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Abstract— An efficient method for statistically characterizing
multiconductor transmission line (MTL) networks subject to
a large number of manufacturing uncertainties is presented.
The proposed method achieves its efficiency by leverag-
ing a high-dimensional model representation (HDMR) tech-
nique that approximates observables (quantities of interest in
MTL networks, such as voltages/currents on mission-critical
circuits) in terms of iteratively constructed component functions
of only the most significant random variables (parameters that
characterize the uncertainties in MTL networks, such as con-
ductor locations and widths, and lumped element values). The
efficiency of the proposed scheme is further increased using a
multielement probabilistic collocation (ME-PC) method to com-
pute the component functions of the HDMR. The ME-PC method
makes use of generalized polynomial chaos (gPC) expansions
to approximate the component functions, where the expansion
coefficients are expressed in terms of integrals of the observable
over the random domain. These integrals are numerically eval-
uated and the observable values at the quadrature/collocation
points are computed using a fast deterministic simulator. The
proposed method is capable of producing accurate statistical
information pertinent to an observable that is rapidly varying
across a high-dimensional random domain at a computational
cost that is significantly lower than that of gPC or Monte Carlo
methods. The applicability, efficiency, and accuracy of the method
are demonstrated via statistical characterization of frequency-
domain voltages in parallel wire, interconnect, and antenna
corporate feed networks.

Index Terms— Crosstalk, generalized polynomial chaos (gPC),
global sensitivity analysis, high-dimensional model represen-
tation (HDMR), interconnects, multiconductor transmission
lines (MTLs), multielement probabilistic collocation (ME-PC)
method, stochastic analysis, surrogate model, tolerance analysis,
uncertainty quantification.

I. INTRODUCTION

ADVANCES in numerical algorithms and stochastic
analysis techniques coupled with increases in the speed
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and memory capacity of computers recently have enabled
the statistical characterization of complex multiconductor
transmission line (MTL) networks. Methods developed for this
purpose provide statistics of observables (such as voltages and
currents on mission-critical circuits and components), given
uncertainties due to manufacturing tolerances and process-
induced variability (such as values of lumped electronic
components, the constitutive parameters of substrates, and
the positions and widths of interconnects), and excitations.
These statistics, which are encapsulated by the means,
standard deviations, probability density functions (PDFs), and
sensitivity indices of the observables in MTL networks, are
used for quantifying a system’s expected performance, failure
rate, and operational margins of error.

The effects of uncertainties parameterized by random
variables in MTL networks have traditionally been quantified
through adjoint sensitivity methods [1], analytical probabilistic
models [2], and Monte Carlo (MC) techniques [3], [4]. Among
these methods, MC techniques are the most easily applied
to complex MTL networks. Classical MC methods use a
deterministic MTL simulator to compute values of observables
for many realizations of the network, which are constructed by
sampling the assumed/known PDFs of the random variables.
MC methods are easily implemented and readily provide the
statistics of all observables. That said, they usually converge
slowly [5] and hence may call for many executions of the
MTL simulator to provide reasonably accurate results.

Stochastic Galerkin/collocation schemes leveraging the
generalized polynomial chaos (gPC) expansion address the
convergence concerns of MC methods. Recently, they have
been deployed successfully in computational electromagnetic
analysis [6]–[16]. gPC expansion-based methods construct
a highly accurate and efficient-to-compute surrogate model
of the observable in terms of entire-domain orthogonal
polynomials. This surrogate model is then used to obtain the
observable’s mean, standard deviation, and sensitivity indices,
or probed by an MC method that provides its PDF. Coefficients
of the polynomial expansion are computed using Galerkin
or collocation methods [17]. While gPC Galerkin methods
provide slightly more accurate statistics than their collocation
counterparts [17], they require rather intrusive modifications
to the underlying deterministic MTL simulator [18]–[23].
gPC collocation methods only call for the evaluation of
integrals involving the observable over the domain of random
variables to compute the polynomial expansion coefficients
and construct the surrogate model [17]. These integrals are
evaluated using efficient multidimensional integral rules [17],
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where the observable values at integration (collocation)
points are computed using an existing deterministic MTL
simulator [24]–[28]. Consequently, gPC collocation methods
are nonintrusive and computationally cheaper than their
Galerkin counterparts [17]. gPC Galerkin and collocation
methods converge rapidly for an observable that varies
smoothly across the random domain [17]. However, they
become inefficient and inaccurate when the observable
exhibits rapid variations and/or discontinuities [29], [30].

Multielement gPC and probabilistic collocation (ME-PC)
schemes have been developed to address this short-
coming of the gPC Galerkin and collocation methods,
respectively [29], [30]. These schemes achieve their accuracy
and efficiency via h-adaptive refinement techniques, i.e., by
adaptively and recursively dividing the random domain into
subdomains and generating a (separate) local gPC expansion
on each of them. Even with this capability, gPC-based methods
and their accelerated versions remain inefficient for surrogate
model generation in high-dimensional random domains. This
deficiency stems from the fact that the number of orthogonal
polynomials used in the gPC expansion(s) scales exponentially
with the number of random variables [31], [32]. Similar
deficiencies are oftentimes encountered in macromodeling [33]
and model-order reduction techniques (see the references
in [34]) as well. To address this limitation, semi-intrusive
stochastic macromodeling techniques [35], [36] and a
nonintrusive dimension adaptive sparse grid method [37] have
been used in the context of stochastic MTL analysis; imple-
mentation of the former hinges on access to the deterministic
simulator’s inner workings while the latter is easily coupled
with any deterministic simulator. In parallel, ME-PC methods
have recently been hybridized with high-dimensional model
representation (HDMR) techniques [31]. These techniques
allow for the generation of a surrogate model in a high-
dimensional random domain by bootstrapping surrogate
models generated in low-dimensional random domains that
are carefully selected subsets of the initial random domain.

This paper elucidates a computational framework for
statistically characterizing observables in MTL networks,
which (potentially) vary rapidly throughout high-dimensional
random domains. The proposed framework leverages an
HDMR technique to generate the surrogate model of the
observable in terms of finite sums of component functions,
which represent the individual and combined contributions of
the random variables to the observable [38]. The HDMR is
constructed iteratively by only including component functions
pertinent to the most important random variables, and
therefore dramatically reduces the cost of surrogate model
construction/computation [32]. The component functions
included in the HDMR are computed using the ME-PC
method [30], [39], [40], which tailors the distribution of the
collocation/integration points in the random domain depending
on the variation of the observable. The observable values at
these collocation/integration points can be computed using
any desired deterministic MTL simulator; here, a fast integral
equation-based MTL [41] and IE3D full-wave [42] simulators
are used for this purpose. Furthermore, the proposed
framework combines the HDMR with the partial fraction

expansion to generate a surrogate model of the observable
over a wide frequency band [43]–[45]. Upon generation of the
accurate surrogate model, the classical MC method is used
to compute the statistics of the observable while accounting
for the PDFs of the random variables. The accuracy and
efficiency of the proposed framework are demonstrated via
its application to the statistical characterization of crosstalk-
induced voltages in parallel wire and interconnect networks,
and voltages across the terminals of a corporate feed network
of a linear patch antenna array.

II. FORMULATION

A. Mathematical Description of the Problem

Let xi , i = 1, . . . , Ndof, represent Ndof mutually indepen-
dent random variables, each of which parameterizes one uncer-
tainty in the MTL network. Each random variable xi is dis-
tributed with an assumed/known PDF ξi (·) defined in a finite
1-D random domain Di = [ai , bi ]. For the compactness of the
formulation, let x denote an Ndof-dimensional random vector
with entries, xi , i = 1, . . . , Ndof, i.e., x = [x1, x2, . . . , xNdof ],
defined in the random domain D =

∏Ndof
i=1 Di .

Let V (x) denote an observable in the MTL network; V (x) is
typically a complicated and nonlinear function of x and
can only be evaluated using a deterministic MTL simulator.
In realistic models of complex MTL networks, oftentimes
Ndof is large. In addition, nonlinear dependence on x when
combined with electromagnetic resonances might render V (x)

a very rapidly varying function of x. Consequently, classical
PC methods, which make use of gPC expansion to a generate
surrogate model of V (x), become highly inefficient and/or
inaccurate [40].

To address these inefficiency and inaccuracy problems, the
proposed method uses the following.

1) An HDMR technique to generate an accurate surrogate
model of V (x), in terms of efficient-to-compute
component functions in only the most significant
random variables [32], [38] (Sections II-B and II-C).

2) The ME-PC scheme to compute each of these
component functions that are defined over lower
dimensional domains but vary rapidly across
them [30], [31] (Section II-D).

Upon generation of an accurate surrogate model,
it is probed via MC method that takes into
account the PDFs ξi (·) (i = 1, . . . , Ndof)
to obtain the statistics of V (x).

B. HDMR Technique

The HDMR technique decomposes the Ndof-variate V (x)

into component functions defined over lower dimensional
domains (i.e., random domains of subsets of x). While
iteratively building the HDMR, only the most significant
component functions are retained to minimize the cost of
surrogate model construction/computation. This iterative
construction is detailed next. The HDMR of V (x) reads

V (x) =
∑

u⊆�

Fu(xu) (1)
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where � = {1, . . . , Ndof} is the set of random variable indices,
u is a subset of �, i.e., u ⊆ �, and |u| is the cardinality of u.
Moreover, xu denotes a |u|-dimensional random vector and
Fu(xu) represents a component function defined over D. As an
example, for u = Ø, Fu(xu) = FØ(xØ) = F0 is the zeroth-
order component function; it is constant over D. For u = {1},
Fu(xu) = F1(x1) is the first-order component function that
describes the contribution of x1 to V (x). For u = {1, 2, 3},
Fu(xu) = F123(x1, x2, x3) is the third-order component func-
tion that represents the combined impact of x1, x2, and x3

on V (x). The role of component functions in the HDMR
expansion is best illustrated by an example. Assume that V (x)

is a function of three random variables (Ndof = 3) with indices
� = {1, 2, 3}. In the HDMR of V (x), the component functions
Fu(xu) corresponding to all possible subsets u of � are

F0, u = Ø, |u| = 0
F1(x1), u = {1}, |u| = 1
F2(x2), u = {2}, |u| = 1
F3(x3), u = {3}, |u| = 1
F12(x1, x2), u = {1, 2}, |u| = 2
F13(x1, x3), u = {1, 3}, |u| = 2
F23(x2, x3), u = {2, 3}, |u| = 2
F123(x1, x2, x3), u = {1, 2, 3}, |u| = 3.

(2)

If all component functions in (2) are retained in the
HDMR (1), then V (x) is expressed as

V (x) = F0 + F1(x1) + F2(x2) + F3(x3) + F12(x1, x2)

+ F13(x1, x3) + F23(x2, x3) + F123(x1, x2, x3). (3)

The advantage of leveraging HDMR for surrogate model
generation is illustrated on an observable that consists of only
monomials, i.e., V (x) = x3

1 + x3
2 + x3

3 . It is clear that for
this simple observable, only the component functions F1(x1),
F2(x2), and F3(x3) are called for and the remaining functions
can be omitted without any loss of accuracy in expansion (3).
In many real-world problems, physical observables can be
approximated by low-order component functions [31], which
makes the HDMRs highly efficient in constructing surrogate
models of observables originally defined in high-dimensional
random domains.

The component functions Fu(xu), u ⊆ �, can be
obtained by the analysis of variance HDMR and CUT-HDMR
techniques. The former oftentimes is not suitable for surrogate
model generation in high-dimensional random domains [32]
and hence not considered further. The CUT-HDMR technique
generates Fu(xu) from observable values on lines, planes, and
hyperplanes, i.e., cuts that pass through a reference point, x̄,
in D, i.e.

Fu(xu) = V (x)
∣

∣

x=x̄\xu
−

∑

v⊂u

Fv(xv). (4)

Here, x = x̄\xu indicates that random variables with
indices not belonging to u are set to their corresponding
values at the reference point x̄, which is typically selected
as the center of mass of the random domain, i.e., x̄ =

[x̄1, . . . , x̄Ndof ] = [(a1 + b1)/2, . . . , (aNdof + bNdof)/2]. The
CUT-HDMR technique constructs the component functions

in expansion (3) using

F0 = V (x̄), u = Ø

F1 (x1) = V (x1, x̄2, x̄3) − F0, u = {1}

F2 (x2) = V (x̄1, x2, x̄3) − F0, u = {2}

F3 (x3) = V (x̄1, x̄2, x3) − F0, u = {3}

F12 (x1, x2) = V (x1, x2, x̄3) − F0

−F1 (x1) − F2 (x2), u = {1, 2}

F13 (x1, x3) = V (x1, x̄2, x3) − F0

−F1 (x1) − F3 (x3), u = {1, 3}

F23 (x2, x3) = V (x̄1, x2, x3) − F0

−F2 (x2) − F3 (x3), u = {2, 3}

F123 (x1, x2, x3) = V (x1, x2, x3) − F12 (x1, x2)

−F13 (x1, x3) − F23 (x2, x3)

−F1 (x1) − F2 (x2) − F3 (x3) − F0,

u = {1, 2, 3}. (5)

The most efficient scheme to generate the surrogate
model of V (x) by CUT-HDMR technique is to interpolate
Fu(xu) directly from the component function with the
highest cardinality. However, this method is inefficient if
the significant/unneeded component functions are not known
a priori. Another scheme is to start from the component
function with the lowest cardinality and recursively construct
Fu(xu) as the cardinality is increased. This scheme calls for
the computation of the observable value at x̄ first to obtain the
zeroth-order component function. Next, observable values are
computed on lines, planes, and hyperplanes passing through
x̄ (i.e., x = x̄\xu) to construct first-order, second-order,
and higher order component functions, respectively. The
computation of the observable values (and the component
functions) called for by this recursive scheme can be
accelerated using a multivariate interpolator. In this paper,
error-controllable ME-PC method [30], [31], [39], [40] is used
for this purpose, since the observable is a function with smooth
and fast variations and/or discontinuities (Section II-D).
In addition, the number of component functions in
expansion (3) can be reduced significantly by eliminating
those that do not contribute to the observable. This is carried
out using an iterative scheme, as described in Section II-C.

C. Iterative HDMR Technique

The number of component functions in the HDMR scales
as

∑|u|
j=0 Ndof!/( j !(Ndof − j)!), which prohibits its use in

generating surrogate models in high-dimensional domains,
i.e., when Ndof is large. This limitation can be overcome
using an iterative scheme that automatically selects random
variables with significant impact on V (x) and only includes the
higher order component functions pertinent to these variables
in the HDMR. The iterative scheme first computes the weights
associated with the first-order component functions as [32]

ϒu = |E[Fu(xu)]/F0|; |u| = 1. (6)

The weights ϒu quantify the contributions of the first-order
component functions’ means, E[Fu(xu)] =

∫

Fu(xu)dxu,
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to the mean of V (x) computed at the zeroth level, F0. If ϒu,
|u| = 1, exceeds a prescribed tolerance ε1, then the component
function is assumed to contribute significantly to V (x) and
the pertinent random variable is identified as significant. The
indices of the significant random variables are stored in the
index set �. Next, the second-order component functions
pertinent to these significant random variables are consid-
ered as candidates for constructing the second level HDMR.
Component functions are included in the expansion only if
their weights computed using [32]

ϒu = |E[Fu(xu)]|
/

∣

∣

∣

∑

|v|<|u|−1
E[Fv(xv)]

∣

∣

∣
; |u| ≥ 2 (7)

exceed ε1. This selection/elimination process is continued
iteratively as the level is increased until the HDMR is assumed
to have converged within a prescribed tolerance. Convergence
criterion is defined as ε2 > κ , where κ is the decay rate of
the relative difference between observable means computed at
two consecutive levels [32]

κ =

∣

∣

∑

|v|<|u| E[Fv(xv)] −
∑

|v|<|u|−1 E[Fv(xv)]
∣

∣

∣

∣

∑

|v|<|u|−1 E[Fv(xv)]
∣

∣

. (8)

Upon completion of the HDMR construction, the component
functions identified as insignificant are also included in the
expansion to increase the accuracy of surrogate model as
they are already computed during the iterative construction.
It should be noted here that if multiple observables’ surrogate
models are being constructed simultaneously, ϒu and κ are
computed for all observables separately. If only one of the
ϒu computed for all observables exceeds ε1, then the com-
ponent function pertinent to ϒu is identified as a significant
component function. Likewise, if all of the κ computed for
observables is smaller than ε2, then the HDMRs generated for
all observables are assumed to have converged.

The iterative procedure described above can be better
explained by an example illustrated with a flowchart of the
procedure (Fig. 1). In this example (Ndof = 5), the procedure
is initialized by storing the indices of the zeroth- and first-order
component functions in the index set � and computing F0.
Next, the iterative construction is continued until κ ≤ ε2 or
� reverts to the null set (Fig. 1). Assume that, after computing
Fu(xu), |u| = 1, via the ME-PC method (Section II-D) and
ϒu, |u| = 1, using (6), and comparing ϒu to ε1, only the
random variables (or the first-order component functions) with
indices {2, 4, 5} are found to be significant at level one (Fig. 1).
Then, the indices of the candidate component functions,
{2, 4}, {2, 5}, and {4, 5}, to be considered at level two are
stored in �. In the second iteration for level two, the ϒu,
|u| = 2, are computed using (7) only for the second-order
component functions F24(x2, x4), F25(x2, x5), and F45(x4, x5)

(those represent the combined effect of the significant random
variables with indices {2, 4, 5}) and compared with ε1. If any

of these component functions is found to be insignificant
(i.e., ϒu < ε1) [F45(x4, x5) in this example], then no
third-order component function is considered for inclusion
in the HDMR as index set � is empty. On the other hand,
if all three component functions F24(x2, x4), F25(x2, x5),
and F45(x4, x5) are found to be significant, then the third-
order component function F245(x2, x4, x5) is considered for

Fig. 1. Flow chart of the iterative HDMR algorithm as well as its execution
for an example with Ndof = 5.

inclusion in the third level of HDMR. Note that κ is computed
using (8) at the end of each iteration; if κ ≤ ε2, then
the HDMR is assumed to have converged and iterations are
terminated. At the end of the iterative process, the HDMR is
constructed by the component functions already computed via
the ME-PC method, the indices of which are stored in index
set �′ (Fig. 1).

Upon generation of the surrogate model, its statistical
moments [approximating those of V (x)] can be obtained
by sampling it with an MC method that accounts for the
assumed PDFs of the random variables, ξi (·), i = 1, . . . , Ndof.
However, an approximation to the mean of V (x) can directly
be calculated by [32]

E[V (x)] =
∑

u⊆�

E[Fu(xu)]. (9)

Likewise, the variance of V (x) can be computed using [32]

var[V (x)] =
∑

u⊆�

var[Fu(xu)] (10)

where var[Fu(xu)] = E[(Fu(xu))2] − (E[Fu(xu)])2.
In addition, global sensitivity indices (also called Sobol
indices) are computed from the ratio of each component
function’s variance to that of V (x) [46], i.e.

Su = var[Fu(xu)]
/

∑

u⊆�

var[Fu(xu)]. (11)

These indices quantify the contributions of random variables
and their higher order correlations to the variance of the
observable.
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D. ME-PC Method

Oftentimes, observables in complex and large
MTL networks are rapidly varying functions of random
variables. This prohibits an efficient use of traditional gPC
collocation methods in constructing surrogate models. The
ME-PC method accelerates these schemes by employing an
h−adaptive refinement scheme, as detailed in [30] and [40].

Similarly, in this paper, the ME-PC scheme is used for
accelerating the computation of component functions during
the iterative construction of the HDMR. As described in
Sections II-B and II-C, this procedure calls for the computation
of the observable values on cuts (i.e., lines, planes, and
hyperplanes) passing through the reference point x̄. The cost
of this operation becomes prohibitive if an MTL simulator is
used every time, the observable value needs to be computed.

Therefore, first-order, second-order, and higher order
component functions are interpolated efficiently and
accurately from the observable values on the cuts using
the ME-PC method. The ME-PC method achieves its
accuracy and efficiency by adaptively and recursively dividing
the cuts into subelements, on each of which a separate
low-order gPC polynomial expansion is constructed as an
interpolant. The integrals that provide the coefficients of
these expansions/interpolants are evaluated numerically using
a multidimensional integration rule [47]–[49]. The values of
the observable at the integration points are computed using
either an integral equation-based MTL simulator [41] or
IE3D full-wave simulator [42]. It is noteworthy that many
integration points used to evaluate the integrals are commonly
used while interpolating component functions. The observable
values on these integration points can be computed using
deterministic simulator only once and then obtained from
a lookup table without running the deterministic simulator
when needed. This yields significant reduction in number
of costly deterministic simulations especially when tensor-
product-based Gauss–Legendre quadrature rules with odd
number of integration points are used.

E. Broadband Statistical MTL Analysis

Typically, statistical characterization of the MTL networks
requires construction of surrogate models over a broadband of
frequencies. The ME-PC enhanced HDMR described in the
previous sections is used to generate a compact and efficient-
to-compute surrogate model of the observable at a single
frequency point. The efficiency of this approach is maintained
in the case of broadband analysis by combining the ME-PC
enhanced HMDR with a partial fraction expansion in
frequency.

Let V (x, f ) represent the observable of the broadband
statistical MTL analysis and f denote the frequency within the
range [ fbeg, fend]. While ME-PC enhanced iterative HDMR is
employed to generate the surrogate model of the observable
in x, a partial fraction expansion [43] is used to construct the
surrogate model along f. Then, V (x, f ) is expressed as

V (x, f ) ≈

Npf
∑

m=1

∑

u⊆�

Fu(xu)PFm( f ). (12)

Here, Npf represents the number of partial fractions and
PFm( f ) denotes the partial fraction defined as [43]

PFm( f ) =
cm

f − am

+ d + f h (13)

where am and cm , m = 1, . . . , Npf, are the poles and residues
and d and h are the constants. To find the optimum poles and
residues of the partial fractions and constants in (13), the well-
known vector fitting algorithm is used [50]. This algorithm
minimizes the data misfit between the frequency samples
of the partial fraction expansion and the surrogate model of
V (x, f ) along x. More specifically, it calls for the computation
of the surrogate model of V (x, f ), which is constructed using
the ME-PC enhanced iterative HDMR at frequency samples
fn = fbeg + (n − 1)( fend − fbeg)/(Ns − 1), n = 1, . . . , Ns .
Here, Ns is selected large enough to maintain the lowest
possible least squares approximation error in the minimization
of the data misfit [43], [44]. Once the poles, residues, and
constants in (13) are obtained, the expansion in (12) can be
used as an accurate and efficient-to-compute surrogate model
of V (x, f ) within the frequency band [ fbeg, fend].

III. NUMERICAL RESULTS

This section demonstrates the efficiency and accuracy of
the proposed method via its application to the statistical
characterization of voltages in various MTL networks. In all
examples, V (x, f ) and Ṽ (x, f ) represent the actual observable
and its surrogate model generated by the proposed ME-PC
enhanced iterative HDMR technique or another nonintrusive
technique, respectively. Unless stated, otherwise, the iterative
HDMR technique uses ε1 = 10−2 and ε2 = 10−16 and the
ME-PC method with user-defined constants τ1 = τ2 = 0.5
and tolerance β = 10−2 approximates the observables on
recursively and adaptively refined elements of cuts using
pth-order gPC expansions (see details pertinent to τ1, τ2, β,
and p in [40]). The integrals that provide the coefficients of
the pth-order gPC expansions are computed by the tensor
product integration rule using specified number of Gauss–
Legendre points in each dimension [40]. Means, standard devi-
ations, PDFs, and sensitivity indices pertinent to V (x, f ) and
Ṽ (x, f ), n = 1, . . . , N f , are extracted using the MC method
that samples the domain D based on the assumed PDFs of
the random variables. In addition, in all problems, upper and
lower bounds of variation in V (x, f ) and Ṽ (x, f ) are com-
puted using the mean and standard deviation as E[·] ± std[·].
Let xi , i = 1, . . . , NMC, represent the MC samples
(i.e., random network realizations) selected due to the assumed
PDFs of the random variables. The average error in the
surrogate models is computed using

err =
1

N f

N f
∑

n=1

√

√

√

√

∑NMC
i=1 [|Ṽ (xi , fn)| − |V (xi , fn)|]2

∑NMC
i=1 |V (xi , fn)|2

. (14)

Here, fn , n = 1, . . . , N f are the frequency points equally
spaced in the band [ fbeg, fend]. All deterministic simulations
were performed on a dual hexacore X5650 Intel processor
located at the Advanced Research Computing–Technology
Services High Performance Computing Center at the Univer-
sity of Michigan.
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A. Parallel Wire Network

The proposed method is used to statistically characterize
crosstalk-induced voltages in a parallel wire network
[Fig. 2(a)]. The network consists of five lossless 10-m-long
wires with 0.4-mm radius. The first wire in the network is
excited by a sinusoidal voltage source [Fig. 2(a)]. The wires
are positioned parallel to each other above an infinite perfect
electrically conducting (PEC) ground at z = 0 m, centered
at (cx j , 0, cz j ) cm ( j = 1, . . . , 5), and connected to resistors
at the source end, RS, j ( j = 1, . . . , 5). At the load end, the
first four wires are connected to resistors RL , j ( j = 1, . . . , 4)

while the fifth wire is terminated by a circuit in either
Block A or Block B [Fig. 2(a)]. Two different scenarios are
considered in accordance to the termination of fifth wire.

1) Resistor Termination: In the first scenario, the fifth wire
is terminated by Block A, which consists of a resistor RL ,5

[Fig. 2(a)]. The voltage source is operated in the 10–100-MHz
range. Twenty parameters characterize uncertainty in this
network (Ndof = 20). They are the positions of the wires along
the x-direction cx j ( j = 1, . . . , 5), the positions of the wires
along the z-direction cz j ( j = 1, . . . , 5), the values of the
resistors at the source end RS, j ( j = 1, . . . , 5), and the values
of the resistors at the load end RL , j ( j = 1, . . . , 5); (x =

[cx1, . . . , cx5, cz1, . . . , cz5, RS,1, . . . , RS,5, RL ,1, . . . , RL ,5]).
All random variables are assumed normally distributed with
means and standard deviations (µi , σi ) (i = 1, . . . , 20)

specified in Table I. It should be noted that the random
variables’ means correspond to those in [24] and each
normal distribution is approximated by a truncated Gaussian
defined in the range [ai , bi ] = [µi − 3σi , µi + 3σi ] [51].
The observable is the crosstalk-induced voltage across the
resistor in Block A. The ME-PC enhanced iterative HDMR
technique (combined with partial fraction expansion) required
353 samples of V (x, f ) at 75 frequency points (Ns = 75) to
construct the surrogate model Ṽ (x, f ); the adaptive ME-PC
used second-order gPC expansions, coefficients of which are
obtained via tensor-product-based Gauss–Legendre quadrature
rule with three points in each dimension.

The means and standard deviations of |V (x, fn)| and
|Ṽ (x, fn)|, n = 1, . . . , N f , N f = 1001, are computed using
an MC method with NMC = 25 000 samples. Fig. 2(b) plots
the means, as well as the upper and lower bounds of
voltage variations. Both quantities match well demonstrating
the accuracy of Ṽ (x, f ). MC samples of V (x, fn) and
Ṽ (x, fn) are then used in (14) and the error is found to
be err = 2.88 × 10−3, again verifying the accuracy of the
proposed method. It should be noted here that constructing
Ṽ (x, f ) and sampling it with the MC method comes with a
computational cost that is just a small fraction of sampling
directly V (x, f ).

The PDFs of |V (x, fn)| and |Ṽ (x, fn)| at three frequency
points (near to resonant frequencies) are extracted by binning
the samples obtained in the MC simulations [Fig. 2(c)–(e)].
The PDFs of |Ṽ (x, f )| are nearly identical to those of
|V (x, f )|. In addition, global sensitivity indices of the ran-
dom variables are computed using Ṽ (x, f ) [Fig. 2(f)] [52].
Clearly, uncertainties in the distances between the wires and
ground plane, cz j ( j = 1, . . . , 5), the positions of the

Fig. 2. (a) Geometry description of the parallel wire transmission line
network. For the first scenario, (b) means and upper/lower variation bounds
of |V (x, f )| and |Ṽ (x, f )|, the PDFs of |V (x, f )| and |Ṽ (x, f )|, at
(c) 30.7692 MHz, (d) 60.7692 MHz, and (e) 90.7692 MHz, and (f) con-
tributions of important random variables to the variance of |Ṽ (x, f )|. For
the second scenario, (g) PDFs of |V (x, f )| and |Ṽ (x, f )| at 20.2 MHz and
(h) contributions of important random variables to the variance of |Ṽ (x, f )|
at 20.2 MHz.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

YÜCEL et al.: ME-PC ENHANCED HDMR METHOD 7

TABLE I

µi AND σi , i = 1, . . . , 22, VALUES OF NORMALLY DISTRIBUTED RANDOM

VARIABLES CONSIDERED IN BOTH SCENARIOS OF PARALLEL WIRE

NETWORK EXAMPLE

TABLE II

COMPARISON OF EFFICIENCY AND ACCURACY OF THE PROPOSED ME-PC

ENHANCED ITERATIVE HDMR METHOD (COMBINED WITH PARTIAL

FRACTION EXPANSION) AND OTHER METHODS IN CONSTRUCTING

Ṽ (x, f ) IN THE FIRST SCENARIO OF THE PARALLEL WIRE

NETWORK EXAMPLE

first and fifth wires along the x-direction, cx1 and cx5, and the
value of the resistor in Block A, RL ,5, have significant impact
on |V (x, f )| at nonresonant frequencies. Almost all random
variables and the second-order correlations of cz1, cz5, cx1,
and cx5 significantly affect |V (x, f )| at resonant frequencies.

In addition, the efficiency and accuracy of the proposed
ME-PC enhanced iterative HDMR technique (combined with
partial fraction expansion) are compared with those of a sparse
grid-based gPC collocation method utilizing second-order
gPC expansion, a sparse grid-based ME-PC method utilizing
first-order gPC expansions, the adaptive sparse grid method
of [37] (with tolerance 10−1), and the ME-PC enhanced
iterative HDMR technique (without partial fraction expansion).
To this end, the surrogate model Ṽ (x, f ) is constructed
by each of these methods and used to obtain |Ṽ (x, fn)|,
n = 1, . . . , N f , N f = 1001, for NMC = 25 000 MC samples.
The number of V (x, f ) samples required to construct the
surrogate model by each method and the average error in the
surrogate model [computed using MC samples of V (x, fn)

and Ṽ (x, fn) in (14)] are listed in Table II. Clearly, the
proposed method requires half or fewer the number of V (x, f )

samples that traditional gPC and ME-PC methods call for,
while generating surrogate models that are more accurate by
an order of magnitude. In addition, it requires slightly fewer
samples than the adaptive sparse grid method for the same
level of accuracy. The proposed ME-PC enhanced iterative
HDMR technique (combined with partial fraction expansion)
generates slightly more accurate surrogate models compared
with the ME-PC enhanced iterative HDMR technique (without

TABLE III

COMPARISON OF EFFICIENCY AND ACCURACY OF THE PROPOSED ME-PC

ENHANCED ITERATIVE HDMR METHOD AND NONADAPTIVE gPC

COLLOCATION-BASED ITERATIVE HDMR METHOD IN COMPUTING

|Ṽ (x, f )| IN THE SECOND SCENARIO OF PARALLEL

WIRE NETWORK EXAMPLE

partial fraction expansion) as it uses vector fitting to interpolate
over the frequency band. It should be mentioned that a
straightforward tensor-product-based gPC collocation method
utilizing second-order gPC expansion requires 320 samples,
and hence is not feasible for this high-dimensional problem
(and for all other numerical examples in Section III). We note
that the CPU time for surrogate model generation by all these
nonintrusive methods (in all numerical examples in Section III)
is nearly equal to the number of V (x, f ) samples times, the
CPU time required for the evaluation of one V (x, f ) sample,
which for this example is approximately 1.18 and 9.71 s for
75 and 1001 frequency points, respectively. Each V (x, f )

sample is evaluated using the fast integral equation-based MTL
simulator described in [41] after extracting the per-unit-length
inductance and capacitance of the MTLs via a 2-D integral
equation solver described in [53].

2) RLC Circuit Termination: In the second scenario,
the fifth wire is terminated by Block B that consists of
serially connected resistor RL ,5, inductor L, and capacitor
C [Fig. 2(a)]. The voltage source is operated at the circuit’s
resonant frequency of 20.2 MHz. Twenty-two parameters char-
acterize uncertainty in this network (Ndof = 22); those are cx j

( j = 1, . . . , 5), cz j ( j = 1, . . . , 5), RS, j ( j = 1, . . . , 5), RL , j

( j = 1, . . . , 5), and the inductance and capacitance values,
L and C; x = [cx1, . . . , cx5, cz1, . . . , cz5, RS,1, . . . , RS,5,

RL ,1, . . . , RL ,5, L, C]. All random variables are assumed
normally distributed with means and standard deviations
(µi , σi ) (i = 1, . . . , 22) (Table I); each normal distribution
again is approximated by a truncated Gaussian defined in
range [ai , bi ] = [µi − 3σi , µi + 3σi ] [51]. The observable
is the crosstalk-induced voltage across the capacitor in
Block B. The surrogate model |Ṽ (x, f )| at 20.2 MHz is
constructed using the proposed ME-PC enhanced iterative
HDMR technique with ε1 = 10−3 and a nonadaptive gPC
collocation-based iterative HDMR technique ε1 = 10−3.
Table III shows the numbers of |V (x, f )| samples required
by the ME-PC enhanced method utilizing second- and
fourth-order gPC expansions, coefficients of which are
obtained via tensor-product-based Gauss–Legendre quadrature
rule with three and five points in each dimension, respectively.
It also shows the numbers of |V (x, f )| samples required
by gPC collocation-based method leveraging 4th-, 14th-,
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16th-, 19th-, and 24th-order gPC expansions, coefficients of
which are obtained by tensor-product-based Gauss–Legendre
quadrature rule with 5, 15, 17, 20, and 25 points in each
dimension, respectively. In addition, 25 000 MC samples of
|V (x, f )| and the surrogate model |Ṽ (x, f )| constructed by
the ME-PC enhanced and gPC collocation-based methods
are used in (14) (NMC = 25 000) (N f = 1) and the error
in the surrogate model constructed by these methods is
tabulated in Table III. To construct the surrogate model
|Ṽ (x, f )| with err = 0.06 and err = 0.03, the numbers of
|V (x, f )| samples required by the proposed ME-PC enhanced
iterative HDMR method are 1539 and 3115 while those
required by the nonadaptive gPC collocation based iterative
HDMR method are 17 249 and 38 545, respectively. Needless
to say, the proposed ME-PC enhanced iterative HDMR
method requires only a fraction of the |V (x, f )| samples
required by the nonadaptive gPC collocation-based iterative
HDMR method; the evaluation of one |V (x, f )| sample at
20.2 MHz takes approximately 0.44 s. Each |V (x, f )| sample
is evaluated using the fast integral equation-based MTL
simulator described in [41] after extracting the per-unit-length
inductance and capacitance of the MTLs via a 2-D integral
equation solver described in [53].

The PDFs of |V (x, f )| and the surrogate model |Ṽ (x, f )|

constructed by the ME-PC enhanced iterative HDMR method
(using five Gauss–Legendre points in each dimension) (at
20.2 MHz) are obtained from their MC samples [Fig. 2(g)].
The PDF of |Ṽ (x, f )| is nearly the same as that of
|V (x, f )|; this validates the accuracy of the proposed
method. Moreover, global sensitivity indices of the random
variables are computed via the surrogate model |Ṽ (x, f )|

constructed by the ME-PC enhanced iterative HDMR method
(utilizing five Gauss–Legendre points in each dimension) at
20.2 MHz [Fig. 2(h)] [52]. As the network is operated at the
terminating circuit’s resonance frequency, small perturbations
in the capacitance value rapidly (and nonlinearly) change
the crosstalk-induced voltage; this is why the capacitance
value C has the most significant impact on |V (x, f )|.
In addition to the capacitance value, the distances between
the first, second, fourth, and fifth wires and the ground plane,
cz j ( j = 1, 2, 4, 5), and their second-order correlations with
the capacitor value have significant impact on |V (x, f )|.

B. Parallel Interconnect Network

The proposed method is next applied to the statistical
characterization of crosstalk-induced voltage in a parallel
interconnect network [Fig. 3(a)]. The network consists of
10 infinitesimally thin lossless 5-cm-long conductors that
reside on a lossless 100-µm-thick dielectric substrate with
relative permittivity εr = 4.4; the substrate is backed by
an infinite PEC ground plane at z = 0 m. The conductors
have widths w j ( j = 1, . . . , 10), are positioned parallel
to each other, and are centered at (cx j , 0, 100) µm
( j = 1, . . . , 10). They are connected to the resistors
at the source end, RS, j ( j = 1, . . . , 10) and load end,
RL , j ( j = 1, . . . , 10) [Fig. 3(a)]. The first conductor in the
network is excited by a sinusoidal voltage source operated in
the 1–20-GHz range.

Fig. 3. (a) Geometry description of the parallel interconnect network.
(b) Means and upper/lower variation bounds of |V (x, f )| and |Ṽ (x, f )|, the
crosstalk-induced voltage and its surrogate model. The PDFs of |V (x, f )|
and |Ṽ (x, f )| at (c) 1 GHz, (d) 9.9865 GHz, and (e) 18.7162 GHz.
(f) Contributions of important random variables to the variance of |Ṽ (x, f )|.

Forty parameters characterize uncertainty in the network
(Ndof = 40). They are the positions of the conductors along the
x-direction cx j ( j = 1, . . . , 10), the widths of the conductors
w j ( j = 1, . . . , 10), the values of the resistors at the source
end RS, j ( j = 1, . . . , 10), and the values of the resistors at the
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TABLE IV

µi AND σi , i = 1, . . . , 40, VALUES OF NORMALLY DISTRIBUTED RANDOM

VARIABLES IN PARALLEL INTERCONNECT NETWORK EXAMPLE

TABLE V

COMPARISON OF EFFICIENCY AND ACCURACY OF THE PROPOSED ME-PC

ENHANCED ITERATIVE HDMR METHOD (COMBINED WITH PARTIAL

FRACTION EXPANSION) AND OTHER METHODS IN CONSTRUCTING

Ṽ (x, f ) IN THE PARALLEL INTERCONNECT NETWORK EXAMPLE

load end RL , j ( j = 1, . . . , 10); (x = [cx1, . . . , cx10, w1, . . . ,

w10, RS,1, . . . , RS,10, RL ,1, . . . , RL ,10]). All random variables
are assumed normally distributed with means and standard
deviations (µi , σi ) (i = 1, . . . , 40) specified in Table IV.
It should be noted here that the random variables’ means
correspond to those in [1] and each normal distribution is
approximated by a truncated Gaussian defined in the range
[ai , bi ] = [µi − 3σi , µi + 3σi ] [51]. The observable is the
crosstalk-induced voltage across the resistor at the load end
of the tenth conductor. The ME-PC enhanced iterative HDMR
technique (combined with partial fraction expansion) required
81 samples of V (x, f ) at 75 frequency points (Ns = 75) to
construct the surrogate model Ṽ (x, f ); the adaptive ME-PC
used second-order gPC expansions, coefficients of which are
obtained via tensor-product-based Gauss–Legendre quadrature
rule with three points in each dimension.

The means and variation bounds of |V (x, fn)| and
|Ṽ (x, fn)|, n = 1, . . . , N f , N f = 1001, which are com-
puted using an MC method with NMC = 25 000 samples,
are identical over the entire frequency band [Fig. 3(b)].
MC samples of V (x, fn) and Ṽ (x, fn) are then used in (14)
and the error is found to be err = 1.14 × 10−3, verifying the
accuracy of the proposed techniques.

The PDFs of |V (x, f )| and |Ṽ (x, f )| at three frequency
points are extracted by binning the samples obtained in the
MC simulations [Fig. 3(c)–(e)]. The PDFs of |Ṽ (x, f )| match
those of |V (x, f )|. Furthermore, the contributions of random
variables to the variance of |V (x, f )| are computed using
the surrogate models [Fig. 3(f)]. Apparently, contributions of
uncertainties in the widths of the first and tenth conductors
(w1 and w10), the value of the resistor at the source end of
first conductor RS,1, and the value of the resistor at the load
end of tenth conductor RL ,10, dominate observer variability at
lower frequencies. As the frequency increases, other random
variables (specifically, RS,7, RS,8, RS,9, RL ,2, RL ,3, and RL ,4)

exhibit significant impact on |V (x, f )| as well.

Fig. 4. Geometry description of the corporate feed network with indicated
interconnect (a) widths and (b) lengths. (c) Geometry description and intrinsic
impedances of the transformer, power combiner, and bend that are used to
construct corporate feed network (all dimensions are in mils). (d) Means
and upper/lower variation bounds of |V (x, f )| and |Ṽ (x, f )|, the crosstalk-
induced voltage and its surrogate model. The PDFs of |V (x, f )| and |Ṽ (x, f )|
at (e) 1.85 GHz, (f) 1.88 GHz, and (g) 1.9 GHz. (h) Contributions of important
random variables to the variance of |Ṽ (x, f )|.

Furthermore, the efficiency and accuracy of the proposed
ME-PC enhanced iterative HDMR technique (combined
with partial fraction expansion) are compared with those
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TABLE VI

ai AND bi , i = 1, . . . , 48, VALUES OF UNIFORMLY DISTRIBUTED RANDOM VARIABLES IN CORPORATE FEED NETWORK EXAMPLE (IN MILS)

of a sparse grid-based gPC collocation method utilizing
second-order gPC expansion, adaptive sparse grid method
of [37] (with tolerance 10−1), and the ME-PC enhanced
iterative HDMR technique (without partial fraction expansion).
To this end, each method is used to construct the surrogate
model Ṽ (x, f ), which is then probed to obtain |Ṽ (x, fn)|,
n = 1, . . . , N f , N f = 1001, for NMC = 25 000 MC samples.
The number of V (x, f ) samples required to construct the
surrogate model by each method and the average error in the
surrogate model [computed using MC samples of V (x, fn)

and Ṽ (x, fn) in (14)] are listed in Table V. Apparently, all
methods produce surrogate models with roughly the same
level of accuracy, with the proposed method producing the
most accurate one. The sparse grid-based gPC collocation
method requires 42.5 times more V (x, f ) samples compared
with the proposed method and the adaptive sparse grid
method. Note that the evaluation of one V (x, f ) sample at
75 and 1001 frequency points requires approximately
7.85 and 26.25 s, respectively. Each V (x, f ) sample is
evaluated using the fast integral equation-based MTL
simulator described in [41] after extracting the per-unit-length
inductance and capacitance of the MTLs via a 2-D integral
equation solver described in [53].

C. Corporate Feed Network

Finally, the proposed method is used to compute statistics
of a port voltage in a corporate feed network of a linear patch
antenna array [Fig. 4(a) and (b)]. The network feeds four patch
antennas at 1.88 GHz [54] and is constructed by cascading
a transformer, a power combiner, and a bend [Fig. 4(c)].
These components reside on a lossless 31-mils-thick dielectric
substrate with relative permittivity εr = 4.4 that is backed by
an infinite PEC ground plane at z = 0 mils [54]. All ports of
the network are terminated by 50-� resistors and the network
is excited at the first port by a 1-A sinusoidal current source
operated in the 1.85–1.9-GHz range.

Forty-eight parameters characterize the uncertainty in
the corporate feed network (Ndof = 48). They are the

widths of all conductors (w j , j = 1, . . . , 19) and their
lengths (l j , j = 1, . . . , 29); (x = [w1, . . . , w19, l1, . . . , l29])

[Fig. 4(a) and (b)]. All random variables are assumed
uniformly distributed in the ranges [ai , bi ], i = 1, . . . , 48
specified in Table VI. It should be noted here that the random
variables’ means correspond to widths and lengths of the
corporate feed network in [54] and ai and bi are obtained by
adding ∓%5 variation to each random variable’s mean. The
observable is the voltage across the second port of the network.
The ME-PC enhanced iterative HDMR technique used
second-order gPC expansions, coefficients of which are
obtained via tensor-product-based Gauss–Legendre quadrature
with three points in each dimension, and required 97 samples
of V (x, f ) to construct the surrogate model Ṽ (x, f ); the eval-
uation of one V (x, f ) sample takes approximately 9.46 s. Each
V (x, f ) sample is evaluated using IE3D full-wave solver [42].

The means and variation bounds of |V (x, fn)| and
|Ṽ (x, fn)|, n = 1, . . . , N f , N f = 21, are computed using
an MC method with NMC = 25 000 samples [Fig. 4(d)].
Obviously, statistics of |V (x, fn)| and |Ṽ (x, fn)| match well.
The MC samples are used in (14) and the error is found to be
err = 5.41 × 10−3. The PDFs of |V (x, f )| and |Ṽ (x, f )|

at three frequencies are extracted by binning the samples
obtained in the MC simulations [Fig. 4(e)–(g)]. The PDFs
of |Ṽ (x, f )| match those of |V (x, f )|. Furthermore, contri-
butions of the random variables to the variance of |V (x, f )|

are computed using (11) [Fig. 4(h)]. The random variables
describing the widths w4, w9, and w10, the lengths of the
transformers l3, l7, l12, and l17, and the lengths of the bend
sections l4, l15, and l18 have significant impact on |V (x, f )|;
the impact of these random variables is prominent throughout
the frequency band.

IV. CONCLUSION

A computational framework leveraging HDMR expansions
is proposed to statistically characterize MTL networks
subject to a large number of manufacturing uncertainties.
The framework builds surrogate models of observables in
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MTL networks by iteratively constructing HDMR component
functions pertinent to the most significant random variables.
Each component function of the HDMR expansions is
approximated by the ME-PC method. The observable
values at integration/collocation points identified by the
ME-PC method are computed via an integral equation
MTL simulator. The computational framework combines
the HDMR and partial fraction expansions for broadband
stochastic MTL analysis. When compared with traditional gPC
Galerkin and collocation methods including their h-adaptive
extensions, the proposed computational framework is both
efficient and accurate when generating surrogate models of
smoothly and rapidly varying observables in high-dimensional
random domains. The proposed methodology was applied to
stochastic MTL scenarios involving 20–50 random variables
but remains useful in scenarios involving hundreds of random
variables [55], [56].
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