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An N-Cadherin 2 expressing epithelial cell
subpopulation predicts response to surgery,
chemotherapy and immunotherapy in bladder
cancer
Kenneth H. Gouin III1,2,8, Nathan Ing1,2,8, Jasmine T. Plummer 1,2, Charles J. Rosser 3,4,

Bassem Ben Cheikh1,2, Catherine Oh1,2, Stephanie S. Chen1,2, Keith Syson Chan4,5, Hideki Furuya 3,4,

Warren G. Tourtellotte1,4,5,6,7, Simon R. V. Knott1,2,4✉ & Dan Theodorescu 3,4,5✉

Neoadjuvant chemotherapy (NAC) prior to surgery and immune checkpoint therapy (ICT)

have revolutionized bladder cancer management. However, stratification of patients that

would benefit most from these modalities remains a major clinical challenge. Here, we

combine single nuclei RNA sequencing with spatial transcriptomics and single-cell resolution

spatial proteomic analysis of human bladder cancer to identify an epithelial subpopulation

with therapeutic response prediction ability. These cells express Cadherin 12 (CDH12,

N-Cadherin 2), catenins, and other epithelial markers. CDH12-enriched tumors define patients

with poor outcome following surgery with or without NAC. In contrast, CDH12-enriched

tumors exhibit superior response to ICT. In all settings, patient stratification by tumor CDH12

enrichment offers better prediction of outcome than currently established bladder cancer

subtypes. Molecularly, the CDH12 population resembles an undifferentiated state with

inherently aggressive biology including chemoresistance, likely mediated through progenitor-

like gene expression and fibroblast activation. CDH12-enriched cells express PD-L1 and PD-L2

and co-localize with exhausted T-cells, possibly mediated through CD49a (ITGA1), providing

one explanation for ICT efficacy in these tumors. Altogether, this study describes a cancer

cell population with an intriguing diametric response to major bladder cancer therapeutics.

Importantly, it also provides a compelling framework for designing biomarker-guided

clinical trials.
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M
olecular subtyping of muscle-invasive bladder cancer
(MIBC) has revolutionized the current conceptual
thinking of MIBC pathogenesis1–6. However, even the

most recent consensus molecular classification systems do not
provide compelling evidence for its use in clinical decision-
making and is specifically lacking in predictions for therapeutic
response. Emerging studies using single-cell RNA-sequencing to
analyze MIBC have provided an initial understanding of intra-
tumoral heterogeneity7. However, these studies have focused on
the tumor microenvironment, have been limited by relatively
small cohort sizes, and have yet to provide a clearer path toward
therapeutic decision-making. We hypothesized that comprehen-
sive profiling at the single-cell level of MIBC epithelial and non-
epithelial cells would serve to deconvolute current molecular
subtypes into their constituent parts and consequently develop
more effective prognostic and predictive tools.

In this study, we perform the first comprehensive profiling of
high-grade urothelial MIBCs using single-nucleus RNA-sequen-
cing (snSeq) on 25 treatment-naïve patients, with surgery
(TURBT/cystectomy) as their only treatment. We demonstrate
the presence of a previously uncharacterized epithelial cell
phenotype marked by high expression of Cadherin 12 (CDH12,
N-Cadherin 2), catenins and other epithelial markers. We further
show that this phenotype is present in multiple established
molecular subtypes, demonstrating intra-subtype heterogeneity.
We also find that CDH12-enriched tumors define patients with
poor outcome following surgery with or without neoadjuvant
chemotherapy, but superior outcome in the context of immune
checkpoint therapy (ICT). Finally, using in-situ profiling we
demonstrate that CDH12-enriched epithelial cells reside in dis-
tinct cellular niches that are enriched for exhausted CD8 T-cells,
thus elucidating a possible mechanistic explanation for their
ability to predict response to ICT.

Results
Identification of stem-like CDH12-expressing epithelial cells.
Toward the first goal of characterizing intratumoral hetero-
geneity, we first looked at the overall cellular composition of the
profiled MIBC tumors based on snSeq cell type proportions
(Fig. 1a, Supplementary Fig. 1a, b, and Supplementary Table 1).
The tumors were composed of ~90% epithelial cells, 5% immune
cells, 3% fibroblasts, and 2% endothelial cells as annotated based
on their corresponding expression of keratins, PTPRC, collagens,
PECAM1, and VWF, respectively, among other key marker genes
(Fig. 1b, c and Supplementary Fig. 1c). Unsupervised clustering of
the epithelial compartment alone identified clusters with differ-
ential expression of KRT13 and KRT17, which were combined
into one cluster (KRT13), uroplakins (UPK), KRT6A, cell-cycle-
related genes (cycling), as well as a distinct cellular population
expressing CDH12 along with other epithelial markers (Fig. 1d
and Supplementary Fig. 1e). We observed substantial inter-
tumoral heterogeneity in epithelial compositions (Supplementary
Fig. 1f). The aforementioned genes were used to annotate the
clusters because their high expression denoted unique clusters
and the genes hold functional relevance (the complete listing of
differentially expressed genes for each cluster can be found in
Supplementary Data File 1). The fibroblasts encompassed 4 major
populations defined by key cancer-associated fibroblast (CAF)
markers8–11, including fibroblast activation protein (FAP), alpha
smooth muscle actin (αSMA, ACTA2), podoplanin (PDPN), and
platelet-derived growth factor receptor beta (PDGFRβ) (Supple-
mentary Fig. 1g, h). The immune compartment contained a
diverse collection of cells including T-cells, dendritic cells, mac-
rophages, and B-cells as defined by classic immune marker genes
(Supplementary Fig. 1i, j).

We focused on a deeper analysis of the epithelial compartment
as it constituted the bulk of the tumor. Immunohistochemistry
verified the expression of KRT13, KRT17, and CDH12 in tumors
that were predicted by snSeq to have high versus low levels of
KRT13 and CDH12 epithelial populations (Supplementary Figs. 2
and 3). We then evaluated the epithelial populations in the
context of previously published MIBC gene signatures to
determine similarities and differences. The KRT13 and UPK
populations were most closely related to the luminal phenotype,
while the KRT6A population was similar to the basal phenotype.
Interestingly, the CDH12 population had elements of the p53-like
and immune-infiltrated phenotypes suggesting that it may be
present to some degree in multiple previously established
subtypes, and that prior methods were unable to fully elucidate
its molecular contribution to MIBC12,13. The KRT13 and UPK
populations were the only two that lacked the gene signature
derived from immune-infiltrated MIBC, suggesting that tumors
that are enriched for these populations represent immunologi-
cally “cold” tumors (Fig. 1e)14. Further cross-referencing to
conventional uroepithelial differentiation-related markers indi-
cated that the KRT13 and UPK populations represented a more
differentiated phenotype, while the CDH12, KRT6A, and cycling
populations represented an undifferentiated or dedifferentiated
phenotype (Fig. 1f).

To further characterize the epithelial populations, we
performed several unbiased analyses. We constructed a gene
network consisting of variably expressed genes with high pair-
wise correlations, and used gene ontology enrichment to
understand the function of the resultant subnetworks. As
expected, the KRT13 and UPK populations expressed an
epithelial cell differentiation network (Fig. 1g). Further under-
scoring the unique nature of the CDH12 population, we found
these cells express cell adhesion and cell development pathways.
Gene expression scoring for the identified subnetworks showed
significant enrichment in the corresponding epithelial popula-
tions as expected (Supplementary Fig. 4a). The CDH12
population was also predicted to exhibit high activity of several
development-related transcription factors based on Single-Cell
rEgulatory Network Inference and Clustering (SCENIC)
analysis, including NANOG, EOMES, PAX1, and HOXD9
(Fig. 1h). In contrast, the UPK and KRT13 populations
exhibited higher activity of the differentiation regulators
PPARG and GATA315. The CDH12 and cycling populations
also scored highly for stem-like (teratoscore/pluritest) and
neuroendocrine gene signatures (Fig. 1i)16–18. Consistent with a
stem-like phenotype, we also found that the CDH12 population
differentially expressed ALDH1A1, a key bladder stem cell
marker (Supplementary Fig. 4b)19.

CDH12-enriched cells are found in healthy, normal bladder
epithelium. To gain insights into the biological origin and dif-
ferentiation path of the newly identified epithelial populations, we
also performed snSeq profiling on 4 histologically normal bladder
samples. Unsupervised clustering of the epithelial cells identified
basal, intermediate, and umbrella populations, as previously
described (Fig. 2a and Supplementary Fig. 4c)20. Interestingly, the
CDH12 population was clearly distinct from these latter cano-
nical groups, while the intermediate cells expressed the highest
levels of KRT13 and KRT17 (Fig. 2b). In addition, the CDH12
population from these samples expressed lower levels of genes
known to be amplified in bladder cancer compared to their MIBC
counterpart, including TERT and SOX4 (Supplementary
Fig. 4d)21. We applied RNA velocity analysis to each sample
individually, using information about the expression of genes at
the unspliced and spliced level to predict a pseudotime
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Fig. 1 Discovery of a CDH12+ tumor cell population by single-nucleus sequencing. a Workflow for single nucleus sequencing; MIBC—muscle invasive

bladder cancer. b UMAP of all nuclei (71,832) in MIBC dataset colored by unsupervised clustering. c Average gene expression per patient of marker genes for

each cell type in b. d UMAP of all epithelial nuclei (52,983) in MIBC dataset colored by epithelial population. e Gene signature scores for published MIBC

subtype gene sets. f Uroepithelial differentiation-related marker gene expression in each epithelial population, where the dot size indicates the percent of cells

within the subtype with non-zero expression of the respective gene. g Gene-gene correlations partitioned into co-expression modules annotated for epithelial

population enrichment. Gene ontology (GO) annotations are included with g:SCS multiple testing corrected p-values for hypergeometric testing. h Activity

scores for SCENIC transcription factor regulons in each epithelial population. i Gene signature scores for stem-cell and neuroendocrine differentiation gene sets.
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trajectory22,23. This identified a trajectory that initiated in basal
cells and subsequently diverged into two differentiation paths:
one traveling through the CDH12 population and one that skips
the CDH12 population (Fig. 2c, d, representative sample shown).
Both paths ultimately converge on the intermediate population
and terminate in the umbrella population. Key uroepithelial

differentiation markers tracked along this path as expected, with
high expression of CD44 at initiation, followed by KRT13 and
KRT17 in the middle, and UPK1A, GATA3, and PPARG at the
terminus (Fig. 2e). Pseudotime trajectories of all 4 normal sam-
ples exhibited similar paths, with the CDH12 population situated
near the initiation (Fig. 2f, top and Supplementary Fig. 4e). Taken
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together, this demonstrated that the CDH12 population was a
distinct node in the path of bladder differentiation. Conceivably,
transformation at this juncture would lead to tumor development
with an enrichment of the CDH12 population.

To determine the transcriptional similarity between the
CDH12 tumor cells and their normal counterparts and infer
their position along the normal epithelial differentiation trajec-
tory, we identified the nearest normal cell neighbor of every
MIBC epithelial cell, using expression similarities, and then
assigned the corresponding normal latent times to the tumor cells
(Fig. 2f, middle). This revealed that the CDH12, cycling, and
KRT6A populations were most consistent with an undifferen-
tiated or dedifferentiated phenotype, while the UPK population
was most consistent with a fully differentiated phenotype. We
then sought to understand the predictive potential of this
trajectory as previous studies had identified luminal (differen-
tiated) and basal (undifferentiated) signatures as prognostically
relevant24,25. We created gene signatures from intervals along our
identified differentiation paths and scored 259 samples of
previously untreated high-grade urothelial MIBC tumors in The
Cancer Genome Atlas (TCGA, Supplementary Data File 2) for
each interval using single-sample gene set enrichment analysis
(ssGSEA)26. Strikingly, the interval score corresponding to the
most undifferentiated phenotype predicted poor disease-specific
survival (DSS) while the interval score of the most differentiated
phenotype predicted better DSS, with the interval scores in
between demonstrating a transition between the opposing
outcomes (Fig. 2f, bottom).

CDH12 score predicts poor prognosis in MIBC. The observed
prognostic value of the differentiation path gene signatures and
their relationship to the CDH12 population prompted us to delve
further into analyzing TCGA high-grade MIBC tumors. We
created gene signatures for each of our cellular populations
(Supplementary Data File 3) and scored each TCGA sample for
these signatures using ssGSEA. We created cellular profiles for
each of the TCGA tumors and analyzed them in the context of
the consensus MIBC or TCGA 2017 classifications (Fig. 3a)21,27.
Not surprisingly, we observed good agreement between classifi-
cation systems. Our UPK signature was enriched in the luminal
subtypes, while our KRT6A signature was enriched in the basal/
squamous (Ba/Sq) subtypes. Interestingly, speaking to its unique
nature, the CDH12 signature distributed across the Ba/Sq,
luminal infiltrated, and neuroendocrine-like subtypes, while being
notably absent from the luminal papillary (LumP) and luminal
uncertain (LumU) subtypes (Fig. 3a). This was consistent with
our previous observation that the CDH12 population may be
present to some degree in multiple previously established sub-
types (Fig. 1e). The Ba/Sq and luminal infiltrated subtypes, which
harbored CDH12 enrichment, also demonstrated enrichment for
CD8+ T-cells and fibroblasts, which was notably lacking in the
LumP and LumU subtypes. The CDH12 and macrophage sig-
natures were the lone predictors of poor DSS (Fig. 3b). Notably,
the KRT13, UPK, and CD8+ T-cell (CD8T) signatures were
linked with better DSS and αSMA fibroblasts with poorer DSS,
however these associations did not reach the level of statistical
significance.

CDH12 score predicts poor response to neoadjuvant che-
motherapy. Having established the broad prognostic impact of
our molecular signatures on surgically treated MIBC, we inves-
tigated their ability to predict response to platinum-based che-
motherapy using data from paired pre- and post-NAC bladder
cancer samples from a recent study13,28. Our gene signatures
tracked with the single-sample classifier reported in the study in a

manner consistent with the TCGA subtyping (Supplementary
Fig. 5a). While our gene signatures did not predict response rate
based on pathological downstaging (Supplementary Fig. 5b), once
again the CDH12 score predicted poor overall survival (OS),
while the KRT13 and UPK (p= 0.06) scores predicted better
OS (Supplementary Fig. 5c). To determine how the CDH12
population might associate with changes brought about by
chemotherapy, we split pre-chemotherapy samples by high and
low CDH12 scores and tracked changes in our gene signatures
following chemotherapy. We observed low CDH12 score samples
tended to become high CDH12 score samples after chemother-
apy, while high CDH12 score samples tended to retain a high
CDH12 score after chemotherapy (Fig. 3c). In contrast, the
opposite trend was observed when performing a similar analysis
using the UPK signature score, while the other epithelial popu-
lations did not exhibit any clear progression. This suggests that
the CDH12 population is chemo-resistant, while the UPK
population is chemo-sensitive. Interestingly, both tumor types
increased in αSMA score after chemotherapy, indicating potential
stromal activation. Tumors that started with low CD8T scores
tended to increase their CD8T score after chemotherapy, indi-
cating immune activation.

CDH12 cells are chemo-resistant and activate stroma. To fur-
ther understand the changes brought on by chemotherapy in the
context of CDH12, we compared gene expression profiles of
matched post-chemotherapy and pre-chemotherapy tumors
separated by their pre-chemotherapy CDH12 score. Interestingly,
tumors that began with a low CDH12 score increased expression
of genes related to apoptosis and immune activation in response
to chemotherapy, while tumors that started with a high
CDH12 score responded to chemotherapy through fibroblast and
endothelial cell activation (Fig. 3d). This stromal activation sig-
nature prompted us to search for potential communication
between the CDH12 epithelial cells and fibroblasts in our snSeq
data. Using ligand-receptor interaction analysis, see Methods for
details, we looked for interactions in which the ligand was dif-
ferentially expressed by the CDH12 population versus the other
epithelial populations and the receiving population demonstrated
differential activity of the matching receptor29,30. We observed
many significantly enriched interactions between the CDH12
population and fibroblasts, with the most notable being TGFBR1,
CD44, and several integrins because of their involvement in
cancer-associated fibroblast (CAF) activation (Fig. 3e). TGFβ
activates CAFs in a partially CD44-dependent manner, resulting
in their proliferation and promotion of the epithelial-to-
mesenchymal transition and wound-healing pathways31–33.
Taken together, these observations suggest the CDH12 popula-
tion may represent a chemo-resistant tumor subpopulation
characterized by TGFβ-induced CAF activation, while the KRT13
and UPK populations represent chemo-sensitive subpopulations
that may undergo apoptosis and induce immune activation
through immunogenic cell death pathways34,35.

CDH12 score predicts immunotherapy response post-
chemotherapy. Since tumors with low baseline CDH12 scores
responded to chemotherapy with a concomitant rise in their
CDH12, apoptosis, and immune activation gene signatures, we
also investigated the corresponding changes to immune
checkpoint-related genes. With immune activation, we found
tumors with low CDH12 scores increased their expression of
PDCD1LG2 (PDL2) after chemotherapy, while PDL2 expression
was higher than PDL1 (CD274) expression in all samples
(Fig. 4a). The former observation was consistent with our snSeq
dataset showing CDH12 cells expressed the highest level of PDL2
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among the epithelial populations (Fig. 4b). This led us to examine
our gene signatures in the context of the IMvigor210 trial. This
trial investigated, in what the original authors termed Cohort 2,
the efficacy of the anti-PDL1 antibody atezolizumab in patients
who previously failed to respond to platinum-based
chemotherapy36. Given our observation that chemotherapy sub-
stantially alters tumor composition by enriching for the CDH12
population (Fig. 3c), we split the IMvigor210 cohort into samples
originating from bladder that were taken pre-chemotherapy or
post-chemotherapy (Supplementary Fig. 6a, see methods for
cohort selection details). Consistent with the results of the NAC
cohort, in the pre-chemotherapy samples CDH12 levels were
associated with poor OS, albeit not significantly. Strikingly,
however, CDH12 levels predicted better OS in the post-
chemotherapy samples (Fig. 4c). Scores pertaining to the other
epithelial populations as well as the αSMA population exhibited

similar differential prognostic values in the pre- versus post-
chemotherapy setting, i.e. predicting poor versus better OS in
the pre-chemotherapy versus post-chemotherapy settings (Sup-
plementary Fig. 6b). Furthermore, only in the post-chemotherapy
setting did the CD8T score and expression of PDL1 and PDL2
demonstrate significant prognostic value (Fig. 4c). The
CDH12 score was also associated with pathological response in
the post-chemotherapy setting and, indeed, it was the only factor
with a significant association with response in the post-
chemotherapy setting, even when considering the well-
established consensus MIBC subtypes (Fig. 4d, e). Altogether,
this suggests that the history of the tumor is critically important
for therapeutic decision-making, as the tumor composition prior
to chemotherapy portends the changes that will occur in response
to chemotherapy, which then informs prognosis and response for
subsequent targeting of the PD1/PDL1 axis.
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CDH12 cells interact with CD8 T-cells through CD49a. To
further understand how the presence of CDH12 cells impacts
response to PDL1 blockade, we examined our snSeq cohort for
specific ligand-receptor interactions with T-cells. While we again
found numerous significant interactions between CDH12 epithelial
cells and T-cells, we identified the strongest interaction to be
ITGA1, which codes for CD49a, on CD8T (Fig. 4f). CD49a is the
alpha 1 subunit of integrin receptors and heterodimerizes with the
beta 1 subunit to form a cell-surface receptor for collagen and
laminin. The heterodimeric receptor is involved in cell–cell adhe-
sion, inflammation, and fibrosis37–39. CD49a plays a critical role in
CD8T migration and surveillance of peripheral tissues. Its blockade
or deletion results in impaired accumulation of CD8T in peripheral
tissues, indicating that this interaction may partly explain the CD8T
persistence in CDH12-high tumors37–39. In a targeted analysis of
checkpoint interactions, we identified the CDH12 population as
having the strongest PDL2-PD1 (PDCD1LG2-PDCD1) and CTLA-
4 interactions with CD8T, while the KRT13 and UPK populations
interacted with CD8T through TIGIT and TIM-3 (HAVCR2)
(Fig. 4g).

CDH12 cells co-localize with CD8 T-cells. To test the hypothesis
that CDH12 epithelial cells attract T-cells, we first used the

Visium spatial transcriptomics technology to investigate gene
expression localization in tumors from our snSeq cohort. Visium-
derived gene signatures closely matched with snSeq expression
profiles, and distinct stromal and immune niches were also evi-
dent (Supplementary Fig. 6c, d). Topographic analysis found that
areas enriched for a CDH12 signature were also enriched for
CD8T with key markers of exhaustion (e.g. PDCD1, LAG3,
HAVCR2) as well as the previously mentioned ITGA1 (Fig. 5a). In
contrast, spots enriched for a KRT13/UPK signature exhibited no
T-cell gene enrichment.

To validate that CDH12 epithelial cells co-localize with T-cells at
the single-cell level, we designed and executed a 35-plex IHC
panel using the Co-detection by indexing (CODEX) platform on
tumor tissue microarrays of the same tumor cohort (Fig. 5b
and Supplementary Table 2)40,41. The tissue areas used in the
microarray were specifically selected to harbor both tumor
and stroma to allow the study of co-localization of tumor and
non-tumor cells. We profiled a total of 75 cores across our patient
cohort with ~360,000 epithelial cells, ~140,000 immune cells, and
~90,000 stromal cells passing quality control filtering. We
successfully identified all of the major cellular populations including
CDH12 epithelial and KRT13 epithelial cells based on expression of
CDH12, CDH18, KRT13, and KRT17 (Supplementary Figs. 7, 8,
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and 9). We observed that the CDH12 population was significantly
depleted for KRT13 expression while the KRT13 population was
significantly depleted for CDH18 expression, suggesting KRT13 and
CDH12 have different co-expression patterns at the protein level
(Supplementary Figs. 7c and 10a).

CDH12 cells define cellular niches with exhausted CD8 T-cells.
Consistent with our Visium spatial transcriptomics results, we
again observed closer proximity of CD8T to CDH12 epithelial
cells than KRT13 epithelial cells using a k-nearest neighbor
approach (Fig. 5c). More broadly, CDH12 epithelial cells resided
in closer proximity to multiple immune cell types as well as

fibroblasts. This suggested distinct spatial distributions for these
two different populations. To formally address this, we utilized a
cellular niche detection algorithm to identify Cellular Niches
(CNs) in an unsupervised fashion41. CNs represent combinations
of cell types that frequently co-localize across multiple tumors.
Overall, we identified 20 total CNs comprising immune-enriched
niches, some of which resembled tertiary lymphoid structures
(TLS), stromal-enriched, and epithelial-enriched CNs (Supple-
mentary Fig. 10b, c and Supplementary Fig. 11). Within the
epithelial-enriched CNs, we identified 3 CNs that were sig-
nificantly enriched for CDH12 epithelial cells, 2 of which were
also enriched for CD8T. In contrast, we identified 2 CNs where
the KRT13 epithelial cells were enriched, and they showed no
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enrichment for CD8T (Fig. 5d and Supplementary Fig. 10c).
Additionally, the CDH12-enriched CNs were more diverse in
terms of their constituent cell types than KRT13-enriched CNs, as
assessed by Shannon entropy, a metric for diversity (Fig. 5e). This
supported our original observations in that the CDH12 popula-
tion resided in multiple spatially distinct niches that were
immune-infiltrated, whereas the KRT13 population was restricted
to niches resembling an immune “desert” phenotype.

We then asked how the identified CNs predict T-cell and
epithelial cell phenotypes within them. CD8T residing within
CDH12-enriched CNs expressed higher levels of CD49a (coded by
ITGA1) (CN16), PD-1 (CN11 and CN14), and LAG3 (CN14) than
CD8T residing in non-CDH12-enriched CNs (Fig. 5f, g). CDH12
cells within all 3 associated CNs had higher PD-L1 expression
compared to epithelial cells in CN13, the most KRT13-enriched
CN. In contrast, they expressed lower levels of PD-L2 (Fig. 5h, left).
Interestingly, the CDH12 cells also expressed lower levels of Ki-67
compared to CN13, consistent with our snSeq findings and their
potentially chemo-resistant nature. Among the 3 associated CNs,
CN14 contained CDH12 cells with the highest PD-L1 and PD-L2
expression and this was consistent with CD8T in this niche having
the highest expression of LAG3, which promotes a tolerogenic state
in CD8T and exhaustion with PD-1 (Fig. 5f, h, right)42,43. Together,
these data support the hypothesis that CDH12 epithelial cells reside
near CD8T in part through CD49a interactions, and may promote
T-cell exhaustion through PD-L1 and PD-L237–39. This would
partly explain the better response and survival for patients with high
CDH12 signature scores when treated with atezolizumab.

Discussion
In conclusion, we performed the first comprehensive profiling of
MIBC at the single-nucleus level, which allowed us to elucidate
the constituents of current molecular subtypes and to derive more
therapeutically relevant molecular signatures with higher resolu-
tion. We identified both well-known epithelial phenotypes as well
as a novel CDH12 phenotype that represents a previously
undescribed poorly differentiated cellular state. This CDH12
“high” phenotype accurately predicts poor prognosis for patients
treated with surgery as well as platinum-based neoadjuvant
chemotherapy. It also successfully predicts better prognosis and
higher response rates to PD-L1 blockade. We linked the che-
moresistance of these cells to a reduced proliferative state, a
highly fibrotic and vascularized tumor ecosystem, and expression
of the chemoresistance gene ALDH1A1. However, these cells
also express high levels of ligands for CD49a as well as PD-L1 and

PD-L2, which combine to promote a microenvironment enriched
for exhausted T-cells that likely become unleashed and benefit
from immune checkpoint blockade. Through an extensive
CODEX analysis, we confirmed the spatial proximity of CDH12
cells to CD49a-expressing, exhausted CD8T within unique cel-
lular niches. Altogether, we derived gene signatures pertaining to
specific cell populations, uroepithelial differentiation, and intra-
tumoral spatial neighborhoods that provide superior therapeutic
relevance than previous bulk-based subtypes (Fig. 6a). This sub-
population is remarkable for the degree it communicates with
other cellular types and by virtue of this communication to
establish distinct intratumor neighborhoods. Therefore, we pro-
pose to call this the Cell-Cell Communication (C3) subpopulation
going forward and use its gene signature score (C3 score) in
further studies.

Through these findings we speculate that gene expression
profiling can serve to triage patients who would benefit from
NAC (low C3 score) (Fig. 6b). Furthermore, these data indicate
that anti-TGFβ/anti-angiogenesis strategies could be beneficial in
high C3 score tumors. Residual tumors following NAC with low
C3 score might benefit from targeting alternative immune
checkpoint pathways such as TIM3 or TIGIT while those with
high expression might benefit from single agent or combination
ICT (Fig. 6b). This study paves the way for future analyses of the
molecular mechanisms C3 cells employ to gain such unique
predictive characteristics, and potentially for the development of
inhibitors to enhance chemotherapy efficacy for tumors with high
C3 scores. It also provides compelling rationale for a number of
possible clinical trials based on tumors with high C3 scores prior
to NAC as well as in patients with residual disease following NAC
(Fig. 6b). While the IMvigor 210 trial results indicate that high
C3 scores post-NAC predicts superior response to atezolizumab,
paired pre- and post-NAC samples were not available. Therefore,
we could not determine which of the post-NAC patients pos-
sessed low C3 scores prior to NAC and then determine if these
had a different outcome compared to those patients with high
C3 scores both before and after NAC. Thus, a prospective analysis
which profiles how the evolutionary history of the tumor in
response to NAC impacts response to atezolizumab would be
insightful. We postulate that those tumors which start with a low
C3 score and respond to NAC with increases in C3 scores would
experience the most benefit from atezolizumab, as we showed that
this is accompanied by an immune activation that might be
prolonged with atezolizumab. Clinical assay development is also
needed to address the practical application of a “low” versus

Fig. 5 CDH12 tumor cells preferentially colocalize with T-cells expressing CD49a, PD-1, and LAG3. a Schematic for topological analysis on the Visium

spot hexagonal grid where the average expression of a gene is shown in a reference spot (gray) along with the average expression of the same gene in the

spots located 1 spot away from the reference (red) or 2 spots away from the reference (orange) (top). Average expression of T-cell exhaustion and other

immune markers surrounding spots enriched for each of 3 different Visium-derived epithelial signatures (bottom). * indicates p < 0.05 using a Fisher exact

test for testing the association of expression of a given gene with enrichment of a given epithelial score. b Schematic of a MIBC tissue microarray (TMA)

for multiplexed immunohistochemistry via CO-Detection by indEXing (CODEX). The CODEX panel consisted of 35 markers targeting epithelial, immune,

and stromal cell types identified via snSeq analysis. c Median spatial distance per TMA spot of KRT13+ (yellow) or CDH12+ (blue) epithelial cells to the

nearest B-cell, CD4+ T-cell, CD8+ T-cell, macrophage, or fibroblast. * - Mann-Whitney, two-sided, p < 0.05. n= 36, 63, 34, 63, 18, 40, 40, 66, 41, 68 for

each box from left to right. Source data are available as a Source data file. d Voronoi diagrams of cellular neighborhoods (CN; top) and cell types (bottom).

CN’s were identified by k-means clustering the distribution of cell types neighboring each cell. Spots were chosen based on the number of cells belonging

to each of the 5 epithelial cell enriched CN’s. e Cellular diversity measured by the Shannon entropy of the cell types composing each of 5 epithelial enriched

CN’s. * - Mann-Whitney, two-sided, p < 0.05. n= 42, 23, 63, 68, 67 for each box from left to right. Source data are available as a Source data file. f Marker

intensity enrichment on CD8+ T-cells residing within each CN, compared against CD8+ T-cells residing in any other CN. Only Wilcoxon (two-sided) p <

0.05 are shown. g Sample images from n= 1 representative sample depicting a CD49a+ CD8+ T-cell (top), and PD-1+ CD8+ T-cell (bottom) in the

immediate vicinity of CDH12+ epithelial cells in-situ. Scale bar - 11 μm. h Marker intensity enrichment on CDH12+ epithelial cells within each CDH12

enriched CN compared with CDH12- epithelial cells within CN13 (left) or CDH12+ cells residing in any other CN (right). Only Wilcoxon (two-sided) p <

0.05 are shown. Boxplots are drawn as the inter-quartile range (IQR) with a line indicating the median, and outliers defined as points that fall outside of the

range demarcated by 1.5*IQR.
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“high” C3 score, which would entail establishing absolute stan-
dard curves for RNA/protein levels as RNA sequencing does not
provide absolute quantitation. The addition of an IHC-based
assay for enumerating C3/CD8T cellular niches similar to the
ones we defined with CODEX may also prove useful to investigate
the value of our findings in patient stratification for either NAC
or checkpoint inhibitor therapy.

Methods
Research ethics. Urothelial tissue from twenty-five patients with high-grade
muscle invasive bladder cancer (MIBC) and 4 patients without bladder cancer were
obtained from patients who underwent surgery. All patients provided written
informed consent, and no one receive neoadjuvant chemotherapy. All samples
were immediately snap-frozen in liquid nitrogen and stored at −80 °C until used.
The Research Ethics Committee of Cedars-Sinai Medical Center approved the
study (Study00000542).

Tumor and normal sample preparation. Nuclei were isolated from fresh frozen
MIBC tumors using a method modified from a recent single-nuclei RNA-
sequencing (snSeq) study44. The ST-SB buffer from that study was modified by
removing Tween-20 and supplementing with 0.04 U/μL Protector RNase Inhibitor
(Roche). Unless otherwise specified, all sample manipulation was performed on wet
ice with wide-bore pipet tips (Rainin) and all centrifugations were performed with
a swinging bucket rotor maintained at 4 °C for 5 min at 850 × g. In brief, the frozen
tissue was transferred onto a plate on dry ice and crushed into ≤1 mm3 pieces. This
was then transferred to a 2 mL dounce homogenizer (Kimble, cat: 885300-0002) on
wet ice containing 1 mL of Nuclei EZ lysis buffer (Sigma, cat: NUC101). The tissue
was then dounced approximately ×20 with Pestle A followed by ×20 with Pestle B.
The lysis was then quenched by adding 1 mL of ST-SB. The sample was filtered
through a pre-wetted 30 μm filter (Miltenyi Biotec, cat: 130-041-407) into a 15 mL
conical tube. The homogenizer was rinsed 3× with 1 mL of ST-SB and this was
transferred through the same 30 μm filter into the 15 mL conical tube. The sample
was then centrifuged, the resulting supernatant removed, and the pellet resus-
pended with 500 μL of ST-SB. The sample was then passed through a pre-wetted
20μm filter (Miltenyi Biotec, cat: 130-101-812) into a 1.5 mL protein lo-bind
microcentrifuge tube (Eppendorf, cat: 022431081) and centrifuged. At this point,
Totalseq hashing antibodies (TotalSeq-A 0451 – 0456 anti-Nuclear Hashtag 1-6,
Biolegend, clone Mab414, custom formulation provided by Biolegend) were also
centrifuged at 14,000 × g for 10 min at 4 °C. The sample pellet was then resus-
pended in 100 μL of ST-SB and 10 μL of Human TruStain FcX block (Biolegend,
cat: 422301) was added. The sample was pipet mixed and incubated at 4 °C for 5
min. Then 1.5 μg of the appropriate hashing antibody was added to the appropriate
samples, pipet mixed, and incubated at 4 °C for 15 min. The samples were pipet
mixed once halfway through this incubation. The samples were then washed 2×
with 1 mL of ST-SB, pooled appropriately, and filtered through another 30 μm and
20 μm filter. Nuclei concentration was quantified by mixing an aliquot of the
sample with DAPI at a final concentration of 0.025 mg/mL in H2O. Samples were
finally processed according to 10× Genomics protocol for the 3’ v3.1 assay and

were super-loaded to target of 20,000 nuclei recovery. We observed that nuclei
yield less total cDNA than cells, therefore we increased the first cDNA amplifi-
cation cycle number by 2. Hashing libraries were generated according to the
Biolegend Totalseq protocol for the 3’ v3.1 assay. In total, 57 samples from 25
patients were processed.

Nuclei were isolated from histologically normal bladder tissue using the same
protocol as above, but without hashing antibodies. Therefore, each sample was run
in its own 10x Genomics reaction. In total, 4 samples from 3 patients were
processed, with 3 samples originating from patients with urothelial carcinoma or
leiomyosarcoma (taken distant from the involved site and verified by a trained
pathologist to be uninvolved), and 1 sample originating from a healthy bladder. All
samples were sequenced by the Cedars-Sinai Applied Genomics, Computation &
Translational Core on a Novaseq to a sequencing saturation of approximately 60%.
Samples were processed with CellRanger (10X genomics, v3.0.2) using a pre-mrna
reference based on the GRCh38-3.0.0 reference in a manner similar to a recent
snSeq study45. Hashing libraries were aligned using the Cite-seq-count program
(v1.4.3) with the cell barcodes from the CellRanger output as the barcode whitelist.
The UMI counts from Cite-seq-count were then used for demultiplexing the MIBC
samples using a combination of the Seurat HTOdemux function and a secondary
custom script in MATLAB. The secondary script was used to recover nuclei that
were identified as negative for all hashtags by the HTOdemux function, but actually
passed the minimum number of counts identified by the HTOdemux function for
one and only one hashtag. All nuclei that were determined to be doublets or that
remained negative after the recovery step were then removed from subsequent
analyses. Since the histologically normal samples were not hashed, putative doublet
nuclei were identified using Scrublet (v0.2.1)46 from the filtered feature barcode
matrices produced by CellRanger. Scrublet was run using the 10% highest variable
genes, identified using the Scanpy (scanpy.pp.highly_variable_genes function;
scanpy v1.5.1)47, with an expected doublet rate of 10%. Nuclei were scored as
candidate doublets by Scrublet and removed if their doublet score exceeded 0.25.
Finally, for all samples, nuclei with more than 10% of their UMIs mapped to
mitochondrial genes were removed, and the top and bottom 5% of nuclei based on
number of unique genes and number of UMI were removed.

Visium sample preparation. Tissue optimization was performed on one repre-
sentative MIBC sample from the cohort used in this study, and the optimal per-
meabilization time was determined to be 24 minutes. Then 4 samples were
cryosectioned at 10μm and processed according to the 10x Visium protocol.
Samples were sequenced by Illumina to a sequencing saturation of approximately
90%. Samples were processed with SpaceRanger (10X genomics, v1.1.0) using the
same pre-mrna reference as for the snSeq data analysis to improve consistency
between the two datasets. Visium spots were filtered to have at least 1,250 total
UMI and less than 10% of their UMIs mapped to mitochondrial genes. Genes that
were not detected in at least 4 spots were removed.

Public bulk RNA-seq datasets: TCGA, IMvigor 210, neoadjuvant chemother-

apy (NAC). Bladder urothelial carcinoma Illumina Hi-Seq counts from The
Cancer Genome Atlas (TCGA) were downloaded from the Genomic Data Com-
mons (GDC) data portal, and corresponding clinical annotation including survival
information was accessed via the TCGA Clinical Data Resource48. Consensus
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MIBC classifications of TCGA cases were obtained from the consensus MIBC
study27. Only untreated high-grade muscle invasive cases with outcomes were
analyzed (N= 259). RNA-seq and sample annotations including overall survival
from the IMvigor 210 trial were accessed as described49. For survival analysis of
IMvigor 210, only samples from Cohort 2 which were annotated as originating
from bladder in the pre-chemotherapy (N= 100) or the post-chemotherapy (N=
53) setting were used. For pathological response analysis of IMvigor 210, only
samples from Cohort 2 which had pathological response information and were
annotated as originating from bladder in the post-chemotherapy setting (N= 51)
were used. For the comparison of response prediction shown in Fig. 5c, all samples
from Cohort 2 of IMvigor 210 with pathological response information (N= 298)
were used to facilitate comparison with the consensus MIBC results which were
previously published using those samples. After Illumina Hi-Seq counts were
obtained from the respective repositories, the raw counts were counts-per-million
normalized and log-transformed. Affymetrix array data corresponding to a trial of
neoadjuvant cisplatin-based chemotherapy in MIBC was downloaded from GEO
(GSE124305 and GSE87304). Array data were normalized using the RMA method
from the oligo R package (v1.52.1).

Single cell dimensionality reduction, clustering, and subtyping. Dimensionality
reduction and cell type assignment were carried out in a two-step process. Tumor
and normal cohorts were clustered and subtyped separately. First, all cohort cells
were used to fit a single cell Variational Inference model (scVI v0.6.8)50, resulting
in a 128-dimensional representation of cell phenotypes. The scVI latent space was
further projected into a 2-dimensional space for visualization by Uniform Manifold
Approximation and Projection (UMAP, Rapids.ai cuml v0.12.0)51,52. Unsupervised
clustering was performed on the scVI latent space via the leiden community
detection algorithm (cugraph v0.17, resolution = 0.6) and clusters were labelled as
broadly epithelial, fibroblast, immune, or endothelial using a panel of marker genes
gleaned from the literature. Clusters that could not be clearly annotated as a
specific cell type or clusters that expressed combinations of lineage-defining
markers that are not known to be co-expressed were removed from further ana-
lysis. Each broad cell type was then sub-clustered by again applying scVI and the
Leiden algorithm. To identify marker genes for detailed subtyping, differential gene
expression analysis was applied between sub-clusters in a 1-vs-all fashion (scanpy,
Wilcoxon method). Cell types were assigned based on alignment of top differen-
tially expressed genes with marker gene sets gathered from the literature. Gene set
scores from published MIBC subtyping and tumor stem cell studies were evaluated
for each epithelial cell by comparing the average expression to that of similar-
expression genes53.

To derive gene sets specific to each cell subtype identified in snSeq we applied
differential expression analysis separately within the 3 broad cell compartments
(epithelial, fibroblast, and immune). For each compartment, a differential
expression test was performed genome-wide for each specific subtype against all
others subtypes in that compartment (e.g. KRT epithelial vs CDH12 epithelial,
cycling epithelial, etc.). The top 200 up-regulated genes for each subtype according
to the scanpy “rank_genes_groups” tool’s “score” column were taken as putative
markers for that subtype. To break ties in cases when one gene was assigned as a
marker to multiple subtypes, the gene was ultimately assigned to the subtype with
the higher “score”. These gene signatures can be found in Supplementary Data
File 3.

SCENIC regulon analysis and gene co-expression modules. To interrogate
active transcriptional networks within each epithelial cell subtype we performed
gene co-expression module analysis and single-cell regulatory network inference
and clustering (pySCENIC v0.10.0)15. SCENIC analysis was performed with 6,979
highly variable genes using a curated list of human transcription factors, and
cisTarget database scoring motif enrichment up to 10 kilobases up and downstream
of transcription start sites. To complete the SCENIC workflow, AUCell scores were
calculated for each identified regulon.

Gene co-expression modules for tumor epithelial nuclei were derived from
the genome-wide pairwise gene Pearson correlations calculated from library
size-normalized, log-transformed counts. Genes were filtered first based on
being differentially expressed across clusters (FDR ≤ 0.05 and absolute log fold
change ≥ 0.3) and then based on a minimum number (N= 5) of correlations
above an absolute correlation threshold (Corr = 0.4). Genes were clustered
according to Pearson correlation and modules were partitioned by hierarchical
clustering (scipy, metric = Euclidean). Module genes were queried for Gene
Ontology (GO) term enrichment using gprofiler via scanpy54. For visualization,
individual genes were associated to the epithelial cell subtype with maximum
expression of that gene.

RNA velocity and tumor nearest normal neighbor identification. Alignment for
RNA velocity analysis was performed using the velocyto package23, and down-
stream velocity analysis was performed using scVelo (v0.17.15)22. The same gen-
ome annotation files used for CellRanger were used for alignment, and the GRCh38
repeat mask files were downloaded from the UCSC genome browser. Cells that had
previously passed QC and were subtyped in the previous gene expression analyses
were extracted from the velocyto output.

Normal epithelial nuclei were analyzed individually with scVelo. Gene
expression moments were calculated on the top 5,000 highly variable genes with at
least 20 combined counts using the UMAP method. RNA velocity was run using
scVelo’s dynamical model. Next, we sought to find the cell from the normal
samples that was nearest to each tumor epithelial cell in gene expression space. The
top 500 genes correlating gene expression with the latent time (minimum
correlation 0.3) were identified from each normal sample and aggregated (total
1,118 unique genes). Using the library size-normalized, log-transformed counts of
these latent time genes we proceeded by comparing each tumor epithelial cell with
each normal epithelial cell by calculating the L1 norm of the difference of
normalized gene expression. Each tumor epithelial cell inherited the latent time of
its nearest neighbor normal cell defined as the normal cell with the minimum L1
norm. Latent time gene signatures were derived by first binning tumor epithelial
cells into 5 evenly spaced time intervals according to their predicted latent time.
Differential expression was performed to recover the top 200 differentially
expressed genes for cells within each time interval versus all other time intervals in
a 1-vs-all fashion (scanpy, Wilcoxon method). In the event that a gene appeared in
the top 200 for more than one-time interval, the gene was assigned to the signature
of the interval with the highest differential expression score.

Ligand-Receptor interaction analysis. Receptor activity scores were based on
expression of signaling proteins and gene regulation targets downstream of
receptor activation29. A curated table of ligand-receptor pairs was obtained from
SingleCellSignalR30. We first assembled gene signatures describing receptor activity
by collecting protein-protein signaling connections and gene regulatory associa-
tions included in the NicheNet graphs. Ultimately, 75 receptors that failed to
accumulate signatures of at least 5 genes were excluded from further analysis,
leaving a total of 675 receptors, and 2,886 total ligand-receptor pairs to be inter-
rogated. The receptor activity was defined as the average absolute deviation of
receptor signature genes from the average expression of those genes in a back-
ground composed of the same broad cell type (epithelial, fibroblast, lymphoid,
myeloid).

Ligand-receptor interactions were determined based on the expression of the
ligand in a sender population of cells and the concurrent activation of the
corresponding receptor in a receiving population of cells. To perform a general
interaction analysis, we first pooled cells by subtype across all tumor samples. To
determine available ligands that were enriched in individual subtypes, we
performed differential expression analysis (scanpy, Wilcoxon method) of ligand
genes for each subtype against cells within the same broad cell type. Available
ligands for a sending population were those that met a minimum log fold change of
0.5 and maximum adjusted p-value of 0.05. Similarly, receptor activities were tested
for enrichment in each subtype relative to a background of the same broad cell
type. Active receptors were called according to a minimum log fold change of 0.25
and maximum adjusted p-value of 0.05. All ligands and receptors were required to
be expressed in at least 10% of sending or receiving cells respectively. Candidate
ligand-receptor pairs were assessed from the available ligands and active receptor
sets. Finally, candidate ligand-receptor pairs were subjected to a spatial co-
expression filter. Spatially co-expressed ligand-receptor pairs were determined in
the spatial transcriptomics dataset. A ligand-receptor pair was called spatially co-
expressed if, within at least 1 tumor, 25% of “spots” exhibiting the ligand
expression (UMI > 0) also had receptor expression (UMI > 0). Ligand-receptor
pairs were visualized with Circos plots. Each plot included heatmap tracks of
standardized ligand expression in one sending subtype and standardized receptor
activity in several receiving subtypes. Interaction potential was defined as the
product of average ligand expression with average receptor score and visualized as
links connecting ligand to receptor. Ribbon transparency was determined by the
scaled interaction potential according to transparency = min(0.9, 1−(potential/
potentialmax)2) so that the highest potential interaction was the least transparent
and a maximum transparency of 90% was imposed to ensure all ribbons were
visible.

ssGSEA, Kaplan-Meier analysis, and differential gene expression for bulk

RNA-seq. Gene set enrichment of the tumor single-cell subtype signatures and
latent time signatures was assessed in each of the bulk RNA-seq samples from the
TCGA and IMvigor 210 cohorts, and in the Affymetrix array data of the Black
cohort. TCGA and IMvigor 210 samples were scored by single sample Gene Set
Enrichment Analysis (ssGSEA, package GSEApy v0.10.1)55. The neoadjuvant
chemotherapy cases were scored with Gene Set Variation Analysis (package GSVA
v1.36.2)56. Samples within each cohort were grouped by score quartiles and
Kaplan-Meier survival plots were fit using the right-censored overall survival or
disease-free survival times (lifelines version 0.25.4)57. Significance was assessed
between the survival curves of the first and fourth quartiles using a log-rank test.
Differential gene expression analysis for the neoadjuvant chemotherapy dataset was
performed using the limma R package (v3.44.3).

Spatial gene signatures and association with T-cell exhaustion markers. Gene
co-expression modules for the Visium spots were obtained in a similar fashion as
for the snSeq epithelial analysis, however in this case differential gene expression
analysis was performed on each sample using the SpatialDE package (v1.1.3)58 and
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genes with FDR ≤ 0.05 were combined across samples. Then the same cutoffs from
the snSeq analysis were applied except the fold change cutoff was removed. The
resulting gene co-expression modules were then annotated based on their relation
to the snSeq dataset, e.g. the module whose gene signature was enriched in the
CDH12 nuclei was labeled as CDH12-enriched.

Visium field expression profiles (Fig. 4G) were generated by taking the top 5th
percentile of spots for a given module as the reference spots, and then averaging the
expression of spots in rings around the reference spot. The coordinates for the ring are
as follows: (x-(k+1)),(y+(k+1)); (x-(k+1)),(y-(k+1)); (x),(y+(k+2)); (x),(y-(k+2));
(x+(k+1)),(y+(k+1)); (x+(k+1)),(y-(k+1)); where (x,y) are the coordinates for the
reference spot and k is the number of spots away from the reference. The figure shows
the average of these profiles across all of the reference spots considered and
standardized across the modules.

Visium spots were tested for concurrent enrichment of expression profile scores
and gene expression by contrasting spots in the top 5th and bottom 5th percentile of
module scores. A contingency table was constructed by counting the number of
spots with gene expression in the top 5th and bottom 95th percentile and Fisher’s
exact test (scipy v1.4.1, fisher_exact, one-sided) was performed on the
contingency table.

Immunohistochemistry. Immunohistochemistry was performed on sections taken
from FFPE blocks that were made from adjacent pieces of the same tumors from
the snSeq cohort. Briefly, sections were deparaffinized and rehydrated, antigen
retrieval was performed using a pressure cooker and 1x Universal HIER buffer
(Abcam, cat: ab208572), then blocked in protein blocking buffer (Abcam, cat:
ab64226) for 1 h at room temperature. Sections were then washed and incubated
with primary antibodies at 4 °C overnight. The primary antibodies used were as
follows (all dilutions were performed with protein blocking buffer): KRT13
(Abcam, cat: ab239918, clone EPR3671, 1:100), KRT17 (Abcam, cat: ab212553,
clone KRT17/778, 1:100), CDH12 (LSBio, cat: LS-B11408-100, rabbit polyclonal,
1:100), and CDH18 (Thermo-Fisher Scientific, cat: H00001016-M01, clone 6F7,
1:50). Sections were then washed and incubated with the appropriate fluorophore-
conjugated secondary antibodies at room temperature for 1 hour. Secondary
antibodies used were as follows (all dilutions were performed with protein blocking
buffer): Donkey anti-mouse IgG AF568 (Thermo Fisher Scientific, cat: A10037,
1:500) and goat anti-rabbit IgG AF488 (Thermo Fisher Scientific, cat: A11008,
1:500). Sections were finally washed, mounted with Vectashield containing DAPI
(Vector Laboratories, cat: H-1200), and imaged using a Leica DMi8 equipped with
a Lumencor SOLA SE U-nIR LED and Hamamatsu Orca Flash 4.0 v3.

Co-detection by indexing (CODEX) of MIBC tumor microarrays. Tumor
microarrays (TMAs) were prepared from 1mm punches taken from FFPE blocks that
were made from adjacent pieces of the same tumors from the snSeq cohort. If possible,
3 punches were taken from each tumor with 1 punch per tumor, per TMA, resulting
in 3 final TMAs. Punches were taken from areas of the tumor that were annotated on
H&E to contain both tumor and stroma as annotated by a trained pathologist. Sec-
tions from each of these 3 TMAs were then collected onto poly-L-lysine-coated
coverslips, which were prepared according to the Akoya Biosciences CODEX
protocol40. Sections were then deparaffinized and rehydrated, and antigen retrieval
was performed in a similar manner to the IHC protocol. Sections were then quenched
for autofluorescence using a protocol adapted from Du et al.59. Subsequently, sections
were stained and imaged according to the Akoya Biosciences CODEX protocol.
Details regarding primary antibodies and imaging conditions can be found in Sup-
plementary Table 2. Imaging was performed using a Leica DMi8 equipped with a 20x
objective, Lumencor SOLA SE U-nIR LED, and Hamamatsu Orca Flash 4.0 v3.

Primary antibodies were initially screened by performing standard IHC, as
above, on MIBC tumor sections to verify positive staining. Primary antibodies were
then conjugated to their corresponding barcodes according to the Akoya
Biosciences CODEX antibody conjugation protocol. Conjugated antibodies were
then titrated by performing CODEX staining on a TMA section using the full panel
diluted at either ×50, ×100, ×200, or ×400. The dilution that resulted in the optimal
signal-to-noise ratio was determined for each antibody individually. The final
dilutions obtained from this titration can be found in Supplementary Table 2.

CODEX data pre-processing. Images were processed with custom software. To
process raw CODEX images, 5 preprocessing operations were applied in this order:
extended depth of field (EDOF), shading correction, cycle alignment, background
subtraction and tile stitching, described briefly here.

1. An EDOF image was produced from the z-stack for each tile where each
position is taken from the z-plane most in focus.

2. The CIDRE method60 of optical shading correction was applied to each
channel of each imaging cycle.

3. An image registration transformation was estimated between the first cycle
DAPI channel and the DAPI of each subsequent cycle. For each cycle, the
registration parameters were saved and applied to all other channels from
the same cycle.

4. Blank cycles were used to subtract background from each channel.
5. Finally, neighboring tiles were stitched by applying a registration between the

overlapping areas between two tiles. First the two tiles with the best naive

overlap were stitched by applying the appropriate registration shift to one of
the tiles. Stitching then proceeded with the next two most nearly aligned tiles,
until all tiles were merged. Since each cycle was previously aligned to the first
cycle’s DAPI channel, the registrations used for tile stitching were estimated
once on the first DAPI and reused for subsequent channels and cycles.

To obtain nuclear segmentations we applied a pre-trained StarDist model61 to
the first cycle DAPI image. The model weights of the 2D 2018 Data Science Bowl
model released by the original StarDist authors were fine-tuned using a training set
of nuclei imaged on our CODEX platform. A “ring percentage” metric was also
developed for relevant markers to differentiate cells expressing the marker from
adjacent cells whose masks may contain a portion of the signal from the positive
neighbor. For surface markers the assumption was, truly positive cells would
display signals in a ring-like morphology, while neighboring cells with overlapping
masks would not. To quantify cells exhibiting a ring-like pattern, we defined the
“ring percentage” by examining the pixels in a ring around the nuclear
segmentation contour, and tallying the percentage of these pixels that were positive
for the markers CD45, CD3e, CD8, CD4, CD45RA, CD45RO, CDH12, KRT13,
KRT17, CD20, ERBB2, and PanCytoK, defined as intensity greater than 20. Lastly,
a whole-cell or “membrane” segmentation was obtained expanding the nuclear
segmentation area by morphological dilation, without introducing overlaps in
adjacent nuclei. The average intensities under each nuclear mask and membrane
mask were extracted for each cell to be used for cell type assignment. A
Hematoxylin and Eosin stained slide accompanying each of the 3 TMA’s was
examined by a pathologist and spots identified as necrotic, or with extensive tearing
or cautery artifacts were excluded from further analysis.

CODEX cell type identification. A multi-step strategy was used to assign specific
subtypes to single cells by first gating average marker intensity, then applying a
k-Nearest Neighbor (kNN) classifier. First, the initial set of 615,171 segmented cells
was filtered for low-quality cells indicating errant segmentations or non-specific
staining artifacts with three separate gates: low DAPI intensity (filtered 2,501 cells),
low total marker expression (filtered 17,597 cells), and high multiple marker
expression (filtered 12,547 cells). Cells were manually gated based on intensity of
PanCytoK, CD45, aSMA, CD31, CD20, CDH12, CDH18, CD68, CD3e, CD8, and
CD4 into a training set consisting of the broad cell types: Epithelial, Epithelial KRT,
Epithelial CDH, Stromal, Endothelial, general CD45+ immune, Bcell, CD8T,
CD4T, and Macrophage. Further selection based on the “ring percentage” feature
described above was applied to filter the gated populations using the applicable
markers. For this initial classification, the special “blank” and “saturated” classes
were retained. The cells that fell into these categories during this initial classifi-
cation were dealt with in a later step. To account for imbalance in the training set
collected, each category was uniformly subsampled to 2,500 training cells, unless
fewer than 2,500 training cells were collected in which case all cells were used for
that category. In all, a training set of 32,500 cells was used for initial cell typing. 50
features per cell were used for kNN classification: aSMA, CD45, PDGFRb, CD68,
CD31, HLA-DR, UPK3, GATA3, CD3e, CDH18, CDH12, KRT13, KRT17, CK5-6,
KRT20, CD20, CD8, CD4, and PanCytoK “membrane” and “nuclei” mean
intensity features (38), and all “ring percentage” features (12). Features were scaled
with the robust scaling method in scikit-learn to normalize the inter-quartile ranges
of each feature. A kNN classifier (cuML, version 0.17) was trained on the whole
training set using 200 neighbors and uniform weighting. Cells initially classified as
CD8T or CD4T were next used in a second phase of T-cell specific gating to
identify activated CD8T (CD45RAhi, CD69hi /CD45ROlo, PD-1lo), terminally
differentiated CD8T (PD-1hi/CD45ROlo, CD69lo), resident memory CD8T
(CD49ahi, CD103hi / FOXP3lo), and regulatory CD4T (FOXP3hi/CD49alo,
CD103lo). In keeping with the aforementioned class balancing procedure, up to 500
cells from each Tcell subset were randomly selected for training, and up to 500
CD8T and CD4T cells not included in the specific subtyping were also included.
Thus, a total of 2,445 cells were used for training a second T-cell specific kNN
classifier with 100 neighbors.

The final phase of subtype classification was to assign subtypes to those cells still
labelled “blank”, “saturated”, or non-descript “Immune”. All cells with a final
subtype were used as potential training cells for 10 rounds of classification. Each
round, 500 of each subtype were randomly selected as training cells for a kNN
classifier with 20 neighbors. The rescued cells were assigned the most frequently
predicted subtype across the 10 rounds. Rescued cells assigned to non-immune
subtypes were accepted, however, rescued immune cells were rejected and filtered
from the dataset. Finally, Epithelial KRT13+ and KRT17+ cells were selected by
manually gating KRT13 and KRT17 intensity from all classified Epithelial cells.
Ultimately, 598,327 cells were assigned a celltype and subtype annotation and
included for further analysis. Marker intensity was visualized using a dot plot
where the hue of the dots represented the log fold change of that marker in a
particular subtype versus all other cells, and the size of the dot represents a
Wilcoxon test p-value (scipy, version 1.6.0).

CODEX niche detection and spatial analysis. Niches were identified according to
the subtype distribution of the k= 10 nearest cells, with a maximum distance of
200 in image coordinates. Each cell’s neighborhood profile was tallied as the per-
centage of each broad cell type (Epithelial, Epithelial CDH, Stromal, Endothelial,
Macrophage, Bcell, CD8T and CD4T) within each cell’s 10 nearest neighbors by
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Euclidean distance, and including the reference cell’s celltype. A cellular niche (CN)
represents groups of cells with similar neighborhood profiles. Using an iterative
classifier-based approach we identified an optimal number of CN’s. A k-means
clustering (cuML, version 0.17) was performed with several values of k. For each k
value, all cell niches were clustered, then divided into 1/2 training and 1/2 hold out
partitions, then a logistic regression classifier (cuML, version 0.17) was fit on each
CN in a 1-versus-all fashion. The area under the receiver operating characteristic
curve (AUC) for each of these classifiers was evaluated using the held out partition.
The average AUC for each k was plotted. The value k= 20 was chosen as a value
providing a reasonable number of niches with good individual predictability. The
1-vs-all logistic regression model coefficients were used to assign labels based on
predictive cell types for each niche. Two niches with similar composition were
merged, yielding 19 final CN’s for further analysis. Subsequently, the specific
subtype membership within each CN was examined using a Fisher’s exact test.

The cellular niche diversity was defined as the Shannon entropy (Eq. 1) of the
cells composing a CN, i.e. the cells assigned to the CN, and all of the cells included
in computing those neighbor profiles. Only unique cells were considered. For a set

of CN cells consisting of n subtypes, P xi
� �

represents the frequency of the ith

subtype amongst the set, and the Shannon entropy is given by Eq. 1. A large value
of Shannon entropy indicates diversity in the cell subtypes, whereas a low value
indicates a lack of diversity, or that the CN is dominated by a few subtypes.

S ¼ � ∑
n

i¼1
P xi
� �

logP xi
� �

ð1Þ

Relative marker enrichment between CN’s was evaluated with a Wilcoxon test
of marker intensity on a specific subtype of cells residing within a particular CN
compared with intensity on a subtype of cells residing in another CN. Lastly, direct
spatial proximity between two cell types was evaluated per spot as the median
distance between each instance of a query cell type to the nearest instance of a
target cell type. A Mann–Whitney test was used to assess a difference in these
distances across all spots in all TMA’s. In all analyses, only spots with at least 25
examples of all cell types, subtypes, or CNs being examined were evaluated.

Reporting summary. Further information on research design is available in the Nature

Research Reporting Summary linked to this article.

Data availability
The following datasets were generated in this study. Single-nuclei RNA-seq and HTO

data have been deposited in the GEO database under accession code GSE169379. Visium

data have been deposited in the GEO database under accession code GSE171351.

CODEX processed data are available through figshare from the following links: https://

figshare.com/s/4610a15363c8306dfa36, https://figshare.com/s/2005255a8b65de23109f,

https://figshare.com/s/1d8c7ed76d4b3222ada4. CODEX raw data are available from the

corresponding authors upon reasonable request. The following datasets are publicly

available. Bladder urothelial carcinoma Illumina Hi-Seq counts from The Cancer

Genome Atlas (TCGA) were downloaded from the Genomic Data Commons (GDC)

data portal, and corresponding clinical annotation including survival information was

accessed via the TCGA Clinical Data Resource. Data from the IMvigor210 trial were

obtained from the IMvigor210CoreBiologies R package, made freely available by the

authors of the trial manuscript. Affymetrix array data corresponding to a trial of

neoadjuvant cisplatin-based chemotherapy in MIBC was downloaded from GEO

(GSE124305 and GSE87304). The remaining data are available within the Article,

Supplementary Information, or Source Data file. Source data are provided with

this paper.

Code availability
Software packages, notebooks, and scripts used for analysis are available at https://github.

com/KnottLab/bladder-snSeq. Custom MATLAB code for CODEX preprocessing is

available at https://github.com/KnottLab/codex. The corresponding DOIs are as follows,

analysis scripts: https://doi.org/10.5281/zenodo.5115212 and CODEX preprocessing:

https://doi.org/10.5281/zenodo.5115210.
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