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Abstract. This paper presents a new technique for generating a high resolution image from a blurred image
sequence; this is also referred to as super-resolution restoration of images. The image sequence consists of decimated,
blurred and noisy versions of the high resolution image. The high resolution image is modeled as a Markov random
field (MRF) and a maximum a posteriori (MAP) estimation technique is used for super-resolution restoration.
Unlike other super-resolution imaging methods, the proposed technique does not require sub-pixel registration of
given observations. A simple gradient descent method is used to optimize the functional. The discontinuities in the
intensity process can be preserved by introducing suitable line processes. Superiority of this technique to standard
methods of image expansion like pixel replication and spline interpolation is illustrated.
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1. Introduction

The physical limitations of currently available image
sensors impose a limit on the spatial resolution of im-
ages and videos. Such physical attributes include the
size and density of detectors that form the sensor. In
addition, the bandwidth limit set by the sampling rate
also indirectly determines the resolution. Hence, low
resolution images occur due to a combination of the ef-
fects of blurring due to the sensor point spread function
(PSF) and aliasing as a consequence of undersampling.
High spatial-resolution images are required in a vari-
ety of applications like remote sensing, aerial surveil-
lance, medical imaging, high definition television and
multimedia imaging. Super-resolution refers to the pro-
cess of reconstructing a high resolution image from a
single or multiple observations at a lower resolution.
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Such a restoration process entails upsampling the im-
age (therefore, extrapolating the frequency spectrum),
deblurring and undoing errors due to aliasing. The un-
derlying philosophy of this method is to acquire more
samples of the scene so as to get some additional infor-
mation which can be utilized, while merging the sam-
ples to get a high resolution image. These samples can
be acquired by sub-pixel shifts, by changing scene il-
lumination or, as we propose in this paper, by changing
the camera focus.

Tsai and Huang [29] were the first to propose a fre-
quency domain approach to reconstruction of a high
resolution image from a sequence of undersampled
low resolution, noise-free images. Given a sufficient
number of frames, the unaliased image is recovered
by solving a set of equations in the frequency do-
main obtained from each of the aliased observations.
However, this method requires a minimum number of
low-resolution images, which may not be always avail-
able. Kim et al. [12] discuss a recursive least-squares
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algorithm, also in the frequency domain, for the restora-
tion of super-resolution images from noisy images.
They extend the case to blurred observations in [13].
Ur and Gross [30] use the Papoulis-Brown generalized
sampling theorem [16] to obtain an improved resolu-
tion picture from an ensemble of spatially shifted pic-
tures. In all the aforementioned references, shifts are
assumed to be known by the authors. Estimation of such
shifts is the most difficult problem in super-resolution
imaging and should be ideally avoided, if possible.
A minimum mean squared error approach (MMSE)
for mulitple image restoration, followed by interpola-
tion of the restored images into a single high resolu-
tion image is presented in [26]. Tom and Katsaggelos
[28] combine the sub-problems of registration, restora-
tion and interpolation and formulate the problem using
the maximum likelihood (ML) approach; the objec-
tive function is minimized with respect to noise vari-
ances and the blur. But since the objective function
is too complex, the authors resort to the expectation-
maximization (EM) algorithm to simplify it. Further,
a quasi-Newton minimization technique is performed
in the M-step of the EM algorithm for determining the
sub-pixel shifts. Our contention, as stated earlier, is that
such complex minimization procedures for intractable
objective functions can be avoided by using low res-
olution images devoid of any shift. An iterative back-
projection method is used in [10], wherein a guess of
the high resolution output image is updated according
to the error between the observed and the low reso-
lution images obtained by simulating the imaging pro-
cess. But back-projection methods can be used only for
those blurring processes for which such an operator can
be calculated. A similar approach is also described in
[11]. Projection onto convex sets (POCS)-based meth-
ods are described in [17, 27]. Although these methods
are quite simple, the interpretation of the result in terms
of its spectral content is very difficult. Bascle et al.
[1] present a method for simultaneous motion deblur-
ring, focus deblurring and super-resolution from im-
age sequences. However, the blurs have been assumed
to be known. Chiang and Boult [5] use edge models
and a local blur estimate to develop an edge-based
super-resolution algorithm. But, in images with a large
number of high frequency content, it is difficult to dif-
ferentiate between significant and insignificant edges.
Recently, Rajan and Chaudhuri [19] proposed a shape-
from-shading-based super-resolution algorithm where
bicubic spline interpolation was carried out on sur-
face normals and albedo recovered from an image se-

quence and consequently, super-resolved images were
reconstructed.

Several researchers have also addressed the above
problem in a statistical framework. Shekarforoush et al.
[25] use MRFs to model the images and obtain 3D high
resolution visual information (albedo and depth) from
a sequence of displaced low resolution images. In [24],
an n dimensional extension of Papoulis’s generalized
sampling theorem is used to develop an iterative algo-
rithm for 3D reconstruction of a Lambertian surface at
a sub-pixel accuracy. Here too, the effect of sampling a
scene at a higher rate is acquired by having interframe
sub-pixel displacements. A MAP estimate of a super
resolved image with Huber-MRF prior is described by
Schultz and Stevenson in [22]. But they do not con-
sider the case of blurred observations. They extended
the method for extracting high resolution frames from
video sequences [23]. After each frame is expanded
using the algorithm in [22], motion is estimated us-
ing a block matching technique on individual frames.
However, a priori knowledge about motion cannot be
included in block matching techniques. Elad and Feuer
[7] propose a unified methodology for super-resolution
restoration from several geometrically warped, blurred,
noisy and downsampled observations by combining
ML, maximum a posteriori (MAP) and POCS ap-
proaches. This unified method generalizes these ap-
proaches only to a certain extent; MAP estimators
with non-quadratic priors and POCS with L∞ norm
are not special cases of the model. Cheeseman et al.
[4] describe another Bayesian approach for construct-
ing a super-resolved surface by combining information
from a set of images of the given surface. However,
their model includes registration parameters, the point
spread function (PSF) and camera parameters that are
estimated first and subsequently, the surface recon-
struction is carried out. Hardie et al. describe a joint
MAP estimator for the high-resolution image and reg-
istration parameters to obtain sub-pixel translation es-
timates [20]. In [21], this method is extended to rotated
and translated frames applied to infrared imaging sys-
tems.

In this paper, we present a new technique wherein
an ensemble of decimated, blurred and noisy versions
of an ideal high resolution image are used to gener-
ate a super-resolved image. This is an ill-posed inverse
problem [9]. There is no spatial shifts between the ob-
servations but the images are captured with different
camera blurs. The super-resolved image is modeled as
an MRF and a MAP estimation technique is used. Since
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there is no relative displacement between the input im-
ages, the need for estimating sub-pixel shifts does not
arise. Also, the input images need not be focused as the
algorithm carries out simultaneous restoration (deblur-
ring) in the course of generating the super-resolution
image. The proposed method is fast as a result of us-
ing a simple gradient-descent minimization of a con-
vex cost function. One can obtain an improved result
for super-resolution, if appropriate line fields [8] are in-
cluded in the cost function. However, the computational
requirement goes up. In situations where the compu-
tational cost is not an issue, simulated annealing can
be used for optimization; a relatively faster approach
would be to use the graduated non-convexity (GNC)
algorithm [2]. Results for both these approaches are
also presented to illustrate the efficacy of the proposed
method.

In the next section we describe how low resolu-
tion images are generated from a high resolution im-
age. In Section 3, we cast the super-resolution prob-
lem in a restoration framework. The cost function
obtained using the MAP estimator is derived in this
section. Section 4 presents experimental results, and
conclusions are given in Section 5.

2. Low Resolution Image Formation

Suppose the low resolution image sensor plane is di-
vided into M1 × M2 square sensor elements and Y =
{yi, j }, i = 0, . . . , M1 − 1 and j = 0,. . . , M2 − 1, are
the low resolution intensity values. If the downsam-
pling parameters are q1 and q2 in the horizontal and
vertical directions, respectively, then the high resolu-
tion image will be of size q1 M1 × q2 M2. For notational
ease, we assume q1 = q2 = q , and therefore the de-
sired high-resolution image z will have intensity values
{zk,l}, k = 0, . . . , q M1 − 1 and l = 0, . . . , q M2 − 1.
The forward process of obtaining {yi, j } from {zk,l} is
written as

yi, j = 1

q2

(q+1)i−1∑
k=qi

(q+1) j−1∑
l=q j

zk,l (1)

i.e., the low resolution intensity is the average of the
high resolution intensities over a neighborhood of q2

pixels. This decimation model simulates the integra-
tion of light intensity that falls on the high-resolution
detector.

Each of the decimated images is blurred by a dif-
ferent, but known linear space invariant blurring ker-
nel. Elad and Feuer [6, 7] have shown that in this case
super-resolution restoration is possible even if there
is no relative motion between the input images. They
derive the following necessary condition for super-
resolution to be possible for images not represented
parametrically:

q2 ≤ min{[2m + 1]2 − 2, p} (2)

where (2m + 1) × (2m + 1) is the size of the blurring
kernel and p is the number of input images. Hence, al-
though more number of blurred observations of a scene
do not provide any additional information in the same
sense as sub-pixel shifts of the camera or changing
illuminant directions do, it is, nevertheless, possible to
achieve super-resolution with these blurred samples,
provided Eq. (2) is satisfied. Even if only the relations
among the blurring functions are known, as is the case
in, say, depth from defocus problems [3, 18], it is tan-
tamount to knowing all the blurs provided any one of
them is known. Finally, i.i.d. zero mean Gaussian noise
is added to the decimated and blurred images. Noise is
assumed to be uncorrelated in different low resolution
images.

Next, we formally state the problem by casting it in
a restoration framework. There are p observed images
{Yi }p

i=1 each of size M1 × M2. These images are deci-
mated, blurred and noisy versions of a single high res-
olution image Z of size N1 × N2, where N1 = q M1 and
N2 = q M2. If yi is the M1 M2 × 1 lexicographically or-
dered vector containing pixels from the low resolution
image Yi , then a vector z of size q2 M1 M2 × 1 contain-
ing pixels of the high resolution image can be formed
by placing each of the q × q pixel neighborhoods se-
quentially so as to maintain the relationship between
a low resolution pixel and its corresponding high res-
olution pixel. After incorporating the blur matrix and
noise vector, the image formation model is written as

yi = Hi Dz + ni, i = 1, . . . , p (3)

where D is the decimation matrix of size M1 M2 ×
q2 M1 M2, H is the blurring matrix (PSF) of size
M1 M2 × M1 M2, ni is the M1 M2 ×1 noise vector and p
is the number of low resolution observations. The dec-
imation matrix D consists of q2 values of 1

q2 in each
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row and has the form [22]

D = 1

q2




1 1 . . . 1 0
1 1 . . . 1

. . .

0 1 1 . . . 1


 (4)

Thus, the model indicates a collection of low reso-
lution images, each of which differ from the others in
the blur matrix, which is akin to changing the focus
of a stationary camera looking at a stationary scene.
Since we have assumed noise to be zero mean i.i.d, the
multivariate pdf of ni is given by

P(ni) = 1

(2π)
M1 M2

2 σ
M1 M2
η

exp

{
− 1

2σ 2
η

ni
T ni

}
, (5)

where σ 2
η denotes the variance of the noise process. Our

problem now reduces to estimating z given yi’s, which
is clearly an ill-posed, inverse problem.

3. Super-Resolution Using a MAP Estimator

The maximum a posteriori (MAP) estimation tech-
nique is used to obtain the high resolution image z
given the ensemble of low resolution image, i.e.,

ẑ = arg max
z

P(z | y1, y2, . . . , yp) (6)

From Bayes’ rule, this can be written as

ẑ = arg max
z

P(y1, y2, . . . , yp | z)P(z)

P(y1, y2, . . . , yp)
. (7)

Since the denominator is not a function of ẑ,
equation (7) can be written as

ẑ = arg max
z

P(y1, y2, . . . , yp | z)P(z). (8)

Taking the log of posterior probability,

ẑ = arg max
z

[log P(y1, y2, . . . , yp | z) + log P(z)].

(9)

Hence, we need to specify the prior image density P(z)
and the conditional density P(y1, y2, . . . , yp | z).

3.1. Prior Model for z

MRF models have been widely used to solve vision
problems because of their ability to model context
dependency, since interpretation of visual informa-
tion necessitates an efficient description of contextual
constraints. The utility of MRF models arises from
the Hammersley-Clifford theorem which describes the
equivalence of the local property that characterizes an
MRF and the global property which characterizes a
Gibbs Random Field (GRF) [8, 15]. The high resolu-
tion image z satisfying the Gibbs density function is
now written as

P(z) = 1

Z
exp

{
−

∑
c∈C

Vc(z)

}
(10)

where Z is a normalizing constant known as the parti-
tion function, Vc(·) is the clique potential andC is the set
of all cliques in the image. In order to employ a simple
and fast minimization technique like gradient descent,
it is desirable to have a convex energy function. More
importantly, the minimization procedure should not get
trapped in a local minima. To this end, we consider pair
wise cliques on a first order neighborhood and impose
a quadratic cost which is a function of finite difference
approximations of the first order derivative at each pixel
location, i.e.,

Vc(z) = 1

λ

N1∑
k=1

N2∑
l=1

[(zk,l − zk,l−1)
2 + (zk,l − zk−1,l)

2]

(11)
where λ can be viewed as a “tuning” parameter. It can
be interpreted as the penalty for departure from smooth-
ness in z.

It is well known that in images, points having sig-
nificant change in the image irradiance carry impor-
tant information. In order to incorporate provisions for
detecting such discontinuities, Geman and Geman [8]
introduced the concept of line fields located on a dual
lattice. We describe a prior using horizontal and verti-
cal line fields in Section 3.4 and use GNC to optimize
the corresponding cost function. As mentioned in the
introduction, where computational issues do not arise,
one could go in for simulated annealing (SA); we ob-
serve a significant improvement in the performance of
the restoration process.
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3.2. MAP Solution

From Eq. (9), since ni ’s are independent,

ẑ = arg max
z

[
log

p∏
i=1

P(yi | z) + log P(z)

]

= arg max
z

[
p∑

i=1

log P(yi | z) + log P(z)

]
. (12)

Since noise is assumed to be i.i.d Gaussian, from
Eqs. (3) and (5) we obtain

P(yi | z) =

 p∑

i=1

log
1(

2πσ 2
η

) M1 M2
2

× exp

{
−‖ yi − Hi Dz ‖2

2σ 2
η

}]

= −
p∑

i=1

‖ yi − Hi Dz ‖2

2σ 2
η

− M1 M2

2
log

(
2πσ 2

η

)
, (13)

where ση is the noise variance. Substituting in (12) and
using (10) we get,

ẑ = arg max
z

[
p∑

i=1

−‖ yi − Hi Dz ‖2

2σ 2
η

−
∑
c∈C

Vc(z)

]

= arg min
z

[
p∑

i=1

‖ yi − Hi Dz ‖2

2σ 2
η

+
∑
c∈C

Vc(z)

]

(14)

Substituting Eq. (11) into Eq. (14), the final cost
function is obtained as

ẑ = arg min
z

[
p∑

i=1

‖ yi − Hi Dz ‖2

2σ 2
η

+ 1

λ

N1∑
k=1

N2∑
l=1

[(zk,l − zk,l−1)
2 + (zk,l − zk−1,l)

2]

]

(15)

The above cost function is convex in terms of the un-
known image z and hence a simple gradient descent
optimization can be used to minimize it. It may be

mentioned here that although the super-resolved im-
age z has been assumed to be an MRF, the low resolu-
tion observations yi do not constitute separate MRFs,
and hence a multi-resolution MRF model based super-
resolution scheme will not work (see [14] for details).

3.3. Gradient Descent Optimization

It is clear from the cost function of Eq. (15) that it
consists of two parts. The first term reflects the error
between the observation model and the observed data.
If we minimize this term alone, the ill-posedness of the
inverse problem could cause excessive noise amplifica-
tion. The second term is the regularization term which
is minimized when z is smooth. The contribution of the
two terms are controlled by the noise variance σ 2

η and
the regularization parameter λ. The gradient of (15), at
the nth iteration is given by

g(n) = 1

σ 2
η

p∑
i=1

DT H T
i

(
Hi Dz(n) − yi

) + G(n)

λ
(16)

where G(n) at location (k,l) in the super-resolution lat-
tice is given by

G(n)(k, l) = 2
[
4z(n)

k,l − z(n)
k,l−1 − z(n)

k,l+1 − z(n)
k−1,l − z(n)

k+1,l

]
.

The estimate at (n + 1)th iteration,

z(n+1) = z(n) − αg(n)

where α is the step size, is computed iteratively until
‖z(n+1) − z(n)‖ < Threshold. The initial estimate z(0) is
chosen as the bilinear interpolation of the available least
blurred, low resolution image. It should be noted here
that the necessary condition for obtaining the super-
resolution image given in Eq. (2) is not applicable
here as the super-resolved image z is modeled by an
MRF unlike in [7] where z is not represented para-
metrically. It is the parameteric representation of the
super-resolved image z (in terms of the MRF model)
that provides the necessary cue for super-resolution.

3.4. Preservation of Discontinuities

Presence or absence of discontinuities conveys impor-
tant information such as change in surface orientation,
depth, texture etc. The concept of line fields on a dual
lattice, consisting of sites corresponding to vertical and
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horizontal line fields, was introduced in [8]. The hori-
zontal line field li, j connecting site (i, j) to (i, j − 1)

aids in detecting a horizontal edge, while the vertical
line field vi, j connecting site (i, j) to (i − 1, j) helps
in detecting a vertical edge. Note that we have chosen
li, j and vi, j to be binary variables in this study. How-
ever, one can use continuous variables as well without
much changing the problem formulation [15]. The ad-
vantage of using continuous variable line fields lies in
having a differentiable cost function when a gradient-
based optimization method can still be used. The log
of the prior distribution in Eq. (10), neglecting the
normalizing term, becomes∑

c∈C
Vc(z) =

∑
i, j

µ[(zi, j − zi, j−1)
2(1 − vi, j )

+ (zi, j+1 − zi, j )
2(1 − vi, j+1)

+ (zi, j − zi−1, j )
2(1 − li, j )

+ (zi+1, j − zi, j )
2(1 − li+1, j )]

+ γ [li, j + li+1, j + vi, j + vi, j+1]

= V (z) (say). (17)

Given a preset threshold, if the gradient at a particular
location is above that threshold, the corresponding line
field is activated to indicate the presence of a discon-
tinuity. The term multiplying γ provides a penalty for
every discontinuity so created. Putting the above ex-
pression into Eq. (14), we arrive at the modified cost
function

ẑ = arg min
z

[
p∑

i=1

‖ yi − Hi Dz ‖2

2σ 2
η

+ V (z)

]
. (18)

When the energy function is non-convex, there is a
possibility of the steepest descent type of algorithms
getting trapped in a local minima. As shown earlier,
our cost function was chosen to be convex. This saved
us from the requirement of using a computationally in-
tensive minimization technique like SA. However, on
inclusion of line field terms in the cost function to ac-
count for discontinuities in the image, the gradient de-
scent technique is liable to get trapped in local minima.
We see the similarity between the above cost function
and the energy function of the weak membrane formu-
lation [2]. Hence, the GNC algorithm is apt for carry-
ing out the minimization. Although the results indicate
an improvement over the gradient descent approach,
still better estimates of the super-resolved image z are
observed using SA.

4. Experimental Results

Experiments were performed on various images to as-
sert the efficacy of the proposed method. Figure 1 shows
two of the five low resolution noisy images of Lena, CT
and Pentagon, each of size 64 × 64, obtained by deci-
mating the respective original images and blurring the
decimated images with Gaussian blurs. Although the
Gaussian blur has an infinite extent, for purpose of com-
putation we chose the kernel size according to an extent
of ± 3σ , where σ is the blur parameter. Each low reso-
lution observation contains zero mean Gaussian noise
with variance 5.0.

Figure 1. Low resolution, noisy images of Lena, CT and Pentagon
with blurs (a) σ = 0.7 and (b) σ = 1.1.

Figure 2. Super-resolved Lena image using gradient-descent
optimization.
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Figure 3. Lena image (a) zero order hold expanded and (b) cubic spline interpolated.

Figure 4. Super-resolved images of (a) CT and (b) Pentagon with 5 low resolution observations, using the gradient-descent method.

Figure 5. Super-resolved (a) Lena, (b) CT and (c) Pentagon images using only two low resolution observations with σ = 0 and σ = 0.5.
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First, we present the results of super-resolution us-
ing the gradient descent method. As mentioned in
Section 3.3, the initial estimate of the high resolution
image is the bilinear interpolation of the least blurred
observation. The smoothness parameter λ was chosen
as 16.75 for the Lena and CT images and 20.0 for
the Pentagon image. The step size was initially cho-
sen as 0.1 and was reduced by a factor of 0.99 after
each iteration. For large values of λ, the data consis-
tency term in Eq. (15) dominates, producing excessive
blockiness in the expanded image. On the other hand,
a small value of λ causes over-smoothing. It may be
noted that the choice of the value of λ is quite ad-
hoc in nature. The value was selected in our study by
trial and error method. It may be possible to use a
cross-validation technique to arrive at a good choice
of λ, but this has not been pursued in this study.

The super-resolved Lena image using the gradient
descent optimization scheme is shown in Fig. 2. Results

Figure 6. Super-resolved (a) Lena, (b) CT and (c) Pentagon images using the GNC optimization scheme.

Figure 7. Super-resolved (a) Lena, (b) CT and (c) Pentagon images using simulated annealing (SA).

Table 1. Comparison of MSEs of different interpolation schemes.

Method Lena CT Pentagon

ZOH 0.012061 0.899187 0.054042

Cubic spline 0.011870 0.452966 0.052309

Gradient descent 0.003531 0.021216 0.010676

GNC 0.002255 0.021085 0.006962

SA 0.002143 0.007615 0.004186

of zero order hold expansion and cubic spline interpo-
lation of the least blurred Lena image are shown in
Fig. 3(a) and (b), respectively. The blockiness in the
zero-order hold expanded image is clearly discernible,
while the spline interpolated image is not only signif-
icantly noisy, but, as is expected of splines, it is also
blurred due to over-smoothing. On the other hand, the
proposed algorithm also does deblurring in addition to
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removing noise and generating a super-resolved image.
The super-resolved CT and Pentagon images with 5 low
resolution observations using the proposed method are
shown in Fig. 4. The gradient descent method was used
for the optimization purpose. The cynuses in the bone
near the right middle edge of the CT image which are
not visible in the low resolution observations shows up
clearly in the super-resolved image. The super-resolved
Pentagon image contains more details of the circular
central part than any of the low-resolution images.

The mean squared error between the original image
and generated super resolved image is defined as

MSE =
∑N1

i=1

∑N2
j=1(ẑi, j − zi, j )

2∑N1
i=1

∑N2
j=1(zi, j )2

. (19)

Table 1 shows the comparison of the MSE for the pro-
posed method with standard methods like zero-order
hold and cubic spline interpolation. Notice the signif-
icant drop in the MSEs for CT and Pentagon images
in going from cubic spline interpolation to the pro-
posed technique using gradient descent optimization
technique.

In another experiment, only two low resolution ob-
servations, each of Lena, CT and Pentagon were con-
structed, out of which one was not blurred and the other
was blurred with σ = 0.5. The mean squared errors
of the super-resolved Lena, CT and Pentagon images
shown in Fig. 5 were 0.003586, 0.021446 and 0.009416
respectively. Compare this to the results given in the
third row in Table 1. This is not very different from
the results we obtained when all the input images were
defocused. Hence, there is no appreciable gain in hav-
ing focused images in the low resolution ensemble.
The proposed technique is, therefore, suitable for low-
resolution images that are blurred, since the algorithm
inherently performs a deblurring operation. It was ob-
served that there was a marked reduction in the mean
square errors till four input images were used; how-
ever, for five or more images, the errors did not change
significantly, although more number of images helps in
smoothing out noise.

Next, we present results of minimization of the mod-
ified cost function when line processes are used to
preserve discontinuity. As before, we consider 5 low
resolution observations. The super-resolved images us-
ing GNC as the optimization technique are shown in
Fig. 6. The MSE for this method is indicated in Table 1.
Visually, there is a significant reduction in noise of the
super-resolved image generated using the discontinu-

Figure 8. Comparison of mean square errors between the gradient-
descent and the discontinuity preserving (GNC) approaches for (a)
Lena, (b) CT and (c) Pentagon images, as the number of observations
increases.

ity preserving method. In yet another experiment, we
carried out the optimization of the modified cost func-
tion using SA, but with the output of the GNC algo-
rithm as the initial estimate of the super-resolved im-
age. The super-resolved Lena, CT and Pentagon images
from this method are shown in Fig. 7. Notice that the
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estimates of the GNC algorithm have undergone further
deblurring resulting in a sharper image, e.g. around the
eyes of Lena and on the Pentagon image as a whole. We
noted earlier that in order to avoid the computational
expense of simulated annealing, we opted for a convex
cost function by choosing a suitable expression for the
clique potentials. However, with incorporation of line
fields and optimization using the GNC, which is proven
to have a faster convergence than SA, we obtained a bet-
ter estimate of the super-resolved image. When compu-
tational complexity is not an issue, we could go further
and use the SA to obtain still better estimates.

Simulations were also carried out to investigate the
effect of the number of observations on the quality of
the super-resolved image. As shown in Fig. 8, the mean
square errors decrease as the number of low resolu-
tion observations increases. The plots also illustrate the
superiority of the discontinuity preserving method to
the gradient descent approach. As noted earlier, the
flat nature of the plots for the gradient descent ap-
proach implies that the errors do not reduce signifi-
cantly, although more number of images do contribute
to smoothening out noise. On the other hand, increase
in the number of images does bring about a substantial
reduction in the errors when line fields are included in
the cost function.

5. Conclusions

This paper addresses the problem of generating a super-
resolution image from a sequence of blurred, decimated
and noisy observations of an ideal image. A MAP-MRF
approach was used to minimize the function. Com-
parison with zero order hold and spline interpolation
techniques shows that the proposed method is superior.
Since there is no relative motion between the observed
images, as is the case in most of the previous work in
super-resolution, the difficult tasks of image registra-
tion and motion estimation are done away with. The
proposed technique is fast due to optimization using
the gradient descent approach. The errors are seen to
level off after about 35 iterations for all the images con-
sidered in this paper. Next, the cost function was mod-
ified to include line fields to preserve discontinuitites.
In addition to significant noise reduction, the sharp-
ness in the image was also observed to be enhanced.
This work can also be viewed in the realm of blind
image restoration since simultaneous deblurring of the
observed images and noise removal is embedded in
our method. Future work will involve super-resolved

restoration with unknown blurs. This translates to a
joint blur identification and super-resolution restora-
tion problem.
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