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Abstract. We show that the potential q is uniquely determined by the spectrum,
and boundary values of the normal derivatives of the eigenfunctions of the
Schrδdinger operator — Δ + q with Dirichlet boundary conditions on a
bounded domain Ω in Rn. This and related results can be viewed as a direct
generalization of the theorem in the title, which states that the spectrum and
the norming constants determine the potential in the one dimensional case.

1. Introduction

Let q(x) be a real-valued potential in L°° [0,1] and let y(x, μ) solve the initial value
problem

— y" + qy = μy f°r *e(θ> i)>
J>(0,μ) = 0,

/(0,μ)=l.

Define the sequence {μt(q)}?Lι of Dirichlet eigenvalues by the condition

Xl,// ί ) = 0

and define the norming constants ci by

i
Ci(4) = fj>2(x,μi)ώc.

o

A well known result of Borg [B] and Levinson [L] is

Theorem 1.1. Suppose that q1,q2, eL°°(0,1), are real-valued and that, for all i
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and

then

41=42-

It is possible to paraphrase Theorem 1.1 by

Corollary 1.2. Suppose that q1,q2eLco(0, 1), are real-valued and that, for all ί

and

y(l,μ ί

then

Proof. Integrating the identity

= ~y
όμ dμ )

and setting μ = μt yields the well known formula

Jy2(x,^)dx = ̂ (l,μί)/(l,μί). (1-1)
o vμ

As a function of μ,y(l,μ) is entire and of order 1/2 so that

We may conclude from our hypothesis then that

y(l,μ',ql) = y(\,μ\q2\

and therefore that

dy dy
--(I,μί;(?1)-^(l,μί;g2),
dμ dμ

and finally from (1.1), that

cMι} = Ci(q2\

so that the corollary follows from Theorem 1.1

Now, Corollary 1.2 has a direct generalization to higher dimensions; let Ω be
a bounded domain in IR" with smooth boundary and let q(x)eLco(Ω). Let {μ^q)}^ i
denote the eigenvalues of

— Δu + qu = μu in Ω

w f l f l = 0, (1.2)
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and let {^(x)}^ i be a corresponding complete set of orthonormal eigenfunctions1,
then we have

Theorem 1.3. Let ql,q2£CCG(Ω) be real-valued and suppose that, for each i

and

^L(X'9q) = ̂ i.(x;q) for all xedί}1; (1.3)
cv ov

then

We may also consider different boundary conditions.
If { λ i ( q ) } ι L 1 denote the eigenvalues and {ψi(x',q)}i°=ι a complete set of

orthonormal eigenfunctions of

(1.4)

where α(x) is a fixed smooth real-valued function on dΩ, we have

Theorem 1.4. Let q1,q2eC°°(Ω) be real-valued and suppose that, for each i,

Ψi(xiqι) = ψi(xiq2) for all xedΩ1; (1.5)

then

<ϊι(x) = <Ϊ2(x) fora11 xεΩ

The bulk of the paper is devoted to the proof of Theorems 1.3 and 1.4; to this
end we shall make use of the Dirichlet to Neumann map, which we define as
follows: suppose that zero is not an eigenvalue of (1.2) and let u solve

— Δu + qu = Q in Ω, (1.6)

I / I — f π 7^u\dΩ~J> I1-7;

we define

A r du
ΛJ = -,

1 To each eigenvalue μt we should properly associate not an eigenfunction but an eigenspace Vt a L2 (Ω);
if φeF f, then φeCl(Ω), hence Wt = { f \ f = (dφ/dv)\dΩ:φeVl} is a subspace of L2 (dΩ\ equipped with
the inner product (dφ/dv\dΩ, dψ/dv\dΩy = <φ, ̂ )jL2(ί2). Condition (1.3) should actually read

as inner product spaces, and (1.5) should read similarly.
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If zero is not an eigenvalue of (1.4), let u solve (1.6) and replace (1.7) with

tθdefme R,9 = u\ao (1-9)

Although Rq depends on α(x)—which is known and fixed throughout—we do not
indicate the dependence explicitly. If we let λeC we may replace q in (1.6) with
q — λ and consider Λq-λ and Rq-λ as functions of A; we note that Λq_λ and Rq-λ

are meromorphic operator-valued functions of A (with poles exactly on the spectrum
of the associated Schrόdinger operators). We shall obtain both Theorem 1.3 and
Theorem 1.4 as corollaries to

Theorem 1.5. Let qί9q2eU°(Ω) and suppose that, as meromorphic functions o/AeC,
either

Rqι-λ = Rq2-λ, (1.10)
or

Λqι., = Λq2,λ, (1.11)
then

To see, formally, the connection between Theorem 1.4 and Theorem 1.5, let
G(x, y9 λ) be the Green's function for — A + q — λ with the boundary conditions
(1.4); then the solution to

— Δu + (q — λ)u — 0, -—\-uu\dΩ— g (1-12)

is given by

u(x) = j G(x, y, λ)g(y)dS(y) for x in fl,
δΩ

while G is given by the eigenfunction expansion

so that, if we let x approach the dΩ

• λ dΩ

which expresses Rq-λ in terms of λt and ψi\dΩ thus (formally) proving Theorem 1.4.
The last theorem we state is a sharpening of Theorem 1.5 in dimensions n ̂  3.

Theorem 1.6. Let q1,q2£Lco(Ω), n^3, and suppose that λ0 is not a Dirichlet
eigenvalue of q1 or q2. If
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then

4 ι = 4 2

For smooth potentials Theorem 1.6 is a direct consequence of a theorem in
[S-U-II]; we include a somewhat simpler proof here, however. We also note that
Theorem 1.6 is known to be true in dimension n = 2, provided that qί and q2

are sufficiently close to constants (see [S-U,I]).
The paper is organized into three sections; in Sect. 2 we prove Theorems 1.5

and 1.6, and in Sect. 3 we use Theorem 1.5 to prove Theorems 1.3 and 1.4.

2. Proof of Theorems 1.5 and 1.6

We begin this section by constructing special solutions to (1.6) and (1.12), which
shall be used to prove Theorems 1.5 and 1.6. We shall find these solutions by
solving an equation in (R"; in order to do this, we shall extend the potential q(x)
to be zero outside the domain Ω. We shall make use of the norm

l l !Hι*HI(i + M)VllL' ,
and the seminorm

/2

W,= Km- j \φ\2

\ K - > o o Λ | χ | ^ R

We shall need solutions to

-Δu + qu-λu = Q (2.1)

of the form
u = eίk'x + φ9 (2.2)

where
(2.3)

(2.4)

and satisfies

- Δψ + qψ - λψ = - qeίk'x; (2.5)

in addition, I/MS a A-outgoing solution to (2.5); that is

I*-' = 0. (2.6)

We summarize in a lemma.

Lemma 2.1. For δ < — £, there exists ε(δ) > 0 such that if

\\q(x)(l + \x\Γ2δ\\L«<ε(δ)Jλ, (2.7)

there exists a unique solution u to (2.1) of the form (2.2) such that ψ satisfies (2.4)
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and (2.6). In addition

\\φ\\LJ^^^\\q\\L^δ. (2.8)

v ̂
We shall also need other special solutions to

-Δu + qu = Q in 1R" (2.9)

of the form
u = eζ'x(l + \l/)9 (2.10)

where
(2.11)

0, (2.12)

and ψ satisfies
-Δil/- 2ζ-Vψ + qψ = - q. (2.13)

We summarize with

Lemma 2.2. For — 1 < δ < 0, there exists ε(δ) > 0 such that if

||(l + |x |)«(x) | |L«<ε(δ)|CI, (2.14)

there exists a unique solution to (2.9) of the form (2.10) with (2.12). In addition,

| | ι A I I L ^ ^ | | g | | L 2 ; -1«5<0. (2.15)

We shall sketch the proofs to Lemmas 2.1 and 2.2 in an appendix; see also
[L-N] for other estimates, which allow more singular potentials. We shall also need

Lemma 2.3. Let ql,q2^Lco(Ω), extended to be zero outside Ω, satisfy (2.7)
(respectively (2.14)) and suppose that

Λqί-λ = Λq2-λ (respectively Λqι = Λq2). (2.16)

If M l 5 M 2 are the unique solutions to (2.1) (respectively (2.9)) of the form (2.2)
(respectively (2.10)), then

u1=u2 in Un\Ω.

Proof. Let v solve

— Δv-\- q2v — λv = 0 in Ω,

Define

[v for
CO ~~ '

[M! for χξUn\Ω.

As a consequence of (2.16), ω and (dω/dv) are continuous across dΩ; therefore,
ω solves (2.1) in (R". ω has the appropriate asymptotics at infinity ((2.4) and (2.6))
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because u1 does; so that we may conclude, according to the uniqueness statement
in Lemma 2.1, that ω = u2. Thus u2 = u1 in lR"\β.

The other case is similar.

Proof of Theorem 1.5. Let melR" be fixed and let

Let H,. be as in (2.2) with qt(i = 1,2) in place of g (choose | / | so large that (2.7)
holds):

let'q^le^Δ + λϊu^ f β**fe- jfrv^V
β β a^ \^ v /

where v is the outward pointing unit normal and dS is the euclidean surface measure:

= f /•"(/!„ _ A - i£ v)MS.
dΩ

Now, according to Lemma 2.3,

M ι l a f l = M 2 l a β

and, according to (1.11)

Λϊι-λ

so that we may conclude

le
Ω Ω

If we now let | / | , and hence λ, go to infinity and use (2.8), we obtain

J «""-«! = ίβ'"-92.
Ω Ω

As melR" was arbitrary, we conclude that

4 l = 4 2

To complete the proof of the theorem, we note that (1.10) implies (1.11), as

V λ = R;Λ-Φ)J.
Proof of Theorem 1.6. For fixed melR", we choose

ξ=$(k + i(m + e))9 ζ = i(-fc + i(m-e)),

where

k-e — k-m = e m = 0, | f e | = \m + e\ — |m — β|,

and compute as before
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We conclude that

Ω Ω

and, letting \e\, and hence | k \ = \ m + e \ , tend to infinity, we conclude from (2. 1 5) that

f *""•*</! = f« taΓJ'92,
Ω Ω

and hence that ql = q2

3. Proof of Theorems 1.3 and 1.4

To make the formal argument following the statement of Theorem 1.5 precise, we
shall need two lemmas.

Lemma 3.1. For m sufficiently large and fECco(dΩ\

= ί r(x,y)f(y)dS(y)9 (3.1)
dΩ

= J e(x9y)f(y)dS(y)9 (3.2)
dΩ

where r(x,y) and e(x,y) are the continuous functions in Ω x Ω given by

" * " - - ' •

Proof. Let ω solve

It is easy to check that

and that for

so that, for x^edΩ
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where

Equations (3.2) and (3.4) will follow as soon as we establish the continuity in Ω x Ω of

x y

To see this, note that the φieCco(Ω) and satisfy the straightforward energy estimates

where cx and c2 depend on q and its derivatives and Ω. A large enough choice of
m will therefore assure uniform convergence of (3.4) in Ω x Ω. This proves (3.2)
and (3.4); (3.1) and (3.3) are analogous and therefore omitted.

Lemma 3.2. Let feCco(dΩ); qί,q2eCco(Ω)ι and 0 ̂  t < \\ then

lim \\(Rqί-λ-Rq2-λ)(f)\\H*(dΩ} = 0, (3.5)
A-> - 00

I'm || (Λ β l _ A -yl 4 ϊ _,)(/) 11̂  = 0. (3.6)
λ~* — oo

Proof. We shall prove (3.6); (3.5) is similar. Let ut(i = 1,2) solve

(-4 + ̂ -^ = 0, ut\3Ω = f . (3.7)

Now, ω = u1 — w2 solves

(-Δ + qί-λ)ω = (q2- qι)u2, ω\dΩ = 0,

and therefore satisfies the energy estimate

C(Ω)sup\qί-q2\ \\u2\\L2(Ω)

It follows from (3.7) that
C(Ω)sup\q2-λ\ | |/||Hι/2(aβ)

- "" - A

xeΩ

For 0 < ί < ,̂ combining (3.8) and (3.9) yields

dω

δv δΩ H\dΩ)

^C(β)||ω||Ht+3/2

xeΩ xeΩ

((l~2ί)/4)

xeΩ

(3.8)
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and the term on the right approaches zero as λ approaches minus infinity.

Proof of Theorems 13 and 1.4. Suppose that the hypothesis of Theorem 1.3 holds.
Lemma 3.1 implies that Λqι _ λ — Λq2 _ Λ is a polynomial in λ, and Lemma 3.2 implies
that the polynomial is zero. Hence Λqι-λ = Λq2 _ λ and we may invoke Theorem 1.5.
The proof of Theorem 1.4 is similar.

Appendix

In this appendix we sketch a proof of Lemmas 2.1 and 2.2. Lemma 2.1 appears to
be a well known consequence of standard arguments from scattering theory (see
[A-H] or [A]), so that we shall give only a brief sketch of its proof.

In fact, Lemma 2.1 is easily seen to be a regular perturbation of

Lemma A.I. Let /elA^, δ<— \, ana λ>α>0, then there exists a unique Lj
λ-outgoing solution to

— Δφ — λφ = f in (Rw

and

„ , „ CM)
(A.I)- v/

Sketch of proof. Define

where, by definition,

= lim -
|£ | 2-λ-iO

The estimate (A.I) follows from Theorem 5.1 of [A-H], with a little care taken
to keep track of the constant depending on λ. (Note that the || \\B used in [A-H]
is strictly weaker than || ||L2 for δ< — %). The fact that φ is the yl-outgoing

solution follows from Theorem 7.4 of [A-H], with Q(x,D) taken to be d/δr —

Lemma 2.2 is easily seen to be a regular perturbation of the following which
is Proposition 2.1 of [S-U,Π]:

Lemma A.2. Suppose that £-(^0, |C|>£>0, -l<ί><0, and /eLj+ x then there
exists a unique ωeLf solving

moreover,
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