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Abstract: In the present paper, an MHD three-dimensional non-Newtonian fluid flow over a porous
stretching/shrinking sheet in the presence of mass transpiration and thermal radiation is examined.
This problem mainly focusses on an analytical solution; graphene water is immersed in the flow
of a fluid to enhance the thermal efficiency. The given non-linear PDEs are mapped into ODEs
via suitable transformations, then the solution is obtained in terms of incomplete gamma function.
The momentum equation is analyzed, and to derive the mass transpiration analytically, this mass
transpiration is used in the heat transfer analysis and to find the analytical results with a Biot number.
Physical significance parameters, including volume fraction, skin friction, mass transpiration, and
thermal radiation, can be analyzed with the help of graphical representations. We indicate the unique
solution at stretching sheet and multiple solution at shrinking sheet. The physical scenario can be
understood with the help of different physical parameters, namely a Biot number, magnetic parameter,
inverse Darcy number, Prandtl number, and thermal radiation; these physical parameters control the
analytical results. Graphene nanoparticles are used to analyze the present study, and the value of
the Prandtl number is fixed to 6.2. The graphical representations help to discuss the results of the
present work. This problem is used in many industrial applications such as Polymer extrusion, paper
production, metal cooling, glass blowing, etc. At the end of this work, we found that the velocity
and temperature profile increases with the increasing values of the viscoelastic parameter and solid
volume fraction; additionally, efficiency is increased for higher values of thermal radiation.

Keywords: porous sheet; MHD; three-dimensional; thermal efficiency; exact solution; nanofluid

1. Introduction

Transport is one of the main motivations for conducting an experiment on stretching
sheet problems, the main reason this problem is widely utilized in the engineering and
industrial processes viz., extrusion of sheet, metal thinning, exchange of heat between,
etc. Sakiadis [1,2] was the first researcher to investigate the stretching sheet problem.
Later, Crane [3] elaborated this problem with flow past a stretching sheet. Motivated by
Crane’s work, many researchers conducted experiments on stretching sheet problems by
observing their huge applications. Turkyilmazoglu [4] investigated the impact of MHD on
thermal slip flow due to stretching sheet. Mahabaleshwar et al. [5–7] conducted experiments
with magneto hydrodynamics in the presence of different physical parameters such as
mass transpiration, thermal radiation, and Dufour and Soret mechanisms. Later, these
investigations were carried out with porous sheet; these porous particles play a major
role in stretching sheet problems as these porous materials help to enrich the rate of heat
transfer from stretching/shrinking surfaces and have numerous industrial applications.
Therefore, many researchers show interest in investigating porous media. Elboshbeshy and
Bazid [8,9] investigated variable viscosity fluid flow with a porous medium and internal
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heat generation. Further, this work was extended by Cortell [10]; he included power
law temperature distribution. Mahabaleshwar et al. [11–14] demonstrated many porous
stretching sheet problems with different flow fluids and a variety of boundary conditions.
Rasool et al. [15] worked on second grade nanofluid flow with the Darcy–Forchheimer
medium in the presence of thermal radiation and viscous dissipation (see further recent
works on nanofluids in [16–18]).

Apart from these discoveries, some experiments take place with nanofluids, as these
nanofluids offer a better thermal efficiency than base fluids. Rahman et al. [19] examined
the nanofluid flow with porous exponential on the basis of Buongiorno’s method. Maha-
baleshwar et al. [20] and Benos et al. [21] examined the problem statement analytically
in the presence of nanofluid. Shafiq et al. [22] investigated thermally enhanced Darcy–
Forchheimer Casson-water/Glycerin rotating nanofluids by using the effect of uniform
magnetic field. Rasool et al. [23] worked on MHD nanofluid flow on the basis of numerical
scrutinization of Darcy–Forchheimer relation bound by nonlinear stretching surface with
heat and mass transfer. Rasool and Shafiq [24] explained the Darcy medium with thermally
enhanced chemically reactive Powell–Eyring nanofluid flow over a non-linearly stretch-
ing surface affected by a transverse magnetic field with convective boundary conditions.
Afridi et al. [25] studied the 3-D dissipative flow with hybrid nanofluid; in this work,
thermophysical models were used to investigate the entropy generation. Dianchen Lu
et al. [26] examined the entropy generation by considering dissipative nanofluid flow by
using the effect of magnetic dissipation and transpiration. Graphene is one of the most
useful nanomaterials as it has an extraordinary blend of superb properties, better heat and
electrical conduction, and optical transparency compared to other materials. Additionally,
graphene is the thinnest as well as the strongest material. Some recent works on graphene
are given in [27–29].

The present work is motivated by the work of Turkyilmazoglu [30], explaining the
analytical solution of 3-D flow of a fluid with magneto hydrodynamics by using various
physical parameters. Motivated by the abovementioned articles, the present work explains
the three-dimensional flow of a non-Newtonian fluid due to porous stretching/shrinking
sheet. Magneto hydrodynamics and graphene water nanoparticles are also immersed in
the flow of fluid to achieve better thermal efficiency. The given PDEs are converted into
ODEs by using similarity variables. Incomplete gamma function is obtained at the end of
the solution. By using various physical parameters, the problem is verified exactly, and
the skin friction coefficient is examined. The novelty of the present work is to examine the
problem analytically and to find the domain in terms of mass transpiration; this is used in
the heat transfer to analyze the heat equation. The work is used in many industrial and
engineering applications, viz., power engines, advanced nuclear systems, automobiles,
biological sensors, drug delivery, and entropy generation [31].

Problem Statement

An MHD graphene water nanofluid flow through a porous medium with mass tran-
spiration and thermal radiation is considered. The physical diagram of the given problem
is represented in Figure 1. Three-dimensional flow is subjected to wall temperature Tw in a
porous medium and a far-field temperature T∞. The porous medium is filled with graphene
water nanoparticles. The quantities of nanofluid are indicated in Table 1. The equations
of the fluid flow can be written in the form (see Mahabaleshwar et al. [32], Siddheshwar
et al. [33] and Riaz et al. [34]).

∂u
∂x

+
∂v
∂y

+
∂w
∂z

= 0 (1)

u ∂u
∂x + v ∂u

∂y +w ∂u
∂z = νn f

∂2u
∂z2 + γ0u−

(
µn f

Kρn f
+

σn f B0
2

ρn f

)
u

k
{

u ∂3u
∂x∂z2 + w ∂3u

∂z3 −
(

∂u
∂x

∂2u
∂z2 + ∂u

∂z
∂2w
∂z2 + 2 ∂u

∂z
∂2u
∂x∂z + 2 ∂w

∂z
∂2u
∂z2

)} (2)
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u ∂v
∂x + v ∂v

∂y +w ∂v
∂z = νn f

∂2v
∂z2 + γ0v−

(
µn f

Kρn f
+

σn f B0
2

ρn f

)
v

k
{

v ∂3v
∂y∂z2 + w ∂3v

∂z3 −
(

∂v
∂y

∂2v
∂z2 + ∂v

∂z
∂2w
∂z2 + 2 ∂v

∂z
∂2v

∂y∂z + 2 ∂w
∂z

∂2v
∂z2

)} (3)

u
∂T
∂x

+ v
∂T
∂y

+ w
∂T
∂z

=
κn f

(ρCP)n f

∂2T
∂y2 −

1
(ρCP)n f

∂qr

∂y
(4)

Subjected to appropriate boundary conditions are:

u = dax + l ∂u
∂z , v = by + l ∂v

∂z , w = w0, −κ ∂T
∂z = h(Tw − T), at z = 0

u→ 0, ∂u
∂z → 0, v→ 0, ∂v

∂z → 0, T → T∞ as z→ ∞

}
(5)

Figure 1. Physical diagram of three-dimensional fluid flow.

Table 1. Thermophysical properties of base fluid and nanoparticles.

CP (J/kgK) ρ
(
kg/m3) k (W/mK) σ (Ω/m)−1

Pure water
(H2O)

4179 997.1 0.613 0.05

Graphene (G) 2100 2250 2500 1 × 107

The heat flux qr can be defined on the basis of Rosseland’s approximation as follows
(see refs. [35–39]):

qr = −
4σ∗

3k∗
∂T4

∂y
(6)

here, σ∗ is the Stefan–Boltzmann constant, k∗ is the coefficient of mean absorption, and T is
the temperature of the fluid.

Ambient temperature T4 expands in terms of Taylor’s series as

T4 = T∞
4 + 4T∞

3(T − T∞) + 6T∞
2(T − T∞)2 + . . . . (7)

In Equation (7), we ignore higher order terms to yield the equation as

T4 = −3T∞
4 + 4T∞

3T (8)

On applying Equation (8) into Equation (6), the first order derivative of heat flux can
be given by

∂qr

∂y
= −16σ∗T3

∞
3k∗

∂2T
∂y2 (9)
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the physical quantities used in Equations (1) to (9) are defined in the Nomenclature.
Now, the subsequent similarity transformations utilized can be defined as

η =
√

a
ν z, u = ax fη(η), v = aygη(η)

w = −
√

aν( f (η) + g(η)), θ(η) = T−T∞
Tw−T∞

}
(10)

We use these similarity transformations in Equations (1) to (4) to calculate the following
ODEs

ε1
ε2

fηηη + fηη( f + g)− fη
2 + γ fη −

(
ε1
ε2

Da−1 + ε3
ε2

M
)

fη

+β
{

fηηηη( f + g) + fηη

(
fηη − gηη

)
− 2 fηηη

(
fη + gη

)}
= 0

(11)

ε1
ε2

gηηη +gηη( f + g)− gη
2 + γgη −

(
ε1
ε2

Da−1 + ε3
ε2

M
)

gη

+β
{

gηηηη( f + g) + gηη

(
gηη − fηη

)
− 2gηηη

(
fη + gη

)}
= 0

(12)

(ε5 + R)θηη + Prε4θη( f + g) = 0 (13)

Reduced boundary conditions are as follows,

fη(0) = d + L fηη(0), f (0) = VC, fη(∞)→ 0, fηη(∞)→ 0,

g(0) = c + Lgηη(0), gη(∞)→ 0, gηη(∞)→ 0,

θη(0) = −Bi(1− θ(0)), θ(∞)→ 0,

 (14)

Here, Da−1 =
µ f

ρ f Ka , is an inverse Darcy number, M =
σf B0

2

ρ f a , is a Hartman number, β = ka
ν

is a viscoelastic parameter, γ = γ0
a indicates the parameter of porosity, L = l

√
a
ν is the

first order velocity slip parameter, VC = − w0√
aν

indicates mass transpiration with VC > 0

denotes suction, VC < 0 indicates injection, VC = 0 for impermeable sheet, and Pr =
(µCP) f

κ f

is a Prandtl number. d and c = b
a denotes the stretching/shrinking sheet parameters along

the x and y axis, respectively. If d = 1, it indicates stretching rate; if d = −1, it indicates
shrinking rate.

The nanofluid quantities used in Equations (11) to (13) can be defined as (see Afridi
et al. [40] and Afridi and Qasim [41]):

ε1 =
µn f

µ f
, ε2 =

ρn f

ρ f
, ε3 =

σn f

σf
, ε4 =

(ρCP)n f

(ρCP) f
, ε5 =

κn f

κ f
(15)

Moreover, for our convenience, we use Γ = γ−
(

ε1
ε2

Da−1 + ε3
ε2

M
)

in the further math-
ematical sequel, this term combines the magnetic interaction M > 0, porosity parameter γ,
and inverse Darcy number Da−1.

2. Analytical Solutions
2.1. Analytical Solution of Momentum Equation

Based on the analytical solution derived in Crane [3], Aly [42], and Mahabaleshwar
et al. [43], for some special cases of stretching sheet problems, we assume the solutions of
Equations (11) and (12) are of the form

f (η) = VC +
d(1− exp(−λη))

λ(1 + Lλ)
(16)

g(η) =
d(1− exp(−λη))

λ(1 + Lλ)
(17)



Micromachines 2022, 13, 116 5 of 17

The solutions defined in Equations (16) and (17) satisfy all the boundary conditions
defined in Equation (14), then substitute these solutions into Equation (11) at the limiting
value η → ∞ to find the following resulting equations:

(−ε1 + 2βdε2)λ
2 + 2dε2 = 0 (18)

− 2d
(

1 + βλ2
)

ε2 + (1 + Lλ)
(

γε2 −
(

ε1Da−1 + ε3M
))
− λ

(
VC − ε1λ + ε2βVCλ2

)
= 0 (19)

Solving above two solutions yields the following results:

λ =
√

2ε2
2βε2−ε1

VC =
−2dε2(1+βλ2)−(ε1Λ+ε3 M−γε2)(1+Lλ)+ε1λ2(1+Lλ)

λ(1+βλ2)(1+Lλ)

(20)

Further, the local skin friction coefficient can be determined as

fηη(0) = gηη(0) = −
λd

(1 + Lλ)
(21)

2.2. Analytical Solution of Energy Equation

Introducing a new variable ξ as

ξ =
Pr
λ2 e−λη , (22)

on substituting Equation (22) in Equation (13) to achieve the equation

(ε5 + R)ξ
∂2θ

∂ξ2 +

{
(ε5 + R)− ε4Pr

(
VCλ(1 + Lλ) + 2d

λ2(1 + Lλ)

)
+

2dε4

1 + Lλ
ξ

}
∂θ

∂ξ
= 0 (23)

the boundary condition reduces to

Pr
λ

(
θη

(
Pr
λ2

))
= −Bi

(
1− θ

(
Pr
λ2

))
, θ(0) = 0 (24)

After solving Equations (23) and (24), the solution of the energy equation becomes

θ(η) =
Bi Γ

(
1− B

C , 0
)
− Bi Γ

(
1− B

C , −2dε4Pr
(1+Lλ)λ2 exp(−λη)

)
λ
(
−2dε4Pr
(1+Lλ)λ2

)1− B
C exp

(
−2dε4Pr
(1+Lλ)λ2

)
+ Bi

{
Γ
(

1− B
C , 0
)
− Γ

(
1− B

C , −2dε4Pr
(1+Lλ)λ2

)} (25)

where,
B = (ε5 + R)− ε4Pra

C = (ε5 + R)

a = VCλ(1+Lλ)+2d
λ2(1+Lλ)

(26)

3. Results and Discussions

Three-dimensional nanofluid flow due to a porous stretching/shrinking sheet with
mass transpiration and radiation is examined in the current analysis. The resulting non-
linear PDES are altered into ODEs with the help of similarity transformations, then the
problem is verified analytically, and mass transpiration is solved under a special case. The
energy equation is solved with a Biot number. Graphene nanofluid volume fraction is
used to derive the problem analytically. The analytical solution of momentum and energy
equation is indicated in Equations (20) and (25), respectively. In solution domain, λ can
be linked through Equation (20), the mass transpiration depends on λ, Γ, β and L, and
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the temperature profile depends on VC, R, Pr, λ and d. The physical scenario can be
understood with the help of different physical parameters, then by using this we conclude
the following discussion.

Figure 2a,b represents the effect of transverse velocity f (η) verses similarity variable
η for different choices of Γ for stretching and shrinking cases, respectively, with fixed
the parameters as d = 1, β = φ = 0.1. Here, it is seen that the transverse velocity f (η)
decreases with an increase in the values of Γ. Here, the red solid lines portray the flow
patterns at L = 0 and black solid lines portray the flow patterns at L = 0.5. From these
figures, it seems that the boundary value thickness is wider for the shrinking sheet case
compared to the stretching sheet case. Additionally, the velocity is higher for more values
of L for the stretching sheet case, but this effect is reversed for the shrinking sheet case.
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Figure 3a,b represents the impact of tangential velocity fη(η) on η for various values
of β and φ respectively, keeping the parameters d = Γ = 1, φ = 0.1 at Figure 3a and
d = Γ = 1, β = 0.1 at Figure 3b. From these figures, we can conclude that the tangential
velocity fη(η) increases with increase in the values of β and φ. Here, the red solid lines
also represent the flow patterns at L = 0 and the black solid lines portray the flow patterns
at L = 0.5. Here, the unknown λ value linked with these parameters through Equation
(20). Physically, the parameter Γ is the combination of a magnetic interaction, inverse Darcy
number, and porosity parameter. Mathematically, it is represented as follows

Γ = γ−
(

ε1

ε2
Da−1 +

ε3

ε2
M
)

(27)

This parameter controls the domain of existence and permits the presence of solutions
for both wall transpirations for Γ < 0, whereas mass suction corresponds to the certain
values of Γ ≥ 0. It is also observed that existence domain seems to be wider for the
stretching sheet case as compared to the shrinking sheet case. Increasing slip or increasing
viscoelasticity decreases the shear stress. In these figures, the impact of Γ helps to control
the uniformity of the flow and to calculate the values of η.

Figure 3. Cont.
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Figure 3. Impact of fη(η) on η for various choices of (a) β and (b) φ.

Equation (25) depicts the analytical expression of the energy equation along with a
Biot number; this expression can provide the analytical solution of the temperature for
Γ, R, φ & β; the thermal analysis is valid for Pr = 6.2, β < 1, φ < 1 and the slip parameter is
fixed to L = 1. According to the laminar boundary layer theory, the dependence of all these
numbers and parameters are discussed below. Figures 4–7 depict the impact of temperature
profile θ(η) verses similarity variable η for different choices of different physical parameters.
Figure 4a,b depict the impact of θ(η) verses η for various values of Γ at d = 1 and d = −1,
respectively, with the fixed parameters φ = β = 0.1, R = Bi = 1. In both the stretching
and shrinking cases, the θ(η) increases with an increase in the values of Γ. θ(η) increases
with increases in the values of R for both d = 1 and d = −1 indicated, respectively, in
Figure 5a,b. In this case, the other parameters are fixed to φ = Γ = β = 0.1, Bi = 1.
Figure 6a,b depict the impact of θ(η) verses η for various choices of φ; here, it is seen that
θ(η) increases with increases of φ for both stretching and shrinking cases, and the other
parameters are fixed to Γ = β = 0.1, R = Bi = 1. Figure 7a,b demonstrate the effect of
temperature profile θ(η) verses η for various values of β, keeping the other parameters as
φ = Γ = 0.1, R = Bi = 1. Here, it is seen that θ(η) increases with an increase in the values
of β for both d = 1 and d = −1.
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Figure 8a,b depict the impact of mass transpiration VC on solid volume fraction φ for
various values of Γ. Domain VC moves towards negative values if we increase the values of
Γ for both stretching and shrinking cases. Here, it seems to be that the shrinking case is
wider than the stretching case.
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Figure 8. Impact of Vc on φ for various choices of Γ at (a) d = 1 and (b) d = −1.

The incomplete gamma function Γ(a, z) becomes infinite when a = z = 0. This knowl-
edge is very significant for gaining the knowledge about Nusselt number and threshold
parameters. This leads to the first non-zero heat transfer rate which is triggered by the
incomplete gamma function; these results are not discussed much in our work (see Turkyil-
mazoglu [28]).
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4. Concluding Remarks

An investigation has taken place on 3-D MHD graphene water nanofluid through
porous media in the presence of mass transpiration and radiation. A closed form solution
is obtained for both the flow and temperature, and mass transpiration is solved under a
special case. Slip condition was also taken into account. The present work is useful in many
real-life applications such automotive cooling systems, power generation, microelectronics,
and air conditioning.

By using this analysis, the following results can be concluded:

• Stretching case is wider than shrinking case.
• Velocity decreases with increases in the values of Γ.
• Tangential velocity fη(η) decreases with an increase in the values of β and φ.
• θ(η) is more for more values of Γ and R for both the stretching and shrinking cases.
• θ(η) is increases with increases in the values of φ and β in the stretching case and the

shrinking case.
• The limiting parameters Da−1 = φ = R = 0, ε1 to ε5 = 1, Bi→ ∞. in the present work

is transformed into the work of Turkyilmazoglu [28] work.
• The classical Crane (1970) flow is recovered if the limiting parameters M = β = Da−1

= φ = R = L = γ = 0, ε1 to ε5 = 1, Bi→ ∞.
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formed formal analysis, contributed to analytical computations, plotted the graphical results, wrote
the original draft, and investigated the problem. And perform programming in Mathematica. I.E.S.
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the results. All authors finalized the manuscript after its internal evaluation. All authors have read
and agreed to the published version of the manuscript.
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Data Availability Statement: Data sharing is not applicable to this article.
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Nomenclature

List of variables Description S.I. Units
a Constants

(
s−1)

B0 Strength of uniform magnetic field (Tesla)
Bi Biot number (−)
b Constant

(
s−1)

CP Specific heat at constant Pressure
(

Jkg−1K−1
)

d & c Stretching/shrinking parameter along x and y axis (−)
Da−1 Inverse Darcy number (−)
f Non dimensional transverse velocity (−)
g Non dimensional velocity (−)
fη Non dimensional Tangential velocity (−)
k Material constant (W/mK)
h Heat transfer coefficient (−)
k Material constant (W/mK)
k∗ Coefficient of mean absorption

(
m−2)

K Permeability of porous medium
(
m2)

L Coefficient of first order slip (−)
l Characteristic length (−)
M Hartman number (−)
Pr Prandtl number (−)
qr Radiative heat flux (−)
qw Local heat flux

(
Wm−2)
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R Radiation parameter (−)
Vc Mass transpiration (−)
T∞ Far field temperature (K)
Tw Wall temperature (K)
T Temperature (K)

(u, v, w) Velocities along x, y, and z direction, respectively
(
ms−1)

(x, y, z) Cartesian coordinates (m)
w0 Wall transpiration

(
ms−1)

Greek symbols
β Dimensionless viscoelastic parameter (−)
λ Solution domain (−)
η Similarity variable (−)
γ Porosity parameter (−)
γ0 Porosity (−)
µ Dynamic viscosity

(
m−1s−1)

ν Kinematic viscosity
(
m2s−1)

κ Thermal conductivity
(

Wm−1K−1
)

ρ Fluid density
(
kgm−3)

θ Dimensionless temperature (−)
σ Electric conductivity

(
Sm−1)

σ∗ Stefan–Boltzmann constant
(

Wm−2K−4
)

Γ(a, z) Incomplete gamma function (−)
Γ Special constant used in the problem (−)
Subscripts
w Wall condition (−)
∞ Free stream condition (−)
η Differentiation with respect to η (−)
Abbreviations
MHD Magneto hydrodynamics (−)
ODEs Ordinary differential equations (−)
PDEs Partial differential equations (−)
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