloud service 

recommendation 

- 

Mouratidis et al. [39] Cloud service selection Security and privacy requirements-based 

assessment method 

- 

Qi Yu [19] Cloud service recommender Collaborative filtering-based cloud 

recommender 

Yes 

Liu et al. [40] Cloud service selection Multi-attribute group decision-making 

(MAGDM) based 

- 

 

There are some other research studies which do not fall in the above two groups. An automatic conflict detection 

between the user’s preferences and enterprise policies was proposed by Chen, Yan, Zhao, Lee and Singhal [36]. 

The proposed framework checks various conflicts that result from the violation of enterprise policies and 

inconsistency in cloud service user’s requirements. The investigation is followed by the selection of an 



appropriate service using the constraint programming that satisfies the user’s requirements and also complies 
with enterprise policies. The proposed system aims to resolve the difficulties of cloud service selection with an 

emphasis on the involvement of enterprise policies. Gui, Yang, Xia, Huang, Liu, Li, Yu, Sun, Zhou and Jin [10] 

presented a service brokering and recommendation mechanism for selecting the best public cloud service at the 

IaaS and PaaS level. The proposed framework consists of a hierarchical information model for integrating 

heterogeneous cloud information from different providers and a corresponding cloud information collecting 

mechanism. A cloud service classification model for categorizing and filtering cloud services and an application 

requirement schema were presented. Liu, Chan and Ran [40] structured a multi-attribute group decision-making 

(MAGDM) based scientific decision tool to help businesses to determine which cloud computing vendor would 

be more suitable for their needs. The authors presented a subjective/objective integrated MAGDM technique for 

decision making in cloud computing services that uses objective attributes such as cost as well as subjective 

attributes such as TOE factors (Technology, Organization and Environment). 

Some studies also focused on cloud service selection by considering factors such as security, privacy and risk 

assessment for cloud users. Mouratidis, Islam, Kalloniatis and Gritzalis [39] designed a framework to support 

the selection of cloud providers based on security and privacy requirements. That framework incorporates a 

modeling language and provides a structured process that supports the elicitation of security and privacy 

requirements and the selection of a cloud provider based on the satisfiability of the service provider. Ghosh, 

Member and Ghosh [37] presented a framework to facilitate cloud service selection that calculates the risk 

estimation based on trustworthiness and competence. Another work in risk assessment based cloud service 

selection was carried out by Lin, Zeng, Yang, Wang, Lin and Lin [38]. The proposed method is based on cloud 

theory and generates five property clouds by collecting the risk value and four risk indicators from each virtual 

machine. The cloud backward generator integrated these five clouds into one based on a weight matrix. 

Therefore, the risk prediction value is transferred to the risk level quantification, which is used for cloud service 

selection.  

In addition, there are studies that have developed decision-making models based on uncertainty in experts’ 
preferences. Liu, Dong, Chiclana, Cabrerizo, and Herrera-Viedma [41] develop a linear programming approach 

structured in two stages to minimize the information deviation of the relations between decision makers’ 
preferences based on their confidence levels. Moral and Le [42] studied a group decision making problem. It 

investigated the problem using a fuzzy approach to obtain experts’ preferences focusing on the convergence 

speed of the consensus. They show that setting a number of rules can control such a speed in the decision 

making process. Wu, Chiclana, Fujita and Herrera-Viedma [43] proposed a visual interactive framework to 

facilitate reaching a consensus based on different preferences by various experts. A trust based recommendation 

mechanism was then submitted to deal with inconsistencies in the expressed preferences. The mechanism finds 

out whether an unknown expert can be trusted and, hence, the associated preferences should be taken into 

account. Capuano, Chiclana, Fujita, Herrera-Viedma and Loia [44] proposed a model to consider the real 

preference of an expert whom is influenced by the opinion of other experts. They assume that the expert is 

unable to express preferences on some alternatives and employ a user friendly fuzzy ranking model to obtain the 

preferences. Zhanga, Dong and Herrera-Viedma [45] deal with significant conflicts in experts’ preferences that 

can cause serious issues in the decision making process. They employed a selection process to divide decision 

makers into different clusters. Individual preference vectors are obtained, and a feedback adjustment process is 

utilized to help decision makers adjust their preferences. We notice in a review of papers on decision-making 

models, the insufficient studies undertaken taking into account a frequent and continuous change of preferences. 

This study performs that through a combined application of a Markovian model and BWM.  

There are other versions of Markov chains, the application of each requires its own assumptions. For instance, 

applying a hidden Markov chain requires the assumption that there exist states of which we are not aware. 

Considering such assumptions are not within the scope of this research, this paper is the first work introducing 

Markov chains to cloud service selection. Therefore, we decided to use the general version of Markov chain 

[46][47] which is applicable to trace changing priorities of users/customers and has recently been examined 

[16].  



To summarize, shown in Table 2 are a variety of approaches proposed in the literature several of which are 

based on MCDM techniques that assist a user make a service selection decision in the cloud environment. 

However, the issue of changing UPs has not been addressed in cloud service selection. In this paper, our aim is 

to assist cloud users to make an informed decision under changing user preferences.  

3 Proposed Methodology 
The proposed methodology uses a Markov chain in conjunction with BWM in order to find the best service. The 

Markov chain generates a pattern of the changing priorities of user preferences. This pattern is then used as the 

input for BWM to find out the priorities of QoS criteria. The QoS priorities are then used to rank the services. 

The method consists of the steps depicted in Figure 2. 

Repeat for all UPs

Select one UP and find its 

relation with all the QoS 

criteria

Select the best and worst 

QoS criteria with respect 

to selected UP

Calculate optimal weights 

for QoS criteria using 

BWM

Apply Markov chain to 

transition matrix and initial 

UPs to get the pattern of 

changing UPs

Start

Normalize QoS values for 

the identified QoS criteria

Compute the final QoS 

weights considering their 

relations to UPs

Compute the final Service 

ranks

QoS Repository

End

Get the required 

transition matrix, 

initial UPs and 

QoS criteria

 

Figure 2. Flowchart showing the sequence of steps in the proposed approach 

First, we need  to obtain the initial UPs through service queries on the cloud broker [48]. These preferences, 

however, cannot be considered stable as they may change as the UPs do [49]. The changes can be traced using a 

Markov chain. Markov chains have previously been applied in other studies to predict a pattern of customer 

needs [16]. The method is explained based on its previous applications, as follows.  

The proposed MCDM method utilizes the Markov decision process. Markov chains are useful in capturing 

discrete events over a period of time. In this case, a Markov chain finds a pattern of changing UPs. The next step 



would be to utilize the captured information for cloud service selection. In cloud service selection, alternatives 

are ranked against criteria and, therefore, we need to use a MCDM method. A recently proposed MCDM 

method, BWM, is selected as it requires less pairwise comparisons and leads to greater consistency when 

compared with similar methods such as AHP [17][50]. We apply a Markov chain, as a discrete time, stochastic 

process, in combination with BWM to firstly find a pattern of UPs and then, considering the obtained pattern, 

rank the alternatives. Given this, the Markov chain does not directly make the decision, instead, the power of the 

Markov chain is leveraged to help BWM to connect the importance of these elements to cloud service 

specifications and rank the alternatives. 

Here, a Markov chain addresses the problem of UPs being discrete events and finds a pattern in them. Although 

the Markov chain finds the pattern of UPs to be utilized instead of the initial preferences, this does not mean that 

users may not change priorities. Every user may keep changing their priorities. However, if these changes are 

traced in terms of the whole system including many other users for similar services, a pattern for the required 

specifications can be observed. In such a pattern, there will be a certain number of users with each of the 

preferences. For example, some users may change to low priority for a certain preference while other users may 

change to high priority for the same preference. Those numbers are computable using the Markov chain as 

follows.  

Let us assume that the initial priority list of UPs is obtained through interviews and normalized in matrix     as 

shown in Matrix (1).  

                        (1) 

 
Consider a time set, T = {     }. There is always a likelihood of changing the preference from one UP to 

another after a period of time. For example, at time   ,    is greater than   , which means more users prefer and 

select    (   UP  compared with   (   UP) as the most important requirement. At time   , UPs may change and    may not remain more than   . The time interval depends on how regularly users utilize the service and this 

varies for different service categories. Observing user behavior over time, we can see the proportion of users 

who have UP1 as their most important need and so wish to stay with UP1 or shift to other UPs (e.g. UP2, UP3...). 

Figure 3 is an example showing the transitions where there are four UPs (S1 to S4). 
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Figure 3. Transitioning between states at k

th
 period  

In the above figure,     stands for the number of users that are with    at period k (   ), and      represents the 

number of users that transition from    to    (changing from one UP to another as their priority). In order to 

compute the transition matrix, we need to calculate the probability of transitioning from    to    at kth period for 

every UP. The probabilities are computed as follows. If there are     users who prefer S1 at time k, and      are 



those who prefer to transition to S2, then the probability of this transition is computed as:             . More 

generally, the probabilities are computed as follows.                    (2) 

If, after a sequence of periods, a     can be estimated for which the following condition exists, then the value of     in the transition matrix is equal to      (note that   stands for a small value).                  (3) 

In many cases, finding a     that stays within the narrow interval of (             ) for a large number of 

successive periods may not be applicable. In such cases, different amounts for     can instead be found and used 

for a reasonable number of periods. To cope with such a situation, a number should be set by decision makers. 

When the number of successive periods that     stays in the interval and goes beyond the number, the transition 

matrix is computed and will be in use until a new trend appears. Techniques and charts of statistical quality 

control (SQC) can be utilized for the purpose of recognition of the trends, detection of the points of shifting    , 

and monitoring probabilities in the transition matrix.  

In summary, when the sequence      is relatively close to    , the value of     is estimated by     . Since the 

transition matrix includes    values presented by    , we do not expect a considerable effect for minor changes. 

In the case study presented in the paper, we use a threshold of 0.1. If the absolute variation of the probabilities in 

the transition matrix divided by its order goes beyond 10 percent, recalculation of the transition matrix is 

required.  

The transition matrix is computed as follows.  

  
       

           

   
   
                                

   
 
      (4) 

By frequent multiplication of the transpose of matrix     by the transition matrix, P, a set of         is obtained, 

where i is the number of the multiplications. 

                                                      (5) 
 
A generalized form of the formula is presented in  (6): 
 

                      ,                        (6)      

     =        
 when k     (7) 

 
Considering the inherent convergence of the stochastic matrices, we expect that the matrices become the same 

after three to five times of multiplication. Since the adjusted priorities of UPs are independent of the initial state 

[51], this method stands independent of the initial priorities of UPs. Thus, rather than the identification of the 

users’ initial (instant) preferences, there should be a focus on forming a transitional matrix (explained above).  

The limiting matrix of P can be found by raising P to a large power. In such a matrix, the arrays in each column 

are consistent. Multiplying any normalized matrix by this limiting matrix leads to the same matrix regardless of 



the initial matrix (provided that initial matrix is normalized). The columns of limiting matrix have the same 

values. So, the values of a row of the matrix can be used as the pattern of UPs which is shown by     .  

In practice, each time that the probabilities are computed through interviews and feedback, the transition matrix 

can be obtained and replaced. If the updated matrix does not change the sequence of alternatives, there is no 

concern. If a change does occur, then the decision maker has to decide when to shift from the current cloud 

provider to a new cloud provider, while taking into account other important factors such as obtained trust and 

effort needed for new negotiations. After finding the pattern of UPs, the relationship between UPs and the QoS 

criteria need to be computed through BWM.  

The relationship between UPs and QoS criteria of available services can be identified through assigning 

appropriate weights. Each QoS criterion is compared with respect to every UP, resulting in a matrix (as shown 

in  (9)) in which rows represent the UPs and columns represents the QoS criteria. The matrix, namely         

is explained in this section.  

The relationship of UPs and QoS criteria can be found by asking simple questions such as: ‘What is the relative 

importance of the ith QoS attribute when compared to the jth QoS attribute with respect to the kth UP?’ When 

there are four QoS criteria such as: CPU, Memory, Input/Output (I/O), and Cost, while Performance is an UP, 

then the following question could be asked: “What is the importance of CPU when compared to Cost 

considering Performance?” With respect to each QoS criteria, they are compared with each UP in separate 

tables. The calculated importance weights are used to calculate matrix        . We use BWM [17] in the 

proposed methodology in order to find the relationship between UPs and QoS criteria. The process to compute 

the weights of the QoS criteria is described as follows: 

1. Select an UP from {UP1, UP2, …, UPm} to find its relation with all the QoS criteria {Q1, Q2,…, Qn}.  

 

2. Determine the best (e.g. most important) and the worst (e.g. least important) criteria with respect to the 

selected UP. For example, CPU may be the best and Cost may be the worst criteria when considering 

the selected UP: Performance. 

 

3. Determine the preference of the best criterion over all other criteria using a number between 1 and 9 

where 1 is the best preference and 9 is the least preference. The resulting Best-to-Others vector would 

be AB = (aB1, aB2…,aBn) where aBj indicates the preference of the best criterion B over criterion j such 

that aBB = 1. For the above example, the vector AB shows the preference of CPU over all the other 

criteria considering UP Performance. 

 

4. Determine the preference of all the criteria over the worst criterion using a number between 1 and 9. 

The resulting Others-to-Worst vector would be AW = (a1W, a2W…, anW)
T
 where ajW indicates the 

preference of the criterion j over the worst criterion W such that aWW =1. For this example, the vector 

shows the preference of all the criteria over Cost considering Performance. 

 

5. Finally, the optimal weights (w1, w2, …, wn) are found. The optimal weight for the criteria is the one 

where for each pair of wB/wj and wj/wW, we have wB/wj = aBj and wj/wW = ajW. To satisfy these 

conditions for all j, we should find a solution where the maximum absolute differences             and              for all j is minimized. Considering the non-negativity and sum condition for the weights, 

the following problem is formulated. 

 



                                                                                            
  

    (8) 

Here   represents a measure of the consistency of comparison. The optimal weights (w1, w2, …, wn) are 

obtained by solving the problem in (8) for the QoS criteria {q1, q2…, qn} with respect to the selected 

UP.  

 

An algorithm for computing optimal weights is described in the next section. A more elaborate example of the 

calculation of optimal weights for three criteria by solving the above equations has previously been given by 

Rezaei [17]. In the above, QoS criteria {Q1…Qn} are compared with respect to each UP. Each time, a set of 

weights for {Q1…Qn} is computed, those weights build the rows of the         (9) presented below. 

         
          

           

   
   
                                

   
 
       (9) 

Now, a matrix of QoS priorities is found that reflects the final weights of the QoS criteria considering their 

relationship with UPs. This matrix is determined by the product of the matrix containing the pattern of the 

priorities of the UPs and relation of UPs with the QoS criteria. 

 

WFQoS =     ×          (10) 

 

After that, the QoS criteria of the available services (options) are normalized. QoS values of all the services 

form an evaluation matrix D, which has the following form, where Q represents the QoS criterion and OP 

represents the service (option). 

   
          

           

   
   
                                

   
 
   (11): The evaluation matrix 

Since each criterion has its own units and range of values, the matrix D is normalized using  (12) to make the 

QoS values of different criterion comparable.                      (12) 

The normalized matrix         is given by: 



         
          

           

   
   
                                

   
 
   (13) 

 

The final ranking of the services is calculated using the product of the transposed matrix WFQoS and the 

normalized evaluation matrix WOP-QOS.  

   

WFOP = WOP-QoS × (WFQoS)
T   (14) 

 

The matrix WFOP contains the corresponding ranking for all the services with the highest value as the most 

suitable one. In the next section, the applicability of the proposed method is applied to select the best cloud 

service from a set of services. 

 

4 Implementation 
The proposed method of cloud service selection requires the transition matrix of changing UPs and the QoS 

criteria of available services as input and then, after performing the relevant computations, returns the final 

ranking of the services. As shown in Algorithm 1, the input and output parameters are defined first. The 

algorithm then computes the limiting matrix of P (denoted as            
) by repeatedly multiplying the transition 

matrix with itself for n number of times (line 1-5). The value of n can be set by the user to adjust the number of 

iterations. Generally, after 4 or 5 iterations, the values in the limiting matrix            
 settle down and do not 

change much after that. So, the values of the row of the matrix can be used as the pattern of UPs which is shown 

by      (line 6).  

 

After this, the relations between UPs and QoS criteria         ) are found (line 7-9). Taking one UP at a time 

and calling Algorithm 2 (BWM) to find the priorities of the UP with respect to all the QoS criteria does this. A 

matrix of final QoS priorities       is then computed by the product of the matrix containing the pattern of the 

UPs’ priorities      and relationship of UPs with the QoS criteria         (line 10). Next, the QoS criteria of 

the available options (matrix D) are normalized to make the QoS values of different criteria comparable as every 

criterion has its own units and range of values (line 11-17). The normalized matrix is denoted as        . 

Finally, the ranking of the services      ) is calculated using the product of a transposed matrix       and the 

normalized evaluation matrix         (line 18). 

 

Algorithm 1. Main algorithm for cloud service selection with changing user preferences 

Input:    D = Averaged QoS values  

               P = Transition matrix 

W(0)
UP = Initial user preferences 

               UP = set of user preferences 

               Q = set of QoS attributes 

Output: 
               WFOP = Final list of available service (options) rankings 

1. initialize n;  

2. initialize k=0; 

3. while (k++ <= n)  

4.     W(k)T
UP  =  W(k-1)T

UP × P; 

5. end while 



6. W*
UP = W(k)T

UP; 

7. foreach up ϵ UP do 

8.     WUP-QoS = BWM(up,Q); 

9. end for 

10. WFQoS = W*
UP × WUP-QoS; 

11. for i < n cols in D 

12.     for j < m rows in D 

13.         select     from D; 

14.                            

15.         set     in        ; 

16.     end for 

17. end for 

18. WFOP = WOP-QoS × WT
FQoS; 

19. return WFOP; 

 

 

In Algorithm 1, for every UP and a set of weights for the QoS criteria {Q1…Qn} is computed. This is used to 

build the rows of the         matrix. First of all, the consistency index table (Table 3) is loaded, which shows 

the maximum value of   (max ) for any comparison aBj and ajW (where aBj is the preference of the best criterion 

over the criterion j and ajW is the preference of criterion j over the worst criterion). The process of finding the 

max  has previously been described by Rezaei [17]. This gives an indication of how consistent the comparison 

is. There are three possibilities: 

1. A comparison is fully consistent when aBj × ajW = aBW, for all j, where aBW is the preference of the best 

criterion over the worst criterion. In this case, the value of   is 0 for all j.  

2. A comparison is partially consistent when aBj × ajW is lower or higher than aBW for any j. In this case, 

the value of   for the comparison is anything between 0 and max . 

3. A comparison is considered inconsistent when aBj and ajW have the maximum value (close to aBW) for 

any j which will result in max . 

 

Table 3. Consistency Index (CI) [41]     1 2 3 4 5 6 7 8 9 
max  0.00 0.44 1.00 1.63 2.30 3.00 3.73 4.47 5.23 

 

Algorithm 2 allows decision maker to compute the weights when the comparisons are either fully consistent or 

partially consistent. If the comparisons are inconsistent, it allows decision maker to re-adjust the comparisons. 

For partially consistent, we propose using a threshold value between 0 and max  that allows decision maker to 

adjust the consistency according to the problem. 

 

Algorithm 2. Best-Worst Method 

BWM (up, Q) 

1. CI = Consistency Index table; 

2. choose best criterion aBB where aBB ϵ Q  

3. choose worst criterion aWW ϵ Q  

4. j = 1; 

5. set      x where x ϵ [1,9] 

6. while (j ≤ count(Q)) 
7.      do 

8.           set aBj = x where x ϵ [1,9]; 

9.           set ajW = x where x ϵ [1,9]; 

10.     while                     ); 

11.      AB.add(aBj); 

12.      AW.add(ajW); 



13. end while 

14. for all j in Q 

15.         Form equation of the form                where     ϵ AB; 

16.         Form equation of the form                where     ϵ AW; 

17. end for  

18. Form equation       ; 

19. Compute    for up (row) in matrix WUP-QoS by solving system of linear equations (e.g. using Gaussian 

Elimination); 

20. return WUP-QoS; 

 

After initialization, algorithm allows decision maker to set     that defines the preference of the best criterion 

over worst. Ideally from set of {1…,9}, highest possible value for     is 9 (line 5). All the comparisons with 

respect to best criterion and the worst criterion are perform one by one in a while loop (line 6-13). If any 

comparison is inconsistent, this loop asks the decision maker to re-adjust the comparison. Next, the comparisons 

are used to form equations of the form as given (8) where weights become the variables and the comparison 

becomes the co-efficient (line 14-18). For solving these equations, we propose using Gaussian Elimination 

(Gauss-Jordan Elimination) method to compute the optimal weights (line 19). The result of this operation is the 

optimal weights, which are set in matrix WUP-QoS for the corresponding row of up and returned to Algorithm 1. 

 

5 Case Study 
To validate our approach, a case study was undertaken on the dataset of Amazon EC2 IaaS cloud services. We 

used the QoS monitoring data of four EC2 IaaS services that were collected by PRTG monitoring service 

(https://prtg.paessler.com). The data consisted of the average of the hourly measurements of response time for 

300-time periods of the four EC2 instances that includes CPU, Memory and I/O performance of the monitored 

services. In addition to these, the fourth criterion price per hour (denoted as Cost) is also included for each 

service as quoted by Amazon (www.amazon.com). In this case study, UPs are denoted Performance, 

Availability, Reliability and Price. Table 4 shows the brief description and the criteria of the four available cloud 

services. 

 

Table 4. Available cloud services and average QoS criteria 

Service Detail Instance Type CPU (ms) Memory (ms) I/O (ms) Cost ($/hr) 

OP1 EC2 EU Small 2056.19 1455.72 1035.82 0.0885 

OP2  EC2 EU Micro 80.77 81.94 260.42 0.0200 

OP3 EC2 SA Micro 860.15 126.66 722.40 0.0270 

OP4 EC2 US East Small 2200.70 532.28 4187.19 0.0650 

 

As mentioned previously, UPs are likely to change over time. The transition matrix P is computed as given 
below. From this,     is easy to compute. 
 

   
                                        

 
                                   

   
   
                                                                    

   
     (15) 

 

Although we do not need to use the initial UPs, as explained in the methodology, to show that      is 

independent of the initial UPs, assume that the initial UPs’ priorities are obtained as below: 



                                                                  (16) 

Based on the above two matrices, the following matrices are calculated as                                                               (17) 

                                           (18) 

                                           (19) 

                                              (20) 

Now if the limiting transition matrix (Plimiting) is computed, as presented below, it is a matrix with equal values 

in each column. Given that, any normalized matrix multiplied by it will be equal to     , which is a 

representation of the column values of Plimiting. 

          
   
   
                                                                                    

   
 
    (21) 

Any normalized matrix multiplied by this matrix would result in matrix     , presented in Matrix (22). The 

changing UPs through the use of the transition matrix will settle into the following     ,, regardless of the 

initial UPs. This final matrix obtained from the application of a Markov chain is employed as the inputs to the 

second part of the method.  

                                                               (22) 

Now, with respect to each UP, QoS criteria are compared to each other. The calculated weights are used to 

calculate matrix        . The comparison is performed using the BWM approach. According to this approach, 

for each UP, the best criterion is selected. Then, the weight is assigned to every criterion in comparison with the 

best criteria. A similar process is performed for the worst criterion. The optimal weight is computed by solving 

the  (8) such that the ratios             and             are minimized for all criteria and should not exceed      given in Table 3 for     where     the preference of the best criterion over the worst criterion. For 

instance, the optimal weight for Memory in Table 5 satisfies these constraints. In this case, the ratios 

|0.599/0.212 – 3| = 0.037 and |0.212/0.062 - 4| = 0.58 are clearly less than the      for     which is       

(see Table 3). Moreover, algorithm 2 takes the best and worst preferences as input and returns the computed 

optimal weights as given in Table 5. It represents the QoS comparison with respect to Performance UP. 

 

Table 5. QoS comparisons with respect to Performance 

Performance CPU  Memory  I/O  Cost 

Best (CPU) 1  3 5  9     

Worst (Cost) 9 4 2 1 



Optimal Weights 0.599 0.212 0.127 0.062 

CI ( ) = 0.040 CR = 0.008    

 

Similarly, QoS criteria are compared with respect to Availability, Reliability and Price in Table 6, Table 7 and 

Table 8 respectively and the optimal weights are presented in Matrix        .  

Table 6. QoS comparisons with respect to Availability 

Availability CPU  Memory  I/O  Cost 

Best (Memory) 3  1 5  9     

Worst (Cost) 3 9 2 1 

Optimal Weights 0.202 0.609 0.127 0.062 

CI ( ) = 0.041 CR = 0.008    

 

Table 7. QoS comparisons with respect to Reliability 

Reliability CPU  Memory  I/O  Cost 

Best (I/O) 4  3 1  9     

Worst (Cost) 2 3 8 1 

Optimal Weights 0.142 0.209 0.577 0.072 

CI ( ) = 0.047 CR = 0.009    

 

Table 8. QoS comparisons with respect to Price 

Price CPU  Memory  I/O  Cost 

Best (Cost) 4  8 5  1     

Worst (Memory) 3 1 2 9 

Optimal Weights 0.067 0.129 0.202 0.602 

CI ( ) = 0.062 CR = 0.011    

 

         
   
   
                                                                                     

   
     (23) 

 

 

Now, WFQoS is computed by multiplying the transpose of WUP ( (22)) by WUP-QoS ( (23)) as follows.  

 

                                  
   
   
                                                                                     

   
    



 

                                  (24) 

   

This matrix,      , consists of the final QoS weights, which will be used to compute the final ranking of the 

services. 

The QoS monitoring data of available cloud services (given in Table 4) is used to calculate matrix        . 

This data consists of the QoS criteria and their values averaged over 300 time periods for four different cloud 

services. The evaluation matrix D corresponding QoS data of the available services and their criteria is given 

below: 

 

   
            

 
                                                         

   
   
                                                                                                                           

   
 
    (25) 

   
            

 
                                                         

   
   
                                                                                                                            

   
 
   (26) 

 

The evaluation matrix D is normalized to make the QoS values of different criteria comparable using the 

formula:                  . The normalized evaluation matrix         is given by: 

           
 

   
   
                                                                                    

   
 
   (27) 

 

After computing the above matrix, WFOP is computed by multiplying WOP-QoS ( (27)) by the transpose of WFQoS ( 

(24)) as follows.  

 

        
 

   
   
                                                                                    

   
   

 

   
   
                        

   
 
 



       
            

 
 

   
   
                        

   
 
    (28) 

Thus, based on QoS criteria of the available services and the relevant computations, it turns out that, taking the 

feedback of previous users into account for this service category, the most appropriate service is     for the user 

as given in (28). The transition matrix in this case study transforms the user behaviour for most preferred criteria 

from Performance to Reliability overtime. That means the UPs change from Performance to Reliability 

overtime for services in this category.  

6 Evaluation 
In this section we assess the suitability of our proposed approach from two perspectives: pairwise comparisons 

of the method and convergence of the method. This is performed through evaluating its performance against 

existing approaches.  

6.1 Pairwise comparison perspective 

 

The proposed method in this study outperforms the AHP-based approaches, frequently used in cloud service 

selection. Here, a comparison of the results of the applications of both BWM and AHP is submitted.  

The number of comparisons: To compare the proposed approach against the existing approaches, we eliminate 

the Markov chain. This is because the methods, previously applied, in the area of cloud service selection do not 

consider the possibility of changes in UPs. Therefore, the problem set to an ordinary MCDM problem and the 

consideration of changes in UPs handled through the Markov chain has been disregarded. Through this, the 

method becomes comparable with the existing approaches. In other words, most existing research in cloud 

service selection used AHP for pairwise comparison [7][9][11] while in our study, we employed BWM for 

pairwise comparison, which is more efficient than AHP [17]. The main reason for this efficiency is that BWM is 

a vector-based method in which only two vectors (for best and worst comparison) are required to make the 

entire matrix. Hence it requires fewer comparisons compared with matrix-based MCDM methods such as AHP. 

For BWM, only 2n-3 comparisons are needed while, for instance, AHP needed n(n-1)/2 comparisons (see 

Figure 4). 

 

 
Figure 4. Pairwise comparisons in BWM and AHP 
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The inconsistency issue: The inconsistency of MCDM methods is commonly measured using a ratio, namely 

Consistency Ratio (CR). CR provides us with a measure of the reliability of the produced results. For the 

purpose of evaluation with the existing MCDM methods (i.e. AHP), we conducted an experiment to calculate 

and evaluate CR from both BWM and AHP. For this purpose, we performed 20 different comparisons to 

determine weights in BWM as well as AHP for similar cases including the ones presented in case study. We 

observed that 80% of the comparisons in BWM are consistent (i.e. CR< 0.1) compared with 60% in AHP as 

shown in Figure 5. Moreover, for the remaining 20% of the comparisons in BWM, the CR was in the range of 

0.1 and 0.2. This shows that the final weights obtained from BWM are considerably more reliable than AHP. 

This is due to more consistent comparisons than AHP. In section 4, three different situations of comparison 

consistency in BWM algorithm are described, namely fully consistent, partially consistent, and inconsistent. The 

final weights derived using that algorithm are always consistent (including fully and partially consistent) and 

given that, we can claim that BWM is more reliable than AHP and so provides greater consistency. 

 

 
Figure 5. Consistency ratio in BWM and AHP 

6.2 Convergence Perspective  

 
Computing Convergence Speed of the Markov Chain: The convergence speed of the Markov chain contributes 

to the efficiency level of the approach, which happens by reducing the number of matrix multiplications. In this 

section probability state redistributions and the number of iterations from the initial state to the stabilizing state 

of the Markov chain are visualised. Figure 3 shows the Markov chain that we used for our case study and 

utilises the convergence properties of the model such as periodicity (which means that the chain should not get 

trapped in cycles), and irreducibility (which means there is positive probability of visiting all other states). 

Figure 6 shows the evolution of the state distributions over time from an initial distribution. It is clear from this 

figure that state probabilities for this Markov chain stabilize at step eight. These stabilized probabilities are used 

as the adjusted priorities of UPs. As explained previously, considering the inherent convergence of transition 

matrices no matter what initial probability distributions we use, the adjusted UPs obtained using the transition 

matrix are independent of the initial state [51].  
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Figure 6. Markov Chain Convergence Steps 

6.2 Discussion 

 

There are many examples of applying Markov chains as statistical models to address real world problems. 

Markov processes are the basis for Markov Chain Monte Carlo (MCMC) methods [57], such as Metropolis-

Hastings (MH) [58] and Gibbs sampler [59] algorithms. MCMC includes algorithms for sampling from 

probability distributions. Monte Carlo methods [60] are a broad class of computational algorithms that rely on 

repeated random sampling to obtain optimization, integration and generating draws for probability distributions. 

Their essential idea is the use of randomness to solve problems. Markov chain enhances these algorithms for 

generating random samples while exploring the state space in a smart way. MCMC algorithms are commonly 

used for simulating random objects with specific probability distributions. In other words, these algorithms use 

different strategies for generating samples (say x(i)) while exploring the state space (say X) using a Markov chain 

mechanism. This mechanism is constructed so that the chain spends more time in the most important regions. 

The convergence property of Markov chains plays a fundamental role in MCMC simulation. For any starting 

probability distribution, the chain will converge to an invariant distribution, as long as the transition matrix 

obeys the following properties: (i) irreducibility: for any state of the Markov chain, there is a positive 

probability of visiting all other states, so that the transition graph is connected; (ii) aperiodicity: the chain should 

not get trapped in cycles. MCMC samplers are irreducible and aperiodic Markov chains that have the target 

distribution as the invariant distribution. In our proposed framework, we use the convergence property of 

Markov chain to obtain adjusted and stabilized UPs to find suitable cloud services instead of using the initial 

UPs, as the adjusted UPs are independent of the initial state.  

Due to the significance of the cloud service selection problem, there have been numerous studies proposing 

solutions [52][53]. This paper has focused on linking the service selection process to the user preferences so that 

the best service is always selected based on the desires of the users. Given that, a user-oriented service selection 

 



process has been developed. Applying such an approach motivates service providers to concentrate on satisfying 

the cloud users at different time intervals, which is mutually beneficial. One of the challenges in cloud service 

selection is that UPs are frequently changing, and such frequent changes prevent the establishment of a method 

to select a particular service.  

In comparison with previously published papers in the area of cloud service selection, this paper proposes a 

selection approach in which a cloud user can find the best service under changing user preferences. The method 

utilizes a Markov chain. A Markovian transition matrix is built based on historical data of changes in user 

preferences. The transition matrix is capable of computing a pattern of UPs that is independent of instant UPs 

and, hence, builds a robust model. Such a model does not fluctuate based on minor changes in a user’s desires. 

The efficiency of a Markov chain in finding the solution to dynamic and real world problems is well established 

[54]–[56]. Markov chains have previously been applied to the supplier selection problem [51], intrusion 

detection systems [54] and activity recognition in smart homes [56]. Although Markov chains have been well 

examined in a variety of research areas to address real word problems [46], the application of the method in 

combination with MCDM methods has only recently been proposed [51]. In addition, Markov chains have not 

previously been employed to address the cloud service selection problem and this study proposes its first 

application.  

There is a previous study on the supplier selection process that proposes a Markov chain in combination with 

the Analytic Network Process (ANP) to trace changing customer needs for the supplier selection process [16]. In 

comparison with that study, this work combines a Markov chain with a recent MCDM method for cloud service 

selection. An approach to handle changing QoS data over a period of time to select a cloud service was 

previously presented [12] but it did not discuss the service selection under changing user preferences. 

BWM has advantages when compared with methods such as ANP. ANP is a well examined MCDM method that 

is capable of the consideration of internal relations between the elements. ANP, however, requires too many 

pairwise comparisons that can become confusing and time consuming. Therefore, in this study for the first time, 

BWM is integrated with a Markov chain in order to address the service selection problem. 

7 Conclusion 
In summary, although different decision-making methods have been previously applied to help cloud users find 

a suitable cloud service, some uncertainties such as unstable UPs in the cloud environment encourage further 

studies. In this paper, we discussed the cloud service selection problem in an environment where the priorities of 

users keep changing. We proposed a framework that finds a pattern of changing UPs using a Markov chain 

independent of the initial user preferences. The pattern is then linked to QoS criteria of all available services to 

find weights using the BWM method. The weights of criteria of all services are then used to determine the 

overall rank of options for cloud service selection, along with the pattern of UPs. We validated the proposed 

methodology employing a case study using the performance data EC2 cloud service. The results show that 

utilizing the previous users’ experience and feedback produces more suitable service recommendation and 

selection for future cloud use. The proposed approach is also more efficient than traditional MCDM approaches 

such as ANP and AHP due to a lower number of comparisons determining the weights of the service criteria. 

We recommend future studies examine the applicability of other methods in combination with BWM to address 

the concerns of uncertainty in the decision process in cloud service selection. 
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Cloud Service Selection Using a Markov Chain and the  

Best-Worst Method 
Abstract 

Due to the increasing number of cloud services, service selection has become a challenging decision for many 

organisations. It is even more complicated when cloud users change their preferences based on the requirements 

and the level of satisfaction of the experienced service. The purpose of this paper is to overcome this drawback 

and develop a cloud broker architecture for cloud service selection by finding a pattern of the changing priorities 

of User Preferences (UPs). To do that, a Markov chain is employed to find the pattern. The pattern is then 

connected to the Quality of Service (QoS) for the available services. A recently proposed Multi Criteria 

Decision Making (MCDM) method, Best Worst Method (BWM), is used to rank the services. We show that the 

method outperforms the Analytic Hierarchy Process (AHP). The proposed methodology provides a prioritized 

list of the services based on the pattern of changing UPs. The methodology is validated through a case study 

using real QoS performance data of Amazon Elastic Compute (Amazon EC2) cloud services.  

Keywords: Cloud Service Selection; MCDM methods; Best Worst Method; Markov chain 

1 Introduction 
Cloud computing is defined as a model that enables ubiquitous, convenient, and on-demand network access to a 

shared pool of configurable computing resources. Such resources can be rapidly provisioned through 

virtualization and released with minimal management effort [1]. Cloud computing has changed the perception of 

how computational resources can be procured and provisioned with scalability and efficiency [2][3]. As a result, 

cloud users are now able to focus on their core competencies and leave management of their computational 

resources to the cloud providers. 

As the number of cloud services is constantly growing, a user is exposed to many choices. Having such choices 

leads to the challenge of selecting the right service from the right cloud provider at the right time [4]. A cloud 

broker architecture (Figure 1) that takes into account the user requirements gives a ranked list of potential cloud 

services is proposed in order to reduce the complexity of service selection for the cloud user. Equinix [5] is one 

such example of a cloud broker architecture which has more than 500 registered cloud providers, each of which 

provides different types of cloud services. Amazon provides more than 70 [6]. Various cloud service selection 

algorithms have been employed in cloud broker-based recommendation engines. To the best of our knowledge 

none of them takes into account the changing needs of the cloud user for best service recommendation. 

Traditionally, cloud service selection is considered the process of finding the most suitable cloud service [7] by 

matching the functional and Quality of Service (QoS) requirements of a user with the description of available 

cloud services provided by different cloud providers [8]. Existing research [9]–[14] has typically focused on 

what criteria are to be considered (e.g. performance, price) and the preferences of the user (e.g. which criteria 

are important to the cloud user). Although different decision-making methods are then applied to the criteria and 

user requirements to help cloud users to find a suitable cloud service, some uncertainties in the cloud 

environment hinder the service users from relying on such methods [15]. One such uncertainty is that User 

Preferences (UPs) are dependent on the user requirements, which dictate the user’s level of satisfaction with the 

service. This level of satisfaction may change over a period of time during service consumption. None of the 

approaches in current literature captures this information and uses it to improve the service recommendation for 

future users. For example, when users are utilizing a cloud service, they may change their preferences based on 

their experience with the service being used. The changed preferences can be collected from the users to 

understand their satisfaction before and after using the recommended service. Then by grouping the users with 

similar service requirements, their level of satisfaction can be analyzed to determine any pattern, as shown in a 

previous study [16]. This would help in the recommendation and selection of the most appropriate cloud service 

for other users having similar service requirements. 
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Figure 1. An overview of Cloud Brokerage Architecture 

In this paper, we propose a cloud broker architecture for cloud service selection by taking into account the 

changing UPs over time. We use a Markov chain to capture and track the changes in UPs and find transition 

patterns in them. The identified patterns are then used for recommendation and selection of the suitable services. 

Finally, Best Worst Method (BWM) [17] which is a Multi Criteria Decision Making (MCDM) method, is used 

to rank the services. The main contributions of our work are as follows: 

 By using a Markov chain, we capture and model the uncertainty in changes to find the transitioning 

patterns within them. 

 We use a Markov chain in conjunction with BWM to rank the services based on changing user 

preferences. 

 We evaluate our proposed model on real cloud services data. Results show our proposed method results 

in greater consistency when compared to Analytic Hierarchy Process (AHP)-based approaches that are 

currently used in cloud service selection.  

This paper is organized as follows. In the next section, the related research on cloud service selection is 

discussed. The framework for cloud service selection is proposed in section 3. In section 4, the implementation 

of the proposed methodology is presented in algorithmic form. The approach is then validated using a case study 

in section 5. Section 6 presents a discussion and the performance evaluation of the proposed methodology. 

Finally, a conclusion is presented in section 7. 

2 Related Work 
In recent years, a number of research efforts have started solving the problem of cloud service selection. In this 

section, we present an overview of some of these studies. Existing research is divided into QoS-based and non-

QoS-based service selection. QoS-based service selection approaches consider the QoS criteria for decision-

making. Table 1 provides the categorization of existing service selection methods used in the literature. 

An approach for selecting cloud services was proposed by Rehman, Hussain and Hussain [12] in which they 

argue that in order to make an informed decision, it is necessary to apply a cloud service selection methodology 

that utilizes QoS history over different time periods. The proposed approach ranks all services using MCDM in 

each time period and aggregates the results to determine the overall rank of all available options for cloud 

service selection.  

The variations in the historic QoS are considered by assigning weights using the logistic decay function. A 

cloud service recommender system is employed by Han, Mehedi Hassan, Yoon, Lee and Huh [18] for the cloud 

market that matches a specific user’s requirements with a suitable cloud service. The method, therefore, selects 

the best combination of services from different cloud providers. The proposed system maintains a record of all 

the available resources in the cloud market and uses this information to rank and calculate the QoS values of 

services. Zeng, Zhao and Zeng [13] designed a cloud service selection algorithm using the maximized-gain and 



minimized-cost approach. The algorithm first uses a service discoverer to find all available services and then 

processes the cloud service user’s request. The maximized-gain and minimized-cost service selection algorithm 

aggregates the gain and cost values by a weighted sum where weights represent the relative importance of 

involved factors. Yu [19] presented a framework for personalized service recommendation in cloud that 

implements a user-centric strategy to achieve personalized QoS assessment of cloud services. The proposed 

framework uses a collaborative filtering technique for a community-based QoS assessment model. 

Table 1. Categorization of existing approaches to service selection 

 Multi-criteria Decision Making (MCDM) Optimization-based Methods 

Focus MCDM-based methods focus on translating 

decision-maker’s preferences into a set of 
variables and then finds the best option from a 

set of finite alternatives [20]. 

Optimization-based methods seek to find the 

set of values for decision variables which 

maximize or minimize the objective function 

without violation of constraints [21]. 

Examples Techniques such as Analytic Hierarchy 

Process (AHP) [22], Analytic Network 

Process (ANP) [23], Multi-Attribute Utility 

Theory (MAUT) [24] and outranking [25] fall 

into this category. 

Techniques such as Dynamic Programming 

[26], Integer Linear Programming (ILP) [27], 

Genetic Algorithm (GA) [28] and Stochastic 

Programming [29] fall into this category. 

 
Many existing approaches for QoS-based cloud service selection use the AHP technique to assign ranks to cloud 

services. Garg, Versteeg and Buyya [7] proposed SMICloud, which is based on Service Measurement Index 

(SMI) [30], for comparing and ranking cloud services on the basis of common characteristics defined as SMI 

criteria. The proposed framework measures all the QoS attributes in SMI and then uses AHP to rank the cloud 

services. Another approach for selecting cloud services was proposed by Godse and Mulik [11] in which they 

applied AHP using QoS criteria such as functionality, architecture, usability, vendor reputation, and cost for 

service selection. Sun, Ma, Zhang, Dong and Hussain [14] presented a fuzzy decision-making framework and 

MCDM-based approach for cloud service selection. That approach was based on a fuzzy ontology that models 

uncertain relationships between objects in databases for service matching, calculates the semantic similarity 

between concepts using AHP, and then uses multi-criteria decision-making to rank cloud services.  

Non-QoS-based approaches define and measure different attributes and metrics for cloud service selection. Li, 

Yang, Kandula and Zhang [31] discussed the cloud service selection problem and identified the basic attributes 

for each type of cloud service (such as IaaS, SaaS) that must be taken into consideration when comparing one 

cloud service with another. Kang and Sim [32] developed a semantic-based cloud service search engine called 

Cloudle using a cloud ontology. The proposed system maintains a record of all the services in a database. The 

user’s search query is sent to an engine that performs similarity reasoning between the query and the concepts in 

the database using cloud ontology. The output of the Cloudle search engine is an ordered list of cloud services 

based on concept similarity, price and cost utility. A similar study for semantic web service ranking was 

proposed in [33]. Wang, Cao and Xiang [34] proposed a dynamic cloud service selection using an adaptive 

learning technique in multi-cloud computing. In their proposed approach, each cloud service broker manages 

some clustered cloud services. The dynamic service selection (DCS) strategy, which consists of a set of dynamic 

service selection algorithms, uses an adaptive learning mechanism that comprises the incentive, forgetting and 

degenerate functions. The mechanism is formulated to dynamically optimize the cloud service selection and to 

return the best service result. 

Some of the non-QoS-based approaches also used AHP to rank the attributes and metrics for decision-making. 

Nie, She and Chen [9] presented an evaluation system of cloud service selection using AHP that calculates the 

weights of attributes for service evaluation. They also presented a number of qualitative models for decision 

making in cloud service selection. Filepp, Schwartz, Ward, Kearney, Cheng, Young and Ghosheh [35] proposed 

virtual machine (VM) image selection service for cloud computing. Their algorithm orders the image based on 

conformance with specified user requirements and policies by best-fit and least-cost optimization. 



Table 2. Comparison of Cloud service selection approaches 

Authors Area Ranking Method QoS based 

Nie et al. [9] Cloud service selection Evaluation index system using AHP No 

Godse and Mulik [11] Cloud service selection SaaS selection using AHP No 

Garg et al. [7] Cloud comparison and 

ranking 

QoS attributes and AHP based ranking Yes 

Z. Rehman et al. [12] Cloud service selection Parallel MCDM approach based on QoS 

history  

Yes 

Han et al. [18] Cloud service composition Selecting best service by matching user 

requirements and QoS values from 

multiple services 

Yes 

Li et al. [31] Cloud service composition Highlights the problems and identifies the 

attributes for cloud comparison 

No 

Kang and Sim [32] Cloud search engine An ontology-based database and uses 

concept similarity, price and cost utility 

for ordering 

No 

Filepp et al. [35] VM image selection Image configuration repository and 

minimum-cost maximum-gain approach 

No 

Zeng et al. [13] Cloud service selection Uses maximum-gain and minimum-cost 

algorithm 

Yes 

Chen et al. [36] Cloud service selection Conflict detection and constraint 

programming  

- 

Sun et al. [14] Cloud service selection Fuzzy ontology and MCDM Yes 

Wang et al. [34] Cloud service selection Adaptive learning mechanism No 

Ghosh et al. [37] Cloud service selection Risk assessment based  

Lin et al. [38] Cloud service selection Risk assessment and cloud focus theory Yes 

Gui et al. [10] Cloud brokering and 

recommender 

Cloud classification model for filtering 

and categorization for cloud service 

recommendation 

- 

Mouratidis et al. [39] Cloud service selection Security and privacy requirements-based 

assessment method 

- 

Qi Yu [19] Cloud service recommender Collaborative filtering-based cloud 

recommender 

Yes 

Liu et al. [40] Cloud service selection Multi-attribute group decision-making 

(MAGDM) based 

- 

 

There are some other research studies which do not fall in the above two groups. An automatic conflict detection 

between the user’s preferences and enterprise policies was proposed by Chen, Yan, Zhao, Lee and Singhal [36]. 

The proposed framework checks various conflicts that result from the violation of enterprise policies and 

inconsistency in cloud service user’s requirements. The investigation is followed by the selection of an 



appropriate service using the constraint programming that satisfies the user’s requirements and also complies 
with enterprise policies. The proposed system aims to resolve the difficulties of cloud service selection with an 

emphasis on the involvement of enterprise policies. Gui, Yang, Xia, Huang, Liu, Li, Yu, Sun, Zhou and Jin [10] 

presented a service brokering and recommendation mechanism for selecting the best public cloud service at the 

IaaS and PaaS level. The proposed framework consists of a hierarchical information model for integrating 

heterogeneous cloud information from different providers and a corresponding cloud information collecting 

mechanism. A cloud service classification model for categorizing and filtering cloud services and an application 

requirement schema were presented. Liu, Chan and Ran [40] structured a multi-attribute group decision-making 

(MAGDM) based scientific decision tool to help businesses to determine which cloud computing vendor would 

be more suitable for their needs. The authors presented a subjective/objective integrated MAGDM technique for 

decision making in cloud computing services that uses objective attributes such as cost as well as subjective 

attributes such as TOE factors (Technology, Organization and Environment). 

Some studies also focused on cloud service selection by considering factors such as security, privacy and risk 

assessment for cloud users. Mouratidis, Islam, Kalloniatis and Gritzalis [39] designed a framework to support 

the selection of cloud providers based on security and privacy requirements. That framework incorporates a 

modeling language and provides a structured process that supports the elicitation of security and privacy 

requirements and the selection of a cloud provider based on the satisfiability of the service provider. Ghosh, 

Member and Ghosh [37] presented a framework to facilitate cloud service selection that calculates the risk 

estimation based on trustworthiness and competence. Another work in risk assessment based cloud service 

selection was carried out by Lin, Zeng, Yang, Wang, Lin and Lin [38]. The proposed method is based on cloud 

theory and generates five property clouds by collecting the risk value and four risk indicators from each virtual 

machine. The cloud backward generator integrated these five clouds into one based on a weight matrix. 

Therefore, the risk prediction value is transferred to the risk level quantification, which is used for cloud service 

selection.  

In addition, there are studies that have developed decision-making models based on uncertainty in experts’ 
preferences. Liu, Dong, Chiclana, Cabrerizo, and Herrera-Viedma [41] develop a linear programming approach 

structured in two stages to minimize the information deviation of the relations between decision makers’ 
preferences based on their confidence levels. Moral and Le [42] studied a group decision making problem. It 

investigated the problem using a fuzzy approach to obtain experts’ preferences focusing on the convergence 

speed of the consensus. They show that setting a number of rules can control such a speed in the decision 

making process. Wu, Chiclana, Fujita and Herrera-Viedma [43] proposed a visual interactive framework to 

facilitate reaching a consensus based on different preferences by various experts. A trust based recommendation 

mechanism was then submitted to deal with inconsistencies in the expressed preferences. The mechanism finds 

out whether an unknown expert can be trusted and, hence, the associated preferences should be taken into 

account. Capuano, Chiclana, Fujita, Herrera-Viedma and Loia [44] proposed a model to consider the real 

preference of an expert whom is influenced by the opinion of other experts. They assume that the expert is 

unable to express preferences on some alternatives and employ a user friendly fuzzy ranking model to obtain the 

preferences. Zhanga, Dong and Herrera-Viedma [45] deal with significant conflicts in experts’ preferences that 

can cause serious issues in the decision making process. They employed a selection process to divide decision 

makers into different clusters. Individual preference vectors are obtained, and a feedback adjustment process is 

utilized to help decision makers adjust their preferences. We notice in a review of papers on decision-making 

models, the insufficient studies undertaken taking into account a frequent and continuous change of preferences. 

This study performs that through a combined application of a Markovian model and BWM.  

There are other versions of Markov chains, the application of each requires its own assumptions. For instance, 

applying a hidden Markov chain requires the assumption that there exist states of which we are not aware. 

Considering such assumptions are not within the scope of this research, this paper is the first work introducing 

Markov chains to cloud service selection. Therefore, we decided to use the general version of Markov chain 

[46][47] which is applicable to trace changing priorities of users/customers and has recently been examined 

[16].  



To summarize, shown in Table 2 are a variety of approaches proposed in the literature several of which are 

based on MCDM techniques that assist a user make a service selection decision in the cloud environment. 

However, the issue of changing UPs has not been addressed in cloud service selection. In this paper, our aim is 

to assist cloud users to make an informed decision under changing user preferences.  

3 Proposed Methodology 
The proposed methodology uses a Markov chain in conjunction with BWM in order to find the best service. The 

Markov chain generates a pattern of the changing priorities of user preferences. This pattern is then used as the 

input for BWM to find out the priorities of QoS criteria. The QoS priorities are then used to rank the services. 

The method consists of the steps depicted in Figure 2. 

Repeat for all UPs

Select one UP and find its 

relation with all the QoS 

criteria

Select the best and worst 

QoS criteria with respect 

to selected UP

Calculate optimal weights 

for QoS criteria using 

BWM

Apply Markov chain to 

transition matrix and initial 

UPs to get the pattern of 

changing UPs

Start

Normalize QoS values for 

the identified QoS criteria

Compute the final QoS 

weights considering their 

relations to UPs

Compute the final Service 

ranks

QoS Repository

End

Get the required 

transition matrix, 

initial UPs and 

QoS criteria

 

Figure 2. Flowchart showing the sequence of steps in the proposed approach 

First, we need  to obtain the initial UPs through service queries on the cloud broker [48]. These preferences, 

however, cannot be considered stable as they may change as the UPs do [49]. The changes can be traced using a 

Markov chain. Markov chains have previously been applied in other studies to predict a pattern of customer 

needs [16]. The method is explained based on its previous applications, as follows.  

The proposed MCDM method utilizes the Markov decision process. Markov chains are useful in capturing 

discrete events over a period of time. In this case, a Markov chain finds a pattern of changing UPs. The next step 



would be to utilize the captured information for cloud service selection. In cloud service selection, alternatives 

are ranked against criteria and, therefore, we need to use a MCDM method. A recently proposed MCDM 

method, BWM, is selected as it requires less pairwise comparisons and leads to greater consistency when 

compared with similar methods such as AHP [17][50]. We apply a Markov chain, as a discrete time, stochastic 

process, in combination with BWM to firstly find a pattern of UPs and then, considering the obtained pattern, 

rank the alternatives. Given this, the Markov chain does not directly make the decision, instead, the power of the 

Markov chain is leveraged to help BWM to connect the importance of these elements to cloud service 

specifications and rank the alternatives. 

Here, a Markov chain addresses the problem of UPs being discrete events and finds a pattern in them. Although 

the Markov chain finds the pattern of UPs to be utilized instead of the initial preferences, this does not mean that 

users may not change priorities. Every user may keep changing their priorities. However, if these changes are 

traced in terms of the whole system including many other users for similar services, a pattern for the required 

specifications can be observed. In such a pattern, there will be a certain number of users with each of the 

preferences. For example, some users may change to low priority for a certain preference while other users may 

change to high priority for the same preference. Those numbers are computable using the Markov chain as 

follows.  

Let us assume that the initial priority list of UPs is obtained through interviews and normalized in matrix     as 

shown in Matrix (1).  

                        (1) 

 
Consider a time set, T = {     }. There is always a likelihood of changing the preference from one UP to 

another after a period of time. For example, at time   ,    is greater than   , which means more users prefer and 

select    (   UP  compared with   (   UP) as the most important requirement. At time   , UPs may change and    may not remain more than   . The time interval depends on how regularly users utilize the service and this 

varies for different service categories. Observing user behavior over time, we can see the proportion of users 

who have UP1 as their most important need and so wish to stay with UP1 or shift to other UPs (e.g. UP2, UP3...). 

Figure 3 is an example showing the transitions where there are four UPs (S1 to S4). 

 

S1 S2

S4 S3

b11k b22k

C3kC4k

b12k

b21k C2kC1k

b13k

b
2

3k

 
Figure 3. Transitioning between states at k

th
 period  

In the above figure,     stands for the number of users that are with    at period k (   ), and      represents the 

number of users that transition from    to    (changing from one UP to another as their priority). In order to 

compute the transition matrix, we need to calculate the probability of transitioning from    to    at kth period for 

every UP. The probabilities are computed as follows. If there are     users who prefer S1 at time k, and      are 



those who prefer to transition to S2, then the probability of this transition is computed as:             . More 

generally, the probabilities are computed as follows.                    (2) 

If, after a sequence of periods, a     can be estimated for which the following condition exists, then the value of     in the transition matrix is equal to      (note that   stands for a small value).                  (3) 

In many cases, finding a     that stays within the narrow interval of (             ) for a large number of 

successive periods may not be applicable. In such cases, different amounts for     can instead be found and used 

for a reasonable number of periods. To cope with such a situation, a number should be set by decision makers. 

When the number of successive periods that     stays in the interval and goes beyond the number, the transition 

matrix is computed and will be in use until a new trend appears. Techniques and charts of statistical quality 

control (SQC) can be utilized for the purpose of recognition of the trends, detection of the points of shifting    , 

and monitoring probabilities in the transition matrix.  

In summary, when the sequence      is relatively close to    , the value of     is estimated by     . Since the 

transition matrix includes    values presented by    , we do not expect a considerable effect for minor changes. 

In the case study presented in the paper, we use a threshold of 0.1. If the absolute variation of the probabilities in 

the transition matrix divided by its order goes beyond 10 percent, recalculation of the transition matrix is 

required.  

The transition matrix is computed as follows.  

  
       

           

   
   
                                

   
 
      (4) 

By frequent multiplication of the transpose of matrix     by the transition matrix, P, a set of         is obtained, 

where i is the number of the multiplications. 

                                                      (5) 
 
A generalized form of the formula is presented in  (6): 
 

                      ,                        (6)      

     =        
 when k     (7) 

 
Considering the inherent convergence of the stochastic matrices, we expect that the matrices become the same 

after three to five times of multiplication. Since the adjusted priorities of UPs are independent of the initial state 

[51], this method stands independent of the initial priorities of UPs. Thus, rather than the identification of the 

users’ initial (instant) preferences, there should be a focus on forming a transitional matrix (explained above).  

The limiting matrix of P can be found by raising P to a large power. In such a matrix, the arrays in each column 

are consistent. Multiplying any normalized matrix by this limiting matrix leads to the same matrix regardless of 



the initial matrix (provided that initial matrix is normalized). The columns of limiting matrix have the same 

values. So, the values of a row of the matrix can be used as the pattern of UPs which is shown by     .  

In practice, each time that the probabilities are computed through interviews and feedback, the transition matrix 

can be obtained and replaced. If the updated matrix does not change the sequence of alternatives, there is no 

concern. If a change does occur, then the decision maker has to decide when to shift from the current cloud 

provider to a new cloud provider, while taking into account other important factors such as obtained trust and 

effort needed for new negotiations. After finding the pattern of UPs, the relationship between UPs and the QoS 

criteria need to be computed through BWM.  

The relationship between UPs and QoS criteria of available services can be identified through assigning 

appropriate weights. Each QoS criterion is compared with respect to every UP, resulting in a matrix (as shown 

in  (9)) in which rows represent the UPs and columns represents the QoS criteria. The matrix, namely         

is explained in this section.  

The relationship of UPs and QoS criteria can be found by asking simple questions such as: ‘What is the relative 

importance of the ith QoS attribute when compared to the jth QoS attribute with respect to the kth UP?’ When 

there are four QoS criteria such as: CPU, Memory, Input/Output (I/O), and Cost, while Performance is an UP, 

then the following question could be asked: “What is the importance of CPU when compared to Cost 

considering Performance?” With respect to each QoS criteria, they are compared with each UP in separate 

tables. The calculated importance weights are used to calculate matrix        . We use BWM [17] in the 

proposed methodology in order to find the relationship between UPs and QoS criteria. The process to compute 

the weights of the QoS criteria is described as follows: 

1. Select an UP from {UP1, UP2, …, UPm} to find its relation with all the QoS criteria {Q1, Q2,…, Qn}.  

 

2. Determine the best (e.g. most important) and the worst (e.g. least important) criteria with respect to the 

selected UP. For example, CPU may be the best and Cost may be the worst criteria when considering 

the selected UP: Performance. 

 

3. Determine the preference of the best criterion over all other criteria using a number between 1 and 9 

where 1 is the best preference and 9 is the least preference. The resulting Best-to-Others vector would 

be AB = (aB1, aB2…,aBn) where aBj indicates the preference of the best criterion B over criterion j such 

that aBB = 1. For the above example, the vector AB shows the preference of CPU over all the other 

criteria considering UP Performance. 

 

4. Determine the preference of all the criteria over the worst criterion using a number between 1 and 9. 

The resulting Others-to-Worst vector would be AW = (a1W, a2W…, anW)
T
 where ajW indicates the 

preference of the criterion j over the worst criterion W such that aWW =1. For this example, the vector 

shows the preference of all the criteria over Cost considering Performance. 

 

5. Finally, the optimal weights (w1, w2, …, wn) are found. The optimal weight for the criteria is the one 

where for each pair of wB/wj and wj/wW, we have wB/wj = aBj and wj/wW = ajW. To satisfy these 

conditions for all j, we should find a solution where the maximum absolute differences             and              for all j is minimized. Considering the non-negativity and sum condition for the weights, 

the following problem is formulated. 

 



                                                                                            
  

    (8) 

Here   represents a measure of the consistency of comparison. The optimal weights (w1, w2, …, wn) are 

obtained by solving the problem in (8) for the QoS criteria {q1, q2…, qn} with respect to the selected 

UP.  

 

An algorithm for computing optimal weights is described in the next section. A more elaborate example of the 

calculation of optimal weights for three criteria by solving the above equations has previously been given by 

Rezaei [17]. In the above, QoS criteria {Q1…Qn} are compared with respect to each UP. Each time, a set of 

weights for {Q1…Qn} is computed, those weights build the rows of the         (9) presented below. 

         
          

           

   
   
                                

   
 
       (9) 

Now, a matrix of QoS priorities is found that reflects the final weights of the QoS criteria considering their 

relationship with UPs. This matrix is determined by the product of the matrix containing the pattern of the 

priorities of the UPs and relation of UPs with the QoS criteria. 

 

WFQoS =     ×          (10) 

 

After that, the QoS criteria of the available services (options) are normalized. QoS values of all the services 

form an evaluation matrix D, which has the following form, where Q represents the QoS criterion and OP 

represents the service (option). 

   
          

           

   
   
                                

   
 
   (11): The evaluation matrix 

Since each criterion has its own units and range of values, the matrix D is normalized using  (12) to make the 

QoS values of different criterion comparable.                      (12) 

The normalized matrix         is given by: 



         
          

           

   
   
                                

   
 
   (13) 

 

The final ranking of the services is calculated using the product of the transposed matrix WFQoS and the 

normalized evaluation matrix WOP-QOS.  

   

WFOP = WOP-QoS × (WFQoS)
T   (14) 

 

The matrix WFOP contains the corresponding ranking for all the services with the highest value as the most 

suitable one. In the next section, the applicability of the proposed method is applied to select the best cloud 

service from a set of services. 

 

4 Implementation 
The proposed method of cloud service selection requires the transition matrix of changing UPs and the QoS 

criteria of available services as input and then, after performing the relevant computations, returns the final 

ranking of the services. As shown in Algorithm 1, the input and output parameters are defined first. The 

algorithm then computes the limiting matrix of P (denoted as            
) by repeatedly multiplying the transition 

matrix with itself for n number of times (line 1-5). The value of n can be set by the user to adjust the number of 

iterations. Generally, after 4 or 5 iterations, the values in the limiting matrix            
 settle down and do not 

change much after that. So, the values of the row of the matrix can be used as the pattern of UPs which is shown 

by      (line 6).  

 

After this, the relations between UPs and QoS criteria         ) are found (line 7-9). Taking one UP at a time 

and calling Algorithm 2 (BWM) to find the priorities of the UP with respect to all the QoS criteria does this. A 

matrix of final QoS priorities       is then computed by the product of the matrix containing the pattern of the 

UPs’ priorities      and relationship of UPs with the QoS criteria         (line 10). Next, the QoS criteria of 

the available options (matrix D) are normalized to make the QoS values of different criteria comparable as every 

criterion has its own units and range of values (line 11-17). The normalized matrix is denoted as        . 

Finally, the ranking of the services      ) is calculated using the product of a transposed matrix       and the 

normalized evaluation matrix         (line 18). 

 

Algorithm 1. Main algorithm for cloud service selection with changing user preferences 

Input:    D = Averaged QoS values  

               P = Transition matrix 

W(0)
UP = Initial user preferences 

               UP = set of user preferences 

               Q = set of QoS attributes 

Output: 
               WFOP = Final list of available service (options) rankings 

1. initialize n;  

2. initialize k=0; 

3. while (k++ <= n)  

4.     W(k)T
UP  =  W(k-1)T

UP × P; 

5. end while 



6. W*
UP = W(k)T

UP; 

7. foreach up ϵ UP do 

8.     WUP-QoS = BWM(up,Q); 

9. end for 

10. WFQoS = W*
UP × WUP-QoS; 

11. for i < n cols in D 

12.     for j < m rows in D 

13.         select     from D; 

14.                            

15.         set     in        ; 

16.     end for 

17. end for 

18. WFOP = WOP-QoS × WT
FQoS; 

19. return WFOP; 

 

 

In Algorithm 1, for every UP and a set of weights for the QoS criteria {Q1…Qn} is computed. This is used to 

build the rows of the         matrix. First of all, the consistency index table (Table 3) is loaded, which shows 

the maximum value of   (max ) for any comparison aBj and ajW (where aBj is the preference of the best criterion 

over the criterion j and ajW is the preference of criterion j over the worst criterion). The process of finding the 

max  has previously been described by Rezaei [17]. This gives an indication of how consistent the comparison 

is. There are three possibilities: 

1. A comparison is fully consistent when aBj × ajW = aBW, for all j, where aBW is the preference of the best 

criterion over the worst criterion. In this case, the value of   is 0 for all j.  

2. A comparison is partially consistent when aBj × ajW is lower or higher than aBW for any j. In this case, 

the value of   for the comparison is anything between 0 and max . 

3. A comparison is considered inconsistent when aBj and ajW have the maximum value (close to aBW) for 

any j which will result in max . 

 

Table 3. Consistency Index (CI) [41]     1 2 3 4 5 6 7 8 9 
max  0.00 0.44 1.00 1.63 2.30 3.00 3.73 4.47 5.23 

 

Algorithm 2 allows decision maker to compute the weights when the comparisons are either fully consistent or 

partially consistent. If the comparisons are inconsistent, it allows decision maker to re-adjust the comparisons. 

For partially consistent, we propose using a threshold value between 0 and max  that allows decision maker to 

adjust the consistency according to the problem. 

 

Algorithm 2. Best-Worst Method 

BWM (up, Q) 

1. CI = Consistency Index table; 

2. choose best criterion aBB where aBB ϵ Q  

3. choose worst criterion aWW ϵ Q  

4. j = 1; 

5. set      x where x ϵ [1,9] 

6. while (j ≤ count(Q)) 
7.      do 

8.           set aBj = x where x ϵ [1,9]; 

9.           set ajW = x where x ϵ [1,9]; 

10.     while                     ); 

11.      AB.add(aBj); 

12.      AW.add(ajW); 



13. end while 

14. for all j in Q 

15.         Form equation of the form                where     ϵ AB; 

16.         Form equation of the form                where     ϵ AW; 

17. end for  

18. Form equation       ; 

19. Compute    for up (row) in matrix WUP-QoS by solving system of linear equations (e.g. using Gaussian 

Elimination); 

20. return WUP-QoS; 

 

After initialization, algorithm allows decision maker to set     that defines the preference of the best criterion 

over worst. Ideally from set of {1…,9}, highest possible value for     is 9 (line 5). All the comparisons with 

respect to best criterion and the worst criterion are perform one by one in a while loop (line 6-13). If any 

comparison is inconsistent, this loop asks the decision maker to re-adjust the comparison. Next, the comparisons 

are used to form equations of the form as given (8) where weights become the variables and the comparison 

becomes the co-efficient (line 14-18). For solving these equations, we propose using Gaussian Elimination 

(Gauss-Jordan Elimination) method to compute the optimal weights (line 19). The result of this operation is the 

optimal weights, which are set in matrix WUP-QoS for the corresponding row of up and returned to Algorithm 1. 

 

5 Case Study 
To validate our approach, a case study was undertaken on the dataset of Amazon EC2 IaaS cloud services. We 

used the QoS monitoring data of four EC2 IaaS services that were collected by PRTG monitoring service 

(https://prtg.paessler.com). The data consisted of the average of the hourly measurements of response time for 

300-time periods of the four EC2 instances that includes CPU, Memory and I/O performance of the monitored 

services. In addition to these, the fourth criterion price per hour (denoted as Cost) is also included for each 

service as quoted by Amazon (www.amazon.com). In this case study, UPs are denoted Performance, 

Availability, Reliability and Price. Table 4 shows the brief description and the criteria of the four available cloud 

services. 

 

Table 4. Available cloud services and average QoS criteria 

Service Detail Instance Type CPU (ms) Memory (ms) I/O (ms) Cost ($/hr) 

OP1 EC2 EU Small 2056.19 1455.72 1035.82 0.0885 

OP2  EC2 EU Micro 80.77 81.94 260.42 0.0200 

OP3 EC2 SA Micro 860.15 126.66 722.40 0.0270 

OP4 EC2 US East Small 2200.70 532.28 4187.19 0.0650 

 

As mentioned previously, UPs are likely to change over time. The transition matrix P is computed as given 
below. From this,     is easy to compute. 
 

   
                                        

 
                                   

   
   
                                                                    

   
     (15) 

 

Although we do not need to use the initial UPs, as explained in the methodology, to show that      is 

independent of the initial UPs, assume that the initial UPs’ priorities are obtained as below: 



                                                                  (16) 

Based on the above two matrices, the following matrices are calculated as                                                               (17) 

                                           (18) 

                                           (19) 

                                              (20) 

Now if the limiting transition matrix (Plimiting) is computed, as presented below, it is a matrix with equal values 

in each column. Given that, any normalized matrix multiplied by it will be equal to     , which is a 

representation of the column values of Plimiting. 

          
   
   
                                                                                    

   
 
    (21) 

Any normalized matrix multiplied by this matrix would result in matrix     , presented in Matrix (22). The 

changing UPs through the use of the transition matrix will settle into the following     ,, regardless of the 

initial UPs. This final matrix obtained from the application of a Markov chain is employed as the inputs to the 

second part of the method.  

                                                               (22) 

Now, with respect to each UP, QoS criteria are compared to each other. The calculated weights are used to 

calculate matrix        . The comparison is performed using the BWM approach. According to this approach, 

for each UP, the best criterion is selected. Then, the weight is assigned to every criterion in comparison with the 

best criteria. A similar process is performed for the worst criterion. The optimal weight is computed by solving 

the  (8) such that the ratios             and             are minimized for all criteria and should not exceed      given in Table 3 for     where     the preference of the best criterion over the worst criterion. For 

instance, the optimal weight for Memory in Table 5 satisfies these constraints. In this case, the ratios 

|0.599/0.212 – 3| = 0.037 and |0.212/0.062 - 4| = 0.58 are clearly less than the      for     which is       

(see Table 3). Moreover, algorithm 2 takes the best and worst preferences as input and returns the computed 

optimal weights as given in Table 5. It represents the QoS comparison with respect to Performance UP. 

 

Table 5. QoS comparisons with respect to Performance 

Performance CPU  Memory  I/O  Cost 

Best (CPU) 1  3 5  9     

Worst (Cost) 9 4 2 1 



Optimal Weights 0.599 0.212 0.127 0.062 

CI ( ) = 0.040 CR = 0.008    

 

Similarly, QoS criteria are compared with respect to Availability, Reliability and Price in Table 6, Table 7 and 

Table 8 respectively and the optimal weights are presented in Matrix        .  

Table 6. QoS comparisons with respect to Availability 

Availability CPU  Memory  I/O  Cost 

Best (Memory) 3  1 5  9     

Worst (Cost) 3 9 2 1 

Optimal Weights 0.202 0.609 0.127 0.062 

CI ( ) = 0.041 CR = 0.008    

 

Table 7. QoS comparisons with respect to Reliability 

Reliability CPU  Memory  I/O  Cost 

Best (I/O) 4  3 1  9     

Worst (Cost) 2 3 8 1 

Optimal Weights 0.142 0.209 0.577 0.072 

CI ( ) = 0.047 CR = 0.009    

 

Table 8. QoS comparisons with respect to Price 

Price CPU  Memory  I/O  Cost 

Best (Cost) 4  8 5  1     

Worst (Memory) 3 1 2 9 

Optimal Weights 0.067 0.129 0.202 0.602 

CI ( ) = 0.062 CR = 0.011    

 

         
   
   
                                                                                     

   
     (23) 

 

 

Now, WFQoS is computed by multiplying the transpose of WUP ( (22)) by WUP-QoS ( (23)) as follows.  

 

                                  
   
   
                                                                                     

   
    



 

                                  (24) 

   

This matrix,      , consists of the final QoS weights, which will be used to compute the final ranking of the 

services. 

The QoS monitoring data of available cloud services (given in Table 4) is used to calculate matrix        . 

This data consists of the QoS criteria and their values averaged over 300 time periods for four different cloud 

services. The evaluation matrix D corresponding QoS data of the available services and their criteria is given 

below: 
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   (26) 

 

The evaluation matrix D is normalized to make the QoS values of different criteria comparable using the 

formula:                  . The normalized evaluation matrix         is given by: 

           
 

   
   
                                                                                    

   
 
   (27) 

 

After computing the above matrix, WFOP is computed by multiplying WOP-QoS ( (27)) by the transpose of WFQoS ( 

(24)) as follows.  

 

        
 

   
   
                                                                                    

   
   

 

   
   
                        

   
 
 



       
            

 
 

   
   
                        

   
 
    (28) 

Thus, based on QoS criteria of the available services and the relevant computations, it turns out that, taking the 

feedback of previous users into account for this service category, the most appropriate service is     for the user 

as given in (28). The transition matrix in this case study transforms the user behaviour for most preferred criteria 

from Performance to Reliability overtime. That means the UPs change from Performance to Reliability 

overtime for services in this category.  

6 Evaluation 
In this section we assess the suitability of our proposed approach from two perspectives: pairwise comparisons 

of the method and convergence of the method. This is performed through evaluating its performance against 

existing approaches.  

6.1 Pairwise comparison perspective 

 

The proposed method in this study outperforms the AHP-based approaches, frequently used in cloud service 

selection. Here, a comparison of the results of the applications of both BWM and AHP is submitted.  

The number of comparisons: To compare the proposed approach against the existing approaches, we eliminate 

the Markov chain. This is because the methods, previously applied, in the area of cloud service selection do not 

consider the possibility of changes in UPs. Therefore, the problem set to an ordinary MCDM problem and the 

consideration of changes in UPs handled through the Markov chain has been disregarded. Through this, the 

method becomes comparable with the existing approaches. In other words, most existing research in cloud 

service selection used AHP for pairwise comparison [7][9][11] while in our study, we employed BWM for 

pairwise comparison, which is more efficient than AHP [17]. The main reason for this efficiency is that BWM is 

a vector-based method in which only two vectors (for best and worst comparison) are required to make the 

entire matrix. Hence it requires fewer comparisons compared with matrix-based MCDM methods such as AHP. 

For BWM, only 2n-3 comparisons are needed while, for instance, AHP needed n(n-1)/2 comparisons (see 

Figure 4). 

 

 
Figure 4. Pairwise comparisons in BWM and AHP 
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The inconsistency issue: The inconsistency of MCDM methods is commonly measured using a ratio, namely 

Consistency Ratio (CR). CR provides us with a measure of the reliability of the produced results. For the 

purpose of evaluation with the existing MCDM methods (i.e. AHP), we conducted an experiment to calculate 

and evaluate CR from both BWM and AHP. For this purpose, we performed 20 different comparisons to 

determine weights in BWM as well as AHP for similar cases including the ones presented in case study. We 

observed that 80% of the comparisons in BWM are consistent (i.e. CR< 0.1) compared with 60% in AHP as 

shown in Figure 5. Moreover, for the remaining 20% of the comparisons in BWM, the CR was in the range of 

0.1 and 0.2. This shows that the final weights obtained from BWM are considerably more reliable than AHP. 

This is due to more consistent comparisons than AHP. In section 4, three different situations of comparison 

consistency in BWM algorithm are described, namely fully consistent, partially consistent, and inconsistent. The 

final weights derived using that algorithm are always consistent (including fully and partially consistent) and 

given that, we can claim that BWM is more reliable than AHP and so provides greater consistency. 

 

 
Figure 5. Consistency ratio in BWM and AHP 

6.2 Convergence Perspective  

 

Computing Convergence Speed of the Markov Chain: The convergence speed of the Markov chain contributes 

to the efficiency level of the approach, which happens by reducing the number of matrix multiplications. In this 

section probability state redistributions and the number of iterations from the initial state to the stabilizing state 

of the Markov chain are visualised. Figure 3 shows the Markov chain that we used for our case study and 

utilises the convergence properties of the model such as periodicity (which means that the chain should not get 

trapped in cycles), and irreducibility (which means there is positive probability of visiting all other states). 

Figure 6 shows the evolution of the state distributions over time from an initial distribution. It is clear from this 

figure that state probabilities for this Markov chain stabilize at step eight. These stabilized probabilities are used 

as the adjusted priorities of UPs. As explained previously, considering the inherent convergence of transition 

matrices no matter what initial probability distributions we use, the adjusted UPs obtained using the transition 

matrix are independent of the initial state [51].  
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Figure 6. Markov Chain Convergence Steps 

6.2 Discussion 

 

There are many examples of applying Markov chains as statistical models to address real world problems. 

Markov processes are the basis for Markov Chain Monte Carlo (MCMC) methods [57], such as Metropolis-

Hastings (MH) [58] and Gibbs sampler [59] algorithms. MCMC includes algorithms for sampling from 

probability distributions. Monte Carlo methods [60] are a broad class of computational algorithms that rely on 

repeated random sampling to obtain optimization, integration and generating draws for probability distributions. 

Their essential idea is the use of randomness to solve problems. Markov chain enhances these algorithms for 

generating random samples while exploring the state space in a smart way. MCMC algorithms are commonly 

used for simulating random objects with specific probability distributions. In other words, these algorithms use 

different strategies for generating samples (say x(i)) while exploring the state space (say X) using a Markov chain 

mechanism. This mechanism is constructed so that the chain spends more time in the most important regions. 

The convergence property of Markov chains plays a fundamental role in MCMC simulation. For any starting 

probability distribution, the chain will converge to an invariant distribution, as long as the transition matrix 

obeys the following properties: (i) irreducibility: for any state of the Markov chain, there is a positive 

probability of visiting all other states, so that the transition graph is connected; (ii) aperiodicity: the chain should 

not get trapped in cycles. MCMC samplers are irreducible and aperiodic Markov chains that have the target 

distribution as the invariant distribution. In our proposed framework, we use the convergence property of 

Markov chain to obtain adjusted and stabilized UPs to find suitable cloud services instead of using the initial 

UPs, as the adjusted UPs are independent of the initial state.  

Due to the significance of the cloud service selection problem, there have been numerous studies proposing 

solutions [52][53]. This paper has focused on linking the service selection process to the user preferences so that 

the best service is always selected based on the desires of the users. Given that, a user-oriented service selection 

 



process has been developed. Applying such an approach motivates service providers to concentrate on satisfying 

the cloud users at different time intervals, which is mutually beneficial. One of the challenges in cloud service 

selection is that UPs are frequently changing, and such frequent changes prevent the establishment of a method 

to select a particular service.  

In comparison with previously published papers in the area of cloud service selection, this paper proposes a 

selection approach in which a cloud user can find the best service under changing user preferences. The method 

utilizes a Markov chain. A Markovian transition matrix is built based on historical data of changes in user 

preferences. The transition matrix is capable of computing a pattern of UPs that is independent of instant UPs 

and, hence, builds a robust model. Such a model does not fluctuate based on minor changes in a user’s desires. 

The efficiency of a Markov chain in finding the solution to dynamic and real world problems is well established 

[54]–[56]. Markov chains have previously been applied to the supplier selection problem [51], intrusion 

detection systems [54] and activity recognition in smart homes [56]. Although Markov chains have been well 

examined in a variety of research areas to address real word problems [46], the application of the method in 

combination with MCDM methods has only recently been proposed [51]. In addition, Markov chains have not 

previously been employed to address the cloud service selection problem and this study proposes its first 

application.  

There is a previous study on the supplier selection process that proposes a Markov chain in combination with 

the Analytic Network Process (ANP) to trace changing customer needs for the supplier selection process [16]. In 

comparison with that study, this work combines a Markov chain with a recent MCDM method for cloud service 

selection. An approach to handle changing QoS data over a period of time to select a cloud service was 

previously presented [12] but it did not discuss the service selection under changing user preferences. 

BWM has advantages when compared with methods such as ANP. ANP is a well examined MCDM method that 

is capable of the consideration of internal relations between the elements. ANP, however, requires too many 

pairwise comparisons that can become confusing and time consuming. Therefore, in this study for the first time, 

BWM is integrated with a Markov chain in order to address the service selection problem. 

7 Conclusion 
In summary, although different decision-making methods have been previously applied to help cloud users find 

a suitable cloud service, some uncertainties such as unstable UPs in the cloud environment encourage further 

studies. In this paper, we discussed the cloud service selection problem in an environment where the priorities of 

users keep changing. We proposed a framework that finds a pattern of changing UPs using a Markov chain 

independent of the initial user preferences. The pattern is then linked to QoS criteria of all available services to 

find weights using the BWM method. The weights of criteria of all services are then used to determine the 

overall rank of options for cloud service selection, along with the pattern of UPs. We validated the proposed 

methodology employing a case study using the performance data EC2 cloud service. The results show that 

utilizing the previous users’ experience and feedback produces more suitable service recommendation and 

selection for future cloud use. The proposed approach is also more efficient than traditional MCDM approaches 

such as ANP and AHP due to a lower number of comparisons determining the weights of the service criteria. 

We recommend future studies examine the applicability of other methods in combination with BWM to address 

the concerns of uncertainty in the decision process in cloud service selection. 
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